Science.gov

Sample records for medical image registration

  1. Deformable Medical Image Registration: A Survey

    PubMed Central

    Sotiras, Aristeidis; Davatzikos, Christos; Paragios, Nikos

    2013-01-01

    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this paper, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this paper is to provide an extensive account of registration techniques in a systematic manner. PMID:23739795

  2. Medical image registration using fuzzy theory.

    PubMed

    Pan, Meisen; Tang, Jingtian; Xiong, Qi

    2012-01-01

    Mutual information (MI)-based registration, which uses MI as the similarity measure, is a representative method in medical image registration. It has an excellent robustness and accuracy, but with the disadvantages of a large amount of calculation and a long processing time. In this paper, by computing the medical image moments, the centroid is acquired. By applying fuzzy c-means clustering, the coordinates of the medical image are divided into two clusters to fit a straight line, and the rotation angles of the reference and floating images are computed, respectively. Thereby, the initial values for registering the images are determined. When searching the optimal geometric transformation parameters, we put forward the two new concepts of fuzzy distance and fuzzy signal-to-noise ratio (FSNR), and we select FSNR as the similarity measure between the reference and floating images. In the experiments, the Simplex method is chosen as multi-parameter optimisation. The experimental results show that this proposed method has a simple implementation, a low computational cost, a fast registration and good registration accuracy. Moreover, it can effectively avoid trapping into the local optima. It is adapted to both mono-modality and multi-modality image registrations.

  3. Image registration method for medical image sequences

    DOEpatents

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  4. A survey of medical image registration - under review.

    PubMed

    Viergever, Max A; Maintz, J B Antoine; Klein, Stefan; Murphy, Keelin; Staring, Marius; Pluim, Josien P W

    2016-10-01

    A retrospective view on the past two decades of the field of medical image registration is presented, guided by the article "A survey of medical image registration" (Maintz and Viergever, 1998). It shows that the classification of the field introduced in that article is still usable, although some modifications to do justice to advances in the field would be due. The main changes over the last twenty years are the shift from extrinsic to intrinsic registration, the primacy of intensity-based registration, the breakthrough of nonlinear registration, the progress of inter-subject registration, and the availability of generic image registration software packages. Two problems that were called urgent already 20 years ago, are even more urgent nowadays: Validation of registration methods, and translation of results of image registration research to clinical practice. It may be concluded that the field of medical image registration has evolved, but still is in need of further development in various aspects.

  5. Medical image registration using sparse coding of image patches.

    PubMed

    Afzali, Maryam; Ghaffari, Aboozar; Fatemizadeh, Emad; Soltanian-Zadeh, Hamid

    2016-06-01

    Image registration is a basic task in medical image processing applications like group analysis and atlas construction. Similarity measure is a critical ingredient of image registration. Intensity distortion of medical images is not considered in most previous similarity measures. Therefore, in the presence of bias field distortions, they do not generate an acceptable registration. In this paper, we propose a sparse based similarity measure for mono-modal images that considers non-stationary intensity and spatially-varying distortions. The main idea behind this measure is that the aligned image is constructed by an analysis dictionary trained using the image patches. For this purpose, we use "Analysis K-SVD" to train the dictionary and find the sparse coefficients. We utilize image patches to construct the analysis dictionary and then we employ the proposed sparse similarity measure to find a non-rigid transformation using free form deformation (FFD). Experimental results show that the proposed approach is able to robustly register 2D and 3D images in both simulated and real cases. The proposed method outperforms other state-of-the-art similarity measures and decreases the transformation error compared to the previous methods. Even in the presence of bias field distortion, the proposed method aligns images without any preprocessing.

  6. Restricted surface matching: a new registration method for medical images

    NASA Astrophysics Data System (ADS)

    Gong, JianXing; Zamorano, Lucia J.; Jiang, Zhaowei; Nolte, Lutz P.; Diaz, Fernando

    1998-06-01

    Since its introduction to neurological surgery in the early 1980's, computer assisted surgery (CAS) with and without robotics navigation has been applied to several medical fields. The common issue all CAS systems is registration between two pre-operative 3D image modalities (for example, CT/MRI/PET et al) and the 3D image references of the patient in the operative room. In Wayne State University, a new way is introduced for medical image registration, which is different from traditional fiducial point registration and surface registration. We call it restricted surface matching (RSM). The method fast, convenient, accurate and robust. It combines the advantages from two registration methods mentioned before. Because of a penalty function introduced in its cost function, it is called `RSM'. The surface of a 3D image modality is pre-operatively extracted using segmentation techniques, and a distance map is created from such surface. The surface of another 3D reference is presented by a cloud of 3D points. At least three rough landmarks are used to restrict a registration not far away from global minimum. The local minimum issue is solved by use of a restriction for in the cost function and larger number of random starting points. The accuracy of matching is achieved by gradually releasing the restriction and limiting the influence of outliers. It only needs about half a minute to find the global minimum (for 256 X 256 X 56 images) in a SunSparc 10 station.

  7. Improved elastic medical image registration using mutual information

    NASA Astrophysics Data System (ADS)

    Ens, Konstantin; Schumacher, Hanno; Franz, Astrid; Fischer, Bernd

    2007-03-01

    One of the future-oriented areas of medical image processing is to develop fast and exact algorithms for image registration. By joining multi-modal images we are able to compensate the disadvantages of one imaging modality with the advantages of another modality. For instance, a Computed Tomography (CT) image containing the anatomy can be combined with metabolic information of a Positron Emission Tomography (PET) image. It is quite conceivable that a patient will not have the same position in both imaging systems. Furthermore some regions for instance in the abdomen can vary in shape and position due to different filling of the rectum. So a multi-modal image registration is needed to calculate a deformation field for one image in order to maximize the similarity between the two images, described by a so-called distance measure. In this work, we present a method to adapt a multi-modal distance measure, here mutual information (MI), with weighting masks. These masks are used to enhance relevant image structures and suppress image regions which otherwise would disturb the registration process. The performance of our method is tested on phantom data and real medical images.

  8. Physical Constraint Finite Element Model for Medical Image Registration

    PubMed Central

    Zhang, Jingya; Wang, Jiajun; Wang, Xiuying; Gao, Xin; Feng, Dagan

    2015-01-01

    Due to being derived from linear assumption, most elastic body based non-rigid image registration algorithms are facing challenges for soft tissues with complex nonlinear behavior and with large deformations. To take into account the geometric nonlinearity of soft tissues, we propose a registration algorithm on the basis of Newtonian differential equation. The material behavior of soft tissues is modeled as St. Venant-Kirchhoff elasticity, and the nonlinearity of the continuum represents the quadratic term of the deformation gradient under the Green- St.Venant strain. In our algorithm, the elastic force is formulated as the derivative of the deformation energy with respect to the nodal displacement vectors of the finite element; the external force is determined by the registration similarity gradient flow which drives the floating image deforming to the equilibrium condition. We compared our approach to three other models: 1) the conventional linear elastic finite element model (FEM); 2) the dynamic elastic FEM; 3) the robust block matching (RBM) method. The registration accuracy was measured using three similarities: MSD (Mean Square Difference), NC (Normalized Correlation) and NMI (Normalized Mutual Information), and was also measured using the mean and max distance between the ground seeds and corresponding ones after registration. We validated our method on 60 image pairs including 30 medical image pairs with artificial deformation and 30 clinical image pairs for both the chest chemotherapy treatment in different periods and brain MRI normalization. Our method achieved a distance error of 0.320±0.138 mm in x direction and 0.326±0.111 mm in y direction, MSD of 41.96±13.74, NC of 0.9958±0.0019, NMI of 1.2962±0.0114 for images with large artificial deformations; and average NC of 0.9622±0.008 and NMI of 1.2764±0.0089 for the real clinical cases. Student’s t-test demonstrated that our model statistically outperformed the other methods in comparison (p

  9. Combining global and local parallel optimization for medical image registration

    NASA Astrophysics Data System (ADS)

    Wachowiak, Mark P.; Peters, Terry M.

    2005-04-01

    Optimization is an important component in linear and nonlinear medical image registration. While common non-derivative approaches such as Powell's method are accurate and efficient, they cannot easily be adapted for parallel hardware. In this paper, new optimization strategies are proposed for parallel, shared-memory (SM) architectures. The Dividing Rectangles (DIRECT) global method is combined with the local Generalized Pattern Search (GPS) and Multidirectional Search (MDS) and to improve efficiency on multiprocessor systems. These methods require no derivatives, and can be used with all similarity metrics. In a multiresolution framework, DIRECT is performed with relaxed convergence criteria, followed by local refinement with MDS or GPS. In 3D-3D MRI rigid registration of simulated MS lesion volumes to normal brains with varying noise levels, DIRECT/MDS had the highest success rate, followed by DIRECT/GPS. DIRECT/GPS was the most efficient (5--10 seconds with 8 CPUs, and 10--20 seconds with 4 CPUs). DIRECT followed by MDS or GPS greatly increased efficiency while maintaining accuracy. Powell's method generally required more than 30 seconds (1 CPU) with a low success rate (0.3 or lower). This work indicates that parallel optimization on shared memory systems can markedly improve registration speed and accuracy, particularly for large initial misorientations.

  10. Non-rigid registration of medical images based on ordinal feature and manifold learning

    NASA Astrophysics Data System (ADS)

    Li, Qi; Liu, Jin; Zang, Bo

    2015-12-01

    With the rapid development of medical imaging technology, medical image research and application has become a research hotspot. This paper offers a solution to non-rigid registration of medical images based on ordinal feature (OF) and manifold learning. The structural features of medical images are extracted by combining ordinal features with local linear embedding (LLE) to improve the precision and speed of the registration algorithm. A physical model based on manifold learning and optimization search is constructed according to the complicated characteristics of non-rigid registration. The experimental results demonstrate the robustness and applicability of the proposed registration scheme.

  11. [A method for the medical image registration based on the statistics samples averaging distribution theory].

    PubMed

    Xu, Peng; Yao, Dezhong; Luo, Fen

    2005-08-01

    The registration method based on mutual information is currently a popular technique for the medical image registration, but the computation for the mutual information is complex and the registration speed is slow. In engineering process, a subsampling technique is taken to accelerate the registration speed at the cost of registration accuracy. In this paper a new method based on statistics sample theory is developed, which has both a higher speed and a higher accuracy as compared with the normal subsampling method, and the simulation results confirm the validity of the new method.

  12. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images

    PubMed Central

    Wang, Yangping; Wang, Song

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU). PMID:28053653

  13. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images.

    PubMed

    Du, Xiaogang; Dang, Jianwu; Wang, Yangping; Wang, Song; Lei, Tao

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU).

  14. Non-rigid registration of medical images based on estimation of deformation states

    NASA Astrophysics Data System (ADS)

    Marami, Bahram; Sirouspour, Shahin; Capson, David W.

    2014-11-01

    A unified framework for automatic non-rigid 3D-3D and 3D-2D registration of medical images with static and dynamic deformations is proposed in this paper. The problem of non-rigid image registration is approached as a classical state estimation problem using a generic deformation model for the soft tissue. The registration technique employs a dynamic linear elastic continuum mechanics model of the tissue deformation, which is discretized using the finite element method. In the proposed method, the registration is achieved through a Kalman-like filtering process, which incorporates information from the deformation model and a vector of observation prediction errors computed from an intensity-based similarity/distance metric between images. With this formulation, single and multiple-modality, 3D-3D and 3D-2D image registration problems can all be treated within the same framework. The performance of the proposed registration technique was evaluated in a number of different registration scenarios. First, 3D magnetic resonance (MR) images of uncompressed and compressed breast tissue were co-registered. 3D MR images of the uncompressed breast tissue were also registered to a sequence of simulated 2D interventional MR images of the compressed breast. Finally, the registration algorithm was employed to dynamically track a target sub-volume inside the breast tissue during the process of the biopsy needle insertion based on registering pre-insertion 3D MR images to a sequence of real-time simulated 2D interventional MR images. Registration results indicate that the proposed method can be effectively employed for the registration of medical images in image-guided procedures, such as breast biopsy in which the tissue undergoes static and dynamic deformations.

  15. Non-rigid registration of medical images based on estimation of deformation states.

    PubMed

    Marami, Bahram; Sirouspour, Shahin; Capson, David W

    2014-11-21

    A unified framework for automatic non-rigid 3D-3D and 3D-2D registration of medical images with static and dynamic deformations is proposed in this paper. The problem of non-rigid image registration is approached as a classical state estimation problem using a generic deformation model for the soft tissue. The registration technique employs a dynamic linear elastic continuum mechanics model of the tissue deformation, which is discretized using the finite element method. In the proposed method, the registration is achieved through a Kalman-like filtering process, which incorporates information from the deformation model and a vector of observation prediction errors computed from an intensity-based similarity/distance metric between images. With this formulation, single and multiple-modality, 3D-3D and 3D-2D image registration problems can all be treated within the same framework. The performance of the proposed registration technique was evaluated in a number of different registration scenarios. First, 3D magnetic resonance (MR) images of uncompressed and compressed breast tissue were co-registered. 3D MR images of the uncompressed breast tissue were also registered to a sequence of simulated 2D interventional MR images of the compressed breast. Finally, the registration algorithm was employed to dynamically track a target sub-volume inside the breast tissue during the process of the biopsy needle insertion based on registering pre-insertion 3D MR images to a sequence of real-time simulated 2D interventional MR images. Registration results indicate that the proposed method can be effectively employed for the registration of medical images in image-guided procedures, such as breast biopsy in which the tissue undergoes static and dynamic deformations.

  16. Image Registration Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline (Editor)

    1997-01-01

    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research.

  17. Convex hull matching and hierarchical decomposition for multimodality medical image registration.

    PubMed

    Yang, Jian; Fan, Jingfan; Fu, Tianyu; Ai, Danni; Zhu, Jianjun; Li, Qin; Wang, Yongtian

    2015-01-01

    This study proposes a novel hierarchical pyramid strategy for 3D registration of multimodality medical images. The surfaces of the source and target volume data are first extracted, and the surface point clouds are then aligned roughly using convex hull matching. The convex hull matching registration procedure could align images with large-scale transformations. The original images are divided into blocks and the corresponding blocks in the two images are registered by affine and non-rigid registration procedures. The sub-blocks are iteratively smoothed by the Gaussian kernel with different sizes during the registration procedure. The registration result of the large kernel is taken as the input of the small kernel registration. The fine registration of the two volume data sets is achieved by iteratively increasing the number of blocks, in which increase in similarity measure is taken as a criterion for acceptation of each iteration level. Results demonstrate the effectiveness and robustness of the proposed method in registering the multiple modalities of medical images.

  18. An ITK framework for deterministic global optimization for medical image registration

    NASA Astrophysics Data System (ADS)

    Dru, Florence; Wachowiak, Mark P.; Peters, Terry M.

    2006-03-01

    Similarity metric optimization is an essential step in intensity-based rigid and nonrigid medical image registration. For clinical applications, such as image guidance of minimally invasive procedures, registration accuracy and efficiency are prime considerations. In addition, clinical utility is enhanced when registration is integrated into image analysis and visualization frameworks, such as the popular Insight Toolkit (ITK). ITK is an open source software environment increasingly used to aid the development, testing, and integration of new imaging algorithms. In this paper, we present a new ITK-based implementation of the DIRECT (Dividing Rectangles) deterministic global optimization algorithm for medical image registration. Previously, it has been shown that DIRECT improves the capture range and accuracy for rigid registration. Our ITK class also contains enhancements over the original DIRECT algorithm by improving stopping criteria, adaptively adjusting a locality parameter, and by incorporating Powell's method for local refinement. 3D-3D registration experiments with ground-truth brain volumes and clinical cardiac volumes show that combining DIRECT with Powell's method improves registration accuracy over Powell's method used alone, is less sensitive to initial misorientation errors, and, with the new stopping criteria, facilitates adequate exploration of the search space without expending expensive iterations on non-improving function evaluations. Finally, in this framework, a new parallel implementation for computing mutual information is presented, resulting in near-linear speedup with two processors.

  19. 3D nonrigid medical image registration using a new information theoretic measure

    NASA Astrophysics Data System (ADS)

    Li, Bicao; Yang, Guanyu; Coatrieux, Jean Louis; Li, Baosheng; Shu, Huazhong

    2015-11-01

    This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen-Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy.

  20. Efficient 3-D medical image registration using a distributed blackboard architecture.

    PubMed

    Tait, Roger J; Schaefer, Gerald; Hopgood, Adrian A; Zhu, Shao Ying

    2006-01-01

    A major drawback of 3-D medical image registration techniques is the performance bottleneck associated with re-sampling and similarity computation. Such bottlenecks limit registration applications in clinical situations where fast execution times are required and become particularly apparent in the case of registering 3-D data sets. In this paper a novel framework for high performance intensity-based volume registration is presented. Geometric alignment of both reference and sensed volume sets is achieved through a combination of scaling, translation, and rotation. Crucially, resampling and similarity computation is performed intelligently by a set of knowledge sources. The knowledge sources work in parallel and communicate with each other by means of a distributed blackboard architecture. Partitioning of the blackboard is used to balance communication and processing workloads. Large-scale registrations with substantial speedups, when compared with a conventional implementation, have been demonstrated.

  1. Automatic segmentation of medical images using image registration: diagnostic and simulation applications.

    PubMed

    Barber, D C; Hose, D R

    2005-01-01

    Automatic identification of the boundaries of significant structure (segmentation) within a medical image is an are of ongoing research. Various approaches have been proposed but only two methods have achieved widespread use: manual delineation of boundaries and segmentation using intensity values. In this paper we describe an approach based on image registration. A reference image is prepared and segmented, by hand or otherwise. A patient image is registered to the reference image and the mapping then applied to ther reference segmentation to map it back to the patient image. In general a high-resolution nonlinear mapping is required to achieve accurate segmentation. This paper describes an algorithm that can efficiently generate such mappings, and outlines the uses of this tool in two relevant applications. An important feature of the approach described in this paper is that the algorithm is independent of the segmentation problem being addresses. All knowledge about the problem at hand is contained in files of reference data. A secondary benefit is that the continuous three-dimensional mapping generated is well suited to the generation of patient-specific numerical models (e.g. finite element meshes) from the library models. Smoothness constraints in the morphing algorithm tend to maintain the geometric quality of the reference mesh.

  2. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Li, Hongsheng; Wan, Honglin; Chen, Jinhu; Gong, Guanzhong; Wang, Hongjun; Wang, Liming; Yin, Yong

    2012-08-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5-8% for mono-modality and 10-14% for multi-modality registration under the same condition. Furthermore, clinical application by adaptive

  3. Multi-Modality fiducial marker for validation of registration of medical images with histology

    NASA Astrophysics Data System (ADS)

    Shojaii, Rushin; Martel, Anne L.

    2010-03-01

    A multi-modality fiducial marker is presented in this work, which can be used for validating the correlation of histology images with medical images. This marker can also be used for landmark-based image registration. Seven different fiducial markers including a catheter, spaghetti, black spaghetti, cuttlefish ink, and liquid iron are implanted in a mouse specimen and then investigated based on visibility, localization, size, and stability. The black spaghetti and the mixture of cuttlefish ink and flour are shown to be the most suitable markers. Based on the size of the markers, black spaghetti is more suitable for big specimens and the mixture of the cuttlefish ink, flour, and water injected in a catheter is more suitable for small specimens such as mouse tumours. These markers are visible on medical images and also detectable on histology and optical images of the tissue blocks. The main component in these agents which enhances the contrast is iron.

  4. Multimodality medical image registration and fusion techniques using mutual information and genetic algorithm-based approaches.

    PubMed

    Bhattacharya, Mahua; Das, Arpita

    2011-01-01

    Medical image fusion has been used to derive the useful complimentary information from multimodal images. The prior step of fusion is registration or proper alignment of test images for accurate extraction of detail information. For this purpose, the images to be fused are geometrically aligned using mutual information (MI) as similarity measuring metric followed by genetic algorithm to maximize MI. The proposed fusion strategy incorporating multi-resolution approach extracts more fine details from the test images and improves the quality of composite fused image. The proposed fusion approach is independent of any manual marking or knowledge of fiducial points and starts the procedure automatically. The performance of proposed genetic-based fusion methodology is compared with fuzzy clustering algorithm-based fusion approach, and the experimental results show that genetic-based fusion technique improves the quality of the fused image significantly over the fuzzy approaches.

  5. Investigating the Use of Cloudbursts for High-Throughput Medical Image Registration

    PubMed Central

    Kim, Hyunjoo; Parashar, Manish; Foran, David J.; Yang, Lin

    2010-01-01

    This paper investigates the use of clouds and autonomic cloudbursting to support a medical image registration. The goal is to enable a virtual computational cloud that integrates local computational environments and public cloud services on-the-fly, and support image registration requests from different distributed researcher groups with varied computational requirements and QoS constraints. The virtual cloud essentially implements shared and coordinated task-spaces, which coordinates the scheduling of jobs submitted by a dynamic set of research groups to their local job queues. A policy-driven scheduling agent uses the QoS constraints along with performance history and the state of the resources to determine the appropriate size and mix of the public and private cloud resource that should be allocated to a specific request. The virtual computational cloud and the medical image registration service have been developed using the CometCloud engine and have been deployed on a combination of private clouds at Rutgers University and the Cancer Institute of New Jersey and Amazon EC2. An experimental evaluation is presented and demonstrates the effectiveness of autonomic cloudbursts and policy-based autonomic scheduling for this application. PMID:20640235

  6. An innovative multimodal/multispectral image registration method for medical images based on the Expectation-Maximization algorithm.

    PubMed

    Arce-Santana, Edgar; Campos-Delgado, Daniel U; Mejia-Rodriguez, Aldo; Reducindo, Isnardo

    2015-01-01

    In this paper, we present a methodology for multimodal/ multispectral image registration of medical images. This approach is formulated by using the Expectation-Maximization (EM) methodology, such that we estimate the parameters of a geometric transformation that aligns multimodal/multispectral images. In this framework, the hidden random variables are associated to the intensity relations between the studied images, which allow to compare multispectral intensity values between images of different modalities. The methodology is basically composed by an iterative two-step procedure, where at each step, a new estimation of the joint conditional multispectral intensity distribution and the geometric transformation is computed. The proposed algorithm was tested with different kinds of medical images, and the obtained results show that the proposed methodology can be used to efficiently align multimodal/multispectral medical images.

  7. Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines.

    PubMed

    Klein, Stefan; Staring, Marius; Pluim, Josien P W

    2007-12-01

    A popular technique for nonrigid registration of medical images is based on the maximization of their mutual information, in combination with a deformation field parameterized by cubic B-splines. The coordinate mapping that relates the two images is found using an iterative optimization procedure. This work compares the performance of eight optimization methods: gradient descent (with two different step size selection algorithms), quasi-Newton, nonlinear conjugate gradient, Kiefer-Wolfowitz, simultaneous perturbation, Robbins-Monro, and evolution strategy. Special attention is paid to computation time reduction by using fewer voxels to calculate the cost function and its derivatives. The optimization methods are tested on manually deformed CT images of the heart, on follow-up CT chest scans, and on MR scans of the prostate acquired using a BFFE, T1, and T2 protocol. Registration accuracy is assessed by computing the overlap of segmented edges. Precision and convergence properties are studied by comparing deformation fields. The results show that the Robbins-Monro method is the best choice in most applications. With this approach, the computation time per iteration can be lowered approximately 500 times without affecting the rate of convergence by using a small subset of the image, randomly selected in every iteration, to compute the derivative of the mutual information. From the other methods the quasi-Newton and the nonlinear conjugate gradient method achieve a slightly higher precision, at the price of larger computation times.

  8. Validation of histology image registration

    NASA Astrophysics Data System (ADS)

    Shojaii, Rushin; Karavardanyan, Tigran; Yaffe, Martin; Martel, Anne L.

    2011-03-01

    The aim of this paper is to validate an image registration pipeline used for histology image alignment. In this work a set of histology images are registered to their correspondent optical blockface images to make a histology volume. Then multi-modality fiducial markers are used to validate the alignment of histology images. The fiducial markers are catheters perfused with a mixture of cuttlefish ink and flour. Based on our previous investigations this fiducial marker is visible in medical images, optical blockface images and it can also be localized in histology images. The properties of this fiducial marker make it suitable for validation of the registration techniques used for histology image alignment. This paper reports on the accuracy of a histology image registration approach by calculation of target registration error using these fiducial markers.

  9. Value of a probabilistic atlas in medical image segmentation regarding non-rigid registration of abdominal CT scans

    NASA Astrophysics Data System (ADS)

    Park, Hyunjin; Meyer, Charles R.

    2012-10-01

    A probabilistic atlas provides important information to help segmentation and registration applications in medical image analysis. We construct a probabilistic atlas by picking a target geometry and mapping other training scans onto that target and then summing the results into one probabilistic atlas. By choosing an atlas space close to the desired target, we construct an atlas that represents the population well. Image registration used to map one image geometry onto another is a primary task in atlas building. One of the main parameters of registration is the choice of degrees of freedom (DOFs) of the geometric transform. Herein, we measure the effect of the registration's DOFs on the segmentation performance of the resulting probabilistic atlas. Twenty-three normal abdominal CT scans were used, and four organs (liver, spinal cord, left and right kidneys) were segmented for each scan. A well-known manifold learning method, ISOMAP, was used to find the best target space to build an atlas. In summary, segmentation performance was high for high DOF registrations regardless of the chosen target space, while segmentation performance was lowered for low DOF registrations if a target space was far from the best target space. At the 0.05 level of statistical significance, there were no significant differences at high DOF registrations while there were significant differences at low DOF registrations when choosing different targets.

  10. PSO-based methods for medical image registration and change assessment of pigmented skin

    NASA Astrophysics Data System (ADS)

    Kacenjar, Steve; Zook, Matthew; Balint, Michael

    2011-03-01

    There are various scientific and technological areas in which it is imperative to rapidly detect and quantify changes in imagery over time. In fields such as earth remote sensing, aerospace systems, and medical imaging, searching for timedependent, regional changes across deformable topographies is complicated by varying camera acquisition geometries, lighting environments, background clutter conditions, and occlusion. Under these constantly-fluctuating conditions, the use of standard, rigid-body registration approaches often fail to provide sufficient fidelity to overlay image scenes together. This is problematic because incorrect assessments of the underlying changes of high-level topography can result in systematic errors in the quantification and classification of interested areas. For example, in the current naked-eye detection strategies of melanoma, a dermatologist often uses static morphological attributes to identify suspicious skin lesions for biopsy. This approach does not incorporate temporal changes which suggest malignant degeneration. By performing the co-registration of time-separated skin imagery, a dermatologist may more effectively detect and identify early morphological changes in pigmented lesions; enabling the physician to detect cancers at an earlier stage resulting in decreased morbidity and mortality. This paper describes an image processing system which will be used to detect changes in the characteristics of skin lesions over time. The proposed system consists of three main functional elements: 1.) coarse alignment of timesequenced imagery, 2.) refined alignment of local skin topographies, and 3.) assessment of local changes in lesion size. During the coarse alignment process, various approaches can be used to obtain a rough alignment, including: 1.) a manual landmark/intensity-based registration method1, and 2.) several flavors of autonomous optical matched filter methods2. These procedures result in the rough alignment of a patient

  11. A Log-Euclidean polyaffine registration for articulated structures in medical images.

    PubMed

    Martín-Fernández, Miguel Angel; Martín-Fernández, Marcos; Alberola-López, Carlos

    2009-01-01

    In this paper we generalize the Log-Euclidean polyaffine registration framework of Arsigny et al. to deal with articulated structures. This framework has very useful properties as it guarantees the invertibility of smooth geometric transformations. In articulated registration a skeleton model is defined for rigid structures such as bones. The final transformation is affine for the bones and elastic for other tissues in the image. We extend the Arsigny el al.'s method to deal with locally-affine registration of pairs of wires. This enables the possibility of using this registration framework to deal with articulated structures. In this context, the design of the weighting functions, which merge the affine transformations defined for each pair of wires, has a great impact not only on the final result of the registration algorithm, but also on the invertibility of the global elastic transformation. Several experiments, using both synthetic images and hand radiographs, are also presented.

  12. Medical image registration using machine learning-based interest point detector

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey; Zhao, Yang; Linguraru, Marius George; Okada, Kazunori

    2012-02-01

    This paper presents a feature-based image registration framework which exploits a novel machine learning (ML)-based interest point detection (IPD) algorithm for feature selection and correspondence detection. We use a feed-forward neural network (NN) with back-propagation as our base ML detector. Literature on ML-based IPD is scarce and to our best knowledge no previous research has addressed feature selection strategy for IPD purpose with cross-validation (CV) detectability measure. Our target application is the registration of clinical abdominal CT scans with abnormal anatomies. We evaluated the correspondence detection performance of the proposed ML-based detector against two well-known IPD algorithms: SIFT and SURF. The proposed method is capable of performing affine rigid registrations of 2D and 3D CT images, demonstrating more than two times better accuracy in correspondence detection than SIFT and SURF. The registration accuracy has been validated manually using identified landmark points. Our experimental results shows an improvement in 3D image registration quality of 18.92% compared with affine transformation image registration method from standard ITK affine registration toolkit.

  13. An object-oriented framework for medical image registration, fusion, and visualization.

    PubMed

    Zhu, Yang-Ming; Cochoff, Steven M

    2006-06-01

    An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.

  14. SU-E-J-137: Image Registration Tool for Patient Setup in Korea Heavy Ion Medical Accelerator Center

    SciTech Connect

    Kim, M; Suh, T; Cho, W; Jung, W

    2015-06-15

    Purpose: A potential validation tool for compensating patient positioning error was developed using 2D/3D and 3D/3D image registration. Methods: For 2D/3D registration, digitally reconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR. We adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-Knife system from the anterior-posterior (AP) and right lateral (RL) views. The 3D-CT and two orthogonal images of an anthropomorphic phantom and head and neck cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT image were applied. After registration, the translation and rotation factors were calculated to position a couch to be movable in six dimensions. Results: Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23° ± 0.40° for rotations were acquired by 2D/3D registration using an anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00° ± 0.2° for rotations were acquired using CT image sets. Conclusion: We demonstrated that this validation tool could compensate for patient positioning error. In addition, this research could be the fundamental step for compensating patient positioning error at the first Korea heavy-ion medical accelerator treatment center.

  15. A faster method for 3D/2D medical image registration--a simulation study.

    PubMed

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-21

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  16. Nonrigid registration of dynamic medical imaging data using nD + t B-splines and a groupwise optimization approach.

    PubMed

    Metz, C T; Klein, S; Schaap, M; van Walsum, T; Niessen, W J

    2011-04-01

    A registration method for motion estimation in dynamic medical imaging data is proposed. Registration is performed directly on the dynamic image, thus avoiding a bias towards a specifically chosen reference time point. Both spatial and temporal smoothness of the transformations are taken into account. Optionally, cyclic motion can be imposed, which can be useful for visualization (viewing the segmentation sequentially) or model building purposes. The method is based on a 3D (2D+time) or 4D (3D+time) free-form B-spline deformation model, a similarity metric that minimizes the intensity variances over time and constrained optimization using a stochastic gradient descent method with adaptive step size estimation. The method was quantitatively compared with existing registration techniques on synthetic data and 3D+t computed tomography data of the lungs. This showed subvoxel accuracy while delivering smooth transformations, and high consistency of the registration results. Furthermore, the accuracy of semi-automatic derivation of left ventricular volume curves from 3D+t computed tomography angiography data of the heart was evaluated. On average, the deviation from the curves derived from the manual annotations was approximately 3%. The potential of the method for other imaging modalities was shown on 2D+t ultrasound and 2D+t magnetic resonance images. The software is publicly available as an extension to the registration package elastix.

  17. Geometry-based vs. intensity-based medical image registration: A comparative study on 3D CT data.

    PubMed

    Savva, Antonis D; Economopoulos, Theodore L; Matsopoulos, George K

    2016-02-01

    Spatial alignment of Computed Tomography (CT) data sets is often required in numerous medical applications and it is usually achieved by applying conventional exhaustive registration techniques, which are mainly based on the intensity of the subject data sets. Those techniques consider the full range of data points composing the data, thus negatively affecting the required processing time. Alternatively, alignment can be performed using the correspondence of extracted data points from both sets. Moreover, various geometrical characteristics of those data points can be used, instead of their chromatic properties, for uniquely characterizing each point, by forming a specific geometrical descriptor. This paper presents a comparative study reviewing variations of geometry-based, descriptor-oriented registration techniques, as well as conventional, exhaustive, intensity-based methods for aligning three-dimensional (3D) CT data pairs. In this context, three general image registration frameworks were examined: a geometry-based methodology featuring three distinct geometrical descriptors, an intensity-based methodology using three different similarity metrics, as well as the commonly used Iterative Closest Point algorithm. All techniques were applied on a total of thirty 3D CT data pairs with both known and unknown initial spatial differences. After an extensive qualitative and quantitative assessment, it was concluded that the proposed geometry-based registration framework performed similarly to the examined exhaustive registration techniques. In addition, geometry-based methods dramatically improved processing time over conventional exhaustive registration.

  18. Image registration by parts

    NASA Technical Reports Server (NTRS)

    Chalermwat, Prachya; El-Ghazawi, Tarek; LeMoigne, Jacqueline

    1997-01-01

    In spite of the large number of different image registration techniques, most of these techniques use the correlation operation to match spatial image characteristics. Correlation is known to be one of the most computationally intensive operations and its computational needs grow rapidly with the increase in the image sizes. In this article, we show that, in many cases, it might be sufficient to determine image transformations by considering only one or several parts of the image rather than the entire image, which could result in substantial computational savings. This paper introduces the concept of registration by parts and investigates its viability. It describes alternative techniques for such image registration by parts and presents early empirical results that address the underlying trade-offs.

  19. Three-Dimensional Medical Image Registration Using a Patient Space Correlation Technique

    DTIC Science & Technology

    1991-12-01

    to which a tumor has invaded a particular portion of the brain , or when assessing stroke induced cerebral damage (6). A variation of this method...Pelizzari, C . A. et al. "Accurate Three-Dimensional Registration of CT, PET and/or MR Images of the Brain ," J. Computer Assisted Tomography, 13(1):20-26...Lothar R. et al. "Three Dimensional inage Correlation of CT, MR, and PET Studies in Radiotherapy Treatment Planning of Brain Tumors ," J. Computer

  20. Nonrigid Medical Image Registration by Finite-Element Deformable Sheet-Curve Models

    PubMed Central

    Wang, Yue; Freedman, Matthew T.; Adali, Tulay; Shields, Peter

    2006-01-01

    Image-based change quantitation has been recognized as a promising tool for accurate assessment of tumor's early response to chemoprevention in cancer research. For example, various changes on breast density and vascularity in glandular tissue are the indicators of early response to treatment. Accurate extraction of glandular tissue from pre- and postcontrast magnetic resonance (MR) images requires a nonrigid registration of sequential MR images embedded with local deformations. This paper reports a newly developed registration method that aligns MR breast images using finite-element deformable sheet-curve models. Specifically, deformable curves are constructed to match the boundaries dynamically, while a deformable sheet of thin-plate splines is designed to model complex local deformations. The experimental results on both digital phantoms and real MR breast images using the new method have been compared to point-based thin-plate-spline (TPS) approach, and have demonstrated a significant and robust improvement in both boundary alignment and local deformation recovery. PMID:23165046

  1. Image Registration for Stability Testing of MEMS

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; LeMoigne, Jacqueline; Blake, Peter N.; Morey, Peter A.; Landsman, Wayne B.; Chambers, Victor J.; Moseley, Samuel H.

    2011-01-01

    Image registration, or alignment of two or more images covering the same scenes or objects, is of great interest in many disciplines such as remote sensing, medical imaging. astronomy, and computer vision. In this paper, we introduce a new application of image registration algorithms. We demonstrate how through a wavelet based image registration algorithm, engineers can evaluate stability of Micro-Electro-Mechanical Systems (MEMS). In particular, we applied image registration algorithms to assess alignment stability of the MicroShutters Subsystem (MSS) of the Near Infrared Spectrograph (NIRSpec) instrument of the James Webb Space Telescope (JWST). This work introduces a new methodology for evaluating stability of MEMS devices to engineers as well as a new application of image registration algorithms to computer scientists.

  2. Spacecraft camera image registration

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  3. Image registration with uncertainty analysis

    DOEpatents

    Simonson, Katherine M [Cedar Crest, NM

    2011-03-22

    In an image registration method, edges are detected in a first image and a second image. A percentage of edge pixels in a subset of the second image that are also edges in the first image shifted by a translation is calculated. A best registration point is calculated based on a maximum percentage of edges matched. In a predefined search region, all registration points other than the best registration point are identified that are not significantly worse than the best registration point according to a predetermined statistical criterion.

  4. SU-E-I-23: Design and Clinical Application of External Marking Body in Multi- Mode Medical Images Registration and Fusion

    SciTech Connect

    Chen, Z; Gong, G

    2014-06-01

    Purpose: To design an external marking body (EMB) that could be visible on computed tomography (CT), magnetic resonance (MR), positron emission tomography (PET) and single-photon emission computed tomography (SPECT) images and to investigate the use of the EMB for multiple medical images registration and fusion in the clinic. Methods: We generated a solution containing paramagnetic metal ions and iodide ions (CT'MR dual-visible solution) that could be viewed on CT and MR images and multi-mode image visible solution (MIVS) that could be obtained by mixing radioactive nuclear material. A globular plastic theca (diameter: 3–6 mm) that mothball the MIVS and the EMB was brought by filling MIVS. The EMBs were fixed on the patient surface and CT, MR, PET and SPECT scans were obtained. The feasibility of clinical application and the display and registration error of EMB among different image modalities were investigated. Results: The dual-visible solution was highly dense on CT images (HU>700). A high signal was also found in all MR scanning (T1, T2, STIR and FLAIR) images, and the signal was higher than subcutaneous fat. EMB with radioactive nuclear material caused a radionuclide concentration area on PET and SPECT images, and the signal of EMB was similar to or higher than tumor signals. The theca with MIVS was clearly visible on all the images without artifact, and the shape was round or oval with a sharp edge. The maximum diameter display error was 0.3 ± 0.2mm on CT and MRI images, and 1.0 ± 0.3mm on PET and SPECT images. In addition, the registration accuracy of the theca center among multi-mode images was less than 1mm. Conclusion: The application of EMB with MIVS improves the registration and fusion accuracy of multi-mode medical images. Furthermore, it has the potential to ameliorate disease diagnosis and treatment outcome.

  5. Image Registration: A Necessary Evil

    NASA Technical Reports Server (NTRS)

    Bell, James; McLachlan, Blair; Hermstad, Dexter; Trosin, Jeff; George, Michael W. (Technical Monitor)

    1995-01-01

    Registration of test and reference images is a key component of nearly all PSP data reduction techniques. This is done to ensure that a test image pixel viewing a particular point on the model is ratioed by the reference image pixel which views the same point. Typically registration is needed to account for model motion due to differing airloads when the wind-off and wind-on images are taken. Registration is also necessary when two cameras are used for simultaneous acquisition of data from a dual-frequency paint. This presentation will discuss the advantages and disadvantages of several different image registration techniques. In order to do so, it is necessary to propose both an accuracy requirement for image registration and a means for measuring the accuracy of a particular technique. High contrast regions in the unregistered images are most sensitive to registration errors, and it is proposed that these regions be used to establish the error limits for registration. Once this is done, the actual registration error can be determined by locating corresponding points on the test and reference images, and determining how well a particular registration technique matches them. An example of this procedure is shown for three transforms used to register images of a semispan model. Thirty control points were located on the model. A subset of the points were used to determine the coefficients of each registration transform, and the error with which each transform aligned the remaining points was determined. The results indicate the general superiority of a third-order polynomial over other candidate transforms, as well as showing how registration accuracy varies with number of control points. Finally, it is proposed that image registration may eventually be done away with completely. As more accurate image resection techniques and more detailed model surface grids become available, it will be possible to map raw image data onto the model surface accurately. Intensity

  6. Reflectance and fluorescence hyperspectral elastic image registration

    NASA Astrophysics Data System (ADS)

    Lange, Holger; Baker, Ross; Hakansson, Johan; Gustafsson, Ulf P.

    2004-05-01

    Science and Technology International (STI) presents a novel multi-modal elastic image registration approach for a new hyperspectral medical imaging modality. STI's HyperSpectral Diagnostic Imaging (HSDI) cervical instrument is used for the early detection of uterine cervical cancer. A Computer-Aided-Diagnostic (CAD) system is being developed to aid the physician with the diagnosis of pre-cancerous and cancerous tissue regions. The CAD system uses the fusion of multiple data sources to optimize its performance. The key enabling technology for the data fusion is image registration. The difficulty lies in the image registration of fluorescence and reflectance hyperspectral data due to the occurrence of soft tissue movement and the limited resemblance of these types of imagery. The presented approach is based on embedding a reflectance image in the fluorescence hyperspectral imagery. Having a reflectance image in both data sets resolves the resemblance problem and thereby enables the use of elastic image registration algorithms required to compensate for soft tissue movements. Several methods of embedding the reflectance image in the fluorescence hyperspectral imagery are described. Initial experiments with human subject data are presented where a reflectance image is embedded in the fluorescence hyperspectral imagery.

  7. Registration of interferometric SAR images

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Vesecky, John F.; Zebker, Howard A.

    1992-01-01

    Interferometric synthetic aperture radar (INSAR) is a new way of performing topography mapping. Among the factors critical to mapping accuracy is the registration of the complex SAR images from repeated orbits. A new algorithm for registering interferometric SAR images is presented. A new figure of merit, the average fluctuation function of the phase difference image, is proposed to evaluate the fringe pattern quality. The process of adjusting the registration parameters according to the fringe pattern quality is optimized through a downhill simplex minimization algorithm. The results of applying the proposed algorithm to register two pairs of Seasat SAR images with a short baseline (75 m) and a long baseline (500 m) are shown. It is found that the average fluctuation function is a very stable measure of fringe pattern quality allowing very accurate registration.

  8. Registration Of SAR Images With Multisensor Images

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Burnette, Charles F.; Van Zyl, Jakob J.

    1993-01-01

    Semiautomated technique intended primarily to facilitate registration of polarimetric synthetic-aperture-radar (SAR) images with other images of same or partly overlapping terrain while preserving polarization information conveyed by SAR data. Technique generally applicable in sense one or both of images to be registered with each other generated by polarimetric or nonpolarimetric SAR, infrared radiometry, conventional photography, or any other applicable sensing method.

  9. Deformable medical image registration of pleural cavity for photodynamic therapy by using finite-element based method

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Dimofte, Andrea; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    When the pleural cavity is opened during the surgery portion of pleural photodynamic therapy (PDT) of malignant mesothelioma, the pleural volume will deform. This impacts the delivered dose when using highly conformal treatment techniques. To track the anatomical changes and contour the lung and chest cavity, an infrared camera-based navigation system (NDI) is used during PDT. In the same patient, a series of computed tomography (CT) scans of the lungs are also acquired before the surgery. The reconstructed three-dimensional contours from both NDI and CTs are imported into COMSOL Multiphysics software, where a finite element-based (FEM) deformable image registration is obtained. The CT contour is registered to the corresponding NDI contour by overlapping the center of masses and aligning their orientations. The NDI contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Deformed Geometry model is applied in COMSOL to obtain a deformed target contour. The distortion of the volume at X, Y and Z is mapped to illustrate the transformation of the target contour. The initial assessment shows that FEM-based image deformable registration can fuse images acquired by different modalities. It provides insights into the deformation of anatomical structures along X, Y and Z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting three-dimensional deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery.

  10. Deformable medical image registration of pleural cavity for photodynamic therapy by using finite-element based method

    PubMed Central

    Penjweini, Rozhin; Kim, Michele M.; Dimofte, Andrea; Finlay, Jarod C; Zhu, Timothy C.

    2016-01-01

    When the pleural cavity is opened during the surgery portion of pleural photodynamic therapy (PDT) of malignant mesothelioma, the pleural volume will deform. This impacts the delivered dose when using highly conformal treatment techniques. To track the anatomical changes and contour the lung and chest cavity, an infrared camera–based navigation system (NDI) is used during PDT. In the same patient, a series of computed tomography (CT) scans of the lungs are also acquired before the surgery. The reconstructed three-dimensional contours from both NDI and CTs are imported into COMSOL Multiphysics software, where a finite element-based (FEM) deformable image registration is obtained. The CT contour is registered to the corresponding NDI contour by overlapping the center of masses and aligning their orientations. The NDI contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Deformed Geometry model is applied in COMSOL to obtain a deformed target contour. The distortion of the volume at X, Y and Z is mapped to illustrate the transformation of the target contour. The initial assessment shows that FEM-based image deformable registration can fuse images acquired by different modalities. It provides insights into the deformation of anatomical structures along X, Y and Z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting three-dimensional deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery. PMID:27053826

  11. Deformable medical image registration of pleural cavity for photodynamic therapy by using finite-element based method.

    PubMed

    Penjweini, Rozhin; Kim, Michele M; Dimofte, Andrea; Finlay, Jarod C; Zhu, Timothy C

    2016-03-07

    When the pleural cavity is opened during the surgery portion of pleural photodynamic therapy (PDT) of malignant mesothelioma, the pleural volume will deform. This impacts the delivered dose when using highly conformal treatment techniques. To track the anatomical changes and contour the lung and chest cavity, an infrared camera-based navigation system (NDI) is used during PDT. In the same patient, a series of computed tomography (CT) scans of the lungs are also acquired before the surgery. The reconstructed three-dimensional contours from both NDI and CTs are imported into COMSOL Multiphysics software, where a finite element-based (FEM) deformable image registration is obtained. The CT contour is registered to the corresponding NDI contour by overlapping the center of masses and aligning their orientations. The NDI contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Deformed Geometry model is applied in COMSOL to obtain a deformed target contour. The distortion of the volume at X, Y and Z is mapped to illustrate the transformation of the target contour. The initial assessment shows that FEM-based image deformable registration can fuse images acquired by different modalities. It provides insights into the deformation of anatomical structures along X, Y and Z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting three-dimensional deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery.

  12. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA Marshall Space Flight Center, atmospheric scientist Paul Meyer (left) and solar physicist Dr. David Hathaway, have developed promising new software, called Video Image Stabilization and Registration (VISAR), that may help law enforcement agencies to catch criminals by improving the quality of video recorded at crime scenes, VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects; produces clearer images of moving objects; smoothes jagged edges; enhances still images; and reduces video noise of snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of Ultrasounds which are infamous for their grainy, blurred quality. It would be especially useful for tornadoes, tracking whirling objects and helping to determine the tornado's wind speed. This image shows two scientists reviewing an enhanced video image of a license plate taken from a moving automobile.

  13. Evaluating Similarity Measures for Brain Image Registration.

    PubMed

    Razlighi, Q R; Kehtarnavaz, N; Yousefi, S

    2013-10-01

    Evaluation of similarity measures for image registration is a challenging problem due to its complex interaction with the underlying optimization, regularization, image type and modality. We propose a single performance metric, named robustness, as part of a new evaluation method which quantifies the effectiveness of similarity measures for brain image registration while eliminating the effects of the other parts of the registration process. We show empirically that similarity measures with higher robustness are more effective in registering degraded images and are also more successful in performing intermodal image registration. Further, we introduce a new similarity measure, called normalized spatial mutual information, for 3D brain image registration whose robustness is shown to be much higher than the existing ones. Consequently, it tolerates greater image degradation and provides more consistent outcomes for intermodal brain image registration.

  14. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA's Marshall Space Flight Center, atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR), which is illustrated in this Quick Time movie. VISAR is a computer algorithm that stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. VISAR could also have applications in law enforcement, medical, and meteorological imaging. The software can be used for defense application by improving reconnaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  15. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image stabilization and Registration (VISAR), which is illustrated in this Quick Time movie. VISAR is a computer algorithm that stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. VISAR could also have applications in law enforcement, medical, and meteorological imaging. The software can be used for defense application by improving reconnaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  16. High-accuracy registration of intraoperative CT imaging

    NASA Astrophysics Data System (ADS)

    Oentoro, A.; Ellis, R. E.

    2010-02-01

    Image-guided interventions using intraoperative 3D imaging can be less cumbersome than systems dependent on preoperative images, especially by needing neither potentially invasive image-to-patient registration nor a lengthy process of segmenting and generating a 3D surface model. In this study, a method for computer-assisted surgery using direct navigation on intraoperative imaging is presented. In this system the registration step of a navigated procedure was divided into two stages: preoperative calibration of images to a ceiling-mounted optical tracking system, and intraoperative tracking during acquisition of the 3D medical image volume. The preoperative stage used a custom-made multi-modal calibrator that could be optically tracked and also contained fiducial spheres for radiological detection; a robust registration algorithm was used to compensate for the very high false-detection rate that was due to the high physical density of the optical light-emitting diodes. Intraoperatively, a tracking device was attached to plastic bone models that were also instrumented with radio-opaque spheres; A calibrated pointer was used to contact the latter spheres as a validation of the registration. Experiments showed that the fiducial registration error of the preoperative calibration stage was approximately 0.1 mm. The target registration error in the validation stage was approximately 1.2 mm. This study suggests that direct registration, coupled with procedure-specific graphical rendering, is potentially a highly accurate means of performing image-guided interventions in a fast, simple manner.

  17. Comparison and evaluation of retrospective intermodality image registration techniques

    NASA Astrophysics Data System (ADS)

    West, Jay B.; Fitzpatrick, J. Michael; Wang, Matthew Y.; Dawant, Benoit M.; Maurer, Calvin R., Jr.; Kessler, Robert M.; Maciunas, Robert J.; Barillot, Christian; Lemoine, Didier; Collignon, Andre M. F.; Maes, Frederik; Suetens, Paul; Vandermeulen, Dirk; van den Elsen, Petra A.; Hemler, Paul F.; Napel, Sandy; Sumanaweera, Thilaka S.; Harkness, Beth A.; Hill, Derek L.; Studholme, Colin; Malandain, Gregoire; Pennec, Xavier; Noz, Marilyn E.; Maguire, Gerald Q., Jr.; Pollack, Michael; Pelizzari, Charles A.; Robb, Richard A.; Hanson, Dennis P.; Woods, Roger P.

    1996-04-01

    All retrospective image registration methods have attached to them some intrinsic estimate of registration error. However, this estimate of accuracy may not always be a good indicator of the distance between actual and estimated positions of targets within the cranial cavity. This paper describes a project whose principal goal is to use a prospective method based on fiducial markers as a 'gold standard' to perform an objective, blinded evaluation of the accuracy of several retrospective image-to-image registration techniques. Image volumes of three modalities -- CT, MR, and PET -- were taken of patients undergoing neurosurgery at Vanderbilt University Medical Center. These volumes had all traces of the fiducial markers removed, and were provided to project collaborators outside Vanderbilt, who then performed retrospective registrations on the volumes, calculating transformations from CT to MR and/or from PET to MR, and communicated their transformations to Vanderbilt where the accuracy of each registration was evaluated. In this evaluation the accuracy is measured at multiple 'regions of interest,' i.e. areas in the brain which would commonly be areas of neurological interest. A region is defined in the MR image and its centroid C is determined. Then the prospective registration is used to obtain the corresponding point C' in CT or PET. To this point the retrospective registration is then applied, producing C' in MR. Statistics are gathered on the target registration error (TRE), which is the disparity between the original point C and its corresponding point C'. A second goal of the project is to evaluate the importance of correcting geometrical distortion in MR images, by comparing the retrospective TRE in the rectified images, i.e., those which have had the distortion correction applied, with that of the same images before rectification. This paper presents preliminary results of this study along with a brief description of each registration technique and an

  18. Medical imaging

    NASA Astrophysics Data System (ADS)

    Elliott, Alex

    2005-07-01

    Diagnostic medical imaging is a fundamental part of the practice of modern medicine and is responsible for the expenditure of considerable amounts of capital and revenue monies in healthcare systems around the world. Much research and development work is carried out, both by commercial companies and the academic community. This paper reviews briefly each of the major diagnostic medical imaging techniques—X-ray (planar and CT), ultrasound, nuclear medicine (planar, SPECT and PET) and magnetic resonance. The technical challenges facing each are highlighted, with some of the most recent developments. In terms of the future, interventional/peri-operative imaging, the advancement of molecular medicine and gene therapy are identified as potential areas of expansion.

  19. Digital image registration by correlation techniques.

    NASA Technical Reports Server (NTRS)

    Popp, D. J.; Mccormack, D. S.; Lee, G. M.

    1972-01-01

    This study considers the translation problem associated with digital image registration and develops a means for comparing commonly used correlation techniques. Using suitably defined constraints, an optimum and four suboptimum registration techniques are defined and evaluated. A computational comparison is made and Gaussian image statistics are used to compare the selected techniques in terms of radial position location error.

  20. Research relative to automated multisensor image registration

    NASA Technical Reports Server (NTRS)

    Kanal, L. N.

    1983-01-01

    The basic aproaches to image registration are surveyed. Three image models are presented as models of the subpixel problem. A variety of approaches to the analysis of subpixel analysis are presented using these models.

  1. Landmark constrained genus-one surface Teichmüller map applied to surface registration in medical imaging.

    PubMed

    Lam, Ka Chun; Gu, Xianfeng; Lui, Lok Ming

    2015-10-01

    We address the registration problem of genus-one surfaces (such as vertebrae bones) with prescribed landmark constraints. The high-genus topology of the surfaces makes it challenging to obtain a unique and bijective surface mapping that matches landmarks consistently. This work proposes to tackle this registration problem using a special class of quasi-conformal maps called Teichmüller maps (T-Maps). A landmark constrained T-Map is the unique mapping between genus-1 surfaces that minimizes the maximal conformality distortion while matching the prescribed feature landmarks. Existence and uniqueness of the landmark constrained T-Map are theoretically guaranteed. This work presents an iterative algorithm to compute the T-Map. The main idea is to represent the set of diffeomorphism using the Beltrami coefficients (BC). The BC is iteratively adjusted to an optimal one, which corresponds to our desired T-Map that matches the prescribed landmarks and satisfies the periodic boundary condition on the universal covering space. Numerical experiments demonstrate the effectiveness of our proposed algorithm. The method has also been applied to register vertebrae bones with prescribed landmark points and curves, which gives accurate surface registrations.

  2. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  3. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR). VISAR may help law enforcement agencies catch criminals by improving the quality of video recorded at crime scenes. In this photograph, the single frame at left, taken at night, was brightened in order to enhance details and reduce noise or snow. To further overcome the video defects in one frame, Law enforcement officials can use VISAR software to add information from multiple frames to reveal a person. Images from less than a second of videotape were added together to create the clarified image at right. VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. The software can be used for defense application by improving recornaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  4. Automatic registration and mosaicking of conservation images

    NASA Astrophysics Data System (ADS)

    Conover, Damon M.; Delaney, John K.; Loew, Murray H.

    2013-05-01

    As high-resolution conservation images, acquired using various imaging modalities, become more widely available, it is increasingly important to achieve accurate registration between the images. Accurate registration allows information unavailable in any one image to be compiled from several images and then used to provide a better understanding of how a painting was constructed. We have developed an algorithm that solves several important conservation problems: 1) registration and mosaicking of multiple X-ray films, ultraviolet images, and infrared reflectograms to a color reference image at high spatial-resolution (200 to 500 dpi) of paintings (both panel and canvas) and of works on paper, 2) registration of the images within visible and infrared multispectral reflectance and luminescence image cubes, and 3) mosaicking of hyperspectral image cubes (400 to 2500 nm). The registration/mosaicking algorithm corrects for several kinds of distortion, small rotation and scale errors, and keystone effects between the images. Thus images acquired with different cameras, illumination, and geometries can be registered/mosaicked. This automatic algorithm for registering/mosaicking multimodal conservation images is expected to be a valuable tool for conservators attempting to answer questions regarding the creation and preservation history of paintings. For example, an analysis of the reflectance spectra obtained from the sub-pixel registered multispectral image cubes can be used to separate, map, and identify artist materials in situ. And, by comparing the corresponding images in the X-ray, visible, and infrared regions, conservators can obtain a deeper understanding of compositional changes.

  5. A Multistage Approach for Image Registration.

    PubMed

    Bowen, Francis; Hu, Jianghai; Du, Eliza Yingzi

    2016-09-01

    Successful image registration is an important step for object recognition, target detection, remote sensing, multimodal content fusion, scene blending, and disaster assessment and management. The geometric and photometric variations between images adversely affect the ability for an algorithm to estimate the transformation parameters that relate the two images. Local deformations, lighting conditions, object obstructions, and perspective differences all contribute to the challenges faced by traditional registration techniques. In this paper, a novel multistage registration approach is proposed that is resilient to view point differences, image content variations, and lighting conditions. Robust registration is realized through the utilization of a novel region descriptor which couples with the spatial and texture characteristics of invariant feature points. The proposed region descriptor is exploited in a multistage approach. A multistage process allows the utilization of the graph-based descriptor in many scenarios thus allowing the algorithm to be applied to a broader set of images. Each successive stage of the registration technique is evaluated through an effective similarity metric which determines subsequent action. The registration of aerial and street view images from pre- and post-disaster provide strong evidence that the proposed method estimates more accurate global transformation parameters than traditional feature-based methods. Experimental results show the robustness and accuracy of the proposed multistage image registration methodology.

  6. Fast 3D fluid registration of brain magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Leporé, Natasha; Chou, Yi-Yu; Lopez, Oscar L.; Aizenstein, Howard J.; Becker, James T.; Toga, Arthur W.; Thompson, Paul M.

    2008-03-01

    Fluid registration is widely used in medical imaging to track anatomical changes, to correct image distortions, and to integrate multi-modality data. Fluid mappings guarantee that the template image deforms smoothly into the target, without tearing or folding, even when large deformations are required for accurate matching. Here we implemented an intensity-based fluid registration algorithm, accelerated by using a filter designed by Bro-Nielsen and Gramkow. We validated the algorithm on 2D and 3D geometric phantoms using the mean square difference between the final registered image and target as a measure of the accuracy of the registration. In tests on phantom images with different levels of overlap, varying amounts of Gaussian noise, and different intensity gradients, the fluid method outperformed a more commonly used elastic registration method, both in terms of accuracy and in avoiding topological errors during deformation. We also studied the effect of varying the viscosity coefficients in the viscous fluid equation, to optimize registration accuracy. Finally, we applied the fluid registration algorithm to a dataset of 2D binary corpus callosum images and 3D volumetric brain MRIs from 14 healthy individuals to assess its accuracy and robustness.

  7. Cross contrast multi-channel image registration using image synthesis for MR brain images.

    PubMed

    Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L

    2017-02-01

    Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information.

  8. Nonrigid image registration with crystal dislocation energy.

    PubMed

    Luo, Yishan; Chung, Albert C S

    2013-01-01

    The goal of nonrigid image registration is to find a suitable transformation such that the transformed moving image becomes similar to the reference image. The image registration problem can also be treated as an optimization problem, which tries to minimize an objective energy function that measures the differences between two involved images. In this paper, we consider image matching as the process of aligning object boundaries in two different images. The registration energy function can be defined based on the total energy associated with the object boundaries. The optimal transformation is obtained by finding the equilibrium state when the total energy is minimized, which indicates the object boundaries find their correspondences and stop deforming. We make an analogy between the above processes with the dislocation system in physics. The object boundaries are viewed as dislocations (line defects) in crystal. Then the well-developed dislocation energy is used to derive the energy assigned to object boundaries in images. The newly derived registration energy function takes the global gradient information of the entire image into consideration, and produces an orientation-dependent and long-range interaction between two images to drive the registration process. This property of interaction endows the new registration framework with both fast convergence rate and high registration accuracy. Moreover, the new energy function can be adapted to realize symmetric diffeomorphic transformation so as to ensure one-to-one matching between subjects. In this paper, the superiority of the new method is theoretically proven, experimentally tested and compared with the state-of-the-art SyN method. Experimental results with 3-D magnetic resonance brain images demonstrate that the proposed method outperforms the compared methods in terms of both registration accuracy and computation time.

  9. Evaluation of various deformable image registration algorithms for thoracic images.

    PubMed

    Kadoya, Noriyuki; Fujita, Yukio; Katsuta, Yoshiyuki; Dobashi, Suguru; Takeda, Ken; Kishi, Kazuma; Kubozono, Masaki; Umezawa, Rei; Sugawara, Toshiyuki; Matsushita, Haruo; Jingu, Keiichi

    2014-01-01

    We evaluated the accuracy of one commercially available and three publicly available deformable image registration (DIR) algorithms for thoracic four-dimensional (4D) computed tomography (CT) images. Five patients with esophagus cancer were studied. Datasets of the five patients were provided by DIR-lab (dir-lab.com) and consisted of thoracic 4D CT images and a coordinate list of anatomical landmarks that had been manually identified. Expert landmark correspondence was used for evaluating DIR spatial accuracy. First, the manually measured displacement vector field (mDVF) was obtained from the coordinate list of anatomical landmarks. Then the automatically calculated displacement vector field (aDVF) was calculated by using the following four DIR algorithms: B-spine implemented in Velocity AI (Velocity Medical, Atlanta, GA, USA), free-form deformation (FFD), Horn-Schunk optical flow (OF) and Demons in DIRART of MATLAB software. Registration error is defined as the difference between mDVF and aDVF. The mean 3D registration errors were 2.7 ± 0.8 mm for B-spline, 3.6 ± 1.0 mm for FFD, 2.4 ± 0.9 mm for OF and 2.4 ± 1.2 mm for Demons. The results showed that reasonable accuracy was achieved in B-spline, OF and Demons, and that these algorithms have the potential to be used for 4D dose calculation, automatic image segmentation and 4D CT ventilation imaging in patients with thoracic cancer. However, for all algorithms, the accuracy might be improved by using the optimized parameter setting. Furthermore, for B-spline in Velocity AI, the 3D registration error was small with displacements of less than ∼10 mm, indicating that this software may be useful in this range of displacements.

  10. Automated Registration Of Images From Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J. M.; Kwok, Ronald; Curlander, John C.; Pang, Shirley S. N.

    1994-01-01

    Images of terrain scanned in common by multiple Earth-orbiting remote sensors registered automatically with each other and, where possible, on geographic coordinate grid. Simulated image of terrain viewed by sensor computed from ancillary data, viewing geometry, and mathematical model of physics of imaging. In proposed registration algorithm, simulated and actual sensor images matched by area-correlation technique.

  11. Effects of Spatial Resolution on Image Registration

    PubMed Central

    Zhao, Can; Carass, Aaron; Jog, Amod; Prince, Jerry L.

    2016-01-01

    This paper presents a theoretical analysis of the effect of spatial resolution on image registration. Based on the assumption of additive Gaussian noise on the images, the mean and variance of the distribution of the sum of squared differences (SSD) were estimated. Using these estimates, we evaluate a distance between the SSD distributions of aligned images and non-aligned images. The experimental results show that by matching the resolutions of the moving and fixed images one can get a better image registration result. The results agree with our theoretical analysis of SSD, but also suggest that it may be valid for mutual information as well. PMID:27773960

  12. Image registration techniques for multimodal sensors

    NASA Astrophysics Data System (ADS)

    Altinalev, Tevfik; Cetin, Enis A.; Yardimci, Yasemin C.

    2002-08-01

    Image registration refers to the problem of spatially aligning two or more images. A challenging problem in this area is the registration of images obtained by different types of sensors. In general such images have different gray level characteristics and commonly used techniques such as those based on area correlations cannot be applied directly. On the other hand, contours representing the region boundaries are preserved in most cases. Therefore, contour based registration techniques are applicable to multimodal sensors. In this paper, various registration techniques based on subband decomposition and projection along x and y directions are introduced. The effect of binarization is investigated. Unknown translation and scaling parameters are computed using cross-correlation methods over the projections. Performance of the algorithms is compared.

  13. Intraoperative ultrasound to stereocamera registration using interventional photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Su, Steven; Kim, Robert; Kuo, Nathanael; Taylor, Russell H.; Kang, Jin U.; Boctor, Emad M.

    2012-02-01

    There are approximately 6000 hospitals in the United States, of which approximately 5400 employ minimally invasive surgical robots for a variety of procedures. Furthermore, 95% of these robots require extensive registration before they can be fitted into the operating room. These "registrations" are performed by surgical navigation systems, which allow the surgical tools, the robot and the surgeon to be synchronized together-hence operating in concert. The most common surgical navigation modalities include: electromagnetic (EM) tracking and optical tracking. Currently, these navigation systems are large, intrusive, come with a steep learning curve, require sacrifices on the part of the attending medical staff, and are quite expensive (since they require several components). Recently, photoacoustic (PA) imaging has become a practical and promising new medical imaging technology. PA imaging only requires the minimal equipment standard with most modern ultrasound (US) imaging systems as well as a common laser source. In this paper, we demonstrate that given a PA imaging system, as well as a stereocamera (SC), the registration between the US image of a particular anatomy and the SC image of the same anatomy can be obtained with reliable accuracy. In our experiments, we collected data for N = 80 trials of sample 3D US and SC coordinates. We then computed the registration between the SC and the US coordinates. Upon validation, the mean error and standard deviation between the predicted sample coordinates and the corresponding ground truth coordinates were found to be 3.33 mm and 2.20 mm respectively.

  14. Onboard Image Registration from Invariant Features

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Ng, Justin; Garay, Michael J.; Burl, Michael C

    2008-01-01

    This paper describes a feature-based image registration technique that is potentially well-suited for onboard deployment. The overall goal is to provide a fast, robust method for dynamically combining observations from multiple platforms into sensors webs that respond quickly to short-lived events and provide rich observations of objects that evolve in space and time. The approach, which has enjoyed considerable success in mainstream computer vision applications, uses invariant SIFT descriptors extracted at image interest points together with the RANSAC algorithm to robustly estimate transformation parameters that relate one image to another. Experimental results for two satellite image registration tasks are presented: (1) automatic registration of images from the MODIS instrument on Terra to the MODIS instrument on Aqua and (2) automatic stabilization of a multi-day sequence of GOES-West images collected during the October 2007 Southern California wildfires.

  15. TU-B-19A-01: Image Registration II: TG132-Quality Assurance for Image Registration

    SciTech Connect

    Brock, K; Mutic, S

    2014-06-15

    AAPM Task Group 132 was charged with a review of the current approaches and solutions for image registration in radiotherapy and to provide recommendations for quality assurance and quality control of these clinical processes. As the results of image registration are always used as the input of another process for planning or delivery, it is important for the user to understand and document the uncertainty associate with the algorithm in general and the Result of a specific registration. The recommendations of this task group, which at the time of abstract submission are currently being reviewed by the AAPM, include the following components. The user should understand the basic image registration techniques and methods of visualizing image fusion. The disclosure of basic components of the image registration by commercial vendors is critical in this respect. The physicists should perform end-to-end tests of imaging, registration, and planning/treatment systems if image registration is performed on a stand-alone system. A comprehensive commissioning process should be performed and documented by the physicist prior to clinical use of the system. As documentation is important to the safe implementation of this process, a request and report system should be integrated into the clinical workflow. Finally, a patient specific QA practice should be established for efficient evaluation of image registration results. The implementation of these recommendations will be described and illustrated during this educational session. Learning Objectives: Highlight the importance of understanding the image registration techniques used in their clinic. Describe the end-to-end tests needed for stand-alone registration systems. Illustrate a comprehensive commissioning program using both phantom data and clinical images. Describe a request and report system to ensure communication and documentation. Demonstrate an clinically-efficient patient QA practice for efficient evaluation of image

  16. Regional manifold learning for deformable registration of brain MR images.

    PubMed

    Ye, Dong Hye; Hamm, Jihun; Kwon, Dongjin; Davatzikos, Christos; Pohl, Kilian M

    2012-01-01

    We propose a method for deformable registration based on learning the manifolds of individual brain regions. Recent publications on registration of medical images advocate the use of manifold learning in order to confine the search space to anatomically plausible deformations. Existing methods construct manifolds based on a single metric over the entire image domain thus frequently miss regional brain variations. We address this issue by first learning manifolds for specific regions and then computing region-specific deformations from these manifolds. We then determine deformations for the entire image domain by learning the global manifold in such a way that it preserves the region-specific deformations. We evaluate the accuracy of our method by applying it to the LPBA40 dataset and measuring the overlap of the deformed segmentations. The result shows significant improvement in registration accuracy on cortex regions compared to other state of the art methods.

  17. Mid-space-independent deformable image registration.

    PubMed

    Aganj, Iman; Iglesias, Juan Eugenio; Reuter, Martin; Sabuncu, Mert Rory; Fischl, Bruce

    2017-02-24

    Aligning images in a mid-space is a common approach to ensuring that deformable image registration is symmetric - that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed as an approach to mid-space image registration. In this work, we show that when the atlas is aligned to each image in the native image space, the data term of implicit-atlas-based deformable registration is inherently independent of the mid-space. In addition, we show that the regularization term can be reformulated independently of the mid-space as well. We derive a new symmetric cost function that only depends on the transformation morphing the images to each other, rather than to the atlas. This eliminates the need for anti-drift constraints, thereby expanding the space of allowable deformations. We provide an implementation scheme for the proposed framework, and validate it through diffeomorphic registration experiments on brain magnetic resonance images.

  18. Non-rigid registration of tomographic images with Fourier transforms

    NASA Astrophysics Data System (ADS)

    Osorio, Ar; Isoardi, Ra; Mato, G.

    2007-11-01

    Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512×512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time.

  19. A MULTICORE BASED PARALLEL IMAGE REGISTRATION METHOD

    PubMed Central

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.

    2012-01-01

    Image registration is a crucial step for many image-assisted clinical applications such as surgery planning and treatment evaluation. In this paper we proposed a landmark based nonlinear image registration algorithm for matching 2D image pairs. The algorithm was shown to be effective and robust under conditions of large deformations. In landmark based registration, the most important step is establishing the correspondence among the selected landmark points. This usually requires an extensive search which is often computationally expensive. We introduced a nonregular data partition algorithm using the K-means clustering algorithm to group the landmarks based on the number of available processing cores. The step optimizes the memory usage and data transfer. We have tested our method using IBM Cell Broadband Engine (Cell/B.E.) platform. PMID:19964921

  20. Image registration for DSA quality enhancement.

    PubMed

    Buzug, T M; Weese, J

    1998-01-01

    A generalized framework for histogram-based similarity measures is presented and applied to the image-enhancement task in digital subtraction angiography (DSA). The class of differentiable, strictly convex weighting functions is identified as suitable weightings of histograms for measuring the degree of clustering that goes along with registration. With respect to computation time, the energy similarity measure is the function of choice for the registration of mask and contrast image prior to subtraction. The robustness of the energy measure is studied for geometrical image distortions like rotation and scaling. Additionally, it is investigated how the histogram binning and inhomogeneous motion inside the templates influence the quality of the similarity measure. Finally, the registration success for the automated procedure is compared with the manually shift-corrected image pair of the head.

  1. SAR image registration based on Susan algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Chun-bo; Fu, Shao-hua; Wei, Zhong-yi

    2011-10-01

    Synthetic Aperture Radar (SAR) is an active remote sensing system which can be installed on aircraft, satellite and other carriers with the advantages of all day and night and all-weather ability. It is the important problem that how to deal with SAR and extract information reasonably and efficiently. Particularly SAR image geometric correction is the bottleneck to impede the application of SAR. In this paper we introduces image registration and the Susan algorithm knowledge firstly, then introduces the process of SAR image registration based on Susan algorithm and finally presents experimental results of SAR image registration. The Experiment shows that this method is effective and applicable, no matter from calculating the time or from the calculation accuracy.

  2. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  3. Medical imaging.

    PubMed Central

    Kreel, L.

    1991-01-01

    There is now a wide choice of medical imaging to show both focal and diffuse pathologies in various organs. Conventional radiology with plain films, fluoroscopy and contrast medium have many advantages, being readily available with low-cost apparatus and a familiarity that almost leads to contempt. The use of plain films in chest disease and in trauma does not need emphasizing, yet there are still too many occasions when the answer obtainable from a plain radiograph has not been available. The film may have been mislaid, or the examination was not requested, or the radiograph had been misinterpreted. The converse is also quite common. Examinations are performed that add nothing to patient management, such as skull films when CT will in any case be requested or views of the internal auditory meatus and heal pad thickness in acromegaly, to quote some examples. Other issues are more complicated. Should the patient who clinically has gall-bladder disease have more than a plain film that shows gall-stones? If the answer is yes, then why request a plain film if sonography will in any case be required to 'exclude' other pathologies especially of the liver or pancreas? But then should cholecystography, CT or scintigraphy be added for confirmation? Quite clearly there will be individual circumstances to indicate further imaging after sonography but in the vast majority of patients little or no extra information will be added. Statistics on accuracy and specificity will, in the case of gall-bladder pathology, vary widely if adenomyomatosis is considered by some to be a cause of symptoms or if sonographic examinations 'after fatty meals' are performed. The arguments for or against routine contrast urography rather than sonography are similar but the possibility of contrast reactions and the need to limit ionizing radiation must be borne in mind. These diagnostic strategies are also being influenced by their cost and availability; purely pragmatic considerations are not

  4. Segmentation by surface-to-image registration

    NASA Astrophysics Data System (ADS)

    Xie, Zhiyong; Tamez-Pena, Jose; Gieseg, Michael; Liachenko, Serguei; Dhamija, Shantanu; Chiao, Ping

    2006-03-01

    This paper presents a new image segmentation algorithm using surface-to-image registration. The algorithm employs multi-level transformations and multi-resolution image representations to progressively register atlas surfaces (modeling anatomical structures) to subject images based on weighted external forces in which weights and forces are determined by gradients and local intensity profiles obtained from images. The algorithm is designed to prevent atlas surfaces converging to unintended strong edges or leaking out of structures of interest through weak edges where the image contrast is low. Segmentation of bone structures on MR images of rat knees analyzed in this manner performs comparably to technical experts using a semi-automatic tool.

  5. Software for Automated Image-to-Image Co-registration

    NASA Technical Reports Server (NTRS)

    Benkelman, Cody A.; Hughes, Heidi

    2007-01-01

    The project objectives are: a) Develop software to fine-tune image-to-image co-registration, presuming images are orthorectified prior to input; b) Create a reusable software development kit (SDK) to enable incorporation of these tools into other software; d) provide automated testing for quantitative analysis; and e) Develop software that applies multiple techniques to achieve subpixel precision in the co-registration of image pairs.

  6. Groupwise Image Registration Guided by a Dynamic Digraph of Images.

    PubMed

    Tang, Zhenyu; Fan, Yong

    2016-04-01

    For groupwise image registration, graph theoretic methods have been adopted for discovering the manifold of images to be registered so that accurate registration of images to a group center image can be achieved by aligning similar images that are linked by the shortest graph paths. However, the image similarity measures adopted to build a graph of images in the extant methods are essentially pairwise measures, not effective for capturing the groupwise similarity among multiple images. To overcome this problem, we present a groupwise image similarity measure that is built on sparse coding for characterizing image similarity among all input images and build a directed graph (digraph) of images so that similar images are connected by the shortest paths of the digraph. Following the shortest paths determined according to the digraph, images are registered to a group center image in an iterative manner by decomposing a large anatomical deformation field required to register an image to the group center image into a series of small ones between similar images. During the iterative image registration, the digraph of images evolves dynamically at each iteration step to pursue an accurate estimation of the image manifold. Moreover, an adaptive dictionary strategy is adopted in the groupwise image similarity measure to ensure fast convergence of the iterative registration procedure. The proposed method has been validated based on both simulated and real brain images, and experiment results have demonstrated that our method was more effective for learning the manifold of input images and achieved higher registration accuracy than state-of-the-art groupwise image registration methods.

  7. Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning.

    PubMed

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C; Shen, Dinggang

    2016-07-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked autoencoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework, image registration experiments were conducted on 7.0-T brain MR images. In all experiments, the results showed that the new image registration framework consistently demonstrated more accurate registration results when compared to state of the art.

  8. Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning

    PubMed Central

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C.

    2015-01-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data,, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked auto-encoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework image registration experiments were conducted on 7.0-tesla brain MR images. In all experiments, the results showed the new image registration framework consistently demonstrated more accurate registration results when compared to state-of-the-art. PMID:26552069

  9. Automated image registration for FDOPA PET studies

    NASA Astrophysics Data System (ADS)

    Lin, Kang-Ping; Huang, Sung-Cheng; Yu, Dan-Chu; Melega, William; Barrio, Jorge R.; Phelps, Michael E.

    1996-12-01

    In this study, various image registration methods are investigated for their suitability for registration of L-6-[18F]-fluoro-DOPA (FDOPA) PET images. Five different optimization criteria including sum of absolute difference (SAD), mean square difference (MSD), cross-correlation coefficient (CC), standard deviation of pixel ratio (SDPR), and stochastic sign change (SSC) were implemented and Powell's algorithm was used to optimize the criteria. The optimization criteria were calculated either unidirectionally (i.e. only evaluating the criteria for comparing the resliced image 1 with the original image 2) or bidirectionally (i.e. averaging the criteria for comparing the resliced image 1 with the original image 2 and those for the sliced image 2 with the original image 1). Monkey FDOPA images taken at various known orientations were used to evaluate the accuracy of different methods. A set of human FDOPA dynamic images was used to investigate the ability of the methods for correcting subject movement. It was found that a large improvement in performance resulted when bidirectional rather than unidirectional criteria were used. Overall, the SAD, MSD and SDPR methods were found to be comparable in performance and were suitable for registering FDOPA images. The MSD method gave more adequate results for frame-to-frame image registration for correcting subject movement during a dynamic FDOPA study. The utility of the registration method is further demonstrated by registering FDOPA images in monkeys before and after amphetamine injection to reveal more clearly the changes in spatial distribution of FDOPA due to the drug intervention.

  10. Medical imaging

    SciTech Connect

    Schneider, R.H.; Dwyer, S.J.

    1987-01-01

    This book contains papers from 26 sessions. Some of the session titles are: Tomographic Reconstruction, Radiography, Fluoro/Angio, Imaging Performance Measures, Perception, Image Processing, 3-D Display, and Printers, Displays, and Digitizers.

  11. Advances and challenges in deformable image registration: From image fusion to complex motion modelling.

    PubMed

    Schnabel, Julia A; Heinrich, Mattias P; Papież, Bartłomiej W; Brady, Sir J Michael

    2016-10-01

    Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field.

  12. Validation of elastic registration algorithms based on adaptive irregular grids for medical applications

    NASA Astrophysics Data System (ADS)

    Franz, Astrid; Carlsen, Ingwer C.; Renisch, Steffen; Wischmann, Hans-Aloys

    2006-03-01

    Elastic registration of medical images is an active field of current research. Registration algorithms have to be validated in order to show that they fulfill the requirements of a particular clinical application. Furthermore, validation strategies compare the performance of different registration algorithms and can hence judge which algorithm is best suited for a target application. In the literature, validation strategies for rigid registration algorithms have been analyzed. For a known ground truth they assess the displacement error at a few landmarks, which is not sufficient for elastic transformations described by a huge number of parameters. Hence we consider the displacement error averaged over all pixels in the whole image or in a region-of-interest of clinical relevance. Using artificially, but realistically deformed images of the application domain, we use this quality measure to analyze an elastic registration based on transformations defined on adaptive irregular grids for the following clinical applications: Magnetic Resonance (MR) images of freely moving joints for orthopedic investigations, thoracic Computed Tomography (CT) images for the detection of pulmonary embolisms, and transmission images as used for the attenuation correction and registration of independently acquired Positron Emission Tomography (PET) and CT images. The definition of a region-of-interest allows to restrict the analysis of the registration accuracy to clinically relevant image areas. The behaviour of the displacement error as a function of the number of transformation control points and their placement can be used for identifying the best strategy for the initial placement of the control points.

  13. Image registration for luminescent paint applications

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mclachlan, Blair G.

    1993-01-01

    The use of pressure sensitive luminescent paints is a viable technique for the measurement of surface pressure on wind tunnel models. This technique requires data reduction of images obtained under known as well as test conditions and spatial transformation of the images. A general transform which registers images to subpixel accuracy is presented and the general characteristics of transforms for image registration and their derivation are discussed. Image resection and its applications are described. The mapping of pressure data to the three dimensional model surface for small wind tunnel models to a spatial accuracy of 0.5 percent of the model length is demonstrated.

  14. Image registration using binary boundary maps

    NASA Technical Reports Server (NTRS)

    Andrus, J. F.; Campbell, C. W.; Jayroe, R. R.

    1978-01-01

    Registration technique that matches binary boundary maps extracted from raw data, rather than matching actual data, is considerably faster than other techniques. Boundary maps, which are digital representations of regions where image amplitudes change significantly, typically represent data compression of 60 to 70 percent. Maps allow average products to be computed with addition rather than multiplication, further reducing computation time.

  15. Medical Imaging.

    ERIC Educational Resources Information Center

    Jaffe, C. Carl

    1982-01-01

    Describes principle imaging techniques, their applications, and their limitations in terms of diagnostic capability and possible adverse biological effects. Techniques include film radiography, computed tomography, nuclear medicine, positron emission tomography (PET), ultrasonography, nuclear magnetic resonance, and digital radiography. PET has…

  16. Imaging medical imaging

    NASA Astrophysics Data System (ADS)

    Journeau, P.

    2015-03-01

    This paper presents progress on imaging the research field of Imaging Informatics, mapped as the clustering of its communities together with their main results by applying a process to produce a dynamical image of the interactions between their results and their common object(s) of research. The basic side draws from a fundamental research on the concept of dimensions and projective space spanning several streams of research about three-dimensional perceptivity and re-cognition and on their relation and reduction to spatial dimensionality. The application results in an N-dimensional mapping in Bio-Medical Imaging, with dimensions such as inflammatory activity, MRI acquisition sequencing, spatial resolution (voxel size), spatiotemporal dimension inferred, toxicity, depth penetration, sensitivity, temporal resolution, wave length, imaging duration, etc. Each field is represented through the projection of papers' and projects' `discriminating' quantitative results onto the specific N-dimensional hypercube of relevant measurement axes, such as listed above and before reduction. Past published differentiating results are represented as red stars, achieved unpublished results as purple spots and projects at diverse progress advancement levels as blue pie slices. The goal of the mapping is to show the dynamics of the trajectories of the field in its own experimental frame and their direction, speed and other characteristics. We conclude with an invitation to participate and show a sample mapping of the dynamics of the community and a tentative predictive model from community contribution.

  17. Image Segmentation, Registration, Compression, and Matching

    NASA Technical Reports Server (NTRS)

    Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina

    2011-01-01

    A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity

  18. Video Image Stabilization and Registration

    NASA Technical Reports Server (NTRS)

    Hathaway, David H. (Inventor); Meyer, Paul J. (Inventor)

    2002-01-01

    A method of stabilizing and registering a video image in multiple video fields of a video sequence provides accurate determination of the image change in magnification, rotation and translation between video fields, so that the video fields may be accurately corrected for these changes in the image in the video sequence. In a described embodiment, a key area of a key video field is selected which contains an image which it is desired to stabilize in a video sequence. The key area is subdivided into nested pixel blocks and the translation of each of the pixel blocks from the key video field to a new video field is determined as a precursor to determining change in magnification, rotation and translation of the image from the key video field to the new video field.

  19. Video Image Stabilization and Registration

    NASA Technical Reports Server (NTRS)

    Hathaway, David H. (Inventor); Meyer, Paul J. (Inventor)

    2003-01-01

    A method of stabilizing and registering a video image in multiple video fields of a video sequence provides accurate determination of the image change in magnification, rotation and translation between video fields, so that the video fields may be accurately corrected for these changes in the image in the video sequence. In a described embodiment, a key area of a key video field is selected which contains an image which it is desired to stabilize in a video sequence. The key area is subdivided into nested pixel blocks and the translation of each of the pixel blocks from the key video field to a new video field is determined as a precursor to determining change in magnification, rotation and translation of the image from the key video field to the new video field.

  20. Optimal atlas construction through hierarchical image registration

    NASA Astrophysics Data System (ADS)

    Grevera, George J.; Udupa, Jayaram K.; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Atlases (digital or otherwise) are common in medicine. However, there is no standard framework for creating them from medical images. One traditional approach is to pick a representative subject and then proceed to label structures/regions of interest in this image. Another is to create a "mean" or average subject. Atlases may also contain more than a single representative (e.g., the Visible Human contains both a male and a female data set). Other criteria besides gender may be used as well, and the atlas may contain many examples for a given criterion. In this work, we propose that atlases be created in an optimal manner using a well-established graph theoretic approach using a min spanning tree (or more generally, a collection of them). The resulting atlases may contain many examples for a given criterion. In fact, our framework allows for the addition of new subjects to the atlas to allow it to evolve over time. Furthermore, one can apply segmentation methods to the graph (e.g., graph-cut, fuzzy connectedness, or cluster analysis) which allow it to be separated into "sub-atlases" as it evolves. We demonstrate our method by applying it to 50 3D CT data sets of the chest region, and by comparing it to a number of traditional methods using measures such as Mean Squared Difference, Mattes Mutual Information, and Correlation, and for rigid registration. Our results demonstrate that optimal atlases can be constructed in this manner and outperform other methods of construction using freely available software.

  1. Landsat image registration for agricultural applications

    NASA Technical Reports Server (NTRS)

    Wolfe, R. H., Jr.; Juday, R. D.; Wacker, A. G.; Kaneko, T.

    1982-01-01

    An image registration system has been developed at the NASA Johnson Space Center (JSC) to spatially align multi-temporal Landsat acquisitions for use in agriculture and forestry research. Working in conjunction with the Master Data Processor (MDP) at the Goddard Space Flight Center, it functionally replaces the long-standing LACIE Registration Processor as JSC's data supplier. The system represents an expansion of the techniques developed for the MDP and LACIE Registration Processor, and it utilizes the experience gained in an IBM/JSC effort evaluating the performance of the latter. These techniques are discussed in detail. Several tests were developed to evaluate the registration performance of the system. The results indicate that 1/15-pixel accuracy (about 4m for Landsat MSS) is achievable in ideal circumstances, sub-pixel accuracy (often to 0.2 pixel or better) was attained on a representative set of U.S. acquisitions, and a success rate commensurate with the LACIE Registration Processor was realized. The system has been employed in a production mode on U.S. and foreign data, and a performance similar to the earlier tests has been noted.

  2. Geometric assessment of image quality using digital image registration techniques

    NASA Technical Reports Server (NTRS)

    Tisdale, G. E.

    1976-01-01

    Image registration techniques were developed to perform a geometric quality assessment of multispectral and multitemporal image pairs. Based upon LANDSAT tapes, accuracies to a small fraction of a pixel were demonstrated. Because it is insensitive to the choice of registration areas, the technique is well suited to performance in an automatic system. It may be implemented at megapixel-per-second rates using a commercial minicomputer in combination with a special purpose digital preprocessor.

  3. The image registration of multi-band images by geometrical optics

    NASA Astrophysics Data System (ADS)

    Yan, Yung-Jhe; Chiang, Hou-Chi; Tsai, Yu-Hsiang; Huang, Ting-Wei; Mang, Ou-Yang

    2015-09-01

    The image fusion is combination of two or more images into one image. The fusion of multi-band spectral images has been in many applications, such as thermal system, remote sensing, medical treatment, etc. Images are taken with the different imaging sensors. If the sensors take images through the different optical paths in the same time, it will be in the different positions. The task of the image registration will be more difficult. Because the images are in the different field of views (F.O.V.), the different resolutions and the different view angles. It is important to build the relationship of the viewpoints in one image to the other image. In this paper, we focus on the problem of image registration for two non-pinhole sensors. The affine transformation between the 2-D image and the 3-D real world can be derived from the geometrical optics of the sensors. In the other word, the geometrical affine transformation function of two images are derived from the intrinsic and extrinsic parameters of two sensors. According to the affine transformation function, the overlap of the F.O.V. in two images can be calculated and resample two images in the same resolution. Finally, we construct the image registration model by the mapping function. It merges images for different imaging sensors. And, imaging sensors absorb different wavebands of electromagnetic spectrum at the different position in the same time.

  4. Voxel similarity measures for automated image registration

    NASA Astrophysics Data System (ADS)

    Hill, Derek L.; Studholme, Colin; Hawkes, David J.

    1994-09-01

    We present the concept of the feature space sequence: 2D distributions of voxel features of two images generated at registration and a sequence of misregistrations. We provide an explanation of the structure seen in these images. Feature space sequences have been generated for a pair of MR image volumes identical apart from the addition of Gaussian noise to one, MR image volumes with and without Gadolinium enhancement, MR and PET-FDG image volumes and MR and CT image volumes, all of the head. The structure seen in the feature space sequences was used to devise two new measures of similarity which in turn were used to produce plots of cost versus misregistration for the 6 degrees of freedom of rigid body motion. One of these, the third order moment of the feature space histogram, was used to register the MR image volumes with and without Gadolinium enhancement. These techniques have the potential for registration accuracy to within a small fraction of a voxel or resolution element and therefore interpolation errors in image transformation can be the dominant source of error in subtracted images. We present a method for removing these errors using sinc interpolation and show how interpolation errors can be reduced by over two orders of magnitude.

  5. Registration of plantar pressure images.

    PubMed

    Oliveira, Francisco P M; Tavares, João Manuel R S

    2012-01-01

    In this work, five computational methodologies to register plantar pressure images are compared: (1) the first methodology is based on matching the external contours of the feet; (2) the second uses the phase correlation technique; (3) the third addresses the direct maximization of cross-correlation using the Fourier transform; (4) the fourth minimizes the sum of squared differences using the Fourier transform; and (5) the fifth methodology iteratively optimizes an intensity (dis)similarity measure based on Powell's method. The accuracy and robustness of the five methodologies were assessed by using images from three common plantar pressure acquisition devices: a Footscan system, an EMED system, and a light reflection system. Using the residual error as a measure of accuracy, all methodologies revealed to be very accurate even in the presence of noise. The most accurate was the methodology based on the iterative optimization, when the mean squared error was minimized. It achieved a residual error inferior to 0.01 mm and 0.6 mm for non-noisy and noisy images, respectively. On the other hand, the methodology based on image contour matching was the fastest, but its accuracy was the lowest.

  6. Canny edge-based deformable image registration

    NASA Astrophysics Data System (ADS)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-01

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  7. Local image registration by adaptive filtering.

    PubMed

    Caner, Gulcin; Tekalp, A Murat; Sharma, Gaurav; Heinzelman, Wendi

    2006-10-01

    We propose a new adaptive filtering framework for local image registration, which compensates for the effect of local distortions/displacements without explicitly estimating a distortion/displacement field. To this effect, we formulate local image registration as a two-dimensional (2-D) system identification problem with spatially varying system parameters. We utilize a 2-D adaptive filtering framework to identify the locally varying system parameters, where a new block adaptive filtering scheme is introduced. We discuss the conditions under which the adaptive filter coefficients conform to a local displacement vector at each pixel. Experimental results demonstrate that the proposed 2-D adaptive filtering framework is very successful in modeling and compensation of both local distortions, such as Stirmark attacks, and local motion, such as in the presence of a parallax field. In particular, we show that the proposed method can provide image registration to: a) enable reliable detection of watermarks following a Stirmark attack in nonblind detection scenarios, b) compensate for lens distortions, and c) align multiview images with nonparametric local motion.

  8. Spatially weighted mutual information image registration for image guided radiation therapy

    SciTech Connect

    Park, Samuel B.; Rhee, Frank C.; Monroe, James I.; Sohn, Jason W.

    2010-09-15

    Purpose: To develop a new metric for image registration that incorporates the (sub)pixelwise differential importance along spatial location and to demonstrate its application for image guided radiation therapy (IGRT). Methods: It is well known that rigid-body image registration with mutual information is dependent on the size and location of the image subset on which the alignment analysis is based [the designated region of interest (ROI)]. Therefore, careful review and manual adjustments of the resulting registration are frequently necessary. Although there were some investigations of weighted mutual information (WMI), these efforts could not apply the differential importance to a particular spatial location since WMI only applies the weight to the joint histogram space. The authors developed the spatially weighted mutual information (SWMI) metric by incorporating an adaptable weight function with spatial localization into mutual information. SWMI enables the user to apply the selected transform to medically ''important'' areas such as tumors and critical structures, so SWMI is neither dominated by, nor neglects the neighboring structures. Since SWMI can be utilized with any weight function form, the authors presented two examples of weight functions for IGRT application: A Gaussian-shaped weight function (GW) applied to a user-defined location and a structures-of-interest (SOI) based weight function. An image registration example using a synthesized 2D image is presented to illustrate the efficacy of SWMI. The convergence and feasibility of the registration method as applied to clinical imaging is illustrated by fusing a prostate treatment planning CT with a clinical cone beam CT (CBCT) image set acquired for patient alignment. Forty-one trials are run to test the speed of convergence. The authors also applied SWMI registration using two types of weight functions to two head and neck cases and a prostate case with clinically acquired CBCT/MVCT image sets. The

  9. Automated landmark-guided deformable image registration.

    PubMed

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-07

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency.

  10. Automated landmark-guided deformable image registration

    NASA Astrophysics Data System (ADS)

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-01

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency.

  11. Surface driven biomechanical breast image registration

    NASA Astrophysics Data System (ADS)

    Eiben, Björn; Vavourakis, Vasileios; Hipwell, John H.; Kabus, Sven; Lorenz, Cristian; Buelow, Thomas; Williams, Norman R.; Keshtgar, M.; Hawkes, David J.

    2016-03-01

    Biomechanical modelling enables large deformation simulations of breast tissues under different loading conditions to be performed. Such simulations can be utilised to transform prone Magnetic Resonance (MR) images into a different patient position, such as upright or supine. We present a novel integration of biomechanical modelling with a surface registration algorithm which optimises the unknown material parameters of a biomechanical model and performs a subsequent regularised surface alignment. This allows deformations induced by effects other than gravity, such as those due to contact of the breast and MR coil, to be reversed. Correction displacements are applied to the biomechanical model enabling transformation of the original pre-surgical images to the corresponding target position. The algorithm is evaluated for the prone-to-supine case using prone MR images and the skin outline of supine Computed Tomography (CT) scans for three patients. A mean target registration error (TRE) of 10:9 mm for internal structures is achieved. For the prone-to-upright scenario, an optical 3D surface scan of one patient is used as a registration target and the nipple distances after alignment between the transformed MRI and the surface are 10:1 mm and 6:3 mm respectively.

  12. Adaptive registration of diffusion tensor images on lie groups

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Chen, LeiTing; Cai, HongBin; Qiu, Hang; Fei, Nanxi

    2016-08-01

    With diffusion tensor imaging (DTI), more exquisite information on tissue microstructure is provided for medical image processing. In this paper, we present a locally adaptive topology preserving method for DTI registration on Lie groups. The method aims to obtain more plausible diffeomorphisms for spatial transformations via accurate approximation for the local tangent space on the Lie group manifold. In order to capture an exact geometric structure of the Lie group, the local linear approximation is efficiently optimized by using the adaptive selection of the local neighborhood sizes on the given set of data points. Furthermore, numerical comparative experiments are conducted on both synthetic data and real DTI data to demonstrate that the proposed method yields a higher degree of topology preservation on a dense deformation tensor field while improving the registration accuracy.

  13. Nonlinear image registration with bidirectional metric and reciprocal regularization

    PubMed Central

    Ying, Shihui; Li, Dan; Xiao, Bin; Peng, Yaxin; Du, Shaoyi; Xu, Meifeng

    2017-01-01

    Nonlinear registration is an important technique to align two different images and widely applied in medical image analysis. In this paper, we develop a novel nonlinear registration framework based on the diffeomorphic demons, where a reciprocal regularizer is introduced to assume that the deformation between two images is an exact diffeomorphism. In detail, first, we adopt a bidirectional metric to improve the symmetry of the energy functional, whose variables are two reciprocal deformations. Secondly, we slack these two deformations into two independent variables and introduce a reciprocal regularizer to assure the deformations being the exact diffeomorphism. Then, we utilize an alternating iterative strategy to decouple the model into two minimizing subproblems, where a new closed form for the approximate velocity of deformation is calculated. Finally, we compare our proposed algorithm on two data sets of real brain MR images with two relative and conventional methods. The results validate that our proposed method improves accuracy and robustness of registration, as well as the gained bidirectional deformations are actually reciprocal. PMID:28231342

  14. Nonlinear image registration with bidirectional metric and reciprocal regularization.

    PubMed

    Ying, Shihui; Li, Dan; Xiao, Bin; Peng, Yaxin; Du, Shaoyi; Xu, Meifeng

    2017-01-01

    Nonlinear registration is an important technique to align two different images and widely applied in medical image analysis. In this paper, we develop a novel nonlinear registration framework based on the diffeomorphic demons, where a reciprocal regularizer is introduced to assume that the deformation between two images is an exact diffeomorphism. In detail, first, we adopt a bidirectional metric to improve the symmetry of the energy functional, whose variables are two reciprocal deformations. Secondly, we slack these two deformations into two independent variables and introduce a reciprocal regularizer to assure the deformations being the exact diffeomorphism. Then, we utilize an alternating iterative strategy to decouple the model into two minimizing subproblems, where a new closed form for the approximate velocity of deformation is calculated. Finally, we compare our proposed algorithm on two data sets of real brain MR images with two relative and conventional methods. The results validate that our proposed method improves accuracy and robustness of registration, as well as the gained bidirectional deformations are actually reciprocal.

  15. TU-A-19A-01: Image Registration I: Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201

    SciTech Connect

    Kessler, M

    2014-06-15

    Deformable image registration, contour propagation and dose mapping have become common, possibly essential tools for modern image-guided radiation therapy. Historically, these tools have been largely developed at academic medical centers and used in a rather limited and well controlled fashion. Today these tools are now available to the radiotherapy community at large, both as stand-alone applications and as integrated components of both treatment planning and treatment delivery systems. Unfortunately, the details of how these tools work and their limitations are not generally documented or described by the vendors that provide them. Although “it looks right”, determining that unphysical deformations may have occurred is crucial. Because of this, understanding how and when to use, and not use these tools to support everyday clinical decisions is far from straight forward. The goal of this session will be to present both the theory (basic and advanced) and practical clinical use of deformable image registration, contour propagation and dose mapping. To the extent possible, the “secret sauce” that different vendor use to produce reasonable/acceptable results will be described. A detailed explanation of the possible sources of errors and actual examples of these will be presented. Knowing the underlying principles of the process and understanding the confounding factors will help the practicing medical physicist be better able to make decisions (about making decisions) using these tools available. Learning Objectives: Understand the basic (101) and advanced (201) principles of deformable image registration, contour propagation and dose mapping data mapping. Understand the sources and impact of errors in registration and data mapping and the methods for evaluating the performance of these tools. Understand the clinical use and value of these tools, especially when used as a “black box”.

  16. Ray-tracing based registration for HRCT images of the lungs.

    PubMed

    Busayara, Sata; Zrimec, Tatjana

    2006-01-01

    Image registration is a fundamental problem in medical imaging. It is especially challenging in lung images compared, for example, with the brain. The challenges include large anatomical variations of human lung and a lack of fixed landmarks inside the lung. This paper presents a new method for lung HRCT image registration. It employs a landmark-based global transformation and a novel ray-tracing-based lung surface registration. The proposed surface registration method has two desirable properties: 1) it is fully reversible, and 2) it ensures that the registered lung will be inside the target lung. We evaluated the registration performance by applying it to lung regions mapping. Tested on 46 scans, the registered regions were 89% accurate compared with the ground-truth.

  17. INVITED REVIEW--IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    PubMed

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-01-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms.

  18. Medical Imaging System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  19. Image Registration for Targeted MRI-guided Transperineal Prostate Biopsy

    PubMed Central

    Fedorov, Andriy; Tuncali, Kemal; Fennessy, Fiona M.; Tokuda, Junichi; Hata, Nobuhiko; Wells, William M.; Kikinis, Ron; Tempany, Clare M.

    2012-01-01

    Purpose To develop and evaluate image registration methodology for automated re-identification of tumor-suspicious foci from pre-procedural MR exams during MR-guided transperineal prostate core biopsy. Materials and Methods A hierarchical approach for automated registration between planning and intra-procedural T2-weighted prostate MRI was developed and evaluated on the images acquired during 10 consecutive MR-guided biopsies. Registration accuracy was quantified at image-based landmarks and by evaluating spatial overlap for the manually segmented prostate and sub-structures. Registration reliability was evaluated by simulating initial mis-registration and analyzing the convergence behavior. Registration precision was characterized at the planned biopsy targets. Results The total computation time was compatible with a clinical setting, being at most 2 minutes. Deformable registration led to a significant improvement in spatial overlap of the prostate and peripheral zone contours compared to both rigid and affine registration. Average in-slice landmark registration error was 1.3±0.5 mm. Experiments simulating initial mis-registration resulted in an estimated average capture range of 6 mm and an average in-slice registration precision of ±0.3 mm. Conclusion Our registration approach requires minimum user interaction and is compatible with the time constraints of our interventional clinical workflow. The initial evaluation shows acceptable accuracy, reliability and consistency of the method. PMID:22645031

  20. Effects of Image Contrast on Functional MRI Image Registration

    PubMed Central

    Gonzalez-Castillo, Javier; Duthie, Kristen N.; Saad, Ziad S.; Chu, Carlton; Bandettini, Peter A.; Luh, Wen-Ming

    2012-01-01

    Lack of tissue contrast and existing inhomogeneous bias fields from multi-channel coils have the potential to degrade the output of registration algorithms; and consequently degrade group analysis and any attempt to accurately localize brain function. Non-invasive ways to improve tissue contrast in fMRI images include the use of low flip angles (FAs) well below the Ernst angle and longer repetition times (TR). Techniques to correct intensity inhomogeneity are also available in most mainstream fMRI data analysis packages; but are not used as part of the pre-processing pipeline in many studies. In this work, we use a combination of real data and simulations to show that simple-to-implement acquisition/pre-processing techniques can significantly improve the outcome of both functional-to-functional and anatomical-to-functional image registrations. We also emphasize the need of tissue contrast on EPI images to be able to appropriately evaluate the quality of the alignment. In particular, we show that the use of low FAs (e.g., θ≤40°), when physiological noise considerations permit such an approach, significantly improves accuracy, consistency and stability of registration for data acquired at relatively short TRs (TR≤2s). Moreover, we also show that the application of bias correction techniques significantly improves alignment both for array-coil data (known to contain high intensity inhomogeneity) as well as birdcage-coil data. Finally, improvements in alignment derived from the use of the first infinite-TR volumes (ITVs) as targets for registration are also demonstrated. For the purpose of quantitatively evaluating the different scenarios, two novel metrics were developed: Mean Voxel Distance (MVD) to evaluate registration consistency, and Deviation of Mean Voxel Distance (dMVD) to evaluate registration stability across successive alignment attempts. PMID:23128074

  1. Registration of Optical Data with High-Resolution SAR Data: a New Image Registration Solution

    NASA Astrophysics Data System (ADS)

    Bahr, T.; Jin, X.

    2013-04-01

    Accurate image-to-image registration is critical for many image processing workflows, including georeferencing, change detection, data fusion, image mosaicking, DEM extraction and 3D modeling. Users need a solution to generate tie points accurately and geometrically align the images automatically. To solve these requirements we developed the Hybrid Powered Auto-Registration Engine (HyPARE). HyPARE combines all available spatial reference information with a number of image registration approaches to improve the accuracy, performance, and automation of tie point generation and image registration. We demonstrate this approach by the registration of a Pléiades-1a image with a TerraSAR-X SpotLight image of Hannover, Germany. Registering images with different modalities is a known challenging problem; e.g. manual tie point collection is prone to error. The registration engine allows to generate tie points automatically, using an optimized mutual information-based matching method. It produces more accurate results than traditional correlation-based measures. In this example the resulting tie points are well distributed across the overlapping areas, even as the images have significant local feature differences.

  2. Visualization of Deformable Image Registration Quality using Local Image Dissimilarity.

    PubMed

    Schlachter, Matthias; Fechter, Tobias; Jurisic, Miro; Schimek-Jasch, Tanja; Oehlke, Oliver; Adebahr, Sonja; Birkfellner, Wolfgang; Nestle, Ursula; Buhler, Katja

    2016-04-29

    Deformable image registration (DIR) has the potential to improve modern radiotherapy in many aspects, including volume definition, treatment planning and image-guided adaptive radiotherapy. Studies have shown its possible clinical benefits. However, measuring DIR accuracy is difficult without known ground truth, but necessary before integration in the radiotherapy workflow. Visual assessment is an important step towards clinical acceptance. We propose a visualization framework which supports the exploration and the assessment of DIR accuracy. It offers different interaction and visualization features for exploration of candidate regions to simplify the process of visual assessment. The visualization is based on voxel-wise comparison of local image patches for which dissimilarity measures are computed and visualized to indicate locally the registration results. We performed an evaluation with three radiation oncologists to demonstrate the viability of our approach. In the evaluation, lung regions were rated by the participants with regards to their visual accuracy and compared to the registration error measured with expert defined landmarks. Regions rated as "accepted" had an average registration error of 1.8 mm, with the highest single landmark error being 3.3 mm. Additionally, survey results show that the proposed visualizations support a fast and intuitive investigation of DIR accuracy, and are suitable for finding even small errors.

  3. Visualization of Deformable Image Registration Quality Using Local Image Dissimilarity.

    PubMed

    Schlachter, Matthias; Fechter, Tobias; Jurisic, Miro; Schimek-Jasch, Tanja; Oehlke, Oliver; Adebahr, Sonja; Birkfellner, Wolfgang; Nestle, Ursula; Bu Hler, Katja

    2016-10-01

    Deformable image registration (DIR) has the potential to improve modern radiotherapy in many aspects, including volume definition, treatment planning and image-guided adaptive radiotherapy. Studies have shown its possible clinical benefits. However, measuring DIR accuracy is difficult without known ground truth, but necessary before integration in the radiotherapy workflow. Visual assessment is an important step towards clinical acceptance. We propose a visualization framework which supports the exploration and the assessment of DIR accuracy. It offers different interaction and visualization features for exploration of candidate regions to simplify the process of visual assessment. The visualization is based on voxel-wise comparison of local image patches for which dissimilarity measures are computed and visualized to indicate locally the registration results. We performed an evaluation with three radiation oncologists to demonstrate the viability of our approach. In the evaluation, lung regions were rated by the participants with regards to their visual accuracy and compared to the registration error measured with expert defined landmarks. Regions rated as "accepted" had an average registration error of 1.8 mm, with the highest single landmark error being 3.3 mm. Additionally, survey results show that the proposed visualizations support a fast and intuitive investigation of DIR accuracy, and are suitable for finding even small errors.

  4. Progressive piecewise registration of orthophotos and airborne scanner images

    NASA Astrophysics Data System (ADS)

    Chen, Lin-Chi; Yang, T. T.

    1994-08-01

    From the image-to-image registration point of view, we propose a scheme to iteratively register airborne multi-spectral imagery onto its counterpart, i.e., orthographic photography. The required registration control point pairs are automatically augmented first. Then a local registration procedure is applied according to the generated registration control point pairs. The coordinate transformation uses thin plate spline function. Through a consistency check, if the disparities between the reference image and the transformed airborne multi-spectral image is too large to accept, next iteration is performed. During the second iteration, some best matched feature points used in the consistency check of the first iteration append to the existing registration control points. This iteration procedure continues until the disparities are small enough. Experimental results indicate that the output image attain an excellent geometrical similarity with respect to the reference image. The rms of the disparities is less than 0.5 pixels.

  5. Biomechanical model as a registration tool for image-guided neurosurgery: evaluation against BSpline registration

    PubMed Central

    Mostayed, Ahmed; Garlapati, Revanth Reddy; Joldes, Grand Roman; Wittek, Adam; Roy, Aditi; Kikinis, Ron; Warfield, Simon K.; Miller, Karol

    2013-01-01

    In this paper we evaluate the accuracy of warping of neuro-images using brain deformation predicted by means of a patient-specific biomechanical model against registration using a BSpline-based free form deformation algorithm. Unlike the Bspline algorithm, biomechanics-based registration does not require an intra-operative MR image which is very expensive and cumbersome to acquire. Only sparse intra-operative data on the brain surface is sufficient to compute deformation for the whole brain. In this contribution the deformation fields obtained from both methods are qualitatively compared and overlaps of Canny edges extracted from the images are examined. We define an edge based Hausdorff distance metric to quantitatively evaluate the accuracy of registration for these two algorithms. The qualitative and quantitative evaluations indicate that our biomechanics-based registration algorithm, despite using much less input data, has at least as high registration accuracy as that of the BSpline algorithm. PMID:23771299

  6. Constrained non-rigid registration for whole body image registration: method and validation

    NASA Astrophysics Data System (ADS)

    Li, Xia; Yankeelov, Thomas E.; Peterson, Todd E.; Gore, John C.; Dawant, Benoit M.

    2007-03-01

    3D intra- and inter-subject registration of image volumes is important for tasks that include measurements and quantification of temporal/longitudinal changes, atlas-based segmentation, deriving population averages, or voxel and tensor-based morphometry. A number of methods have been proposed to tackle this problem but few of them have focused on the problem of registering whole body image volumes acquired either from humans or small animals. These image volumes typically contain a large number of articulated structures, which makes registration more difficult than the registration of head images, to which the vast majority of registration algorithms have been applied. To solve this problem, we have previously proposed an approach, which initializes an intensity-based non-rigid registration algorithm with a point based registration technique [1, 2]. In this paper, we introduce new constraints into our non-rigid registration algorithm to prevent the bones from being deformed inaccurately. Results we have obtained show that the new constrained algorithm leads to better registration results than the previous one.

  7. SAR/LANDSAT image registration study

    NASA Technical Reports Server (NTRS)

    Murphrey, S. W. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Temporal registration of synthetic aperture radar data with LANDSAT-MSS data is both feasible (from a technical standpoint) and useful (from an information-content viewpoint). The greatest difficulty in registering aircraft SAR data to corrected LANDSAT-MSS data is control-point location. The differences in SAR and MSS data impact the selection of features that will serve as a good control points. The SAR and MSS data are unsuitable for automatic computer correlation of digital control-point data. The gray-level data can not be compared by the computer because of the different response characteristics of the MSS and SAR images.

  8. Early medical registration in Australia. Part 2.

    PubMed

    Dammery, D

    2001-11-01

    The lure of land and gold, the hope for better health and an overcrowded profession in Britain led to an increasing number of doctors migrating to Australia. This migration was even more marked after the goldrush, especially in Victoria. The fifth article in this series looks at the way in which medical practice was controlled by excluding many of those doctors who were from non-British origins.

  9. a New Approach for Optical and SAR Satellite Image Registration

    NASA Astrophysics Data System (ADS)

    Merkle, N.; Müller, R.; Schwind, P.; Palubinskas, G.; Reinartz, P.

    2015-03-01

    Over the last years several research studies have shown the high geometric accuracy of high resolution radar satellites like TerraSARX. Due to this fact, the impact of high resolution SAR images for image registration has increased. An aim of high accuracy image registration is the improvement of the absolute geometric accuracy of optical images by using SAR images as references. High accuracy image registration is required for different remote sensing applications and is an on-going research topic. The registration of images acquired by different sensor types, like optical and SAR images, is a challenging task. In our work, a novel approach is proposed, which is a combination of the classical feature-based and intensity-based registration approaches. In the first step of the method, spatial features, here roundabouts, are detected in the optical image. In the second step, the detected features are used to generate SAR like roundabout templates. In the third step, the templates are matched with the corresponding parts of the SAR image by using an intensitybased matching process. The proposed method is tested for a pair of TerraSAR-X and QuickBird images and a pair of TerraSAR-X and WorldView-2 images of a suburban area. The results show that the proposed method offers an alternative approach compared to the common optical and SAR images registration methods and it can be used for the geometric accuracy improvement of optical images.

  10. Diffeomorphic Image Registration of Diffusion MRI Using Spherical Harmonics

    PubMed Central

    Geng, Xiujuan; Ross, Thomas J.; Gu, Hong; Shin, Wanyong; Zhan, Wang; Chao, Yi-Ping; Lin, Ching-Po; Schuff, Norbert; Yang, Yihong

    2013-01-01

    Non-rigid registration of diffusion MRI is crucial for group analyses and building white matter and fiber tract atlases. Most current diffusion MRI registration techniques are limited to the alignment of diffusion tensor imaging (DTI) data. We propose a novel diffeomorphic registration method for high angular resolution diffusion images by mapping their orientation distribution functions (ODFs). ODFs can be reconstructed using q-ball imaging (QBI) techniques and represented by spherical harmonics (SHs) to resolve intra-voxel fiber crossings. The registration is based on optimizing a diffeomorphic demons cost function. Unlike scalar images, deforming ODF maps requires ODF reorientation to maintain its consistency with the local fiber orientations. Our method simultaneously reorients the ODFs by computing a Wigner rotation matrix at each voxel, and applies it to the SH coefficients during registration. Rotation of the coefficients avoids the estimation of principal directions, which has no analytical solution and is time consuming. The proposed method was validated on both simulated and real data sets with various metrics, which include the distance between the estimated and simulated transformation fields, the standard deviation of the general fractional anisotropy and the directional consistency of the deformed and reference images. The registration performance using SHs with different maximum orders were compared using these metrics. Results show that the diffeomorphic registration improved the affine alignment, and registration using SHs with higher order SHs further improved the registration accuracy by reducing the shape difference and improving the directional consistency of the registered and reference ODF maps. PMID:21134814

  11. Shearlet Features for Registration of Remotely Sensed Multitemporal Images

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline

    2015-01-01

    We investigate the role of anisotropic feature extraction methods for automatic image registration of remotely sensed multitemporal images. Building on the classical use of wavelets in image registration, we develop an algorithm based on shearlets, a mathematical generalization of wavelets that offers increased directional sensitivity. Initial experimental results on LANDSAT images are presented, which indicate superior performance of the shearlet algorithm when compared to classical wavelet algorithms.

  12. Integrating segmentation information for improved MRF-based elastic image registration.

    PubMed

    Mahapatra, Dwarikanath; Sun, Ying

    2012-01-01

    In this paper, we propose a method to exploit segmentation information for elastic image registration using a Markov-random-field (MRF)-based objective function. MRFs are suitable for discrete labeling problems, and the labels are defined as the joint occurrence of displacement fields (for registration) and segmentation class probability. The data penalty is a combination of the image intensity (or gradient information) and the mutual dependence of registration and segmentation information. The smoothness is a function of the interaction between the defined labels. Since both terms are a function of registration and segmentation labels, the overall objective function captures their mutual dependence. A multiscale graph-cut approach is used to achieve subpixel registration and reduce the computation time. The user defines the object to be registered in the floating image, which is rigidly registered before applying our method. We test our method on synthetic image data sets with known levels of added noise and simulated deformations, and also on natural and medical images. Compared with other registration methods not using segmentation information, our proposed method exhibits greater robustness to noise and improved registration accuracy.

  13. EVolution: an edge-based variational method for non-rigid multi-modal image registration

    NASA Astrophysics Data System (ADS)

    de Senneville, B. Denis; Zachiu, C.; Ries, M.; Moonen, C.

    2016-10-01

    Image registration is part of a large variety of medical applications including diagnosis, monitoring disease progression and/or treatment effectiveness and, more recently, therapy guidance. Such applications usually involve several imaging modalities such as ultrasound, computed tomography, positron emission tomography, x-ray or magnetic resonance imaging, either separately or combined. In the current work, we propose a non-rigid multi-modal registration method (namely EVolution: an edge-based variational method for non-rigid multi-modal image registration) that aims at maximizing edge alignment between the images being registered. The proposed algorithm requires only contrasts between physiological tissues, preferably present in both image modalities, and assumes deformable/elastic tissues. Given both is shown to be well suitable for non-rigid co-registration across different image types/contrasts (T1/T2) as well as different modalities (CT/MRI). This is achieved using a variational scheme that provides a fast algorithm with a low number of control parameters. Results obtained on an annotated CT data set were comparable to the ones provided by state-of-the-art multi-modal image registration algorithms, for all tested experimental conditions (image pre-filtering, image intensity variation, noise perturbation). Moreover, we demonstrate that, compared to existing approaches, our method possesses increased robustness to transient structures (i.e. that are only present in some of the images).

  14. Research Issues in Image Registration for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Eastman, Roger D.; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2007-01-01

    Image registration is an important element in data processing for remote sensing with many applications and a wide range of solutions. Despite considerable investigation the field has not settled on a definitive solution for most applications and a number of questions remain open. This article looks at selected research issues by surveying the experience of operational satellite teams, application-specific requirements for Earth science, and our experiments in the evaluation of image registration algorithms with emphasis on the comparison of algorithms for subpixel accuracy. We conclude that remote sensing applications put particular demands on image registration algorithms to take into account domain-specific knowledge of geometric transformations and image content.

  15. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease.

    PubMed

    Shamonin, Denis P; Bron, Esther E; Lelieveldt, Boudewijn P F; Smits, Marion; Klein, Stefan; Staring, Marius

    2013-01-01

    Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial. In this paper we explore acceleration of the image registration package elastix by a combination of several techniques: (i) parallelization on the CPU, to speed up the cost function derivative calculation; (ii) parallelization on the GPU building on and extending the OpenCL framework from ITKv4, to speed up the Gaussian pyramid computation and the image resampling step; (iii) exploitation of certain properties of the B-spline transformation model; (iv) further software optimizations. The accelerated registration tool is employed in a study on diagnostic classification of Alzheimer's disease and cognitively normal controls based on T1-weighted MRI. We selected 299 participants from the publicly available Alzheimer's Disease Neuroimaging Initiative database. Classification is performed with a support vector machine based on gray matter volumes as a marker for atrophy. We evaluated two types of strategies (voxel-wise and region-wise) that heavily rely on nonrigid image registration. Parallelization and optimization resulted in an acceleration factor of 4-5x on an 8-core machine. Using OpenCL a speedup factor of 2 was realized for computation of the Gaussian pyramids, and 15-60 for the resampling step, for larger images. The voxel-wise and the region-wise classification methods had an area under the receiver operator characteristic curve of 88 and 90%, respectively, both for standard and accelerated registration. We conclude that the image registration package elastix was substantially accelerated, with nearly identical results to the non-optimized version. The new functionality will become available in the next release of elastix as open source under the BSD license.

  16. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease

    PubMed Central

    Shamonin, Denis P.; Bron, Esther E.; Lelieveldt, Boudewijn P. F.; Smits, Marion; Klein, Stefan; Staring, Marius

    2013-01-01

    Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial. In this paper we explore acceleration of the image registration package elastix by a combination of several techniques: (i) parallelization on the CPU, to speed up the cost function derivative calculation; (ii) parallelization on the GPU building on and extending the OpenCL framework from ITKv4, to speed up the Gaussian pyramid computation and the image resampling step; (iii) exploitation of certain properties of the B-spline transformation model; (iv) further software optimizations. The accelerated registration tool is employed in a study on diagnostic classification of Alzheimer's disease and cognitively normal controls based on T1-weighted MRI. We selected 299 participants from the publicly available Alzheimer's Disease Neuroimaging Initiative database. Classification is performed with a support vector machine based on gray matter volumes as a marker for atrophy. We evaluated two types of strategies (voxel-wise and region-wise) that heavily rely on nonrigid image registration. Parallelization and optimization resulted in an acceleration factor of 4–5x on an 8-core machine. Using OpenCL a speedup factor of 2 was realized for computation of the Gaussian pyramids, and 15–60 for the resampling step, for larger images. The voxel-wise and the region-wise classification methods had an area under the receiver operator characteristic curve of 88 and 90%, respectively, both for standard and accelerated registration. We conclude that the image registration package elastix was substantially accelerated, with nearly identical results to the non-optimized version. The new functionality will become available in the next release of elastix as open source under the BSD license

  17. Automatic nonrigid registration of whole body CT mice images.

    PubMed

    Li, Xia; Yankeelov, Thomas E; Peterson, Todd E; Gore, John C; Dawant, Benoit M

    2008-04-01

    Three-dimensional intra- and intersubject registration of image volumes is important for tasks that include quantification of temporal/longitudinal changes, atlas-based segmentation, computing population averages, or voxel and tensor-based morphometry. While a number of methods have been proposed to address this problem, few have focused on the problem of registering whole body image volumes acquired either from humans or small animals. These image volumes typically contain a large number of articulated structures, which makes registration more difficult than the registration of head images, to which the majority of registration algorithms have been applied. This article presents a new method for the automatic registration of whole body computed tomography (CT) volumes, which consists of two main steps. Skeletons are first brought into approximate correspondence with a robust point-based method. Transformations so obtained are refined with an intensity-based nonrigid registration algorithm that includes spatial adaptation of the transformation's stiffness. The approach has been applied to whole body CT images of mice, to CT images of the human upper torso, and to human head and neck CT images. To validate the authors method on soft tissue structures, which are difficult to see in CT images, the authors use coregistered magnetic resonance images. They demonstrate that the approach they propose can successfully register image volumes even when these volumes are very different in size and shape or if they have been acquired with the subjects in different positions.

  18. Medical imaging systems

    DOEpatents

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  19. INTER-GROUP IMAGE REGISTRATION BY HIERARCHICAL GRAPH SHRINKAGE.

    PubMed

    Ying, Shihui; Wu, Guorong; Liao, Shu; Shen, Dinggang

    2013-12-31

    In this paper, we propose a novel inter-group image registration method to register different groups of images (e.g., young and elderly brains) simultaneously. Specifically, we use a hierarchical two-level graph to model the distribution of entire images on the manifold, with intra-graph representing the image distribution in each group and the inter-graph describing the relationship between two groups. Then the procedure of inter-group registration is formulated as a dynamic evolution of graph shrinkage. The advantage of our method is that the topology of entire image distribution is explored to guide the image registration. In this way, each image coordinates with its neighboring images on the manifold to deform towards the population center, by following the deformation pathway simultaneously optimized within the graph. Our proposed method has been also compared with other state-of-the-art inter-group registration methods, where our method achieves better registration results in terms of registration accuracy and robustness.

  20. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  1. Nonrigid brain MR image registration using uniform spherical region descriptor.

    PubMed

    Liao, Shu; Chung, Albert C S

    2012-01-01

    There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected rotations of input volumes and monotonic gray-level bias fields can adversely affect the registration quality. In this paper, a new feature-based nonrigid image registration method is proposed. The proposed method is based on a new type of image feature, namely, uniform spherical region descriptor (USRD), as signatures for each voxel. The USRD is rotation and monotonic gray-level transformation invariant and can be efficiently calculated. The registration process is therefore formulated as a feature matching problem. The USRD feature is integrated with the Markov random field labeling framework in which energy function is defined for registration. The energy function is then optimized by the α-expansion algorithm. The proposed method has been compared with five state-of-the-art registration approaches on both the simulated and real 3-D databases obtained from the BrainWeb and Internet Brain Segmentation Repository, respectively. Experimental results demonstrate that the proposed method can achieve high registration accuracy and reliable robustness behavior.

  2. Bivariate gamma distributions for image registration and change detection.

    PubMed

    Chatelain, Florent; Tourneret, Jean-Yves; Inglada, Jordi; Ferrari, André

    2007-07-01

    This paper evaluates the potential interest of using bivariate gamma distributions for image registration and change detection. The first part of this paper studies estimators for the parameters of bivariate gamma distributions based on the maximum likelihood principle and the method of moments. The performance of both methods are compared in terms of estimated mean square errors and theoretical asymptotic variances. The mutual information is a classical similarity measure which can be used for image registration or change detection. The second part of the paper studies some properties of the mutual information for bivariate Gamma distributions. Image registration and change detection techniques based on bivariate gamma distributions are finally investigated. Simulation results conducted on synthetic and real data are very encouraging. Bivariate gamma distributions are good candidates allowing us to develop new image registration algorithms and new change detectors.

  3. 3D-3D registration of partial capitate bones using spin-images

    NASA Astrophysics Data System (ADS)

    Breighner, Ryan; Holmes, David R.; Leng, Shuai; An, Kai-Nan; McCollough, Cynthia; Zhao, Kristin

    2013-03-01

    It is often necessary to register partial objects in medical imaging. Due to limited field of view (FOV), the entirety of an object cannot always be imaged. This study presents a novel application of an existing registration algorithm to this problem. The spin-image algorithm [1] creates pose-invariant representations of global shape with respect to individual mesh vertices. These `spin-images,' are then compared for two different poses of the same object to establish correspondences and subsequently determine relative orientation of the poses. In this study, the spin-image algorithm is applied to 4DCT-derived capitate bone surfaces to assess the relative accuracy of registration with various amounts of geometry excluded. The limited longitudinal coverage under the 4DCT technique (38.4mm, [2]), results in partial views of the capitate when imaging wrist motions. This study assesses the ability of the spin-image algorithm to register partial bone surfaces by artificially restricting the capitate geometry available for registration. Under IRB approval, standard static CT and 4DCT scans were obtained on a patient. The capitate was segmented from the static CT and one phase of 4DCT in which the whole bone was available. Spin-image registration was performed between the static and 4DCT. Distal portions of the 4DCT capitate (10-70%) were then progressively removed and registration was repeated. Registration accuracy was evaluated by angular errors and the percentage of sub-resolution fitting. It was determined that 60% of the distal capitate could be omitted without appreciable effect on registration accuracy using the spin-image algorithm (angular error < 1.5 degree, sub-resolution fitting < 98.4%).

  4. An adaptive patient specific deformable registration for breast images of positron emission tomography and magnetic resonance imaging using finite element approach

    NASA Astrophysics Data System (ADS)

    Xue, Cheng; Tang, Fuk-Hay

    2014-03-01

    A patient specific registration model based on finite element method was investigated in this study. Image registration of Positron Emission Tomography (PET) and Magnetic Resonance imaging (MRI) has been studied a lot. Surface-based registration is extensively applied in medical imaging. We develop and evaluate a registration method combine surface-based registration with biomechanical modeling. .Four sample cases of patients with PET and MRI breast scans performed within 30 days were collected from hospital. K-means clustering algorithm was used to segment images into two parts, which is fat tissue and neoplasm [2]. Instead of placing extrinsic landmarks on patients' body which may be invasive, we proposed a new boundary condition to simulate breast deformation during two screening. Then a three dimensional model with meshes was built. Material properties were assigned to this model according to previous studies. The whole registration was based on a biomechanical finite element model, which could simulate deformation of breast under pressure.

  5. Registration of Heat Capacity Mapping Mission day and night images

    NASA Technical Reports Server (NTRS)

    Watson, K.; Hummer-Miller, S.; Sawatzky, D. L. (Principal Investigator)

    1982-01-01

    Neither iterative registration, using drainage intersection maps for control, nor cross correlation techniques were satisfactory in registering day and night HCMM imagery. A procedure was developed which registers the image pairs by selecting control points and mapping the night thermal image to the daytime thermal and reflectance images using an affine transformation on a 1300 by 1100 pixel image. The resulting image registration is accurate to better than two pixels (RMS) and does not exhibit the significant misregistration that was noted in the temperature-difference and thermal-inertia products supplied by NASA. The affine transformation was determined using simple matrix arithmetic, a step that can be performed rapidly on a minicomputer.

  6. MR to CT Registration of Brains using Image Synthesis.

    PubMed

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L; Lee, Junghoon

    2014-03-21

    Computed tomography (CT) is the standard imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  7. MR to CT registration of brains using image synthesis

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-03-01

    Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  8. Infrared thermal facial image sequence registration analysis and verification

    NASA Astrophysics Data System (ADS)

    Chen, Chieh-Li; Jian, Bo-Lin

    2015-03-01

    To study the emotional responses of subjects to the International Affective Picture System (IAPS), infrared thermal facial image sequence is preprocessed for registration before further analysis such that the variance caused by minor and irregular subject movements is reduced. Without affecting the comfort level and inducing minimal harm, this study proposes an infrared thermal facial image sequence registration process that will reduce the deviations caused by the unconscious head shaking of the subjects. A fixed image for registration is produced through the localization of the centroid of the eye region as well as image translation and rotation processes. Thermal image sequencing will then be automatically registered using the two-stage genetic algorithm proposed. The deviation before and after image registration will be demonstrated by image quality indices. The results show that the infrared thermal image sequence registration process proposed in this study is effective in localizing facial images accurately, which will be beneficial to the correlation analysis of psychological information related to the facial area.

  9. Avoiding Stair-Step Artifacts in Image Registration for GOES-R Navigation and Registration Assessment

    NASA Technical Reports Server (NTRS)

    Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John

    2016-01-01

    In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.

  10. Deformable image registration between pathological images and MR image via an optical macro image.

    PubMed

    Ohnishi, Takashi; Nakamura, Yuka; Tanaka, Toru; Tanaka, Takuya; Hashimoto, Noriaki; Haneishi, Hideaki; Batchelor, Tracy T; Gerstner, Elizabeth R; Taylor, Jennie W; Snuderl, Matija; Yagi, Yukako

    2016-10-01

    Computed tomography (CT) and magnetic resonance (MR) imaging have been widely used for visualizing the inside of the human body. However, in many cases, pathological diagnosis is conducted through a biopsy or resection of an organ to evaluate the condition of tissues as definitive diagnosis. To provide more advanced information onto CT or MR image, it is necessary to reveal the relationship between tissue information and image signals. We propose a registration scheme for a set of PT images of divided specimens and a 3D-MR image by reference to an optical macro image (OM image) captured by an optical camera. We conducted a fundamental study using a resected human brain after the death of a brain cancer patient. We constructed two kinds of registration processes using the OM image as the base for both registrations to make conversion parameters between the PT and MR images. The aligned PT images had shapes similar to the OM image. On the other hand, the extracted cross-sectional MR image was similar to the OM image. From these resultant conversion parameters, the corresponding region on the PT image could be searched and displayed when an arbitrary pixel on the MR image was selected. The relationship between the PT and MR images of the whole brain can be analyzed using the proposed method. We confirmed that same regions between the PT and MR images could be searched and displayed using resultant information obtained by the proposed method. In terms of the accuracy of proposed method, the TREs were 0.56±0.39mm and 0.87±0.42mm. We can analyze the relationship between tissue information and MR signals using the proposed method.

  11. Deformable image registration between pathological images and MR image via an optical macro image

    PubMed Central

    Ohnishi, Takashi; Nakamura, Yuka; Tanaka, Toru; Tanaka, Takuya; Hashimoto, Noriaki; Haneishi, Hideaki; Batchelor, Tracy T.; Gerstner, Elizabeth R.; Taylor, Jennie W.; Snuderl, Matija; Yagi, Yukako

    2016-01-01

    Computed tomography (CT) and magnetic resonance (MR) imaging have been widely used for visualizing the inside of the human body. However, in many cases, pathological diagnosis is conducted through a biopsy or resection of an organ to evaluate the condition of tissues as definitive diagnosis. To provide more advanced information onto CT or MR image, it is necessary to reveal the relationship between tissue information and image signals. We propose a registration scheme for a set of PT images of divided specimens and a 3D-MR image by reference to an optical macro image (OM image) captured by an optical camera. We conducted a fundamental study using a resected human brain after the death of a brain cancer patient. We constructed two kinds of registration processes using the OM image as the base for both registrations to make conversion parameters between the PT and MR images. The aligned PT images had shapes similar to the OM image. On the other hand, the extracted cross-sectional MR image was similar to the OM image. From these resultant conversion parameters, the corresponding region on the PT image could be searched and displayed when an arbitrary pixel on the MR image was selected. The relationship between the PT and MR images of the whole brain can be analyzed using the proposed method. We confirmed that same regions between the PT and MR images could be searched and displayed using resultant information obtained by the proposed method. In terms of the accuracy of proposed method, the TREs were 0.56 ± 0.39 mm and 0.87 ± 0.42 mm. We can analyze the relationship between tissue information and MR signals using the proposed method. PMID:27613662

  12. Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information.

    PubMed

    Maes, F; Vandermeulen, D; Suetens, P

    1999-12-01

    Maximization of mutual information of voxel intensities has been demonstrated to be a very powerful criterion for three-dimensional medical image registration, allowing robust and accurate fully automated affine registration of multimodal images in a variety of applications, without the need for segmentation or other preprocessing of the images. In this paper, we investigate the performance of various optimization methods and multiresolution strategies for maximization of mutual information, aiming at increasing registration speed when matching large high-resolution images. We show that mutual information is a continuous function of the affine registration parameters when appropriate interpolation is used and we derive analytic expressions of its derivatives that allow numerically exact evaluation of its gradient. Various multiresolution gradient- and non-gradient-based optimization strategies, such as Powell, simplex, steepest-descent, conjugate-gradient, quasi-Newton and Levenberg-Marquardt methods, are evaluated for registration of computed tomography (CT) and magnetic resonance images of the brain. Speed-ups of a factor of 3 on average compared to Powell's method at full resolution are achieved with similar precision and without a loss of robustness with the simplex, conjugate-gradient and Levenberg-Marquardt method using a two-level multiresolution scheme. Large data sets such as 256(2) x 128 MR and 512(2) x 48 CT images can be registered with subvoxel precision in <5 min CPU time on current workstations.

  13. Symmetric Biomechanically Guided Prone-to-Supine Breast Image Registration.

    PubMed

    Eiben, Björn; Vavourakis, Vasileios; Hipwell, John H; Kabus, Sven; Buelow, Thomas; Lorenz, Cristian; Mertzanidou, Thomy; Reis, Sara; Williams, Norman R; Keshtgar, Mohammed; Hawkes, David J

    2016-01-01

    Prone-to-supine breast image registration has potential application in the fields of surgical and radiotherapy planning, image guided interventions, and multi-modal cancer diagnosis, staging, and therapy response prediction. However, breast image registration of three dimensional images acquired in different patient positions is a challenging problem, due to large deformations induced to the soft breast tissue caused by the change in gravity loading. We present a symmetric, biomechanical simulation based registration framework which aligns the images in a central, virtually unloaded configuration. The breast tissue is modelled as a neo-Hookean material and gravity is considered as the main source of deformation in the original images. In addition to gravity, our framework successively applies image derived forces directly into the unloading simulation in place of a subsequent image registration step. This results in a biomechanically constrained deformation. Using a finite difference scheme avoids an explicit meshing step and enables simulations to be performed directly in the image space. The explicit time integration scheme allows the motion at the interface between chest and breast to be constrained along the chest wall. The feasibility and accuracy of the approach presented here was assessed by measuring the target registration error (TRE) using a numerical phantom with known ground truth deformations, nine clinical prone MRI and supine CT image pairs, one clinical prone-supine CT image pair and four prone-supine MRI image pairs. The registration reduced the mean TRE for the numerical phantom experiment from initially 19.3 to 0.9 mm and the combined mean TRE for all fourteen clinical data sets from 69.7 to 5.6 mm.

  14. Practical pseudo-3D registration for large tomographic images

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Laperre, Kjell; Sasov, Alexander

    2014-09-01

    Image registration is a powerful tool in various tomographic applications. Our main focus is on microCT applications in which samples/animals can be scanned multiple times under different conditions or at different time points. For this purpose, a registration tool capable of handling fairly large volumes has been developed, using a novel pseudo-3D method to achieve fast and interactive registration with simultaneous 3D visualization. To reduce computation complexity in 3D registration, we decompose it into several 2D registrations, which are applied to the orthogonal views (transaxial, sagittal and coronal) sequentially and iteratively. After registration in each view, the next view is retrieved with the new transformation matrix for registration. This reduces the computation complexity significantly. For rigid transform, we only need to search for 3 parameters (2 shifts, 1 rotation) in each of the 3 orthogonal views instead of 6 (3 shifts, 3 rotations) for full 3D volume. In addition, the amount of voxels involved is also significantly reduced. For the proposed pseudo-3D method, image-based registration is employed, with Sum of Square Difference (SSD) as the similarity measure. The searching engine is Powell's conjugate direction method. In this paper, only rigid transform is used. However, it can be extended to affine transform by adding scaling and possibly shearing to the transform model. We have noticed that more information can be used in the 2D registration if Maximum Intensity Projections (MIP) or Parallel Projections (PP) is used instead of the orthogonal views. Also, other similarity measures, such as covariance or mutual information, can be easily incorporated. The initial evaluation on microCT data shows very promising results. Two application examples are shown: dental samples before and after treatment and structural changes in materials before and after compression. Evaluation on registration accuracy between pseudo-3D method and true 3D method has

  15. Semi-automatic elastic registration on thyroid gland ultrasonic image

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Zhong, Yue; Luo, Yan; Li, Deyu; Lin, Jiangli; Wang, Tianfu

    2007-12-01

    Knowledge of in vivo thyroid volume has both diagnostic and therapeutic importance and could lead to a more precise quantification of absolute activity contained in the thyroid gland. However, the shape of thyroid gland is irregular and difficult to calculate. For precise estimation of thyroid volume by ultrasound imaging, this paper presents a novel semiautomatic minutiae matching method in thyroid gland ultrasonic image by means of thin-plate spline model. Registration consists of four basic steps: feature detection, feature matching, mapping function design, and image transformation and resampling. Due to the connectivity of thyroid gland boundary, we choose active contour model as feature detector, and radials from centric points for feature matching. The proposed approach has been used in thyroid gland ultrasound images registration. Registration results of 18 healthy adults' thyroid gland ultrasound images show this method consumes less time and energy with good objectivity than algorithms selecting landmarks manually.

  16. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging.

  17. Registration and 3D visualization of large microscopy images

    NASA Astrophysics Data System (ADS)

    Mosaliganti, Kishore; Pan, Tony; Sharp, Richard; Ridgway, Randall; Iyengar, Srivathsan; Gulacy, Alexandra; Wenzel, Pamela; de Bruin, Alain; Machiraju, Raghu; Huang, Kun; Leone, Gustavo; Saltz, Joel

    2006-03-01

    Inactivation of the retinoblastoma gene in mouse embryos causes tissue infiltrations into critical sections of the placenta, which has been shown to affect fetal survivability. Our collaborators in cancer genetics are extremely interested in examining the three dimensional nature of these infiltrations given a stack of two dimensional light microscopy images. Three sets of wildtype and mutant placentas was sectioned serially and digitized using a commercial light microscopy scanner. Each individual placenta dataset consisted of approximately 1000 images totaling 700 GB in size, which were registered into a volumetric dataset using National Library of Medicine's (NIH/NLM) Insight Segmentation and Registration Toolkit (ITK). This paper describes our method for image registration to aid in volume visualization of tissue level intermixing for both wildtype and Rb - specimens. The registration process faces many challenges arising from the large image sizes, damages during sectioning, staining gradients both within and across sections, and background noise. These issues limit the direct application of standard registration techniques due to frequent convergence to local solutions. In this work, we develop a mixture of automated and semi-automated enhancements with ground-truth validation for the mutual information-based registration algorithm. Our final volume renderings clearly show tissue intermixing differences between both wildtype and Rb - specimens which are not obvious prior to registration.

  18. Discontinuity Preserving Image Registration through Motion Segmentation: A Primal-Dual Approach.

    PubMed

    Kiriyanthan, Silja; Fundana, Ketut; Majeed, Tahir; Cattin, Philippe C

    2016-01-01

    Image registration is a powerful tool in medical image analysis and facilitates the clinical routine in several aspects. There are many well established elastic registration methods, but none of them can so far preserve discontinuities in the displacement field. These discontinuities appear in particular at organ boundaries during the breathing induced organ motion. In this paper, we exploit the fact that motion segmentation could play a guiding role during discontinuity preserving registration. The motion segmentation is embedded in a continuous cut framework guaranteeing convexity for motion segmentation. Furthermore we show that a primal-dual method can be used to estimate a solution to this challenging variational problem. Experimental results are presented for MR images with apparent breathing induced sliding motion of the liver along the abdominal wall.

  19. Discontinuity Preserving Image Registration through Motion Segmentation: A Primal-Dual Approach

    PubMed Central

    Kiriyanthan, Silja; Majeed, Tahir

    2016-01-01

    Image registration is a powerful tool in medical image analysis and facilitates the clinical routine in several aspects. There are many well established elastic registration methods, but none of them can so far preserve discontinuities in the displacement field. These discontinuities appear in particular at organ boundaries during the breathing induced organ motion. In this paper, we exploit the fact that motion segmentation could play a guiding role during discontinuity preserving registration. The motion segmentation is embedded in a continuous cut framework guaranteeing convexity for motion segmentation. Furthermore we show that a primal-dual method can be used to estimate a solution to this challenging variational problem. Experimental results are presented for MR images with apparent breathing induced sliding motion of the liver along the abdominal wall. PMID:27721897

  20. GPU-accelerated Block Matching Algorithm for Deformable Registration of Lung CT Images

    PubMed Central

    Li, Min; Xiang, Zhikang; Xiao, Liang; Castillo, Edward; Castillo, Richard; Guerrero, Thomas

    2016-01-01

    Deformable registration (DR) is a key technology in the medical field. However, many of the existing DR methods are time-consuming and the registration accuracy needs to be improved, which prevents their clinical applications. In this study, we propose a parallel block matching algorithm for lung CT image registration, in which the sum of squared difference metric is modified as the cost function and the moving least squares approach is used to generate the full displacement field. The algorithm is implemented on Graphic Processing Unit (GPU) with the Compute Unified Device Architecture (CUDA). Results show that the proposed parallel block matching method achieves a fast runtime while maintaining an average registration error (standard deviation) of 1.08 (0.69) mm. PMID:28042622

  1. GPU-accelerated Block Matching Algorithm for Deformable Registration of Lung CT Images.

    PubMed

    Li, Min; Xiang, Zhikang; Xiao, Liang; Castillo, Edward; Castillo, Richard; Guerrero, Thomas

    2015-12-01

    Deformable registration (DR) is a key technology in the medical field. However, many of the existing DR methods are time-consuming and the registration accuracy needs to be improved, which prevents their clinical applications. In this study, we propose a parallel block matching algorithm for lung CT image registration, in which the sum of squared difference metric is modified as the cost function and the moving least squares approach is used to generate the full displacement field. The algorithm is implemented on Graphic Processing Unit (GPU) with the Compute Unified Device Architecture (CUDA). Results show that the proposed parallel block matching method achieves a fast runtime while maintaining an average registration error (standard deviation) of 1.08 (0.69) mm.

  2. Automated rejection of contaminated surface measurements for improved surface registration in image guided neurosurgery.

    PubMed

    Bucholz, R; Macneil, W; Fewings, P; Ravindra, A; McDurmont, L; Baumann, C

    2000-01-01

    Most image guided Neurosurgery employs adhesively mounted external fiducials for registration of medical images to the surgical workspace. Due to high logistical costs associated with these artificial landmarks, we strive to eliminate the need for these markers. At our institution, we developed a handheld laser stripe triangulation device to capture the surface contours of the patient's head while oriented for surgery. Anatomical surface registration algorithms rely on the assumption that the patient's anatomy bears the same geometry as the 3D model of the patient constructed from the imaging modality employed. During the time interval from which the patient is imaged and placed in the Mayfield head clamp in the operating room, the skin of the head bulges at the pinsite and the skull fixation equipment itself optically interferes with the image capture laser. We have developed software to reject points belonging to objects of known geometry while calculating the registration. During the course of development of the laser scanning unit, we have acquired surface contours of 13 patients and 2 cadavers. Initial analysis revealed that this automated rejection of points improved the registrations in all cases, but the accuracy of the fiducial method was not surpassed. Only points belonging to the offending instrument are removed. Skin bulges caused by the clamps and instruments remain in the data. We anticipate that careful removal of the points in these skin bulges will yield registrations that at least match the accuracy of the fiducial method.

  3. Diffeomorphic Registration of Images with Variable Contrast Enhancement

    PubMed Central

    Janssens, Guillaume; Jacques, Laurent; Orban de Xivry, Jonathan; Geets, Xavier; Macq, Benoit

    2011-01-01

    Nonrigid image registration is widely used to estimate tissue deformations in highly deformable anatomies. Among the existing methods, nonparametric registration algorithms such as optical flow, or Demons, usually have the advantage of being fast and easy to use. Recently, a diffeomorphic version of the Demons algorithm was proposed. This provides the advantage of producing invertible displacement fields, which is a necessary condition for these to be physical. However, such methods are based on the matching of intensities and are not suitable for registering images with different contrast enhancement. In such cases, a registration method based on the local phase like the Morphons has to be used. In this paper, a diffeomorphic version of the Morphons registration method is proposed and compared to conventional Morphons, Demons, and diffeomorphic Demons. The method is validated in the context of radiotherapy for lung cancer patients on several 4D respiratory-correlated CT scans of the thorax with and without variable contrast enhancement. PMID:21197460

  4. Deep Learning in Medical Image Analysis.

    PubMed

    Shen, Dinggang; Wu, Guorong; Suk, Heung-Il

    2017-03-09

    This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement. Expected final online publication date for the Annual Review of Biomedical Engineering Volume 19 is June 4, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  5. Image panoramic mosaicing with global and local registration

    NASA Astrophysics Data System (ADS)

    Li, Qi; Ji, Zhen; Zhang, Jihong

    2001-09-01

    This paper presents techniques for constructing full view panoramic mosaics from sequences of images. The goal of this work is to remove too many limitations for pure panning motion. The best reference block is critical for the block- matching method for improving the robustness and performance. It is automatically selected in the high- frequency image, which always contains the plenty visible features. In order to reduce accumulated registration errors, the global registration using the phase-correlation matching method with rotation adjustment is applied to the whole sequence of images, which results in an optimal image mosaic with resolving translational or rotational motion. The local registration using the Levenberg-Marquardt iterative non-linear minimization algorithm is applied to compensate for small amounts of motion parallax introduced by translations of the camera and other unmodeled distortions, when minimize the discrepancy after applying the global registration. The accumulated misregistration errors may cause a visible gap between the two images. A smoothing filter is introduced, derived from Marr's computer vision theory for removing the visible artifact. By combining both global and local registration, together with artifact smoothing, the quality of the image mosaics is significantly improved, thereby enabling the creation of full view panoramic mosaics with hand-held cameras.

  6. Overview of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Hendee, William

    2008-03-01

    The use of radiation probes to image tissues in the human body has progressed through an extraordinary evolution in the past three decades. Beginning with transmission computed tomography in the 1970s, this evolution has included real-time ultrasound, emission computed tomography, magnetic resonance imaging and digital radiography. These advances have recently yielded major improvements in imaging such as multi-detector transmission computed tomography, functional magnetic resonance imaging, dual imaging modalities built on a common platform, and image-guided intervention. These improvements and others have accelerated the usefulness of imaging methods in the early detection, definitive diagnosis, and effective intervention of a wide spectrum of diseases and disabilities. They also have led to increases in radiation doses to patients and the population, an issue of major concern to physicists and physicians. At this time there are four major frontiers for research in medical imaging: (1) molecular imaging; (2) functional imaging; (3) multi-modality imaging; and (4) information management. These research frontiers, together with the use of sophisticated imaging technologies in clinical practice, offer rich professional opportunities for physicists.

  7. Biomechanical based image registration for head and neck radiation treatment

    NASA Astrophysics Data System (ADS)

    Al-Mayah, Adil; Moseley, Joanne; Hunter, Shannon; Velec, Mike; Chau, Lily; Breen, Stephen; Brock, Kristy

    2010-02-01

    Deformable image registration of four head and neck cancer patients was conducted using biomechanical based model. Patient specific 3D finite element models have been developed using CT and cone beam CT image data of the planning and a radiation treatment session. The model consists of seven vertebrae (C1 to C7), mandible, larynx, left and right parotid glands, tumor and body. Different combinations of boundary conditions are applied in the model in order to find the configuration with a minimum registration error. Each vertebra in the planning session is individually aligned with its correspondence in the treatment session. Rigid alignment is used for each individual vertebra and to the mandible since deformation is not expected in the bones. In addition, the effect of morphological differences in external body between the two image sessions is investigated. The accuracy of the registration is evaluated using the tumor, and left and right parotid glands by comparing the calculated Dice similarity index of these structures following deformation in relation to their true surface defined in the image of the second session. The registration improves when the vertebrae and mandible are aligned in the two sessions with the highest Dice index of 0.86+/-0.08, 0.84+/-0.11, and 0.89+/-0.04 for the tumor, left and right parotid glands, respectively. The accuracy of the center of mass location of tumor and parotid glands is also improved by deformable image registration where the error in the tumor and parotid glands decreases from 4.0+/-1.1, 3.4+/-1.5, and 3.8+/-0.9 mm using rigid registration to 2.3+/-1.0, 2.5+/-0.8 and 2.0+/-0.9 mm in the deformable image registration when alignment of vertebrae and mandible is conducted in addition to the surface projection of the body.

  8. SAR image registration based on SIFT and MSA

    NASA Astrophysics Data System (ADS)

    Yi, Zhaoxiang; Zhang, Xiongmei; Mu, Xiaodong; Wang, Kui; Song, Jianshe

    2014-02-01

    Referring to the problem of SAR image registration, an image registration method based on Scale Invariant Feature Transform (SIFT) and Multi-Scale Autoconvolution (MSA) is proposed. Based on the extraction of SIFT descriptors and the MSA affine invariant moments of the region around the keypoints, the feature fusion method based on canonical correlation analysis (CCA) is employed to fuse them together to be a new descriptor. After the control points are rough matched, the distance and gray correlation around the rough matched points are combined to build the similarity matrix and the singular value decomposition (SVD) method is employed to realize precise image registration. Finally, the affine transformation parameters are obtained and the images are registered. Experimental results show that the proposed method outperforms the SIFT method and achieves high accuracy in sub-pixel level.

  9. Registration of multitemporal aerial optical images using line features

    NASA Astrophysics Data System (ADS)

    Zhao, Chenyang; Goshtasby, A. Ardeshir

    2016-07-01

    Registration of multitemporal images is generally considered difficult because scene changes can occur between the times the images are obtained. Since the changes are mostly radiometric in nature, features are needed that are insensitive to radiometric differences between the images. Lines are geometric features that represent straight edges of rigid man-made structures. Because such structures rarely change over time, lines represent stable geometric features that can be used to register multitemporal remote sensing images. An algorithm to establish correspondence between lines in two images of a planar scene is introduced and formulas to relate the parameters of a homography transformation to the parameters of corresponding lines in images are derived. Results of the proposed image registration on various multitemporal images are presented and discussed.

  10. Longitudinal image registration with non-uniform appearance change.

    PubMed

    Csapo, Istvan; Davis, Brad; Shi, Yundi; Sanchez, Mar; Styner, Martin; Niethammer, Marc

    2012-01-01

    Longitudinal imaging studies are frequently used to investigate temporal changes in brain morphology. Image intensity may also change over time, for example when studying brain maturation. However, such intensity changes are not accounted for in image similarity measures for standard image registration methods. Hence, (i) local similarity measures, (ii) methods estimating intensity transformations between images, and (iii) metamorphosis approaches have been developed to either achieve robustness with respect to intensity changes or to simultaneously capture spatial and intensity changes. For these methods, longitudinal intensity changes are not explicitly modeled and images are treated as independent static samples. Here, we propose a model-based image similarity measure for longitudinal image registration in the presence of spatially non-uniform intensity change.

  11. Registration of 2D to 3D joint images using phase-based mutual information

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

    2007-03-01

    Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

  12. Deformable image registration by combining uncertainty estimates from supervoxel belief propagation.

    PubMed

    Heinrich, Mattias P; Simpson, Ivor J A; Papież, BartŁomiej W; Brady, Sir Michael; Schnabel, Julia A

    2016-01-01

    Discrete optimisation strategies have a number of advantages over their continuous counterparts for deformable registration of medical images. For example: it is not necessary to compute derivatives of the similarity term; dense sampling of the search space reduces the risk of becoming trapped in local optima; and (in principle) an optimum can be found without resorting to iterative coarse-to-fine warping strategies. However, the large complexity of high-dimensional medical data renders a direct voxel-wise estimation of deformation vectors impractical. For this reason, previous work on medical image registration using graphical models has largely relied on using a parameterised deformation model and on the use of iterative coarse-to-fine optimisation schemes. In this paper, we propose an approach that enables accurate voxel-wise deformable registration of high-resolution 3D images without the need for intermediate image warping or a multi-resolution scheme. This is achieved by representing the image domain as multiple comprehensive supervoxel layers and making use of the full marginal distribution of all probable displacement vectors after inferring regularity of the deformations using belief propagation. The optimisation acts on the coarse scale representation of supervoxels, which provides sufficient spatial context and is robust to noise in low contrast areas. Minimum spanning trees, which connect neighbouring supervoxels, are employed to model pair-wise deformation dependencies. The optimal displacement for each voxel is calculated by considering the probabilities for all displacements over all overlapping supervoxel graphs and subsequently seeking the mode of this distribution. We demonstrate the applicability of this concept for two challenging applications: first, for intra-patient motion estimation in lung CT scans; and second, for atlas-based segmentation propagation of MRI brain scans. For lung registration, the voxel-wise mode of displacements is found

  13. Multimodal registration of remotely sensed images based on Jeffrey's divergence

    NASA Astrophysics Data System (ADS)

    Xu, Xiaocong; Li, Xia; Liu, Xiaoping; Shen, Huanfeng; Shi, Qian

    2016-12-01

    Entropy-based measures (e.g., mutual information, also known as Kullback-Leiber divergence), which quantify the similarity between two signals, are widely used as similarity measures for image registration. Although they are proven superior to many classical statistical measures, entropy-based measures, such as mutual information, may fail to yield the optimum registration if the multimodal image pair has insufficient scene overlap region. To overcome this challenge, we proposed using the symmetric form of Kullback-Leiber divergence, namely Jeffrey's divergence, as the similarity measure in practical multimodal image registration tasks. Mathematical analysis was performed to investigate the causes accounting for the limitation of mutual information when dealing with insufficient scene overlap image pairs. Experimental registrations of SPOT image, Landsat TM image, ALOS PalSAR image, and DEM data were carried out to compare the performance of Jeffrey's divergence and mutual information. Results indicate that Jeffrey's divergence is capable of providing larger feasible search space, which is favorable for exploring optimum transformation parameters in a larger range. This superiority of Jeffrey's divergence was further confirmed by a series of paradigms. Thus, the proposed model is more applicable for registering image pairs that are greatly misaligned or have an insufficient scene overlap region.

  14. Automatic image registration performance for two different CBCT systems; variation with imaging dose

    NASA Astrophysics Data System (ADS)

    Barber, J.; Sykes, J. R.; Holloway, L.; Thwaites, D. I.

    2014-03-01

    The performance of an automatic image registration algorithm was compared on image sets collected with two commercial CBCT systems, and the relationship with imaging dose was explored. CBCT images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings. Each CBCT image was registered 100 times, with random initial offsets introduced. Image registration was performed using the grey value correlation ratio algorithm in the Elekta XVI software, to a mask of the prostate volume with 5 mm expansion. Residual registration errors were calculated after correcting for the initial introduced phantom set-up error. Registration performance with the OBI images was similar to that of XVI. There was a clear dependence on imaging dose for the XVI images with residual errors increasing below 4mGy. It was not possible to acquire images with doses lower than ~5mGy with the OBI system and no evidence of reduced performance was observed at this dose. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 9% of registrations except for the lowest dose XVI scan (31%). The uncertainty in automatic image registration with both OBI and XVI images was found to be adequate for clinical use within a normal range of acquisition settings.

  15. PCA-based groupwise image registration for quantitative MRI.

    PubMed

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  16. Mobile medical image retrieval

    NASA Astrophysics Data System (ADS)

    Duc, Samuel; Depeursinge, Adrien; Eggel, Ivan; Müller, Henning

    2011-03-01

    Images are an integral part of medical practice for diagnosis, treatment planning and teaching. Image retrieval has gained in importance mainly as a research domain over the past 20 years. Both textual and visual retrieval of images are essential. In the process of mobile devices becoming reliable and having a functionality equaling that of formerly desktop clients, mobile computing has gained ground and many applications have been explored. This creates a new field of mobile information search & access and in this context images can play an important role as they often allow understanding complex scenarios much quicker and easier than free text. Mobile information retrieval in general has skyrocketed over the past year with many new applications and tools being developed and all sorts of interfaces being adapted to mobile clients. This article describes constraints of an information retrieval system including visual and textual information retrieval from the medical literature of BioMedCentral and of the RSNA journals Radiology and Radiographics. Solutions for mobile data access with an example on an iPhone in a web-based environment are presented as iPhones are frequently used and the operating system is bound to become the most frequent smartphone operating system in 2011. A web-based scenario was chosen to allow for a use by other smart phone platforms such as Android as well. Constraints of small screens and navigation with touch screens are taken into account in the development of the application. A hybrid choice had to be taken to allow for taking pictures with the cell phone camera and upload them for visual similarity search as most producers of smart phones block this functionality to web applications. Mobile information access and in particular access to images can be surprisingly efficient and effective on smaller screens. Images can be read on screen much faster and relevance of documents can be identified quickly through the use of images contained in

  17. Manifold learning based registration algorithms applied to multimodal images.

    PubMed

    Azampour, Mohammad Farid; Ghaffari, Aboozar; Hamidinekoo, Azam; Fatemizadeh, Emad

    2014-01-01

    Manifold learning algorithms are proposed to be used in image processing based on their ability in preserving data structures while reducing the dimension and the exposure of data structure in lower dimension. Multi-modal images have the same structure and can be registered together as monomodal images if only structural information is shown. As a result, manifold learning is able to transform multi-modal images to mono-modal ones and subsequently do the registration using mono-modal methods. Based on this application, in this paper novel similarity measures are proposed for multi-modal images in which Laplacian eigenmaps are employed as manifold learning algorithm and are tested against rigid registration of PET/MR images. Results show the feasibility of using manifold learning as a way of calculating the similarity between multimodal images.

  18. Simultaneous registration of multiple images: similarity metrics and efficient optimization.

    PubMed

    Wachinger, Christian; Navab, Nassir

    2013-05-01

    We address the alignment of a group of images with simultaneous registration. Therefore, we provide further insights into a recently introduced framework for multivariate similarity measures, referred to as accumulated pair-wise estimates (APE), and derive efficient optimization methods for it. More specifically, we show a strict mathematical deduction of APE from a maximum-likelihood framework and establish a connection to the congealing framework. This is only possible after an extension of the congealing framework with neighborhood information. Moreover, we address the increased computational complexity of simultaneous registration by deriving efficient gradient-based optimization strategies for APE: Gauss-Newton and the efficient second-order minimization (ESM). We present next to SSD the usage of intrinsically nonsquared similarity measures in this least squares optimization framework. The fundamental assumption of ESM, the approximation of the perfectly aligned moving image through the fixed image, limits its application to monomodal registration. We therefore incorporate recently proposed structural representations of images which allow us to perform multimodal registration with ESM. Finally, we evaluate the performance of the optimization strategies with respect to the similarity measures, leading to very good results for ESM. The extension to multimodal registration is in this context very interesting because it offers further possibilities for evaluations, due to publicly available datasets with ground-truth alignment.

  19. Stochastic optimization with randomized smoothing for image registration.

    PubMed

    Sun, Wei; Poot, Dirk H J; Smal, Ihor; Yang, Xuan; Niessen, Wiro J; Klein, Stefan

    2017-01-01

    Image registration is typically formulated as an optimization process, which aims to find the optimal transformation parameters of a given transformation model by minimizing a cost function. Local minima may exist in the optimization landscape, which could hamper the optimization process. To eliminate local minima, smoothing the cost function would be desirable. In this paper, we investigate the use of a randomized smoothing (RS) technique for stochastic gradient descent (SGD) optimization, to effectively smooth the cost function. In this approach, Gaussian noise is added to the transformation parameters prior to computing the cost function gradient in each iteration of the SGD optimizer. The approach is suitable for both rigid and nonrigid registrations. Experiments on synthetic images, cell images, public CT lung data, and public MR brain data demonstrate the effectiveness of the novel RS technique in terms of registration accuracy and robustness.

  20. Multi-Image Registration for an Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2002-01-01

    An Enhanced Vision System (EVS) utilizing multi-sensor image fusion is currently under development at the NASA Langley Research Center. The EVS will provide enhanced images of the flight environment to assist pilots in poor visibility conditions. Multi-spectral images obtained from a short wave infrared (SWIR), a long wave infrared (LWIR), and a color visible band CCD camera, are enhanced and fused using the Retinex algorithm. The images from the different sensors do not have a uniform data structure: the three sensors not only operate at different wavelengths, but they also have different spatial resolutions, optical fields of view (FOV), and bore-sighting inaccuracies. Thus, in order to perform image fusion, the images must first be co-registered. Image registration is the task of aligning images taken at different times, from different sensors, or from different viewpoints, so that all corresponding points in the images match. In this paper, we present two methods for registering multiple multi-spectral images. The first method performs registration using sensor specifications to match the FOVs and resolutions directly through image resampling. In the second method, registration is obtained through geometric correction based on a spatial transformation defined by user selected control points and regression analysis.

  1. Deformable image registration for tissues with large displacements.

    PubMed

    Huang, Xishi; Ren, Jing; Abdalbari, Anwar; Green, Mark

    2017-01-01

    Image registration for internal organs and soft tissues is considered extremely challenging due to organ shifts and tissue deformation caused by patients' movements such as respiration and repositioning. In our previous work, we proposed a fast registration method for deformable tissues with small rotations. We extend our method to deformable registration of soft tissues with large displacements. We analyzed the deformation field of the liver by decomposing the deformation into shift, rotation, and pure deformation components and concluded that in many clinical cases, the liver deformation contains large rotations and small deformations. This analysis justified the use of linear elastic theory in our image registration method. We also proposed a region-based neuro-fuzzy transformation model to seamlessly stitch together local affine and local rigid models in different regions. We have performed the experiments on a liver MRI image set and showed the effectiveness of the proposed registration method. We have also compared the performance of the proposed method with the previous method on tissues with large rotations and showed that the proposed method outperformed the previous method when dealing with the combination of pure deformation and large rotations. Validation results show that we can achieve a target registration error of [Formula: see text] and an average centerline distance error of [Formula: see text]. The proposed technique has the potential to significantly improve registration capabilities and the quality of intraoperative image guidance. To the best of our knowledge, this is the first time that the complex displacement of the liver is explicitly separated into local pure deformation and rigid motion.

  2. Sequential Registration-Based Segmentation of the Prostate Gland in MR Image Volumes.

    PubMed

    Khalvati, Farzad; Salmanpour, Aryan; Rahnamayan, Shahryar; Haider, Masoom A; Tizhoosh, H R

    2016-04-01

    Accurate and fast segmentation and volume estimation of the prostate gland in magnetic resonance (MR) images are necessary steps in the diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semi-automated segmentation of individual slices in T2-weighted MR image sequences. The proposed sequential registration-based segmentation (SRS) algorithm, which was inspired by the clinical workflow during medical image contouring, relies on inter-slice image registration and user interaction/correction to segment the prostate gland without the use of an anatomical atlas. It automatically generates contours for each slice using a registration algorithm, provided that the user edits and approves the marking in some previous slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid). Five radiation oncologists participated in the study where they contoured the prostate MR (T2-weighted) images of 15 patients both manually and using the SRS algorithm. Compared to the manual segmentation, on average, the SRS algorithm reduced the contouring time by 62% (a speedup factor of 2.64×) while maintaining the segmentation accuracy at the same level as the intra-user agreement level (i.e., Dice similarity coefficient of 91 versus 90%). The proposed algorithm exploits the inter-slice similarity of volumetric MR image series to achieve highly accurate results while significantly reducing the contouring time.

  3. Comparison of simultaneous and sequential two-view registration for 3D/2D registration of vascular images.

    PubMed

    Pathak, Chetna; Van Horn, Mark; Weeks, Susan; Bullitt, Elizabeth

    2005-01-01

    Accurate 3D/2D vessel registration is complicated by issues of image quality, occlusion, and other problems. This study performs a quantitative comparison of 3D/2D vessel registration in which vessels segmented from preoperative CT or MR are registered with biplane x-ray angiograms by either a) simultaneous two-view registration with advance calculation of the relative pose of the two views, or b) sequential registration with each view. We conclude on the basis of phantom studies that, even in the absence of image errors, simultaneous two-view registration is more accurate than sequential registration. In more complex settings, including clinical conditions, the relative accuracy of simultaneous two-view registration is even greater.

  4. Cross Correlation versus Normalized Mutual Information on Image Registration

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Tilton, James C.; Lin, Guoqing

    2016-01-01

    This is the first study to quantitatively assess and compare cross correlation and normalized mutual information methods used to register images in subpixel scale. The study shows that the normalized mutual information method is less sensitive to unaligned edges due to the spectral response differences than is cross correlation. This characteristic makes the normalized image resolution a better candidate for band to band registration. Improved band-to-band registration in the data from satellite-borne instruments will result in improved retrievals of key science measurements such as cloud properties, vegetation, snow and fire.

  5. Analysis of deformable image registration accuracy using computational modeling

    SciTech Connect

    Zhong Hualiang; Kim, Jinkoo; Chetty, Indrin J.

    2010-03-15

    Computer aided modeling of anatomic deformation, allowing various techniques and protocols in radiation therapy to be systematically verified and studied, has become increasingly attractive. In this study the potential issues in deformable image registration (DIR) were analyzed based on two numerical phantoms: One, a synthesized, low intensity gradient prostate image, and the other a lung patient's CT image data set. Each phantom was modeled with region-specific material parameters with its deformation solved using a finite element method. The resultant displacements were used to construct a benchmark to quantify the displacement errors of the Demons and B-Spline-based registrations. The results show that the accuracy of these registration algorithms depends on the chosen parameters, the selection of which is closely associated with the intensity gradients of the underlying images. For the Demons algorithm, both single resolution (SR) and multiresolution (MR) registrations required approximately 300 iterations to reach an accuracy of 1.4 mm mean error in the lung patient's CT image (and 0.7 mm mean error averaged in the lung only). For the low gradient prostate phantom, these algorithms (both SR and MR) required at least 1600 iterations to reduce their mean errors to 2 mm. For the B-Spline algorithms, best performance (mean errors of 1.9 mm for SR and 1.6 mm for MR, respectively) on the low gradient prostate was achieved using five grid nodes in each direction. Adding more grid nodes resulted in larger errors. For the lung patient's CT data set, the B-Spline registrations required ten grid nodes in each direction for highest accuracy (1.4 mm for SR and 1.5 mm for MR). The numbers of iterations or grid nodes required for optimal registrations depended on the intensity gradients of the underlying images. In summary, the performance of the Demons and B-Spline registrations have been quantitatively evaluated using numerical phantoms. The results show that parameter

  6. Towards local estimation of emphysema progression using image registration

    NASA Astrophysics Data System (ADS)

    Staring, M.; Bakker, M. E.; Shamonin, D. P.; Stolk, J.; Reiber, J. H. C.; Stoel, B. C.

    2009-02-01

    Progression measurement of emphysema is required to evaluate the health condition of a patient and the effect of drugs. To locally estimate progression we use image registration, which allows for volume correction using the determinant of the Jacobian of the transformation. We introduce an adaptation of the so-called sponge model that circumvents its constant-mass assumption. Preliminary results from CT scans of a lung phantom and from CT data sets of three patients suggest that image registration may be a suitable method to locally estimate emphysema progression.

  7. Scope and applications of translation invariant wavelets to image registration

    NASA Technical Reports Server (NTRS)

    Chettri, Samir; LeMoigne, Jacqueline; Campbell, William

    1997-01-01

    The first part of this article introduces the notion of translation invariance in wavelets and discusses several wavelets that have this property. The second part discusses the possible applications of such wavelets to image registration. In the case of registration of affinely transformed images, we would conclude that the notion of translation invariance is not really necessary. What is needed is affine invariance and one way to do this is via the method of moment invariants. Wavelets or, in general, pyramid processing can then be combined with the method of moment invariants to reduce the computational load.

  8. Medical imaging systems

    SciTech Connect

    Frangioni, John V

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  9. Vascular image registration techniques: A living review.

    PubMed

    Matl, Stefan; Brosig, Richard; Baust, Maximilian; Navab, Nassir; Demirci, Stefanie

    2017-01-01

    Registration of vascular structures is crucial for preoperative planning, intraoperative navigation, and follow-up assessment. Typical applications include, but are not limited to, Trans-catheter Aortic Valve Implantation and monitoring of tumor vasculature or aneurysm growth. In order to achieve the aforementioned goals, a large number of various registration algorithms has been developed. With this review paper we provide a comprehensive overview over the plethora of existing techniques with a particular focus on the suitable classification criteria such as the involved modalities of the employed optimization methods. However, we wish to go beyond a static literature review which is naturally doomed to be outdated after a certain period of time due to the research progress. We augment this review paper with an extendable and interactive database in order to obtain a living review whose currency goes beyond the one of a printed paper. All papers in this database are labeled with one or multiple tags according to 13 carefully defined categories. The classification of all entries can then be visualized as one or multiple trees which are presented via a web-based interactive app (http://livingreview.in.tum.de) allowing the user to choose a unique perspective for literature review. In addition, the user can search the underlying database for specific tags or publications related to vessel registration. Many applications of this framework are conceivable, including the use for getting a general overview on the topic or the utilization by physicians for deciding about the best-suited algorithm for a specific application.

  10. Viewpoints on Medical Image Processing: From Science to Application

    PubMed Central

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  11. Agile multi-scale decompositions for automatic image registration

    NASA Astrophysics Data System (ADS)

    Murphy, James M.; Leija, Omar Navarro; Le Moigne, Jacqueline

    2016-05-01

    In recent works, the first and third authors developed an automatic image registration algorithm based on a multiscale hybrid image decomposition with anisotropic shearlets and isotropic wavelets. This prototype showed strong performance, improving robustness over registration with wavelets alone. However, this method imposed a strict hierarchy on the order in which shearlet and wavelet features were used in the registration process, and also involved an unintegrated mixture of MATLAB and C code. In this paper, we introduce a more agile model for generating features, in which a flexible and user-guided mix of shearlet and wavelet features are computed. Compared to the previous prototype, this method introduces a flexibility to the order in which shearlet and wavelet features are used in the registration process. Moreover, the present algorithm is now fully coded in C, making it more efficient and portable than the mixed MATLAB and C prototype. We demonstrate the versatility and computational efficiency of this approach by performing registration experiments with the fully-integrated C algorithm. In particular, meaningful timing studies can now be performed, to give a concrete analysis of the computational costs of the flexible feature extraction. Examples of synthetically warped and real multi-modal images are analyzed.

  12. High Speed Method for in Situ Multispectral Image Registration

    SciTech Connect

    Perrine, Kenneth A.; Lamarche, Brian L.; Hopkins, Derek F.; Budge, Scott E.; Opresko, Lee; Wiley, H. S.; Sowa, Marianne B.

    2007-01-29

    Multispectral confocal spinning disk microscopy provides a high resolution method for real-time live cell imaging. However, optical distortions and the physical misalignments introduced by the use of multiple acquisition cameras can obscure spatial information contained in the captured images. In this manuscript, we describe a multispectral method for real-time image registration whereby the image from one camera is warped onto the image from a second camera via a polynomial correction. This method provides a real-time pixel-for-pixel match between images obtained over physically distinct optical paths. Using an in situ calibration method, the polynomial is characterized by a set of coefficients using a least squares solver. Error analysis demonstrates optimal performance results from the use of cubic polynomials. High-speed evaluation of the warp is then performed through forward differencing with fixed-point data types. Image reconstruction errors are reduced through bilinear interpolation. The registration techniques described here allow for successful registration of multispectral images in real-time (exceeding 15 frame/sec) and have a broad applicability to imaging methods requiring pixel matching over multiple data channels.

  13. Reducing uncertainties in volumetric image based deformable organ registration.

    PubMed

    Liang, J; Yan, D

    2003-08-01

    Applying volumetric image feedback in radiotherapy requires image based deformable organ registration. The foundation of this registration is the ability of tracking subvolume displacement in organs of interest. Subvolume displacement can be calculated by applying biomechanics model and the finite element method to human organs manifested on the multiple volumetric images. The calculation accuracy, however, is highly dependent on the determination of the corresponding organ boundary points. Lacking sufficient information for such determination, uncertainties are inevitable-thus diminishing the registration accuracy. In this paper, a method of consuming energy minimization was developed to reduce these uncertainties. Starting from an initial selection of organ boundary point correspondence on volumetric image sets, the subvolume displacement and stress distribution of the whole organ are calculated and the consumed energy due to the subvolume displacements is computed accordingly. The corresponding positions of the initially selected boundary points are then iteratively optimized to minimize the consuming energy under geometry and stress constraints. In this study, a rectal wall delineated from patient CT image was artificially deformed using a computer simulation and utilized to test the optimization. Subvolume displacements calculated based on the optimized boundary point correspondence were compared to the true displacements, and the calculation accuracy was thereby evaluated. Results demonstrate that a significant improvement on the accuracy of the deformable organ registration can be achieved by applying the consuming energy minimization in the organ deformation calculation.

  14. Morphological Feature Extraction for Automatic Registration of Multispectral Images

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2007-01-01

    The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.

  15. Diffusion Tensor Image Registration Using Hybrid Connectivity and Tensor Features

    PubMed Central

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2014-01-01

    Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. PMID:24293159

  16. Landsat image registration - A study of system parameters

    NASA Technical Reports Server (NTRS)

    Wacker, A. G.; Juday, R. D.; Wolfe, R. H., Jr.

    1984-01-01

    Some applications of Landsat data, particularily agricultural and forestry applications, require the ability to geometrically superimpose or register data acquired at different times and possibly by different satellites. An experimental investigation relating to a registration processor used by the Johnson Space Center for this purpose is the subject of this paper. Correlation of small subareas of images is at the heart of this registration processor and the manner in which various system parameters affect the correlation process is the prime area of investigation. Parameters investigated include preprocessing methods, methods for detecting sucessful correlations, fitting a surface to the correlation patch, fraction of pixels designated as edge pixels in edge detection adn local versus global generation of edge images. A suboptimum search procedure is used to find a good parameter set for this registration processor.

  17. Biomechanical-based image registration for head and neck radiation treatment

    NASA Astrophysics Data System (ADS)

    Al-Mayah, Adil; Moseley, Joanne; Hunter, Shannon; Velec, Mike; Chau, Lily; Breen, Stephen; Brock, Kristy

    2010-11-01

    Deformable image registration of four head and neck cancer patients has been conducted using a biomechanical-based model. Patient-specific 3D finite element models have been developed using CT and cone-beam CT image data of the planning and a radiation treatment session. The model consists of seven vertebrae (C1 to C7), mandible, larynx, left and right parotid glands, tumor and body. Different combinations of boundary conditions are applied in the model in order to find the configuration with a minimum registration error. Each vertebra in the planning session is individually aligned with its correspondence in the treatment session. Rigid alignment is used for each individual vertebra and the mandible since no deformation is expected in the bones. In addition, the effect of morphological differences in the external body between the two image sessions is investigated. The accuracy of the registration is evaluated using the tumor and both parotid glands by comparing the calculated Dice similarity index of these structures following deformation in relation to their true surface defined in the image of the second session. The registration is improved when the vertebrae and mandible are aligned in the two sessions with the highest average Dice index of 0.86 ± 0.08, 0.84 ± 0.11 and 0.89 ± 0.04 for the tumor, left and right parotid glands, respectively. The accuracy of the center of mass location of tumor and parotid glands is also improved by deformable image registration where the errors in the tumor and parotid glands decrease from 4.0 ± 1.1, 3.4 ± 1.5 and 3.8 ± 0.9 mm using rigid registration to 2.3 ± 1.0, 2.5 ± 0.8 and 2.0 ± 0.9 mm in the deformable image registration when alignment of vertebrae and mandible is conducted in addition to the surface projection of the body. This work was presented at the SPIE conference, California, 2010: Al-Mayah A, Moseley J, Chau L, Breen S, and Brock K 2010 Biomechanical based deformable image registration of head and neck

  18. Towards real-time registration of 4D ultrasound images.

    PubMed

    Foroughi, Pezhman; Abolmaesumi, Purang; Hashtrudi-Zaad, Keyvan

    2006-01-01

    In this paper, we demonstrate a method for fast registration of sequences of 3D liver images, which could be used for the future real-time applications. In our method, every image is elastically registered to a so called fixed ultrasound image exploiting the information from previous registration. A few feature points are automatically selected, and tracked inside the images, while the deformation of other points are extrapolated with respect to the tracked points employing a fast free-form approach. The main intended application of the proposed method is real-time tracking of tumors for radiosurgery. The algorithm is evaluated on both naturally and artificially deformed images. Experimental results show that for around 85 percent accuracy, the process of tracking is completed very close to real time.

  19. Applying the algorithm "assessing quality using image registration circuits" (AQUIRC) to multi-atlas segmentation

    NASA Astrophysics Data System (ADS)

    Datteri, Ryan; Asman, Andrew J.; Landman, Bennett A.; Dawant, Benoit M.

    2014-03-01

    Multi-atlas registration-based segmentation is a popular technique in the medical imaging community, used to transform anatomical and functional information from a set of atlases onto a new patient that lacks this information. The accuracy of the projected information on the target image is dependent on the quality of the registrations between the atlas images and the target image. Recently, we have developed a technique called AQUIRC that aims at estimating the error of a non-rigid registration at the local level and was shown to correlate to error in a simulated case. Herein, we extend upon this work by applying AQUIRC to atlas selection at the local level across multiple structures in cases in which non-rigid registration is difficult. AQUIRC is applied to 6 structures, the brainstem, optic chiasm, left and right optic nerves, and the left and right eyes. We compare the results of AQUIRC to that of popular techniques, including Majority Vote, STAPLE, Non-Local STAPLE, and Locally-Weighted Vote. We show that AQUIRC can be used as a method to combine multiple segmentations and increase the accuracy of the projected information on a target image, and is comparable to cutting edge methods in the multi-atlas segmentation field.

  20. Wavelets in medical imaging

    SciTech Connect

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  1. Wavelets in medical imaging

    NASA Astrophysics Data System (ADS)

    Zahra, Noor e.; Sevindir, Hulya Kodal; Aslan, Zafer; Siddiqi, A. H.

    2012-07-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  2. Improving supervised classification accuracy using non-rigid multimodal image registration: detecting prostate cancer

    NASA Astrophysics Data System (ADS)

    Chappelow, Jonathan; Viswanath, Satish; Monaco, James; Rosen, Mark; Tomaszewski, John; Feldman, Michael; Madabhushi, Anant

    2008-03-01

    Computer-aided diagnosis (CAD) systems for the detection of cancer in medical images require precise labeling of training data. For magnetic resonance (MR) imaging (MRI) of the prostate, training labels define the spatial extent of prostate cancer (CaP); the most common source for these labels is expert segmentations. When ancillary data such as whole mount histology (WMH) sections, which provide the gold standard for cancer ground truth, are available, the manual labeling of CaP can be improved by referencing WMH. However, manual segmentation is error prone, time consuming and not reproducible. Therefore, we present the use of multimodal image registration to automatically and accurately transcribe CaP from histology onto MRI following alignment of the two modalities, in order to improve the quality of training data and hence classifier performance. We quantitatively demonstrate the superiority of this registration-based methodology by comparing its results to the manual CaP annotation of expert radiologists. Five supervised CAD classifiers were trained using the labels for CaP extent on MRI obtained by the expert and 4 different registration techniques. Two of the registration methods were affi;ne schemes; one based on maximization of mutual information (MI) and the other method that we previously developed, Combined Feature Ensemble Mutual Information (COFEMI), which incorporates high-order statistical features for robust multimodal registration. Two non-rigid schemes were obtained by succeeding the two affine registration methods with an elastic deformation step using thin-plate splines (TPS). In the absence of definitive ground truth for CaP extent on MRI, classifier accuracy was evaluated against 7 ground truth surrogates obtained by different combinations of the expert and registration segmentations. For 26 multimodal MRI-WMH image pairs, all four registration methods produced a higher area under the receiver operating characteristic curve compared to that

  3. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  4. Automated Image Registration Using Morphological Region of Interest Feature Extraction

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2005-01-01

    With the recent explosion in the amount of remotely sensed imagery and the corresponding interest in temporal change detection and modeling, image registration has become increasingly important as a necessary first step in the integration of multi-temporal and multi-sensor data for applications such as the analysis of seasonal and annual global climate changes, as well as land use/cover changes. The task of image registration can be divided into two major components: (1) the extraction of control points or features from images; and (2) the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual control feature extraction can be subjective and extremely time consuming, and often results in few usable points. Automated feature extraction is a solution to this problem, where desired target features are invariant, and represent evenly distributed landmarks such as edges, corners and line intersections. In this paper, we develop a novel automated registration approach based on the following steps. First, a mathematical morphology (MM)-based method is used to obtain a scale-orientation morphological profile at each image pixel. Next, a spectral dissimilarity metric such as the spectral information divergence is applied for automated extraction of landmark chips, followed by an initial approximate matching. This initial condition is then refined using a hierarchical robust feature matching (RFM) procedure. Experimental results reveal that the proposed registration technique offers a robust solution in the presence of seasonal changes and other interfering factors. Keywords-Automated image registration, multi-temporal imagery, mathematical morphology, robust feature matching.

  5. A translational registration system for LANDSAT image segments

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Erthal, G. J.; Velasco, F. R. D.; Mascarenhas, N. D. D.

    1983-01-01

    The use of satellite images obtained from various dates is essential for crop forecast systems. In order to make possible a multitemporal analysis, it is necessary that images belonging to each acquisition have pixel-wise correspondence. A system developed to obtain, register and record image segments from LANDSAT images in computer compatible tapes is described. The translational registration of the segments is performed by correlating image edges in different acquisitions. The system was constructed for the Burroughs B6800 computer in ALGOL language.

  6. The Insight ToolKit image registration framework

    PubMed Central

    Avants, Brian B.; Tustison, Nicholas J.; Stauffer, Michael; Song, Gang; Wu, Baohua; Gee, James C.

    2014-01-01

    Publicly available scientific resources help establish evaluation standards, provide a platform for teaching and improve reproducibility. Version 4 of the Insight ToolKit (ITK4) seeks to establish new standards in publicly available image registration methodology. ITK4 makes several advances in comparison to previous versions of ITK. ITK4 supports both multivariate images and objective functions; it also unifies high-dimensional (deformation field) and low-dimensional (affine) transformations with metrics that are reusable across transform types and with composite transforms that allow arbitrary series of geometric mappings to be chained together seamlessly. Metrics and optimizers take advantage of multi-core resources, when available. Furthermore, ITK4 reduces the parameter optimization burden via principled heuristics that automatically set scaling across disparate parameter types (rotations vs. translations). A related approach also constrains steps sizes for gradient-based optimizers. The result is that tuning for different metrics and/or image pairs is rarely necessary allowing the researcher to more easily focus on design/comparison of registration strategies. In total, the ITK4 contribution is intended as a structure to support reproducible research practices, will provide a more extensive foundation against which to evaluate new work in image registration and also enable application level programmers a broad suite of tools on which to build. Finally, we contextualize this work with a reference registration evaluation study with application to pediatric brain labeling.1 PMID:24817849

  7. Registration of multimodal brain images: some experimental results

    NASA Astrophysics Data System (ADS)

    Chen, Hua-mei; Varshney, Pramod K.

    2002-03-01

    Joint histogram of two images is required to uniquely determine the mutual information between the two images. It has been pointed out that, under certain conditions, existing joint histogram estimation algorithms like partial volume interpolation (PVI) and linear interpolation may result in different types of artifact patterns in the MI based registration function by introducing spurious maxima. As a result, the artifacts may hamper the global optimization process and limit registration accuracy. In this paper we present an extensive study of interpolation-induced artifacts using simulated brain images and show that similar artifact patterns also exist when other intensity interpolation algorithms like cubic convolution interpolation and cubic B-spline interpolation are used. A new joint histogram estimation scheme named generalized partial volume estimation (GPVE) is proposed to eliminate the artifacts. A kernel function is involved in the proposed scheme and when the 1st order B-spline is chosen as the kernel function, it is equivalent to the PVI. A clinical brain image database furnished by Vanderbilt University is used to compare the accuracy of our algorithm with that of PVI. Our experimental results show that the use of higher order kernels can effectively remove the artifacts and, in cases when MI based registration result suffers from the artifacts, registration accuracy can be improved significantly.

  8. Image registration via level-set motion: applications to atlas-based segmentation.

    PubMed

    Vemuri, B C; Ye, J; Chen, Y; Leonard, C M

    2003-03-01

    Image registration is an often encountered problem in various fields including medical imaging, computer vision and image processing. Numerous algorithms for registering image data have been reported in these areas. In this paper, we present a novel curve evolution approach expressed in a level-set framework to achieve image intensity morphing and a simple non-linear PDE for the corresponding coordinate registration. The key features of the intensity morphing model are that (a) it is very fast and (b) existence and uniqueness of the solution for the evolution model are established in a Sobolev space as opposed to using viscosity methods. The salient features of the coordinate registration model are its simplicity and computational efficiency. The intensity morph is easily achieved via evolving level-sets of one image into the level-sets of the other. To explicitly estimate the coordinate transformation between the images, we derive a non-linear PDE-based motion model which can be solved very efficiently. We demonstrate the performance of our algorithm on a variety of images including synthetic and real data. As an application of the PDE-based motion model, atlas based segmentation of hippocampal shape from several MR brain scans is depicted. In each of these experiments, automated hippocampal shape recovery results are validated via manual "expert" segmentations.

  9. A cloud-based medical image repository

    NASA Astrophysics Data System (ADS)

    Maeder, Anthony J.; Planitz, Birgit M.; El Rifai, Diaa

    2012-02-01

    Many widely used digital medical image collections have been established but these are generally used as raw data sources without related image analysis toolsets. Providing associated functionality to allow specific types of operations to be performed on these images has proved beneficial in some cases (e.g. brain image registration and atlases). However, toolset development to provide generic image analysis functions on medical images has tended to be ad hoc, with Open Source options proliferating (e.g. ITK). Our Automated Medical Image Collection Annotation (AMICA) system is both an image repository, to which the research community can contribute image datasets, and a search/retrieval system that uses automated image annotation. AMICA was designed for the Windows Azure platform to leverage the flexibility and scalability of the cloud. It is intended that AMICA will expand beyond its initial pilot implementation (for brain CT, MR images) to accommodate a wide range of modalities and anatomical regions. This initiative aims to contribute to advances in clinical research by permitting a broader use and reuse of medical image data than is currently attainable. For example, cohort studies for cases with particular physiological or phenotypical profiles will be able to source and include enough cases to provide high statistical power, allowing more individualised risk factors to be assessed and thus allowing screening and staging processes to be optimised. Also, education, training and credentialing of clinicians in image interpretation, will be more effective because it will be possible to select instances of images with specific visual aspects, or correspond to types of cases where reading performance improvement is desirable.

  10. The impact of registration accuracy on imaging validation study design: A novel statistical power calculation.

    PubMed

    Gibson, Eli; Fenster, Aaron; Ward, Aaron D

    2013-10-01

    Novel imaging modalities are pushing the boundaries of what is possible in medical imaging, but their signal properties are not always well understood. The evaluation of these novel imaging modalities is critical to achieving their research and clinical potential. Image registration of novel modalities to accepted reference standard modalities is an important part of characterizing the modalities and elucidating the effect of underlying focal disease on the imaging signal. The strengths of the conclusions drawn from these analyses are limited by statistical power. Based on the observation that in this context, statistical power depends in part on uncertainty arising from registration error, we derive a power calculation formula relating registration error, number of subjects, and the minimum detectable difference between normal and pathologic regions on imaging, for an imaging validation study design that accommodates signal correlations within image regions. Monte Carlo simulations were used to evaluate the derived models and test the strength of their assumptions, showing that the model yielded predictions of the power, the number of subjects, and the minimum detectable difference of simulated experiments accurate to within a maximum error of 1% when the assumptions of the derivation were met, and characterizing sensitivities of the model to violations of the assumptions. The use of these formulae is illustrated through a calculation of the number of subjects required for a case study, modeled closely after a prostate cancer imaging validation study currently taking place at our institution. The power calculation formulae address three central questions in the design of imaging validation studies: (1) What is the maximum acceptable registration error? (2) How many subjects are needed? (3) What is the minimum detectable difference between normal and pathologic image regions?

  11. Refusal to grant provisional General Medical Council registration to U.K. medical graduates.

    PubMed

    David, Timothy J; Ellson, Sarah

    2015-09-01

    In the last five years, 2010-2014, there have been 17 instances when an application for provisional registration by a U.K. medical graduate was refused by the General Medical Council because the Registrar considered that the applicant's fitness to practise was impaired. While this number is small, the fact that this can happen is largely unappreciated by medical students and their teachers, the prevailing false assumption being that passing finals and graduation is the final hurdle before taking up a Foundation Programme post. It is a poorly recognised fact that just because a university fitness to practise committee has concluded that a student is fit to practise there is no guarantee that the General Medical Council will come to the same decision. This paper explains the reasons for these refusals and makes suggestions for students and medical schools.

  12. Warped document image correction method based on heterogeneous registration strategies

    NASA Astrophysics Data System (ADS)

    Tong, Lijing; Zhan, Guoliang; Peng, Quanyao; Li, Yang; Li, Yifan

    2013-03-01

    With the popularity of digital camera and the application requirement of digitalized document images, using digital cameras to digitalize document images has become an irresistible trend. However, the warping of the document surface impacts on the quality of the Optical Character Recognition (OCR) system seriously. To improve the warped document image's vision quality and the OCR rate, this paper proposed a warped document image correction method based on heterogeneous registration strategies. This method mosaics two warped images of the same document from different viewpoints. Firstly, two feature points are selected from one image. Then the two feature points are registered in the other image base on heterogeneous registration strategies. At last, image mosaics are done for the two images, and the best mosaiced image is selected by OCR recognition results. As a result, for the best mosaiced image, the distortions are mostly removed and the OCR results are improved markedly. Experimental results show that the proposed method can resolve the issue of warped document image correction more effectively.

  13. Medical Image Analysis Facility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    To improve the quality of photos sent to Earth by unmanned spacecraft. NASA's Jet Propulsion Laboratory (JPL) developed a computerized image enhancement process that brings out detail not visible in the basic photo. JPL is now applying this technology to biomedical research in its Medical lrnage Analysis Facility, which employs computer enhancement techniques to analyze x-ray films of internal organs, such as the heart and lung. A major objective is study of the effects of I stress on persons with heart disease. In animal tests, computerized image processing is being used to study coronary artery lesions and the degree to which they reduce arterial blood flow when stress is applied. The photos illustrate the enhancement process. The upper picture is an x-ray photo in which the artery (dotted line) is barely discernible; in the post-enhancement photo at right, the whole artery and the lesions along its wall are clearly visible. The Medical lrnage Analysis Facility offers a faster means of studying the effects of complex coronary lesions in humans, and the research now being conducted on animals is expected to have important application to diagnosis and treatment of human coronary disease. Other uses of the facility's image processing capability include analysis of muscle biopsy and pap smear specimens, and study of the microscopic structure of fibroprotein in the human lung. Working with JPL on experiments are NASA's Ames Research Center, the University of Southern California School of Medicine, and Rancho Los Amigos Hospital, Downey, California.

  14. Dense image registration through MRFs and efficient linear programming.

    PubMed

    Glocker, Ben; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir; Paragios, Nikos

    2008-12-01

    In this paper, we introduce a novel and efficient approach to dense image registration, which does not require a derivative of the employed cost function. In such a context, the registration problem is formulated using a discrete Markov random field objective function. First, towards dimensionality reduction on the variables we assume that the dense deformation field can be expressed using a small number of control points (registration grid) and an interpolation strategy. Then, the registration cost is expressed using a discrete sum over image costs (using an arbitrary similarity measure) projected on the control points, and a smoothness term that penalizes local deviations on the deformation field according to a neighborhood system on the grid. Towards a discrete approach, the search space is quantized resulting in a fully discrete model. In order to account for large deformations and produce results on a high resolution level, a multi-scale incremental approach is considered where the optimal solution is iteratively updated. This is done through successive morphings of the source towards the target image. Efficient linear programming using the primal dual principles is considered to recover the lowest potential of the cost function. Very promising results using synthetic data with known deformations and real data demonstrate the potentials of our approach.

  15. Finite-Dimensional Lie Algebras for Fast Diffeomorphic Image Registration.

    PubMed

    Zhang, Miaomiao; Fletcher, P Thomas

    2015-01-01

    This paper presents a fast geodesic shooting algorithm for diffeomorphic image registration. We first introduce a novel finite-dimensional Lie algebra structure on the space of bandlimited velocity fields. We then show that this space can effectively represent initial velocities for diffeomorphic image registration at much lower dimensions than typically used, with little to no loss in registration accuracy. We then leverage the fact that the geodesic evolution equations, as well as the adjoint Jacobi field equations needed for gradient descent methods, can be computed entirely in this finite-dimensional Lie algebra. The result is a geodesic shooting method for large deformation metric mapping (LDDMM) that is dramatically faster and less memory intensive than state-of-the-art methods. We demonstrate the effectiveness of our model to register 3D brain images and compare its registration accuracy, run-time, and memory consumption with leading LDDMM methods. We also show how our algorithm breaks through the prohibitive time and memory requirements of diffeomorphic atlas building.

  16. Bidirectional elastic image registration using B-spline affine transformation.

    PubMed

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C; Ma, Hongxia; Leader, Joseph; Kaminski, Naftali; Gur, David; Pu, Jiantao

    2014-06-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bidirectional instead of the traditional unidirectional objective/cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy.

  17. Bidirectional Elastic Image Registration Using B-Spline Affine Transformation

    PubMed Central

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C.; Wang, Chen; Kaminski, Naftali; Pu, Jiantao

    2014-01-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-Spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bi-directional instead of the traditional unidirectional objective / cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210

  18. Video image stabilization and registration--plus

    NASA Technical Reports Server (NTRS)

    Hathaway, David H. (Inventor)

    2009-01-01

    A method of stabilizing a video image displayed in multiple video fields of a video sequence includes the steps of: subdividing a selected area of a first video field into nested pixel blocks; determining horizontal and vertical translation of each of the pixel blocks in each of the pixel block subdivision levels from the first video field to a second video field; and determining translation of the image from the first video field to the second video field by determining a change in magnification of the image from the first video field to the second video field in each of horizontal and vertical directions, and determining shear of the image from the first video field to the second video field in each of the horizontal and vertical directions.

  19. Demons deformable registration for cone-beam CT guidance: registration of pre- and intra-operative images

    NASA Astrophysics Data System (ADS)

    Nithiananthan, S.; Brock, K. K.; Daly, M. J.; Chan, H.; Irish, J. C.; Siewerdsen, J. H.

    2010-02-01

    High-quality intraoperative 3D imaging systems such as cone-beam CT (CBCT) hold considerable promise for imageguided surgical procedures in the head and neck. With a large amount of preoperative imaging and planning information available in addition to the intraoperative images, it becomes desirable to be able to integrate all sources of imaging information within the same anatomical frame of reference using deformable image registration. Fast intensity-based algorithms are available which can perform deformable image registration within a period of time short enough for intraoperative use. However, CBCT images often contain voxel intensity inaccuracy which can hinder registration accuracy - for example, due to x-ray scatter, truncation, and/or erroneous scaling normalization within the 3D reconstruction algorithm. In this work, we present a method of integrating an iterative intensity matching step within the operation of a multi-scale Demons registration algorithm. Registration accuracy was evaluated in a cadaver model and showed that a conventional Demons implementation (with either no intensity match or a single histogram match) introduced anatomical distortion and degradation in target registration error (TRE). The iterative intensity matching procedure, on the other hand, provided robust registration across a broad range of intensity inaccuracies.

  20. Elastic image registration via rigid object motion induced deformation

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaofen; Udupa, Jayaram K.; Hirsch, Bruce E.

    2011-03-01

    In this paper, we estimate the deformations induced on soft tissues by the rigid independent movements of hard objects and create an admixture of rigid and elastic adaptive image registration transformations. By automatically segmenting and independently estimating the movement of rigid objects in 3D images, we can maintain rigidity in bones and hard tissues while appropriately deforming soft tissues. We tested our algorithms on 20 pairs of 3D MRI datasets pertaining to a kinematic study of the flexibility of the ankle complex of normal feet as well as ankles affected by abnormalities in foot architecture and ligament injuries. The results show that elastic image registration via rigid object-induced deformation outperforms purely rigid and purely nonrigid approaches.

  1. Elastic registration of multiphase CT images of liver

    NASA Astrophysics Data System (ADS)

    Heldmann, Stefan; Zidowitz, Stephan

    2009-02-01

    In this work we present a novel approach for elastic image registration of multi-phase contrast enhanced CT images of liver. A problem in registration of multiphase CT is that the images contain similar but complementary structures. In our application each image shows a different part of the vessel system, e.g., portal/hepatic venous/arterial, or biliary vessels. Portal, arterial and biliary vessels run in parallel and abut on each other forming the so called portal triad, while hepatic veins run independent. Naive registration will tend to align complementary vessel. Our new approach is based on minimizing a cost function consisting of a distance measure and a regularizer. For the distance we use the recently proposed normalized gradient field measure that focuses on the alignment of edges. For the regularizer we use the linear elastic potential. The key feature of our approach is an additional penalty term using segmentations of the different vessel systems in the images to avoid overlaps of complementary structures. We successfully demonstrate our new method by real data examples.

  2. The ANACONDA algorithm for deformable image registration in radiotherapy

    SciTech Connect

    Weistrand, Ola; Svensson, Stina

    2015-01-15

    Purpose: The purpose of this work was to describe a versatile algorithm for deformable image registration with applications in radiotherapy and to validate it on thoracic 4DCT data as well as CT/cone beam CT (CBCT) data. Methods: ANAtomically CONstrained Deformation Algorithm (ANACONDA) combines image information (i.e., intensities) with anatomical information as provided by contoured image sets. The registration problem is formulated as a nonlinear optimization problem and solved with an in-house developed solver, tailored to this problem. The objective function, which is minimized during optimization, is a linear combination of four nonlinear terms: 1. image similarity term; 2. grid regularization term, which aims at keeping the deformed image grid smooth and invertible; 3. a shape based regularization term which works to keep the deformation anatomically reasonable when regions of interest are present in the reference image; and 4. a penalty term which is added to the optimization problem when controlling structures are used, aimed at deforming the selected structure in the reference image to the corresponding structure in the target image. Results: To validate ANACONDA, the authors have used 16 publically available thoracic 4DCT data sets for which target registration errors from several algorithms have been reported in the literature. On average for the 16 data sets, the target registration error is 1.17 ± 0.87 mm, Dice similarity coefficient is 0.98 for the two lungs, and image similarity, measured by the correlation coefficient, is 0.95. The authors have also validated ANACONDA using two pelvic cases and one head and neck case with planning CT and daily acquired CBCT. Each image has been contoured by a physician (radiation oncologist) or experienced radiation therapist. The results are an improvement with respect to rigid registration. However, for the head and neck case, the sample set is too small to show statistical significance. Conclusions: ANACONDA

  3. Medical alert bracelet (image)

    MedlinePlus

    People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will ... People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will ...

  4. Accelerated nonrigid intensity-based image registration using importance sampling.

    PubMed

    Bhagalia, Roshni; Fessler, Jeffrey A; Kim, Boklye

    2009-08-01

    Nonrigid image registration methods using intensity-based similarity metrics are becoming increasingly common tools to estimate many types of deformations. Nonrigid warps can be very flexible with a large number of parameters and gradient optimization schemes are widely used to estimate them. However, for large datasets, the computation of the gradient of the similarity metric with respect to these many parameters becomes very time consuming. Using a small random subset of image voxels to approximate the gradient can reduce computation time. This work focuses on the use of importance sampling to reduce the variance of this gradient approximation. The proposed importance sampling framework is based on an edge-dependent adaptive sampling distribution designed for use with intensity-based registration algorithms. We compare the performance of registration based on stochastic approximations with and without importance sampling to that using deterministic gradient descent. Empirical results, on simulated magnetic resonance brain data and real computed tomography inhale-exhale lung data from eight subjects, show that a combination of stochastic approximation methods and importance sampling accelerates the registration process while preserving accuracy.

  5. a Novel Image Registration Algorithm for SAR and Optical Images Based on Virtual Points

    NASA Astrophysics Data System (ADS)

    Ai, C.; Feng, T.; Wang, J.; Zhang, S.

    2013-07-01

    Optical image is rich in spectral information, while SAR instrument can work in both day and night and obtain images through fog and clouds. Combination of these two types of complementary images shows the great advantages of better image interpretation. Image registration is an inevitable and critical problem for the applications of multi-source remote sensing images, such as image fusion, pattern recognition and change detection. However, the different characteristics between SAR and optical images, which are due to the difference in imaging mechanism and the speckle noises in SAR image, bring great challenges to the multi-source image registration. Therefore, a novel image registration algorithm based on the virtual points, derived from the corresponding region features, is proposed in this paper. Firstly, image classification methods are adopted to extract closed regions from SAR and optical images respectively. Secondly, corresponding region features are matched by constructing cost function with rotate invariant region descriptors such as area, perimeter, and the length of major and minor axes. Thirdly, virtual points derived from corresponding region features, such as the centroids, endpoints and cross points of major and minor axes, are used to calculate initial registration parameters. Finally, the parameters are corrected by an iterative calculation, which will be terminated when the overlap of corresponding region features reaches its maximum. In the experiment, WordView-2 and Radasat-2 with 0.5 m and 4.7 m spatial resolution respectively, obtained in August 2010 in Suzhou, are used to test the registration method. It is shown that the multi-source image registration algorithm presented above is effective, and the accuracy of registration is up to pixel level.

  6. Automatic deformable MR-ultrasound registration for image-guided neurosurgery.

    PubMed

    Rivaz, Hassan; Chen, Sean Jy-Shyang; Collins, D Louis

    2015-02-01

    In this work, we present a novel algorithm for registration of 3-D volumetric ultrasound (US) and MR using Robust PaTch-based cOrrelation Ratio (RaPTOR). RaPTOR computes local correlation ratio (CR) values on small patches and adds the CR values to form a global cost function. It is therefore invariant to large amounts of spatial intensity inhomogeneity. We also propose a novel outlier suppression technique based on the orientations of the RaPTOR gradients. Our deformation is modeled with free-form cubic B-splines. We analytically derive the derivatives of RaPTOR with respect to the transformation, i.e., the displacement of the B-spline nodes, and optimize RaPTOR using a stochastic gradient descent approach. RaPTOR is validated on MR and tracked US images of neurosurgery. Deformable registration of the US and MR images acquired, respectively, preoperation and postresection is of significant clinical significance, but challenging due to, among others, the large amount of missing correspondences between the two images. This work is also novel in that it performs automatic registration of this challenging dataset. To validate the results, we manually locate corresponding anatomical landmarks in the US and MR images of tumor resection in brain surgery. Compared to rigid registration based on the tracking system alone, RaPTOR reduces the mean initial mTRE over 13 patients from 5.9 to 2.9 mm, and the maximum initial TRE from 17.0 to 5.9 mm. Each volumetric registration using RaPTOR takes about 30 sec on a single CPU core. An important challenge in the field of medical image analysis is the shortage of publicly available dataset, which can both facilitate the advancement of new algorithms to clinical settings and provide a benchmark for comparison. To address this problem, we will make our manually located landmarks available online.

  7. Estimation of lung lobar sliding using image registration

    NASA Astrophysics Data System (ADS)

    Amelon, Ryan; Cao, Kunlin; Reinhardt, Joseph M.; Christensen, Gary E.; Raghavan, Madhavan

    2012-03-01

    MOTIVATION: The lobes of the lungs slide relative to each other during breathing. Quantifying lobar sliding can aid in better understanding lung function, better modeling of lung dynamics, and a better understanding of the limits of image registration performance near fissures. We have developed a method to estimate lobar sliding in the lung from image registration of CT scans. METHODS: Six human lungs were analyzed using CT scans spanning functional residual capacity (FRC) to total lung capacity (TLC). The lung lobes were segmented and registered on a lobe-by-lobe basis. The displacement fields from the independent lobe registrations were then combined into a single image. This technique allows for displacement discontinuity at lobar boundaries. The displacement field was then analyzed as a continuum by forming finite elements from the voxel grid of the FRC image. Elements at a discontinuity will appear to have undergone significantly elevated 'shear stretch' compared to those within the parenchyma. Shear stretch is shown to be a good measure of sliding magnitude in this context. RESULTS: The sliding map clearly delineated the fissures of the lung. The fissure between the right upper and right lower lobes showed the greatest sliding in all subjects while the fissure between the right upper and right middle lobe showed the least sliding.

  8. Translation and Rotation Invariant Multiscale Image Registration

    DTIC Science & Technology

    2002-03-01

    wavelet transform . We extend this work by creating a new multiscale transform to register two images with translation or rotation differences, independent...continuous wavelet transform to mimic the two-dimensional redundant discrete wavelet transform . This allows us to obtain multiple subbands at various scales...while maintaining the desirable properties of the redundant discrete wavelet transform . Whereas the discrete wavelet transform produces results only

  9. A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive.

    PubMed

    Castillo, Richard; Castillo, Edward; Fuentes, David; Ahmad, Moiz; Wood, Abbie M; Ludwig, Michelle S; Guerrero, Thomas

    2013-05-07

    Landmark point-pairs provide a strategy to assess deformable image registration (DIR) accuracy in terms of the spatial registration of the underlying anatomy depicted in medical images. In this study, we propose to augment a publicly available database (www.dir-lab.com) of medical images with large sets of manually identified anatomic feature pairs between breath-hold computed tomography (BH-CT) images for DIR spatial accuracy evaluation. Ten BH-CT image pairs were randomly selected from the COPDgene study cases. Each patient had received CT imaging of the entire thorax in the supine position at one-fourth dose normal expiration and maximum effort full dose inspiration. Using dedicated in-house software, an imaging expert manually identified large sets of anatomic feature pairs between images. Estimates of inter- and intra-observer spatial variation in feature localization were determined by repeat measurements of multiple observers over subsets of randomly selected features. 7298 anatomic landmark features were manually paired between the 10 sets of images. Quantity of feature pairs per case ranged from 447 to 1172. Average 3D Euclidean landmark displacements varied substantially among cases, ranging from 12.29 (SD: 6.39) to 30.90 (SD: 14.05) mm. Repeat registration of uniformly sampled subsets of 150 landmarks for each case yielded estimates of observer localization error, which ranged in average from 0.58 (SD: 0.87) to 1.06 (SD: 2.38) mm for each case. The additions to the online web database (www.dir-lab.com) described in this work will broaden the applicability of the reference data, providing a freely available common dataset for targeted critical evaluation of DIR spatial accuracy performance in multiple clinical settings. Estimates of observer variance in feature localization suggest consistent spatial accuracy for all observers across both four-dimensional CT and COPDgene patient cohorts.

  10. Development of a piecewise linear omnidirectional 3D image registration method.

    PubMed

    Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo

    2016-12-01

    This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.

  11. Development of a piecewise linear omnidirectional 3D image registration method

    NASA Astrophysics Data System (ADS)

    Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo

    2016-12-01

    This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.

  12. A review of 3D/2D registration methods for image-guided interventions.

    PubMed

    Markelj, P; Tomaževič, D; Likar, B; Pernuš, F

    2012-04-01

    Registration of pre- and intra-interventional data is one of the key technologies for image-guided radiation therapy, radiosurgery, minimally invasive surgery, endoscopy, and interventional radiology. In this paper, we survey those 3D/2D data registration methods that utilize 3D computer tomography or magnetic resonance images as the pre-interventional data and 2D X-ray projection images as the intra-interventional data. The 3D/2D registration methods are reviewed with respect to image modality, image dimensionality, registration basis, geometric transformation, user interaction, optimization procedure, subject, and object of registration.

  13. BioImage Suite: An integrated medical image analysis suite: An update.

    PubMed

    Papademetris, Xenophon; Jackowski, Marcel P; Rajeevan, Nallakkandi; DiStasio, Marcello; Okuda, Hirohito; Constable, R Todd; Staib, Lawrence H

    2006-01-01

    BioImage Suite is an NIH-supported medical image analysis software suite developed at Yale. It leverages both the Visualization Toolkit (VTK) and the Insight Toolkit (ITK) and it includes many additional algorithms for image analysis especially in the areas of segmentation, registration, diffusion weighted image processing and fMRI analysis. BioImage Suite has a user-friendly user interface developed in the Tcl scripting language. A final beta version is freely available for download.

  14. Error analysis of two methods for range-images registration

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoli; Yin, Yongkai; Li, Ameng; He, Dong; Peng, Xiang

    2010-08-01

    With the improvements in range image registration techniques, this paper focuses on error analysis of two registration methods being generally applied in industry metrology including the algorithm comparison, matching error, computing complexity and different application areas. One method is iterative closest points, by which beautiful matching results with little error can be achieved. However some limitations influence its application in automatic and fast metrology. The other method is based on landmarks. We also present a algorithm for registering multiple range-images with non-coding landmarks, including the landmarks' auto-identification and sub-pixel location, 3D rigid motion, point pattern matching, global iterative optimization techniques et al. The registering results by the two methods are illustrated and a thorough error analysis is performed.

  15. Concepts for on-board satellite image registration, volume 1

    NASA Technical Reports Server (NTRS)

    Ruedger, W. H.; Daluge, D. R.; Aanstoos, J. V.

    1980-01-01

    The NASA-NEEDS program goals present a requirement for on-board signal processing to achieve user-compatible, information-adaptive data acquisition. One very specific area of interest is the preprocessing required to register imaging sensor data which have been distorted by anomalies in subsatellite-point position and/or attitude control. The concepts and considerations involved in using state-of-the-art positioning systems such as the Global Positioning System (GPS) in concert with state-of-the-art attitude stabilization and/or determination systems to provide the required registration accuracy are discussed with emphasis on assessing the accuracy to which a given image picture element can be located and identified, determining those algorithms required to augment the registration procedure and evaluating the technology impact on performing these procedures on-board the satellite.

  16. Synthetic aperture radar/LANDSAT MSS image registration

    NASA Technical Reports Server (NTRS)

    Maurer, H. E. (Editor); Oberholtzer, J. D. (Editor); Anuta, P. E. (Editor)

    1979-01-01

    Algorithms and procedures necessary to merge aircraft synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) imagery were determined. The design of a SAR/LANDSAT data merging system was developed. Aircraft SAR images were registered to the corresponding LANDSAT MSS scenes and were the subject of experimental investigations. Results indicate that the registration of SAR imagery with LANDSAT MSS imagery is feasible from a technical viewpoint, and useful from an information-content viewpoint.

  17. Validation of 3D ultrasound: CT registration of prostate images

    NASA Astrophysics Data System (ADS)

    Firle, Evelyn A.; Wesarg, Stefan; Karangelis, Grigoris; Dold, Christian

    2003-05-01

    All over the world 20% of men are expected to develop prostate cancer sometime in his life. In addition to surgery - being the traditional treatment for cancer - the radiation treatment is getting more popular. The most interesting radiation treatment regarding prostate cancer is Brachytherapy radiation procedure. For the safe delivery of that therapy imaging is critically important. In several cases where a CT device is available a combination of the information provided by CT and 3D Ultrasound (U/S) images offers advantages in recognizing the borders of the lesion and delineating the region of treatment. For these applications the CT and U/S scans should be registered and fused in a multi-modal dataset. Purpose of the present development is a registration tool (registration, fusion and validation) for available CT volumes with 3D U/S images of the same anatomical region, i.e. the prostate. The combination of these two imaging modalities interlinks the advantages of the high-resolution CT imaging and low cost real-time U/S imaging and offers a multi-modality imaging environment for further target and anatomy delineation. This tool has been integrated into the visualization software "InViVo" which has been developed over several years in Fraunhofer IGD in Darmstadt.

  18. Regional lung function and mechanics using image registration

    NASA Astrophysics Data System (ADS)

    Ding, Kai

    The main function of the respiratory system is gas exchange. Since many disease or injury conditions can cause biomechanical or material property changes that can alter lung function, there is a great interest in measuring regional lung function and mechanics. In this thesis, we present a technique that uses multiple respiratory-gated CT images of the lung acquired at different levels of inflation with both breath-hold static scans and retrospectively reconstructed 4D dynamic scans, along with non-rigid 3D image registration, to make local estimates of lung tissue function and mechanics. We validate our technique using anatomical landmarks and functional Xe-CT estimated specific ventilation. The major contributions of this thesis include: (1) developing the registration derived regional expansion estimation approach in breath-hold static scans and dynamic 4DCT scans, (2) developing a method to quantify lobar sliding from image registration derived displacement field, (3) developing a method for measurement of radiation-induced pulmonary function change following a course of radiation therapy, (4) developing and validating different ventilation measures in 4DCT. The ability of our technique to estimate regional lung mechanics and function as a surrogate of the Xe-CT ventilation imaging for the entire lung from quickly and easily obtained respiratory-gated images, is a significant contribution to functional lung imaging because of the potential increase in resolution, and large reductions in imaging time, radiation, and contrast agent exposure. Our technique may be useful to detect and follow the progression of lung disease such as COPD, may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy.

  19. Explicit B-spline regularization in diffeomorphic image registration

    PubMed Central

    Tustison, Nicholas J.; Avants, Brian B.

    2013-01-01

    Diffeomorphic mappings are central to image registration due largely to their topological properties and success in providing biologically plausible solutions to deformation and morphological estimation problems. Popular diffeomorphic image registration algorithms include those characterized by time-varying and constant velocity fields, and symmetrical considerations. Prior information in the form of regularization is used to enforce transform plausibility taking the form of physics-based constraints or through some approximation thereof, e.g., Gaussian smoothing of the vector fields [a la Thirion's Demons (Thirion, 1998)]. In the context of the original Demons' framework, the so-called directly manipulated free-form deformation (DMFFD) (Tustison et al., 2009) can be viewed as a smoothing alternative in which explicit regularization is achieved through fast B-spline approximation. This characterization can be used to provide B-spline “flavored” diffeomorphic image registration solutions with several advantages. Implementation is open source and available through the Insight Toolkit and our Advanced Normalization Tools (ANTs) repository. A thorough comparative evaluation with the well-known SyN algorithm (Avants et al., 2008), implemented within the same framework, and its B-spline analog is performed using open labeled brain data and open source evaluation tools. PMID:24409140

  20. Explicit B-spline regularization in diffeomorphic image registration.

    PubMed

    Tustison, Nicholas J; Avants, Brian B

    2013-01-01

    Diffeomorphic mappings are central to image registration due largely to their topological properties and success in providing biologically plausible solutions to deformation and morphological estimation problems. Popular diffeomorphic image registration algorithms include those characterized by time-varying and constant velocity fields, and symmetrical considerations. Prior information in the form of regularization is used to enforce transform plausibility taking the form of physics-based constraints or through some approximation thereof, e.g., Gaussian smoothing of the vector fields [a la Thirion's Demons (Thirion, 1998)]. In the context of the original Demons' framework, the so-called directly manipulated free-form deformation (DMFFD) (Tustison et al., 2009) can be viewed as a smoothing alternative in which explicit regularization is achieved through fast B-spline approximation. This characterization can be used to provide B-spline "flavored" diffeomorphic image registration solutions with several advantages. Implementation is open source and available through the Insight Toolkit and our Advanced Normalization Tools (ANTs) repository. A thorough comparative evaluation with the well-known SyN algorithm (Avants et al., 2008), implemented within the same framework, and its B-spline analog is performed using open labeled brain data and open source evaluation tools.

  1. Hierarchical segmentation-assisted multimodal registration for MR brain images.

    PubMed

    Lu, Huanxiang; Beisteiner, Roland; Nolte, Lutz-Peter; Reyes, Mauricio

    2013-04-01

    Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutual information (PMI). This similarity metric, termed SPMI, enhances the registration accuracy by considering tissue classification probabilities as prior information, which is generated from an expectation maximization (EM) algorithm. Diffeomorphic demons is then adopted as the registration model and is optimized in a hierarchical framework (H-SPMI) based on different levels of anatomical structure as prior knowledge. The proposed method is evaluated using Brainweb synthetic data and clinical fMRI images. Both qualitative and quantitative assessment were performed as well as a sensitivity analysis to the segmentation error. Compared to the pure intensity-based approaches which only maximize mutual information, we show that the proposed algorithm provides significantly better accuracy on both synthetic and clinical data.

  2. Three-dimensional image registration as a tool for forensic odontology: a preliminary investigation.

    PubMed

    Abduo, Jaafar; Bennamoun, Mohammed

    2013-09-01

    Frequently, human dentition is utilized for victim identification. This report introduces a new human identification technique based on the principle of 3-dimensional (3D) image registration of the dentition. With the aid of a dry human skull, postmortem (PM) and antemortem (AM) scenarios were assumed. The skull in its initial state composed the PM scenario. Virtual 3D PM images were reconstructed from medical CT images. The AM scenario was achieved by reconstructing the missing hard and soft tissues of the skull by dental waxes. Virtual 3D AM images were obtained by laser surface scanning. The virtual PM and AM images were registered at 2 levels: arch level and tooth level. At arch level, the deviation between the 2 images was 0.147 mm for the maxilla and 0.166 mm for the mandible. At tooth level, the deviation average ranged from 0.077 to 0.237 mm. Qualitatively, even image fit was observed for the arches, intact teeth, and teeth with minimal deficiencies. As the tooth defect increased, the alignment discrepancy increased. It is concluded that 3D image registration ensured an accurate superimposition of the 3D images and can be used as a robust tool for forensic identification.

  3. Image Quality Improvement in Adaptive Optics Scanning Laser Ophthalmoscopy Assisted Capillary Visualization Using B-spline-based Elastic Image Registration

    PubMed Central

    Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa

    2013-01-01

    Purpose To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. Methods AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. Results All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Conclusions Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively. PMID:24265796

  4. Multimodality imaging combination in small animal via point-based registration

    NASA Astrophysics Data System (ADS)

    Yang, C. C.; Wu, T. H.; Lin, M. H.; Huang, Y. H.; Guo, W. Y.; Chen, C. L.; Wang, T. C.; Yin, W. H.; Lee, J. S.

    2006-12-01

    We present a system of image co-registration in small animal study. Marker-based registration is chosen because of its considerable advantage that the fiducial feature is independent of imaging modality. We also experimented with different scanning protocols and different fiducial marker sizes to improve registration accuracy. Co-registration was conducted using rat phantom fixed by stereotactic frame. Overall, the co-registration accuracy was in sub-millimeter level and close to intrinsic system error. Therefore, we conclude that the system is an accurate co-registration method to be used in small animal studies.

  5. Intelligent distributed medical image management

    NASA Astrophysics Data System (ADS)

    Garcia, Hong-Mei C.; Yun, David Y.

    1995-05-01

    The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.

  6. Miniature stereoscopic video system provides real-time 3D registration and image fusion for minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Yaron, Avi; Bar-Zohar, Meir; Horesh, Nadav

    2007-02-01

    Sophisticated surgeries require the integration of several medical imaging modalities, like MRI and CT, which are three-dimensional. Many efforts are invested in providing the surgeon with this information in an intuitive & easy to use manner. A notable development, made by Visionsense, enables the surgeon to visualize the scene in 3D using a miniature stereoscopic camera. It also provides real-time 3D measurements that allow registration of navigation systems as well as 3D imaging modalities, overlaying these images on the stereoscopic video image in real-time. The real-time MIS 'see through tissue' fusion solutions enable the development of new MIS procedures in various surgical segments, such as spine, abdomen, cardio-thoracic and brain. This paper describes 3D surface reconstruction and registration methods using Visionsense camera, as a step toward fully automated multi-modality 3D registration.

  7. A one-bit approach for image registration

    NASA Astrophysics Data System (ADS)

    Nguyen, An Hung; Pickering, Mark; Lambert, Andrew

    2015-02-01

    Motion estimation or optic flow computation for automatic navigation and obstacle avoidance programs running on Unmanned Aerial Vehicles (UAVs) is a challenging task. These challenges come from the requirements of real-time processing speed and small light-weight image processing hardware with very limited resources (especially memory space) embedded on the UAVs. Solutions towards both simplifying computation and saving hardware resources have recently received much interest. This paper presents an approach for image registration using binary images which addresses these two requirements. This approach uses translational information between two corresponding patches of binary images to estimate global motion. These low bit-resolution images require a very small amount of memory space to store them and allow simple logic operations such as XOR and AND to be used instead of more complex computations such as subtractions and multiplications.

  8. Using image synthesis for multi-channel registration of different image modalities.

    PubMed

    Chen, Min; Jog, Amod; Carass, Aaron; Prince, Jerry L

    2015-02-21

    This paper presents a multi-channel approach for performing registration between magnetic resonance (MR) images with different modalities. In general, a multi-channel registration cannot be used when the moving and target images do not have analogous modalities. In this work, we address this limitation by using a random forest regression technique to synthesize the missing modalities from the available ones. This allows a single channel registration between two different modalities to be converted into a multi-channel registration with two mono-modal channels. To validate our approach, two openly available registration algorithms and five cost functions were used to compare the label transfer accuracy of the registration with (and without) our multi-channel synthesis approach. Our results show that the proposed method produced statistically significant improvements in registration accuracy (at an α level of 0.001) for both algorithms and all cost functions when compared to a standard multi-modal registration using the same algorithms with mutual information.

  9. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery

    PubMed Central

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-01-01

    Purpose Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The

  10. MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a

  11. A review of biomechanically informed breast image registration

    NASA Astrophysics Data System (ADS)

    Hipwell, John H.; Vavourakis, Vasileios; Han, Lianghao; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J.

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice.

  12. Robust image registration using adaptive coherent point drift method

    NASA Astrophysics Data System (ADS)

    Yang, Lijuan; Tian, Zheng; Zhao, Wei; Wen, Jinhuan; Yan, Weidong

    2016-04-01

    Coherent point drift (CPD) method is a powerful registration tool under the framework of the Gaussian mixture model (GMM). However, the global spatial structure of point sets is considered only without other forms of additional attribute information. The equivalent simplification of mixing parameters and the manual setting of the weight parameter in GMM make the CPD method less robust to outlier and have less flexibility. An adaptive CPD method is proposed to automatically determine the mixing parameters by embedding the local attribute information of features into the construction of GMM. In addition, the weight parameter is treated as an unknown parameter and automatically determined in the expectation-maximization algorithm. In image registration applications, the block-divided salient image disk extraction method is designed to detect sparse salient image features and local self-similarity is used as attribute information to describe the local neighborhood structure of each feature. The experimental results on optical images and remote sensing images show that the proposed method can significantly improve the matching performance.

  13. Fluid Registration of Diffusion Tensor Images Using Information Theory

    PubMed Central

    Chiang, Ming-Chang; Leow, Alex D.; Klunder, Andrea D.; Dutton, Rebecca A.; Barysheva, Marina; Rose, Stephen E.; McMahon, Katie L.; de Zubicaray, Greig I.; Toga, Arthur W.; Thompson, Paul M.

    2008-01-01

    We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data. PMID:18390342

  14. 3D/2D image registration: the impact of X-ray views and their number.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2007-01-01

    An important part of image-guided radiation therapy or surgery is registration of a three-dimensional (3D) preoperative image to two-dimensional (2D) images of the patient. It is expected that the accuracy and robustness of a 3D/2D image registration method do not depend solely on the registration method itself but also on the number and projections (views) of intraoperative images. In this study, we systematically investigate these factors by using registered image data, comprising of CT and X-ray images of a cadaveric lumbar spine phantom and the recently proposed 3D/2D registration method. The results indicate that the proportion of successful registrations (robustness) significantly increases when more X-ray images are used for registration.

  15. Iris-based cyclotorsional image alignment method for wavefront registration.

    PubMed

    Chernyak, Dimitri A

    2005-12-01

    In refractive surgery, especially wavefront-guided refractive surgery, correct registration of the treatment to the cornea is of paramount importance. The specificity of the custom ablation formula requires that the ablation be applied to the cornea only when it has been precisely aligned with the mapped area. If, however, the eye has rotated between measurement and ablation, and this cyclotorsion is not compensated for, the rotational misalignment could impair the effectiveness of the refractive surgery. To achieve precise registration, a noninvasive method for torsional rotational alignment of the captured wavefront image to the patient's eyes at surgery has been developed. This method applies a common coordinate system to the wavefront and the eye. Video cameras on the laser and wavefront devices precisely establish the spatial relationship between the optics of the eye and the natural features of the iris, enabling the surgeon to identify and compensate for cyclotorsional eye motion, whatever its cause.

  16. Medical image processing on the GPU - past, present and future.

    PubMed

    Eklund, Anders; Dufort, Paul; Forsberg, Daniel; LaConte, Stephen M

    2013-12-01

    Graphics processing units (GPUs) are used today in a wide range of applications, mainly because they can dramatically accelerate parallel computing, are affordable and energy efficient. In the field of medical imaging, GPUs are in some cases crucial for enabling practical use of computationally demanding algorithms. This review presents the past and present work on GPU accelerated medical image processing, and is meant to serve as an overview and introduction to existing GPU implementations. The review covers GPU acceleration of basic image processing operations (filtering, interpolation, histogram estimation and distance transforms), the most commonly used algorithms in medical imaging (image registration, image segmentation and image denoising) and algorithms that are specific to individual modalities (CT, PET, SPECT, MRI, fMRI, DTI, ultrasound, optical imaging and microscopy). The review ends by highlighting some future possibilities and challenges.

  17. Direct Image-To Registration Using Mobile Sensor Data

    NASA Astrophysics Data System (ADS)

    Kehl, C.; Buckley, S. J.; Gawthorpe, R. L.; Viola, I.; Howell, J. A.

    2016-06-01

    Adding supplementary texture and 2D image-based annotations to 3D surface models is a useful next step for domain specialists to make use of photorealistic products of laser scanning and photogrammetry. This requires a registration between the new camera imagery and the model geometry to be solved, which can be a time-consuming task without appropriate automation. The increasing availability of photorealistic models, coupled with the proliferation of mobile devices, gives users the possibility to complement their models in real time. Modern mobile devices deliver digital photographs of increasing quality, as well as on-board sensor data, which can be used as input for practical and automatic camera registration procedures. Their familiar user interface also improves manual registration procedures. This paper introduces a fully automatic pose estimation method using the on-board sensor data for initial exterior orientation, and feature matching between an acquired photograph and a synthesised rendering of the orientated 3D scene as input for fine alignment. The paper also introduces a user-friendly manual camera registration- and pose estimation interface for mobile devices, based on existing surface geometry and numerical optimisation methods. The article further assesses the automatic algorithm's accuracy compared to traditional methods, and the impact of computational- and environmental parameters. Experiments using urban and geological case studies show a significant sensitivity of the automatic procedure to the quality of the initial mobile sensor values. Changing natural lighting conditions remain a challenge for automatic pose estimation techniques, although progress is presented here. Finally, the automatically-registered mobile images are used as the basis for adding user annotations to the input textured model.

  18. Medical imaging 4

    SciTech Connect

    Loew, M.H. )

    1990-01-01

    This book is covered under the following topics: human visual pattern recognition, fractals, rules, and segments, three-dimensional image processing, MRI, MRI and mammography, clinical applications 1, angiography, image processing systems, image processing poster session.

  19. Image Registration Through The Exploitation Of Perspective Invariant Graphs

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.

    1983-10-01

    This paper describes two new techniques of image registration as applied to scenes consisting of natural terrain. The first technique is a syntactic pattern recognition approach which combines the spatial relationships of a point pattern with point classifications to accurately perform image registration. In this approach, a preprocessor analyzes each image in order to identify points of interest and to classify these points based on statistical features. A classified graph possessing perspective invariant properties is created and is converted into a classification-based grammar string. A local match analysis is performed and the best global match is con-structed. A probability-of-match metric is computed in order to evaluate match confidence. The second technique described is an isomorphic graph matching approach called Mean Neighbors (MN). A MN graph is constructed from a given point pattern taking into account the elliptical projections of real world scenes onto a two dimensional surface. This approach exploits the spatial relationships of the given points of interest but neglects the point classifications used in syntactic processing. A projective, perspective invariant graph is constructed for both the reference and sensed images and a mapping of the coincidence edges occurs. A probability of match metric is used to evaluate the confidence of the best mapping.

  20. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  1. Scintillator requirements for medical imaging

    SciTech Connect

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  2. Medical hyperspectral imaging: a review.

    PubMed

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application.

  3. Medical hyperspectral imaging: a review

    PubMed Central

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  4. Automated medical image segmentation techniques

    PubMed Central

    Sharma, Neeraj; Aggarwal, Lalit M.

    2010-01-01

    Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images. PMID:20177565

  5. SU-E-J-264: Comparison of Two Commercially Available Software Platforms for Deformable Image Registration

    SciTech Connect

    Tuohy, R; Stathakis, S; Mavroidis, P; Bosse, C; Papanikolaou, N

    2014-06-01

    Purpose: To evaluate and compare the deformable image registration algorithms available in the Velocity (Velocity Medical Solutions, Atlanta, GA) and RayStation (RaySearch Americas, Inc., Garden city NY). Methods: Ten consecutive patient cone beam CTs (CBCT) for each fraction were collected. The CBCTs along with the simulation CT were exported to the Velocity and the RayStation software. Each CBCT was registered using deformable image registration to the simulation CT and the resulting deformable vector matrix was generated. Each registration was visually inspected by a physicist and the prescribing physician. The volumes of the critical organs were calculated for each deformable CT and used for comparison. Results: The resulting deformable registrations revealed differences between the two algorithms. These differences were realized when the organs at risk were contoured on each deformed CBCT. Differences in the order of 10% ±30% in volume were observed for bladder, 17 ±21% for rectum and 16±10% for sigmoid. The prostate and PTV volume differences were in the order of 3±5%. The volumetric differences observed had a respective impact on the DVHs of all organs at risk. Differences of 8–10% in the mean dose were observed for all organs above. Conclusion: Deformable registration is a powerful tool that aids in the definition of critical structures and is often used for the evaluation of daily dose delivered to the patient. It should be noted that extended QA should be performed before clinical implementation of the software and the users should be aware of advantages and limitations of the methods.

  6. Automatic parameter selection for feature-based multi-sensor image registration

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Tom, Victor; Webb, Helen; Chao, Alan

    2006-05-01

    Accurate image registration is critical for applications such as precision targeting, geo-location, change-detection, surveillance, and remote sensing. However, the increasing volume of image data is exceeding the current capacity of human analysts to perform manual registration. This image data glut necessitates the development of automated approaches to image registration, including algorithm parameter value selection. Proper parameter value selection is crucial to the success of registration techniques. The appropriate algorithm parameters can be highly scene and sensor dependent. Therefore, robust algorithm parameter value selection approaches are a critical component of an end-to-end image registration algorithm. In previous work, we developed a general framework for multisensor image registration which includes feature-based registration approaches. In this work we examine the problem of automated parameter selection. We apply the automated parameter selection approach of Yitzhaky and Peli to select parameters for feature-based registration of multisensor image data. The approach consists of generating multiple feature-detected images by sweeping over parameter combinations and using these images to generate estimated ground truth. The feature-detected images are compared to the estimated ground truth images to generate ROC points associated with each parameter combination. We develop a strategy for selecting the optimal parameter set by choosing the parameter combination corresponding to the optimal ROC point. We present numerical results showing the effectiveness of the approach using registration of collected SAR data to reference EO data.

  7. Estimation of the uncertainty of elastic image registration with the demons algorithm

    NASA Astrophysics Data System (ADS)

    Hub, M.; Karger, C. P.

    2013-05-01

    The accuracy of elastic image registration is limited. We propose an approach to detect voxels where registration based on the demons algorithm is likely to perform inaccurately, compared to other locations of the same image. The approach is based on the assumption that the local reproducibility of the registration can be regarded as a measure of uncertainty of the image registration. The reproducibility is determined as the standard deviation of the displacement vector components obtained from multiple registrations. These registrations differ in predefined initial deformations. The proposed approach was tested with artificially deformed lung images, where the ground truth on the deformation is known. In voxels where the result of the registration was less reproducible, the registration turned out to have larger average registration errors as compared to locations of the same image, where the registration was more reproducible. The proposed method can show a clinician in which area of the image the elastic registration with the demons algorithm cannot be expected to be accurate.

  8. Image navigation and registration for the geostationary lightning mapper (GLM)

    NASA Astrophysics Data System (ADS)

    van Bezooijen, Roel W. H.; Demroff, Howard; Burton, Gregory; Chu, Donald; Yang, Shu S.

    2016-10-01

    The Geostationary Lightning Mappers (GLM) for the Geostationary Operational Environmental Satellite (GOES) GOES-R series will, for the first time, provide hemispherical lightning information 24 hours a day from longitudes of 75 and 137 degrees west. The first GLM of a series of four is planned for launch in November, 2016. Observation of lightning patterns by GLM holds promise to improve tornado warning lead times to greater than 20 minutes while halving the present false alarm rates. In addition, GLM will improve airline traffic flow management, and provide climatology data allowing us to understand the Earth's evolving climate. The paper describes the method used for translating the pixel position of a lightning event to its corresponding geodetic longitude and latitude, using the J2000 attitude of the GLM mount frame reported by the spacecraft, the position of the spacecraft, and the alignment of the GLM coordinate frame relative to its mount frame. Because the latter alignment will experience seasonal variation, this alignment is determined daily using GLM background images collected over the previous 7 days. The process involves identification of coastlines in the background images and determination of the alignment change necessary to match the detected coastline with the coastline predicted using the GSHHS database. Registration is achieved using a variation of the Lucas-Kanade algorithm where we added a dither and average technique to improve performance significantly. An innovative water mask technique was conceived to enable self-contained detection of clear coastline sections usable for registration. Extensive simulations using accurate visible images from GOES13 and GOES15 have been used to demonstrate the performance of the coastline registration method, the results of which are presented in the paper.

  9. Post-operative assessment in Deep Brain Stimulation based on multimodal images: registration workflow and validation

    NASA Astrophysics Data System (ADS)

    Lalys, Florent; Haegelen, Claire; Abadie, Alexandre; Jannin, Pierre

    2009-02-01

    Object Movement disorders in Parkinson disease patients may require functional surgery, when medical therapy isn't effective. In Deep Brain Stimulation (DBS) electrodes are implanted within the brain to stimulate deep structures such as SubThalamic Nucleus (STN). This paper describes successive steps for constructing a digital Atlas gathering patient's location of electrodes and contacts for post operative assessment. Materials and Method 12 patients who had undergone bilateral STN DBS have participated to the study. Contacts on post-operative CT scans were automatically localized, based on black artefacts. For each patient, post operative CT images were rigidly registered to pre operative MR images. Then, pre operative MR images were registered to a MR template (super-resolution Collin27 average MRI template). This last registration was the combination of global affine, local affine and local non linear registrations, respectively. Four different studies were performed in order to validate the MR patient to template registration process, based on anatomical landmarks and clinical scores (i.e., Unified Parkinson's disease rating Scale). Visualisation software was developed for displaying into the template images the stimulated contacts represented as cylinders with a colour code related to the improvement of the UPDRS. Results The automatic contact localization algorithm was successful for all the patients. Validation studies for the registration process gave a placement error of 1.4 +/- 0.2 mm and coherence with UPDRS scores. Conclusion The developed visualization tool allows post-operative assessment for previous interventions. Correlation with additional clinical scores will certainly permit to learn more about DBS and to better understand clinical side-effects.

  10. Registration and Fusion of Multiple Source Remotely Sensed Image Data

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline

    2004-01-01

    Earth and Space Science often involve the comparison, fusion, and integration of multiple types of remotely sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, global coverage of an area at multiple resolutions, map updating or validation of new instruments, as well as integration of data provided by multiple instruments carried on multiple platforms, e.g. in spacecraft constellations or fleets of planetary rovers. Our focus is on developing methods to perform fast, accurate and automatic image registration and fusion. General methods for automatic image registration are being reviewed and evaluated. Various choices for feature extraction, feature matching and similarity measurements are being compared, including wavelet-based algorithms, mutual information and statistically robust techniques. Our work also involves studies related to image fusion and investigates dimension reduction and co-kriging for application-dependent fusion. All methods are being tested using several multi-sensor datasets, acquired at EOS Core Sites, and including multiple sensors such as IKONOS, Landsat-7/ETM+, EO1/ALI and Hyperion, MODIS, and SeaWIFS instruments. Issues related to the coregistration of data from the same platform (i.e., AIRS and MODIS from Aqua) or from several platforms of the A-train (i.e., MLS, HIRDLS, OMI from Aura with AIRS and MODIS from Terra and Aqua) will also be considered.

  11. Dense deformation field estimation for brain intraoperative images registration

    NASA Astrophysics Data System (ADS)

    De Craene, Mathieu S.; du Bois d'Aische, Aloys; Talos, Ion-Florin; Ferrant, Matthieu; Black, Peter M.; Jolesz, Ferenc; Kikinis, Ron; Macq, Benoit; Warfield, Simon K.

    2004-05-01

    A new fast non rigid registration algorithm is presented. The algorithm estimates a dense deformation field by optimizing a criterion that measures image similarity by mutual information and regularizes with a linear elastic energy term. The optimal deformation field is found using a Simultaneous Perturbation Stochastic Approximation to the gradient. The implementation is parallelized for symmetric multi-processor architectures. This algorithm was applied to capture non-rigid brain deformations that occur during neurosurgery. Segmentation of the intra-operative data is not required but preoperative segmentation of the brain allows the algorithm to be robust to artifacts due to the craniotomy.

  12. Image registration and averaging of low laser power two-photon fluorescence images of mouse retina

    PubMed Central

    Alexander, Nathan S.; Palczewska, Grazyna; Stremplewski, Patrycjusz; Wojtkowski, Maciej; Kern, Timothy S.; Palczewski, Krzysztof

    2016-01-01

    Two-photon fluorescence microscopy (TPM) is now being used routinely to image live cells for extended periods deep within tissues, including the retina and other structures within the eye . However, very low laser power is a requirement to obtain TPM images of the retina safely. Unfortunately, a reduction in laser power also reduces the signal-to-noise ratio of collected images, making it difficult to visualize structural details. Here, image registration and averaging methods applied to TPM images of the eye in living animals (without the need for auxiliary hardware) demonstrate the structural information obtained with laser power down to 1 mW. Image registration provided between 1.4% and 13.0% improvement in image quality compared to averaging images without registrations when using a high-fluorescence template, and between 0.2% and 12.0% when employing the average of collected images as the template. Also, a diminishing return on image quality when more images were used to obtain the averaged image is shown. This work provides a foundation for obtaining informative TPM images with laser powers of 1 mW, compared to previous levels for imaging mice ranging between 6.3 mW [PalczewskaG., Nat Med. 20, 785 (2014)24952647 SharmaR., Biomed. Opt. Express 4, 1285 (2013)24009992]. PMID:27446697

  13. Multi-atlas segmentation with particle-based group-wise image registration

    PubMed Central

    Lee, Joohwi; Lyu, Ilwoo; Styner, Martin

    2014-01-01

    We propose a novel multi-atlas segmentation method that employs a group-wise image registration method for the brain segmentation on rodent magnetic resonance (MR) images. The core element of the proposed segmentation is the use of a particle-guided image registration method that extends the concept of particle correspondence into the volumetric image domain. The registration method performs a group-wise image registration that simultaneously registers a set of images toward the space defined by the average of particles. The particle-guided image registration method is robust with low signal-to-noise ratio images as well as differing sizes and shapes observed in the developing rodent brain. Also, the use of an implicit common reference frame can prevent potential bias induced by the use of a single template in the segmentation process. We show that the use of a particle guided-image registration method can be naturally extended to a novel multi-atlas segmentation method and improves the registration method to explicitly use the provided template labels as an additional constraint. In the experiment, we show that our segmentation algorithm provides more accuracy with multi-atlas label fusion and stability against pair-wise image registration. The comparison with previous group-wise registration method is provided as well. PMID:25075158

  14. Trial Registration for Public Trust: Making the Case for Medical Devices

    PubMed Central

    2007-01-01

    Recently, several pharmaceutical companies have been shown to have withheld negative clinical trial results from the public. These incidents have resulted in a concerted global effort to register all trials at inception, so that all subsequent results can be tracked regardless of whether they are positive or negative. These trial registration policies have been driven in large part by concern about the pharmaceutical sector. The medical device industry is much smaller, and different from the pharmaceutical industry in some fundamental ways. This paper examines the issues surrounding registration of device trials and argues that these differences with pharmaceutical should not exempt device trials from registration. PMID:18095047

  15. Trial registration for public trust: making the case for medical devices.

    PubMed

    Sim, Ida

    2008-01-01

    Recently, several pharmaceutical companies have been shown to have withheld negative clinical trial results from the public. These incidents have resulted in a concerted global effort to register all trials at inception, so that all subsequent results can be tracked regardless of whether they are positive or negative. These trial registration policies have been driven in large part by concern about the pharmaceutical sector. The medical device industry is much smaller, and different from the pharmaceutical industry in some fundamental ways. This paper examines the issues surrounding registration of device trials and argues that these differences with pharmaceutical should not exempt device trials from registration.

  16. Algorithm for image registration and clutter and jitter noise reduction

    SciTech Connect

    Brower, K.L.

    1997-02-01

    This paper presents an analytical, computational method whereby two-dimensional images of an optical source represented in terms of a set of detector array signals can be registered with respect to a reference set of detector array signals. The detector image is recovered from the detector array signals and represented over a local region by a fourth order, two-dimensional taylor series. This local detector image can then be registered by a general linear transformation with respect to a reference detector image. The detector signal in the reference frame is reconstructed by integrating this detector image over the respective reference pixel. For cases in which the general linear transformation is uncertain by up to plus-or-minus two pixels, the general linear transformation can be determined by least squares fitting the detector image to the reference detector image. This registration process reduces clutter and jitter noise to a level comparable to the electronic noise level of the detector system. Test results with and without electronic noise using an analytical test function are presented.

  17. An Automatic Registration-Fusion Scheme Based on Similarity Measures: An Application to Dental Imaging

    DTIC Science & Technology

    2007-11-02

    calculation of similarity measures between two dental radiographic images to be registered. Moreover, a fusion process has been developed to combine...information from registered dental images. Result on clinical data reveals the advantageous performance of the proposed automatic registration method...registration approach outperforms despite the fuzzy dental boundaries and the lack of characteristic edges of the radiographic images. These preliminary

  18. Image Registration of High-Resolution Uav Data: the New Hypare Algorithm

    NASA Astrophysics Data System (ADS)

    Bahr, T.; Jin, X.; Lasica, R.; Giessel, D.

    2013-08-01

    Unmanned aerial vehicles play an important role in the present-day civilian and military intelligence. Equipped with a variety of sensors, such as SAR imaging modes, E/O- and IR sensor technology, they are due to their agility suitable for many applications. Hence, the necessity arises to use fusion technologies and to develop them continuously. Here an exact image-to-image registration is essential. It serves as the basis for important image processing operations such as georeferencing, change detection, and data fusion. Therefore we developed the Hybrid Powered Auto-Registration Engine (HyPARE). HyPARE combines all available spatial reference information with a number of image registration approaches to improve the accuracy, performance, and automation of tie point generation and image registration. We demonstrate this approach by the registration of 39 still images from a high-resolution image stream, acquired with a Aeryon Photo3S™ camera on an Aeryon Scout micro-UAV™.

  19. SU-E-J-29: Automatic Image Registration Performance of Three IGRT Systems for Prostate Radiotherapy

    SciTech Connect

    Barber, J; Sykes, J; Holloway, L; Thwaites, D

    2015-06-15

    Purpose: To compare the performance of an automatic image registration algorithm on image sets collected on three commercial image guidance systems, and explore its relationship with imaging parameters such as dose and sharpness. Methods: Images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on the CBCT systems of Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings; and MVCT on a Tomotherapy Hi-ART accelerator with a range of pitch. Using the 6D correlation ratio algorithm of XVI, each image was registered to a mask of the prostate volume with a 5 mm expansion. Registrations were repeated 100 times, with random initial offsets introduced to simulate daily matching. Residual registration errors were calculated by correcting for the initial phantom set-up error. Automatic registration was also repeated after reconstructing images with different sharpness filters. Results: All three systems showed good registration performance, with residual translations <0.5mm (1σ) for typical clinical dose and reconstruction settings. Residual rotational error had larger range, with 0.8°, 1.2° and 1.9° for 1σ in XVI, OBI and Tomotherapy respectively. The registration accuracy of XVI images showed a strong dependence on imaging dose, particularly below 4mGy. No evidence of reduced performance was observed at the lowest dose settings for OBI and Tomotherapy, but these were above 4mGy. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 10% of registrations. Changing the sharpness of image reconstruction had no significant effect on registration performance. Conclusions: Using the present automatic image registration algorithm, all IGRT systems tested provided satisfactory registrations for clinical use, within a normal range of acquisition settings.

  20. A novel point cloud registration using 2D image features

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Chou; Tai, Yen-Chou; Lee, Jhong-Jin; Chen, Yong-Sheng

    2017-01-01

    Since a 3D scanner only captures a scene of a 3D object at a time, a 3D registration for multi-scene is the key issue of 3D modeling. This paper presents a novel and an efficient 3D registration method based on 2D local feature matching. The proposed method transforms the point clouds into 2D bearing angle images and then uses the 2D feature based matching method, SURF, to find matching pixel pairs between two images. The corresponding points of 3D point clouds can be obtained by those pixel pairs. Since the corresponding pairs are sorted by their distance between matching features, only the top half of the corresponding pairs are used to find the optimal rotation matrix by the least squares approximation. In this paper, the optimal rotation matrix is derived by orthogonal Procrustes method (SVD-based approach). Therefore, the 3D model of an object can be reconstructed by aligning those point clouds with the optimal transformation matrix. Experimental results show that the accuracy of the proposed method is close to the ICP, but the computation cost is reduced significantly. The performance is six times faster than the generalized-ICP algorithm. Furthermore, while the ICP requires high alignment similarity of two scenes, the proposed method is robust to a larger difference of viewing angle.

  1. Conoscopic holography for image registration: a feasibility study

    NASA Astrophysics Data System (ADS)

    Lathrop, Ray A.; Cheng, Tiffany T.; Webster, Robert J., III

    2009-02-01

    Preoperative image data can facilitate intrasurgical guidance by revealing interior features of opaque tissues, provided image data can be accurately registered to the physical patient. Registration is challenging in organs that are deformable and lack features suitable for use as alignment fiducials (e.g. liver, kidneys, etc.). However, provided intraoperative sensing of surface contours can be accomplished, a variety of rigid and deformable 3D surface registration techniques become applicable. In this paper, we evaluate the feasibility of conoscopic holography as a new method to sense organ surface shape. We also describe potential advantages of conoscopic holography, including the promise of replacing open surgery with a laparoscopic approach. Our feasibility study investigated use of a tracked off-the-shelf conoscopic holography unit to perform a surface scans on several types of biological and synthetic phantom tissues. After first exploring baseline accuracy and repeatability of distance measurements, we performed a number of surface scan experiments on the phantom and ex vivo tissues with a variety of surface properties and shapes. These indicate that conoscopic holography is capable of generating surface point clouds of at least comparable (and perhaps eventually improved) accuracy in comparison to published experimental laser triangulation-based surface scanning results.

  2. A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform

    PubMed Central

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.

    2013-01-01

    Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications. PMID:24308014

  3. A novel image registration method for InISAR imaging system

    NASA Astrophysics Data System (ADS)

    Tian, Biao; Li, Na; Liu, Yang; Tang, Da; Xu, Shiyou; Chen, Zengping

    2014-10-01

    This paper proposes a new image registration method based on grade-by-grade matching in interferometric inverse synthetic aperture radar (InISAR) imaging system using two antennas. The causation and quantitative analysis of the offset between two ISAR images for different antennas along each baseline is analyzed. Strong scatterer centers (SSCs) are extracted from the ISAR images of each antenna by OTSU method firstly. A standard matching is calculated by the image centroid. Then a mapping of region of interest (ROI) and correlation is carried out to get the precise registration. Simulation results demonstrate that the offset between two ISAR images can be compensated effectively when the proposed method is used, achieving a high quality 3D InISAR image consequently.

  4. Medical imaging: the radiation issue.

    PubMed

    Einstein, Andrew J

    2009-06-01

    The collective doses of ionizing radiation to Western populations have risen dramatically in the past three decades. Preliminary data on changes in radiation dose to the US population indicate that this increase has been driven largely by medical imaging, to which cardiovascular imaging modalities-such as nuclear stress testing, invasive coronary angiography, and cardiovascular CT-contribute greatly. Given the putative association between low-dose radiation exposure and cancer risk, which most experts agree is supported by the available evidence, the 'radiation issue' in medical imaging has garnered increasing interest. This opinion piece focuses on changes in the use of and doses from medical imaging, the relationship between radiation dose and cancer risk and the controversy surrounding this subject, and clinical implications of radiation exposure from imaging tests.

  5. Compressive sensing in medical imaging

    PubMed Central

    Graff, Christian G.; Sidky, Emil Y.

    2015-01-01

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed. PMID:25968400

  6. Machine Learning for Medical Imaging.

    PubMed

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. (©)RSNA, 2017.

  7. Digital image registration method based upon binary boundary maps

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.; Andrus, J. F.; Campbell, C. W.

    1974-01-01

    A relatively fast method is presented for matching or registering the digital data of imagery from the same ground scene acquired at different times, or from different multispectral images, sensors, or both. It is assumed that the digital images can be registed by using translations and rotations only, that the images are of the same scale, and that little or no distortion exists between images. It is further assumed that by working with several local areas of the image, the rotational effects in the local areas can be neglected. Thus, by treating the misalignments of local areas as translations, it is possible to determine rotational and translational misalignments for a larger portion of the image containing the local areas. This procedure of determining the misalignment and then registering the data according to the misalignment can be repeated until the desired degree of registration is achieved. The method to be presented is based upon the use of binary boundary maps produced from the raw digital imagery rather than the raw digital data.

  8. Rolled fingerprint construction using MRF-based nonrigid image registration.

    PubMed

    Kwon, Dongjin; Yun, Il Dong; Lee, Sang Uk

    2010-12-01

    This paper proposes a new rolled fingerprint construction approach incorporating a state-of-the-art nonrigid image registration method based upon a Markov random field (MRF) energy model. The proposed method finds dense correspondences between images from a rolled fingerprint sequence and warps the entire fingerprint area to synthesize a rolled fingerprint. This method can generate conceptually more accurate rolled fingerprints by preserving the geometric properties of the finger surface as opposed to ink-based rolled impressions and other existing rolled fingerprint construction methods. To verify the accuracy of the proposed method, various comparative experiments were designed to reveal differences among the rolled construction methods. The results show that the proposed method is significantly superior in various aspects compared to previous approaches.

  9. Deformable image registration for multimodal lung-cancer staging

    NASA Astrophysics Data System (ADS)

    Cheirsilp, Ronnarit; Zang, Xiaonan; Bascom, Rebecca; Allen, Thomas W.; Mahraj, Rickhesvar P. M.; Higgins, William E.

    2016-03-01

    Positron emission tomography (PET) and X-ray computed tomography (CT) serve as major diagnostic imaging modalities in the lung-cancer staging process. Modern scanners provide co-registered whole-body PET/CT studies, collected while the patient breathes freely, and high-resolution chest CT scans, collected under a brief patient breath hold. Unfortunately, no method exists for registering a PET/CT study into the space of a high-resolution chest CT scan. If this could be done, vital diagnostic information offered by the PET/CT study could be brought seamlessly into the procedure plan used during live cancer-staging bronchoscopy. We propose a method for the deformable registration of whole-body PET/CT data into the space of a high-resolution chest CT study. We then demonstrate its potential for procedure planning and subsequent use in multimodal image-guided bronchoscopy.

  10. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery.

    PubMed

    Siewerdsen, J

    2016-06-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: (1) Keyvan Farahani, "Image-guided focused ultrasound surgery and therapy" (2) Jeffrey H. Siewerdsen, "Advances in image registration and reconstruction for image-guided neurosurgery" (3) Tina Kapur, "Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite" (4) Raj Shekhar, "Multimodality image-guided interventions: Multimodality for the rest of us" Learning Objectives: 1. Understand the principles and applications of HIFU in surgical ablation. 2. Learn about recent advances in 3D-2D and 3D deformable image registration in support of surgical safety and precision. 3. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. 4. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. 5. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and

  11. Iterative edge- and wavelet-based image registration of AVHRR and GOES satellite imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; El-Saleous, Nazmi; Vermote, Eric

    1997-01-01

    Most automatic registration methods are either correlation-based, feature-based, or a combination of both. Examples of features which can be utilized for automatic image registration are edges, regions, corners, or wavelet-extracted features. In this paper, we describe two proposed approaches, based on edge or edge-like features, which are very appropriate to highlight regions of interest such as coastlines. The two iterative methods utilize the Normalized Cross-Correlation of edge and wavelet features and are applied to such problems as image-to-map registration, landmarking, and channel-to-channel co-registration, utilizing test data, AVHRR data, as well as GOES image data.

  12. Biomechanical deformable image registration of longitudinal lung CT images using vessel information

    NASA Astrophysics Data System (ADS)

    Cazoulat, Guillaume; Owen, Dawn; Matuszak, Martha M.; Balter, James M.; Brock, Kristy K.

    2016-07-01

    Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Six lung cancer patients previously treated with conventionally fractionated radiotherapy were retrospectively evaluated. Exhale CT scans were obtained at treatment planning and following three weeks of treatment. For each patient, the planning CT was registered to the follow-up CT using Morfeus, a biomechanical model-based deformable registration algorithm. To model the complex response of the lung, an extension to Morfeus has been developed: an initial deformation was estimated with Morfeus consisting of boundary conditions on the chest wall and incorporating a sliding interface with the lungs. It was hypothesized that the addition of boundary conditions based on vessel tree matching would provide a robust reduction of the residual registration error. To achieve this, the vessel trees were segmented on the two images by thresholding a vesselness image based on the Hessian matrix’s eigenvalues. For each point on the reference vessel tree centerline, the displacement vector was estimated by applying a variant of the Demons registration algorithm between the planning CT and the deformed follow-up CT. An expert independently identified corresponding landmarks well distributed in the lung to compute target registration errors (TRE). The TRE was: 5.8+/- 2.9 , 3.4+/- 2.3 and 1.6+/- 1.3 mm after rigid registration, Morfeus and Morfeus with boundary conditions on the vessel tree, respectively. In conclusion, the addition of boundary conditions on the vessels significantly improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these geometrical uncertainties will enable

  13. An automated deformable image registration evaluation of confidence tool

    NASA Astrophysics Data System (ADS)

    Kirby, Neil; Chen, Josephine; Kim, Hojin; Morin, Olivier; Nie, Ke; Pouliot, Jean

    2016-04-01

    Deformable image registration (DIR) is a powerful tool for radiation oncology, but it can produce errors. Beyond this, DIR accuracy is not a fixed quantity and varies on a case-by-case basis. The purpose of this study is to explore the possibility of an automated program to create a patient- and voxel-specific evaluation of DIR accuracy. AUTODIRECT is a software tool that was developed to perform this evaluation for the application of a clinical DIR algorithm to a set of patient images. In brief, AUTODIRECT uses algorithms to generate deformations and applies them to these images (along with processing) to generate sets of test images, with known deformations that are similar to the actual ones and with realistic noise properties. The clinical DIR algorithm is applied to these test image sets (currently 4). From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. In this study, four commercially available DIR algorithms were used to deform a dose distribution associated with a virtual pelvic phantom image set, and AUTODIRECT was used to generate dose uncertainty estimates for each deformation. The virtual phantom image set has a known ground-truth deformation, so the true dose-warping errors of the DIR algorithms were also known. AUTODIRECT predicted error patterns that closely matched the actual error spatial distribution. On average AUTODIRECT overestimated the magnitude of the dose errors, but tuning the AUTODIRECT algorithms should improve agreement. This proof-of-principle test demonstrates the potential for the AUTODIRECT algorithm as an empirical method to predict DIR errors.

  14. On the accuracy of a mutual information algorithm for PET-MR image registration

    NASA Astrophysics Data System (ADS)

    Karaiskos, P.; Malamitsi, J.; Andreou, J.; Prassopoulos, V.; Valotassiou, V.; Laspas, F.; Sandilos, P.; Torrens, M.

    2009-07-01

    Image registration has been increasingly used in radiation diagnosis and treatment planning as a means of information integration from different imaging modalities (e.g. MRI, PET, CT). Especially for brain lesions, accurate 3D registration and fusion of MR and PET images can provide comprehensive information about the patient under study by relating functional information from PET images to the detailed anatomical information available in MR images. However, direct PET-MR image fusion in soft tissue is complicated mainly due to the lack of conspicuous anatomical features in PET images. This study describes the implementation and validation of a mutual information registration algorithm for this purpose. Ten patients with brain lesions underwent MR and PET/CT scanning. MR-PET registration was performed a) based on the well validated MR-CT registration technique and copying the transformation to the PET images derived from the PET/CT scan (MR/PET/CT registration method) and b) directly from the MR and PET images without taking into account the CT images (MR/PET registration method). In order to check the registration accuracy of the MR/PET method, the lesion (target) was contoured in the PET images and it was transferred to the MR images using both the above methods. The MR/PET/CT method served as the gold standard for target contouring. Target contours derived by the MR/PET method were compared with the gold standard target contours for each patient and the deviation between the two contours was used to estimate the accuracy of the PET-MR registration method. This deviation was less than 3 mm (i.e. comparable to the imaging voxel of the PET/CT scanning) for 9/10 of the cases studied. Results show that the mutual information algorithm used is able to perform the PET-MR registration reliably and accurately.

  15. Diffeomorphic demons: efficient non-parametric image registration.

    PubMed

    Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas

    2009-03-01

    We propose an efficient non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. We provide strong theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage for the symmetric forces variant of the demons algorithm. We show on controlled experiments that this advantage is confirmed in practice and yields a faster convergence. In the second part of this paper, we adapt the optimization procedure underlying the demons algorithm to a space of diffeomorphic transformations. In contrast to many diffeomorphic registration algorithms, our solution is computationally efficient since in practice it only replaces an addition of displacement fields by a few compositions. Our experiments show that in addition to being diffeomorphic, our algorithm provides results that are similar to the ones from the demons algorithm but with transformations that are much smoother and closer to the gold standard, available in controlled experiments, in terms of Jacobians.

  16. A multi-scale registration of urban aerial image with airborne lidar data

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He

    2015-11-01

    This paper presented a multi-scale progressive registration method of airborne LiDAR data with aerial image. The cores of the proposed method lie in the coarse registration with road networks and the fine registration method using regularized building corners. During the two-stage registration, the exterior orientation parameters (EOP) are continually refined. By validation of the actual flight data of Dunhuang, the experimental result shows that the proposed method can obtain accurate results with low-precision initial EOP, also improve the automatic degree of registration.

  17. Medical imaging V

    SciTech Connect

    Loew, M.H.

    1991-01-01

    This book is covered under the following topics: preprocessing and enhancement 1-3; segmentation, feature extraction, and detection 1-2; hardware and software systems for display; and user interface; MRI; MRI and PET; 3-D; image reconstruction, modeling, description, and coding; and knowledge-based methods.

  18. Medical Imaging Informatics.

    PubMed

    Hsu, William; El-Saden, Suzie; Taira, Ricky K

    2016-01-01

    Imaging is one of the most important sources of clinically observable evidence that provides broad coverage, can provide insight on low-level scale properties, is noninvasive, has few side effects, and can be performed frequently. Thus, imaging data provides a viable observable that can facilitate the instantiation of a theoretical understanding of a disease for a particular patient context by connecting imaging findings to other biologic parameters in the model (e.g., genetic, molecular, symptoms, and patient survival). These connections can help inform their possible states and/or provide further coherent evidence. The field of radiomics is particularly dedicated to this task and seeks to extract quantifiable measures wherever possible. Example properties of investigation include genotype characterization, histopathology parameters, metabolite concentrations, vascular proliferation, necrosis, cellularity, and oxygenation. Important issues within the field include: signal calibration, spatial calibration, preprocessing methods (e.g., noise suppression, motion correction, and field bias correction), segmentation of target anatomic/pathologic entities, extraction of computed features, and inferencing methods connecting imaging features to biological states.

  19. Rotation and translation registration of bandlimited interferometric images using a chirp z-transform

    NASA Astrophysics Data System (ADS)

    Iacchetta, Alexander S.; Fienup, James R.; Leisawitz, David T.

    2016-07-01

    Image reconstruction algorithms for wide-field spatio-spectral interferometry require knowledge of registration parameters associated with low-resolution image measurements at various baseline orientations, such that the images can be registered to within the fine resolution of the final desired image. We have developed an image registration procedure that combines a nonlinear optimization algorithm with the sub-pixel precision of chirp z-transform resampling, particularly for rotation and translation, of bandlimited images with non-radially symmetric aberrations. We show the accuracy of this image registration technique on simulated images that have a complexity comparable to scenes observed experimentally with NASA's wide-field imaging interferometry testbed. Registration to within a tenth of a pixel for translation and within three arcminutes for rotation is demonstrated at the largest simulated noise levels.

  20. 3D-2D registration of cerebral angiograms: a method and evaluation on clinical images.

    PubMed

    Mitrovic, Uroš; Špiclin, Žiga; Likar, Boštjan; Pernuš, Franjo

    2013-08-01

    Endovascular image-guided interventions (EIGI) involve navigation of a catheter through the vasculature followed by application of treatment at the site of anomaly using live 2D projection images for guidance. 3D images acquired prior to EIGI are used to quantify the vascular anomaly and plan the intervention. If fused with the information of live 2D images they can also facilitate navigation and treatment. For this purpose 3D-2D image registration is required. Although several 3D-2D registration methods for EIGI achieve registration accuracy below 1 mm, their clinical application is still limited by insufficient robustness or reliability. In this paper, we propose a 3D-2D registration method based on matching a 3D vasculature model to intensity gradients of live 2D images. To objectively validate 3D-2D registration methods, we acquired a clinical image database of 10 patients undergoing cerebral EIGI and established "gold standard" registrations by aligning fiducial markers in 3D and 2D images. The proposed method had mean registration accuracy below 0.65 mm, which was comparable to tested state-of-the-art methods, and execution time below 1 s. With the highest rate of successful registrations and the highest capture range the proposed method was the most robust and thus a good candidate for application in EIGI.

  1. Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy

    SciTech Connect

    Paquin, Dana; Levy, Doron; Xing Lei

    2009-01-15

    Adaptive radiation therapy (ART) is the incorporation of daily images in the radiotherapy treatment process so that the treatment plan can be evaluated and modified to maximize the amount of radiation dose to the tumor while minimizing the amount of radiation delivered to healthy tissue. Registration of planning images with daily images is thus an important component of ART. In this article, the authors report their research on multiscale registration of planning computed tomography (CT) images with daily cone beam CT (CBCT) images. The multiscale algorithm is based on the hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [Multiscale Model. Simul. 2(4), pp. 554-579 (2004)]. Registration is achieved by decomposing the images to be registered into a series of scales using the (BV, L{sup 2}) decomposition and initially registering the coarsest scales of the image using a landmark-based registration algorithm. The resulting transformation is then used as a starting point to deformably register the next coarse scales with one another. This procedure is iterated at each stage using the transformation computed by the previous scale registration as the starting point for the current registration. The authors present the results of studies of rectum, head-neck, and prostate CT-CBCT registration, and validate their registration method quantitatively using synthetic results in which the exact transformations our known, and qualitatively using clinical deformations in which the exact results are not known.

  2. Stereoscopic medical imaging collaboration system

    NASA Astrophysics Data System (ADS)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  3. Atlas-based automatic mouse brain image segmentation revisited: model complexity vs. image registration.

    PubMed

    Bai, Jordan; Trinh, Thi Lan Huong; Chuang, Kai-Hsiang; Qiu, Anqi

    2012-07-01

    Although many atlas-based segmentation methods have been developed and validated for the human brain, limited work has been done for the mouse brain. This paper investigated roles of image registration and segmentation model complexity in the mouse brain segmentation. We employed four segmentation models [single atlas, multiatlas, simultaneous truth and performance level estimation (STAPLE) and Markov random field (MRF) via four different image registration algorithms (affine, B-spline free-form deformation (FFD), Demons and large deformation diffeomorphic metric mapping (LDDMM)] for delineating 19 structures from in vivo magnetic resonance microscopy images. We validated their accuracies against manual segmentation. Our results revealed that LDDMM outperformed Demons, FFD and affine in any of the segmentation models. Under the same registration, increasing segmentation model complexity from single atlas to multiatlas, STAPLE or MRF significantly improved the segmentation accuracy. Interestingly, the multiatlas-based segmentation using nonlinear registrations (FFD, Demons and LDDMM) had similar performance to their STAPLE counterparts, while they both outperformed their MRF counterparts. Furthermore, when the single-atlas affine segmentation was used as reference, the improvement due to nonlinear registrations (FFD, Demons and LDDMM) in the single-atlas segmentation model was greater than that due to increasing model complexity (multiatlas, STAPLE and MRF affine segmentation). Hence, we concluded that image registration plays a more crucial role in the atlas-based automatic mouse brain segmentation as compared to model complexity. Multiple atlases with LDDMM can best improve the segmentation accuracy in the mouse brain among all segmentation models tested in this study.

  4. An Experimental Study on Registration Three-Dimensional Range Images Using Range and Intensity Data

    NASA Astrophysics Data System (ADS)

    Altuntas, C.

    2011-04-01

    Laser scanner is noncontact instrument to measurement of spatial data. It measures object surfaces as point series and visualize as point cloud. One of the important steps on processes of laser scanning data is the registration of point clouds relation to common coordinate system. Many interactive and automatic methods have been developed for point cloud registration so far. The automatic methods are applied with range data of laser scanner or image data of sensor combination camera. The registration by range data is mostly depend object geometry. If scan surface is deprived from geometrical details, conjugate points can not be found to compute registration parameters between point clouds. In that case, intensity data of laser points can be used for registration. In this study, intensity image was created from laser scanner data and the registration parameters were computed with keypoints extracted by SIFT method from these images. The results were also compared with the iterative closest point (ICP) method.

  5. SU-E-J-42: Customized Deformable Image Registration Using Open-Source Software SlicerRT

    SciTech Connect

    Gaitan, J Cifuentes; Chin, L; Pignol, J; Kirby, N; Pouliot, J; Lasso, A; Pinter, C; Fichtinger, G

    2014-06-01

    Purpose: SlicerRT is a flexible platform that allows the user to incorporate the necessary images registration and processing tools to improve clinical workflow. This work validates the accuracy and the versatility of the deformable image registration algorithm of the free open-source software SlicerRT using a deformable physical pelvic phantom versus available commercial image fusion algorithms. Methods: Optical camera images of nonradiopaque markers implanted in an anatomical pelvic phantom were used to measure the ground-truth deformation and evaluate the theoretical deformations for several DIR algorithms. To perform the registration, full and empty bladder computed tomography (CT) images of the phantom were obtained and used as fixed and moving images, respectively. The DIR module, found in SlicerRT, used a B-spline deformable image registration with multiple optimization parameters that allowed customization of the registration including a regularization term that controlled the amount of local voxel displacement. The virtual deformation field at the center of the phantom was obtained and compared to the experimental ground-truth values. The parameters of SlicerRT were then varied to improve spatial accuracy. To quantify image similarity, the mean absolute difference (MAD) parameter using Hounsfield units was calculated. In addition, the Dice coefficient of the contoured rectum was evaluated to validate the strength of the algorithm to transfer anatomical contours. Results: Overall, SlicerRT achieved one of the lowest MAD values across the algorithm spectrum, but slightly smaller mean spatial errors in comparison to MIM software (MIM). On the other hand, SlicerRT created higher mean spatial errors than Velocity Medical Solutions (VEL), although obtaining an improvement on the DICE to 0.91. The large spatial errors were attributed to the poor contrast in the prostate bladder interface of the phantom. Conclusion: Based phantom validation, SlicerRT is capable of

  6. Medical gamma ray imaging

    DOEpatents

    Osborne, Louis S.; Lanza, Richard C.

    1984-01-01

    A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.

  7. Automatic landmark generation for deformable image registration evaluation for 4D CT images of lung

    NASA Astrophysics Data System (ADS)

    Vickress, J.; Battista, J.; Barnett, R.; Morgan, J.; Yartsev, S.

    2016-10-01

    Deformable image registration (DIR) has become a common tool in medical imaging across both diagnostic and treatment specialties, but the methods used offer varying levels of accuracy. Evaluation of DIR is commonly performed using manually selected landmarks, which is subjective, tedious and time consuming. We propose a semi-automated method that saves time and provides accuracy comparable to manual selection. Three landmarking methods including manual (with two independent observers), scale invariant feature transform (SIFT), and SIFT with manual editing (SIFT-M) were tested on 10 thoracic 4DCT image studies corresponding to the 0% and 50% phases of respiration. Results of each method were evaluated against a gold standard (GS) landmark set comparing both mean and proximal landmark displacements. The proximal method compares the local deformation magnitude between a test landmark pair and the closest GS pair. Statistical analysis was done using an intra class correlation (ICC) between test and GS displacement values. The creation time per landmark pair was 22, 34, 2.3, and 4.3 s for observers 1 and 2, SIFT, and SIFT-M methods respectively. Across 20 lungs from the 10 CT studies, the ICC values between the GS and observer 1 and 2, SIFT, and SIFT-M methods were 0.85, 0.85, 0.84, and 0.82 for mean lung deformation, and 0.97, 0.98, 0.91, and 0.96 for proximal landmark deformation, respectively. SIFT and SIFT-M methods have an accuracy that is comparable to manual methods when tested against a GS landmark set while saving 90% of the time. The number and distribution of landmarks significantly affected the analysis as manifested by the different results for mean deformation and proximal landmark deformation methods. Automatic landmark methods offer a promising alternative to manual landmarking, if the quantity, quality and distribution of landmarks can be optimized for the intended application.

  8. A survey of GPU-based medical image computing techniques.

    PubMed

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming; Wang, Defeng

    2012-09-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine.

  9. Hierarchical Multi-modal Image Registration by Learning Common Feature Representations

    PubMed Central

    Ge, Hongkun; Wu, Guorong; Wang, Li; Gao, Yaozong

    2016-01-01

    Mutual information (MI) has been widely used for registering images with different modalities. Since most inter-modality registration methods simply estimate deformations in a local scale, but optimizing MI from the entire image, the estimated deformations for certain structures could be dominated by the surrounding unrelated structures. Also, since there often exist multiple structures in each image, the intensity correlation between two images could be complex and highly nonlinear, which makes global MI unable to precisely guide local image deformation. To solve these issues, we propose a hierarchical inter-modality registration method by robust feature matching. Specifically, we first select a small set of key points at salient image locations to drive the entire image registration. Since the original image features computed from different modalities are often difficult for direct comparison, we propose to learn their common feature representations by projecting them from their native feature spaces to a common space, where the correlations between corresponding features are maximized. Due to the large heterogeneity between two high-dimension feature distributions, we employ Kernel CCA (Canonical Correlation Analysis) to reveal such non-linear feature mappings. Then, our registration method can take advantage of the learned common features to reliably establish correspondences for key points from different modality images by robust feature matching. As more and more key points take part in the registration, our hierarchical feature-based image registration method can efficiently estimate the deformation pathway between two inter-modality images in a global to local manner. We have applied our proposed registration method to prostate CT and MR images, as well as the infant MR brain images in the first year of life. Experimental results show that our method can achieve more accurate registration results, compared to other state-of-the-art image registration

  10. Field-warp registration for biomedical high-resolution thermal infrared images.

    PubMed

    Tangherlini, Andrea; Merla, Arcangelo; Romani, Gian Luca

    2006-01-01

    Biomedical protocols based on thermal infrared images often require effective image registration. Algorithms specifically designed for registration of thermal images are hardly available and use of algorithms designed for other imaging techniques may result poorly reliable. In fact, registration algorithms developed for other biomedical images often require rigid-body assumption or limited range for intensity values. Such assumption may not be applicable for human body thermal images. Therefore, we present here an adaptation of a field-warp based method as a possible solution for thermal image registration. The method was applied for registering images taken from an experimental protocol aimed at comparing total body skin temperature distribution in natural or altered posture. The method appears to be effective into providing a reliable tool for objective intra and inter individual skin temperature distribution comparisons.

  11. Fast interactive registration tool for reproducible multi-spectral imaging for wound healing and treatment evaluation

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke J.; de Roode, Rowland; Verdaasdonk, Rudolf

    2007-02-01

    Multi-spectral images of human tissue taken in-vivo often contain image alignment problems as patients have difficulty in retaining their posture during the acquisition time of 20 seconds. Previously, it has been attempted to correct motion errors with image registration software developed for MR or CT data but these algorithms have been proven to be too slow and erroneous for practical use with multi-spectral images. A new software package has been developed which allows the user to play a decisive role in the registration process as the user can monitor the progress of the registration continuously and force it in the right direction when it starts to fail. The software efficiently exploits videocard hardware to gain speed and to provide a perfect subvoxel correspondence between registration field and display. An 8 bit graphic card was used to efficiently register and resample 12 bit images using the hardware interpolation modes present on the graphic card. To show the feasibility of this new registration process, the software was applied in clinical practice evaluating the dosimetry for psoriasis and KTP laser treatment. The microscopic differences between images of normal skin and skin exposed to UV light proved that an affine registration step including zooming and slanting is critical for a subsequent elastic match to have success. The combination of user interactive registration software with optimal addressing the potentials of PC video card hardware greatly improves the speed of multi spectral image registration.

  12. GOES I/M image navigation and registration

    NASA Technical Reports Server (NTRS)

    Fiorello, J. L., Jr.; Oh, I. H.; Kelly, K. A.; Ranne, L.

    1989-01-01

    Image Navigation and Registration (INR) is the system that will be used on future Geostationary Operational Environmental Satellite (GOES) missions to locate and register radiometric imagery data. It consists of a semiclosed loop system with a ground-based segment that generates coefficients to perform image motion compensation (IMC). The IMC coefficients are uplinked to the satellite-based segment, where they are used to adjust the displacement of the imagery data due to movement of the imaging instrument line-of-sight. The flight dynamics aspects of the INR system is discussed in terms of the attitude and orbit determination, attitude pointing, and attitude and orbit control needed to perform INR. The modeling used in the determination of orbit and attitude is discussed, along with the method of on-orbit control used in the INR system, and various factors that affect stability. Also discussed are potential error sources inherent in the INR system and the operational methods of compensating for these errors.

  13. Knee osteoarthritis image registration: data from the Osteoarthritis Initiative

    NASA Astrophysics Data System (ADS)

    Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.

    2015-03-01

    Knee osteoarthritis is a very common disease, in early stages, changes in joint structures are shown, some of the most common symptoms are; formation of osteophytes, cartilage degradation and joint space reduction, among others. Based on a joint space reduction measurement, Kellgren-Lawrence grading scale, is a very extensive used tool to asses radiological OA knee x-ray images, based on information obtained from these assessments, the objective of this work is to correlate the Kellgren-Lawrence score to the bilateral asymmetry between knees. Using public data from the Osteoarthritis initiative (OAI), a set of images with different Kellgren-Lawrencescores were used to determine a relationship of Kellgren-Lawrence score and the bilateral asymmetry, in order to measure the asymmetry between the knees, the right knee was registered to match the left knee, then a series of similarity metrics, mutual information, correlation, and mean squared error where computed to correlate the deformation (mismatch) of the knees to the Kellgren-Lawrence score. Radiological information was evaluated and scored by OAI radiologist groups. The results of the study suggest an association between Radiological Kellgren-Lawrence score and image registration metrics, mutual information and correlation is higher in the early stages, and mean squared error is higher in advanced stages. This association can be helpful to develop a computer aided grading tool.

  14. Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery

    PubMed Central

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-01-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies. PMID:27335531

  15. Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery.

    PubMed

    Ketcha, M D; De Silva, T; Uneri, A; Kleinszig, G; Vogt, S; Wolinsky, J-P; Siewerdsen, J H

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  16. Automatic masking for robust 3D-2D image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-03-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  17. Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration.

    PubMed

    Ehrhardt, Jan; Werner, René; Schmidt-Richberg, Alexander; Handels, Heinz

    2011-02-01

    Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory

  18. A CNN based Hybrid approach towards automatic image registration

    NASA Astrophysics Data System (ADS)

    Arun, Pattathal V.; Katiyar, Sunil K.

    2013-06-01

    Image registration is a key component of various image processing operations which involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however inability to properly model object shape as well as contextual information had limited the attainable accuracy. In this paper, we propose a framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as Vector Machines, Cellular Neural Network (CNN), SIFT, coreset, and Cellular Automata. CNN has found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using corset optimization The salient features of this work are cellular neural network approach based SIFT feature point optimisation, adaptive resampling and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. System has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. Methodology also illustrated to be effective in providing intelligent interpretation and adaptive resampling. Rejestracja obrazu jest kluczowym składnikiem różnych operacji jego przetwarzania. W ostatnich latach do automatycznej rejestracji obrazu wykorzystuje się metody sztucznej inteligencji, których największą wadą, obniżającą dokładność uzyskanych wyników jest brak możliwości dobrego wymodelowania kształtu i informacji kontekstowych. W niniejszej pracy zaproponowano zasady dokładnego modelowania kształtu oraz adaptacyjnego resamplingu z wykorzystaniem zaawansowanych technik, takich jak Vector Machines (VM), komórkowa sieć neuronowa (CNN), przesiewanie (SIFT), Coreset i

  19. A Novel Ultrasound-Based Registration for Image-Guided Laparoscopic Liver Ablation.

    PubMed

    Fusaglia, Matteo; Tinguely, Pascale; Banz, Vanessa; Weber, Stefan; Lu, Huanxiang

    2016-08-01

    Background Patient-to-image registration is a core process of image-guided surgery (IGS) systems. We present a novel registration approach for application in laparoscopic liver surgery, which reconstructs in real time an intraoperative volume of the underlying intrahepatic vessels through an ultrasound (US) sweep process. Methods An existing IGS system for an open liver procedure was adapted, with suitable instrument tracking for laparoscopic equipment. Registration accuracy was evaluated on a realistic phantom by computing the target registration error (TRE) for 5 intrahepatic tumors. The registration work flow was evaluated by computing the time required for performing the registration. Additionally, a scheme for intraoperative accuracy assessment by visual overlay of the US image with preoperative image data was evaluated. Results The proposed registration method achieved an average TRE of 7.2 mm in the left lobe and 9.7 mm in the right lobe. The average time required for performing the registration was 12 minutes. A positive correlation was found between the intraoperative accuracy assessment and the obtained TREs. Conclusions The registration accuracy of the proposed method is adequate for laparoscopic intrahepatic tumor targeting. The presented approach is feasible and fast and may, therefore, not be disruptive to the current surgical work flow.

  20. MRI-SPECT image registration using multiple MR pulse sequences to examine osteoarthritis of the knee

    NASA Astrophysics Data System (ADS)

    Lynch, John A.; Peterfy, Charles G.; White, David L.; Hawkins, Randall A.; Genant, Harry K.

    1999-05-01

    We have examined whether automated image registration can be used to combine metabolic information from SPECT knee scans with anatomical information from MRI. Ten patients, at risk of developing OA due to meniscal surgery, were examined. 99mTc methyldiphosphonate SPECT, T2-weighted fast spin echo (FSE) MRI, and T1-weighted, 3D fat-suppressed gradient recalled echo (SPGR) MRI images were obtained. Registration was performed using normalized mutual information. For each patient, FSE data was registered to SPGR data, providing a composite MRI image with each voxel represented by two intensities (ISPGR, IFSE). Modifications to the registration algorithm were made to allow registration of SPECT data (one intensity per voxel) to composite MRI data (2 intensities per voxel). Registration sources was assessed by visual inspection of uptake localization over expected anatomical locations, and the absence of uptake over unlikely sites. Three patients were discarded from SPECT-MRI registration tests since they had metallic artifacts that prevented co-registration of MR data. Registration of SPECT to SPGR or FSE data alone proved unreliable, with less than 50% of attempts succeeding. The modified algorithm, treating co-registered SPGR and FSE data as a two-value-per-voxel image, proved most reliable, allowing registration of all patients with no metallic artifacts on MRI.

  1. Comparative study of multimodal intra-subject image registration methods on a publicly available database

    NASA Astrophysics Data System (ADS)

    Miri, Mohammad Saleh; Ghayoor, Ali; Johnson, Hans J.; Sonka, Milan

    2016-03-01

    This work reports on a comparative study between five manual and automated methods for intra-subject pair-wise registration of images from different modalities. The study includes a variety of inter-modal image registrations (MR-CT, PET-CT, PET-MR) utilizing different methods including two manual point-based techniques using rigid and similarity transformations, one automated point-based approach based on Iterative Closest Point (ICP) algorithm, and two automated intensity-based methods using mutual information (MI) and normalized mutual information (NMI). These techniques were employed for inter-modal registration of brain images of 9 subjects from a publicly available dataset, and the results were evaluated qualitatively via checkerboard images and quantitatively using root mean square error and MI criteria. In addition, for each inter-modal registration, a paired t-test was performed on the quantitative results in order to find any significant difference between the results of the studied registration techniques.

  2. Advanced Imaging and Robotics Technologies for Medical Applications

    NASA Astrophysics Data System (ADS)

    Masamune, Ken; Hong, Jaesung

    2011-10-01

    Due to the importance of surgery in the medical field, a large amount of research has been conducted in this area. Imaging and robotics technologies provide surgeons with the advanced eye and hand to perform their surgeries in a safer and more accurate manner. Recently medical images have been utilized in the operating room as well as in the diagnostic stage. If the image to patient registration is done with sufficient accuracy, medical images can be used as "a map" for guidance to the target lesion. However, the accuracy and reliability of the surgical navigation system should be sufficiently verified before applying it to the patient. Along with the development of medical imaging, various medical robots have also been developed. In particular, surgical robots have been researched in order to reach the goal of minimal invasiveness. The most important factors to consider are determining the demand, the strategy for their use in operating procedures, and how it aids patients. In addition to the above considerations, medical doctors and researchers should always think from the patient's point of view. In this article, the latest medical imaging and robotic technologies focusing on surgical applications are reviewed based upon the factors described in the above.

  3. A registration strategy for long spatio-temporal aerial remote sensing image sequence

    NASA Astrophysics Data System (ADS)

    Cao, Yutian; Yan, Dongmei; Li, Jianming; Wang, Gang

    2015-12-01

    A novel registration strategy for aerial image sequence is put forward to adapt to the long spatio-temporal span of the aerial remote sensing imaging. By setting keyframe, this strategy aligns all images in sequence to a unified datum with high registration sustainability and precision. The contrast experiment on different registration strategies is carried out based on SIFT feature matching of mid-infrared aerial sequences. The experiment results show that the proposed strategy performs well on long spatio-temporal sequences with different imaging resolutions and scenes.

  4. Use of the surface-based registration function of computer-aided design/computer-aided manufacturing software in medical simulation software for three-dimensional simulation of orthognathic surgery.

    PubMed

    Kang, Sang-Hoon; Lee, Jae-Won; Kim, Moon-Key

    2013-08-01

    Three-dimensional (3D) computed tomography image models are helpful in reproducing the maxillofacial area; however, they do not necessarily provide an accurate representation of dental occlusion and the state of the teeth. Recent efforts have focused on improvement of dental imaging by replacement of computed tomography with other detailed digital images. Unfortunately, despite the advantages of medical simulation software in dentofacial analysis, diagnosis, and surgical simulation, it lacks adequate registration tools. Following up on our previous report on orthognathic simulation surgery using computer-aided design/computer-aided manufacturing (CAD/CAM) software, we recently used the registration functions of a CAD/CAM platform in conjunction with surgical simulation software. Therefore, we would like to introduce a new technique, which involves use of the registration functions of CAD/CAM software followed by transfer of the images into medical simulation software. This technique may be applicable when using various registration function tools from different software platforms.

  5. Dual-wavelength retinal image registration based on vessel segmentation and optic disc detection

    NASA Astrophysics Data System (ADS)

    Xian, Yong-li; Dai, Yun; Gao, Chun-ming; Du, Rui

    2016-09-01

    The dual-wavelength retinal image registration is one of the critical steps in the spectrophotometric measurements of oxygen saturation in the retinal vasculature. The dual-wavelength images (570 nm and 600 nm) are simultaneously captured by dual-wavelength retinal oximeter based on commercial fundus camera. The retinal oxygen saturation is finally measured after vessel segmentation, image registration and calculation of optical density ratio of the two images. Because the dual-wavelength images are acquired from different optical path, it is necessary to go through image registration before they are used to analyze the oxygen saturation. This paper presents a new approach to dual-wavelength retinal image registration based on vessel segmentation and optic disc detection. Firstly, the multi-scale segmentation algorithm based on the Hessian matrix is used to realize vessel segmentation. Secondly, after optic disc is detected by convergence index filter and the center of the optic disc is obtained by centriod algorithm, the translational difference between the images can be determined. The center of the optic disc is used as the center of rotation, and the registration based on mutual information can be achieved using contour and gray information of vessels through segmented image. So the rotational difference between the images can be determined too. The result shows that the algorithm can provide an accurate registration for the dual-wavelength retinal image.

  6. Fast and accurate registration techniques for affine and nonrigid alignment of MR brain images.

    PubMed

    Liu, Jia-Xiu; Chen, Yong-Sheng; Chen, Li-Fen

    2010-01-01

    Registration of magnetic resonance brain images is a geometric operation that determines point-wise correspondences between two brains. It remains a difficult task due to the highly convoluted structure of the brain. This paper presents novel methods, Brain Image Registration Tools (BIRT), that can rapidly and accurately register brain images by utilizing the brain structure information estimated from image derivatives. Source and target image spaces are related by affine transformation and non-rigid deformation. The deformation field is modeled by a set of Wendland's radial basis functions hierarchically deployed near the salient brain structures. In general, nonlinear optimization is heavily engaged in the parameter estimation for affine/non-rigid transformation and good initial estimates are thus essential to registration performance. In this work, the affine registration is initialized by a rigid transformation, which can robustly estimate the orientation and position differences of brain images. The parameters of the affine/non-rigid transformation are then hierarchically estimated in a coarse-to-fine manner by maximizing an image similarity measure, the correlation ratio, between the involved images. T1-weighted brain magnetic resonance images were utilized for performance evaluation. Our experimental results using four 3-D image sets demonstrated that BIRT can efficiently align images with high accuracy compared to several other algorithms, and thus is adequate to the applications which apply registration process intensively. Moreover, a voxel-based morphometric study quantitatively indicated that accurate registration can improve both the sensitivity and specificity of the statistical inference results.

  7. Comparison of manual vs. automated multimodality (CT-MRI) image registration for brain tumors

    SciTech Connect

    Sarkar, Abhirup; Santiago, Roberto J.; Smith, Ryan; Kassaee, Alireza . E-mail: Kassaee@xrt.upenn.edu

    2005-03-31

    Computed tomgoraphy-magnetic resonance imaging (CT-MRI) registrations are routinely used for target-volume delineation of brain tumors. We clinically use 2 software packages based on manual operation and 1 automated package with 2 different algorithms: chamfer matching using bony structures, and mutual information using intensity patterns. In all registration algorithms, a minimum of 3 pairs of identical anatomical and preferably noncoplanar landmarks is used on each of the 2 image sets. In manual registration, the program registers these points and links the image sets using a 3-dimensional (3D) transformation. In automated registration, the 3 landmarks are used as an initial starting point and further processing is done to complete the registration. Using our registration packages, registration of CT and MRI was performed on 10 patients. We scored the results of each registration set based on the amount of time spent, the accuracy reported by the software, and a final evaluation. We evaluated each software program by measuring the residual error between 'matched' points on the right and left globes and the posterior fossa for fused image slices. In general, manual registration showed higher misalignment between corresponding points compared to automated registration using intensity matching. This error had no directional dependence and was, most of the time, larger for a larger structure in both registration techniques. Automated algorithm based on intensity matching also gave the best results in terms of registration accuracy, irrespective of whether or not the initial landmarks were chosen carefully, when compared to that done using bone matching algorithm. Intensity-matching algorithm required the least amount of user-time and provided better accuracy.

  8. Hyperspectral Imaging for Cancer Surgical Margin Delineation: Registration of Hyperspectral and Histological Images.

    PubMed

    Lu, Guolan; Halig, Luma; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2014-03-12

    The determination of tumor margins during surgical resection remains a challenging task. A complete removal of malignant tissue and conservation of healthy tissue is important for the preservation of organ function, patient satisfaction, and quality of life. Visual inspection and palpation is not sufficient for discriminating between malignant and normal tissue types. Hyperspectral imaging (HSI) technology has the potential to noninvasively delineate surgical tumor margin and can be used as an intra-operative visual aid tool. Since histological images provide the ground truth of cancer margins, it is necessary to warp the cancer regions in ex vivo histological images back to in vivo hyperspectral images in order to validate the tumor margins detected by HSI and to optimize the imaging parameters. In this paper, principal component analysis (PCA) is utilized to extract the principle component bands of the HSI images, which is then used to register HSI images with the corresponding histological image. Affine registration is chosen to model the global transformation. A B-spline free form deformation (FFD) method is used to model the local non-rigid deformation. Registration experiment was performed on animal hyperspectral and histological images. Experimental results from animals demonstrated the feasibility of the hyperspectral imaging method for cancer margin detection.

  9. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    NASA Astrophysics Data System (ADS)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  10. An outline for public registration of clinical trials evaluating medical devices.

    PubMed

    Popp, Richard L; Lorell, Beverly H; Stone, Gregg W; Laskey, Warren; Smith, John J; Kaplan, Aaron V

    2006-04-18

    Public registration of clinical trials is fundamentally important to the integrity of the medical device development process. In addition to fulfilling obligations to those study volunteers, a complete record of trial results provides the general public, clinical community, and medical device manufacturers with a more accurate understanding as to how a specific therapeutic should be used. Although the issues associated with public disclosure of clinical trials are similar to the pharmaceutical industries, the iterative nature of device development introduces differences in what type of information needs to be disclosed during development and commercialization. The Second Dartmouth Device Development Symposium (3D2) held in October 2004 brought together thought leaders representing many of the stakeholders associated with medical device development. This consensus document arising from the proceedings of the 3D2 is offered to provide background to these issues and recommend pathways to implementation of device trial registration.

  11. Statistical properties of Jacobian maps and the realization of unbiased large-deformation nonlinear image registration.

    PubMed

    Leow, Alex D; Yanovsky, Igor; Chiang, Ming-Chang; Lee, Agatha D; Klunder, Andrea D; Lu, Allen; Becker, James T; Davis, Simon W; Toga, Arthur W; Thompson, Paul M

    2007-06-01

    Maps of local tissue compression or expansion are often computed by comparing magnetic resonance imaging (MRI) scans using nonlinear image registration. The resulting changes are commonly analyzed using tensor-based morphometry to make inferences about anatomical differences, often based on the Jacobian map, which estimates local tissue gain or loss. Here, we provide rigorous mathematical analyses of the Jacobian maps, and use themto motivate a new numerical method to construct unbiased nonlinear image registration. First, we argue that logarithmic transformation is crucial for analyzing Jacobian values representing morphometric differences. We then examine the statistical distributions of log-Jacobian maps by defining the Kullback-Leibler (KL) distance on material density functions arising in continuum-mechanical models. With this framework, unbiased image registration can be constructed by quantifying the symmetric KL-distance between the identity map and the resulting deformation. Implementation details, addressing the proposed unbiased registration as well as the minimization of symmetric image matching functionals, are then discussed and shown to be applicable to other registration methods, such as inverse consistent registration. In the results section, we test the proposed framework, as well as present an illustrative application mapping detailed 3-D brain changes in sequential magnetic resonance imaging scans of a patient diagnosed with semantic dementia. Using permutation tests, we show that the symmetrization of image registration statistically reduces skewness in the log-Jacobian map.

  12. Investigation of uncertainties in image registration of cone beam CT to CT on an image-guided radiotherapy system

    NASA Astrophysics Data System (ADS)

    Sykes, J. R.; Brettle, D. S.; Magee, D. R.; Thwaites, D. I.

    2009-12-01

    Methods of measuring uncertainties in rigid body image registration of fan beam computed tomography (FBCT) to cone beam CT (CBCT) have been developed for automatic image registration algorithms in a commercial image guidance system (Synergy, Elekta, UK). The relationships between image registration uncertainty and both imaging dose and image resolution have been investigated with an anthropomorphic skull phantom and further measurements performed with patient images of the head. A new metric of target registration error is proposed. The metric calculates the mean distance traversed by a set of equi-spaced points on the surface of a 5 cm sphere, centred at the isocentre when transformed by the residual error of registration. Studies aimed at giving practical guidance on the use of the Synergy automated image registration, including choice of algorithm and use of the Clipbox are reported. The chamfer-matching algorithm was found to be highly robust to the increased noise induced by low-dose acquisitions. This would allow the imaging dose to be reduced from the current clinical norm of 2 mGy to 0.2 mGy without a clinically significant loss of accuracy. A study of the effect of FBCT slice thickness/spacing and CBCT voxel size showed that 2.5 mm and 1 mm, respectively, gave acceptable image registration performance. Registration failures were highly infrequent if the misalignment was typical of normal clinical set-up errors and these were easily identified. The standard deviation of translational registration errors, measured with patient images, was 0.5 mm on the surface of a 5 cm sphere centred on the treatment centre. The chamfer algorithm is suitable for routine clinical use with minimal need for close inspection of image misalignment.

  13. An efficient strategy based on an individualized selection of registration methods. Application to the coregistration of MR and SPECT images in neuro-oncology

    NASA Astrophysics Data System (ADS)

    Tacchella, Jean-Marc; Roullot, Elodie; Lefort, Muriel; Cohen, Mike-Ely; Guillevin, Rémy; Petrirena, Grégorio; Delattre, Jean-Yves; Habert, Marie-Odile; Yeni, Nathanaëlle; Kas, Aurélie; Frouin, Frédérique

    2014-11-01

    An efficient registration strategy is described that aims to help solve delicate medical imaging registration problems. It consists of running several registration methods for each dataset and selecting the best one for each specific dataset, according to an evaluation criterion. Finally, the quality of the registration results, obtained with the best method, is visually scored by an expert as excellent, correct or poor. The strategy was applied to coregister Technetium-99m Sestamibi SPECT and MRI data in the framework of a follow-up protocol in patients with high grade gliomas receiving antiangiogenic therapy. To adapt the strategy to this clinical context, a robust semi-automatic evaluation criterion based on the physiological uptake of the Sestamibi tracer was defined. A panel of eighteen multimodal registration algorithms issued from BrainVisa, SPM or AIR software environments was systematically applied to the clinical database composed of sixty-two datasets. According to the expert visual validation, this new strategy provides 85% excellent registrations, 12% correct ones and only 3% poor ones. These results compare favorably to the ones obtained by the globally most efficient registration method over the whole database, for which only 61% of excellent registration results have been reported. Thus the registration strategy in its current implementation proves to be suitable for clinical application.

  14. An efficient strategy based on an individualized selection of registration methods. Application to the coregistration of MR and SPECT images in neuro-oncology.

    PubMed

    Tacchella, Jean-Marc; Roullot, Elodie; Lefort, Muriel; Cohen, Mike-Ely; Guillevin, Rémy; Petrirena, Grégorio; Delattre, Jean-Yves; Habert, Marie-Odile; Yeni, Nathanaëlle; Kas, Aurélie; Frouin, Frédérique

    2014-11-21

    An efficient registration strategy is described that aims to help solve delicate medical imaging registration problems. It consists of running several registration methods for each dataset and selecting the best one for each specific dataset, according to an evaluation criterion. Finally, the quality of the registration results, obtained with the best method, is visually scored by an expert as excellent, correct or poor. The strategy was applied to coregister Technetium-99m Sestamibi SPECT and MRI data in the framework of a follow-up protocol in patients with high grade gliomas receiving antiangiogenic therapy. To adapt the strategy to this clinical context, a robust semi-automatic evaluation criterion based on the physiological uptake of the Sestamibi tracer was defined. A panel of eighteen multimodal registration algorithms issued from BrainVisa, SPM or AIR software environments was systematically applied to the clinical database composed of sixty-two datasets. According to the expert visual validation, this new strategy provides 85% excellent registrations, 12% correct ones and only 3% poor ones. These results compare favorably to the ones obtained by the globally most efficient registration method over the whole database, for which only 61% of excellent registration results have been reported. Thus the registration strategy in its current implementation proves to be suitable for clinical application.

  15. SU-E-J-173: Evaluation of Deformable Registration for Correcting Respiratory Motion in 4DCT Lung Images

    SciTech Connect

    Larrue, A; Kaster, F; Kadir, T; Gooding, M; Elmpt, W van

    2014-06-01

    Purpose: Deformable Image Registration (DIR) is gaining wider clinical acceptance in radiation oncology. The aim of this work is to characterise a DIR algorithm on publically available 4DCT lung images, such that comparison can be performed against other algorithms. We propose an evaluation method of registration accuracy that takes into account the initial misregistration of the datasets. Methods: The “DIR Validation dataset” ( http://www.creatis.insa-lyon.fr/rio/dir{sub v}alidation{sub d}ata ) provides benchmark data for evaluating 3D CT registration algorithms. It consists of six 4DCT lung datasets (1x1x2mm resolution) with 100 landmarks identified on the end-exhalation and end-inhalation phases. Images were registered to end-inhalation using proprietary form of optical flow in commercial software (Mirada RTx, Mirada Medical, UK). Target registration error was measured before and after DIR, referred to as Initial Registration Error (IRE) and Final Registration Error (FRE). Results: The mean FRE over all landmarks was 1.37±1.81mm. FRE increased with IRE. Mean FRE of 0.86, 0.86, 1.53, 3.38, 4.45, 7.58mm was observed for IRE in the ranges 0–5, 5–10, 10–15, 15–20, 20–25, >25 mm. Higher FRE was observed at the inferior lung, where IRE was greater. Out-of-plane motion contributed more to IRE, and therefore to FRE. Maximum FRE of 20.6mm was observed for IRE of 32.1mm, located at the posterior of the middle lobe for dataset 2. Sub-voxel registration accuracy was achieved for up to 10mm IRE, and increased linearly at 0.3mm FRE/mm IRE thereafter. Conclusion: Publicly available clinical datasets enable algorithms to be compared objectively between publications. However, only reporting average TRE after registration can be misleading as the ability of an algorithm to correct for displacements varies with the IRE or position within the patient. Consequently, algorithms should be characterized using the entire range of initial displacements. For the algorithm

  16. Automated Method for Small-Animal PET Image Registration with Intrinsic Validation

    PubMed Central

    Pascau, Javier; Gispert, Juan Domingo; Michaelides, Michael; Thanos, Panayotis K.; Volkow, Nora D.; Vaquero, Juan José; Soto-Montenegro, Maria Luisa; Desco, Manuel

    2009-01-01

    Purpose: We propose and compare different registration approaches to align small-animal PET studies and a procedure to validate the results by means of objective registration consistency measurements. Procedures: We have applied a registration algorithm based on information theory, using different approaches to mask the reference image. The registration consistency allows for the detection of incorrect registrations. This methodology has been evaluated on a test dataset (FDG-PET rat brain images). Results: The results show that a multiresolution two-step registration approach based on the use of the whole image at the low resolution step, while masking the brain at the high resolution step, provides the best robustness (87.5% registration success) and highest accuracy (0.67-mm average). Conclusions: The major advantages of our approach are minimal user interaction and automatic assessment of the registration error, avoiding visual inspection of the results, thus facilitating the accurate, objective, and rapid analysis of large groups of rodent PET images. PMID:18670824

  17. Automatic Registration of Terrestrial Laser Scanning Point Clouds using Panoramic Reflectance Images

    PubMed Central

    Kang, Zhizhong; Li, Jonathan; Zhang, Liqiang; Zhao, Qile; Zlatanova, Sisi

    2009-01-01

    This paper presents a new approach to the automatic registration of terrestrial laser scanning (TLS) point clouds using panoramic reflectance images. The approach follows a two-step procedure that includes both pair-wise registration and global registration. The pair-wise registration consists of image matching (pixel-to-pixel correspondence) and point cloud registration (point-to-point correspondence), as the correspondence between the image and the point cloud (pixel-to-point) is inherent to the reflectance images. False correspondences are removed by a geometric invariance check. The pixel-to-point correspondence and the computation of the rigid transformation parameters (RTPs) are integrated into an iterative process that allows for the pair-wise registration to be optimised. The global registration of all point clouds is obtained by a bundle adjustment using a circular self-closure constraint. Our approach is tested with both indoor and outdoor scenes acquired by a FARO LS 880 laser scanner with an angular resolution of 0.036° and 0.045°, respectively. The results show that the pair-wise and global registration accuracies are of millimetre and centimetre orders, respectively, and that the process is fully automatic and converges quickly. PMID:22574036

  18. Automatic Registration of Terrestrial Laser Scanning Point Clouds using Panoramic Reflectance Images.

    PubMed

    Kang, Zhizhong; Li, Jonathan; Zhang, Liqiang; Zhao, Qile; Zlatanova, Sisi

    2009-01-01

    This paper presents a new approach to the automatic registration of terrestrial laser scanning (TLS) point clouds using panoramic reflectance images. The approach follows a two-step procedure that includes both pair-wise registration and global registration. The pair-wise registration consists of image matching (pixel-to-pixel correspondence) and point cloud registration (point-to-point correspondence), as the correspondence between the image and the point cloud (pixel-to-point) is inherent to the reflectance images. False correspondences are removed by a geometric invariance check. The pixel-to-point correspondence and the computation of the rigid transformation parameters (RTPs) are integrated into an iterative process that allows for the pair-wise registration to be optimised. The global registration of all point clouds is obtained by a bundle adjustment using a circular self-closure constraint. Our approach is tested with both indoor and outdoor scenes acquired by a FARO LS 880 laser scanner with an angular resolution of 0.036° and 0.045°, respectively. The results show that the pair-wise and global registration accuracies are of millimetre and centimetre orders, respectively, and that the process is fully automatic and converges quickly.

  19. Contextual medical-image viewer

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; Furuie, Sergio S.

    2004-04-01

    One of the greatest difficulties of dealing with medical images is their distinct characteristics, in terms of generation process and noise that requires different forms of treatment for visualization and processing. Besides that, medical images are only a compounding part of the patient"s history, which should be accessible for the user in an understandable way. Other factors that can be used to enhance the user capability and experience are: the computational power of the client machine; available knowledge about the case; if the access is local or remote and what kind of user is accessing the system (physician, nurse, administrator, etc...). These information compose the context of an application and should define its behavior during execution time. In this article, we present the architecture of a viewer that takes into account the contextual information that is present at the moment of execution. We also present a viewer of X-Ray Angiographic images that uses contextual information about the client's hardware and the kind of user to, if necessary, reduce the image size and hide demographic information of the patient. The proposed architecture is extensible, allowing the inclusion of new tools and viewers, being adaptive along time to the evolution of the medical systems.

  20. [The meteorological satellite spectral image registration based on Fourier-Mellin transform].

    PubMed

    Wang, Liang; Liu, Rong; Zhang, Li; Duan, Fu-Qing; Lü, Ke

    2013-03-01

    The meteorological satellite spectral image is an effective tool for researches on meteorological science and environmental remote sensing science. Image registration is the basis for the application of the meteorological satellite spectral image data. In order to realize the registration of the satellite image and the template image, a new registration method based on the Fourier-Mellin transform is presented in this paper. Firstly, we use the global coastline vector map data to build a landmark template, which is a reference for the meteorological satellite spectral image registration. Secondly, we choose infrared sub-image of no cloud according to the cloud channel data, and extract the edges of the infrared image by Sobel operator. Finally, the affine transform model parameters between the landmark template and the satellite image are determined by the Fourier-Mellin transform, and thus the registration is realized. The proposed method is based on the curve matching in essence. It needs no feature point extraction, and can greatly simplify the process of registration. The experimental results using the infrared spectral data of the FY-2D meteorological satellite show that the method is robust and can reach a high speed and high accuracy.

  1. A Two-Step Approach for Longitudinal Registration of Retinal Images.

    PubMed

    Saha, Sajib Kumar; Xiao, Di; Frost, Shaun; Kanagasingam, Yogesan

    2016-12-01

    This paper presents a novel two step approach for longitudinal (over time) registration of retinal images. Longitudinal registration is an important preliminary step to analyse longitudinal changes on the retina including disease progression. While potential overlap and minimal geometric distortion are likely in longitudinal images, identification of reliable features over time is a potential challenge for longitudinal registration. Relying on the widely accepted phenomenon that retinal vessels are more reliable over time, the proposed method aims to accurately match bifurcation and cross-over points between different timestamp images. Binary robust independent elementary features (BRIEF) are computed around bifurcation points which are then matched based on Hamming distance. Prior to computing BRIEF descriptors, a preliminary registration is performed relying on SURF key-point matching. Experiments are conducted on different image datasets containing 109 longitudinal image pairs in total. The proposed method has been found to produce accurate registration (i.e. registration with zero alignment error) for 97 % cases, which is significantly higher than the other methods in comparison. The paper also reveals the finding that both the number and distributions of accurately matching key-points pairs are important for successful registration of image pairs.

  2. Speckle reduction in optical coherence tomography imaging by affine-motion image registration

    NASA Astrophysics Data System (ADS)

    Alonso-Caneiro, David; Read, Scott A.; Collins, Michael J.

    2011-11-01

    Signal-degrading speckle is one factor that can reduce the quality of optical coherence tomography images. We demonstrate the use of a hierarchical model-based motion estimation processing scheme based on an affine-motion model to reduce speckle in optical coherence tomography imaging, by image registration and the averaging of multiple B-scans. The proposed technique is evaluated against other methods available in the literature. The results from a set of retinal images show the benefit of the proposed technique, which provides an improvement in signal-to-noise ratio of the square root of the number of averaged images, leading to clearer visual information in the averaged image. The benefits of the proposed technique are also explored in the case of ocular anterior segment imaging.

  3. Patient Registration Using Intraoperative Stereovision in Image-guided Open Spinal Surgery

    PubMed Central

    Fan, Xiaoyao; Paulsen, Keith D.; Roberts, David W.; Mirza, Sohail K.; Lollis, S. Scott

    2015-01-01

    Despite its widespread availability and success in open cranial neurosurgery, image-guidance technology remains more limited in use in open spinal procedures, in large part because of patient registration challenges. In this study, we evaluated the feasibility of using intraoperative stereovision (iSV) for accurate, efficient and robust patient registration in open spinal fusion surgery. Geometrical surfaces of exposed vertebrae were first reconstructed from iSV. A classical multi-start registration was then executed between point clouds generated from iSV and preoperative CT (pCT) images of the spine. With two pairs of feature points manually identified to facilitate the registration, an average registration accuracy of 1.43 mm in terms of surface-to-surface distance error was achieved in 8 patient cases using a single iSV image pair sampling 2–3 vertebral segments. The iSV registration error was consistently smaller than the conventional landmark approach for every case (average of 2.02 mm with the same error metric). The large capture ranges (average of 23.8 mm in translation and 46.0 deg in rotation) found in the iSV patient registration suggest the technique may offer sufficient robustness for practical application in the operating room. Although some manual effort was still necessary, the manually-derived inputs for iSV registration only needed to be approximate as opposed to be precise and accurate for the manual efforts required in landmark registration. The total computational cost of the iSV registration was 1.5 min on average, significantly less than the typical ~30 min required for the landmark approach. These findings support the clinical feasibility of iSV to offer accurate, efficient and robust patient registration in open spinal surgery, and therefore, its potential to further increase the adoption of image-guidance in this surgical specialty. PMID:25826802

  4. Motion Correction for Myocardial T1 Mapping using Image Registration with Synthetic Image Estimation

    PubMed Central

    Xue, Hui; Shah, Saurabh; Greiser, Andreas; Guetter, Christoph; Littmann, Arne; Jolly, Marie-Pierre; Arai, Andrew E; Zuehlsdorff, Sven; Guehring, Jens; Kellman, Peter

    2013-01-01

    Quantification of myocardial T1 relaxation has potential value in the diagnosis of both ischemic and non-ischemic cardiomyopathies. Image acquisition using the Modified Look-Locker Inversion Recovery technique is clinically feasible for T1 mapping. However, respiratory motion limits its applicability and degrades the accuracy of T1 estimation. The robust registration of acquired inversion recovery images is particularly challenging due to the large changes in image contrast, especially for those images acquired near the signal null point of the inversion recovery and other inversion times for which there is little tissue contrast. In this paper, we propose a novel motion correction algorithm. This approach is based on estimating synthetic images presenting contrast changes similar to the acquired images. The estimation of synthetic images is formulated as a variational energy minimization problem. Validation on a consecutive patient data cohort shows that this strategy can perform robust non-rigid registration to align inversion recovery images experiencing significant motion and lead to suppression of motion induced artifacts in the T1 map. PMID:22135227

  5. Dense registration of CHRIS-Proba and Ikonos images using multi-dimensional mutual information maximization

    NASA Astrophysics Data System (ADS)

    Cariou, Claude; Chehdi, Kacem

    2013-10-01

    We investigate the potential of multidimensional mutual information for the registration of multi-spectral remote sensing images. We devise a gradient flow algorithm which iteratively maximizes the multidimensional mutual information with respect to a differentiable displacement map, accounting for partial derivatives of the multivariate joint distribution and the multivariate marginal of the float image with respect to each variable of the mutual information derivative. The resulting terms are shown to weight the band specific gradients of the warp image, and we propose in addition to compute them with a method based on the k-nearest neighbours. We apply our method to the registration of Ikonos and CHRIS-Proba images over the region of Baabdat, Lebanon, for purposes of cedar pines detection. A comparison between (crossed) single band and multi-band registration results obtained shows that using the multidimensional mutual information brings a significant gain in positional accuracy and is suitable for multispectral remote sensing image registration.

  6. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  7. Correcting image placement errors using registration control (RegC®) technology in the photomask periphery

    NASA Astrophysics Data System (ADS)

    Cohen, Avi; Lange, Falk; Ben-Zvi, Guy; Graitzer, Erez; Vladimir, Dmitriev

    2012-11-01

    The ITRS roadmap specifies wafer overlay control as one of the major tasks for the sub 40 nm nodes in addition to CD control and defect control. Wafer overlay is strongly dependent on mask image placement error (registration errors or Reg errors)1. The specifications for registration or mask placement accuracy are significantly tighter in some of the double patterning techniques (DPT). This puts a heavy challenge on mask manufacturers (mask shops) to comply with advanced node registration specifications. The conventional methods of feeding back the systematic registration error to the E-beam writer and re-writing the mask are becoming difficult, expensive and not sufficient for the advanced nodes especially for double pattering technologies. Six production masks were measured on a standard registration metrology tool and the registration errors were calculated and plotted. Specially developed algorithm along with the RegC Wizard (dedicated software) was used to compute a correction lateral strain field that would minimize the registration errors. This strain field was then implemented in the photomask bulk material using an ultra short pulse laser based system. Finally the post process registration error maps were measured and the resulting residual registration error field with and without scale and orthogonal errors removal was calculated. In this paper we present a robust process flow in the mask shop which leads up to 32% registration 3sigma improvement, bringing some out-of-spec masks into spec, utilizing the RegC® process in the photomask periphery while leaving the exposure field optically unaffected.

  8. dPIRPLE: a joint estimation framework for deformable registration and penalized-likelihood CT image reconstruction using prior images

    NASA Astrophysics Data System (ADS)

    Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.

    2014-09-01

    Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration, and

  9. dPIRPLE: A Joint Estimation Framework for Deformable Registration and Penalized-Likelihood CT Image Reconstruction using Prior Images

    PubMed Central

    Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.

    2014-01-01

    Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc.). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration

  10. Digital diagnosis of medical images

    NASA Astrophysics Data System (ADS)

    Heinonen, Tomi; Kuismin, Raimo; Jormalainen, Raimo; Dastidar, Prasun; Frey, Harry; Eskola, Hannu

    2001-08-01

    The popularity of digital imaging devices and PACS installations has increased during the last years. Still, images are analyzed and diagnosed using conventional techniques. Our research group begun to study the requirements for digital image diagnostic methods to be applied together with PACS systems. The research was focused on various image analysis procedures (e.g., segmentation, volumetry, 3D visualization, image fusion, anatomic atlas, etc.) that could be useful in medical diagnosis. We have developed Image Analysis software (www.medimag.net) to enable several image-processing applications in medical diagnosis, such as volumetry, multimodal visualization, and 3D visualizations. We have also developed a commercial scalable image archive system (ActaServer, supports DICOM) based on component technology (www.acta.fi), and several telemedicine applications. All the software and systems operate in NT environment and are in clinical use in several hospitals. The analysis software have been applied in clinical work and utilized in numerous patient cases (500 patients). This method has been used in the diagnosis, therapy and follow-up in various diseases of the central nervous system (CNS), respiratory system (RS) and human reproductive system (HRS). In many of these diseases e.g. Systemic Lupus Erythematosus (CNS), nasal airways diseases (RS) and ovarian tumors (HRS), these methods have been used for the first time in clinical work. According to our results, digital diagnosis improves diagnostic capabilities, and together with PACS installations it will become standard tool during the next decade by enabling more accurate diagnosis and patient follow-up.

  11. Registration of partially overlapping laser-radar range images

    NASA Astrophysics Data System (ADS)

    Lv, Dan; Sun, Jian-Feng; Li, Qi; Wang, Qi

    2015-10-01

    To register partially overlapping three-dimensional point sets from different viewpoints, it is necessary to remove spurious corresponding point pairs that are not located in overlapping regions. Most variants of the iterative closest point (ICP) algorithm require users to manually select the rejection parameters for discarding spurious point pairs between the registering views. This requirement often results in unreliable and inaccurate registration. To overcome this problem, we present an improved ICP algorithm that can automatically determine the rejection percentage to reliably and accurately align partially overlapping laser-radar (ladar) range images. The similarity of k neighboring features of each nonplanar point is employed to determine reasonable point pairs in nonplanar regions, and the distance measurement method is used to find reasonable point pairs in planar regions. The rejection percentage can be obtained from these two sets of reasonable pairs. The performance of our algorithm is compared with that of five other algorithms using various models with low and high curvatures. The experimental results show that our algorithm is more accurate and robust than the other algorithms.

  12. [Realization of DICOM medical image compression technology].

    PubMed

    Wang, Chenxi; Wang, Quan; Ren, Haiping

    2013-05-01

    This paper introduces the implement method of DICOM medical image compression technology, The image part of DICOM files are extracted and converted to BMP format. The non-image information in DICOM file are stored into the text. When the final image of JPEG standard and non-image information are encapsulated to DICOM format images, it realizes the compression of medical image, which is beneficial to the image storage and transmission.

  13. Medical image segmentation using object atlas versus object cloud models

    NASA Astrophysics Data System (ADS)

    Phellan, Renzo; Falcão, Alexandre X.; Udupa, Jayaram K.

    2015-03-01

    Medical image segmentation is crucial for quantitative organ analysis and surgical planning. Since interactive segmentation is not practical in a production-mode clinical setting, automatic methods based on 3D object appearance models have been proposed. Among them, approaches based on object atlas are the most actively investigated. A key drawback of these approaches is that they require a time-costly image registration process to build and deploy the atlas. Object cloud models (OCM) have been introduced to avoid registration, considerably speeding up the whole process, but they have not been compared to object atlas models (OAM). The present paper fills this gap by presenting a comparative analysis of the two approaches in the task of individually segmenting nine anatomical structures of the human body. Our results indicate that OCM achieve a statistically significant better accuracy for seven anatomical structures, in terms of Dice Similarity Coefficient and Average Symmetric Surface Distance.

  14. Optimized SIFTFlow for registration of whole-mount histology to reference optical images.

    PubMed

    Shojaii, Rushin; Martel, Anne L

    2016-10-01

    The registration of two-dimensional histology images to reference images from other modalities is an important preprocessing step in the reconstruction of three-dimensional histology volumes. This is a challenging problem because of the differences in the appearances of histology images and other modalities, and the presence of large nonrigid deformations which occur during slide preparation. This paper shows the feasibility of using densely sampled scale-invariant feature transform (SIFT) features and a SIFTFlow deformable registration algorithm for coregistering whole-mount histology images with blockface optical images. We present a method for jointly optimizing the regularization parameters used by the SIFTFlow objective function and use it to determine the most appropriate values for the registration of breast lumpectomy specimens. We demonstrate that tuning the regularization parameters results in significant improvements in accuracy and we also show that SIFTFlow outperforms a previously described edge-based registration method. The accuracy of the histology images to blockface images registration using the optimized SIFTFlow method was assessed using an independent test set of images from five different lumpectomy specimens and the mean registration error was [Formula: see text].

  15. SU-E-J-248: Comparative Study of Two Image Registration for Image-Guided Radiation Therapy in Esophageal Cancer

    SciTech Connect

    Shang, K; Wang, J; Liu, D; Li, R; Cao, Y; Chi, Z

    2014-06-01

    Purpose: Image-guided radiation therapy (IGRT) is one of the major treatment of esophageal cancer. Gray value registration and bone registration are two kinds of image registration, the purpose of this work is to compare which one is more suitable for esophageal cancer patients. Methods: Twenty three esophageal patients were treated by Elekta Synergy, CBCT images were acquired and automatically registered to planning kilovoltage CT scans according to gray value or bone registration. The setup errors were measured in the X, Y and Z axis, respectively. Two kinds of setup errors were analysed by matching T test statistical method. Results: Four hundred and five groups of CBCT images were available and the systematic and random setup errors (cm) in X, Y, Z directions were 0.35, 0.63, 0.29 and 0.31, 0.53, 0.21 with gray value registration, while 0.37, 0.64, 0.26 and 0.32, 0.55, 0.20 with bone registration, respectively. Compared with bone registration and gray value registration, the setup errors in X and Z axis have significant differences. In Y axis, both measurement comparison results of T value is 0.256 (P value > 0.05); In X axis, the T value is 5.287(P value < 0.05); In Z axis, the T value is −5.138 (P value < 0.05). Conclusion: Gray value registration is recommended in image-guided radiotherapy for esophageal cancer and the other thoracic tumors. Manual registration could be applied when it is necessary. Bone registration is more suitable for the head tumor and pelvic tumor department where composed of redundant interconnected and immobile bone tissue.

  16. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    SciTech Connect

    Ireland, Rob H. . E-mail: r.ireland@sheffield.ac.uk; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-07-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 {+-} 0.80 mm and 4.96 {+-} 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 {+-} 1.22 mm and 4.96 {+-} 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy.

  17. Efficient registration of multitemporal and multisensor aerial images based on alignment of nonparametric edge features

    NASA Astrophysics Data System (ADS)

    Makrogiannis, Sokratis; Bourbakis, Nikolaos G.

    2010-01-01

    The topic of aerial image registration attracts considerable interest within the imaging research community due to its significance for several applications, including change detection, sensor fusion, and topographic mapping. Our interest is focused on finding the optimal transformation between two aerial images that depict the same visual scene in the presence of pronounced spatial, temporal, and sensor variations. We first introduce a stochastic edge estimation process suitable for geometric shape-based registration, which we also compare to intensity-based registration. Furthermore, we propose an objective function that weights the L2 distances of the edge estimates by the feature points' energy, which we denote by sum of normalized squared differences and compare to standard objective functions, such as mutual information and the sum of absolute centered differences. In the optimization stage, we employ a genetic algorithm scheme in a multiscale image representation scheme to enhance the registration accuracy and reduce the computational load. Our experimental tests, measuring registration accuracy, rate of convergence, and statistical properties of registration errors, suggest that the proposed edge-based representation and objective function in conjunction with genetic algorithm optimization are capable of addressing several forms of imaging variations and producing encouraging registration results.

  18. Group-wise feature-based registration of CT and ultrasound images of spine

    NASA Astrophysics Data System (ADS)

    Rasoulian, Abtin; Mousavi, Parvin; Hedjazi Moghari, Mehdi; Foroughi, Pezhman; Abolmaesumi, Purang

    2010-02-01

    Registration of pre-operative CT and freehand intra-operative ultrasound of lumbar spine could aid surgeons in the spinal needle injection which is a common procedure for pain management. Patients are always in a supine position during the CT scan, and in the prone or sitting position during the intervention. This leads to a difference in the spinal curvature between the two imaging modalities, which means a single rigid registration cannot be used for all of the lumbar vertebrae. In this work, a method for group-wise registration of pre-operative CT and intra-operative freehand 2-D ultrasound images of the lumbar spine is presented. The approach utilizes a pointbased registration technique based on the unscented Kalman filter, taking as input segmented vertebrae surfaces in both CT and ultrasound data. Ultrasound images are automatically segmented using a dynamic programming approach, while the CT images are semi-automatically segmented using thresholding. Since the curvature of the spine is different between the pre-operative and the intra-operative data, the registration approach is designed to simultaneously align individual groups of points segmented from each vertebra in the two imaging modalities. A biomechanical model is used to constrain the vertebrae transformation parameters during the registration and to ensure convergence. The mean target registration error achieved for individual vertebrae on five spine phantoms generated from CT data of patients, is 2.47 mm with standard deviation of 1.14 mm.

  19. The value of diagnostic medical imaging.

    PubMed

    Bradley, Don; Bradley, Kendall E

    2014-01-01

    Diagnostic medical imaging has clear clinical utility, but it also imposes significant costs on the health care system. This commentary reviews the factors that drive the cost of medical imaging, discusses current interventions, and suggests possible future courses of action.

  20. Automatic geometric rectification for patient registration in image-guided spinal surgery

    NASA Astrophysics Data System (ADS)

    Cai, Yunliang; Olson, Jonathan D.; Fan, Xiaoyao; Evans, Linton T.; Paulsen, Keith D.; Roberts, David W.; Mirza, Sohail K.; Lollis, S. Scott; Ji, Songbai

    2016-03-01

    Accurate and efficient patient registration is crucial for the success of image-guidance in open spinal surgery. Recently, we have established the feasibility of using intraoperative stereovision (iSV) to perform patient registration with respect to preoperative CT (pCT) in human subjects undergoing spinal surgery. Although a desired accuracy was achieved, the method required manual segmentation and placement of feature points on reconstructed iSV and pCT surfaces. In this study, we present an improved registration pipeline to eliminate these manual operations. Specifically, automatic geometric rectification was performed on spines extracted from pCT and iSV into pose-invariant shapes using a nonlinear principal component analysis (NLPCA). Rectified spines were obtained by projecting the reconstructed 3D surfaces into an anatomically determined orientation. Two-dimensional projection images were then created with image intensity values encoding feature "height" in the dorsal-ventral direction. Registration between the 2D depth maps yielded an initial point-wise correspondence between the 3D surfaces. A refined registration was achieved using an iterative closest point (ICP) algorithm. The technique was successfully applied to two explanted and one live porcine spines. The computational cost of the registration pipeline was less than 1 min, with an average target registration error (TRE) less than 2.2 mm in the laminae area. These results suggest the potential for the pose-invariant, rectification-based registration technique for clinical application in human subjects in the future.

  1. Automated robust registration of grossly misregistered whole-slide images with varying stains

    NASA Astrophysics Data System (ADS)

    Litjens, G.; Safferling, K.; Grabe, N.

    2016-03-01

    Cancer diagnosis and pharmaceutical research increasingly depend on the accurate quantification of cancer biomarkers. Identification of biomarkers is usually performed through immunohistochemical staining of cancer sections on glass slides. However, combination of multiple biomarkers from a wide variety of immunohistochemically stained slides is a tedious process in traditional histopathology due to the switching of glass slides and re-identification of regions of interest by pathologists. Digital pathology now allows us to apply image registration algorithms to digitized whole-slides to align the differing immunohistochemical stains automatically. However, registration algorithms need to be robust to changes in color due to differing stains and severe changes in tissue content between slides. In this work we developed a robust registration methodology to allow for fast coarse alignment of multiple immunohistochemical stains to the base hematyoxylin and eosin stained image. We applied HSD color model conversion to obtain a less stain color dependent representation of the whole-slide images. Subsequently, optical density thresholding and connected component analysis were used to identify the relevant regions for registration. Template matching using normalized mutual information was applied to provide initial translation and rotation parameters, after which a cost function-driven affine registration was performed. The algorithm was validated using 40 slides from 10 prostate cancer patients, with landmark registration error as a metric. Median landmark registration error was around 180 microns, which indicates performance is adequate for practical application. None of the registrations failed, indicating the robustness of the algorithm.

  2. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  3. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    SciTech Connect

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2015-11-15

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3D image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and

  4. [Development and applications of the extracorporeal control point module on multi-mode medical images].

    PubMed

    Chen, Zhao-Qiu; Zhao, Feng-Ling; Zhu, Jian; Li, Wan-Hu; Fu, Zheng; Hu, Xu-Dong

    2008-07-01

    This paper introduces a display module which can be used on multi-mode medical images. The module has a small size and can be easily used for point-selecting puncture diagnosis and treatment, and registration for image fusion control points.

  5. Archimedes, an archive of medical images.

    PubMed

    Tahmoush, Dave; Samet, Hanan

    2006-01-01

    We present a medical image and medical record database for the storage, research, transmission, and evaluation of medical images. Medical images from any source that supports the DICOM standard can be stored and accessed, as well as associated analysis and annotations. Retrieval is based on patient info, date, doctor's annotations, features in the images, or a spatial combination. This database supports the secure transmission of sensitive data for tele-medicine and follows all HIPPA regulations.

  6. SimITK: model driven engineering for medical imaging

    NASA Astrophysics Data System (ADS)

    Trezise, Melissa; Gobbi, David; Cordy, James; Abolmaesumi, Purang; Mousavi, Parvin

    2014-03-01

    The Insight Segmentation and Registration Toolkit (ITK) is a highly utilized open source medical imaging library providing chiefly the functionality to register, segment, and filter medical images. Although extremely powerful, ITK has a steep learning curve for users with little or no background in programming. It was for this reason that SimITK was developed. SimITK wraps ITK into the model driven engineering environment Simulink, a part of the Matlab development suite. The first released version of SimITK was a proof of concept, and demonstrated that ITK could be wrapped successfully in Simulink. In this paper a new version of SimITK is presented where ITK classes are wrapped using a fully automated process. In addition, SimITK is transitioned to successfully support ITK version 4, in order to remain current with the ITK project. SimITK includes thirty-seven image filters, twelve optimizers, and nineteen transform classes from ITK version 4 which are successfully wrapped and tested, and can be quickly and easily combined to perform medical imaging tasks. These classes were chosen to represent a broad range of usability, and to allow for greater flexibility when creating registration pipelines. SimITK has the potential to reduce the learning curve for ITK and allow the user to focus on developing workflows and algorithms. A release of SimITK along with tutorials and videos is available at www.simitkvtk.com.

  7. Registration of serial SPECT/CT images for three-dimensional dosimetry in radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Sjögreen-Gleisner, K.; Rueckert, D.; Ljungberg, M.

    2009-10-01

    For radionuclide therapy, individual patient pharmacokinetics can be measured in three dimensions by sequential SPECT imaging. Accurate registration of the time series of images is central for voxel-based calculations of the residence time and absorbed dose. In this work, rigid and non-rigid methods are evaluated for registration of 6-7 SPECT/CT images acquired over a week, in anatomical regions from the head-and-neck region down to the pelvis. A method for calculation of the absorbed dose, including a voxel mass determination from the CT images, is also described. Registration of the SPECT/CT images is based on a CT-derived spatial transformation. Evaluation is focused on the CT registration accuracy, and on its impact on values of residence time and absorbed dose. According to the CT evaluation, the non-rigid method produces a more accurate registration than the rigid one. For images of the residence time and absorbed dose, registration produces a sharpening of the images. For volumes-of-interest, the differences between rigid and non-rigid results are generally small. However, the non-rigid method is more consistent for regions where non-rigid patient movements are likely, such as in the head-neck-shoulder region.

  8. A Scale-Space Approach for Image Registration of Vessel Structures

    NASA Astrophysics Data System (ADS)

    Heldmann, Stefan; Papenberg, Nils

    We present a multi-scale approach for non-rigid image registration of tubular tree-like structures such as vessels. Therefore, we consider a Gaussian and a combined morphological and Gaussian scale-space. Similar to a multi-level framework, we solve a sequence of registration problems on several scale-space levels using a standard variational approach for non-liner volumetric image registration. The overall idea is to avoid locally ambiguous mappings between parts of the images by removing morphological details but also finding a global optimal solution by spreading remaining local information using Gaussian scaling. We successfully tested our method on registration of 3D CT and ultrasound images of hepatic vessels.

  9. Three-dimensional elastic image registration based on strain energy minimization: application to prostate magnetic resonance imaging.

    PubMed

    Zhang, Bao; Arola, Dwayne D; Roys, Steve; Gullapalli, Rao P

    2011-08-01

    The use of magnetic resonance (MR) imaging in conjunction with an endorectal coil is currently the clinical standard for the diagnosis of prostate cancer because of the increased sensitivity and specificity of this approach. However, imaging in this manner provides images and spectra of the prostate in the deformed state because of the insertion of the endorectal coil. Such deformation may lead to uncertainties in the localization of prostate cancer during therapy. We propose a novel 3-D elastic registration procedure that is based on the minimization of a physically motivated strain energy function that requires the identification of similar features (points, curves, or surfaces) in the source and target images. The Gauss-Seidel method was used in the numerical implementation of the registration algorithm. The registration procedure was validated on synthetic digital images, MR images from prostate phantom, and MR images obtained on patients. The registration error, assessed by averaging the displacement of a fiducial landmark in the target to its corresponding point in the registered image, was 0.2 ± 0.1 pixels on synthetic images. On the prostate phantom and patient data, the registration errors were 1.0 ± 0.6 pixels (0.6 ± 0.4 mm) and 1.8 ± 0.7 pixels (1.1 ± 0.4 mm), respectively. Registration also improved image similarity (normalized cross-correlation) from 0.72 ± 0.10 to 0.96 ± 0.03 on patient data. Registration results on digital images, phantom, and prostate data in vivo demonstrate that the registration procedure can be used to significantly improve both the accuracy of localized therapies such as brachytherapy or external beam therapy and can be valuable in the longitudinal follow-up of patients after therapy.

  10. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    SciTech Connect

    Yip, Stephen Chen, Aileen B.; Berbeco, Ross; Aerts, Hugo J. W. L.

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  11. Hybrid bronchoscope tracking using a magnetic tracking sensor and image registration.

    PubMed

    Mori, Kensaku; Deguchi, Daisuke; Akiyama, Kenta; Kitasaka, Takayuki; Maurer, Calvin R; Suenaga, Yasuhito; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2005-01-01

    In this paper, we propose a hybrid method for tracking a bronchoscope that uses a combination of magnetic sensor tracking and image registration. The position of a magnetic sensor placed in the working channel of the bronchoscope is provided by a magnetic tracking system. Because of respiratory motion, the magnetic sensor provides only the approximate position and orientation of the bronchoscope in the coordinate system of a CT image acquired before the examination. The sensor position and orientation is used as the starting point for an intensity-based registration between real bronchoscopic video images and virtual bronchoscopic images generated from the CT image. The output transformation of the image registration process is the position and orientation of the bronchoscope in the CT image. We tested the proposed method using a bronchial phantom model. Virtual breathing motion was generated to simulate respiratory motion. The proposed hybrid method successfully tracked the bronchoscope at a rate of approximately 1 Hz.

  12. Redundant Discrete Wavelet Transform Based Super-Resolution Using Sub-Pixel Image Registration

    DTIC Science & Technology

    2003-03-01

    AFIT/GE/ENG/03-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION THESIS Daniel L. Ward Second...position of the United States Air Force, Department of Defense, or the United States Government. AFIT/GE/ENG/03-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED...O3-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION THESIS Daniel Lee Ward, B.S.E.E. Second

  13. Generation of synthetic CT data using patient specific daily MR image data and image registration

    NASA Astrophysics Data System (ADS)

    Melanie Kraus, Kim; Jäkel, Oliver; Niebuhr, Nina I.; Pfaffenberger, Asja

    2017-02-01

    To fully exploit the advantages of magnetic resonance imaging (MRI) for radiotherapy (RT) treatment planning, a method is required to overcome the problem of lacking electron density information. We aim to establish and evaluate a new method for computed tomography (CT) data generation based on MRI and image registration. The thereby generated CT data is used for dose accumulation. We developed a process flow based on an initial pair of rigidly co-registered CT and T2-weighted MR image representing the same anatomical situation. Deformable image registration using anatomical landmarks is performed between the initial MRI data and daily MR images. The resulting transformation is applied to the initial CT, thus fractional CT data is generated. Furthermore, the dose for a photon intensity modulated RT (IMRT) or intensity modulated proton therapy (IMPT) plan is calculated on the generated fractional CT and accumulated on the initial CT via inverse transformation. The method is evaluated by the use of phantom CT and MRI data. Quantitative validation is performed by evaluation of the mean absolute error (MAE) between the measured and the generated CT. The effect on dose accumulation is examined by means of dose-volume parameters. One patient case is presented to demonstrate the applicability of the method introduced here. Overall, CT data derivation lead to MAEs with a median of 37.0 HU ranging from 29.9 to 66.6 HU for all investigated tissues. The accuracy of image registration showed to be limited in the case of unexpected air cavities and at tissue boundaries. The comparisons of dose distributions based on measured and generated CT data agree well with the published literature. Differences in dose volume parameters kept within 1.6% and 3.2% for photon and proton RT, respectively. The method presented here is particularly suited for application in adaptive RT in current clinical routine, since only minor additional technical equipment is required.

  14. Semiautomatic registration of 3D transabdominal ultrasound images for patient repositioning during postprostatectomy radiotherapy

    SciTech Connect

    Presles, Benoît Rit, Simon; Sarrut, David; Fargier-Voiron, Marie; Liebgott, Hervé; Biston, Marie-Claude; Munoz, Alexandre; Pommier, Pascal; Lynch, Rod

    2014-12-15

    Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computed from the dilated reference positioning volume drawn on the reference image and use mutual information as a similarity measure. The considered geometric transformations are translations and have been optimized by using the adaptive stochastic gradient descent algorithm. Validation has been carried out using manual registration by three operators of the same set of image pairs as the algorithms. Sixty-two treatment US images of seven patients irradiated after a prostatectomy have been registered to their corresponding reference US image. The reference registration has been defined as the average of the manual registration values. Registration error has been calculated by subtracting the reference registration from the algorithm result. For each session, the method has been considered a failure if the registration error was above both the interoperator variability of the session and a global threshold of 3.0 mm. Results: All proposed registration algorithms have no systematic bias. Method B leads to the best results with mean errors of −0.6, 0.7, and −0.2 mm in left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions, respectively. With this method, the standard deviations of the mean error are of 1.7, 2.4, and 2.6 mm in LR, SI, and AP directions, respectively

  15. 3D/2D model-to-image registration applied to TIPS surgery.

    PubMed

    Jomier, Julien; Bullitt, Elizabeth; Van Horn, Mark; Pathak, Chetna; Aylward, Stephen R

    2006-01-01

    We have developed a novel model-to-image registration technique which aligns a 3-dimensional model of vasculature with two semiorthogonal fluoroscopic projections. Our vascular registration method is used to intra-operatively initialize the alignment of a catheter and a preoperative vascular model in the context of image-guided TIPS (Transjugular, Intrahepatic, Portosystemic Shunt formation) surgery. Registration optimization is driven by the intensity information from the projection pairs at sample points along the centerlines of the model. Our algorithm shows speed, accuracy and consistency given clinical data.

  16. A grid computing framework for high-performance medical imaging

    NASA Astrophysics Data System (ADS)

    Mañana Guichón, Gabriel; Romero Castro, Eduardo

    2013-11-01

    Current medical image processing has become a complex mixture of many scienti c disciplines including mathematics, statistics, physics, and algorithmics, to perform tasks such as registration, segmentation, and visualization, with the ultimate purpose of helping clinicians in their daily routine. This requires high performance computing capabilities that can be achieved in several ways, usually una ordable for most medical institutions. This paper presents a space-based computational grid that uses the otherwise wasted CPU cycles of a set of personal computers, to provide high-performance medical imaging services over the Internet. By using an existing hardware infrastructure and software of free distribution, the proposed approach is apt for university hospitals and other low-budget institutions. This will be illustrated by the use of three real case studies of services where an important speedup factor has been obtained and whose performance has become suitable for use in real clinical scenarios.

  17. A protocol for registration and correction of multicolour STED superresolution images.

    PubMed

    Hebisch, E; Wagner, E; Westphal, V; Sieber, J J; Lehnart, S E

    2017-04-03

    Multicolour fluorescence imaging by STimulated Emission Depletion (STED) superresolution microscopy with doughnut-shaped STED laser beams based on different wavelengths for each colour channel requires precise image registration. This is especially important when STED imaging is used for co-localisation studies of two or more native proteins in biological specimens to analyse nanometric subcellular spatial arrangements. We developed a robust postprocessing image registration protocol, with the aim to verify and ultimately optimise multicolour STED image quality. Importantly, this protocol will support any subsequent quantitative localisation analysis at nanometric scales. Henceforth, using an approach that registers each colour channel present during STED imaging individually, this protocol reliably corrects for optical aberrations and inadvertent sample drift. To achieve the latter goal, the protocol combines the experimental sample information, from corresponding STED and confocal images using the same optical beam path and setup, with that of an independent calibration sample. As a result, image registration is based on a strategy that maximises the cross-correlation between sequentially acquired images of the experimental sample, which are strategically combined by the protocol. We demonstrate the general applicability of the image registration protocol by co-staining of the ryanodine receptor calcium release channel in primary mouse cardiomyocytes. To validate this new approach, we identify user-friendly criteria, which - if fulfilled - support optimal image registration. In summary, we introduce a new method for image registration and rationally based postprocessing steps through a highly standardised protocol for multicolour STED imaging, which directly supports the reproducibility of protein co-localisation analyses. Although the reference protocol is discussed exemplarily for two-colour STED imaging, it can be readily expanded to three or more colours and

  18. Image registration under illumination variations using region-based confidence weighted M-estimators.

    PubMed

    Fouad, Mohamed M; Dansereau, Richard M; Whitehead, Anthony D

    2012-03-01

    We present an image registration model for image sets with arbitrarily shaped local illumination variations between images. Any nongeometric variations tend to degrade the geometric registration precision and impact subsequent processing. Traditional image registration approaches do not typically account for changes and movement of light sources, which result in interimage illumination differences with arbitrary shape. In addition, these approaches typically use a least-square estimator that is sensitive to outliers, where interimage illumination variations are often large enough to act as outliers. In this paper, we propose an image registration approach that compensates for arbitrarily shaped interimage illumination variations, which are processed using robust M -estimators tuned to that region. Each M-estimator for each illumination region has a distinct cost function by which small and large interimage residuals are unevenly penalized. Since the segmentation of the interimage illumination variations may not be perfect, a segmentation confidence weighting is also imposed to reduce the negative effect of mis-segmentation around illumination region boundaries. The proposed approach is cast in an iterative coarse-to-fine framework, which allows a convergence rate similar to competing intensity-based image registration approaches. The overall proposed approach is presented in a general framework, but experimental results use the bisquare M-estimator with region segmentation confidence weighting. A nearly tenfold improvement in subpixel registration precision is seen with the proposed technique when convergence is attained, as compared with competing techniques using both simulated and real data sets with interimage illumination variations.

  19. Kernel Bundle Diffeomorphic Image Registration Using Stationary Velocity Fields and Wendland Basis Functions.

    PubMed

    Pai, Akshay; Sommer, Stefan; Sorensen, Lauge; Darkner, Sune; Sporring, Jon; Nielsen, Mads

    2016-06-01

    In this paper, we propose a multi-scale, multi-kernel shape, compactly supported kernel bundle framework for stationary velocity field-based image registration (Wendland kernel bundle stationary velocity field, wKB-SVF). We exploit the possibility of directly choosing kernels to construct a reproducing kernel Hilbert space (RKHS) instead of imposing it from a differential operator. The proposed framework allows us to minimize computational cost without sacrificing the theoretical foundations of SVF-based diffeomorphic registration. In order to recover deformations occurring at different scales, we use compactly supported Wendland kernels at multiple scales and orders to parameterize the velocity fields, and the framework allows simultaneous optimization over all scales. The performance of wKB-SVF is extensively compared to the 14 non-rigid registration algorithms presented in a recent comparison paper. On both MGH10 and CUMC12 datasets, the accuracy of wKB-SVF is improved when compared to other registration algorithms. In a disease-specific application for intra-subject registration, atrophy scores estimated using the proposed registration scheme separates the diagnostic groups of Alzheimer's and normal controls better than the state-of-the-art segmentation technique. Experimental results show that wKB-SVF is a robust, flexible registration framework that allows theoretically well-founded and computationally efficient multi-scale representation of deformations and is equally well-suited for both inter- and intra-subject image registration.

  20. Automated segmentation and registration technique for HMPAO-SPECT imaging of Alzheimer's patients

    NASA Astrophysics Data System (ADS)

    Radau, Perry E.; Slomka, Piotr J.; Julin, Per; Svensson, Leif; Wahlund, Lars-Olof

    2000-06-01

    We present an operator-independent software technique for segmentation, realignment and analysis of brain perfusion images, with both voxel-wise and regional quantitation methods. Inter-subject registration with normalized mutual information was tested with simulated defects. Brain perfusion images (HMPAO-SPECT) from 56 subjects (21 AD; 35 controls) were retrospectively analyzed. Templates were created from the 3-D registration of the controls. Automatic segmentation was developed to remove extraneous activity that disrupts registration. Two new registration methods, robust least squares (RLS) and normalized mutual information (NMI) were implemented and compared with sum of absolute differences (CD). The automatic segmentation method caused a registration displacement of 0.4 +/- 0.3 pixels compared with manual segmentation. NMI registration proved to be less adversely effected by simulated defects than RLS or CD. The error in quantitating the patient-template parietal ratio due to mis- registration was 2.0% and 0.5% for 70% and 85% hypoperfusion defects, respectively. The registration processing time was 1.6 min (233 MHz Pentium). The most accurate discriminant utilized a logistic equation parameterized by mean counts of the parietal and temporal regions of the map, (91 +/- 8% Se, 97 +/- 5% Sp). BRASS is a fast, objective software package for single-step analysis of brain SPECT, suitable to aid diagnosis of AD.

  1. Kernel bundle diffeomorphic image registration using stationary velocity fields and Wendland basis functions.

    PubMed

    Pai, Akshay; Sommer, Stefan; Sorensen, Lauge; Darkner, Sune; Sporring, Jon; Nielsen, Mads

    2015-12-23

    In this paper, we propose a multi-scale, multi-kernel shape, compactly supported kernel bundle framework for stationary velocity field-based image registration (Wendland kernel bundle stationary velocity field, wKB-SVF). We exploit the possibility of directly choosing kernels to construct a reproducing kernel Hilbert space (RKHS) instead of imposing it from a differential operator. The proposed framework allows us to minimize computational cost without sacrificing the theoretical foundations of SVF-based diffeomorphic registration. In order to recover deformations occurring at different scales, we use compactly supported Wendland kernels at multiple scales and orders to parameterize the velocity fields, and the framework allows simultaneous optimization over all scales. The performance of wKB-SVF is extensively compared to the 14 non-rigid registration algorithms presented in a recent comparison paper. On both MGH10 and CUMC12 datasets, the accuracy of wKB-SVF is improved when compared to other registration algorithms. In a disease-specific application for intra-subject registration, atrophy scores estimated using the proposed registration scheme separates the diagnostic groups of Alzheimer's and normal controls better than the state-of-the-art segmentation technique. Experimental results show that wKB-SVF is a robust, flexible registration framework that allows theoretically well-founded and computationally efficient multi-scale representation of deformations and is equally well-suited for both inter- and intra-subject image registration.

  2. Groupwise registration of multimodal images by an efficient joint entropy minimization scheme.

    PubMed

    Spiclin, Ziga; Likar, Bostjan; Pernus, Franjo

    2012-05-01

    Groupwise registration is concerned with bringing a group of images into the best spatial alignment. If images in the group are from different modalities, then the intensity correspondences across the images can be modeled by the joint density function (JDF) of the cooccurring image intensities. We propose a so-called treecode registration method for groupwise alignment of multimodal images that uses a hierarchical intensity-space subdivision scheme through which an efficient yet sufficiently accurate estimation of the (high-dimensional) JDF based on the Parzen kernel method is computed. To simultaneously align a group of images, a gradient-based joint entropy minimization was employed that also uses the same hierarchical intensity-space subdivision scheme. If the Hilbert kernel is used for the JDF estimation, then the treecode method requires no data-dependent bandwidth selection and is thus fully automatic. The treecode method was compared with the ensemble clustering (EC) method on four different publicly available multimodal image data sets and on a synthetic monomodal image data set. The obtained results indicate that the treecode method has similar and, for two data sets, even superior performances compared to the EC method in terms of registration error and success rate. The obtained good registration performances can be mostly attributed to the sufficiently accurate estimation of the JDF, which is computed through the hierarchical intensity-space subdivision scheme, that captures all the important features needed to detect the correct intensity correspondences across a multimodal group of images undergoing registration.

  3. Incorporating a measure of local scale in voxel-based 3-D image registration.

    PubMed

    Nyúl, László G; Udupa, Jayaram K; Saha, Punam K

    2003-02-01

    We present a new class of approaches for rigid-body registration and their evaluation in studying multiple sclerosis (MS) via multiprotocol magnetic resonance imaging (MRI). Three pairs of rigid-body registration algorithms were implemented, using cross-correlation and mutual information (MI), operating on original gray-level images, and utilizing the intermediate images resulting from our new scale-based method. In the scale image, every voxel has the local "scale" value assigned to it, defined as the radius of the largest ball centered at the voxel with homogeneous intensities. Three-dimensional image data of the head were acquired from ten MS patients for each of six MRI protocols. Images in some of the protocols were acquired in registration. The registered pairs were used as ground truth. Accuracy and consistency of the six registration methods were measured within and between protocols for known amounts of misregistrations. Our analysis indicates that there is no "best" method. For medium misregistration, the method using MI, for small add large misregistration the method using normalized cross-correlation performs best. For high-resolution data the correlation method and for low-resolution data the MI method, both using the original gray-level images, are the most consistent. We have previously demonstrated the use of local scale information in fuzzy connectedness segmentation and image filtering. Scale may also have potential for image registration as suggested by this work.

  4. The plant virus microscope image registration method based on mismatches removing.

    PubMed

    Wei, Lifang; Zhou, Shucheng; Dong, Heng; Mao, Qianzhuo; Lin, Jiaxiang; Chen, Riqing

    2016-01-01

    The electron microscopy is one of the major means to observe the virus. The view of virus microscope images is limited by making specimen and the size of the camera's view field. To solve this problem, the virus sample is produced into multi-slice for information fusion and image registration techniques are applied to obtain large field and whole sections. Image registration techniques have been developed in the past decades for increasing the camera's field of view. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Alternatively, the methods are conceived just to provide visually pleasant registration for high overlap ratio image sequence. This work presents a method for virus microscope image registration acquired with detailed visual information and subpixel accuracy, even when overlap ratio of image sequence is 10% or less. The method proposed focus on the correspondence set and interimage transformation. A mismatch removal strategy is proposed by the spatial consistency and the components of keypoint to enrich the correspondence set. And the translation model parameter as well as tonal inhomogeneities is corrected by the hierarchical estimation and model select. In the experiments performed, we tested different registration approaches and virus images, confirming that the translation model is not always stationary, despite the fact that the images of the sample come from the same sequence. The mismatch removal strategy makes building registration of virus microscope images at subpixel accuracy easier and optional parameters for building registration according to the hierarchical estimation and model select strategies make the proposed method high precision and reliable for low overlap ratio image sequence.

  5. Family Registration Card as electronic medical carrier in Bosnia and Herzegovina.

    PubMed

    Novo, Ahmed; Masic, Izet; Toromanovic, Selim; Loncarevic, Nedim; Junuzovic, Dzelaludin; Dizdarevic, Jadranka

    2004-01-01

    Medical documentation is a very important part of the medical documentalistics and is occupies a large part of daily work of medical staff working in Primary Health Care. Paper documentation is going to be replaced by electronic cards in Bosnia and Herzegovina and a new Health Care System is under development, based on an Electronic Family Registration Card. Developed countries proceeded from the manual and semiautomatic method of medical data processing to the new method of entering, storage, transferring, searching and protecting data, using electronic equipment. Currently, many European countries have developed a Medical Card Based Electronic Information System. Three types of electronic card are currently in use: a Hybrid Card, a Smart Card and a Laser Card. The dilemma is which card should be used as a data carrier. The Electronic Family Registration Cared is a question of strategic interest for B&H, but also a great investment. We should avoid the errors of other countries that have been developing card-based system. In this article we present all mentioned cards and compare advantages and disadvantages of different technologies.

  6. Evaluation of deformable image registration and a motion model in CT images with limited features

    NASA Astrophysics Data System (ADS)

    Liu, F.; Hu, Y.; Zhang, Q.; Kincaid, R.; Goodman, K. A.; Mageras, G. S.

    2012-05-01

    Deformable image registration (DIR) is increasingly used in radiotherapy applications and provides the basis for a previously described model of patient-specific respiratory motion. We examine the accuracy of a DIR algorithm and a motion model with respiration-correlated CT (RCCT) images of software phantom with known displacement fields, physical deformable abdominal phantom with implanted fiducials in the liver and small liver structures in patient images. The motion model is derived from a principal component analysis that relates volumetric deformations with the motion of the diaphragm or fiducials in the RCCT. Patient data analysis compares DIR with rigid registration as ground truth: the mean ± standard deviation 3D discrepancy of liver structure centroid positions is 2.0 ± 2.2 mm. DIR discrepancy in the software phantom is 3.8 ± 2.0 mm in lung and 3.7 ± 1.8 mm in abdomen; discrepancies near the chest wall are larger than indicated by image feature matching. Marker's 3D discrepancy in the physical phantom is 3.6 ± 2.8 mm. The results indicate that visible features in the images are important for guiding the DIR algorithm. Motion model accuracy is comparable to DIR, indicating that two principal components are sufficient to describe DIR-derived deformation in these datasets.

  7. Processing of medical images using Maple

    NASA Astrophysics Data System (ADS)

    Toro Betancur, V.

    2013-05-01

    Maple's Image Tools package was used to process medical images. The results showed clearer images and records of its intensities and entropy. The medical images of a rhinocerebral mucormycosis patient, who was not early diagnosed, were processed and analyzed using Maple's tools, which showed, in a clearer way, the affected parts in the perinasal cavities.

  8. Cloud computing in medical imaging.

    PubMed

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  9. MREG V1.1 : a multi-scale image registration algorithm for SAR applications.

    SciTech Connect

    Eichel, Paul H.

    2013-08-01

    MREG V1.1 is the sixth generation SAR image registration algorithm developed by the Signal Processing&Technology Department for Synthetic Aperture Radar applications. Like its predecessor algorithm REGI, it employs a powerful iterative multi-scale paradigm to achieve the competing goals of sub-pixel registration accuracy and the ability to handle large initial offsets. Since it is not model based, it allows for high fidelity tracking of spatially varying terrain-induced misregistration. Since it does not rely on image domain phase, it is equally adept at coherent and noncoherent image registration. This document provides a brief history of the registration processors developed by Dept. 5962 leading up to MREG V1.1, a full description of the signal processing steps involved in the algorithm, and a user's manual with application specific recommendations for CCD, TwoColor MultiView, and SAR stereoscopy.

  10. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

    PubMed Central

    Zhao, Liya; Jia, Kebin

    2015-01-01

    This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D) images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs) and then identifies scale and translation parameters separately. For three-dimensional (3D) images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA) is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed. PMID:26120356

  11. A two-step framework for the registration of HE stained and FTIR images

    NASA Astrophysics Data System (ADS)

    Peñaranda, Francisco; Naranjo, Valery; Verdú, Rafaél.; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick

    2016-03-01

    FTIR spectroscopy is an emerging technology with high potential for cancer diagnosis but with particular physical phenomena that require special processing. Little work has been done in the field with the aim of registering hyperspectral Fourier-Transform Infrared (FTIR) spectroscopic images and Hematoxilin and Eosin (HE) stained histological images of contiguous slices of tissue. This registration is necessary to transfer the location of relevant structures that the pathologist may identify in the gold standard HE images. A two-step registration framework is presented where a representative gray image extracted from the FTIR hypercube is used as an input. This representative image, which must have a spatial contrast as similar as possible to a gray image obtained from the HE image, is calculated through the spectrum variation in the fingerprint region. In the first step of the registration algorithm a similarity transformation is estimated from interest points, which are automatically detected by the popular SURF algorithm. In the second stage, a variational registration framework defined in the frequency domain compensates for local anatomical variations between both images. After a proper tuning of some parameters the proposed registration framework works in an automated way. The method was tested on 7 samples of colon tissue in different stages of cancer. Very promising qualitative and quantitative results were obtained (a mean correlation ratio of 92.16% with a standard deviation of 3.10%).

  12. A hybrid registration-based method for whole-body micro-CT mice images.

    PubMed

    Qu, Xiaochao; Gao, Xueyuan; Xu, Xianhui; Zhu, Shouping; Liang, Jimin

    2016-07-01

    The widespread use of whole-body small animal in vivo imaging in preclinical research has proposed the new demands on imaging processing and analysis. Micro-CT provides detailed anatomical structural information for continuous detection and different individual comparison, but the body deformation happened during different data acquisition needs sophisticated registration. In this paper, we propose a hybrid method for registering micro-CT mice images, which combines the strengths of point-based and intensity-based registration methods. Point-based non-rigid method using thin-plate spline robust point matching algorithm is utilized to acquire a coarse registration. And then intensity-based non-rigid method using normalized mutual information, Halton sampling and adaptive stochastic gradient descent optimization is used to acquire precise registration. Two accuracy metrics, Dice coefficient and average surface distance are used to do the quantitative evaluation. With the intra- and intersubject micro-CT mice images registration assessment, the hybrid method has been proven capable of excellent performance on micro-CT mice images registration.

  13. Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2016-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.

  14. Automatic registration of UAV-borne sequent images and LiDAR data

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Chen, Chi

    2015-03-01

    Use of direct geo-referencing data leads to registration failure between sequent images and LiDAR data captured by mini-UAV platforms because of low-cost sensors. This paper therefore proposes a novel automatic registration method for sequent images and LiDAR data captured by mini-UAVs. First, the proposed method extracts building outlines from LiDAR data and images and estimates the exterior orientation parameters (EoPs) of the images with building objects in the LiDAR data coordinate framework based on corresponding corner points derived indirectly by using linear features. Second, the EoPs of the sequent images in the image coordinate framework are recovered using a structure from motion (SfM) technique, and the transformation matrices between the LiDAR coordinate and image coordinate frameworks are calculated using corresponding EoPs, resulting in a coarse registration between the images and the LiDAR data. Finally, 3D points are generated from sequent images by multi-view stereo (MVS) algorithms. Then the EoPs of the sequent images are further refined by registering the LiDAR data and the 3D points using an iterative closest-point (ICP) algorithm with the initial results from coarse registration, resulting in a fine registration between sequent images and LiDAR data. Experiments were performed to check the validity and effectiveness of the proposed method. The results show that the proposed method achieves high-precision robust co-registration of sequent images and LiDAR data captured by mini-UAVs.

  15. Two Solutions for Registration of Ultrasound to MRI for Image-Guided Prostate Interventions

    PubMed Central

    Moradi, Mehdi; Janoos, Firdaus; Fedorov, Andriy; Risholm, Petter; Kapur, Tina; Wolfsberger, Luciant D.; Nguyen, Paul L.; Tempany, Clare M; Wells, William M

    2013-01-01

    Ultrasound-guided prostate interventions could benefit from incorporating the radiologic localization of the tumor which can be acquired from multiparametric MRI. To enable this integration, we propose and compare two solutions for registration of T2 weighted MR images with transrectal ultrasound. Firstly, we propose an innovative and practical approach based on deformable registration of binary label maps obtained from manual segmentation of the gland in the two modalities. This resulted in a target registration error of 3.6±1.7 mm. Secondly, we report a novel surface-based registration method that uses a biomechanical model of the tissue and results in registration error of 3.2±1.3 mm. We compare the two methods in terms of accuracy, clinical use and technical limitations. PMID:23366095

  16. SU-E-J-91: Biomechanical Deformable Image Registration of Longitudinal Lung CT Images

    SciTech Connect

    Cazoulat, G; Owen, D; Matuszak, M; Balter, J; Brock, K

    2015-06-15

    Purpose: Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Methods: Four lung cancer patients previously treated with conventionally fractionated radiotherapy that exhibited notable tumor shrinkage during treatment were retrospectively evaluated. Exhale breathhold CT scans were obtained at treatment planning (PCT) and following three weeks (W3CT) of treatment. For each patient, the PCT was registered to the W3CT using Morfeus, a biomechanical model-based deformable registration algorithm, consisting of boundary conditions on the lungs and incorporating a sliding interface between the lung and chest wall. To model the complex response of the lung, an extension to Morfeus has been developed: (i) The vessel tree was segmented by thresholding a vesselness image based on the Hessian matrix’s eigenvalues and the centerline was extracted; (ii) A 3D shape context method was used to find correspondences between the trees of the two images; (ii) Correspondences were used as additional boundary conditions (Morfeus+vBC). An expert independently identified corresponding landmarks well distributed in the lung to compute Target Registration Errors (TRE). Results: The TRE within 15mm of the tumor boundaries (on average 11 landmarks) is: 6.1±1.8, 4.6±1.1 and 3.8±2.3 mm after rigid registration, Morfeus and Morfeus+vBC, respectively. The TRE in the rest of the lung (on average 13 landmarks) is: 6.4±3.9, 4.7±2.2 and 3.6±1.9 mm, which is on the order of the 2mm isotropic dose grid vector (3.5mm). Conclusion: The addition of boundary conditions on the vessels improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these

  17. Microscopic validation of whole mouse micro-metastatic tumor imaging agents using cryo-imaging and sliding organ image registration

    NASA Astrophysics Data System (ADS)

    Liu, Yiqiao; Zhou, Bo; Qutaish, Mohammed; Wilson, David L.

    2016-03-01

    We created a metastasis imaging, analysis platform consisting of software and multi-spectral cryo-imaging system suitable for evaluating emerging imaging agents targeting micro-metastatic tumor. We analyzed CREKA-Gd in MRI, followed by cryo-imaging which repeatedly sectioned and tiled microscope images of the tissue block face, providing anatomical bright field and molecular fluorescence, enabling 3D microscopic imaging of the entire mouse with single metastatic cell sensitivity. To register MRI volumes to the cryo bright field reference, we used our standard mutual information, non-rigid registration which proceeded: preprocess --> affine --> B-spline non-rigid 3D registration. In this report, we created two modified approaches: mask where we registered locally over a smaller rectangular solid, and sliding organ. Briefly, in sliding organ, we segmented the organ, registered the organ and body volumes separately and combined results. Though sliding organ required manual annotation, it provided the best result as a standard to measure other registration methods. Regularization parameters for standard and mask methods were optimized in a grid search. Evaluations consisted of DICE, and visual scoring of a checkerboard display. Standard had accuracy of 2 voxels in all regions except near the kidney, where there were 5 voxels sliding. After mask and sliding organ correction, kidneys sliding were within 2 voxels, and Dice overlap increased 4%-10% in mask compared to standard. Mask generated comparable results with sliding organ and allowed a semi-automatic process.

  18. Automatic localization of landmark sets in head CT images with regression forests for image registration initialization

    NASA Astrophysics Data System (ADS)

    Zhang, Dongqing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.

    2016-03-01

    Cochlear Implants (CIs) are electrode arrays that are surgically inserted into the cochlea. Individual contacts stimulate frequency-mapped nerve endings thus replacing the natural electro-mechanical transduction mechanism. CIs are programmed post-operatively by audiologists but this is currently done using behavioral tests without imaging information that permits relating electrode position to inner ear anatomy. We have recently developed a series of image processing steps that permit the segmentation of the inner ear anatomy and the localization of individual contacts. We have proposed a new programming strategy that uses this information and we have shown in a study with 68 participants that 78% of long term recipients preferred the programming parameters determined with this new strategy. A limiting factor to the large scale evaluation and deployment of our technique is the amount of user interaction still required in some of the steps used in our sequence of image processing algorithms. One such step is the rough registration of an atlas to target volumes prior to the use of automated intensity-based algorithms when the target volumes have very different fields of view and orientations. In this paper we propose a solution to this problem. It relies on a random forest-based approach to automatically localize a series of landmarks. Our results obtained from 83 images with 132 registration tasks show that automatic initialization of an intensity-based algorithm proves to be a reliable technique to replace the manual step.

  19. Improved B-spline image registration between exhale and inhale lung CT images based on intensity and gradient orientation information

    NASA Astrophysics Data System (ADS)

    Nam, Woo Hyun; Oh, Jihun; Yi, Jonghyon; Park, Yongsup; Cho, Hansu; Kim, Sukjin

    2016-03-01

    Registration of lung CT images acquired at different respiratory phases is clinically relevant in many applications, such as follow-up analysis, lung function analysis based on mechanical elasticity, or pulmonary airflow analysis, etc. In order to find accurate and reliable transformation for registration, a proper choice of dissimilarity measure is important. Even though various intensity-based measures have been introduced for precise registration, the registration performance may be limited since they mainly take intensity values into account without effectively considering useful spatial information. In this paper, we attempt to improve the non-rigid registration accuracy between exhale and inhale CT images of the lung, by proposing a new dissimilarity measure based on gradient orientation representing the spatial information in addition to vessel-weighted intensity and normalized intensity information. Since it is necessary to develop non-rigid registration that can account for large lung deformations, the B-spline free-form deformation (FFD) is adopted as the transformation model. The experimental tests for six clinical datasets show that the proposed method provides more accurate registration results than competitive registration methods.

  20. The need for application-based adaptation of deformable image registration

    SciTech Connect

    Kirby, Neil; Chuang, Cynthia; Ueda, Utako; Pouliot, Jean

    2013-01-15

    Purpose: To utilize a deformable phantom to objectively evaluate the accuracy of 11 different deformable image registration (DIR) algorithms. Methods: The phantom represents an axial plane of the pelvic anatomy. Urethane plastic serves as the bony anatomy and urethane rubber with three levels of Hounsfield units (HU) is used to represent fat and organs, including the prostate. A plastic insert is placed into the phantom to simulate bladder filling. Nonradiopaque markers reside on the phantom surface. Optical camera images of these markers are used to measure the positions and determine the deformation from the bladder insert. Eleven different DIR algorithms are applied to the full and empty-bladder computed tomography images of the phantom (fixed and moving volumes, respectively) to calculate the deformation. The algorithms include those from MIM Software (MIM) and Velocity Medical Solutions (VEL) and nine different implementations from the deformable image registration and adaptive radiotherapy toolbox for Matlab. These algorithms warp one image to make it similar to another, but must utilize a method for regularization to avoid physically unrealistic deformation scenarios. The mean absolute difference (MAD) between the HUs at the marker locations on one image and the calculated location on the other serves as a metric to evaluate the balance between image similarity and regularization. To demonstrate the effect of regularization on registration accuracy, an additional beta version of MIM was created with a variable smoothness factor that controls the emphasis of the algorithm on regularization. The distance to agreement between the measured and calculated marker deformations is used to compare the overall spatial accuracy of the DIR algorithms. This overall spatial accuracy is also utilized to evaluate the phantom geometry and the ability of the phantom soft-tissue heterogeneity to represent patient data. To evaluate the ability of the DIR algorithms to

  1. Patient-specific biomechanical model as whole-body CT image registration tool.

    PubMed

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-05-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and movements of body organs/tissues and skeletal structures for whole-body CT image registration using patient-specific non-linear biomechanical modelling. Unlike the conventional biomechanical modelling, our approach for building the biomechanical models does not require time-consuming segmentation of CT scans to divide the whole body into non-overlapping constituents with different material properties. Instead, a Fuzzy C-Means (FCM) algorithm is used for tissue classification to assign the constitutive properties automatically at integration points of the computation grid. We use only very simple segmentation of the spine when determining vertebrae displacements to define loading for biomechanical models. We demonstrate the feasibility and accuracy of our approach on CT images of seven patients suffering from cancer and aortic disease. The results confirm that accurate whole-body CT image registration can be achieved using a patient-specific non-linear biomechanical model constructed without time-consuming segmentation of the whole-body images.

  2. Precision of image-based registration for intraoperative navigation in the presence of metal artifacts: Application to corrective osteotomy surgery.

    PubMed

    Dobbe, J G G; Curnier, F; Rondeau, X; Streekstra, G J

    2015-06-01

    Navigation for corrective osteotomy surgery requires patient-to-image registration. When registration is based on intraoperative 3-D cone-beam CT (CBCT) imaging, metal landmarks may be used that deteriorate image quality. This study investigates whether metal artifacts influence the precision of image-to-patient registration, either with or without intermediate user intervention during the registration procedure, in an application for corrective osteotomy of the distal radius. A series of 3-D CBCT scans is made of a cadaver arm with and without metal landmarks. Metal artifact reduction (MAR) based on inpainting techniques is used to improve 3-D CBCT images hampered by metal artifacts. This provides three sets of images (with metal, with MAR, and without metal), which enable investigating the differences in precision of intraoperative registration. Gray-level based point-to-image registration showed a better correlation coefficient if intraoperative images with MAR are used, indicating a better image similarity. The precision of registration without intermediate user intervention during the registration procedure, expressed as the residual angulation and displacement error after repetitive registration was very low and showed no improvement when MAR was used. By adding intermediate user intervention to the registration procedure however, precision was very high but was not affected by the presence of metal artifacts in the specific application.

  3. Medical Image Retrieval: A Multimodal Approach

    PubMed Central

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system. PMID:26309389

  4. Geopositioning accuracy prediction results for registration of imaging and nonimaging sensors using moving objects

    NASA Astrophysics Data System (ADS)

    Taylor, Charles R.; Dolloff, John T.; Lofy, Brian A.; Luker, Steve A.

    2003-08-01

    BAE SYSTEMS is developing a "4D Registration" capability for DARPA's Dynamic Tactical Targeting program. This will further advance our automatic image registration capability to use moving objects for image registration, and extend our current capability to include the registration of non-imaging sensors. Moving objects produce signals that are identifiable across multiple sensors such as radar moving target indicators, unattended ground sensors, and imaging sensors. Correspondences of those signals across sensor types make it possible to improve the support data accuracy for each of the sensors involved in the correspondence. The amount of accuracy improvement possible, and the effects of the accuracy improvement on geopositioning with the sensors, is a complex problem. The main factors that contribute to the complexity are the sensor-to-target geometry, the a priori sensor support data accuracy, sensor measurement accuracy, the distribution of identified objects in ground space, and the motion and motion uncertainty of the identified objects. As part of the 4D Registration effort, BAE SYSTEMS is conducting a sensitivity study to investigate the complexities and benefits of multisensor registration with moving objects. The results of the study will be summarized.

  5. Medical device registration, agreements on mutual recognition — a step forward to global harmonization?

    NASA Astrophysics Data System (ADS)

    Eidenberger, Reiner

    2000-03-01

    The purpose of this article is to give a short overview of some different regulations in Europe and the United States with regard to the clearance of medical devices and to give an outlook of what the Agreements on Mutual Recognition will bring in terms of Global Harmonization. Recent European legislation, the Council Directive 93/42/EEC of 14 June 1993 concerning medical devices (Medical Device Directive, MDD), requires that all medical devices placed on the European market bear the CE marking. From 14 June 1998, medical devices fall under the scope of this European Medical Device Directive and there is a harmonization within the European market. Similar to this, but for another market, are the USA FDA requirements, Premarket Approval (PMA) and Premarket notification (510(k)). The same medical device, the same goal — a safe product — but different legislation and thus duplication of registration procedures. The European Commission is presently discussing a series of agreements with third countries, Australia, New Zealand, USA, Canada, Japan and Eastern European countries wishing to join the EU, concerning the mutual acceptance of inspection bodies and, ultimately, proof of conformity (for example reports on examination, certificates, licenses and marks of conformity) in connection with medical devices. Meanwhile agreements with Australia, New Zealand, USA and Canada came into force.

  6. Co-registration and distortion correction of diffusion and anatomical images based on inverse contrast normalization.

    PubMed

    Bhushan, Chitresh; Haldar, Justin P; Choi, Soyoung; Joshi, Anand A; Shattuck, David W; Leahy, Richard M

    2015-07-15

    Diffusion MRI provides quantitative information about microstructural properties which can be useful in neuroimaging studies of the human brain. Echo planar imaging (EPI) sequences, which are frequently used for acquisition of diffusion images, are sensitive to inhomogeneities in the primary magnetic (B0) field that cause localized distortions in the reconstructed images. We describe and evaluate a new method for correction of susceptibility-induced distortion in diffusion images in the absence of an accurate B0 fieldmap. In our method, the distortion field is estimated using a constrained non-rigid registration between an undistorted T1-weighted anatomical image and one of the distorted EPI images from diffusion acquisition. Our registration framework is based on a new approach, INVERSION (Inverse contrast Normalization for VERy Simple registratION), which exploits the inverted contrast relationship between T1- and T2-weighted brain images to define a simple and robust similarity measure. We also describe how INVERSION can be used for rigid alignment of diffusion images and T1-weighted anatomical images. Our approach is evaluated with multiple in vivo datasets acquired with different acquisition parameters. Compared to other methods, INVERSION shows robust and consistent performance in rigid registration and shows improved alignment of diffusion and anatomical images relative to normalized mutual information for non-rigid distortion correction.

  7. Nonrigid registration with free-form deformation model of multilevel uniform cubic B-splines: application to image registration and distortion correction of spectral image cubes.

    PubMed

    Eckhard, Timo; Eckhard, Jia; Valero, Eva M; Nieves, Juan Luis

    2014-06-10

    In spectral imaging, spatial and spectral information of an image scene are combined. There exist several technologies that allow the acquisition of this kind of data. Depending on the optical components used in the spectral imaging systems, misalignment between image channels can occur. Further, the projection of some systems deviates from that of a perfect optical lens system enough that a distortion of scene content in the images becomes apparent to the observer. Correcting distortion and misalignment can be complicated for spectral image data if they are different at each image channel. In this work, we propose an image registration and distortion correction scheme for spectral image cubes that is based on a free-form deformation model of uniform cubic B-splines with multilevel grid refinement. This scheme is adaptive with respect to image size, degree of misalignment, and degree of distortion, and in that sense is superior to previous approaches. We support our proposed scheme with empirical data from a Bragg-grating-based hyperspectral imager, for which a registration accuracy of approximately one pixel was achieved.

  8. A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences

    NASA Astrophysics Data System (ADS)

    Ye, Yuanxin; Shan, Jie

    2014-04-01

    Image registration is a crucial step for remote sensing image processing. Automatic registration of multispectral remote sensing images could be challenging due to the significant non-linear intensity differences caused by radiometric variations among such images. To address this problem, this paper proposes a local descriptor based registration method for multispectral remote sensing images. The proposed method includes a two-stage process: pre-registration and fine registration. The pre-registration is achieved using the Scale Restriction Scale Invariant Feature Transform (SR-SIFT) to eliminate the obvious translation, rotation, and scale differences between the reference and the sensed image. In the fine registration stage, the evenly distributed interest points are first extracted in the pre-registered image using the Harris corner detector. Then, we integrate the local self-similarity (LSS) descriptor as a new similarity metric to detect the tie points between the reference and the pre-registered image, followed by a global consistency check to remove matching blunders. Finally, image registration is achieved using a piecewise linear transform. The proposed method has been evaluated with three pairs of multispectral remote sensing images from TM, ETM+, ASTER, Worldview, and Quickbird sensors. The experimental results demonstrate that the proposed method can achieve reliable registration outcome, and the LSS-based similarity metric is robust to non-linear intensity differences among multispectral remote sensing images.

  9. Parallel optimization of tumor model parameters for fast registration of brain tumor images

    NASA Astrophysics Data System (ADS)

    Zacharaki, Evangelia I.; Hogea, Cosmina S.; Shen, Dinggang; Biros, George; Davatzikos, Christos

    2008-03-01

    The motivation of this work is to register MR brain tumor images with a brain atlas. Such a registration method can make possible the pooling of data from different brain tumor patients into a common stereotaxic space, thereby enabling the construction of statistical brain tumor atlases. Moreover, it allows the mapping of neuroanatomical brain atlases into the patient's space, for segmenting brains and thus facilitating surgical or radiotherapy treatment planning. However, the methods developed for registration of normal brain images are not directly applicable to the registration of a normal atlas with a tumor-bearing image, due to substantial dissimilarity and lack of equivalent image content between the two images, as well as severe deformation or shift of anatomical structures around the tumor. Accordingly, a model that can simulate brain tissue death and deformation induced by the tumor is considered to facilitate the registration. Such tumor growth simulation models are usually initialized by placing a small seed in the normal atlas. The shape, size and location of the initial seed are critical for achieving topological equivalence between the atlas and patient's images. In this study, we focus on the automatic estimation of these parameters, pertaining to tumor simulation. In particular, we propose an objective function reflecting feature-based similarity and elastic stretching energy and optimize it with APPSPACK (Asynchronous Parallel Pattern Search), for achieving significant reduction of the computational cost. The results indicate that the registration accuracy is high in areas around the tumor, as well as in the healthy portion of the brain.

  10. An approach to automatic blood vessel image registration of microcirculation for blood flow analysis on nude mice.

    PubMed

    Lin, Wen-Chen; Wu, Chih-Chieh; Zhang, Geoffrey; Wu, Tung-Hsin; Lin, Yang-Hsien; Huang, Tzung-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2011-04-01

    Image registration is often a required and a time-consuming step in blood flow analysis of large microscopic video sequences in vivo. In order to obtain stable images for blood flow analysis, frame-to-frame image matching as a preprocessing step is a solution to the problem of movement during image acquisition. In this paper, microscopic system analysis without fluorescent labelling is performed to provide precise and continuous quantitative data of blood flow rate in individual microvessels of nude mice. The performance properties of several matching metrics are evaluated through simulated image registrations. An automatic image registration programme based on Powell's optimisation search method with low calculation redundancy was implemented. The matching method by variance of ratio is computationally efficient and improves the registration robustness and accuracy in practical application of microcirculation registration. The presented registration method shows acceptable results in close requisition to analyse red blood cell velocities, confirming the scientific potential of the system in blood flow analysis.

  11. MIND Demons: Symmetric Diffeomorphic Deformable Registration of MR and CT for Image-Guided Spine Surgery

    PubMed Central

    Reaungamornrat, Sureerat; De Silva, Tharindu; Uneri, Ali; Vogt, Sebastian; Kleinszig, Gerhard; Khanna, Akhil J; Wolinsky, Jean-Paul; Prince, Jerry L.

    2016-01-01

    Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. PMID:27295656

  12. MIND Demons: Symmetric Diffeomorphic Deformable Registration of MR and CT for Image-Guided Spine Surgery.

    PubMed

    Reaungamornrat, Sureerat; De Silva, Tharindu; Uneri, Ali; Vogt, Sebastian; Kleinszig, Gerhard; Khanna, Akhil J; Wolinsky, Jean-Paul; Prince, Jerry L; Siewerdsen, Jeffrey H

    2016-11-01

    Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine.

  13. Image to physical space registration of supine breast MRI for image guided breast surgery

    NASA Astrophysics Data System (ADS)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  14. Influence of image registration on ADC images computed from free-breathing diffusion MRIs of the abdomen

    NASA Astrophysics Data System (ADS)

    Guyader, Jean-Marie; Bernardin, Livia; Douglas, Naomi H. M.; Poot, Dirk H. J.; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    The apparent diffusion coefficient (ADC) is an imaging biomarker providing quantitative information on the diffusion of water in biological tissues. This measurement could be of relevance in oncology drug development, but it suffers from a lack of reliability. ADC images are computed by applying a voxelwise exponential fitting to multiple diffusion-weighted MR images (DW-MRIs) acquired with different diffusion gradients. In the abdomen, respiratory motion induces misalignments in the datasets, creating visible artefacts and inducing errors in the ADC maps. We propose a multistep post-acquisition motion compensation pipeline based on 3D non-rigid registrations. It corrects for motion within each image and brings all DW-MRIs to a common image space. The method is evaluated on 10 datasets of free-breathing abdominal DW-MRIs acquired from healthy volunteers. Regions of interest (ROIs) are segmented in the right part of the abdomen and measurements are compared in the three following cases: no image processing, Gaussian blurring of the raw DW-MRIs and registration. Results show that both blurring and registration improve the visual quality of ADC images, but compared to blurring, registration yields visually sharper images. Measurement uncertainty is reduced both by registration and blurring. For homogeneous ROIs, blurring and registration result in similar median ADCs, which are lower than without processing. In a ROI at the interface between liver and kidney, registration and blurring yield different median ADCs, suggesting that uncorrected motion introduces a bias. Our work indicates that averaging procedures on the scanner should be avoided, as they remove the opportunity to perform motion correction.

  15. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    SciTech Connect

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  16. Model-based 3D/2D deformable registration of MR images.

    PubMed

    Marami, Bahram; Sirouspour, Shahin; Capson, David W

    2011-01-01

    A method is proposed for automatic registration of 3D preoperative magnetic resonance images of deformable tissue to a sequence of its 2D intraoperative images. The algorithm employs a dynamic continuum mechanics model of the deformation and similarity (distance) measures such as correlation ratio, mutual information or sum of squared differences for registration. The registration is solely based on information present in the 3D preoperative and 2D intraoperative images and does not require fiducial markers, feature extraction or image segmentation. Results of experiments with a biopsy training breast phantom show that the proposed method can perform well in the presence of large deformations. This is particularly useful for clinical applications such as MR-based breast biopsy where large tissue deformations occur.

  17. Non-rigid image registration under non-deterministic deformation bounds

    NASA Astrophysics Data System (ADS)

    Ge, Qian; Lokare, Namita; Lobaton, Edgar

    2015-01-01

    Image registration aims to identify the mapping between corresponding locations in an anatomic structure. Most traditional approaches solve this problem by minimizing some error metric. However, they do not quantify the uncertainty behind their estimates and the feasibility of other solutions. In this work, it is assumed that two images of the same anatomic structure are related via a Lipschitz non-rigid deformation (the registration map). An approach for identifying point correspondences with zero false-negative rate and high precision is introduced under this assumption. This methodology is then extended to registration of regions in an image which is posed as a graph matching problem with geometric constraints. The outcome of this approach is a homeomorphism with uncertainty bounds characterizing its accuracy over the entire image domain. The method is tested by applying deformation maps to the LPBA40 dataset.

  18. An effective visualisation and registration system for image-guided robotic partial nephrectomy.

    PubMed

    Pratt, Philip; Mayer, Erik; Vale, Justin; Cohen, Daniel; Edwards, Eddie; Darzi, Ara; Yang, Guang-Zhong

    2012-03-01

    Robotic partial nephrectomy is presently the fastest-growing robotic surgical procedure, and in comparison to traditional techniques it offers reduced tissue trauma and likelihood of post-operative infection, while hastening recovery time and improving cosmesis. It is also an ideal candidate for image guidance technology since soft tissue deformation, while still present, is localised and less problematic compared to other surgical procedures. This work describes the implementation and ongoing development of an effective image guidance system that aims to address some of the remaining challenges in this area. Specific innovations include the introduction of an intuitive, partially automated registration interface, and the use of a hardware platform that makes sophisticated augmented reality overlays practical in real time. Results and examples of image augmentation are presented from both retrospective and live cases. Quantitative analysis of registration error verifies that the proposed registration technique is appropriate for the chosen image guidance targets.

  19. NASA Technology Finds Uses in Medical Imaging

    NASA Video Gallery

    NASA software has been incorporated into a new medical imaging device that could one day aid in the interpretation of mammograms, ultrasounds, and other medical imagery. The new MED-SEG system, dev...

  20. Validation of accuracy in image co-registration with computed tomography and magnetic resonance imaging in Gamma Knife radiosurgery.

    PubMed

    Nakazawa, Hisato; Mori, Yoshimasa; Komori, Masataka; Shibamoto, Yuta; Tsugawa, Takahiko; Kobayashi, Tatsuya; Hashizume, Chisa

    2014-09-01

    The latest version of Leksell GammaPlan (LGP) is equipped with Digital Imaging and Communication in Medicine (DICOM) image-processing functions including image co-registration. Diagnostic magnetic resonance imaging (MRI) taken prior to Gamma Knife treatment is available for virtual treatment pre-planning. On the treatment day, actual dose planning is completed on stereotactic MRI or computed tomography (CT) (with a frame) after co-registration with the diagnostic MRI and in association with the virtual dose distributions. This study assesses the accuracy of image co-registration in a phantom study and evaluates its usefulness in clinical cases. Images of three kinds of phantoms and 11 patients are evaluated. In the phantom study, co-registration errors of the 3D coordinates were measured in overall stereotactic space and compared between stereotactic CT and diagnostic CT, stereotactic MRI and diagnostic MRI, stereotactic CT and diagnostic MRI, and stereotactic MRI and diagnostic MRI co-registered with stereotactic CT. In the clinical study, target contours were compared between stereotactic MRI and diagnostic MRI co-registered with stereotactic CT. The mean errors of coordinates between images were < 1 mm in all measurement areas in both the phantom and clinical patient studies. The co-registration function implemented in LGP has sufficient geometrical accuracy to assure appropriate dose planning in clinical use.

  1. Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Ghafourian, Pegah; Sharma, Puneet; Salman, Khalil; Martin, Diego; Fei, Baowei

    2012-02-01

    We have applied image analysis methods in the assessment of human kidney perfusion based on 3D dynamic contrast-enhanced (DCE) MRI data. This approach consists of 3D non-rigid image registration of the kidneys and fuzzy C-mean classification of kidney tissues. The proposed registration method reduced motion artifacts in the dynamic images and improved the analysis of kidney compartments (cortex, medulla, and cavities). The dynamic intensity curves show the successive transition of the contrast agent through kidney compartments. The proposed method for motion correction and kidney compartment classification may be used to improve the validity and usefulness of further model-based pharmacokinetic analysis of kidney function.

  2. Digital Topology and Geometry in Medical Imaging: A Survey.

    PubMed

    Saha, Punam K; Strand, Robin; Borgefors, Gunilla

    2015-09-01

    Digital topology and geometry refers to the use of topologic and geometric properties and features for images defined in digital grids. Such methods have been widely used in many medical imaging applications, including image segmentation, visualization, manipulation, interpolation, registration, surface-tracking, object representation, correction, quantitative morphometry etc. Digital topology and geometry play important roles in medical imaging research by enriching the scope of target outcomes and by adding strong theoretical foundations with enhanced stability, fidelity, and efficiency. This paper presents a comprehensive yet compact survey on results, principles, and insights of methods related to digital topology and geometry with strong emphasis on understanding their roles in various medical imaging applications. Specifically, this paper reviews methods related to distance analysis and path propagation, connectivity, surface-tracking, image segmentation, boundary and centerline detection, topology preservation and local topological properties, skeletonization, and object representation, correction, and quantitative morphometry. A common thread among the topics reviewed in this paper is that their theory and algorithms use the principle of digital path connectivity, path propagation, and neighborhood analysis.

  3. Semi-automated registration of pre- and intra-operative liver CT for image-guided interventions

    NASA Astrophysics Data System (ADS)

    Gunay, Gokhan; Ha, Luu Manh; van Walsum, Theo; Klein, Stefan

    2016-03-01

    Percutaneous radio frequency ablation is a method for liver tumor treatment when conventional surgery is not an option. It is a minimally invasive treatment and may be performed under CT image guidance if the tumor does not give sufficient contrast on ultrasound images. For optimal guidance, registration of the pre-operative contrast-enhanced CT image to the intra-operative CT image is hypothesized to improve guidance. This is a highly challenging registration task due to large differences in pose and image quality. In this study, we introduce a semi-automated registration algorithm to address this problem. The method is based on a conventional nonrigid intensity-based registration framework, extended with a novel point-to-surface constraint. The point-to-surface constraint serves to improve the alignment of the liver boundary, while requiring minimal user interaction during the operation. The method assumes that a liver segmentation of the pre-operative CT is available. After an initial nonrigid registration without the point-to-surface constraint, the operator clicks a few points on the liver surface at those regions where the nonrigid registration seems inaccurate. In a subsequent registration step, these points on the intra-operative image are driven towards the liver surface on the preoperative image, using a penalty term added to the registration cost function. The method is evaluated on five clinical datasets and it is shown to improve registration compared with conventional rigid and nonrigid registrations in all cases.

  4. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    PubMed Central

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise. PMID:22163672

  5. Research on interpolation methods in medical image processing.

    PubMed

    Pan, Mei-Sen; Yang, Xiao-Li; Tang, Jing-Tian

    2012-04-01

    Image interpolation is widely used for the field of medical image processing. In this paper, interpolation methods are divided into three groups: filter interpolation, ordinary interpolation and general partial volume interpolation. Some commonly-used filter methods for image interpolation are pioneered, but the interpolation effects need to be further improved. When analyzing and discussing ordinary interpolation, many asymmetrical kernel interpolation methods are proposed. Compared with symmetrical kernel ones, the former are have some advantages. After analyzing the partial volume and generalized partial volume estimation interpolations, the new concept and constraint conditions of the general partial volume interpolation are defined, and several new partial volume interpolation functions are derived. By performing the experiments of image scaling, rotation and self-registration, the interpolation methods mentioned in this paper are compared in the entropy, peak signal-to-noise ratio, cross entropy, normalized cross-correlation coefficient and running time. Among the filter interpolation methods, the median and B-spline filter interpolations have a relatively better interpolating performance. Among the ordinary interpolation methods, on the whole, the symmetrical cubic kernel interpolations demonstrate a strong advantage, especially the symmetrical cubic B-spline interpolation. However, we have to mention that they are very time-consuming and have lower time efficiency. As for the general partial volume interpolation methods, from the total error of image self-registration, the symmetrical interpolations provide certain superiority; but considering the processing efficiency, the asymmetrical interpolations are better.

  6. Robust FFT-based scale-invariant image registration with image gradients.

    PubMed

    Tzimiropoulos, Georgios; Argyriou, Vasileios; Zafeiriou, Stefanos; Stathaki, Tania

    2010-10-01

    We present a robust FFT-based approach to scale-invariant image registration. Our method relies on FFT-based correlation twice: once in the log-polar Fourier domain to estimate the scaling and rotation and once in the spatial domain to recover the residual translation. Previous methods based on the same principles are not robust. To equip our scheme with robustness and accuracy, we introduce modifications which tailor the method to the nature of images. First, we derive efficient log-polar Fourier representations by replacing image functions with complex gray-level edge maps. We show that this representation both captures the structure of salient image features and circumvents problems related to the low-pass nature of images, interpolation errors, border effects, and aliasing. Second, to recover the unknown parameters, we introduce the normalized gradient correlation. We show that, using image gradients to perform correlation, the errors induced by outliers are mapped to a uniform distribution for which our normalized gradient correlation features robust performance. Exhaustive experimentation with real images showed that, unlike any other Fourier-based correlation techniques, the proposed method was able to estimate translations, arbitrary rotations, and scale factors up to 6.

  7. Comparing nonrigid registration techniques for motion corrected MR prostate diffusion imaging

    SciTech Connect

    Buerger, C. Sénégas, J.; Kabus, S.; Carolus, H.; Schulz, H.; Renisch, S.; Agarwal, H.; Turkbey, B.; Choyke, P. L.

    2015-01-15

    Purpose: T{sub 2}-weighted magnetic resonance imaging (MRI) is commonly used for anatomical visualization in the pelvis area, such as the prostate, with high soft-tissue contrast. MRI can also provide functional information such as diffusion-weighted imaging (DWI) which depicts the molecular diffusion processes in biological tissues. The combination of anatomical and functional imaging techniques is widely used in oncology, e.g., for prostate cancer diagnosis and staging. However, acquisition-specific distortions as well as physiological motion lead to misalignments between T{sub 2} and DWI and consequently to a reduced diagnostic value. Image registration algorithms are commonly employed to correct for such misalignment. Methods: The authors compare the performance of five state-of-the-art nonrigid image registration techniques for accurate image fusion of DWI with T{sub 2}. Results: Image data of 20 prostate patients with cancerous lesions or cysts were acquired. All registration algorithms were validated using intensity-based as well as landmark-based techniques. Conclusions: The authors’ results show that the “fast elastic image registration” provides most accurate results with a target registration error of 1.07 ± 0.41 mm at minimum execution times of 11 ± 1 s.

  8. Evaluating automatic registration of UAV imagery using multi-temporal ortho images

    NASA Astrophysics Data System (ADS)

    Saur, Günter; Krüger, Wolfgang

    2016-10-01

    Accurate geo-registration of acquired imagery is an important task when using unmanned aerial vehicles (UAV) for video reconnaissance and surveillance. As an example, change detection needs accurately geo-registered images for selecting and comparing co-located images taken at different points in time. One challenge using small UAVs lies in the instable flight behavior and using low-weight cameras. Thus, there is a need to stabilize and register the UAV imagery by image processing methods since using only direct approaches based on positional information coming from a GPS and attitude and acceleration measured by an inertial measurement unit (IMU) are not accurate enough. In order to improve this direct geo-registration (or "pre-registration"), image matching techniques are applied to align the UAV imagery to geo-registered reference images. The main challenge consists in matching images taken from different sensors at different day time and seasons. In this paper, we present evaluation methods for measuring the performance of image registration algorithms w.r.t. multi-temporal input data. They are based on augmenting a set of aligned image pairs by synthetic pre-registrations to an evaluation data set including truth transformations. The evaluation characteristics are based on quantiles of transformation residuals at certain control points. For a test site, video frames of a UAV mission and several ortho images from a period of 12 years are collected and synthetic pre-registrations corresponding to real flight parameters and registration errors are computed. Two algorithms A1 and A2 based on extracting key-points with a floating point descriptor (A1) and a binary descriptor (A2) are applied to the evaluation data set. As evaluation result, the algorithm A1 turned out to perform better than A2. Using affine or Helmert transformation types, both algorithms perform better than in the projective case. Furthermore, the evaluation classifies the ortho images w

  9. Acquisition of priori tissue optical structure based on non-rigid image registration

    NASA Astrophysics Data System (ADS)

    Wan, Wenbo; Li, Jiao; Liu, Lingling; Wang, Yihan; Zhang, Yan; Gao, Feng

    2015-03-01

    Shape-parameterized diffuse optical tomography (DOT), which is based on a priori that assumes the uniform distribution of the optical properties in the each region, shows the effectiveness of complex biological tissue optical heterogeneities reconstruction. The priori tissue optical structure could be acquired with the assistance of anatomical imaging methods such as X-ray computed tomography (XCT) which suffers from low-contrast for soft tissues including different optical characteristic regions. For the mouse model, a feasible strategy of a priori tissue optical structure acquisition is proposed based on a non-rigid image registration algorithm. During registration, a mapping matrix is calculated to elastically align the XCT image of reference mouse to the XCT image of target mouse. Applying the matrix to the reference atlas which is a detailed mesh of organs/tissues in reference mouse, registered atlas can be obtained as the anatomical structure of target mouse. By assigning the literature published optical parameters of each organ to the corresponding anatomical structure, optical structure of the target organism can be obtained as a priori information for DOT reconstruction algorithm. By applying the non-rigid image registration algorithm to a target mouse which is transformed from the reference mouse, the results show that the minimum correlation coefficient can be improved from 0.2781 (before registration) to 0.9032 (after fine registration), and the maximum average Euclid distances can be decreased from 12.80mm (before registration) to 1.02mm (after fine registration), which has verified the effectiveness of the algorithm.

  10. Non-Rigid Registration of Liver CT Images for CT-Guided Ablation of Liver Tumors.

    PubMed

    Luu, Ha Manh; Klink, Camiel; Niessen, Wiro; Moelker, Adriaan; Walsum, Theo van

    2016-01-01

    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice

  11. Non-Rigid Registration of Liver CT Images for CT-Guided Ablation of Liver Tumors

    PubMed Central

    Luu, Ha Manh; Klink, Camiel; Niessen, Wiro; Moelker, Adriaan; van Walsum, Theo

    2016-01-01

    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice

  12. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    SciTech Connect

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H.

    2012-10-15

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within {approx}200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  13. Imaging and Analytics: The changing face of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Foo, Thomas

    There have been significant technological advances in imaging capability over the past 40 years. Medical imaging capabilities have developed rapidly, along with technology development in computational processing speed and miniaturization. Moving to all-digital, the number of images that are acquired in a routine clinical examination has increased dramatically from under 50 images in the early days of CT and MRI to more than 500-1000 images today. The staggering number of images that are routinely acquired poses significant challenges for clinicians to interpret the data and to correctly identify the clinical problem. Although the time provided to render a clinical finding has not substantially changed, the amount of data available for interpretation has grown exponentially. In addition, the image quality (spatial resolution) and information content (physiologically-dependent image contrast) has also increased significantly with advances in medical imaging technology. On its current trajectory, medical imaging in the traditional sense is unsustainable. To assist in filtering and extracting the most relevant data elements from medical imaging, image analytics will have a much larger role. Automated image segmentation, generation of parametric image maps, and clinical decision support tools will be needed and developed apace to allow the clinician to manage, extract and utilize only the information that will help improve diagnostic accuracy and sensitivity. As medical imaging devices continue to improve in spatial resolution, functional and anatomical information content, image/data analytics will be more ubiquitous and integral to medical imaging capability.

  14. Balancing dose and image registration accuracy for cone beam tomosynthesis (CBTS) for breast patient setup

    SciTech Connect

    Winey, B. A.; Zygmanski, P.; Cormack, R. A.; Lyatskaya, Y.

    2010-08-15

    Purpose: To balance dose reduction and image registration accuracy in breast setup imaging. In particular, the authors demonstrate the relationship between scan angle and dose delivery for cone beam tomosynthesis (CBTS) when employed for setup verification of breast cancer patients with surgical clips. Methods: The dose measurements were performed in a female torso phantom for varying scan angles of CBTS. Setup accuracy was measured using three registration methods: Clip centroid localization accuracy and the accuracy of two semiautomatic registration algorithms. The dose to the organs outside of the ipsilateral breast and registration accuracy information were compared to determine the optimal scan angle for CBTS for breast patient setup verification. Isocenter positions at the center of the patient and at the breast-chest wall interface were considered. Results: Image registration accuracy was within 1 mm for the CBTS scan angles {theta} above 20 deg. for some scenarios and as large as 80 deg. for the worst case, depending on the imaged breast and registration algorithm. Registration accuracy was highest based on clip centroid localization. For left and right breast imaging with the isocenter at the chest wall, the dose to the contralateral side of the patient was very low (<0.5 cGy) for all scan angles considered. For central isocenter location, the optimal scan angles were 30 deg. - 50 deg. for the left breast imaging and 40 deg. - 50 deg. for the right breast imaging, with the difference due to the geometric asymmetry of the current clinical imaging system. Conclusions: The optimal scan angles for CBTS imaging were found to be between 10 deg. and 50 deg., depending on the isocenter location and ipsilateral breast. Use of the isocenter at the breast-chest wall locations always resulted in greater accuracy of image registration (<1 mm) at smaller angles (10 deg. - 20 deg.) and at lower doses (<0.1 cGy) to the contralateral organs. For chest wall isocenters

  15. Feature based nonrigid brain MR image registration with symmetric alpha stable filters.

    PubMed

    Liao, Shu; Chung, Albert C S

    2010-01-01

    A new feature based nonrigid image registration method for magnetic resonance (MR) brain images is presented in this paper. Each image voxel is represented by a rotation invariant feature vector, which is computed by passing the input image volumes through a new bank of symmetric alpha stable (SalphaS) filters. There are three main contributions presented in this paper. First, this work is motivated by the fact that the frequency spectrums of the brain MR images often exhibit non-Gaussian heavy-tail behavior which cannot be satisfactorily modeled by the conventional Gabor filters. To this end, we propose the use of SalphaS filters to model such behavior and show that the Gabor filter is a special case of the SalphaS filter. Second, the maximum response orientation (MRO) selection criterion is designed to extract rotation invariant features for registration tasks. The MRO selection criterion also significantly reduces the number of dimensions of feature vectors and therefore lowers the computation time. Third, in case the segmentations of the input image volumes are available, the Fisher's separation criterion (FSC) is introduced such that the discriminating power of different feature types can be directly compared with each other before performing the registration process. Using FSC, weights can also be assigned automatically to different voxels in the brain MR images. The weight of each voxel determined by FSC reflects how distinctive and salient the voxel is. Using the most distinctive and salient voxels at the initial stage to drive the registration can reduce the risk of being trapped in the local optimum during image registration process. The larger the weight, the more important the voxel. With the extracted feature vectors and the associated weights, the proposed method registers the source and the target images in a hierarchical multiresolution manner. The proposed method has been intensively evaluated on both simulated and real 3-D datasets obtained from

  16. Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration.

    PubMed

    Mahmoudzadeh, Amir Pasha; Kashou, Nasser H

    2013-01-01

    Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.

  17. Infrared image non-rigid registration based on regional information entropy demons algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Chaoliang; Ma, Lihua; Yu, Ming; Cui, Shumin; Wu, Qingrong

    2015-02-01

    Infrared imaging fault detection which is treated as an ideal, non-contact, non-destructive testing method is applied to the circuit board fault detection. Since Infrared images obtained by handheld infrared camera with wide-angle lens have both rigid and non-rigid deformations. To solve this problem, a new demons algorithm based on regional information entropy was proposed. The new method overcame the shortcomings of traditional demons algorithm that was sensitive to the intensity. First, the information entropy image was gotten by computing regional information entropy of the image. Then, the deformation between the two images was calculated that was the same as demons algorithm. Experimental results demonstrated that the proposed algorithm has better robustness in intensity inconsistent images registration compared with the traditional demons algorithm. Achieving accurate registration between intensity inconsistent infrared images provided strong support for the temperature contrast.

  18. [Medical image segmentation based on guided filtering and multi-atlas].

    PubMed

    Wen, Rui; Chen, Hongwen; Zhang, Lei; Lu, Zhentai

    2015-08-01

    A novel medical automatic image segmentation strategy based on guided filtering and multi-atlas is proposed to achieve accurate, smooth, robust, and reliable segmentation. This framework consists of 4 elements: the multi-atlas registration, which uses the atlas prior information; the label fusion, in which the similarity measure of the registration is used as the weight to fuse the warped label; the guided filtering, which uses the local information of the target image to correct the registration errors; and the threshold approaches used to obtain the segment result. The experimental results showed part among the 15 brain MRI images used to segment the hippocampus region, the proposed method achieved a median Dice coefficient of 86% on the left hippocampus and 87.4% on the right hippocampus. Compared with the traditional label fusion algorithm, the proposed algorithm outperforms the common brain image segmentation methods with a good efficiency and accuracy.

  19. Tooling Techniques Enhance Medical Imaging

    NASA Technical Reports Server (NTRS)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  20. Image-based motion estimation for cardiac CT via image registration

    NASA Astrophysics Data System (ADS)

    Cammin, J.; Taguchi, K.

    2010-03-01

    Images reconstructed from tomographic projection data are subject to motion artifacts from organs that move during the duration of the scan. The effect can be reduced by taking the motion into account in the reconstruction algorithm if an estimate of the deformation exists. This paper presents the estimation of the three-dimensional cardiac motion by registering reconstructed images from cardiac quiet phases as a first step towards motion-compensated cardiac image reconstruction. The non-rigid deformations of the heart are parametrized on a coarse grid on the image volume and are interpolated with cubic b-splines. The optimization problem of finding b-spline coefficients that best describe the observed deformations is ill-posed due to the large number of parameters and the resulting motion vector field is sensitive to the choice of initial parameters. Particularly challenging is the task to capture the twisting motion of the heart. The motion vector field from a dynamic computer phantom of the human heart is used to initialize the transformation parameters for the optimization process with realistic starting values. The results are evaluated by comparing the registered images and the obtained motion vector field to the case when the registration is performed without using prior knowledge about the expected cardiac motion. We find that the registered images are similar for both approaches, but the motion vector field obtained from motion estimation initialized with the phantom describes the cardiac contraction and twisting motion more accurately.

  1. Nonrigid liver registration for image-guided surgery using partial surface data: a novel iterative approach

    NASA Astrophysics Data System (ADS)

    Rucker, D. Caleb; Wu, Yifei; Ondrake, Janet E.; Pheiffer, Thomas S.; Simpson, Amber L.; Miga, Michael I.

    2013-03-01

    In the context of open abdominal image-guided liver surgery, the efficacy of an image-guidance system relies on its ability to (1) accurately depict tool locations with respect to the anatomy, and (2) maintain the work flow of the surgical team. Laser-range scanned (LRS) partial surface measurements can be taken intraoperatively with relatively little impact on the surgical work flow, as opposed to other intraoperative imaging modalities. Previous research has demonstrated that this kind of partial surface data may be (1) used to drive a rigid registration of the preoperative CT image volume to intraoperative patient space, and (2) extrapolated and combined with a tissue-mechanics-based organ model to drive a non-rigid registration, thus compensating for organ deformations. In this paper we present a novel approach for intraoperative nonrigid liver registration which iteratively reconstructs a displacement field on the posterior side of the organ in order to minimize the error between the deformed model and the intraopreative surface data. Experimental results with a phantom liver undergoing large deformations demonstrate that this method achieves target registration errors (TRE) with a mean of 4.0 mm in the prediction of a set of 58 locations inside the phantom, which represents a 50% improvement over rigid registration alone, and a 44% improvement over the prior non-iterative single-solve method of extrapolating boundary conditions via a surface Laplacian.

  2. A Porcine Liver Model for Validation of Registration Accuracy in Image-Guided Surgery

    NASA Astrophysics Data System (ADS)

    Peterhans, Matthias; Dagon, Benoît; Berg, Anne Vom; Inderbitzin, Daniel; Baur, Charles; Weber, Stefan

    Correct registration between pre-operative high-resolution images and intra-operative data of lower detail is a fundamental requirement in image-guided liver surgery. We propose a multi modality liver model for measuring the accuracy of such registration methods. A freshly explanted porcine liver is artificially perfused by a peristaltic pump and liver motion is simulated by means of inflatable objects positioned around the liver. Co-registered ultrasound and CT data sets are acquired in different deformation scenarios and allow compar-ing registration outcomes with a CT data set serving as ground truth. The pre-sent work describes the experimental setup and summarizes the results from ultrasound and CT imaging.

  3. Adaptive robust image registration approach based on adequately sampling polar transform and weighted angular projection function

    NASA Astrophysics Data System (ADS)

    Wei, Zhao; Tao, Feng; Jun, Wang

    2013-10-01

    An efficient, robust, and accurate approach is developed for image registration, which is especially suitable for large-scale change and arbitrary rotation. It is named the adequately sampling polar transform and weighted angular projection function (ASPT-WAPF). The proposed ASPT model overcomes the oversampling problem of conventional log-polar transform. Additionally, the WAPF presented as the feature descriptor is robust to the alteration in the fovea area of an image, and reduces the computational cost of the following registration process. The experimental results show two major advantages of the proposed method. First, it can register images with high accuracy even when the scale factor is up to 10 and the rotation angle is arbitrary. However, the maximum scaling estimated by the state-of-the-art algorithms is 6. Second, our algorithm is more robust to the size of the sampling region while not decreasing the accuracy of the registration.

  4. Random walks with efficient search and contextually adapted image similarity for deformable registration.

    PubMed

    Tang, Lisa Y W; Hamarneh, Ghassan

    2013-01-01

    We develop a random walk-based image registration method that incorporates two novelties: 1) a progressive optimization scheme that conducts the solution search efficiently via a novel use of information derived from the obtained probabilistic solution, and 2) a data-likelihood re-weighting step that contextually performs feature selection in a spatially adaptive manner so that the data costs are based primarily on trusted information sources. Synthetic experiments on three public datasets of different anatomical regions and modalities showed that our method performed efficient search without sacrificing registration accuracy. Experiments performed on 60 real brain image pairs from a public dataset also demonstrated our method's better performance over