Science.gov

Sample records for medical image system

  1. Medical imaging systems

    SciTech Connect

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  2. Medical image processing system

    NASA Astrophysics Data System (ADS)

    Wang, Dezong; Wang, Jinxiang

    1994-12-01

    In this paper a medical image processing system is described. That system is named NAI200 Medical Image Processing System and has been appraised by Chinese Government. Principles and cases provided here. Many kinds of pictures are used in modern medical diagnoses, for example B-supersonic, X-ray, CT and MRI. Some times the pictures are not good enough for diagnoses. The noises interfere with real situation on these pictures. That means the image processing is needed. A medical image processing system is described in this paper. That system is named NAI200 Medical Image Processing System and has been appraised by Chinese Government. There are four functions in that system. The first part is image processing. More than thirty four programs are involved. The second part is calculating. The areas or volumes of single or multitissues are calculated. Three dimensional reconstruction is the third part. The stereo images of organs or tumors are reconstructed with cross-sections. The last part is image storage. All pictures can be transformed to digital images, then be stored in hard disk or soft disk. In this paper not only all functions of that system are introduced, also the basic principles of these functions are explained in detail. This system has been applied in hospitals. The images of hundreds of cases have been processed. We describe the functions combining real cases. Here we only introduce a few examples.

  3. Medical imaging systems

    SciTech Connect

    Frangioni, John V.

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  4. Stereoscopic medical imaging collaboration system

    NASA Astrophysics Data System (ADS)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  5. MIARS: a medical image retrieval system.

    PubMed

    Mueen, A; Zainuddin, R; Baba, M Sapiyan

    2010-10-01

    The next generation of medical information system will integrate multimedia data to assist physicians in clinical decision-making, diagnoses, teaching, and research. This paper describes MIARS (Medical Image Annotation and Retrieval System). MIARS not only provides automatic annotation, but also supports text based as well as image based retrieval strategies, which play important roles in medical training, research, and diagnostics. The system utilizes three trained classifiers, which are trained using training images. The goal of these classifiers is to provide multi-level automatic annotation. Another main purpose of the MIARS system is to study image semantic retrieval strategy by which images can be retrieved according to different levels of annotation.

  6. Improved Interactive Medical-Imaging System

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  7. Web-based medical image archive system

    NASA Astrophysics Data System (ADS)

    Suh, Edward B.; Warach, Steven; Cheung, Huey; Wang, Shaohua A.; Tangiral, Phanidral; Luby, Marie; Martino, Robert L.

    2002-05-01

    This paper presents a Web-based medical image archive system in three-tier, client-server architecture for the storage and retrieval of medical image data, as well as patient information and clinical data. The Web-based medical image archive system was designed to meet the need of the National Institute of Neurological Disorders and Stroke for a central image repository to address questions of stroke pathophysiology and imaging biomarkers in stroke clinical trials by analyzing images obtained from a large number of clinical trials conducted by government, academic and pharmaceutical industry researchers. In the database management-tier, we designed the image storage hierarchy to accommodate large binary image data files that the database software can access in parallel. In the middle-tier, a commercial Enterprise Java Bean server and secure Web server manages user access to the image database system. User-friendly Web-interfaces and applet tools are provided in the client-tier for easy access to the image archive system over the Internet. Benchmark test results show that our three-tier image archive system yields fast system response time for uploading, downloading, and querying the image database.

  8. Multi-channel medical imaging system

    DOEpatents

    Frangioni, John V.

    2016-05-03

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  9. Multi-channel medical imaging system

    SciTech Connect

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  10. A recommender system for medical imaging diagnostic.

    PubMed

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision.

  11. Multilanthanide Systems for Medical Imaging Applications

    PubMed Central

    Moore, Jeremiah D.; Allen, Matthew J.

    2011-01-01

    Molecules containing multiple lanthanide ions have unique potential in applications for medical imaging including the areas of magnetic resonance imaging (MRI) and fluoresence imaging. The study of multilanthanide complexes as contrast agents for MRI and as biologically responsive fluorescent probes has resulted in an improved understanding of the structural characteristics that govern the behavior of these complexes. This review will survey the last five years of progress in multinuclear lanthanide complexes with a specific focus on the structural parameters that impact potential medical imaging applications. The patents cited in this review are from the last five years and describe contrast agents that contain multiple lanthanide ions. PMID:23543789

  12. Medical Image Analysis by Cognitive Information Systems - a Review.

    PubMed

    Ogiela, Lidia; Takizawa, Makoto

    2016-10-01

    This publication presents a review of medical image analysis systems. The paradigms of cognitive information systems will be presented by examples of medical image analysis systems. The semantic processes present as it is applied to different types of medical images. Cognitive information systems were defined on the basis of methods for the semantic analysis and interpretation of information - medical images - applied to cognitive meaning of medical images contained in analyzed data sets. Semantic analysis was proposed to analyzed the meaning of data. Meaning is included in information, for example in medical images. Medical image analysis will be presented and discussed as they are applied to various types of medical images, presented selected human organs, with different pathologies. Those images were analyzed using different classes of cognitive information systems. Cognitive information systems dedicated to medical image analysis was also defined for the decision supporting tasks. This process is very important for example in diagnostic and therapy processes, in the selection of semantic aspects/features, from analyzed data sets. Those features allow to create a new way of analysis. PMID:27526188

  13. Medical Image Analysis by Cognitive Information Systems - a Review.

    PubMed

    Ogiela, Lidia; Takizawa, Makoto

    2016-10-01

    This publication presents a review of medical image analysis systems. The paradigms of cognitive information systems will be presented by examples of medical image analysis systems. The semantic processes present as it is applied to different types of medical images. Cognitive information systems were defined on the basis of methods for the semantic analysis and interpretation of information - medical images - applied to cognitive meaning of medical images contained in analyzed data sets. Semantic analysis was proposed to analyzed the meaning of data. Meaning is included in information, for example in medical images. Medical image analysis will be presented and discussed as they are applied to various types of medical images, presented selected human organs, with different pathologies. Those images were analyzed using different classes of cognitive information systems. Cognitive information systems dedicated to medical image analysis was also defined for the decision supporting tasks. This process is very important for example in diagnostic and therapy processes, in the selection of semantic aspects/features, from analyzed data sets. Those features allow to create a new way of analysis.

  14. CMAS: a rich media annotation system for medical imaging

    NASA Astrophysics Data System (ADS)

    Lin, I.-Jong; Chao, Hui

    2006-03-01

    We have developed the CMAS system (Collaborative Medical Annotation System) so that medical professionals will be able to easily annotate digital medical records that contain medical imaging or procedure videos. The CMAS system enables a non-technical person to annotate a medical image or video with their recorded presence. The CMAS system displays medical images via a projector onto a screen; when a doctor (or patient) physically walks in front of this screen with the medical image and gives his/her opinion while gesturing at the image, the CMAS system intuitively captures this interaction by creating a video annotation with HP's Active Shadows technology. The CMAS system automatically transforms physical interactions, ranging from a laser pointer spot to a doctor's physical presence, into video annotation that then can be overlaid on top of the medical image or seamlessly inserted into the procedure video. Annotated in such a manner, the medical record retains the historical development of the diagnostic medical opinion, explained through presence of doctors and their respective annotations. The CMAS system structures the annotation of digital medical records such that image/video annotations from multiple sources, at different times, and from different locations can be maintained within a historical context and be consistently referenced among multiple annotations.

  15. An online interactive simulation system for medical imaging education.

    PubMed

    Dikshit, Aditya; Wu, Dawei; Wu, Chunyan; Zhao, Weizhao

    2005-09-01

    This report presents a recently developed web-based medical imaging simulation system for teaching students or other trainees who plan to work in the medical imaging field. The increased importance of computer and information technology widely applied to different imaging techniques in clinics and medical research necessitates a comprehensive medical imaging education program. A complete tutorial of simulations introducing popular imaging modalities, such as X-ray, MRI, CT, ultrasound and PET, forms an essential component of such an education. Internet technologies provide a vehicle to carry medical imaging education online. There exist a number of internet-based medical imaging hyper-books or online documentations. However, there are few providing interactive computational simulations. We focus on delivering knowledge of the physical principles and engineering implementation of medical imaging techniques through an interactive website environment. The online medical imaging simulation system presented in this report outlines basic principles underlying different imaging techniques and image processing algorithms and offers trainees an interactive virtual laboratory. For education purposes, this system aims to provide general understanding of each imaging modality with comprehensive explanations, ample illustrations and copious references as its thrust, rather than complex physics or detailed math. This report specifically describes the development of the tutorial for commonly used medical imaging modalities. An internet-accessible interface is used to simulate various imaging algorithms with user-adjustable parameters. The tutorial is under the MATLAB Web Server environment. Macromedia Director MX is used to develop interactive animations integrating theory with graphic-oriented simulations. HTML and JavaScript are used to enable a user to explore these modules online in a web browser. Numerous multiple choice questions, links and references for advanced study are

  16. Multiphase Systems for Medical Image Region Classification

    NASA Astrophysics Data System (ADS)

    Garamendi, J. F.; Malpica, N.; Schiavi, E.

    2009-05-01

    Variational methods for region classification have shown very promising results in medical image analysis. The Chan-Vese model is one of the most popular methods, but its numerical resolution is slow and it has serious drawbacks for most multiphase applications. In this work, we extend the link, stablished by Chambolle, between the two classes binary Chan-Vese model and the Rudin-Osher-Fatemi (ROF) model to a multiphase four classes minimal partition problem. We solve the ROF image restoration model and then we threshold the image by means of a genetic algorithm. This strategy allows for a more efficient algorithm due to the fact that only one well posed elliptic problem is solved instead of solving the coupled parabolic equations arising in the original multiphase Chan-Vese model.

  17. Osiris: a medical image-manipulation system.

    PubMed

    Ligier, Y; Ratib, O; Logean, M; Girard, C

    1994-01-01

    We designed a general-purpose computer program, Osiris, for the display, manipulation, and analysis of digital medical images. The program offers an intuitive, window-based interface with direct access to generic tools. Characterized by user-friendliness, portability, and extensibility, Osiris is compatible with both Unix-based and Macintosh-based platforms. It is readily modified and can be used to develop new tools. It is able to monitor the entries made during a work session and thus provide data on its use. Osiris and its source code are being distributed, free of charge, to universities and research groups around the world.

  18. Tele-medical imaging conference system based on the Web.

    PubMed

    Choi, Heung-Kook; Park, Se-Myung; Kang, Jae-Hyo; Kim, Sang-Kyoon; Choi, Hang-Mook

    2002-06-01

    In this paper, a medical imaging conference system is presented, which is carried out in the Web environment using the distributed object technique, CORBA. Independent of platforms and different developing languages, the CORBA-based medical imaging conference system is very powerful for system development, extension and maintenance. With this Web client/server, one could easily execute a medical imaging conference using Applets on the Web. The Java language, which is object-oriented and independent of platforms, has the advantage of free usage wherever the Web browser is. By using the proposed system, we envisage being able to open a tele-conference using medical images, e.g. CT, MRI, X-ray etc., easily and effectively among remote hospitals.

  19. An information gathering system for medical image inspection

    NASA Astrophysics Data System (ADS)

    Lee, Young-Jin; Bajcsy, Peter

    2005-04-01

    We present an information gathering system for medical image inspection that consists of software tools for capturing computer-centric and human-centric information. Computer-centric information includes (1) static annotations, such as (a) image drawings enclosing any selected area, a set of areas with similar colors, a set of salient points, and (b) textual descriptions associated with either image drawings or links between pairs of image drawings, and (2) dynamic (or temporal) information, such as mouse movements, zoom level changes, image panning and frame selections from an image stack. Human-centric information is represented by video and audio signals that are acquired by computer-mounted cameras and microphones. The short-term goal of the presented system is to facilitate learning of medical novices from medical experts, while the long-term goal is to data mine all information about image inspection for assisting in making diagnoses. In this work, we built basic software functionality for gathering computer-centric and human-centric information of the aforementioned variables. Next, we developed the information playback capabilities of all gathered information for educational purposes. Finally, we prototyped text-based and image template-based search engines to retrieve information from recorded annotations, for example, (a) find all annotations containing the word "blood vessels", or (b) search for similar areas to a selected image area. The information gathering system for medical image inspection reported here has been tested with images from the Histology Atlas database.

  20. Medical imaging

    NASA Astrophysics Data System (ADS)

    Elliott, Alex

    2005-07-01

    Diagnostic medical imaging is a fundamental part of the practice of modern medicine and is responsible for the expenditure of considerable amounts of capital and revenue monies in healthcare systems around the world. Much research and development work is carried out, both by commercial companies and the academic community. This paper reviews briefly each of the major diagnostic medical imaging techniques—X-ray (planar and CT), ultrasound, nuclear medicine (planar, SPECT and PET) and magnetic resonance. The technical challenges facing each are highlighted, with some of the most recent developments. In terms of the future, interventional/peri-operative imaging, the advancement of molecular medicine and gene therapy are identified as potential areas of expansion.

  1. A Total Information Management System For All Medical Images

    NASA Astrophysics Data System (ADS)

    Ouimette, Donald; Nudelman, Sol; Ramsby, Gale; Spackman, Thomas

    1985-09-01

    A PACS has been designed for the University of Connecticut Health Center to serve all departments acquiring images for diagnosis, surgery and therapy. It incorporates a multiple community communications architecture to provide complete information management for medical images, medical data and departmental administrative matter. The system is modular and expandable. It permits an initial installation for radiology and subsequent expansion to include other departments at the Health Center, beginning with internal medicine, surgery, ophthalmology and dentistry. The design permits sufficient expansion to offer the potential for accepting the additional burden of a hospital information system. Primary parameters that led to this system design were based on the anticipation that departments in time could achieve generating 60 to 90% of their images suited to insertion in a PACS, that a high network throughput for large block image transfers would be essen-tial and that total system reliability was fundamental to success.

  2. MIRMAID: A Content Management System for Medical Image Analysis Research

    PubMed Central

    Korfiatis, Panagiotis D.; Kline, Timothy L.; Blezek, Daniel J.; Langer, Steve G.; Ryan, William J.

    2015-01-01

    Today, a typical clinical study can involve thousands of participants, with imaging data acquired over several time points across multiple institutions. The additional associated information (metadata) accompanying these data can cause data management to be a study-hindering bottleneck. Consistent data management is crucial for large-scale modern clinical imaging research studies. If the study is to be used for regulatory submissions, such systems must be able to meet regulatory compliance requirements for systems that manage clinical image trials, including protecting patient privacy. Our aim was to develop a system to address these needs by leveraging the capabilities of an open-source content management system (CMS) that has a highly configurable workflow; has a single interface that can store, manage, and retrieve imaging-based studies; and can handle the requirement for data auditing and project management. We developed a Web-accessible CMS for medical images called Medical Imaging Research Management and Associated Information Database (MIRMAID). From its inception, MIRMAID was developed to be highly flexible and to meet the needs of diverse studies. It fulfills the need for a complete system for medical imaging research management. ©RSNA, 2015 PMID:26284301

  3. MIRMAID: A Content Management System for Medical Image Analysis Research.

    PubMed

    Korfiatis, Panagiotis D; Kline, Timothy L; Blezek, Daniel J; Langer, Steve G; Ryan, William J; Erickson, Bradley J

    2015-01-01

    Today, a typical clinical study can involve thousands of participants, with imaging data acquired over several time points across multiple institutions. The additional associated information (metadata) accompanying these data can cause data management to be a study-hindering bottleneck. Consistent data management is crucial for large-scale modern clinical imaging research studies. If the study is to be used for regulatory submissions, such systems must be able to meet regulatory compliance requirements for systems that manage clinical image trials, including protecting patient privacy. Our aim was to develop a system to address these needs by leveraging the capabilities of an open-source content management system (CMS) that has a highly configurable workflow; has a single interface that can store, manage, and retrieve imaging-based studies; and can handle the requirement for data auditing and project management. We developed a Web-accessible CMS for medical images called Medical Imaging Research Management and Associated Information Database (MIRMAID). From its inception, MIRMAID was developed to be highly flexible and to meet the needs of diverse studies. It fulfills the need for a complete system for medical imaging research management. PMID:26284301

  4. Medical Imaging.

    ERIC Educational Resources Information Center

    Barker, M. C. J.

    1996-01-01

    Discusses four main types of medical imaging (x-ray, radionuclide, ultrasound, and magnetic resonance) and considers their relative merits. Describes important recent and possible future developments in image processing. (Author/MKR)

  5. A telemedicine system for remote cooperative medical imaging diagnosis.

    PubMed

    Gómez, E J; del Pozo, F; Quiles, J A; Arredondo, M T; Rahms, H; Sanz, M; Cano, P

    1996-01-01

    Telemedicine is changing the classical form of health care delivery, by providing efficient solutions to an increasing number of new situations: here we consider those which require some type of computer-supported cooperative work (CSCW) between health care professionals located in different clinical sites. This paper presents the design and development of a telemedicine system for remote computer-supported cooperative medical imaging diagnosis. The main and novel component of our system is a new CSCW distributed architecture, comprised by a collaborative toolkit to add audioconferencing, telepointing, window sharing, user's coordination and application synchronization facilities, either to existing or new medical imaging diagnosis applications. In comparison with existing CSCW products, mainly based on centralized architectures, our distributed toolkit is specially designed for telemedicine applications: to allow different levels of sharing between participants, to improve user feedback in highly interactive user interfaces, and to optimize the required communication bandwidth in order to implement a telemedicine CSCW application on almost any telecommunication network. This telemedicine CSCW system has been applied to build a cooperative medical imaging diagnosis application, in which two doctors, located in different hospitals, need to achieve a cooperative diagnosis on haemodynamic studies using cardiac angiography images. The design of the graphical user interface for this kind of telemedicine CSCW systems, a critical component which conforms any telemedicine application, is also addressed with a new methodological approach, to assure the system usability and final user acceptance. The telemedicine cardiac angiography pilot has been implemented, tested and evaluated within the Research Project 'FEST-Framework for European Services in Telemedicine' funded by EU AIM Programme.

  6. Integrating medical imaging analyses through a high-throughput bundled resource imaging system

    NASA Astrophysics Data System (ADS)

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-03-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.

  7. Integrating Medical Imaging Analyses through a High-throughput Bundled Resource Imaging System.

    PubMed

    Covington, Kelsie; Welch, E Brian; Jeong, Ha-Kyu; Landman, Bennett A

    2011-01-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists. PMID:21841899

  8. Image capture and printing system for digitally generated medical-diagnostic images

    NASA Astrophysics Data System (ADS)

    Stone, Barry; Bronkalla, Mark D.

    1990-08-01

    The printing of digitally generated images from medical diagnostic equipment has typically been done on analog systems after D to A conversion. Newer digital printing systems do not generally yield optimum results since they re-sample the incoming video signal according to their own internal pixel matrix. This leads to a loss of contrast and resolution plus the introduction of aliasing artifacts into the image. Using the method of synchronous sampling of the incoming video signal an almost perfect digitization of the original image can be achieved. Starting with the known display pixel matrix the pixel display clock can be regenerated by a precision phase locked frequency synthesizer. Quantizing levels are duplicated through calibration of the system. Sampling phase error is adjusted out such that each pixel is sampled at its center. Comparison with non-synchronous techniques and multi-generation performance of this system will be demonstrated. The images are then transferred digitally on disk for storage and later printing by a CRT based slow scan camera system. Image parameter files saved with the image allow the camera to generate a gamma correction look-up table for printing. The film image will then precisely and consistently match the CRT image viewed by the system operator. The system is capable of digitizing and printing up to 10242 images with the same high quality as the original displayed image.

  9. [The CORBA solution of medical imaging and communication system].

    PubMed

    Wang, Yong; Lü, Yangsheng; Yu, Hui

    2005-02-01

    Due to the difficulty of communication and information share between Medical information systems, the Object Management Group issued the software specification of CORBAMed, defining the interfaces of services, and specifying the software architecture of Medical Information System. This paper attempts to use CORBA in Picture Archiving and Communication System (PACS), provides a system model of CORBA solution of PACS, and analyzes the view layers structure of system, finally we discuss the related services of CORBAMed.

  10. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for medical imaging... DEVICES Ultra-Wideband Operation § 15.513 Technical requirements for medical imaging systems. (a) The UWB... MHz and 10,600 MHz. (b) Operation under the provisions of this section is limited to medical...

  11. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for medical imaging... DEVICES Ultra-Wideband Operation § 15.513 Technical requirements for medical imaging systems. (a) The UWB... MHz and 10,600 MHz. (b) Operation under the provisions of this section is limited to medical...

  12. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for medical imaging... DEVICES Ultra-Wideband Operation § 15.513 Technical requirements for medical imaging systems. (a) The UWB... MHz and 10,600 MHz. (b) Operation under the provisions of this section is limited to medical...

  13. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for medical imaging... DEVICES Ultra-Wideband Operation § 15.513 Technical requirements for medical imaging systems. (a) The UWB... MHz and 10,600 MHz. (b) Operation under the provisions of this section is limited to medical...

  14. An integrated medical image database and retrieval system using a web application server.

    PubMed

    Cao, Pengyu; Hashiba, Masao; Akazawa, Kouhei; Yamakawa, Tomoko; Matsuto, Takayuki

    2003-08-01

    We developed an Integrated Medical Image Database and Retrieval System (INIS) for easy access by medical staff. The INIS mainly consisted of four parts: specific servers to save medical images from multi-vendor modalities of CT, MRI, CR, ECG and endoscopy; an integrated image database (DB) server to save various kinds of images in a DICOM format; a Web application server to connect clients to the integrated image DB and the Web browser terminals connected to an HIS system. The INIS provided a common screen design to retrieve CT, MRI, CR, endoscopic and ECG images, and radiological reports, which would allow doctors to retrieve radiological images and corresponding reports, or ECG images of a patient simultaneously on a screen. Doctors working in internal medicine on average accessed information 492 times a month. Doctors working in cardiological and gastroenterological accessed information 308 times a month. Using the INIS, medical staff could browse all or parts of a patient's medical images and reports.

  15. Research on medical image encryption in telemedicine systems.

    PubMed

    Dai, Yin; Wang, Huanzhen; Zhou, Zixia; Jin, Ziyi

    2016-04-29

    Recently, advances in computers and high-speed communication tools have led to enhancements in remote medical consultation research. Laws in some localities require hospitals to encrypt patient information (including images of the patient) before transferring the data over a network. Therefore, developing suitable encryption algorithms is quite important for modern medicine. This paper demonstrates a digital image encryption algorithm based on chaotic mapping, which uses the no-period and no-convergence properties of a chaotic sequence to create image chaos and pixel averaging. Then, the chaotic sequence is used to encrypt the image, thereby improving data security. With this method, the security of data and images can be improved. PMID:27163302

  16. MIAPS: a web-based system for remotely accessing and presenting medical images.

    PubMed

    Shen, Hualei; Ma, Dianfu; Zhao, Yongwang; Sun, Hailong; Sun, Sujun; Ye, Rongwei; Huang, Lei; Lang, Bo; Sun, Yan

    2014-01-01

    MIAPS (medical image access and presentation system) is a web-based system designed for remotely accessing and presenting DICOM image. MIAPS is accessed with web browser through the Internet. MIAPS provides four features: DICOM image retrieval, maintenance, presentation and output. MIAPS does not intent to replace sophisticated commercial and open source packages, but it provides a web-based solution for teleradiology and medical image sharing. The system has been evaluated by 39 hospitals in China for 10 months.

  17. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... system, it is permissible to operate an imaging system by remote control provided the imaging system... DEVICES Ultra-Wideband Operation § 15.513 Technical requirements for medical imaging systems. (a) The UWB... radiated emissions at or below 960 MHz from a device operating under the provisions of this section...

  18. Combined SPECT and x-ray CT medical imaging system

    NASA Astrophysics Data System (ADS)

    Kalki, Kathrin; Brown, J. Keenan; Blankespoor, Stephen C.; Heanue, Joseph A.; Wu, Xiang; Cann, Christopher E.; Hasegawa, Bruce H.; Chin, Michael; Stillson, Carol A.; Dae, Michael W.; Carver, James M.

    1995-05-01

    We have designed and built a system for correlated x ray CT transmission and SPECT emission imaging with an array of photon counting detectors. The scanner operates in a third generation fan beam geometry by translating a 23 element high purity germanium detector across the fan to image phantoms and small animals. The x ray CT image is used to obtain an object specific, i.e., anatomically accurate, attenuation map for the reconstruction of the SPECT image. SPECT images are reconstructed with an MLEM code and the pixel values are scaled in physical units by determining a scaling factor from a uniform water phantom with homogeneous and known attenuation. Single myocardial slices of several pigs were imaged with a 99mTc sestamibi imaging agent which is taken up in proportion to regional myocardial blood flow. The results show that 99mTc uptake and regional myocardial blood flow, determined in vivo from reconstructed SPECT images, correlate with the measured in vitro data. Furthermore, the correlation is markedly improved by reconstructing the images with an object specific attenuation map obtained from the coregistered x ray CT image. We were also able to restore the 99mTc sestamibi uptake from the reconstructed images to an accuracy between 40% and 90% of the true in vitro value, depending on the selection of maximum or mean pixel values in the regions of interest.

  19. Lessons from image perception studies for the design of medical imaging systems

    NASA Astrophysics Data System (ADS)

    Wilson, David L.; Jabri, Kadri N.; Manjeshwar, Ravindra M.; Srinivas, Yogesh; Salem, Kyle A.

    2000-06-01

    Our laboratory uses image perception studies to optimize the acquisition and processing of image sequences from x-ray fluoroscopy and interventional MRI (iMRI) both of which are used to guide complex minimally invasive treatments of cancer and vascular disease. Fluoroscopy consists of high frame rate, quantum-limited image sequences. Since it accounts for over half of the diagnostic population x-ray dose, we attempt to reduce dose by optimizing image acquisition and filtering. We quantify image quality using human detection experiments and modeling. Human spatio-temporal processing greatly affects results. For example, spatial noise reduction filtering is significantly more effective on image sequences than on single image frames where it gives relatively little improvement due to the deleterious effect of spatial noise correlation. At CWRU, we use iMRI to guide a radio-frequency probe used for the thermal ablation of cancer. Improving the speed and accuracy of insertion to the target will reduce patient risk and discomfort. We are investigating keyhole imaging whereby one updates only a portion of the Fourier domain at each time step, producing a fast, approximate image sequence. To optimize the very large number of techniques and parameters, we use a perceptual difference model that quantifies the degrading effects introduced by fast MR imaging, including the blurring of interventional devices. Preliminary studies show that a perpendicular frequency encoding direction provides superior image quality in the region of interest compared to other keyhole stripe orientations. Together these two applications illustrate that image perception studies can impact the design of medical imaging systems.

  20. Integrating an enterprise image distribution system into an existing electronic medical record system

    NASA Astrophysics Data System (ADS)

    Witt, Robert M.; Morrow, Robert

    2003-05-01

    The enterprise distribution of radiology images should be integrated into the same application that physicians obtain other clinical information about their patients. Over the past year the Roudebush Veterans Affairs Medical Center has provided enterprise access to radiology images after integrating a commercial web-based image distribution system (Stentor, Brisbane, CA) with the Department of Veterans Affairs internally developed Computerized Patient Record System (CPRS). The application, CPRS, serves as the foundation for the VHA to implement an electronic medical record (EMR). We developed the necessary program communications between the CPRS application and the image distribution application to link the request for a report to a request for the corresponding images. When a physician selects a given radiology report in CPRS the text of the report displays in CPRS and the image application loads the corresponding image study. We found that the requests for film jackets decreased over fifty percent six months after full implementation of the enterprise image distribution system. We have found the integration of the image access and display application into an existing patient information system to be very successful.

  1. Medical imaging curriculum development: an interactive simulation system for different modalities.

    PubMed

    Wu, Dawei; Dikshit, Aditya; Zhao, Weizhao

    2004-01-01

    This paper presents the result of our recent development for medical imaging education, an Internet-based interactive medical imaging simulation system. A series of popularly used medical imaging modalities, including X-rays, ultrasound, CT, MRI and PET, are explored through text, relevant graphics and simulations. In this development, we emphasize interactivity by using MATLAB and Shockwave simulations. To develop the online interactive medical imaging tutorial, MATLAB Web Server and Internet technologies such as Director MX, JavaScript and HTML are employed.

  2. Simulation of Medical Imaging Systems: Emission and Transmission Tomography

    NASA Astrophysics Data System (ADS)

    Harrison, Robert L.

    Simulation is an important tool in medical imaging research. In patient scans the true underlying anatomy and physiology is unknown. We have no way of knowing in a given scan how various factors are confounding the data: statistical noise; biological variability; patient motion; scattered radiation, dead time, and other data contaminants. Simulation allows us to isolate a single factor of interest, for instance when researchers perform multiple simulations of the same imaging situation to determine the effect of statistical noise or biological variability. Simulations are also increasingly used as a design optimization tool for tomographic scanners. This article gives an overview of the mechanics of emission and transmission tomography simulation, reviews some of the publicly available simulation tools, and discusses trade-offs between the accuracy and efficiency of simulations.

  3. Clinical experience with the E-Systems Medical STATVIEW Classic and STATVIEW DX image network systems

    NASA Astrophysics Data System (ADS)

    Hefner, Lance V.; Guy, William L.

    1996-05-01

    The first installation of the `STATVIEW Classic' image network system from E-Systems Medical was at William Beaumont Hospital in December 1993. The installation was intended to support a new critical care tower. Three hundred critical care beds are served by this system, with ten display stations. The system uses non-proprietary hardware for image display and the display software runs in Microsoft Windows. The system consists of a Lumisys model 150 laser digitizer with necessary control equipment, a file server consisting of a IBM compatible 486SX computer with 500 Megabytes of storage, and display stations based on IBM compatible 486DX (66 MHz) computers with NEC 6FGp monitors. We decided to expand the system by purchasing the new Statview DX system from EMED. In August 1995, installation of a DICOM 3.0 image network, the `STATVIEW DX' from E-Systems Medical, was completed. Considerations which were important during the installation of the system and the response of the medical staff to the image network will be discussed.

  4. Medical Imaging.

    ERIC Educational Resources Information Center

    Jaffe, C. Carl

    1982-01-01

    Describes principle imaging techniques, their applications, and their limitations in terms of diagnostic capability and possible adverse biological effects. Techniques include film radiography, computed tomography, nuclear medicine, positron emission tomography (PET), ultrasonography, nuclear magnetic resonance, and digital radiography. PET has…

  5. Sparsity-driven ideal observer for computed medical imaging systems

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.

    2015-03-01

    The Bayesian ideal observer (IO) has been widely advocated to guide hardware optimization. However, except for special cases, computation of the IO test statistic is computationally burdensome and requires an appropriate stochastic object model that may be difficult to determine in practice. Modern reconstruction methods, referred to as sparse reconstruction methods, exploit the fact that objects of interest typically possess sparse representations and have proven to be highly effective at reconstructing images from under-sampled measurement data. Moreover, in computed imaging approaches that employ compressive sensing concepts, imaging hardware and image reconstruction are innately coupled technologies. In this work, we propose a sparsity-driven IO (SD-IO) to guide the optimization of data acquisition parameters for modern computed imaging systems. The SD-IO employs a variational Bayesian inference method to estimate the posterior distribution and calculates an approximate likelihood ratio analytically as its test statistic. Since it assumes knowledge of low-level statistical properties of the object that are related to sparsity, the SD-IO exploits the same statistical information regarding the object that is utilized by highly effective sparse image reconstruction methods. Preliminary simulation results are presented to demonstrate the feasibility of the SD-IO calculation.

  6. Facilitating medical information search using Google Glass connected to a content-based medical image retrieval system.

    PubMed

    Widmer, Antoine; Schaer, Roger; Markonis, Dimitrios; Muller, Henning

    2014-01-01

    Wearable computing devices are starting to change the way users interact with computers and the Internet. Among them, Google Glass includes a small screen located in front of the right eye, a camera filming in front of the user and a small computing unit. Google Glass has the advantage to provide online services while allowing the user to perform tasks with his/her hands. These augmented glasses uncover many useful applications, also in the medical domain. For example, Google Glass can easily provide video conference between medical doctors to discuss a live case. Using these glasses can also facilitate medical information search by allowing the access of a large amount of annotated medical cases during a consultation in a non-disruptive fashion for medical staff. In this paper, we developed a Google Glass application able to take a photo and send it to a medical image retrieval system along with keywords in order to retrieve similar cases. As a preliminary assessment of the usability of the application, we tested the application under three conditions (images of the skin; printed CT scans and MRI images; and CT and MRI images acquired directly from an LCD screen) to explore whether using Google Glass affects the accuracy of the results returned by the medical image retrieval system. The preliminary results show that despite minor problems due to the relative stability of the Google Glass, images can be sent to and processed by the medical image retrieval system and similar images are returned to the user, potentially helping in the decision making process.

  7. Facilitating medical information search using Google Glass connected to a content-based medical image retrieval system.

    PubMed

    Widmer, Antoine; Schaer, Roger; Markonis, Dimitrios; Muller, Henning

    2014-01-01

    Wearable computing devices are starting to change the way users interact with computers and the Internet. Among them, Google Glass includes a small screen located in front of the right eye, a camera filming in front of the user and a small computing unit. Google Glass has the advantage to provide online services while allowing the user to perform tasks with his/her hands. These augmented glasses uncover many useful applications, also in the medical domain. For example, Google Glass can easily provide video conference between medical doctors to discuss a live case. Using these glasses can also facilitate medical information search by allowing the access of a large amount of annotated medical cases during a consultation in a non-disruptive fashion for medical staff. In this paper, we developed a Google Glass application able to take a photo and send it to a medical image retrieval system along with keywords in order to retrieve similar cases. As a preliminary assessment of the usability of the application, we tested the application under three conditions (images of the skin; printed CT scans and MRI images; and CT and MRI images acquired directly from an LCD screen) to explore whether using Google Glass affects the accuracy of the results returned by the medical image retrieval system. The preliminary results show that despite minor problems due to the relative stability of the Google Glass, images can be sent to and processed by the medical image retrieval system and similar images are returned to the user, potentially helping in the decision making process. PMID:25570993

  8. [Current situations and problems of quality control for medical imaging display systems].

    PubMed

    Shibutani, Takayuki; Setojima, Tsuyoshi; Ueda, Katsumi; Takada, Katsumi; Okuno, Teiichi; Onoguchi, Masahisa; Nakajima, Tadashi; Fujisawa, Ichiro

    2015-04-01

    Diagnostic imaging has been shifted rapidly from film to monitor diagnostic. Consequently, Japan medical imaging and radiological systems industries association (JIRA) have recommended methods of quality control (QC) for medical imaging display systems. However, in spite of its need by majority of people, executing rate is low. The purpose of this study was to validate the problem including check items about QC for medical imaging display systems. We performed acceptance test of medical imaging display monitors based on Japanese engineering standards of radiological apparatus (JESRA) X-0093*A-2005 to 2009, and performed constancy test based on JESRA X-0093*A-2010 from 2010 to 2012. Furthermore, we investigated the cause of trouble and repaired number. Medical imaging display monitors had 23 inappropriate monitors about visual estimation, and all these monitors were not criteria of JESRA about luminance uniformity. Max luminance was significantly lower year-by-year about measurement estimation, and the 29 monitors did not meet the criteria of JESRA about luminance deviation. Repaired number of medical imaging display monitors had 25, and the cause was failure liquid crystal panel. We suggested the problems about medical imaging display systems.

  9. Development of a medical image filing system based on superhigh-definition image and its functional evaluation

    NASA Astrophysics Data System (ADS)

    Takeda, Hiroshi; Matsumura, Yasushi; Okada, Takeo; Kuwata, Shigeki; Wada, Minoru; Hashimoto, Tsutomu

    1997-05-01

    Although many images are handled in the medical filed, image monitoring deices and filing methods vary due to differences in resolution and pixel depth. If a system enabling such images to be filed synthetically without losing its quality were to exist, and if retrieval of such images were made easily, such a system could be applied in various ways. In order to determine whether a super high definition (SHD) image system running at a series of 2048 resolution X 2048 line X 60 frame/sec was capable of such purposes, we established a filing system for medical images on this system. All images of various types produced form one case of cardiovascular disease were digitized and registered into this filing system. Images consisted of plain chest x-ray, electrocardiogram, ultrasound cardiogram, cardiac scintigram, coronary angiogram, left ventriculogram and so on. All images were animated and totaled a number of 243. We prepared a graphic user interface for image retrieval based on the medical events and modalities. Twenty one cardiac specialists evaluated quality of the SHD images to be somewhat poor compared to the original pictures but sufficient for making diagnoses, and effective as a tool for teaching and case study group purposes because of its operability of the retrieval system. The system capability of simultaneously displaying several animated images was especially deemed effective in grasping comprehension of diagnosis. efficient input methods, and creating a capacity of filing all produced images are future issue.

  10. Medical tele-education system with superhigh-definition (SHD) image viewer

    NASA Astrophysics Data System (ADS)

    Tsumura, Hiroshi; Ashihara, Tsukasa; Urata, Yoji; Hata, Jun-ichi; Fukuhara, Yoshimi; Ono, Sadayasu

    1996-02-01

    We have been studying a medical tele-education support system by an individual tutoring system, called CALAT, and a super high definition (SHD) image processing system, called SuperFM-III. Now, we are in a trial operation to use the SuperFM-III for a super high definition image control viewer on the CALAT client side, and have created the courseware of the pathological images. In this paper, we show the concept and the implementation of this system.

  11. [A brain tumor automatic assisted-diagnostic system based on medical image shape analysis].

    PubMed

    Wang, Li-Li; Yang, Jie

    2005-03-01

    This paper covers a brain tumor assisted diagnosis system based on medical image analysis. The system supplements the PACS functions such as display of medical images and database inquiry, segments slice in real-time using the algorithm of fuzzy region competition, extracts shape feature factors such as contour label, compactness, moment, Fourier Descriptor, chord length, radius and other medical data on the brain tumor image with irregular contour feature after segmentation and then feeds to Bayesian network in order to sort the brain tumor for the implementation of automatic assisted diagnosis. PMID:16011110

  12. NIR DLP hyperspectral imaging system for medical applications

    NASA Astrophysics Data System (ADS)

    Wehner, Eleanor; Thapa, Abhas; Livingston, Edward; Zuzak, Karel

    2011-03-01

    DLP® hyperspectral reflectance imaging in the visible range has been previously shown to quantify hemoglobin oxygenation in subsurface tissues, 1 mm to 2 mm deep. Extending the spectral range into the near infrared reflects biochemical information from deeper subsurface tissues. Unlike any other illumination method, the digital micro-mirror device, DMD, chip is programmable, allowing the user to actively illuminate with precisely predetermined spectra of illumination with a minimum bandpass of approximately 10 nm. It is possible to construct active spectral-based illumination that includes but is not limited to containing sharp cutoffs to act as filters or forming complex spectra, varying the intensity of light at discrete wavelengths. We have characterized and tested a pure NIR, 760 nm to 1600 nm, DLP hyperspectral reflectance imaging system. In its simplest application, the NIR system can be used to quantify the percentage of water in a subject, enabling edema visualization. It can also be used to map vein structure in a patient in real time. During gall bladder surgery, this system could be invaluable in imaging bile through fatty tissue, aiding surgeons in locating the common bile duct in real time without injecting any contrast agents.

  13. A web-based 3D medical image collaborative processing system with videoconference

    NASA Astrophysics Data System (ADS)

    Luo, Sanbi; Han, Jun; Huang, Yonggang

    2013-07-01

    Three dimension medical images have been playing an irreplaceable role in realms of medical treatment, teaching, and research. However, collaborative processing and visualization of 3D medical images on Internet is still one of the biggest challenges to support these activities. Consequently, we present a new application approach for web-based synchronized collaborative processing and visualization of 3D medical Images. Meanwhile, a web-based videoconference function is provided to enhance the performance of the whole system. All the functions of the system can be available with common Web-browsers conveniently, without any extra requirement of client installation. In the end, this paper evaluates the prototype system using 3D medical data sets, which demonstrates the good performance of our system.

  14. Texture based feature extraction methods for content based medical image retrieval systems.

    PubMed

    Ergen, Burhan; Baykara, Muhammet

    2014-01-01

    The developments of content based image retrieval (CBIR) systems used for image archiving are continued and one of the important research topics. Although some studies have been presented general image achieving, proposed CBIR systems for archiving of medical images are not very efficient. In presented study, it is examined the retrieval efficiency rate of spatial methods used for feature extraction for medical image retrieval systems. The investigated algorithms in this study depend on gray level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), and Gabor wavelet accepted as spatial methods. In the experiments, the database is built including hundreds of medical images such as brain, lung, sinus, and bone. The results obtained in this study shows that queries based on statistics obtained from GLCM are satisfied. However, it is observed that Gabor Wavelet has been the most effective and accurate method. PMID:25227014

  15. Texture based feature extraction methods for content based medical image retrieval systems.

    PubMed

    Ergen, Burhan; Baykara, Muhammet

    2014-01-01

    The developments of content based image retrieval (CBIR) systems used for image archiving are continued and one of the important research topics. Although some studies have been presented general image achieving, proposed CBIR systems for archiving of medical images are not very efficient. In presented study, it is examined the retrieval efficiency rate of spatial methods used for feature extraction for medical image retrieval systems. The investigated algorithms in this study depend on gray level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), and Gabor wavelet accepted as spatial methods. In the experiments, the database is built including hundreds of medical images such as brain, lung, sinus, and bone. The results obtained in this study shows that queries based on statistics obtained from GLCM are satisfied. However, it is observed that Gabor Wavelet has been the most effective and accurate method.

  16. I2C: a system for the indexing, storage, and retrieval of medical images by content.

    PubMed

    Orphanoudakis, S C; Chronaki, C; Kostomanolakis, S

    1994-01-01

    Image indexing, storage, and retrieval based on pictorial content is a feature of image database systems which is becoming of increasing importance in many application domains. Medical image database systems, which support the retrieval of images generated by different modalities based on their pictorial content, will provide added value to future generation picture archiving and communication systems (PACS), and can be used as a diagnostic decision support tools and as a tool for medical research and training. We present the architecture and features of I2C, a system for the indexing, storage, and retrieval of medical images by content. A unique design feature of this architecture is that it also serves as a platform for the implementation and performance evaluation of image description methods and retrieval strategies. I2C is a modular and extensible system, which has been developed based on object-oriented principles. It consists of a set of cooperating modules which facilitate the addition of new graphical tools, image description and matching algorithms. These can be incorporated into the system at the application level. The core concept of I2C is an image class hierarchy. Image classes encapsulate different segmentation and image content description algorithms. Medical images are assigned to image classes based on a set of user-defined attributes such as imaging modality, type of study, anatomical characteristics, etc. This class-based treatment of images in the I2C system achieves increased accuracy and efficiency of content-based retrievals, by limiting the search space and allowing specific algorithms to be fine-tuned for images acquired by different modalities or representing different parts of the anatomy.

  17. Teleradiology network system using the web medical image conference system with a new information security solution

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kusumoto, Masahiro; Kaneko, Masahiro; Kakinuma, Ryutaru; Moriyama, Noriyuki

    2012-02-01

    We have developed the teleradiology network system with a new information security solution that provided with web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. We are studying the secret sharing scheme and the tokenization as a method safely to store or to transmit the confidential medical information used with the teleradiology network system. The confidential medical information is exposed to the risk of the damage and intercept. Secret sharing scheme is a method of dividing the confidential medical information into two or more tallies. Individual medical information cannot be decoded by using one tally at all. Our method has the function of automatic backup. With automatic backup technology, if there is a failure in a single tally, there is redundant data already copied to other tally. Confidential information is preserved at an individual Data Center connected through internet because individual medical information cannot be decoded by using one tally at all. Therefore, even if one of the Data Centers is struck and information is damaged due to the large area disaster like the great earthquake of Japan, the confidential medical information can be decoded by using the tallies preserved at the data center to which it escapes damage. Moreover, by using tokenization, the history information of dividing the confidential medical information into two or more tallies is prevented from lying scattered by replacing the history information with another character string (Make it to powerlessness). As a result, information is available only to those who have rightful access it and the sender of a message and the message itself are verified at the receiving point. We propose a new information transmission method and a new information storage method with a new information security solution.

  18. Automated collection of medical images for research from heterogeneous systems: trials and tribulations

    NASA Astrophysics Data System (ADS)

    Patel, M. N.; Looney, P.; Young, K.; Halling-Brown, M. D.

    2014-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. Over the past two decades both diagnostic and therapeutic imaging have undergone a rapid growth, the ability to be able to harness this large influx of medical images can provide an essential resource for research and training. Traditionally, the systematic collection of medical images for research from heterogeneous sites has not been commonplace within the NHS and is fraught with challenges including; data acquisition, storage, secure transfer and correct anonymisation. Here, we describe a semi-automated system, which comprehensively oversees the collection of both unprocessed and processed medical images from acquisition to a centralised database. The provision of unprocessed images within our repository enables a multitude of potential research possibilities that utilise the images. Furthermore, we have developed systems and software to integrate these data with their associated clinical data and annotations providing a centralised dataset for research. Currently we regularly collect digital mammography images from two sites and partially collect from a further three, with efforts to expand into other modalities and sites currently ongoing. At present we have collected 34,014 2D images from 2623 individuals. In this paper we describe our medical image collection system for research and discuss the wide spectrum of challenges faced during the design and implementation of such systems.

  19. Do we need a national incident reporting system for medical imaging?

    PubMed

    Itri, Jason N; Krishnaraj, Arun

    2012-05-01

    The essential role of an incident reporting system as a tool to improve safety and reliability has been described in high-risk industries such as aviation and nuclear power, with anesthesia being the first medical specialty to successfully integrate incident reporting into a comprehensive quality improvement strategy. Establishing an incident reporting system for medical imaging that effectively captures system errors and drives improvement in the delivery of imaging services is a key component of developing and evaluating national quality improvement initiatives in radiology. Such a national incident reporting system would be most effective if implemented as one piece of a comprehensive quality improvement strategy designed to enhance knowledge about safety, identify and learn from errors, raise standards and expectations for improvement, and create safer systems through implementation of safe practices. The potential benefits of a national incident reporting system for medical imaging include reduced morbidity and mortality, improved patient and referring physician satisfaction, reduced health care expenses and medical liability costs, and improved radiologist satisfaction. The purposes of this article are to highlight the positive impact of external reporting systems, discuss how similar advancements in quality and safety can be achieved with an incident reporting system for medical imaging in the United States, and describe current efforts within the imaging community toward achieving this goal. PMID:22554630

  20. Medical Images Remote Consultation

    NASA Astrophysics Data System (ADS)

    Ferraris, Maurizio; Frixione, Paolo; Squarcia, Sandro

    Teleconsultation of digital images among different medical centers is now a reality. The problem to be solved is how to interconnect all the clinical diagnostic devices in a hospital in order to allow physicians and health physicists, working in different places, to discuss on interesting clinical cases visualizing the same diagnostic images at the same time. Applying World Wide Web technologies, the proposed system can be easily used by people with no specific computer knowledge providing a verbose help to guide the user through the right steps of execution. Diagnostic images are retrieved from a relational database or from a standard DICOM-PACS through the DICOM-WWW gateway allowing connection of the usual Web browsers to DICOM applications via the HTTP protocol. The system, which is proposed for radiotherapy implementation, where radiographies play a fundamental role, can be easily converted to different field of medical applications where a remote access to secure data are compulsory.

  1. Towards building high performance medical image management system for clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-03-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTfulWeb Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems.

  2. Towards Building High Performance Medical Image Management System for Clinical Trials

    PubMed Central

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-01-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTful Web Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems. PMID:21603096

  3. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System

    PubMed Central

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054

  4. An automatic system to detect and extract texts in medical images for de-identification

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Singh, P. D.; Siddiqui, Khan; Gillam, Michael

    2010-03-01

    Recently, there is an increasing need to share medical images for research purpose. In order to respect and preserve patient privacy, most of the medical images are de-identified with protected health information (PHI) before research sharing. Since manual de-identification is time-consuming and tedious, so an automatic de-identification system is necessary and helpful for the doctors to remove text from medical images. A lot of papers have been written about algorithms of text detection and extraction, however, little has been applied to de-identification of medical images. Since the de-identification system is designed for end-users, it should be effective, accurate and fast. This paper proposes an automatic system to detect and extract text from medical images for de-identification purposes, while keeping the anatomic structures intact. First, considering the text have a remarkable contrast with the background, a region variance based algorithm is used to detect the text regions. In post processing, geometric constraints are applied to the detected text regions to eliminate over-segmentation, e.g., lines and anatomic structures. After that, a region based level set method is used to extract text from the detected text regions. A GUI for the prototype application of the text detection and extraction system is implemented, which shows that our method can detect most of the text in the images. Experimental results validate that our method can detect and extract text in medical images with a 99% recall rate. Future research of this system includes algorithm improvement, performance evaluation, and computation optimization.

  5. A User-Centered Cooperative Information System for Medical Imaging Diagnosis.

    ERIC Educational Resources Information Center

    Gomez, Enrique J.; Quiles, Jose A.; Sanz, Marcos F.; del Pozo, Francisco

    1998-01-01

    Presents a cooperative information system for remote medical imaging diagnosis. General computer-supported cooperative work (CSCW) problems addressed are definition of a procedure for the design of user-centered cooperative systems (conceptual level); and improvement of user feedback and optimization of the communication bandwidth in highly…

  6. The application of use case modeling in designing medical imaging information systems.

    PubMed

    Safdari, Reza; Farzi, Jebraeil; Ghazisaeidi, Marjan; Mirzaee, Mahboobeh; Goodini, Azadeh

    2013-01-01

    Introduction. The essay at hand is aimed at examining the application of use case modeling in analyzing and designing information systems to support Medical Imaging services. Methods. The application of use case modeling in analyzing and designing health information systems was examined using electronic databases (Pubmed, Google scholar) resources and the characteristics of the modeling system and its effect on the development and design of the health information systems were analyzed. Results. Analyzing the subject indicated that Provident modeling of health information systems should provide for quick access to many health data resources in a way that patients' data can be used in order to expand distant services and comprehensive Medical Imaging advices. Also these experiences show that progress in the infrastructure development stages through gradual and repeated evolution process of user requirements is stronger and this can lead to a decline in the cycle of requirements engineering process in the design of Medical Imaging information systems. Conclusion. Use case modeling approach can be effective in directing the problems of health and Medical Imaging information systems towards understanding, focusing on the start and analysis, better planning, repetition, and control.

  7. The Application of Use Case Modeling in Designing Medical Imaging Information Systems

    PubMed Central

    Safdari, Reza; Farzi, Jebraeil; Ghazisaeidi, Marjan; Mirzaee, Mahboobeh; Goodini, Azadeh

    2013-01-01

    Introduction. The essay at hand is aimed at examining the application of use case modeling in analyzing and designing information systems to support Medical Imaging services. Methods. The application of use case modeling in analyzing and designing health information systems was examined using electronic databases (Pubmed, Google scholar) resources and the characteristics of the modeling system and its effect on the development and design of the health information systems were analyzed. Results. Analyzing the subject indicated that Provident modeling of health information systems should provide for quick access to many health data resources in a way that patients' data can be used in order to expand distant services and comprehensive Medical Imaging advices. Also these experiences show that progress in the infrastructure development stages through gradual and repeated evolution process of user requirements is stronger and this can lead to a decline in the cycle of requirements engineering process in the design of Medical Imaging information systems. Conclusion. Use case modeling approach can be effective in directing the problems of health and Medical Imaging information systems towards understanding, focusing on the start and analysis, better planning, repetition, and control. PMID:24967283

  8. Medical Imaging: A Review

    NASA Astrophysics Data System (ADS)

    Ganguly, Debashis; Chakraborty, Srabonti; Balitanas, Maricel; Kim, Tai-Hoon

    The rapid progress of medical science and the invention of various medicines have benefited mankind and the whole civilization. Modern science also has been doing wonders in the surgical field. But, the proper and correct diagnosis of diseases is the primary necessity before the treatment. The more sophisticate the bio-instruments are, better diagnosis will be possible. The medical images plays an important role in clinical diagnosis and therapy of doctor and teaching and researching etc. Medical imaging is often thought of as a way to represent anatomical structures of the body with the help of X-ray computed tomography and magnetic resonance imaging. But often it is more useful for physiologic function rather than anatomy. With the growth of computer and image technology medical imaging has greatly influenced medical field. As the quality of medical imaging affects diagnosis the medical image processing has become a hotspot and the clinical applications wanting to store and retrieve images for future purpose needs some convenient process to store those images in details. This paper is a tutorial review of the medical image processing and repository techniques appeared in the literature.

  9. Medical Image Databases

    PubMed Central

    Tagare, Hemant D.; Jaffe, C. Carl; Duncan, James

    1997-01-01

    Abstract Information contained in medical images differs considerably from that residing in alphanumeric format. The difference can be attributed to four characteristics: (1) the semantics of medical knowledge extractable from images is imprecise; (2) image information contains form and spatial data, which are not expressible in conventional language; (3) a large part of image information is geometric; (4) diagnostic inferences derived from images rest on an incomplete, continuously evolving model of normality. This paper explores the differentiating characteristics of text versus images and their impact on design of a medical image database intended to allow content-based indexing and retrieval. One strategy for implementing medical image databases is presented, which employs object-oriented iconic queries, semantics by association with prototypes, and a generic schema. PMID:9147338

  10. Medical image file formats.

    PubMed

    Larobina, Michele; Murino, Loredana

    2014-04-01

    Image file format is often a confusing aspect for someone wishing to process medical images. This article presents a demystifying overview of the major file formats currently used in medical imaging: Analyze, Neuroimaging Informatics Technology Initiative (Nifti), Minc, and Digital Imaging and Communications in Medicine (Dicom). Concepts common to all file formats, such as pixel depth, photometric interpretation, metadata, and pixel data, are first presented. Then, the characteristics and strengths of the various formats are discussed. The review concludes with some predictive considerations about the future trends in medical image file formats.

  11. Medical image file formats.

    PubMed

    Larobina, Michele; Murino, Loredana

    2014-04-01

    Image file format is often a confusing aspect for someone wishing to process medical images. This article presents a demystifying overview of the major file formats currently used in medical imaging: Analyze, Neuroimaging Informatics Technology Initiative (Nifti), Minc, and Digital Imaging and Communications in Medicine (Dicom). Concepts common to all file formats, such as pixel depth, photometric interpretation, metadata, and pixel data, are first presented. Then, the characteristics and strengths of the various formats are discussed. The review concludes with some predictive considerations about the future trends in medical image file formats. PMID:24338090

  12. Pushbroom hyperspectral imaging system with selectable region of interest for medical imaging

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2015-04-01

    A spatial-scanning pushbroom hyperspectral imaging (HSI) system incorporating a video camera (VC) which is not only used for direct video imaging but also for the selection of the region of interest within the VC's full field-of-view is presented. Using a VC for these two applications brings many benefits to a pushbroom HSI system, such as a minimized data acquisition time and smaller data storage requirement. A detailed description of the system followed by the methods and formulas used for calibration and electronic hardware interfacing were discussed and analyzed using United States Air Force resolution chart, chicken breast tissue, and fluorescent targets as test samples. The proposed concepts and developed system can find potential biomedical imaging applications and can be extended to endoscopic imaging applications as well.

  13. The impact of computerized provider order entry systems on medical-imaging services: a systematic review

    PubMed Central

    Prgomet, Mirela; Markewycz, Andrew; Adams, Edwina; Westbrook, Johanna I

    2011-01-01

    Background Computerized provider order entry (CPOE) systems have been strongly promoted as a means to improve the quality and efficiency of healthcare. Methods This systematic review aimed to assess the evidence of the impact of CPOE on medical-imaging services and patient outcomes. Results Fourteen studies met the inclusion criteria, most of which (10/14) used a pre-/postintervention comparison design. Eight studies demonstrated benefits, such as decreased test utilization, associated with decision-support systems promoting adherence to test ordering guidelines. Three studies evaluating medical-imaging ordering and reporting times showed statistically significant decreases in turnaround times. Conclusions The findings reveal the potential for CPOE to contribute to significant efficiency and effectiveness gains in imaging services. The diversity and scope of the research evidence can be strengthened through increased attention to the circumstances and mechanisms that contribute to the success (or otherwise) of CPOE and its contribution to the enhancement of patient care delivery. PMID:21385821

  14. Normal and abnormal tissue identification system and method for medical images such as digital mammograms

    NASA Technical Reports Server (NTRS)

    Heine, John J. (Inventor); Clarke, Laurence P. (Inventor); Deans, Stanley R. (Inventor); Stauduhar, Richard Paul (Inventor); Cullers, David Kent (Inventor)

    2001-01-01

    A system and method for analyzing a medical image to determine whether an abnormality is present, for example, in digital mammograms, includes the application of a wavelet expansion to a raw image to obtain subspace images of varying resolution. At least one subspace image is selected that has a resolution commensurate with a desired predetermined detection resolution range. A functional form of a probability distribution function is determined for each selected subspace image, and an optimal statistical normal image region test is determined for each selected subspace image. A threshold level for the probability distribution function is established from the optimal statistical normal image region test for each selected subspace image. A region size comprising at least one sector is defined, and an output image is created that includes a combination of all regions for each selected subspace image. Each region has a first value when the region intensity level is above the threshold and a second value when the region intensity level is below the threshold. This permits the localization of a potential abnormality within the image.

  15. Scintillator requirements for medical imaging

    SciTech Connect

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  16. A mobile phone integrated health care delivery system of medical images.

    PubMed

    Tang, Fuk-hay; Law, Maria Y Y; Lee, Ares C H; Chan, Lawrence W C

    2004-09-01

    With the growing computing capability of mobile phones, a handy mobile controller is developed for accessing the picture archiving and communication system (PACS) to enhance image management for clinicians with nearly no restriction in time and location using various wireless communication modes. The PACS is an integrated system for the distribution and archival of medical images that are acquired by different imaging modalities such as CT (computed tomography) scanners, CR (computed radiography) units, DR (digital radiography) units, US (ultrasonography) scanners, and MR (magnetic resonance) scanners. The mobile controller allows image management of the PACS including display, worklisting, query and retrieval of medical images in DICOM format. In this mobile system, a server program is developed in a PACS Web server which serves as an interface for client programs in the mobile phone and the enterprise PACS for image distribution in hospitals. The application processing is performed on the server side to reduce computational loading in the mobile device. The communication method of mobile phones can be adapted to multiple wireless environments in Hong Kong. This allows greater feasibility to accommodate the rapidly changing communication technology. No complicated computer hardware or software is necessary. Using a mobile phone embedded with the mobile controller client program, this system would serve as a tool for heath care and medical professionals to improve the efficiency of the health care services by speedy delivery of image information. This is particularly important in case of urgent consultation, and it allows health care workers better use of the time for patient care. PMID:15534754

  17. In-Field-of-View Thermal Image Calibration System for Medical Thermography Applications

    NASA Astrophysics Data System (ADS)

    Simpson, R. C.; McEvoy, H. C.; Machin, G.; Howell, K.; Naeem, M.; Plassmann, P.; Ring, F.; Campbell, P.; Song, C.; Tavener, J.; Ridley, I.

    2008-06-01

    Medical thermography has become ever more accessible to hospitals, medical research, and clinical centers with the new generation of thermal cameras, which are easier to use and lower in cost. Some diagnostic techniques using thermal cameras are now regarded as standardized, such as the cold challenge test for Raynaud’s phenomenon. The future for medical thermography appears to be improved accuracy, standardization, and establishment as a mainstream medical imaging methodology. Medical thermography standardization, quantitative measurements, image comparison, and multi-center research trials all require thermal cameras to provide a demonstrably traceable, accurate, and reliable temperature output. To this end, the National Physical Laboratory (NPL) has developed a multi-fixed-point source that serves as an in-image calibration system, thereby providing a reliable means for radiometric image validation. An in-field-of-view fixed-point validation system for thermal imaging has successfully been developed, tested, and validated at NPL and has undergone field trials at three clinical centers in the UK. The sources use the phase change plateaux of gallium zinc eutectic, gallium, and ethylene carbonate. The fixed-point sources have an estimated cavity emissivity of greater than 0.998, a plateau longevity of nominally 3 h at ambient conditions, a stability of 0.1°C, or better, over that period, a repeatability of 0.1°C or better, and an estimated temperature uncertainty of ±0.4°C ( k = 2). In this article, the source specifications and design as well as testing, validation, and field trial results are described in detail.

  18. Medical image retrieval system using multiple features from 3D ROIs

    NASA Astrophysics Data System (ADS)

    Lu, Hongbing; Wang, Weiwei; Liao, Qimei; Zhang, Guopeng; Zhou, Zhiming

    2012-02-01

    Compared to a retrieval using global image features, features extracted from regions of interest (ROIs) that reflect distribution patterns of abnormalities would benefit more for content-based medical image retrieval (CBMIR) systems. Currently, most CBMIR systems have been designed for 2D ROIs, which cannot reflect 3D anatomical features and region distribution of lesions comprehensively. To further improve the accuracy of image retrieval, we proposed a retrieval method with 3D features including both geometric features such as Shape Index (SI) and Curvedness (CV) and texture features derived from 3D Gray Level Co-occurrence Matrix, which were extracted from 3D ROIs, based on our previous 2D medical images retrieval system. The system was evaluated with 20 volume CT datasets for colon polyp detection. Preliminary experiments indicated that the integration of morphological features with texture features could improve retrieval performance greatly. The retrieval result using features extracted from 3D ROIs accorded better with the diagnosis from optical colonoscopy than that based on features from 2D ROIs. With the test database of images, the average accuracy rate for 3D retrieval method was 76.6%, indicating its potential value in clinical application.

  19. High-resolution medical imaging system for 3D imaging of radioactive sources with 1-mm FWHM spatial resolution

    NASA Astrophysics Data System (ADS)

    Smither, Robert K.

    2003-06-01

    This paper describes a modification of a new imaging system developed at Argonne National Laboratory that has the potential of achieving a spatial resolution of 1 mm FWHM. The imaging system uses a crystal diffraction lens to focus gamma rays from the radioactive source. The medical imaging application of this system would be to detect small amounts of radioactivity in the human body that would be associated with cancer. The best spatial resolution obtained with the present lens at the time of the presentation made at the Medical Imaging Symposium 2001, was 6.7 mm FWHM for a 1-mm-diameter source. Since then it has been possible to improve the spacial resolution of the lens system to 3 mm FWHM. Experiments with the original lens system have led to a new design for a lens system that could have a spacial resolution of 1 mm FWHM. This is accomplished by: one, reducing the radial dimension of the crystals, and two, by replacing the small individual crystals with bent strips of single-crystalline material. Experiments are under way to test this approach.

  20. The value of diagnostic medical imaging.

    PubMed

    Bradley, Don; Bradley, Kendall E

    2014-01-01

    Diagnostic medical imaging has clear clinical utility, but it also imposes significant costs on the health care system. This commentary reviews the factors that drive the cost of medical imaging, discusses current interventions, and suggests possible future courses of action.

  1. A joint encryption/watermarking system for verifying the reliability of medical images.

    PubMed

    Bouslimi, Dalel; Coatrieux, Gouenou; Cozic, Michel; Roux, Christian

    2012-09-01

    In this paper, we propose a joint encryption/water-marking system for the purpose of protecting medical images. This system is based on an approach which combines a substitutive watermarking algorithm, the quantization index modulation, with an encryption algorithm: a stream cipher algorithm (e.g., the RC4) or a block cipher algorithm (e.g., the AES in cipher block chaining (CBC) mode of operation). Our objective is to give access to the outcomes of the image integrity and of its origin even though the image is stored encrypted. If watermarking and encryption are conducted jointly at the protection stage, watermark extraction and decryption can be applied independently. The security analysis of our scheme and experimental results achieved on 8-bit depth ultrasound images as well as on 16-bit encoded positron emission tomography images demonstrate the capability of our system to securely make available security attributes in both spatial and encrypted domains while minimizing image distortion. Furthermore, by making use of the AES block cipher in CBC mode, the proposed system is compliant with or transparent to the DICOM standard.

  2. A joint encryption/watermarking system for verifying the reliability of medical images.

    PubMed

    Bouslimi, Dalel; Coatrieux, Gouenou; Cozic, Michel; Roux, Christian

    2012-09-01

    In this paper, we propose a joint encryption/water-marking system for the purpose of protecting medical images. This system is based on an approach which combines a substitutive watermarking algorithm, the quantization index modulation, with an encryption algorithm: a stream cipher algorithm (e.g., the RC4) or a block cipher algorithm (e.g., the AES in cipher block chaining (CBC) mode of operation). Our objective is to give access to the outcomes of the image integrity and of its origin even though the image is stored encrypted. If watermarking and encryption are conducted jointly at the protection stage, watermark extraction and decryption can be applied independently. The security analysis of our scheme and experimental results achieved on 8-bit depth ultrasound images as well as on 16-bit encoded positron emission tomography images demonstrate the capability of our system to securely make available security attributes in both spatial and encrypted domains while minimizing image distortion. Furthermore, by making use of the AES block cipher in CBC mode, the proposed system is compliant with or transparent to the DICOM standard. PMID:22801525

  3. OpenID Connect as a security service in cloud-based medical imaging systems.

    PubMed

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-04-01

    The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682

  4. OpenID Connect as a security service in cloud-based medical imaging systems.

    PubMed

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-04-01

    The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model.

  5. Examining the End-User Experience of the National Integrated Medical Imaging System (NIMIS).

    PubMed

    Smith, J; Kok, H K; Torreggiani, W C

    2016-01-01

    The National Integrated Medical Imaging System (NIMIS) is used to store and retrieve medical imaging studies in Ireland. The purpose of this audit was to obtain feedback from its end-users in relation to key NIMIS functionality and to understand their perception of its existing interface while identifying potential improvements. The results showed that, while the majority of respondents are satisfied with NIMIS, they identified a number of areas of concern. These included difficulty in identifying the appropriate code for a study, 88 (34%); dissatisfaction with ordering and viewing scans, 82 (32%); and a need for improved communication between end-users and local Radiology departments, with 104 (40%) unsure when to contact the department and 137 (53%) dissatisfied with the feedback they received in relation to requests. Respondents indicated that addressing these issues would improve the NIMIS end-user experience while allowing it to continue to meet current and future clinical needs.

  6. Terahertz Imaging System for Medical Applications and Related High Efficiency Terahertz Devices

    NASA Astrophysics Data System (ADS)

    Ouchi, Toshihiko; Kajiki, Kousuke; Koizumi, Takayuki; Itsuji, Takeaki; Koyama, Yasushi; Sekiguchi, Ryota; Kubota, Oichi; Kawase, Kodo

    2013-07-01

    A terahertz (THz) imaging system and high efficient terahertz sources and detectors for medical applications were developed. A fiber laser based compact time domain terahertz tomography system was developed with a high depth resolution of less than 20 μm. Three-dimensional images of porcine skin were obtained including some physical properties such as applied skin creams. The discrimination between healthy human tissue and tumor tissue has been achieved using reflection spectra. To improve the THz imaging system, a ridge waveguide LiNbO3 based nonlinear terahertz generator was studied to achieve high output power. A ridge waveguide with 5-7 μm width was designed for high efficiency emission from the LiNbO3 crystal by the electro-optic Cherenkov effect. Terahertz electronic sources and detectors were also realized for future imaging systems. As electronic source devices, resonant tunneling diode (RTD) oscillators with a patch antenna were fabricated using an InGaAs/InAlAs/AlAs triple barrier structure. On the other side, Schottky barrier diode (SBD) detectors with a log-periodic antenna were fabricated by thin-film technology on a Si substrate. Both devices operate above 1 THz at room temperature. This electronic THz device set could provide a future high performance imaging system.

  7. A watermarking-based medical image integrity control system and an image moment signature for tampering characterization.

    PubMed

    Coatrieux, Gouenou; Huang, Hui; Shu, Huazhong; Luo, Limin; Roux, Christian

    2013-11-01

    In this paper, we present a medical image integrity verification system to detect and approximate local malevolent image alterations (e.g., removal or addition of lesions) as well as identifying the nature of a global processing an image may have undergone (e.g., lossy compression, filtering, etc.). The proposed integrity analysis process is based on nonsignificant region watermarking with signatures extracted from different pixel blocks of interest, which are compared with the recomputed ones at the verification stage. A set of three signatures is proposed. The first two devoted to detection and modification location are cryptographic hashes and checksums, while the last one is issued from the image moment theory. In this paper, we first show how geometric moments can be used to approximate any local modification by its nearest generalized 2-D Gaussian. We then demonstrate how ratios between original and recomputed geometric moments can be used as image features in a classifier-based strategy in order to determine the nature of a global image processing. Experimental results considering both local and global modifications in MRI and retina images illustrate the overall performances of our approach. With a pixel block signature of about 200 bit long, it is possible to detect, to roughly localize, and to get an idea about the image tamper.

  8. Compressive sensing in medical imaging.

    PubMed

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  9. Compressive sensing in medical imaging

    PubMed Central

    Graff, Christian G.; Sidky, Emil Y.

    2015-01-01

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed. PMID:25968400

  10. Endowing a Content-Based Medical Image Retrieval System with Perceptual Similarity Using Ensemble Strategy.

    PubMed

    Bedo, Marcos Vinicius Naves; Pereira Dos Santos, Davi; Ponciano-Silva, Marcelo; de Azevedo-Marques, Paulo Mazzoncini; Ferreira de Carvalho, André Ponce de León; Traina, Caetano

    2016-02-01

    Content-based medical image retrieval (CBMIR) is a powerful resource to improve differential computer-aided diagnosis. The major problem with CBMIR applications is the semantic gap, a situation in which the system does not follow the users' sense of similarity. This gap can be bridged by the adequate modeling of similarity queries, which ultimately depends on the combination of feature extractor methods and distance functions. In this study, such combinations are referred to as perceptual parameters, as they impact on how images are compared. In a CBMIR, the perceptual parameters must be manually set by the users, which imposes a heavy burden on the specialists; otherwise, the system will follow a predefined sense of similarity. This paper presents a novel approach to endow a CBMIR with a proper sense of similarity, in which the system defines the perceptual parameter depending on the query element. The method employs ensemble strategy, where an extreme learning machine acts as a meta-learner and identifies the most suitable perceptual parameter according to a given query image. This parameter defines the search space for the similarity query that retrieves the most similar images. An instance-based learning classifier labels the query image following the query result set. As the concept implementation, we integrated the approach into a mammogram CBMIR. For each query image, the resulting tool provided a complete second opinion, including lesion class, system certainty degree, and set of most similar images. Extensive experiments on a large mammogram dataset showed that our proposal achieved a hit ratio up to 10% higher than the traditional CBMIR approach without requiring external parameters from the users. Our database-driven solution was also up to 25% faster than content retrieval traditional approaches.

  11. Medical diagnosis imaging systems: image and signal processing applications aided by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka

    2010-04-01

    First, we describe an automated procedure for segmenting an MR image of a human brain based on fuzzy logic for diagnosing Alzheimer's disease. The intensity thresholds for segmenting the whole brain of a subject are automatically determined by finding the peaks of the intensity histogram. After these thresholds are evaluated in a region growing, the whole brain can be identified. Next, we describe a procedure for decomposing the obtained whole brain into the left and right cerebral hemispheres, the cerebellum and the brain stem. Our method then identified the whole brain, the left cerebral hemisphere, the right cerebral hemisphere, the cerebellum and the brain stem. Secondly, we describe a transskull sonography system that can visualize the shape of the skull and brain surface from any point to examine skull fracture and some brain diseases. We employ fuzzy signal processing to determine the skull and brain surface. The phantom model, the animal model with soft tissue, the animal model with brain tissue, and a human subjects' forehead is applied in our system. The all shapes of the skin surface, skull surface, skull bottom, and brain tissue surface are successfully determined.

  12. Unified modeling language and design of a case-based retrieval system in medical imaging.

    PubMed Central

    LeBozec, C.; Jaulent, M. C.; Zapletal, E.; Degoulet, P.

    1998-01-01

    One goal of artificial intelligence research into case-based reasoning (CBR) systems is to develop approaches for designing useful and practical interactive case-based environments. Explaining each step of the design of the case-base and of the retrieval process is critical for the application of case-based systems to the real world. We describe herein our approach to the design of IDEM--Images and Diagnosis from Examples in Medicine--a medical image case-based retrieval system for pathologists. Our approach is based on the expressiveness of an object-oriented modeling language standard: the Unified Modeling Language (UML). We created a set of diagrams in UML notation illustrating the steps of the CBR methodology we used. The key aspect of this approach was selecting the relevant objects of the system according to user requirements and making visualization of cases and of the components of the case retrieval process. Further evaluation of the expressiveness of the design document is required but UML seems to be a promising formalism, improving the communication between the developers and users. Images Figure 6 Figure 7 PMID:9929346

  13. A novel tamper detection-recovery and watermarking system for medical image authentication and EPR hiding.

    PubMed

    Tareef, Afaf; Al-Ani, Ahmad; Nguyen, Hung; Chung, Yuk Ying

    2014-01-01

    Recently, the literature has witnessed an increasing interest in the study of medical image watermarking and recovery techniques. In this article, a novel image tamper localization and recovery technique for medical image authentication is proposed. The sparse coding of the Electronic Patient Record (EPR) and the reshaped region of Interest (ROI) is embedded in the transform domain of the Region of Non-Interest (RONI). The first part of the sparse coded watermark is use for saving the patient information along with the image, whereas the second part is used for authentication purpose. When the watermarked image is tampered during transmission between hospitals and medical clinics, the embedded sparse coded ROI can be extracted to recover the tampered image. The experimental results demonstrate the efficiency of the proposed technique in term of tamper correction capability, robustness to attacks, and imperceptibility.

  14. NASA Technology Finds Uses in Medical Imaging

    NASA Video Gallery

    NASA software has been incorporated into a new medical imaging device that could one day aid in the interpretation of mammograms, ultrasounds, and other medical imagery. The new MED-SEG system, dev...

  15. Complementary cumulative precision distribution: a new graphical metric for medical image retrieval system

    NASA Astrophysics Data System (ADS)

    Dash, Jatindra K.; Mukhopadhyay, Sudipta; Khandelwal, Niranjan

    2014-03-01

    Several single valued measures have been proposed by researchers for the quantitative performance evaluation of medical image retrieval systems. Precision and recall are the most common evaluation measures used by researchers. Amongst graphical measures proposed, precision vs. recall graph is the most common evaluation measure. Precision vs. recall graph evaluates di®erent systems by varying the operating points (number of top retrieval considered). However, in real life the operating point for di®erent applications are known. Therefore, it is essential to evaluate di®erent retrieval systems at a particular operating point set by the user. None of the graphical metric provides the variation of performance of query images over the entire database at a particular operating point. This paper proposes a graphical metric called Complementary Cumulative Precision Distribution (CCPD) that evaluates di®erent systems at a particular operating point considering each images in the database for query. The strength of the metric is its ability to represent all these measures pictorially. The proposed metric (CCPD) pictorially represents the di®erent possible values of precision and the fraction of query images at those precision values considering number of top retrievals constant. Di®erent scalar measures are derived from the proposed graphical metric (CCPD) for e®ective evaluation of retrieval systems. It is also observed that the proposed metric can be used as a tie breaker when the performance of di®erent methods are very close to each other in terms of average precision.

  16. Novel Algorithm for Classification of Medical Images

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Juneja, Monika

    2010-11-01

    Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.

  17. Medical imaging V: Image capture, formatting, and display

    SciTech Connect

    Kim, Y.

    1991-01-01

    This book is covered under the following topics: Digital image display I-V; Quality assurance I-V; Clinical image presentation I-V; Imaging systems; Image compression; Workstations; and Medical diagnostic imaging support system for military medicine and other federal agencies.

  18. Wavelets in medical imaging

    NASA Astrophysics Data System (ADS)

    Zahra, Noor e.; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-07-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  19. Wavelets in medical imaging

    SciTech Connect

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  20. Medical Image Retrieval: A Multimodal Approach

    PubMed Central

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system. PMID:26309389

  1. Medical Image Retrieval: A Multimodal Approach.

    PubMed

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system.

  2. The Recent Progress in Quantitative Medical Image Analysis for Computer Aided Diagnosis Systems

    PubMed Central

    Kim, Tae-Yun; Son, Jaebum

    2011-01-01

    Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. Many different CAD schemes are being developed for use in the detection and/or characterization of various lesions found through various types of medical imaging. These imaging technologies employ conventional projection radiography, computed tomography, magnetic resonance imaging, ultrasonography, etc. In order to achieve a high performance level for a computerized diagnosis, it is important to employ effective image analysis techniques in the major steps of a CAD scheme. The main objective of this review is to attempt to introduce the diverse methods used for quantitative image analysis, and to provide a guide for clinicians. PMID:22084808

  3. Digital diagnosis of medical images

    NASA Astrophysics Data System (ADS)

    Heinonen, Tomi; Kuismin, Raimo; Jormalainen, Raimo; Dastidar, Prasun; Frey, Harry; Eskola, Hannu

    2001-08-01

    The popularity of digital imaging devices and PACS installations has increased during the last years. Still, images are analyzed and diagnosed using conventional techniques. Our research group begun to study the requirements for digital image diagnostic methods to be applied together with PACS systems. The research was focused on various image analysis procedures (e.g., segmentation, volumetry, 3D visualization, image fusion, anatomic atlas, etc.) that could be useful in medical diagnosis. We have developed Image Analysis software (www.medimag.net) to enable several image-processing applications in medical diagnosis, such as volumetry, multimodal visualization, and 3D visualizations. We have also developed a commercial scalable image archive system (ActaServer, supports DICOM) based on component technology (www.acta.fi), and several telemedicine applications. All the software and systems operate in NT environment and are in clinical use in several hospitals. The analysis software have been applied in clinical work and utilized in numerous patient cases (500 patients). This method has been used in the diagnosis, therapy and follow-up in various diseases of the central nervous system (CNS), respiratory system (RS) and human reproductive system (HRS). In many of these diseases e.g. Systemic Lupus Erythematosus (CNS), nasal airways diseases (RS) and ovarian tumors (HRS), these methods have been used for the first time in clinical work. According to our results, digital diagnosis improves diagnostic capabilities, and together with PACS installations it will become standard tool during the next decade by enabling more accurate diagnosis and patient follow-up.

  4. Medical Image Analysis Facility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    To improve the quality of photos sent to Earth by unmanned spacecraft. NASA's Jet Propulsion Laboratory (JPL) developed a computerized image enhancement process that brings out detail not visible in the basic photo. JPL is now applying this technology to biomedical research in its Medical lrnage Analysis Facility, which employs computer enhancement techniques to analyze x-ray films of internal organs, such as the heart and lung. A major objective is study of the effects of I stress on persons with heart disease. In animal tests, computerized image processing is being used to study coronary artery lesions and the degree to which they reduce arterial blood flow when stress is applied. The photos illustrate the enhancement process. The upper picture is an x-ray photo in which the artery (dotted line) is barely discernible; in the post-enhancement photo at right, the whole artery and the lesions along its wall are clearly visible. The Medical lrnage Analysis Facility offers a faster means of studying the effects of complex coronary lesions in humans, and the research now being conducted on animals is expected to have important application to diagnosis and treatment of human coronary disease. Other uses of the facility's image processing capability include analysis of muscle biopsy and pap smear specimens, and study of the microscopic structure of fibroprotein in the human lung. Working with JPL on experiments are NASA's Ames Research Center, the University of Southern California School of Medicine, and Rancho Los Amigos Hospital, Downey, California.

  5. Computer-aided diagnosis workstation and teleradiology network system for chest diagnosis using the web medical image conference system with a new information security solution

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaro; Moriyama, Noriyuki

    2010-03-01

    Diagnostic MDCT imaging requires a considerable number of images to be read. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. Because of such a background, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis. We also have developed the teleradiology network system by using web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. Our teleradiology network system can perform Web medical image conference in the medical institutions of a remote place using the web medical image conference system. We completed the basic proof experiment of the web medical image conference system with information security solution. We can share the screen of web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with the workstation that builds in some diagnostic assistance methods. Biometric face authentication used on site of teleradiology makes "Encryption of file" and "Success in login" effective. Our Privacy and information security technology of information security solution ensures compliance with Japanese regulations. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new teleradiology network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis

  6. Contextual medical-image viewer

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; Furuie, Sergio S.

    2004-04-01

    One of the greatest difficulties of dealing with medical images is their distinct characteristics, in terms of generation process and noise that requires different forms of treatment for visualization and processing. Besides that, medical images are only a compounding part of the patient"s history, which should be accessible for the user in an understandable way. Other factors that can be used to enhance the user capability and experience are: the computational power of the client machine; available knowledge about the case; if the access is local or remote and what kind of user is accessing the system (physician, nurse, administrator, etc...). These information compose the context of an application and should define its behavior during execution time. In this article, we present the architecture of a viewer that takes into account the contextual information that is present at the moment of execution. We also present a viewer of X-Ray Angiographic images that uses contextual information about the client's hardware and the kind of user to, if necessary, reduce the image size and hide demographic information of the patient. The proposed architecture is extensible, allowing the inclusion of new tools and viewers, being adaptive along time to the evolution of the medical systems.

  7. Medical alert bracelet (image)

    MedlinePlus

    People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will ... People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will ...

  8. Medical high-resolution image sharing and electronic whiteboard system: A pure-web-based system for accessing and discussing lossless original images in telemedicine.

    PubMed

    Qiao, Liang; Li, Ying; Chen, Xin; Yang, Sheng; Gao, Peng; Liu, Hongjun; Feng, Zhengquan; Nian, Yongjian; Qiu, Mingguo

    2015-09-01

    There are various medical image sharing and electronic whiteboard systems available for diagnosis and discussion purposes. However, most of these systems ask clients to install special software tools or web plug-ins to support whiteboard discussion, special medical image format, and customized decoding algorithm of data transmission of HRIs (high-resolution images). This limits the accessibility of the software running on different devices and operating systems. In this paper, we propose a solution based on pure web pages for medical HRIs lossless sharing and e-whiteboard discussion, and have set up a medical HRI sharing and e-whiteboard system, which has four-layered design: (1) HRIs access layer: we improved an tile-pyramid model named unbalanced ratio pyramid structure (URPS), to rapidly share lossless HRIs and to adapt to the reading habits of users; (2) format conversion layer: we designed a format conversion engine (FCE) on server side to real time convert and cache DICOM tiles which clients requesting with window-level parameters, to make browsers compatible and keep response efficiency to server-client; (3) business logic layer: we built a XML behavior relationship storage structure to store and share users' behavior, to keep real time co-browsing and discussion between clients; (4) web-user-interface layer: AJAX technology and Raphael toolkit were used to combine HTML and JavaScript to build client RIA (rich Internet application), to meet clients' desktop-like interaction on any pure webpage. This system can be used to quickly browse lossless HRIs, and support discussing and co-browsing smoothly on any web browser in a diversified network environment. The proposal methods can provide a way to share HRIs safely, and may be used in the field of regional health, telemedicine and remote education at a low cost.

  9. Medical high-resolution image sharing and electronic whiteboard system: A pure-web-based system for accessing and discussing lossless original images in telemedicine.

    PubMed

    Qiao, Liang; Li, Ying; Chen, Xin; Yang, Sheng; Gao, Peng; Liu, Hongjun; Feng, Zhengquan; Nian, Yongjian; Qiu, Mingguo

    2015-09-01

    There are various medical image sharing and electronic whiteboard systems available for diagnosis and discussion purposes. However, most of these systems ask clients to install special software tools or web plug-ins to support whiteboard discussion, special medical image format, and customized decoding algorithm of data transmission of HRIs (high-resolution images). This limits the accessibility of the software running on different devices and operating systems. In this paper, we propose a solution based on pure web pages for medical HRIs lossless sharing and e-whiteboard discussion, and have set up a medical HRI sharing and e-whiteboard system, which has four-layered design: (1) HRIs access layer: we improved an tile-pyramid model named unbalanced ratio pyramid structure (URPS), to rapidly share lossless HRIs and to adapt to the reading habits of users; (2) format conversion layer: we designed a format conversion engine (FCE) on server side to real time convert and cache DICOM tiles which clients requesting with window-level parameters, to make browsers compatible and keep response efficiency to server-client; (3) business logic layer: we built a XML behavior relationship storage structure to store and share users' behavior, to keep real time co-browsing and discussion between clients; (4) web-user-interface layer: AJAX technology and Raphael toolkit were used to combine HTML and JavaScript to build client RIA (rich Internet application), to meet clients' desktop-like interaction on any pure webpage. This system can be used to quickly browse lossless HRIs, and support discussing and co-browsing smoothly on any web browser in a diversified network environment. The proposal methods can provide a way to share HRIs safely, and may be used in the field of regional health, telemedicine and remote education at a low cost. PMID:26093385

  10. Integrating the Radiology Information System with Computerised Provider Order Entry: The Impact on Repeat Medical Imaging Investigations.

    PubMed

    Vecellio, Elia; Georgiou, Andrew

    2016-01-01

    Repeat and redundant procedures in medical imaging are associated with increases in resource utilisation and labour costs. Unnecessary medical imaging in some modalities, such as X-Ray (XR) and Computed Tomography (CT) is an important safety issue because it exposes patients to ionising radiation which can be carcinogenic and is associated with higher rates of cancer. The aim of this study was to assess the impact of implementing an integrated Computerised Provider Order Entry (CPOE)/Radiology Information System (RIS)/Picture Archiving and Communications System (PACS) system on the number of XR and CT imaging procedures (including repeat imaging requests) for inpatients at a large metropolitan hospital. The study found that patients had an average 0.47 fewer XR procedures and 0.07 fewer CT procedures after the implementation of the integrated system. Part of this reduction was driven by a lower rate of repeat procedures: the average inpatient had 0.13 fewer repeat XR procedures within 24-hours of the previous identical XR procedure. A similar decrease was not evident for repeat CT procedures. Reduced utilisation of imaging procedures (especially those within very short intervals from the previous identical procedure, which are more likely to be redundant) has implications for the safety of patients and the cost of medical imaging services. PMID:27440300

  11. Integrating the Radiology Information System with Computerised Provider Order Entry: The Impact on Repeat Medical Imaging Investigations.

    PubMed

    Vecellio, Elia; Georgiou, Andrew

    2016-01-01

    Repeat and redundant procedures in medical imaging are associated with increases in resource utilisation and labour costs. Unnecessary medical imaging in some modalities, such as X-Ray (XR) and Computed Tomography (CT) is an important safety issue because it exposes patients to ionising radiation which can be carcinogenic and is associated with higher rates of cancer. The aim of this study was to assess the impact of implementing an integrated Computerised Provider Order Entry (CPOE)/Radiology Information System (RIS)/Picture Archiving and Communications System (PACS) system on the number of XR and CT imaging procedures (including repeat imaging requests) for inpatients at a large metropolitan hospital. The study found that patients had an average 0.47 fewer XR procedures and 0.07 fewer CT procedures after the implementation of the integrated system. Part of this reduction was driven by a lower rate of repeat procedures: the average inpatient had 0.13 fewer repeat XR procedures within 24-hours of the previous identical XR procedure. A similar decrease was not evident for repeat CT procedures. Reduced utilisation of imaging procedures (especially those within very short intervals from the previous identical procedure, which are more likely to be redundant) has implications for the safety of patients and the cost of medical imaging services.

  12. CIMIDx: Prototype for a Cloud-Based System to Support Intelligent Medical Image Diagnosis With Efficiency

    PubMed Central

    2015-01-01

    Background The Internet has greatly enhanced health care, helping patients stay up-to-date on medical issues and general knowledge. Many cancer patients use the Internet for cancer diagnosis and related information. Recently, cloud computing has emerged as a new way of delivering health services but currently, there is no generic and fully automated cloud-based self-management intervention for breast cancer patients, as practical guidelines are lacking. Objective We investigated the prevalence and predictors of cloud use for medical diagnosis among women with breast cancer to gain insight into meaningful usage parameters to evaluate the use of generic, fully automated cloud-based self-intervention, by assessing how breast cancer survivors use a generic self-management model. The goal of this study was implemented and evaluated with a new prototype called “CIMIDx”, based on representative association rules that support the diagnosis of medical images (mammograms). Methods The proposed Cloud-Based System Support Intelligent Medical Image Diagnosis (CIMIDx) prototype includes two modules. The first is the design and development of the CIMIDx training and test cloud services. Deployed in the cloud, the prototype can be used for diagnosis and screening mammography by assessing the cancers detected, tumor sizes, histology, and stage of classification accuracy. To analyze the prototype’s classification accuracy, we conducted an experiment with data provided by clients. Second, by monitoring cloud server requests, the CIMIDx usage statistics were recorded for the cloud-based self-intervention groups. We conducted an evaluation of the CIMIDx cloud service usage, in which browsing functionalities were evaluated from the end-user’s perspective. Results We performed several experiments to validate the CIMIDx prototype for breast health issues. The first set of experiments evaluated the diagnostic performance of the CIMIDx framework. We collected medical information

  13. Towards THz medical imaging; reflective imaging of animal tissues.

    PubMed

    Singh, Rahul S; Taylor, Zachary D; Culjat, Martin O; Grundfest, Warren S; Brown, Elliott R

    2008-01-01

    A reflective THz imaging system has been developed, and features a photoconductive switch and zero-bias Schottky diode detector. The system was used to image deli meats and can distinguish between muscle and adipose tissue based on water content. This capability is a step towards the development of THz medical imaging systems.

  14. Increasing average power in medical ultrasonic endoscope imaging system by coded excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Zhou, Hao; Wen, Shijie; Yu, Daoyin

    2008-12-01

    Medical ultrasonic endoscope is the combination of electronic endoscope and ultrasonic sensor technology. Ultrasonic endoscope sends the ultrasonic probe into coelom through biopsy channel of electronic endoscope and rotates it by a micro pre-motor, which requires that the length of ultrasonic probe is no more than 14mm and the diameter is no more than 2.2mm. As a result, the ultrasonic excitation power is very low and it is difficult to obtain a sharp image. In order to increase the energy and SNR of ultrasonic signal, we introduce coded excitation into the ultrasonic imaging system, which is widely used in radar system. Coded excitation uses a long coded pulse to drive ultrasonic transducer, which can increase the average transmitting power accordingly. In this paper, in order to avoid the overlapping between adjacent echo, we used a four-figure Barker code to drive the ultrasonic transducer, which is modulated at the operating frequency of transducer to improve the emission efficiency. The implementation of coded excitation is closely associated with the transient operating characteristic of ultrasonic transducer. In this paper, the transient operating characteristic of ultrasonic transducer excited by a shock pulse δ(t) is firstly analyzed, and then the exciting pulse generated by special ultrasonic transmitting circuit composing of MD1211 and TC6320. In the final part of the paper, we designed an experiment to validate the coded excitation with transducer operating at 5MHz and a glass filled with ultrasonic coupling liquid as the object. Driven by a FPGA, the ultrasonic transmitting circuit output a four-figure Barker excitation pulse modulated at 5MHz, +/-20 voltage and is consistent with the transient operating characteristic of ultrasonic transducer after matched by matching circuit. The reflected echo from glass possesses coded character, which is identical with the simulating result by Matlab. Furthermore, the signal's amplitude is higher.

  15. Medical image informatics infrastructure design and applications.

    PubMed

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII. PMID:9509399

  16. Evaluating performance of biomedical image retrieval systems--an overview of the medical image retrieval task at ImageCLEF 2004-2013.

    PubMed

    Kalpathy-Cramer, Jayashree; de Herrera, Alba García Seco; Demner-Fushman, Dina; Antani, Sameer; Bedrick, Steven; Müller, Henning

    2015-01-01

    Medical image retrieval and classification have been extremely active research topics over the past 15 years. Within the ImageCLEF benchmark in medical image retrieval and classification, a standard test bed was created that allows researchers to compare their approaches and ideas on increasingly large and varied data sets including generated ground truth. This article describes the lessons learned in ten evaluation campaigns. A detailed analysis of the data also highlights the value of the resources created. PMID:24746250

  17. Evaluating performance of biomedical image retrieval systems – an overview of the medical image retrieval task at ImageCLEF 2004–2013

    PubMed Central

    Kalpathy-Cramer, Jayashree; de Herrera, Alba García Seco; Demner-Fushman, Dina; Antani, Sameer; Bedrick, Steven; Müller, Henning

    2014-01-01

    Medical image retrieval and classification have been extremely active research topics over the past 15 years. With the ImageCLEF benchmark in medical image retrieval and classification a standard test bed was created that allows researchers to compare their approaches and ideas on increasingly large and varied data sets including generated ground truth. This article describes the lessons learned in ten evaluations campaigns. A detailed analysis of the data also highlights the value of the resources created. PMID:24746250

  18. Desktop supercomputers. Advance medical imaging.

    PubMed

    Frisiello, R S

    1991-02-01

    Medical imaging tools that radiologists as well as a wide range of clinicians and healthcare professionals have come to depend upon are emerging into the next phase of functionality. The strides being made in supercomputing technologies--including reduction of size and price--are pushing medical imaging to a new level of accuracy and functionality.

  19. Content standards for medical image metadata

    NASA Astrophysics Data System (ADS)

    d'Ornellas, Marcos C.; da Rocha, Rafael P.

    2003-12-01

    Medical images are at the heart of the healthcare diagnostic procedures. They have provided not only a noninvasive mean to view anatomical cross-sections of internal organs but also a mean for physicians to evaluate the patient"s diagnosis and monitor the effects of the treatment. For a Medical Center, the emphasis may shift from the generation of image to post processing and data management since the medical staff may generate even more processed images and other data from the original image after various analyses and post processing. A medical image data repository for health care information system is becoming a critical need. This data repository would contain comprehensive patient records, including information such as clinical data and related diagnostic images, and post-processed images. Due to the large volume and complexity of the data as well as the diversified user access requirements, the implementation of the medical image archive system will be a complex and challenging task. This paper discusses content standards for medical image metadata. In addition it also focuses on the image metadata content evaluation and metadata quality management.

  20. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  1. Contemporary issues for experimental design in assessment of medical imaging and computer-assist systems

    NASA Astrophysics Data System (ADS)

    Wagner, Robert F.; Beiden, Sergey V.; Campbell, Gregory; Metz, Charles E.; Sacks, William M.

    2003-05-01

    The dialog among investigators in academia, industry, NIH, and the FDA has grown in recent years on topics of historic interest to attendees of these SPIE sub-conferences on Image Perception, Observer Performance, and Technology Assessment. Several of the most visible issues in this regard have been the emergence of digital mammography and modalities for computer-assisted detection and diagnosis in breast and lung imaging. These issues appear to be only the "tip of the iceberg" foreshadowing a number of emerging advances in imaging technology. So it is timely to make some general remarks looking back and looking ahead at the landscape (or seascape). The advances have been facilitated and documented in several forums. The major role of the SPIE Medical Imaging Conferences i well-known to all of us. Many of us were also present at the Medical Image Perception Society and co-sponsored by CDRH and NCI in September of 2001 at Airlie House, VA. The workshops and discussions held at that conference addressed some critical contemporary issues related to how society - and in particular industry and FDA - approach the general assessment problem. A great deal of inspiration for these discussions was also drawn from several workshops in recent years sponsored by the Biomedical Imaging Program of the National Cancer Institute on these issues, in particular the problem of "The Moving Target" of imaging technology. Another critical phenomenon deserving our attention is the fact that the Fourth National Forum on Biomedical Imaging in Oncology was recently held in Bethesda, MD., February 6-7, 2003. These forums are presented by the National Cancer Institute (NCI), the Food and Drug Administration (FDA), the Centers for Medicare and Medicaid Services (CMS), and the National Electrical Manufacturers Association (NEMA). They are sponsored by the National Institutes of Health/Foundation for Advanced Education in the Sciences (NIH/FAES). These forums led to the development of the NCI

  2. Design and Implementation of a Compact Low-Dose Diffraction Enhanced Medical Imaging System

    SciTech Connect

    Parham, C.; Zhong, Z; Connor, D; Chapman, D; Pisano, E

    2009-01-01

    This paper describes the design, construction, and performance of a new DEI system using a commercially available tungsten anode x-ray tube and includes the first high-quality low-dose diffraction-enhanced images of full-thickness human tissue specimens. Diffraction-enhanced imaging (DEI) is a new x-ray imaging modality that differs from conventional radiography in its use of three physical mechanisms to generate contrast. DEI is able to generate contrast from x-ray absorption, refraction, and ultra-small-angle scatter rejection (extinction) to produce high-contrast images with a much lower radiation dose compared to conventional radiography.

  3. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  4. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  5. Cloud computing in medical imaging.

    PubMed

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing. PMID:23822402

  6. Cloud computing in medical imaging.

    PubMed

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  7. Medical hyperspectral imaging: a review

    PubMed Central

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  8. All fiber based multispeckle modality endoscopic system for imaging medical cavities

    NASA Astrophysics Data System (ADS)

    Murukeshan, V. M.; Sujatha, N.

    2007-05-01

    Disease detection in body cavities, such as the detection of abnormal growths in the colon path, has been illustrated here using an image fiber guided catheter based multispeckle modality endoscopic system. An all fiber-optic approach for the illumination and imaging of the inner cavity walls is adopted here. An endoscope probe to carry the illumination fibers as well as the imaging lens-image fiber unit is designed and custom fabricated in order to operate the probe in its various direction sensitive configurations. This is facilitated by the selection of suitable optical elements such as beam combiner and biprism at the probe proximal end. Experimental investigations were carried out using the endoscope system employing phantom model of colon as the test specimen that has normal and abnormal (representing growth) regions and the obtained results indicated the system effectiveness in identifying the abnormal growths at an early stage.

  9. [Medical image compression: a review].

    PubMed

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings. PMID:23715317

  10. [Medical image compression: a review].

    PubMed

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings.

  11. A high-resolution three-dimensional far-infrared thermal and true-color imaging system for medical applications.

    PubMed

    Cheng, Victor S; Bai, Jinfen; Chen, Yazhu

    2009-11-01

    As the needs for various kinds of body surface information are wide-ranging, we developed an imaging-sensor integrated system that can synchronously acquire high-resolution three-dimensional (3D) far-infrared (FIR) thermal and true-color images of the body surface. The proposed system integrates one FIR camera and one color camera with a 3D structured light binocular profilometer. To eliminate the emotion disturbance of the inspector caused by the intensive light projection directly into the eye from the LCD projector, we have developed a gray encoding strategy based on the optimum fringe projection layout. A self-heated checkerboard has been employed to perform the calibration of different types of cameras. Then, we have calibrated the structured light emitted by the LCD projector, which is based on the stereo-vision idea and the least-squares quadric surface-fitting algorithm. Afterwards, the precise 3D surface can fuse with undistorted thermal and color images. To enhance medical applications, the region-of-interest (ROI) in the temperature or color image representing the surface area of clinical interest can be located in the corresponding position in the other images through coordinate system transformation. System evaluation demonstrated a mapping error between FIR and visual images of three pixels or less. Experiments show that this work is significantly useful in certain disease diagnoses. PMID:19782632

  12. THz Medical Imaging: in vivo Hydration Sensing

    PubMed Central

    Taylor, Zachary D.; Singh, Rahul S.; Bennett, David B.; Tewari, Priyamvada; Kealey, Colin P.; Bajwa, Neha; Culjat, Martin O.; Stojadinovic, Alexander; Lee, Hua; Hubschman, Jean-Pierre; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    The application of THz to medical imaging is experiencing a surge in both interest and federal funding. A brief overview of the field is provided along with promising and emerging applications and ongoing research. THz imaging phenomenology is discussed and tradeoffs are identified. A THz medical imaging system, operating at ~525 GHz center frequency with ~125 GHz of response normalized bandwidth is introduced and details regarding principles of operation are provided. Two promising medical applications of THz imaging are presented: skin burns and cornea. For burns, images of second degree, partial thickness burns were obtained in rat models in vivo over an 8 hour period. These images clearly show the formation and progression of edema in and around the burn wound area. For cornea, experimental data measuring the hydration of ex vivo porcine cornea under drying is presented demonstrating utility in ophthalmologic applications. PMID:26085958

  13. A prototype system and reconstruction algorithms for electrical impedance technique in medical body imaging.

    PubMed

    Kim, Y; Woo, H W

    1987-01-01

    We have developed an impedance imaging system to reconstruct cross-sectional images of the body's electrical characteristics based on static tissue impedance. The hardware system consists of a data collection subsystem and the Intel 380 host microcomputer system with an Intel 80286 microprocessor, an Intel 80287 numeric data processor, and an Intel 80186 microprocessor-based display board. The system is capable of initiating a data collection from an array of current-sensing electrodes and reconstructing impedance images based on these data measurements. We have tested the data collection subsystem with physical phantom models, and we have found that the prototype system is capable of discriminating high resistivity regions in contrast with the low resistivity background. Our system is flexible in that each electrode's function (sensing currents, applying voltages, grounding body surfaces, and disconnected from the body) can be programmed individually so that a variety of electrode configurations for different projection techniques can be tested for optimal system performance. Various reconstruction algorithms have been developed and tested particularly for this imaging modality. Since a computer body model is needed for some impedance reconstruction algorithms, we have created two- and three-dimensional computer body models based on the finite element method approach, and verified our finite element modelling technique by building physical phantoms and comparing measured experimental results with simulation results predicted by the computer model. We have found that the sensitivity is a function of position, pixel size (image resolution) and background resistivity. We have also tried to compensate the low sensitivity of impedance changes in the central region.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Medical ultrasonic imaging.

    PubMed

    Schuy, S

    1982-01-01

    The development of ultrasonic imaging techniques is by no means finished even today. The morphological display of anatomical cross-sections has already reached a high standard and is characterized by the realization of real-time compound scanners. Automated water-bath scanners, either compound or single pass, are intended to help ultrasound to play a more dominant role in mammography, especially as a screening method, although at present it cannot be used very efficiently for this purpose. Considerable progress can be expected with the increasing use of computer facilities, especially digital signal-processing techniques. They should not only further improve image fidelity and intelligibility, but also the comfort of the handling. A major step forward will be the implementation of objective transducer-independent tissue-differentiation facilities into imaging devices. The development of alternative ultrasonic imaging techniques like the transmission camera should increase the scope of ultrasonic application rather than compete with B-scan imaging.

  15. Teleradiology network system and computer-aided diagnosis workstation using the web medical image conference system with a new information security solution

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaru; Moriyama, Noriyuki

    2011-03-01

    We have developed the teleradiology network system with a new information security solution that provided with web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. We are studying the secret sharing scheme as a method safely to store or to transmit the confidential medical information used with the teleradiology network system. The confidential medical information is exposed to the risk of the damage and intercept. Secret sharing scheme is a method of dividing the confidential medical information into two or more tallies. Individual medical information cannot be decoded by using one tally at all. Our method has the function of RAID. With RAID technology, if there is a failure in a single tally, there is redundant data already copied to other tally. Confidential information is preserved at an individual Data Center connected through internet because individual medical information cannot be decoded by using one tally at all. Therefore, even if one of the Data Centers is struck and information is damaged, the confidential medical information can be decoded by using the tallies preserved at the data center to which it escapes damage. We can safely share the screen of workstation to which the medical image of Data Center is displayed from two or more web conference terminals at the same time. Moreover, Real time biometric face authentication system is connected with Data Center. Real time biometric face authentication system analyzes the feature of the face image of which it takes a picture in 20 seconds with the camera and defends the safety of the medical information. We propose a new information transmission method and a new information storage method with a new information security solution.

  16. Toward realistic and practical ideal observer (IO) estimation for the optimization of medical imaging systems.

    PubMed

    He, Xin; Caffo, Brian S; Frey, Eric C

    2008-10-01

    The ideal observer (IO) employs complete knowledge of the available data statistics and sets an upper limit on observer performance on a binary classification task. However, the IO test statistic cannot be calculated analytically, except for cases where object statistics are extremely simple. Kupinski have developed a Markov chain Monte Carlo (MCMC) based technique to compute the IO test statistic for, in principle, arbitrarily complex objects and imaging systems. In this work, we applied MCMC to estimate the IO test statistic in the context of myocardial perfusion SPECT (MPS). We modeled the imaging system using an analytic SPECT projector with attenuation, distant-dependent detector-response modeling and Poisson noise statistics. The object is a family of parameterized torso phantoms with variable geometric and organ uptake parameters. To accelerate the imaging simulation process and thus enable the MCMC IO estimation, we used discretized anatomic parameters and continuous uptake parameters in defining the objects. The imaging process simulation was modeled by precomputing projections for each organ for a finite number of discretely-parameterized anatomic parameters and taking linear combinations of the organ projections based on continuous sampling of the organ uptake parameters. The proposed method greatly reduces the computational burden and allows MCMC IO estimation for a realistic MPS imaging simulation. We validated the proposed IO estimation technique by estimating IO test statistics for a large number of input objects. The properties of the first- and second-order statistics of the IO test statistics estimated using the MCMC IO estimation technique agreed well with theoretical predictions. Further, as expected, the IO had better performance, as measured by the receiver operating characteristic (ROC) curve, than the Hotelling observer. This method is developed for SPECT imaging. However, it can be adapted to any linear imaging system.

  17. Medical image libraries: ICoS project

    NASA Astrophysics Data System (ADS)

    Honniball, John; Thomas, Peter

    1999-08-01

    FOr use of digital techniques for the production, manipulation and storage of images has resulted in the creation of digital image libraries. These libraries often store many thousands of images. While provision of storage media for such large amounts of data has been straightforward, provision of effective searching and retrieval tools has not. Medicine relies heavily on images as a diagnostic tool. The most obvious example is the x-ray, but many other image forms are in everyday use. Advances in technology are affecting the ways medical images are generated, stored and retrieved. The paper describes the work of the Image COding and Segmentation to Support Variable Rate Transmission Channels and Variable Resolution Platforms (ICoS) research project currently under way in Bristol, UK. ICoS is a project of the Mobile of England and Hewlett-Packard Research Laboratories Europe. Funding is provided by the Engineering and PHysical Sciences Research Council. The aim of the ICoS project is to demonstrate the practical application of computer networking to medical image libraries. Work at the University of the West of England concentrates on user interface and indexing issues. Metadata is used to organize the images, coded using the WWW Consortium standard Resource Description Framework. We are investigating the application of such standards to medical images, one outcome being to implement a metadata-based image library. This paper describes the ICoS project in detail and discuses both metadata system and user interfaces in the context of medical applications.

  18. A cloud-based medical image repository

    NASA Astrophysics Data System (ADS)

    Maeder, Anthony J.; Planitz, Birgit M.; El Rifai, Diaa

    2012-02-01

    Many widely used digital medical image collections have been established but these are generally used as raw data sources without related image analysis toolsets. Providing associated functionality to allow specific types of operations to be performed on these images has proved beneficial in some cases (e.g. brain image registration and atlases). However, toolset development to provide generic image analysis functions on medical images has tended to be ad hoc, with Open Source options proliferating (e.g. ITK). Our Automated Medical Image Collection Annotation (AMICA) system is both an image repository, to which the research community can contribute image datasets, and a search/retrieval system that uses automated image annotation. AMICA was designed for the Windows Azure platform to leverage the flexibility and scalability of the cloud. It is intended that AMICA will expand beyond its initial pilot implementation (for brain CT, MR images) to accommodate a wide range of modalities and anatomical regions. This initiative aims to contribute to advances in clinical research by permitting a broader use and reuse of medical image data than is currently attainable. For example, cohort studies for cases with particular physiological or phenotypical profiles will be able to source and include enough cases to provide high statistical power, allowing more individualised risk factors to be assessed and thus allowing screening and staging processes to be optimised. Also, education, training and credentialing of clinicians in image interpretation, will be more effective because it will be possible to select instances of images with specific visual aspects, or correspond to types of cases where reading performance improvement is desirable.

  19. Medical gamma ray imaging

    DOEpatents

    Osborne, Louis S.; Lanza, Richard C.

    1984-01-01

    A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.

  20. Human visual pattern recognition of medical images

    NASA Astrophysics Data System (ADS)

    Biederman, Irving

    1990-07-01

    The output of most medical imaging systems is a display for interpretation by human observers. This paper provides a general summary of recent work on shape recognition by humans. Two broad modes of visual image processing executed by different cortical loci can be distinguished: a) a mode for motor interaction which is sensitive to quantitative variation in image parameters and b) a mode for basic-level object recognition which is based on a small set of qualitative contrasts in viewpoint invariant properties of images edges. Many medical image classifications pose inherently difficult problems for the recognition system in that they are based on quantitative and surface patch variations--rather than qualitative--variations. But when recognition can be achieved quickly and accurately it is possible that a small viewpoint invariant contrast has been discovered and is being exploited by the interpreter.

  1. Photoacoustic imaging: opening new frontiers in medical imaging.

    PubMed

    Valluru, Keerthi S; Chinni, Bhargava K; Rao, Navalgund A

    2011-01-01

    In today's world, technology is advancing at an exponential rate and medical imaging is no exception. During the last hundred years, the field of medical imaging has seen a tremendous technological growth with the invention of imaging modalities including but not limited to X-ray, ultrasound, computed tomography, magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. These tools have led to better diagnosis and improved patient care. However, each of these modalities has its advantages as well as disadvantages and none of them can reveal all the information a physician would like to have. In the last decade, a new diagnostic technology called photoacoustic imaging has evolved which is moving rapidly from the research phase to the clinical trial phase. This article outlines the basics of photoacoustic imaging and describes our hands-on experience in developing a comprehensive photoacoustic imaging system to detect tissue abnormalities.

  2. Sharing medical images: a proposal of a reference image database

    NASA Astrophysics Data System (ADS)

    dos Santos, Marcelo; Furuie, Sérgio S.

    2006-03-01

    Due to increasing number of digital images used in medical diagnosis, the image processing and analysis are becoming essential for many tasks in medicine. One of the obstacles within the field of medical image processing is the lack of reference image datasets freely available for groups and/or individual users, in order to evaluate their new methods and applications. In order to improve this situation, this work presents the development of a framework to make available a free, online, multipurpose and multimodality medical image database for software and algorithm evaluation. The project is implemented as a distributed architecture for medical image database including a publishing workflow, authoring tools, and role-based access control. Our effort aims to offer a testbed and a set of resources including software, links to scientific papers, gold standards, reference and post-processed images, enabling the medical image processing community (scientists, physicians, students and industrials) to be more aware of evaluation issues. The proposed approach has been used as an electronic teaching system in Radiology as well.

  3. Mission Medical Information System

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Joe, John C.; Follansbee, Nicole M.

    2008-01-01

    This viewgraph presentation gives an overview of the Mission Medical Information System (MMIS). The topics include: 1) What is MMIS?; 2) MMIS Goals; 3) Terrestrial Health Information Technology Vision; 4) NASA Health Information Technology Needs; 5) Mission Medical Information System Components; 6) Electronic Medical Record; 7) Longitudinal Study of Astronaut Health (LSAH); 8) Methods; and 9) Data Submission Agreement (example).

  4. NVIDIA OptiX ray-tracing engine as a new tool for modelling medical imaging systems

    NASA Astrophysics Data System (ADS)

    Pietrzak, Jakub; Kacperski, Krzysztof; Cieślar, Marek

    2015-03-01

    The most accurate technique to model the X- and gamma radiation path through a numerically defined object is the Monte Carlo simulation which follows single photons according to their interaction probabilities. A simplified and much faster approach, which just integrates total interaction probabilities along selected paths, is known as ray tracing. Both techniques are used in medical imaging for simulating real imaging systems and as projectors required in iterative tomographic reconstruction algorithms. These approaches are ready for massive parallel implementation e.g. on Graphics Processing Units (GPU), which can greatly accelerate the computation time at a relatively low cost. In this paper we describe the application of the NVIDIA OptiX ray-tracing engine, popular in professional graphics and rendering applications, as a new powerful tool for X- and gamma ray-tracing in medical imaging. It allows the implementation of a variety of physical interactions of rays with pixel-, mesh- or nurbs-based objects, and recording any required quantities, like path integrals, interaction sites, deposited energies, and others. Using the OptiX engine we have implemented a code for rapid Monte Carlo simulations of Single Photon Emission Computed Tomography (SPECT) imaging, as well as the ray-tracing projector, which can be used in reconstruction algorithms. The engine generates efficient, scalable and optimized GPU code, ready to run on multi GPU heterogeneous systems. We have compared the results our simulations with the GATE package. With the OptiX engine the computation time of a Monte Carlo simulation can be reduced from days to minutes.

  5. Multispectral imaging for medical diagnosis

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.

    1977-01-01

    Photography technique determines amount of morbidity present in tissue. Imaging apparatus incorporates numerical filtering. Overall system operates in near-real time. Information gained from this system enables physician to understand extent of injury and leads to accelerated treatment.

  6. An open architecture for medical image workstation

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Hu, Zhiqiang; Wang, Xiangyun

    2005-04-01

    Dealing with the difficulties of integrating various medical image viewing and processing technologies with a variety of clinical and departmental information systems and, in the meantime, overcoming the performance constraints in transferring and processing large-scale and ever-increasing image data in healthcare enterprise, we design and implement a flexible, usable and high-performance architecture for medical image workstations. This architecture is not developed for radiology only, but for any workstations in any application environments that may need medical image retrieving, viewing, and post-processing. This architecture contains an infrastructure named Memory PACS and different kinds of image applications built on it. The Memory PACS is in charge of image data caching, pre-fetching and management. It provides image applications with a high speed image data access and a very reliable DICOM network I/O. In dealing with the image applications, we use dynamic component technology to separate the performance-constrained modules from the flexibility-constrained modules so that different image viewing or processing technologies can be developed and maintained independently. We also develop a weakly coupled collaboration service, through which these image applications can communicate with each other or with third party applications. We applied this architecture in developing our product line and it works well. In our clinical sites, this architecture is applied not only in Radiology Department, but also in Ultrasonic, Surgery, Clinics, and Consultation Center. Giving that each concerned department has its particular requirements and business routines along with the facts that they all have different image processing technologies and image display devices, our workstations are still able to maintain high performance and high usability.

  7. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  8. A system for rapid prototyping of hearts with congenital malformations based on the medical imaging interaction toolkit (MITK)

    NASA Astrophysics Data System (ADS)

    Wolf, Ivo; Böttger, Thomas; Rietdorf, Urte; Maleike, Daniel; Greil, Gerald; Sieverding, Ludger; Miller, Stephan; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2006-03-01

    Precise knowledge of the individual cardiac anatomy is essential for diagnosis and treatment of congenital heart disease. Complex malformations of the heart can best be comprehended not from images but from anatomic specimens. Physical models can be created from data using rapid prototyping techniques, e.g., lasersintering or 3D-printing. We have developed a system for obtaining data that show the relevant cardiac anatomy from high-resolution CT/MR images and are suitable for rapid prototyping. The challenge is to preserve all relevant details unaltered in the produced models. The main anatomical structures of interest are the four heart cavities (atria, ventricles), the valves and the septum separating the cavities, and the great vessels. These can be shown either by reproducing the morphology itself or by producing a model of the blood-pool, thus creating a negative of the morphology. Algorithmically the key issue is segmentation. Practically, possibilities allowing the cardiologist or cardiac surgeon to interactively check and correct the segmentation are even more important due to the complex, irregular anatomy and imaging artefacts. The paper presents the algorithmic and interactive processing steps implemented in the system, which is based on the open-source Medical Imaging Interaction Toolkit (MITK, www.mitk.org). It is shown how the principles used in MITK enable to assemble the system from modules (functionalities) developed independently from each other. The system allows to produce models of the heart (and other anatomic structures) of individual patients as well as to reproduce unique specimens from pathology collections for teaching purposes.

  9. X-ray Luminescence Efficiency of GAGG:Ce Single Crystal Scintillators for use in Tomographic Medical Imaging Systems

    NASA Astrophysics Data System (ADS)

    David, S. L.; Valais, I. G.; Michail, C. M.; Kandarakis, I. S.

    2015-09-01

    The purpose of the present study was to evaluate different scintillator crystal samples, with a cross section of 3×3mm2 and various thicknesses ranging from 4mm up to 20mm, of the new mixed Gd3Al2Ga3O12:Ce (GAGG:Ce) scintillator material under X-ray irradiation, for potential applications in Tomographic Medical Imaging systems. Evaluation was performed by determining the X-ray luminescence efficiency (XLE) (emitted light energy flux over incident X-ray energy flux) in energies employed in general X-ray imaging. For the luminescence efficiency measurements, the scintillator samples were exposed to X-rays using a BMI General Medical Merate tube, with rotating Tungsten anode and inherent filtration equivalent to 2 mm Al. X-ray tube voltages between 50 to 130 kV were selected. An additional 20 mm filtration was introduced to the beam to simulate beam quality alternation equivalent to a human body. The emitted light energy flux measurements were performed using an experimental set up comprising a light integration sphere coupled to an EMI 9798B photomultiplier tube which was connected to a Cary 401 vibrating reed electrometer. The GAGG:Ce sample with dimensions 3×3×10 mm3 exhibited higher XLE values, in the whole X- ray energy range examined. XLE value equal to 0.013 was recorded for this crystal at 130 kVp - a setting frequently used in Computed Tomography applications.

  10. Design and performance evaluation of web-based medical image display system for PACS applications

    NASA Astrophysics Data System (ADS)

    Sun, Jianyong; Zhang, Jianguo; Huang, Yongbin; Tang, Shan; Huang, H. K.

    2003-05-01

    During the past several years, the using the Web technology and Web server as a means to access PACS image data are being considered and implemented with different technologies architectures. Here, we presented our design and implementation about developing component-based image display module, and then, gave a method to integrate this image display processing (DP) component into a Web-based image distribution server to enable users using Web browsers to access, view and manipulate PACS images. First, we designed the component software architecture of the image display. Second, we developed a Web-based PACS image distribution server based on component architecture, and integrated the DP components and other three PACS components into the Web architecture. Third, we added the new interface supporting http communication to the DP component by using the WinINet API (application program interface) developed by Microsoft, so that, the DP component can be plug-in to Web browsers to interact with the component-based Web server to display and manipulate DICOM images sent from any PACS archiving server. The performance evaluation on the diagnostic display workstation and the component-based Web server shows that the image distribution and display performance from the Web server to browser clients is similar with that of the image loading and displaying procedure of the diagnostic workstation, as more browser clients accessing to the Web server at same time.

  11. Medical Information Systems.

    ERIC Educational Resources Information Center

    Smith, Kent A.

    1986-01-01

    Description of information services from the National Library of Medicine (NLM) highlights a new system for retrieving information from NLM's databases (GRATEFUL MED); a formal Regional Medical Library Network; DOCLINE; the Unified Medical Language System; and Integrated Academic Information Management Systems. Research and development and the…

  12. Medical Imaging of Hyperpolarized Gases

    SciTech Connect

    Miller, G. Wilson

    2009-08-04

    Since the introduction of hyperpolarized {sup 3}He and {sup 129}Xe as gaseous MRI contrast agents more than a decade ago, a rich variety of imaging techniques and medical applications have been developed. Magnetic resonance imaging of the inhaled gas depicts ventilated lung airspaces with unprecedented detail, and allows one to track airflow and pulmonary mechanics during respiration. Information about lung structure and function can also be obtained using the physical properties of the gas, including spin relaxation in the presence of oxygen, restricted diffusion inside the alveolar airspaces, and the NMR frequency shift of xenon dissolved in blood and tissue.

  13. Nanotechnology-supported THz medical imaging

    PubMed Central

    Stylianou, Andreas; Talias, Michael A

    2013-01-01

    Over the last few decades, the achievements and progress in the field of medical imaging have dramatically enhanced the early detection and treatment of many pathological conditions. The development of new imaging modalities, especially non-ionising ones, which will improve prognosis, is of crucial importance. A number of novel imaging modalities have been developed but they are still in the initial stages of development and serious drawbacks obstruct them from offering their benefits to the medical field. In the 21 st century, it is believed that nanotechnology will highly influence our everyday life and dramatically change the world of medicine, including medical imaging. Here we discuss how nanotechnology, which is still in its infancy, can improve Terahertz (THz) imaging, an emerging imaging modality, and how it may find its way into real clinical applications. THz imaging is characterised by the use of non-ionising radiation and although it has the potential to be used in many biomedical fields, it remains in the field of basic research. An extensive review of the recent available literature shows how the current state of this emerging imaging modality can be transformed by nanotechnology. Innovative scientific concepts that use nanotechnology-based techniques to overcome some of the limitations of the use of THz imaging are discussed. We review a number of drawbacks, such as a low contrast mechanism, poor source performance and bulky THz systems, which characterise present THz medical imaging and suggest how they can be overcome through nanotechnology. Better resolution and higher detection sensitivity can also be achieved using nanotechnology techniques. PMID:24555052

  14. Archimedes, an archive of medical images.

    PubMed

    Tahmoush, Dave; Samet, Hanan

    2006-01-01

    We present a medical image and medical record database for the storage, research, transmission, and evaluation of medical images. Medical images from any source that supports the DICOM standard can be stored and accessed, as well as associated analysis and annotations. Retrieval is based on patient info, date, doctor's annotations, features in the images, or a spatial combination. This database supports the secure transmission of sensitive data for tele-medicine and follows all HIPPA regulations.

  15. Medical imaging with a microwave tomographic scanner.

    PubMed

    Jofre, L; Hawley, M S; Broquetas, A; de los Reyes, E; Ferrando, M; Elias-Fusté, A R

    1990-03-01

    A microwave tomographic scanner for biomedical applications is presented. The scanner consists of a 64 element circular array with a useful diameter of 20 cm. Electronically scanning the transmitting and receiving antennas allows multiview measurements with no mechanical movement. Imaging parameters are appropriate for medical use: a spatial resolution of 7 mm and a contrast resolution of 1% for a measurement time of 3 s. Measurements on tissue-simulating phantoms and volunteers, together with numerical simulations, are presented to assess the system for absolute imaging of tissue distribution and for differential imaging of physiological, pathological, and induced changes in tissues. PMID:2329003

  16. [Medical image automatic adjusting window and segmentation].

    PubMed

    Zhou, Zhenhuan; Chen, Siping; Tao, Duchun; Chen, Xinhai

    2005-04-01

    Image guided surgical navigation system is the most advanced surgical apparatus, which develops most rapidly and has great application prospects in neurosurgery, orthopaedics, E.N.T. department etc. In current surgical navigation systems, windowing, segmenting and registration of medical images all depend on manual operation, and automation of image processing is urgently needed. This paper proposes the algorithm which realizes very well automatic windowing and segmentation of medical images: first, we analyze a lot of MRI and CT images and propose corresponding windowing algorithm according to their common features of intensity distribution. Experiments show that the effects of windowing of most MRI and CT images are optimized. Second, we propose the seed growing algorithm based on intensity connectivity,which can segment tumor and its boundary exactly by simply clicking the mouse, and control dynamically the results in real time. If computer memory permits, the algorithm can segment 3D images directly. Tests show that this function is able to shorten the time of surgical planning, lower the complexity, and improve the efficiency in navigation surgery. PMID:15884547

  17. Neural networks: Application to medical imaging

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  18. ICG fluorescence imaging and its medical applications

    NASA Astrophysics Data System (ADS)

    Miwa, Mitsuharu; Shikayama, Takahiro

    2008-12-01

    This paper presents a novel optical angiography system, and introduces its medical applications. We developed the optical enhanced imaging system which can observe the blood and lymphatic vessels as the Indocyanine green (ICG) fluorescence image. The imaging system consists of 760nm light emitted diode (LED) as excite light, CCD camera as a detector, a high-pass optical filter in front of the CCD and video processing system. The advantage of ICG fluorescence method is safe (radiation free), high sensitive, real time monitoring of blood and/or lymphatic flow, small size, easy to operate and cost effective compared to conventional X-ray angiography or scintigraphy. We have applied this method to several clinical applications such as breast cancer sentinel lymph node (SLN) navigation, lymph edema diagnostic and identification of liver segmentation. In each application, ICG fluorescence method shows useful result. It's indicated that this method is promising technique as optical angiography.

  19. MATHEMATICAL METHODS IN MEDICAL IMAGE PROCESSING

    PubMed Central

    ANGENENT, SIGURD; PICHON, ERIC; TANNENBAUM, ALLEN

    2013-01-01

    In this paper, we describe some central mathematical problems in medical imaging. The subject has been undergoing rapid changes driven by better hardware and software. Much of the software is based on novel methods utilizing geometric partial differential equations in conjunction with standard signal/image processing techniques as well as computer graphics facilitating man/machine interactions. As part of this enterprise, researchers have been trying to base biomedical engineering principles on rigorous mathematical foundations for the development of software methods to be integrated into complete therapy delivery systems. These systems support the more effective delivery of many image-guided procedures such as radiation therapy, biopsy, and minimally invasive surgery. We will show how mathematics may impact some of the main problems in this area, including image enhancement, registration, and segmentation. PMID:23645963

  20. Medical image archive node simulation and architecture

    NASA Astrophysics Data System (ADS)

    Chiang, Ted T.; Tang, Yau-Kuo

    1996-05-01

    It is a well known fact that managed care and new treatment technologies are revolutionizing the health care provider world. Community Health Information Network and Computer-based Patient Record projects are underway throughout the United States. More and more hospitals are installing digital, `filmless' radiology (and other imagery) systems. They generate a staggering amount of information around the clock. For example, a typical 500-bed hospital might accumulate more than 5 terabytes of image data in a period of 30 years for conventional x-ray images and digital images such as Magnetic Resonance Imaging and Computer Tomography images. With several hospitals contributing to the archive, the storage required will be in the hundreds of terabytes. Systems for reliable, secure, and inexpensive storage and retrieval of digital medical information do not exist today. In this paper, we present a Medical Image Archive and Distribution Service (MIADS) concept. MIADS is a system shared by individual and community hospitals, laboratories, and doctors' offices that need to store and retrieve medical images. Due to the large volume and complexity of the data, as well as the diversified user access requirement, implementation of the MIADS will be a complex procedure. One of the key challenges to implementing a MIADS is to select a cost-effective, scalable system architecture to meet the ingest/retrieval performance requirements. We have performed an in-depth system engineering study, and developed a sophisticated simulation model to address this key challenge. This paper describes the overall system architecture based on our system engineering study and simulation results. In particular, we will emphasize system scalability and upgradability issues. Furthermore, we will discuss our simulation results in detail. The simulations study the ingest/retrieval performance requirements based on different system configurations and architectures for variables such as workload, tape

  1. Imaging System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1100C Virtual Window is based on technology developed under NASA Small Business Innovation (SBIR) contracts to Ames Research Center. For example, under one contract Dimension Technologies, Inc. developed a large autostereoscopic display for scientific visualization applications. The Virtual Window employs an innovative illumination system to deliver the depth and color of true 3D imaging. Its applications include surgery and Magnetic Resonance Imaging scans, viewing for teleoperated robots, training, and in aviation cockpit displays.

  2. PACS and multimodality in medical imaging.

    PubMed

    D'Asseler, Y; Koole, M; Van Laere, K; Vandenberghe, S; Bouwens, L; Van de Walle, R; Van de Wiele, C; Lemahieu, I; Dierckx, R A

    2000-01-01

    A PACS (Picture Archiving and Communication System) is a system that is able to store, exchange, display and manipulate images and associated diagnoses from any modality within a hospital in a timely and cost-effective way. Several developments, such as the DICOM standard, fast and convenient networking, and new storage solutions for large amounts of data, make the setup of such a PACS system possible. As the information acquired with various imaging modalities is then available and often complementary, it is desirable for the clinician to have a point-by-point spatial co-registration of images from different modalities in order to enable a synergistic use of the multimodality imaging of a patient for increased diagnostic accuracy. Various types of algorithms are available for the matching of medical images from the same or from different modalities. Co-registration algorithms based on voxel properties consist of a similarity or dissimilarity measure and an iterative or non-iterative method minimizing the dissimilarity or maximizing the similarity between the two images by a transformation of one image relative to the other. PMID:10942990

  3. Automatic scale selection for medical image segmentation

    NASA Astrophysics Data System (ADS)

    Bayram, Ersin; Wyatt, Christopher L.; Ge, Yaorong

    2001-07-01

    The scale of interesting structures in medical images is space variant because of partial volume effects, spatial dependence of resolution in many imaging modalities, and differences in tissue properties. Existing segmentation methods either apply a single scale to the entire image or try fine-to-coarse/coarse-to-fine tracking of structures over multiple scales. While single scale approaches fail to fully recover the perceptually important structures, multi-scale methods have problems in providing reliable means to select proper scales and integrating information over multiple scales. A recent approach proposed by Elder and Zucker addresses the scale selection problem by computing a minimal reliable scale for each image pixel. The basic premise of this approach is that, while the scale of structures within an image vary spatially, the imaging system is fixed. Hence, sensor noise statistics can be calculated. Based on a model of edges to be detected, and operators to be used for detection, one can locally compute a unique minimal reliable scale at which the likelihood of error due to sensor noise is less than or equal to a predetermined threshold. In this paper, we improve the segmentation method based on the minimal reliable scale selection and evaluate its effectiveness with both simulated and actual medical data.

  4. Multifunctional Magnetic Nanoparticles for Medical Imaging Applications

    PubMed Central

    Fang, Chen; Zhang, Miqin

    2010-01-01

    Magnetic nanoparticles (MNPs) have attracted enormous research attention due to their unique magnetic properties that enable the detection by the non-invasive medical imaging modality—magnetic resonance imaging (MRI). By incorporating advanced features, such as specific targeting, multimodality, therapeutic delivery, the detectability and applicability of MNPs have been dramatically expanded. A delicate design on structure, composition and surface chemistry is essential to achieving desired properties in MNP systems, such as high imaging contrast and chemical stability, non-fouling surface, target specificity and/or multimodality. This article presents the design fundamentals on the development of MNP systems, from discussion of material selection for nanoparticle cores and coatings, strategies for chemical synthesis and surface modification and their merits and limitations, to conjugation of special biomolecules for intended functions, and reviews the recent advances in the field. PMID:20593005

  5. Exploration Medical System Demonstration

    NASA Technical Reports Server (NTRS)

    Rubin, D. A.; Watkins, S. D.

    2014-01-01

    BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that

  6. Processing, analysis, recognition, and automatic understanding of medical images

    NASA Astrophysics Data System (ADS)

    Tadeusiewicz, Ryszard; Ogiela, Marek R.

    2004-07-01

    Paper presents some new ideas introducing automatic understanding of the medical images semantic content. The idea under consideration can be found as next step on the way starting from capturing of the images in digital form as two-dimensional data structures, next going throw images processing as a tool for enhancement of the images visibility and readability, applying images analysis algorithms for extracting selected features of the images (or parts of images e.g. objects), and ending on the algorithms devoted to images classification and recognition. In the paper we try to explain, why all procedures mentioned above can not give us full satisfaction in many important medical problems, when we do need understand image semantic sense, not only describe the image in terms of selected features and/or classes. The general idea of automatic images understanding is presented as well as some remarks about the successful applications of such ideas for increasing potential possibilities and performance of computer vision systems dedicated to advanced medical images analysis. This is achieved by means of applying linguistic description of the picture merit content. After this we try use new AI methods to undertake tasks of the automatic understanding of images semantics in intelligent medical information systems. A successful obtaining of the crucial semantic content of the medical image may contribute considerably to the creation of new intelligent multimedia cognitive medical systems. Thanks to the new idea of cognitive resonance between stream of the data extracted form the image using linguistic methods and expectations taken from the representation of the medical knowledge, it is possible to understand the merit content of the image even if the form of the image is very different from any known pattern.

  7. Imaging and Analytics: The changing face of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Foo, Thomas

    There have been significant technological advances in imaging capability over the past 40 years. Medical imaging capabilities have developed rapidly, along with technology development in computational processing speed and miniaturization. Moving to all-digital, the number of images that are acquired in a routine clinical examination has increased dramatically from under 50 images in the early days of CT and MRI to more than 500-1000 images today. The staggering number of images that are routinely acquired poses significant challenges for clinicians to interpret the data and to correctly identify the clinical problem. Although the time provided to render a clinical finding has not substantially changed, the amount of data available for interpretation has grown exponentially. In addition, the image quality (spatial resolution) and information content (physiologically-dependent image contrast) has also increased significantly with advances in medical imaging technology. On its current trajectory, medical imaging in the traditional sense is unsustainable. To assist in filtering and extracting the most relevant data elements from medical imaging, image analytics will have a much larger role. Automated image segmentation, generation of parametric image maps, and clinical decision support tools will be needed and developed apace to allow the clinician to manage, extract and utilize only the information that will help improve diagnostic accuracy and sensitivity. As medical imaging devices continue to improve in spatial resolution, functional and anatomical information content, image/data analytics will be more ubiquitous and integral to medical imaging capability.

  8. Tooling Techniques Enhance Medical Imaging

    NASA Technical Reports Server (NTRS)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  9. Client-side Medical Image Colorization in a Collaborative Environment.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2015-01-01

    The paper presents an application related to collaborative medicine using a browser based medical visualization system with focus on the medical image colorization process and the underlying open source web development technologies involved. Browser based systems allow physicians to share medical data with their remotely located counterparts or medical students, assisting them during patient diagnosis, treatment monitoring, surgery planning or for educational purposes. This approach brings forth the advantage of ubiquity. The system can be accessed from a any device, in order to process the images, assuring the independence towards having a specific proprietary operating system. The current work starts with processing of DICOM (Digital Imaging and Communications in Medicine) files and ends with the rendering of the resulting bitmap images on a HTML5 (fifth revision of the HyperText Markup Language) canvas element. The application improves the image visualization emphasizing different tissue densities.

  10. Client-side Medical Image Colorization in a Collaborative Environment.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2015-01-01

    The paper presents an application related to collaborative medicine using a browser based medical visualization system with focus on the medical image colorization process and the underlying open source web development technologies involved. Browser based systems allow physicians to share medical data with their remotely located counterparts or medical students, assisting them during patient diagnosis, treatment monitoring, surgery planning or for educational purposes. This approach brings forth the advantage of ubiquity. The system can be accessed from a any device, in order to process the images, assuring the independence towards having a specific proprietary operating system. The current work starts with processing of DICOM (Digital Imaging and Communications in Medicine) files and ends with the rendering of the resulting bitmap images on a HTML5 (fifth revision of the HyperText Markup Language) canvas element. The application improves the image visualization emphasizing different tissue densities. PMID:25991287

  11. Instrumentation in medical systems

    SciTech Connect

    Chu, W.T.

    1995-05-01

    The demand for clinical use of accelerated heavy charged-particle (proton and light-ion) beams for cancer treatment is now burgeoning worldwide. Clinical trials are underway at more than a dozen accelerators. Several hospital-based accelerator facilities dedicated to radiation treatment of human cancer have been constructed, and their number is growing. Many instruments in medical systems have been developed for modifying extracted particle beams for clinical application, monitoring the delivery of the treatment beams, and controlling the treatment processes to ensure patient safety. These in turn demand new developments of instruments in controlling beam extraction, beam tuning, and beam transportation at the medical systems.

  12. A framework for integration of heterogeneous medical imaging networks.

    PubMed

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS.

  13. A Framework for Integration of Heterogeneous Medical Imaging Networks

    PubMed Central

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS. PMID:25279021

  14. Mining knowledge in medical image databases

    NASA Astrophysics Data System (ADS)

    Perner, Petra

    2000-04-01

    Availability of digital data within picture archiving and communication systems raises a possibility of health care and research enhancement associated with manipulation, processing and handling of data by computers. That is the basis for computer-assisted radiology development. Further development of computer-assisted radiology is associated with the use of new intelligent capabilities such as multimedia support and data mining in order to discover the relevant knowledge for diagnosis. In this paper, we present our work on data mining in medical picture archiving systems. We use decision tree induction in order to learn the knowledge for computer- assisted image analysis. We are applying our method to interpretation of x-ray images for lung cancer diagnosis. We are describing our methodology on how to perform data mining on picture archiving systems and our tool for data mining. Results are given. The method has shown very good results so that we are going on to apply it to other medical image diagnosis tasks such as lymph node diagnosis in MRI and investigation of breast MRI.

  15. Computer-Based Medical System

    NASA Technical Reports Server (NTRS)

    1998-01-01

    SYMED, Inc., developed a unique electronic medical records and information management system. The S2000 Medical Interactive Care System (MICS) incorporates both a comprehensive and interactive medical care support capability and an extensive array of digital medical reference materials in either text or high resolution graphic form. The system was designed, in cooperation with NASA, to improve the effectiveness and efficiency of physician practices. The S2000 is a MS (Microsoft) Windows based software product which combines electronic forms, medical documents, records management, and features a comprehensive medical information system for medical diagnostic support and treatment. SYMED, Inc. offers access to its medical systems to all companies seeking competitive advantages.

  16. Application of the CCD camera in medical imaging

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Kom; Smith, Chuck; Bunting, Ralph; Knoll, Paul; Wobig, Randy; Thacker, Rod

    1999-04-01

    Medical fluoroscopy is a set of radiological procedures used in medical imaging for functional and dynamic studies of digestive system. Major components in the imaging chain include image intensifier that converts x-ray information into an intensity pattern on its output screen and a CCTV camera that converts the output screen intensity pattern into video information to be displayed on a TV monitor. To properly respond to such a wide dynamic range on a real-time basis, such as fluoroscopy procedure, are very challenging. Also, similar to all other medical imaging studies, detail resolution is of great importance. Without proper contrast, spatial resolution is compromised. The many inherent advantages of CCD make it a suitable choice for dynamic studies. Recently, CCD camera are introduced as the camera of choice for medical fluoroscopy imaging system. The objective of our project was to investigate a newly installed CCD fluoroscopy system in areas of contrast resolution, details, and radiation dose.

  17. Portable Medical System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Portable Medical Status and Treatment System (PMSTS) is designed for use in remote areas where considerable time may elapse before a patient can be transported to a hospital. First units were delivered to the Department of Transportation last year and tested in two types of medical emergency environments: one in a rural Pennsylvania community and another aboard a U.S. Coast Guard rescue helicopter operating along Florida's Gulf Coast. The system has the capability to transmit vital signs to a distantly located physician, who can perform diagnosis and relay treatment instructions to the attendant at the scene. The battery powered PMSTS includes a vital signs monitor and a defibrillator. Narco has also developed a companion system, called Porta-Fib III designed for use in a hospital environment with modifications accordingly. Both systems are offshoots of an earlier NASA project known as the Physician's Black Bag developed by Telecare, Inc., a company now acquired by NARCO.

  18. The algorithm stitching for medical imaging

    NASA Astrophysics Data System (ADS)

    Semenishchev, E.; Marchuk, V.; Voronin, V.; Pismenskova, M.; Tolstova, I.; Svirin, I.

    2016-05-01

    In this paper we propose a stitching algorithm of medical images into one. The algorithm is designed to stitching the medical x-ray imaging, biological particles in microscopic images, medical microscopic images and other. Such image can improve the diagnosis accuracy and quality for minimally invasive studies (e.g., laparoscopy, ophthalmology and other). The proposed algorithm is based on the following steps: the searching and selection areas with overlap boundaries; the keypoint and feature detection; the preliminary stitching images and transformation to reduce the visible distortion; the search a single unified borders in overlap area; brightness, contrast and white balance converting; the superimposition into a one image. Experimental results demonstrate the effectiveness of the proposed method in the task of image stitching.

  19. Multilayer descriptors for medical image classification.

    PubMed

    Lumini, Alessandra; Nanni, Loris; Brahnam, Sheryl

    2016-05-01

    In this paper, we propose a new method for improving the performance of 2D descriptors by building an n-layer image using different preprocessing approaches from which multilayer descriptors are extracted and used as feature vectors for training a Support Vector Machine. The different preprocessing approaches are used to build different n-layer images (n=3, n=5, etc.). We test both color and gray-level images, two well-known texture descriptors (Local Phase Quantization and Local Binary Pattern), and three of their variants suited for n-layer images (Volume Local Phase Quantization, Local Phase Quantization Three-Orthogonal-Planes, and Volume Local Binary Patterns). Our results show that multilayers and texture descriptors can be combined to outperform the standard single-layer approaches. Experiments on 10 datasets demonstrate the generalizability of the proposed descriptors. Most of these datasets are medical, but in each case the images are very different. Two datasets are completely unrelated to medicine and are included to demonstrate the discriminative power of the proposed descriptors across very different image recognition tasks. A MATLAB version of the complete system developed in this paper will be made available at https://www.dei.unipd.it/node/2357.

  20. A survey of medical diagnostic imaging technologies

    SciTech Connect

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  1. A survey of medical diagnostic imaging technologies

    SciTech Connect

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today`s more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  2. Developing a medical image content repository for e-learning.

    PubMed

    Hsiao, Chia-Hung; Hsu, Tien-Cheng; Chang, Jing Ning; Yang, Stephen J H; Young, Shuenn-Tsong; Chu, Woei Chyn

    2006-09-01

    The integration of medical informatics and e-learning systems could provide many advanced applications including training, knowledge management, telemedicine, etc. Currently, both the domains of e-learning and medical image have sophisticated specifications and standards. It is a great challenge to bring about integration. In this paper, we describe the development of a Web interface for searching and viewing medical images that are stored in standard medical image servers. With the creation of a Web solution, we have reduced the overheads of integration. We have packaged Digital Imaging and Communications in Medicine (DICOM) network services as a component that can be used via a Web server. The Web server constitutes a content repository for searching, editing, and storing Web-based medical image content. This is a simple method by which the use of Picture Archiving and Communication System (PACS) can be extended. We show that the content repository can easily interact and integrate with a learning system. With the integration, the user can easily generate and assign medical image content for e-learning. A Web solution might be the simplest way for system integration. The demonstration in this paper should be useful as a method of expanding the usage of medical information. The construction of a Web-based repository and integrated with a learning system may be also applicable to other domains.

  3. Developing a medical image content repository for e-learning.

    PubMed

    Hsiao, Chia-Hung; Hsu, Tien-Cheng; Chang, Jing Ning; Yang, Stephen J H; Young, Shuenn-Tsong; Chu, Woei Chyn

    2006-09-01

    The integration of medical informatics and e-learning systems could provide many advanced applications including training, knowledge management, telemedicine, etc. Currently, both the domains of e-learning and medical image have sophisticated specifications and standards. It is a great challenge to bring about integration. In this paper, we describe the development of a Web interface for searching and viewing medical images that are stored in standard medical image servers. With the creation of a Web solution, we have reduced the overheads of integration. We have packaged Digital Imaging and Communications in Medicine (DICOM) network services as a component that can be used via a Web server. The Web server constitutes a content repository for searching, editing, and storing Web-based medical image content. This is a simple method by which the use of Picture Archiving and Communication System (PACS) can be extended. We show that the content repository can easily interact and integrate with a learning system. With the integration, the user can easily generate and assign medical image content for e-learning. A Web solution might be the simplest way for system integration. The demonstration in this paper should be useful as a method of expanding the usage of medical information. The construction of a Web-based repository and integrated with a learning system may be also applicable to other domains. PMID:16710797

  4. Color hard copy requirements for medical imaging

    NASA Astrophysics Data System (ADS)

    Cargill, Ellen B.

    1995-04-01

    Traditionally, color mapping has not been utilized for diagnostic medical imaging. Color mapping was not possible prior to the emergence of electronic imaging modalities. Diagnostic imaging is considered in view of its purpose and goals as distinguished from photographic and scientific imaging. The applications for color in digital imaging modalities are discussed, as well as research directions for color utilized as a means of increasing the information density available to an observer. Requirements for color hardcopy are discussed.

  5. Development and operation of a prototype cone-beam computed tomography system for X-ray medical imaging

    NASA Astrophysics Data System (ADS)

    Seo, Chang-Woo; Cha, Bo Kyung; Kim, Ryun Kyung; Kim, Cho-Rong; Yang, Keedong; Huh, Young; Jeon, Sungchae; Park, Justin C.; Song, Bongyong; Song, William Y.

    2014-01-01

    This paper describes the development of a prototype cone-beam computed tomography (CBCT) system for clinical use. The overall system design in terms of physical characteristics, geometric calibration methods, and three-dimensional image reconstruction algorithms are described. Our system consists of an X-ray source and a large-area flat-panel detector with the axial dimension large enough for most clinical applications when acquired in a full gantry rotation mode. Various elaborate methods are applied to measure, analyze and calibrate the system for imaging. The electromechanical and the radiographic subsystems through the synchronized control include: gantry rotation and speed, tube rotor, the high-frequency generator (kVp, mA, exposure time and repetition rate), and the reconstruction server (imaging acquisition and reconstruction). The operator can select between analytic and iterative reconstruction methods. Our prototype system contains the latest hardware and reconstruction algorithms and, thus, represents a step forward in CBCT technology.

  6. Exploration Medical System Technical Development

    NASA Technical Reports Server (NTRS)

    McGuire, K.; Middour, C.; Cerro, J.; Burba, T.; Hanson, A.; Reilly, J.; Mindock, J.

    2017-01-01

    The Exploration Medical Capability (ExMC) Element systems engineering goals include defining the technical system needed to implement exploration medical capabilities for Mars. This past year, scenarios captured in the medical system concept of operations laid the foundation for systems engineering technical development work. The systems engineering team analyzed scenario content to identify interactions between the medical system, crewmembers, the exploration vehicle, and the ground system. This enabled the definition of functions the medical system must provide and interfaces to crewmembers and other systems. These analyses additionally lead to the development of a conceptual medical system architecture. The work supports the ExMC community-wide understanding of the functional exploration needs to be met by the medical system, the subsequent development of medical system requirements, and the system verification and validation approach utilizing terrestrial analogs and precursor exploration missions.

  7. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging.

  8. Medical Imaging In An Object Oriented Environment

    NASA Astrophysics Data System (ADS)

    Geist, Daniel; Vannier, Michael W.

    1988-06-01

    A workstation has been developed to evaluate computed tomographic (CT) image data in 2 and 3 dimensions. The workstation consists of an independent image display station (Independent Viewing and Analysis Station or WAS, International Imaging Systems, Inc., Milpitas, Calif.) and a VAX host computer. The WAS has 1024 X 1024 X 24 bits of image memory plus 4 bits of graphics overlay. An independent VLSI graphics processor and 1024 X 1024 X 4 bit graphics memory, independent of the image memory, are included in the self-contained WAS unit. A local microprocessor host (Motorola 68000 microprocessor) controls the IVAS from directives obtained through a direct memory access channel to the VAX host. This facilitated the creation of an object oriented software enviroment for the IVAS under control of a VAX host program written in the C language. The workstation created has an interactive user interface consisting of a mouse and pull-down menus. The workstation enables loading multiple images, typically 256 x 256 or 512 x 512, into the 1024 X 1024 frame buffer. Once loaded, the images can be manipulated by applying gray scale transforms, editing them and performing 3-D reconstructions from serial sections. Algorithms for three dimensional (3-D) reconstructions were implemented in the VAX/VMS host computer environment and are available on the workstation through special menu functions for handling these reconstructions. The functions interactively combine depth and gradient shading of surfaces to suit specific applications in craniofacial surgical planning or orthopedics. This workstation is user friendly and is very easy to handle. A workstation of this type may become a popular tool for physicians and surgeons in evalution of medical images.

  9. Scalar-vector quantization of medical images.

    PubMed

    Mohsenian, N; Shahri, H; Nasrabadi, N M

    1996-01-01

    A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. The SVQ is a fixed rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation that is typical of coding schemes using variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original when displayed on a monitor. This makes our SVQ-based coder an attractive compression scheme for picture archiving and communication systems (PACS). PACS are currently under study for use in an all-digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired. PMID:18285124

  10. Cardiac Imaging System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Although not available to all patients with narrowed arteries, balloon angioplasty has expanded dramatically since its introduction with an estimated further growth to 562,000 procedures in the U.S. alone by 1992. Growth has fueled demand for higher quality imaging systems that allow the cardiologist to be more accurate and increase the chances of a successful procedure. A major advance is the Digital Cardiac Imaging (DCI) System designed by Philips Medical Systems International, Best, The Netherlands and marketed in the U.S. by Philips Medical Systems North America Company. The key benefit is significantly improved real-time imaging and the ability to employ image enhancement techniques to bring out added details. Using a cordless control unit, the cardiologist can manipulate images to make immediate assessment, compare live x-ray and roadmap images by placing them side-by-side on monitor screens, or compare pre-procedure and post procedure conditions. The Philips DCI improves the cardiologist's precision by expanding the information available to him.

  11. True-Depth: a new type of true 3D volumetric display system suitable for CAD, medical imaging, and air-traffic control

    NASA Astrophysics Data System (ADS)

    Dolgoff, Eugene

    1998-04-01

    Floating Images, Inc. is developing a new type of volumetric monitor capable of producing a high-density set of points in 3D space. Since the points of light actually exist in space, the resulting image can be viewed with continuous parallax, both vertically and horizontally, with no headache or eyestrain. These 'real' points in space are always viewed with a perfect match between accommodation and convergence. All scanned points appear to the viewer simultaneously, making this display especially suitable for CAD, medical imaging, air-traffic control, and various military applications. This system has the potential to display imagery so accurately that a ruler could be placed within the aerial image to provide precise measurement in any direction. A special virtual imaging arrangement allows the user to superimpose 3D images on a solid object, making the object look transparent. This is particularly useful for minimally invasive surgery in which the internal structure of a patient is visible to a surgeon in 3D. Surgical procedures can be carried out through the smallest possible hole while the surgeon watches the procedure from outside the body as if the patient were transparent. Unlike other attempts to produce volumetric imaging, this system uses no massive rotating screen or any screen at all, eliminating down time due to breakage and possible danger due to potential mechanical failure. Additionally, it is also capable of displaying very large images.

  12. Crystal diffraction lens for medical imaging

    SciTech Connect

    Smither, R. K.; Roa, D. E.

    2000-02-25

    A crystal diffraction lens for focusing energetic gamma rays has been developed at Argonne National Laboratory for use in medical imaging of radioactivity in the human body. A common method for locating possible cancerous growths in the body is to inject radioactivity into the blood stream of the patient and then look for any concentration of radioactivity that could be associated with the fast growing cancer cells. Often there are borderline indications of possible cancers that could be due to statistical functions in the measured counting rates. In order to determine if these indications are false or real, one must resort to surgical means and take tissue samples in the suspect area. They are developing a system of crystal diffraction lenses that will be incorporated into a 3-D imaging system with better sensitivity (factors of 10 to 100) and better spatial resolution (a few mm in both vertical and horizontal directions) than most systems presently in use. The use of this new imaging system will allow one to eliminate 90% of the false indications and both locate and determine the size of the cancer with mm precision. The lens consists of 900 single crystals of copper, 4 mm x 4 mm on a side and 2--4 mm thick, mounted in 13 concentric rings.

  13. Multiview Locally Linear Embedding for Effective Medical Image Retrieval

    PubMed Central

    Shen, Hualei; Tao, Dacheng; Ma, Dianfu

    2013-01-01

    Content-based medical image retrieval continues to gain attention for its potential to assist radiological image interpretation and decision making. Many approaches have been proposed to improve the performance of medical image retrieval system, among which visual features such as SIFT, LBP, and intensity histogram play a critical role. Typically, these features are concatenated into a long vector to represent medical images, and thus traditional dimension reduction techniques such as locally linear embedding (LLE), principal component analysis (PCA), or laplacian eigenmaps (LE) can be employed to reduce the “curse of dimensionality”. Though these approaches show promising performance for medical image retrieval, the feature-concatenating method ignores the fact that different features have distinct physical meanings. In this paper, we propose a new method called multiview locally linear embedding (MLLE) for medical image retrieval. Following the patch alignment framework, MLLE preserves the geometric structure of the local patch in each feature space according to the LLE criterion. To explore complementary properties among a range of features, MLLE assigns different weights to local patches from different feature spaces. Finally, MLLE employs global coordinate alignment and alternating optimization techniques to learn a smooth low-dimensional embedding from different features. To justify the effectiveness of MLLE for medical image retrieval, we compare it with conventional spectral embedding methods. We conduct experiments on a subset of the IRMA medical image data set. Evaluation results show that MLLE outperforms state-of-the-art dimension reduction methods. PMID:24349277

  14. Image registration method for medical image sequences

    DOEpatents

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  15. Integration of radiographic images with an electronic medical record.

    PubMed Central

    Overhage, J. M.; Aisen, A.; Barnes, M.; Tucker, M.; McDonald, C. J.

    2001-01-01

    Radiographic images are important and expensive diagnostic tests. However, the provider caring for the patient often does not review the images directly due to time constraints. Institutions can use picture archiving and communications systems to make images more available to the provider, but this may not be the best solution. We integrated radiographic image review into the Regenstrief Medical Record System in order to address this problem. To achieve adequate performance, we store JPEG compressed images directly in the RMRS. Currently, physicians review about 5% of all radiographic studies using the RMRS image review function. PMID:11825241

  16. From radio-astronomy to medical imaging.

    PubMed

    Peters, T M

    1991-12-01

    A common thread in much of the medical imaging that has developed over the past 20 years has been the Fourier transform. It was Richard Bates' interest in radio-interferometry, as well as his fascination with problems of medical imaging that prompted an initial interest in applying Fourier techniques to medical imaging in general and to Computed Tomography in particular. This resulted 20 years ago in one of the earliest technical papers advocating Fourier techniques for reconstructing cross-sections from radiographic projections (Bates and Peters, NZ J Science 14:883-896, 1971). Since those early days, medical imaging has explored into a multi-billion dollar industry. The CT scanner has become the workhorse imaging modality in the radiology department, while its more recent relative, the MR scanner, is rapidly gaining ground as a technique of even greater importance. Richard Bates, with his team of "Medical Imagers" was a very significant force in the development of the field of Medical Imaging as we know it today. This paper attempts to chronicle the genesis of this process from the personal perspective of the author.

  17. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  18. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  19. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  20. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  1. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  2. I2Cnet medical image annotation service.

    PubMed

    Chronaki, C E; Zabulis, X; Orphanoudakis, S C

    1997-01-01

    I2Cnet (Image Indexing by Content network) aims to provide services related to the content-based management of images in healthcare over the World-Wide Web. Each I2Cnet server maintains an autonomous repository of medical images and related information. The annotation service of I2Cnet allows specialists to interact with the contents of the repository, adding comments or illustrations to medical images of interest. I2Cnet annotations may be communicated to other users via e-mail or posted to I2Cnet for inclusion in its local repositories. This paper discusses the annotation service of I2Cnet and argues that such services pave the way towards the evolution of active digital medical image libraries.

  3. Current perspectives in medical image perception

    PubMed Central

    Krupinski, Elizabeth A.

    2013-01-01

    Medical images constitute a core portion of the information a physician utilizes to render diagnostic and treatment decisions. At a fundamental level, this diagnostic process involves two basic processes: visually inspecting the image (visual perception) and rendering an interpretation (cognition). The likelihood of error in the interpretation of medical images is, unfortunately, not negligible. Errors do occur, and patients’ lives are impacted, underscoring our need to understand how physicians interact with the information in an image during the interpretation process. With improved understanding, we can develop ways to further improve decision making and, thus, to improve patient care. The science of medical image perception is dedicated to understanding and improving the clinical interpretation process. PMID:20601701

  4. Intelligent retrieval of medical images from the Internet

    NASA Astrophysics Data System (ADS)

    Tang, Yau-Kuo; Chiang, Ted T.

    1996-05-01

    The object of this study is using Internet resources to provide a cost-effective, user-friendly method to access the medical image archive system and to provide an easy method for the user to identify the images required. This paper describes the prototype system architecture, the implementation, and results. In the study, we prototype the Intelligent Medical Image Retrieval (IMIR) system as a Hypertext Transport Prototype server and provide Hypertext Markup Language forms for user, as an Internet client, using browser to enter image retrieval criteria for review. We are developing the intelligent retrieval engine, with the capability to map the free text search criteria to the standard terminology used for medical image identification. We evaluate retrieved records based on the number of the free text entries matched and their relevance level to the standard terminology. We are in the integration and testing phase. We have collected only a few different types of images for testing and have trained a few phrases to map the free text to the standard medical terminology. Nevertheless, we are able to demonstrate the IMIR's ability to search, retrieve, and review medical images from the archives using general Internet browser. The prototype also uncovered potential problems in performance, security, and accuracy. Additional studies and enhancements will make the system clinically operational.

  5. Implantable medical sensor system

    DOEpatents

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2001-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  6. Automated medical image library creation for education.

    PubMed

    Smith, Mark; Feied, Craig; Gillam, Michael; Handler, Jonathan

    2006-01-01

    The authors describe a method to create a medical teaching library that is automatically maintained, contains tens of thousands of radiologic images and is built using existing, internal, hospital dictations, radiologic images, and an off-the-shelf commercial search engine product (Google Inc.).

  7. Use Of Medical Images In Today's Hospitals

    NASA Astrophysics Data System (ADS)

    Robinson, Ralph G.

    1982-01-01

    Medicine is a visual discipline. In the Practice of medicine, physicians require many forms of visual information to successfully conduct their tasks of diagnosing the presence or absence of disease; evaluating the progression or remission of disease; developing strategies for individual patient treatment planning; and in educating their peers and students. Thus, today's hospitals must provide an effective management strategy for a variety of medical images. This management strategy includes the functions of the acquisition of patient images, the archiving of patient images, and the storage of patient images. In a hospital, each medical specialty generates a class of visual images from which information is extracted for use by the patient's physician. This paper will address four issues in the use of medical images in today's hospitals. First, an estimate of the sources and utilization of clinical images in a hospital will be presented. Second, estimates will be provided regarding the magnitude of each of these images sources. Third, current management strategies for dealing with these images will be reviewed. Fourth, several potential solutions will be described for improving the management and archiving of these image sources in a hospital environment.

  8. Acoustic Waves in Medical Imaging and Diagnostics

    PubMed Central

    Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.

    2013-01-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056

  9. Acoustic waves in medical imaging and diagnostics.

    PubMed

    Sarvazyan, Armen P; Urban, Matthew W; Greenleaf, James F

    2013-07-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term ultrasonography, or its abbreviated version sonography, meant an imaging modality based on the use of ultrasonic compressional bulk waves. Beginning in the 1990s, there started to emerge numerous acoustic imaging modalities based on the use of a different mode of acoustic wave: shear waves. Imaging with these waves was shown to provide very useful and very different information about the biological tissue being examined. We discuss the physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities and frequencies that have been used in different imaging applications is presented. We discuss the potential for future shear wave imaging applications.

  10. Teaching about the Physics of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Zollman, Dean; McBride, Dyan; Murphy, Sytil; Aryal, Bijaya; Kalita, Spartak; Wirjawan, Johannes v. d.

    2010-07-01

    Even before the discovery of X-rays, attempts at non-invasive medical imaging required an understanding of fundamental principles of physics. Students frequently do not see these connections because they are not taught in beginning physics courses. To help students understand that physics and medical imaging are closely connected, we have developed a series of active learning units. For each unit we begin by studying how students transfer their knowledge from traditional physics classes and everyday experiences to medical applications. Then, we build instructional materials to take advantage of the students' ability to use their existing learning and knowledge resources. Each of the learning units involves a combination of hands-on activities, which present analogies, and interactive computer simulations. Our learning units introduce students to the contemporary imaging techniques of CT scans, magnetic resonance imaging (MRI), positron emission tomography (PET), and wavefront aberrometry. The project's web site is http://web.phys.ksu.edu/mmmm/.

  11. Monte Carlo simulations of medical imaging modalities

    SciTech Connect

    Estes, G.P.

    1998-09-01

    Because continuous-energy Monte Carlo radiation transport calculations can be nearly exact simulations of physical reality (within data limitations, geometric approximations, transport algorithms, etc.), it follows that one should be able to closely approximate the results of many experiments from first-principles computations. This line of reasoning has led to various MCNP studies that involve simulations of medical imaging modalities and other visualization methods such as radiography, Anger camera, computerized tomography (CT) scans, and SABRINA particle track visualization. It is the intent of this paper to summarize some of these imaging simulations in the hope of stimulating further work, especially as computer power increases. Improved interpretation and prediction of medical images should ultimately lead to enhanced medical treatments. It is also reasonable to assume that such computations could be used to design new or more effective imaging instruments.

  12. Evolution of Medical Imaging and Computational Demands

    NASA Astrophysics Data System (ADS)

    Deans, Stanley R.

    2000-11-01

    The first medical images produced using x-rays appeared less than a year after the discovery of x-rays by Wilhelm Roentgen in 1895. For over a century x-ray projection radiography has been and continues to be the most widely used diagnostic imaging modality. For over seventy years mathematics and computational methods were used in a general way for image processing and analysis. The really challenging mathematical and computational problems did not emerge until the 1970s with the beginning of computed tomography (CT) to produce images popularly known as CAT (computer-assisted tomography) scans. This was followed rapidly by positron-emission tomography (PET) and single photon emission computed tomography (SPECT). Magnetic resonance imaging (MRI) emerged in the 1980s and is in many ways the most informative medical imaging methodology. Computer-based mathematical methods are fundamental to the success of these imaging modalities, and are increasingly important in several other novel imaging techniques. The technologies involved in each modality are competely different, have varying diagnostic value, and are described by different fundamental equations. The common underlying theme is that of the reconstruction of important characteristics of medical interest from indirect measurements. Several of these methodologies for visualizing internal body anatomy and function will be discussed and related to the evolution of computational capabilities. This brings out aspects of these biomedical imaging technologies where a deeper understanding is needed, and to frontiers where future advances are likely to come from continued research in physics jointly with the mathematical sciences.

  13. A lossless encryption method for medical images using edge maps.

    PubMed

    Zhou, Yicong; Panetta, Karen; Agaian, Sos

    2009-01-01

    Image encryption is an effective approach for providing security and privacy protection for medical images. This paper introduces a new lossless approach, called EdgeCrypt, to encrypt medical images using the information contained within an edge map. The algorithm can fully protect the selected objects/regions within medical images or the entire medical images. It can also encrypt other types of images such as grayscale images or color images. The algorithm can be used for privacy protection in the real-time medical applications such as wireless medical networking and mobile medical services.

  14. Medical imaging in lung cancer

    SciTech Connect

    Heelan, R.T.; Bains, M.S.; Yeh, S.

    1987-10-01

    The routine imaging work-up of suspected lung cancer should include posteroanterior and lateral chest radiographs and, in most cases, a computed tomographic (CT) scan of the entire thorax and adrenal glands. In asymptomatic patients with adenocarcinoma of the lung, there is justification for doing routine contrast-enhanced CT examination of the brain. Further imaging workup will be suggested by the patient's history, physical findings, and laboratory findings. Magnetic resonance imaging of the chest in patients with lung cancer is being investigated, but current studies comparing it with CT demonstrate no definite advantage at this time, with the possible exception of the lung apex in which T1 weighted thin-section coronal views are useful.

  15. Four challenges in medical image analysis from an industrial perspective.

    PubMed

    Weese, Jürgen; Lorenz, Cristian

    2016-10-01

    Today's medical imaging systems produce a huge amount of images containing a wealth of information. However, the information is hidden in the data and image analysis algorithms are needed to extract it, to make it readily available for medical decisions and to enable an efficient work flow. Advances in medical image analysis over the past 20 years mean there are now many algorithms and ideas available that allow to address medical image analysis tasks in commercial solutions with sufficient performance in terms of accuracy, reliability and speed. At the same time new challenges have arisen. Firstly, there is a need for more generic image analysis technologies that can be efficiently adapted for a specific clinical task. Secondly, efficient approaches for ground truth generation are needed to match the increasing demands regarding validation and machine learning. Thirdly, algorithms for analyzing heterogeneous image data are needed. Finally, anatomical and organ models play a crucial role in many applications, and algorithms to construct patient-specific models from medical images with a minimum of user interaction are needed. These challenges are complementary to the on-going need for more accurate, more reliable and faster algorithms, and dedicated algorithmic solutions for specific applications.

  16. Medical Research System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Based on Johnson Space Flight Center's development of a rotating bioreactor cell culture apparatus for Space Shuttle medical research, Johnson Space Flight Center engineers who worked on the original project formed a company called Synthecon, with the intention of commercializing the bioreactor technology. Synthecon grows three dimensional tissues in the bioreactor. These are superior to previous two-dimensional tissue samples in the study of human cell growth. A refined version of the Johnson Space Center technology, Synthecon's Rotary Cell Culture System includes a cell culture chamber that rotates around a horizontal axis. The cells establish an orbit that approximates free fall through the liquid medium in the chamber. The technology has significant applications for cancer research and treatment as well as AIDS research.

  17. Statistical performance evaluation and comparison of a Compton medical imaging system and a collimated Anger camera for higher energy photon imaging

    NASA Astrophysics Data System (ADS)

    Han, Li; Rogers, W. Leslie; Huh, Sam S.; Clinthorne, Neal

    2008-12-01

    In radionuclide treatment, tumor cells are primarily destroyed by charged particles emitted by the compound while associated higher energy photons are used to image the tumor in order to determine radiation dose and monitor shrinkage. However, the higher energy photons are difficult to image with conventional collimated Anger cameras, since a tradeoff exists between resolution and sensitivity, and the collimator septal penetration and scattering is increased due to the high energy photons. This research compares imaging performance of the conventional Anger camera to a Compton imaging system that can have improved spatial resolution and sensitivity for high energy photons because this tradeoff is decoupled, and the effect of Doppler broadening at higher gamma energies is decreased. System performance is analyzed by the modified uniform Cramer-Rao bound (M-UCRB) algorithms based on the developed system modeling. The bound shows that the effect of Doppler broadening is the limiting factor for Compton camera performance for imaging 364.4 keV photons emitted from 131I. According to the bound, the Compton camera outperforms the collimated system for an equal number of detected events when the desired spatial resolution for a 26 cm diameter uniform disk object is better than 12 mm FWHM. For a 3D cylindrical phantom, the lower bound on variance for the collimated camera is greater than for the Compton imaginer over the resolution range from 0.5 to 2 cm FWHM. Furthermore, the detection sensitivity of the proposed Compton imaging system is about 15-20 times higher than that of the collimated Anger camera.

  18. The National Disaster Medical System

    NASA Technical Reports Server (NTRS)

    Reutershan, Thomas P.

    1991-01-01

    The Emergency Mobilization Preparedness Board developed plans for improved national preparedness in case of major catastrophic domestic disaster or the possibility of an overseas conventional conflict. Within the health and medical arena, the working group on health developed the concept and system design for the National Disaster Medical System (NDMS). A description of NDMS is presented including the purpose, key components, medical response, patient evacuation, definitive medical care, NDMS activation and operations, and summary and benefits.

  19. Deformable Medical Image Registration: A Survey

    PubMed Central

    Sotiras, Aristeidis; Davatzikos, Christos; Paragios, Nikos

    2013-01-01

    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this paper, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this paper is to provide an extensive account of registration techniques in a systematic manner. PMID:23739795

  20. Active index for content-based medical image retrieval.

    PubMed

    Chang, S K

    1996-01-01

    This paper introduces the active index for content-based medical image retrieval. The dynamic nature of the active index is its most important characteristic. With an active index, we can effectively and efficiently handle smart images that respond to accessing, probing and other actions. The main applications of the active index are to prefetch image and multimedia data, and to facilitate similarity retrieval. The experimental active index system is described. PMID:8954230

  1. Active index for content-based medical image retrieval.

    PubMed

    Chang, S K

    1996-01-01

    This paper introduces the active index for content-based medical image retrieval. The dynamic nature of the active index is its most important characteristic. With an active index, we can effectively and efficiently handle smart images that respond to accessing, probing and other actions. The main applications of the active index are to prefetch image and multimedia data, and to facilitate similarity retrieval. The experimental active index system is described.

  2. Generalized nonconvex optimization for medical image segmentation

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Joshi, Sujit

    2000-06-01

    Design of a generalized technique for medical image segmentation is a challenging task. Currently a number of approaches are being investigated for 2-D and 3-D medical image segmentation for diagnostic and research applications. The methodology used in this work is aimed at obtaining a generalized solution of non-convex optimization problems by including a structural constraint of mass or density and the concept of additivity properties of entropy to a recently developed statistical approach to clustering and classification. The original computationally intensive procedure is made more efficient both in processing time and accuracy by employing a new similarity parameter for generating the initial clusters that are updated by minimizing an energy function relating the image entropy and expected distortion. The application of the computationally intensive yet generalized solution to nonconvex optimization to a limited set of medical images has resulted in excellent segmentation when compared to other clustering based segmentation approaches. The addition of the parametric approach to determine the initial number of clusters allows significant reduction in processing time and better design of automated segmentation procedure. This research work generalizes a deterministic annealing i.e. a specific statistical approach to solve nonconvex optimization problems by developing a more efficient technique applicable to nonconvex optimization problems (getting trapped in local minima). However, the DA approach is extremely computationally intensive for applications such as image segmentation. The new integrated approach developed in this work allows this optimization technique to be used for medical image segmentation.

  3. Quantitative imaging features: extension of the oncology medical image database

    NASA Astrophysics Data System (ADS)

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  4. Aliphatic polyesters for medical imaging and theranostic applications.

    PubMed

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices.

  5. Medical imaging applications of amorphous silicon

    SciTech Connect

    Mireshghi, A.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.K.; Perez-Mendez, V.

    1994-07-01

    Two dimensional hydrogenated amorphous silicon (a-Si:H) pixel arrays are good candidates as flat-panel imagers for applications in medical imaging. Various performance characteristics of these imagers are reviewed and compared with currently used equipments. An important component in the a-Si:H imager is the scintillator screen. A new approach for fabrication of high resolution CsI(Tl) scintillator layers, appropriate for coupling to a-Si:H arrays, are presented. For nuclear medicine applications, a new a-Si:H based gamma camera is introduced and Monte Carlo simulation is used to evaluate its performance.

  6. Fast and simple spectral FLIM for biochemical and medical imaging.

    PubMed

    Popleteeva, Marina; Haas, Kalina T; Stoppa, David; Pancheri, Lucio; Gasparini, Leonardo; Kaminski, Clemens F; Cassidy, Liam D; Venkitaraman, Ashok R; Esposito, Alessandro

    2015-09-01

    Spectrally resolved fluorescence lifetime imaging microscopy (λFLIM) has powerful potential for biochemical and medical imaging applications. However, long acquisition times, low spectral resolution and complexity of λFLIM often narrow its use to specialized laboratories. Therefore, we demonstrate here a simple spectral FLIM based on a solid-state detector array providing in-pixel histrogramming and delivering faster acquisition, larger dynamic range, and higher spectral elements than state-of-the-art λFLIM. We successfully apply this novel microscopy system to biochemical and medical imaging demonstrating that solid-state detectors are a key strategic technology to enable complex assays in biomedical laboratories and the clinic.

  7. Body image and cosmetic medical treatments.

    PubMed

    Sarwer, David B; Crerand, Canice E

    2004-01-01

    Cosmetic medical treatments have become increasingly popular over the past decade. The explosion in popularity can be attributed to several factors-the evolution of safer, minimally invasive procedures, increased mass media attention, and the greater willingness of individuals to undergo cosmetic procedures as a means to enhance physical appearance. Medical and mental health professionals have long been interested in understanding both the motivations for seeking a change in physical appearance as well as the psychological outcomes of these treatments. Body image has been thought to play a key role in the decision to seek cosmetic procedures, however, only recently have studies investigated the pre- and postoperative body image concerns of patients. While body image dissatisfaction may motivate the pursuit of cosmetic medical treatments, psychiatric disorders characterized by body image disturbances, such as body dysmorphic disorder and eating disorders, may be relatively common among these patients. Subsequent research on persons who alter their physical appearance through cosmetic medical treatments are likely provide important information on the nature of body image.

  8. Medical Image distribution and visualization in a hospital using CORBA.

    PubMed

    Moreno, Ramon Alfredo; do Santos, Marcelo; Bertozzo, Nivaldo; de Sa Rebelo, Marina; Furuie, Sergio S; Gutierrez, Marco A

    2008-01-01

    In this work it is presented the solution adopted by the Heart Institute (InCor) of Sao Paulo for medical image distribution and visualization inside the hospital's intranet as part of the PACS system. A CORBA-based image server was developed to distribute DICOM images across the hospital together with the images' report. The solution adopted allows the decoupling of the server implementation and the client. This gives the advantage of reusing the same solution in different implementation sites. Currently, the PACS system is being used on two different hospitals each one with three different environments: development, prototype and production.

  9. Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images.

    PubMed

    Ruiz, Miguel E

    2006-01-01

    This paper evaluates a system, UBMedTIRS, for retrieval of medical images. The system uses a combination of image and text features as well as mapping of free text to UMLS concepts. UBMedTIRS combines three publicly available tools: a content-based image retrieval system (GIFT), a text retrieval system (SMART), and a tool for mapping free text to UMLS concepts (MetaMap). The system is evaluated using the ImageCLEFmed 2005 collection that contains approximately 50,000 medical images with associated text descriptions in English, French and German. Our experimental results indicate that the proposed approach yields significant improvements in retrieval performance. Our system performs 156% above the GIFT system and 42% above the text retrieval system.

  10. Resolution enhancement in medical ultrasound imaging.

    PubMed

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve the

  11. Unsupervised medical image classification by combining case-based classifiers.

    PubMed

    Dinh, Thien Anh; Silander, Tomi; Su, Bolan; Gong, Tianxia; Pang, Boon Chuan; Lim, C C Tchoyoson; Lee, Cheng Kiang; Tan, Chew Lim; Leong, Tze-Yun

    2013-01-01

    We introduce an automated pathology classification system for medical volumetric brain image slices. Existing work often relies on handcrafted features extracted from automatic image segmentation. This is not only a challenging and time-consuming process, but it may also limit the adaptability and robustness of the system. We propose a novel approach to combine sparse Gabor-feature based classifiers in an ensemble classification framework. The unsupervised nature of this non-parametric technique can significantly reduce the time and effort for system calibration. In particular, classification of medical images in this framework does not rely on segmentation, nor semantic-based or annotation-based feature selection. Our experiments show very promising results in classifying computer tomography image slices into pathological classes for traumatic brain injury patients.

  12. Medical Imaging with Ultrasound: Some Basic Physics.

    ERIC Educational Resources Information Center

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  13. Flexible medical image management using service-oriented architecture.

    PubMed

    Shaham, Oded; Melament, Alex; Barak-Corren, Yuval; Kostirev, Igor; Shmueli, Noam; Peres, Yardena

    2012-01-01

    Management of medical images increasingly involves the need for integration with a variety of information systems. To address this need, we developed Content Management Offering (CMO), a platform for medical image management supporting interoperability through compliance with standards. CMO is based on the principles of service-oriented architecture, implemented with emphasis on three areas: clarity of business process definition, consolidation of service configuration management, and system scalability. Owing to the flexibility of this platform, a small team is able to accommodate requirements of customers varying in scale and in business needs. We describe two deployments of CMO, highlighting the platform's value to customers. CMO represents a flexible approach to medical image management, which can be applied to a variety of information technology challenges in healthcare and life sciences organizations. PMID:22874344

  14. Advanced ultrasound probes for medical imaging

    NASA Astrophysics Data System (ADS)

    Wildes, Douglas G.; Smith, L. Scott

    2012-05-01

    New medical ultrasound probe architectures and materials build upon established 1D phased array technology and provide improved imaging performance and clinical value. Technologies reviewed include 1.25D and 1.5D arrays for elevation slice thickness control; electro-mechanical and 2D array probes for real-time 3D imaging; catheter probes for imaging during minimally-invasive procedures; single-crystal piezoelectric materials for greater frequency bandwidth; and cMUT arrays using silicon MEMS in place of piezo materials.

  15. Medical image registration using sparse coding of image patches.

    PubMed

    Afzali, Maryam; Ghaffari, Aboozar; Fatemizadeh, Emad; Soltanian-Zadeh, Hamid

    2016-06-01

    Image registration is a basic task in medical image processing applications like group analysis and atlas construction. Similarity measure is a critical ingredient of image registration. Intensity distortion of medical images is not considered in most previous similarity measures. Therefore, in the presence of bias field distortions, they do not generate an acceptable registration. In this paper, we propose a sparse based similarity measure for mono-modal images that considers non-stationary intensity and spatially-varying distortions. The main idea behind this measure is that the aligned image is constructed by an analysis dictionary trained using the image patches. For this purpose, we use "Analysis K-SVD" to train the dictionary and find the sparse coefficients. We utilize image patches to construct the analysis dictionary and then we employ the proposed sparse similarity measure to find a non-rigid transformation using free form deformation (FFD). Experimental results show that the proposed approach is able to robustly register 2D and 3D images in both simulated and real cases. The proposed method outperforms other state-of-the-art similarity measures and decreases the transformation error compared to the previous methods. Even in the presence of bias field distortion, the proposed method aligns images without any preprocessing. PMID:27085311

  16. Medical image registration using sparse coding of image patches.

    PubMed

    Afzali, Maryam; Ghaffari, Aboozar; Fatemizadeh, Emad; Soltanian-Zadeh, Hamid

    2016-06-01

    Image registration is a basic task in medical image processing applications like group analysis and atlas construction. Similarity measure is a critical ingredient of image registration. Intensity distortion of medical images is not considered in most previous similarity measures. Therefore, in the presence of bias field distortions, they do not generate an acceptable registration. In this paper, we propose a sparse based similarity measure for mono-modal images that considers non-stationary intensity and spatially-varying distortions. The main idea behind this measure is that the aligned image is constructed by an analysis dictionary trained using the image patches. For this purpose, we use "Analysis K-SVD" to train the dictionary and find the sparse coefficients. We utilize image patches to construct the analysis dictionary and then we employ the proposed sparse similarity measure to find a non-rigid transformation using free form deformation (FFD). Experimental results show that the proposed approach is able to robustly register 2D and 3D images in both simulated and real cases. The proposed method outperforms other state-of-the-art similarity measures and decreases the transformation error compared to the previous methods. Even in the presence of bias field distortion, the proposed method aligns images without any preprocessing.

  17. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  18. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  19. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  20. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  1. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  2. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  3. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  4. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  5. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  6. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  7. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  8. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  9. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  10. Adapting smartphones for low-cost optical medical imaging

    NASA Astrophysics Data System (ADS)

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  11. Transfer representation learning for medical image analysis.

    PubMed

    Chuen-Kai Shie; Chung-Hisang Chuang; Chun-Nan Chou; Meng-Hsi Wu; Chang, Edward Y

    2015-08-01

    There are two major challenges to overcome when developing a classifier to perform automatic disease diagnosis. First, the amount of labeled medical data is typically very limited, and a classifier cannot be effectively trained to attain high disease-detection accuracy. Second, medical domain knowledge is required to identify representative features in data for detecting a target disease. Most computer scientists and statisticians do not have such domain knowledge. In this work, we show that employing transfer learning can remedy both problems. We use Otitis Media (OM) to conduct our case study. Instead of using domain knowledge to extract features from labeled OM images, we construct features based on a dataset entirely OM-irrelevant. More specifically, we first learn a codebook in an unsupervised way from 15 million images collected from ImageNet. The codebook gives us what the encoders consider being the fundamental elements of those 15 million images. We then encode OM images using the codebook and obtain a weighting vector for each OM image. Using the resulting weighting vectors as the feature vectors of the OM images, we employ a traditional supervised learning algorithm to train an OM classifier. The achieved detection accuracy is 88.5% (89.63% in sensitivity and 86.9% in specificity), markedly higher than all previous attempts, which relied on domain experts to help extract features.

  12. Estimating fractal dimension of medical images

    NASA Astrophysics Data System (ADS)

    Penn, Alan I.; Loew, Murray H.

    1996-04-01

    Box counting (BC) is widely used to estimate the fractal dimension (fd) of medical images on the basis of a finite set of pixel data. The fd is then used as a feature to discriminate between healthy and unhealthy conditions. We show that BC is ineffective when used on small data sets and give examples of published studies in which researchers have obtained contradictory and flawed results by using BC to estimate the fd of data-limited medical images. We present a new method for estimating fd of data-limited medical images. In the new method, fractal interpolation functions (FIFs) are used to generate self-affine models of the underlying image; each model, upon discretization, approximates the original data points. The fd of each FIF is analytically evaluated. The mean of the fds of the FIFs is the estimate of the fd of the original data. The standard deviation of the fds of the FIFs is a confidence measure of the estimate. The goodness-of-fit of the discretized models to the original data is a measure of self-affinity of the original data. In a test case, the new method generated a stable estimate of fd of a rib edge in a standard chest x-ray; box counting failed to generate a meaningful estimate of the same image.

  13. Personal medical information system using laser card

    NASA Astrophysics Data System (ADS)

    Cho, Seong H.; Kim, Keun Ho; Choi, Hyung-Sik; Park, Hyun Wook

    1996-04-01

    The well-known hospital information system (HIS) and the picture archiving and communication system (PACS) are typical applications of multimedia to medical area. This paper proposes a personal medical information save-and-carry system using a laser card. This laser card is very useful, especially in emergency situations, because the medical information in the laser card can be read at anytime and anywhere if there exists a laser card reader/writer. The contents of the laser card include the clinical histories of a patient such as clinical chart, exam result, diagnostic reports, images, and so on. The purpose of this system is not a primary diagnosis, but emergency reference of clinical history of the patient. This personal medical information system consists of a personal computer integrated with laser card reader/writer, color frame grabber, color CCD camera and a high resolution image scanner optionally. Window-based graphical user interface was designed for easy use. The laser card has relatively sufficient capacity to store the personal medical information, and has fast access speed to restore and load the data with a portable size as compact as a credit card. Database items of laser card provide the doctors with medical data such as laser card information, patient information, clinical information, and diagnostic result information.

  14. Unsupervised detection of abnormalities in medical images using salient features

    NASA Astrophysics Data System (ADS)

    Alpert, Sharon; Kisilev, Pavel

    2014-03-01

    In this paper we propose a new method for abnormality detection in medical images which is based on the notion of medical saliency. The proposed method is general and is suitable for a variety of tasks related to detection of: 1) lesions and microcalcifications (MCC) in mammographic images, 2) stenoses in angiographic images, 3) lesions found in magnetic resonance (MRI) images of brain. The main idea of our approach is that abnormalities manifest as rare events, that is, as salient areas compared to normal tissues. We define the notion of medical saliency by combining local patch information from the lightness channel with geometric shape local descriptors. We demonstrate the efficacy of the proposed method by applying it to various modalities, and to various abnormality detection problems. Promising results are demonstrated for detection of MCC and of masses in mammographic images, detection of stenoses in angiography images, and detection of lesions in brain MRI. We also demonstrate how the proposed automatic abnormality detection method can be combined with a system that performs supervised classification of mammogram images into benign or malignant/premalignant MCC's. We use a well known DDSM mammogram database for the experiment on MCC classification, and obtain 80% accuracy in classifying images containing premalignant MCC versus benign ones. In contrast to supervised detection methods, the proposed approach does not rely on ground truth markings, and, as such, is very attractive and applicable for big corpus image data processing.

  15. Medical Administrative Systems. Curriculum Guide.

    ERIC Educational Resources Information Center

    Patton, Jan

    This curriculum guide provides materials for teachers to use in developing a course in medical administrative systems. Following an introductory section that lists the common essential elements of the course, the guide contains seven sections that cover the following course topics: (1) introduction to medical administrative systems; (2) word…

  16. A virtual laboratory for medical image analysis.

    PubMed

    Olabarriaga, Sílvia D; Glatard, Tristan; de Boer, Piter T

    2010-07-01

    This paper presents the design, implementation, and usage of a virtual laboratory for medical image analysis. It is fully based on the Dutch grid, which is part of the Enabling Grids for E-sciencE (EGEE) production infrastructure and driven by the gLite middleware. The adopted service-oriented architecture enables decoupling the user-friendly clients running on the user's workstation from the complexity of the grid applications and infrastructure. Data are stored on grid resources and can be browsed/viewed interactively by the user with the Virtual Resource Browser (VBrowser). Data analysis pipelines are described as Scufl workflows and enacted on the grid infrastructure transparently using the MOTEUR workflow management system. VBrowser plug-ins allow for easy experiment monitoring and error detection. Because of the strict compliance to the grid authentication model, all operations are performed on behalf of the user, ensuring basic security and facilitating collaboration across organizations. The system has been operational and in daily use for eight months (December 2008), with six users, leading to the submission of 9000 jobs/month in average and the production of several terabytes of data.

  17. Exploration Medical System Demonstration Project

    NASA Technical Reports Server (NTRS)

    Chin, D. A.; McGrath, T. L.; Reyna, B.; Watkins, S. D.

    2011-01-01

    A near-Earth Asteroid (NEA) mission will present significant new challenges including hazards to crew health created by exploring a beyond low earth orbit destination, traversing the terrain of asteroid surfaces, and the effects of variable gravity environments. Limited communications with ground-based personnel for diagnosis and consultation of medical events require increased crew autonomy when diagnosing conditions, creating treatment plans, and executing procedures. Scope: The Exploration Medical System Demonstration (EMSD) project will be a test bed on the International Space Station (ISS) to show an end-to-end medical system assisting the Crew Medical Officers (CMO) in optimizing medical care delivery and medical data management during a mission. NEA medical care challenges include resource and resupply constraints limiting the extent to which medical conditions can be treated, inability to evacuate to Earth during many mission phases, and rendering of medical care by a non-clinician. The system demonstrates the integration of medical technologies and medical informatics tools for managing evidence and decision making. Project Objectives: The objectives of the EMSD project are to: a) Reduce and possibly eliminate the time required for a crewmember and ground personnel to manage medical data from one application to another. b) Demonstrate crewmember's ability to access medical data/information via a software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities. d) Develop a common data management architecture that allows for scalability, extensibility, and interoperability of data sources and data users. e) Lower total cost of ownership for development and sustainment of peripheral hardware and software that use EMSD for data management f) Provide

  18. Seeing it through: translational validation of new medical imaging modalities

    PubMed Central

    Aldrich, Melissa B.; Marshall, Milton V.; Sevick-Muraca, Eva M.; Lanza, Greg; Kotyk, John; Culver, Joseph; Wang, Lihong V.; Uddin, Jashim; Crews, Brenda C.; Marnett, Lawrence J.; Liao, Joseph C.; Contag, Chris; Crawford, James M.; Wang, Ken; Reisdorph, Bill; Appelman, Henry; Turgeon, D. Kim; Meyer, Charles; Wang, Tom

    2012-01-01

    Medical imaging is an invaluable tool for diagnosis, surgical guidance, and assessment of treatment efficacy. The Network for Translational Research (NTR) for Optical Imaging consists of four research groups working to “bridge the gap” between lab discovery and clinical use of fluorescence- and photoacoustic-based imaging devices used with imaging biomarkers. While the groups are using different modalities, all the groups face similar challenges when attempting to validate these systems for FDA approval and, ultimately, clinical use. Validation steps taken, as well as future needs, are described here. The group hopes to provide translational validation guidance for itself, as well as other researchers. PMID:22574264

  19. Medical Imaging Informatics: Towards a Personalized Computational Patient.

    PubMed

    Ayache, N

    2016-05-20

    Medical Imaging Informatics has become a fast evolving discipline at the crossing of Informatics, Computational Sciences, and Medicine that is profoundly changing medical practices, for the patients' benefit.

  20. Transaction recording in medical image processing

    NASA Astrophysics Data System (ADS)

    Riedel, Christian H.; Ploeger, Andreas; Onnasch, Dietrich G. W.; Mehdorn, Hubertus M.

    1999-07-01

    In medical image processing original image data on archive servers may absolutely not be modified directly. On the other hand, images from read-only devices like CD-ROM cannot be changed and saved on the same storage medium. In both cases the modified data have to be stored as a second version and large amounts of storage volume are needed. We avoid these problems by using a program which records only each transaction prescribed to images. Each transaction is stored and used for further utilization and for renewed submission of the modified data. Conventionally, every time an image is viewed or printed, the modified version has to be saved in addition to the recorded data, either automatically or by the user. Compared to these approaches which not only squander storage space but area also time consuming our program has the following and advantages: First, the original image data which may not be modified are protected against manipulation. Second, small amounts of storage volume and network range are needed. Third, approved image operations can be automated by macros derived from transaction recordings. Finally, operations on the original data can always be controlled and traced back. As the handling of images gets easier with this concept, security for original image data is granted.

  1. An ASIC design for versatile receive front-end electronics of an ultrasonic medical imaging system--16 channel analog inputs and 4 dynamically focused beam outputs.

    PubMed

    Park, Song B; Kwak, Jaeyoung; Lee, Kwyro

    2003-04-01

    An ultra large-scale ASIC is designed for the receive front-end electronics of an ultrasonic medical imaging system. The chip receives 16 channel analog rf signals and outputs 4 sets of sample-point-wise dynamically focused partial beam data. Four complete beam data sets are obtained in parallel by simply cascading as many chips as needed in an array system. High resolution of the focusing delay is obtained by nonuniformly selecting each channel data from a quadruply-interpolated rf data stream. The proposed ASIC can be applied to most practical array transducers in the frequency range of 2 to 10 MHz. The digital part of the designed ASIC can be implemented on a chip area of 17.9 microm2 with 0.18 mm CMOS technology, leaving sufficient room for 16 ADCs of 8 bits, 50 MHz on the 5.7 mm x 5.7 mm chip with a 208 pin package.

  2. The oncology medical image database (OMI-DB)

    NASA Astrophysics Data System (ADS)

    Halling-Brown, Mark D.; Looney, P. T.; Patel, M. N.; Warren, L. M.; Mackenzie, A.; Young, K. C.

    2014-03-01

    Many projects to evaluate or conduct research in medical imaging require the large-scale collection of images (both unprocessed and processed) and associated data. This demand has led us to design and implement a flexible oncology image repository, which prospectively collects images and data from multiple sites throughout the UK. This Oncology Medical Image Database (OMI-DB) has been created to support research involving medical imaging and contains unprocessed and processed medical images, associated annotations and data, and where applicable expert-determined ground truths describing features of interest. The process of collection, annotation and storage is almost fully automated and is extremely adaptable, allowing for quick and easy expansion to disparate imaging sites and situations. Initially the database was developed as part of a large research project in digital mammography (OPTIMAM). Hence the initial focus has been digital mammography; as a result, much of the work described will focus on this field. However, the OMI -DB has been designed to support multiple modalities and is extensible and expandable to store any associated data with full anonymisation. Currently, the majority of associated data is made up of radiological, clinical and pathological annotations extracted from the UK's National Breast Screening System (NBSS). In addition to the data, software and systems have been created to allow expert radiologists to annotate the images with interesting clinical features and provide descriptors of these features. The data from OMI-DB has been used in several observer studies and more are planned. To date we have collected 34,104 2D mammography images from 2,623 individuals.

  3. The Handbook of Medical Image Perception and Techniques

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Krupinski, Elizabeth

    2009-12-01

    Peter Ayton; Part V. Optimization and Practical Issues: 25. Optimization of 2D and 3D radiographic systems Jeff Siewerdson; 26. Applications of AFC methodology in optimization of CT imaging systems Kent Ogden and Walter Huda; 27. Perceptual issues in reading mammograms Margarita Zuley; 28. Perceptual optimization of display processing techniques Richard Van Metter; 29. Optimization of display systems Elizabeth Krupinski and Hans Roehrig; 30. Ergonomic radiologist workplaces in the PACS environment Carl Zylack; Part VI. Epilogue: 31. Future prospects of medical image perception Ehsan Samei and Elizabeth Krupinski; Index.

  4. The Handbook of Medical Image Perception and Techniques

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Krupinski, Elizabeth

    2014-07-01

    Peter Ayton; Part V. Optimization and Practical Issues: 25. Optimization of 2D and 3D radiographic systems Jeff Siewerdson; 26. Applications of AFC methodology in optimization of CT imaging systems Kent Ogden and Walter Huda; 27. Perceptual issues in reading mammograms Margarita Zuley; 28. Perceptual optimization of display processing techniques Richard Van Metter; 29. Optimization of display systems Elizabeth Krupinski and Hans Roehrig; 30. Ergonomic radiologist workplaces in the PACS environment Carl Zylack; Part VI. Epilogue: 31. Future prospects of medical image perception Ehsan Samei and Elizabeth Krupinski; Index.

  5. Resource estimation in high performance medical image computing.

    PubMed

    Banalagay, Rueben; Covington, Kelsie Jade; Wilkes, D M; Landman, Bennett A

    2014-10-01

    Medical imaging analysis processes often involve the concatenation of many steps (e.g., multi-stage scripts) to integrate and realize advancements from image acquisition, image processing, and computational analysis. With the dramatic increase in data size for medical imaging studies (e.g., improved resolution, higher throughput acquisition, shared databases), interesting study designs are becoming intractable or impractical on individual workstations and servers. Modern pipeline environments provide control structures to distribute computational load in high performance computing (HPC) environments. However, high performance computing environments are often shared resources, and scheduling computation across these resources necessitates higher level modeling of resource utilization. Submission of 'jobs' requires an estimate of the CPU runtime and memory usage. The resource requirements for medical image processing algorithms are difficult to predict since the requirements can vary greatly between different machines, different execution instances, and different data inputs. Poor resource estimates can lead to wasted resources in high performance environments due to incomplete executions and extended queue wait times. Hence, resource estimation is becoming a major hurdle for medical image processing algorithms to efficiently leverage high performance computing environments. Herein, we present our implementation of a resource estimation system to overcome these difficulties and ultimately provide users with the ability to more efficiently utilize high performance computing resources.

  6. Resource estimation in high performance medical image computing.

    PubMed

    Banalagay, Rueben; Covington, Kelsie Jade; Wilkes, D M; Landman, Bennett A

    2014-10-01

    Medical imaging analysis processes often involve the concatenation of many steps (e.g., multi-stage scripts) to integrate and realize advancements from image acquisition, image processing, and computational analysis. With the dramatic increase in data size for medical imaging studies (e.g., improved resolution, higher throughput acquisition, shared databases), interesting study designs are becoming intractable or impractical on individual workstations and servers. Modern pipeline environments provide control structures to distribute computational load in high performance computing (HPC) environments. However, high performance computing environments are often shared resources, and scheduling computation across these resources necessitates higher level modeling of resource utilization. Submission of 'jobs' requires an estimate of the CPU runtime and memory usage. The resource requirements for medical image processing algorithms are difficult to predict since the requirements can vary greatly between different machines, different execution instances, and different data inputs. Poor resource estimates can lead to wasted resources in high performance environments due to incomplete executions and extended queue wait times. Hence, resource estimation is becoming a major hurdle for medical image processing algorithms to efficiently leverage high performance computing environments. Herein, we present our implementation of a resource estimation system to overcome these difficulties and ultimately provide users with the ability to more efficiently utilize high performance computing resources. PMID:24906466

  7. Simplified labeling process for medical image segmentation.

    PubMed

    Gao, Mingchen; Huang, Junzhou; Huang, Xiaolei; Zhang, Shaoting; Metaxas, Dimitris N

    2012-01-01

    Image segmentation plays a crucial role in many medical imaging applications by automatically locating the regions of interest. Typically supervised learning based segmentation methods require a large set of accurately labeled training data. However, thel labeling process is tedious, time consuming and sometimes not necessary. We propose a robust logistic regression algorithm to handle label outliers such that doctors do not need to waste time on precisely labeling images for training set. To validate its effectiveness and efficiency, we conduct carefully designed experiments on cervigram image segmentation while there exist label outliers. Experimental results show that the proposed robust logistic regression algorithms achieve superior performance compared to previous methods, which validates the benefits of the proposed algorithms. PMID:23286072

  8. Heart Imaging System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Johnson Space Flight Center's device to test astronauts' heart function in microgravity has led to the MultiWire Gamma Camera, which images heart conditions six times faster than conventional devices. Dr. Jeffrey Lacy, who developed the technology as a NASA researcher, later formed Proportional Technologies, Inc. to develop a commercially viable process that would enable use of Tantalum-178 (Ta-178), a radio-pharmaceutical. His company supplies the generator for the radioactive Ta-178 to Xenos Medical Systems, which markets the camera. Ta-178 can only be optimally imaged with the camera. Because the body is subjected to it for only nine minutes, the radiation dose is significantly reduced and the technique can be used more frequently. Ta-178 also enables the camera to be used on pediatric patients who are rarely studied with conventional isotopes because of the high radiation dosage.

  9. Machine learning for medical images analysis.

    PubMed

    Criminisi, A

    2016-10-01

    This article discusses the application of machine learning for the analysis of medical images. Specifically: (i) We show how a special type of learning models can be thought of as automatically optimized, hierarchically-structured, rule-based algorithms, and (ii) We discuss how the issue of collecting large labelled datasets applies to both conventional algorithms as well as machine learning techniques. The size of the training database is a function of model complexity rather than a characteristic of machine learning methods.

  10. Detectors for medical radioisotope imaging: demands and perspectives

    NASA Astrophysics Data System (ADS)

    Lopes, M. I.; Chepel, V.

    2004-10-01

    Radioisotope imaging is used to obtain information on biochemical processes in living organisms, being a tool of increasing importance for medical diagnosis. The improvement and expansion of these techniques depend on the progress attained in several areas, such as radionuclide production, radiopharmaceuticals, radiation detectors and image reconstruction algorithms. This review paper will be concerned only with the detector technology. We will review in general terms the present status of medical radioisotope imaging instrumentation with the emphasis put on the developments of high-resolution gamma cameras and PET detector systems for scinti-mammography and animal imaging. The present trend to combine two or more modalities in a single machine in order to obtain complementary information will also be considered.

  11. Establishing advanced practice for medical imaging in New Zealand

    SciTech Connect

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-02-15

    Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.

  12. Establishing advanced practice for medical imaging in New Zealand

    PubMed Central

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-01-01

    IntroductionThis article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). MethodsThe study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. ResultsFindings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. ConclusionsThe authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ. PMID:26229631

  13. Medical ultrasonic tomographic system

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.; Lecroissette, D. H.; Nathan, R.; Wilson, R. L.

    1977-01-01

    An electro-mechanical scanning assembly was designed and fabricated for the purpose of generating an ultrasound tomogram. A low cost modality was demonstrated in which analog instrumentation methods formed a tomogram on photographic film. Successful tomogram reconstructions were obtained on in vitro test objects by using the attenuation of the fist path ultrasound signal as it passed through the test object. The nearly half century tomographic methods of X-ray analysis were verified as being useful for ultrasound imaging.

  14. A Routing Mechanism for Cloud Outsourcing of Medical Imaging Repositories.

    PubMed

    Godinho, Tiago Marques; Viana-Ferreira, Carlos; Bastião Silva, Luís A; Costa, Carlos

    2016-01-01

    Web-based technologies have been increasingly used in picture archive and communication systems (PACS), in services related to storage, distribution, and visualization of medical images. Nowadays, many healthcare institutions are outsourcing their repositories to the cloud. However, managing communications between multiple geo-distributed locations is still challenging due to the complexity of dealing with huge volumes of data and bandwidth requirements. Moreover, standard methodologies still do not take full advantage of outsourced archives, namely because their integration with other in-house solutions is troublesome. In order to improve the performance of distributed medical imaging networks, a smart routing mechanism was developed. This includes an innovative cache system based on splitting and dynamic management of digital imaging and communications in medicine objects. The proposed solution was successfully deployed in a regional PACS archive. The results obtained proved that it is better than conventional approaches, as it reduces remote access latency and also the required cache storage space.

  15. Scalable Medical Image Understanding by Fusing Cross-Modal Object Recognition with Formal Domain Semantics

    NASA Astrophysics Data System (ADS)

    Möller, Manuel; Sintek, Michael; Buitelaar, Paul; Mukherjee, Saikat; Zhou, Xiang Sean; Freund, Jörg

    Recent advances in medical imaging technology have dramatically increased the amount of clinical image data. In contrast, techniques for efficiently exploiting the rich semantic information in medical images have evolved much slower. Despite the research outcomes in image understanding, current image databases are still indexed by manually assigned subjective keywords instead of the semantics of the images. Indeed, most current content-based image search applications index image features that do not generalize well and use inflexible queries. This slow progress is due to the lack of scalable and generic information representation systems which can abstract over the high dimensional nature of medical images as well as semantically model the results of object recognition techniques. We propose a system combining medical imaging information with ontological formalized semantic knowledge that provides a basis for building universal knowledge repositories and gives clinicians fully cross-lingual and cross-modal access to biomedical information.

  16. The medical system in Ghana.

    PubMed

    Drislane, Frank W; Akpalu, Albert; Wegdam, Harry H J

    2014-09-01

    Ghana is a developing country in West Africa with a population of about 25 million. Medical illnesses in Ghana overlap with those in developed countries, but infection, trauma, and women's health problems are much more prominent. Medical practice in rural Africa faces extremely limited resources, a multiplicity of languages (hundreds in Ghana), and presentation of severe illnesses at later stages than seen elsewhere. Despite these limitations, Ghana has established a relatively successful national medical insurance system, and the quality of medical practice is high, at least where it is available. Ghana also has a well-established and sophisticated administrative structure for the supervision of medical education and accreditation, but it has proven very difficult to extend medical training to rural areas, where health care facilities are particularly short of personnel. Physicians are sorely needed in rural areas, but there are few because of the working conditions and financial limitations. Hospital wards and clinics are crowded; time per patient is limited. This article details some of the differences between medical practice in Ghana and that in wealthier countries and how it functions with very limited resources. It also introduces the medical education and training system in Ghana. The following article describes an attempt to establish and maintain a residency training program in General Medicine in a rural area of Ghana.

  17. Quantification of heterogeneity observed in medical images

    PubMed Central

    2013-01-01

    Background There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. Methods In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. Results We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. Conclusions These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity. PMID:23453000

  18. OSPACS: Ultrasound image management system

    PubMed Central

    Stott, Will; Ryan, Andy; Jacobs, Ian J; Menon, Usha; Bessant, Conrad; Jones, Christopher

    2008-01-01

    Background Ultrasound scanning uses the medical imaging format, DICOM, for electronically storing the images and data associated with a particular scan. Large health care facilities typically use a picture archiving and communication system (PACS) for storing and retrieving such images. However, these systems are usually not suitable for managing large collections of anonymized ultrasound images gathered during a clinical screening trial. Results We have developed a system enabling the accurate archiving and management of ultrasound images gathered during a clinical screening trial. It is based upon a Windows application utilizing an open-source DICOM image viewer and a relational database. The system automates the bulk import of DICOM files from removable media by cross-validating the patient information against an external database, anonymizing the data as well as the image, and then storing the contents of the file as a field in a database record. These image records may then be retrieved from the database and presented in a tree-view control so that the user can select particular images for display in a DICOM viewer or export them to external media. Conclusion This system provides error-free automation of ultrasound image archiving and management, suitable for use in a clinical trial. An open-source project has been established to promote continued development of the system. PMID:18570637

  19. Running medical image analysis on GridFactory desktop grid.

    PubMed

    Orellana, Frederik; Niinimaki, Marko; Zhou, Xin; Rosendahl, Peter; Müller, Henning; Waananen, Anders

    2009-01-01

    At the Geneva University Hospitals work is in progress to establish a computing facility for medical image analysis, potentially using several hundreds of desktop computers. Typically, hospitals do not have a computer infrastructure dedicated to research, nor can the data leave the hospital network for the reasons of privacy. For this purpose, a novel batch system called GridFactory has been tested along-side with the well-known batch system Condor. GridFactory's main benefits, compared to other batch systems, lie in its virtualization support and firewall friendliness. The tests involved running visual feature extraction from 50,000 anonymized medical images on a small local grid of 20 desktop computers. A comparisons with a Condor based batch system in the same computers is then presented. The performance of GridFactory is found satisfactory. PMID:19593040

  20. Medical Information Management System

    NASA Technical Reports Server (NTRS)

    Alterescu, S.; Hipkins, K. R.; Friedman, C. A.

    1979-01-01

    On-line interactive information processing system easily and rapidly handles all aspects of data management related to patient care. General purpose system is flexible enough to be applied to other data management situations found in areas such as occupational safety data, judicial information, or personnel records.

  1. Twofold processing for denoising ultrasound medical images.

    PubMed

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India. PMID:26697285

  2. Medical-Information-Management System

    NASA Technical Reports Server (NTRS)

    Alterescu, Sidney; Friedman, Carl A.; Frankowski, James W.

    1989-01-01

    Medical Information Management System (MIMS) computer program interactive, general-purpose software system for storage and retrieval of information. Offers immediate assistance where manipulation of large data bases required. User quickly and efficiently extracts, displays, and analyzes data. Used in management of medical data and handling all aspects of data related to care of patients. Other applications include management of data on occupational safety in public and private sectors, handling judicial information, systemizing purchasing and procurement systems, and analyses of cost structures of organizations. Written in Microsoft FORTRAN 77.

  3. Hyperspectral Systems Increase Imaging Capabilities

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In 1983, NASA started developing hyperspectral systems to image in the ultraviolet and infrared wavelengths. In 2001, the first on-orbit hyperspectral imager, Hyperion, was launched aboard the Earth Observing-1 spacecraft. Based on the hyperspectral imaging sensors used in Earth observation satellites, Stennis Space Center engineers and Institute for Technology Development researchers collaborated on a new design that was smaller and used an improved scanner. Featured in Spinoff 2007, the technology is now exclusively licensed by Themis Vision Systems LLC, of Richmond, Virginia, and is widely used in medical and life sciences, defense and security, forensics, and microscopy.

  4. A New Concept for Medical Imaging Centered on Cellular Phone Technology

    PubMed Central

    Rubinsky, Boris

    2008-01-01

    According to World Health Organization reports, some three quarters of the world population does not have access to medical imaging. In addition, in developing countries over 50% of medical equipment that is available is not being used because it is too sophisticated or in disrepair or because the health personnel are not trained to use it. The goal of this study is to introduce and demonstrate the feasibility of a new concept in medical imaging that is centered on cellular phone technology and which may provide a solution to medical imaging in underserved areas. The new system replaces the conventional stand-alone medical imaging device with a new medical imaging system made of two independent components connected through cellular phone technology. The independent units are: a) a data acquisition device (DAD) at a remote patient site that is simple, with limited controls and no image display capability and b) an advanced image reconstruction and hardware control multiserver unit at a central site. The cellular phone technology transmits unprocessed raw data from the patient site DAD and receives and displays the processed image from the central site. (This is different from conventional telemedicine where the image reconstruction and control is at the patient site and telecommunication is used to transmit processed images from the patient site). The primary goal of this study is to demonstrate that the cellular phone technology can function in the proposed mode. The feasibility of the concept is demonstrated using a new frequency division multiplexing electrical impedance tomography system, which we have developed for dynamic medical imaging, as the medical imaging modality. The system is used to image through a cellular phone a simulation of breast cancer tumors in a medical imaging diagnostic mode and to image minimally invasive tissue ablation with irreversible electroporation in a medical imaging interventional mode. PMID:18446199

  5. [Tattoos and medical imaging: issues and myths].

    PubMed

    Kluger, Nicolas

    2014-05-01

    Tattooing is characterized by the introduction in the dermis of exogenous pigments to obtain a permanent design. Whether it is a traditional tattoo applied on the skin or a cosmetic one (permanent make-up), its prevalence has boomed for the past 20 years. The increased prevalence of tattooed patients along with medical progresses, in the field of therapeutics or diagnostic means have lead to the discovery of "new" complications and unexpected issues. Medical imaging world has also been affected by the tattoo craze. It has been approximately 20 years when the first issues related to tattooing and permanent make-up aroused. However, cautions and questions as well as anecdotal severe case reports have sometimes led to an over-exaggerated response by some physicians such as the systematic avoidance of RMN imaging for tattooed individuals. This review is intended to summarize the risks but also the "myths" associated with tattoo in the daily practice of the radiologist for RMN, CT scan, mammography, Pet-scan and ultrasound imaging.

  6. PET: a revolution in medical imaging.

    PubMed

    Alavi, Abass; Lakhani, Paras; Mavi, Ayse; Kung, Justin W; Zhuang, Hongming

    2004-11-01

    FDG-PET has had remarkable influence on the assessment of physiologic and pathologic states. The authors predict that FDG-PET imaging could soon become the most common procedure used by nuclear medicine laboratories and could remain so for an extended period of time. The power of molecular imaging lies in the vast potential for using biochemical and pharmacologic probes to extend applications arising from an understanding of cell biology to a large number of well-characterized pathologic states. Molecular imaging based upon tracer kinetics with positron-emitting radiopharmaceuticals could become the main source of information for the management of cancer patients. In that case, nuclear medicine procedures might become the most common imaging studies performed in the practice of medicine. This speculation is not farfetched when one realizes the enormous change that a single biologically important compound, FDG, has brought to the medical arena. The major challenge today is to attract the highly qualified individuals and to secure the resources needed to harness the opportunities in the specialty of molecular imaging. PMID:15488553

  7. Multimodality and nanoparticles in medical imaging

    PubMed Central

    Huang, Wen-Yen; Davis, Jason J.

    2015-01-01

    A number of medical imaging techniques are used heavily in the provision of spatially resolved information on disease and physiological status and accordingly play a critical role in clinical diagnostics and subsequent treatment. Though, for most imaging modes, contrast is potentially enhanced through the use of contrast agents or improved hardware or imaging protocols, no single methodology provides, in isolation, a detailed mapping of anatomy, disease markers or physiological status. In recent years, the concept of complementing the strengths of one imaging modality with those of another has come to the fore and been further bolstered by the development of fused instruments such as PET/CT and PET/MRI stations. Coupled with the continual development in imaging hardware has been a surge in reports of contrast agents bearing multiple functionality, potentially providing not only a powerful and highly sensitised means of co-localising physiological/disease status and anatomy, but also the tracking and delineation of multiple markers and indeed subsequent or simultaneous highly localized therapy (“theragnostics”). PMID:21409202

  8. A New Measurement Technique of the Characteristics of Nutrient Artery Canals in Tibias Using Materialise's Interactive Medical Image Control System Software

    PubMed Central

    Li, Jiantao; Zhang, Hao; Yin, Peng; Su, Xiuyun; Zhao, Zhe; Zhou, Jianfeng; Li, Chen; Li, Zhirui; Zhang, Lihai; Tang, Peifu

    2015-01-01

    We established a novel measurement technique to evaluate the anatomic information of nutrient artery canals using Mimics (Materialise's Interactive Medical Image Control System) software, which will provide full knowledge of nutrient artery canals to assist in the diagnosis of longitudinal fractures of tibia and choosing an optimal therapy. Here we collected Digital Imaging and Communications in Medicine (DICOM) format of 199 patients hospitalized in our hospital. All three-dimensional models of tibia in Mimics were reconstructed. In 3-matic software, we marked five points in tibia which located at intercondylar eminence, tibia tuberosity, outer ostium, inner ostium, and bottom of medial malleolus. We then recorded Z-coordinates values of the five points and performed statistical analysis. Our results indicate that foramen was found to be absent in 9 (2.3%) tibias, and 379 (95.2%) tibias had single nutrient foramen. The double foramina was observed in 10 (2.5%) tibias. The mean of tibia length was 358 ± 22 mm. The mean foraminal index was 31.8%  ± 3%. The mean distance between tibial tuberosity and foramen (TFD) is 66 ± 12 mm. Foraminal index has significant positive correlation with TFD (r = 0.721, P < 0.01). Length of nutrient artery canals has significant negative correlation with TFD (r = −0.340, P < 0.01) and has significant negative correlation with foraminal index (r = −0.541, P < 0.01). PMID:26788498

  9. From Roentgen to magnetic resonance imaging: the history of medical imaging.

    PubMed

    Scatliff, James H; Morris, Peter J

    2014-01-01

    Medical imaging has advanced in remarkable ways since the discovery of x-rays 120 years ago. Today's radiologists can image the human body in intricate detail using computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and various other modalities. Such technology allows for improved screening, diagnosis, and monitoring of disease, but it also comes with risks. Many imaging modalities expose patients to ionizing radiation, which potentially increases their risk of developing cancer in the future, and imaging may also be associated with possible allergic reactions or risks related to the use of intravenous contrast agents. In addition, the financial costs of imaging are taxing our health care system, and incidental findings can trigger anxiety and further testing. This issue of the NCMJ addresses the pros and cons of medical imaging and discusses in detail the following uses of medical imaging: screening for breast cancer with mammography, screening for osteoporosis and monitoring of bone mineral density with dual-energy x-ray absorptiometry, screening for congenital hip dysplasia in infants with ultrasound, and evaluation of various heart conditions with cardiac imaging. Together, these articles show the challenges that must be met as we seek to harness the power of today's imaging technologies, as well as the potential benefits that can be achieved when these hurdles are overcome. PMID:24663131

  10. Cerenkov luminescence imaging of medical isotopes

    PubMed Central

    Ruggiero, Alessandro; Holland, Jason P.; Lewis, Jason S.; Grimm, Jan

    2011-01-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. Methods In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters 18F, 64Cu, 89Zr, and 124I; β-emitter 131I; and α-particle emitter 225Ac for potential use in CLI. The novel radiolabeled monoclonal antibody 89Zr-desferrioxamine B-[DFO-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Results Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-,β-, and α-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of 89Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. Conclusion These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear

  11. Electronic Medical Business Operations System

    SciTech Connect

    Cannon, D. T.; Metcalf, J. R.; North, M. P.; Richardson, T. L.; Underwood, S. A.; Shelton, P. M.; Ray, W. B.; Morrell, M. L.; Caldwell, III, D. C.

    2012-04-16

    Electronic Management of medical records has taken a back seat both in private industry and in the government. Record volumes continue to rise every day and management of these paper records is inefficient and very expensive. In 2005, the White House announced support for the development of electronic medical records across the federal government. In 2006, the DOE issued 10 CFR 851 requiring all medical records be electronically available by 2015. The Y-12 National Security Complex is currently investing funds to develop a comprehensive EMR to incorporate the requirements of an occupational health facility which are common across the Nuclear Weapons Complex (NWC). Scheduling, workflow, and data capture from medical surveillance, certification, and qualification examinations are core pieces of the system. The Electronic Medical Business Operations System (EMBOS) will provide a comprehensive health tool solution to 10 CFR 851 for Y-12 and can be leveraged to the Nuclear Weapon Complex (NWC); all site in the NWC must meet the requirements of 10 CFR 851 which states that all medical records must be electronically available by 2015. There is also potential to leverage EMBOS to the private4 sector. EMBOS is being developed and deployed in phases. When fully deployed the EMBOS will be a state-of-the-art web-enabled integrated electronic solution providing a complete electronic medical record (EMR). EMBOS has been deployed and provides a dynamic electronic medical history and surveillance program (e.g., Asbestos, Hearing Conservation, and Respirator Wearer) questionnaire. Table 1 below lists EMBOS capabilities and data to be tracked. Data to be tracked: Patient Demographics – Current/Historical; Physical Examination Data; Employee Medical Health History; Medical Surveillance Programs; Patient and Provider Schedules; Medical Qualification/Certifications; Laboratory Data; Standardized Abnormal Lab Notifications; Prescription Medication Tracking and Dispensing; Allergies

  12. Electronic Medical Business Operations System

    2012-04-16

    Electronic Management of medical records has taken a back seat both in private industry and in the government. Record volumes continue to rise every day and management of these paper records is inefficient and very expensive. In 2005, the White House announced support for the development of electronic medical records across the federal government. In 2006, the DOE issued 10 CFR 851 requiring all medical records be electronically available by 2015. The Y-12 National Securitymore » Complex is currently investing funds to develop a comprehensive EMR to incorporate the requirements of an occupational health facility which are common across the Nuclear Weapons Complex (NWC). Scheduling, workflow, and data capture from medical surveillance, certification, and qualification examinations are core pieces of the system. The Electronic Medical Business Operations System (EMBOS) will provide a comprehensive health tool solution to 10 CFR 851 for Y-12 and can be leveraged to the Nuclear Weapon Complex (NWC); all site in the NWC must meet the requirements of 10 CFR 851 which states that all medical records must be electronically available by 2015. There is also potential to leverage EMBOS to the private4 sector. EMBOS is being developed and deployed in phases. When fully deployed the EMBOS will be a state-of-the-art web-enabled integrated electronic solution providing a complete electronic medical record (EMR). EMBOS has been deployed and provides a dynamic electronic medical history and surveillance program (e.g., Asbestos, Hearing Conservation, and Respirator Wearer) questionnaire. Table 1 below lists EMBOS capabilities and data to be tracked. Data to be tracked: Patient Demographics – Current/Historical; Physical Examination Data; Employee Medical Health History; Medical Surveillance Programs; Patient and Provider Schedules; Medical Qualification/Certifications; Laboratory Data; Standardized Abnormal Lab Notifications; Prescription Medication Tracking and Dispensing

  13. MMSPix - A multimedia service (MMS) medical images weblog.

    PubMed

    Fontelo, Paul; Liu, Fang; Muin, Michael; Ducut, Erick; Ackerman, Michael; Paalan-Vasquez, Franciene

    2007-01-01

    Smartphones with cameras have added a new dimension to augmenting medical image collections for education and teleconsultation. It allows healthcare personnel to instantly capture and send images through the multimedia messaging service (MMS) protocol. We developed a searchable archive, a mobile images Weblog of camera phone images for medical education. Registered users can view and comment on uploaded images. The archive is compartmentalized to allow sharing images with all viewers and by clinical specialty groups.

  14. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    NASA Astrophysics Data System (ADS)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  15. [New medical imaging based on electron tracking Compton camera (ETCC)].

    PubMed

    Tanimori, Toru; Kubo, Hidetoshi; Kabuki, Shigeto; Kimura, Hiroyuki

    2012-01-01

    We have developed an Electron-Tracking Compton Camera (ETCC) for medical imaging due to its wide energy dynamic range (200-1,500keV) and wide field of view (FOV, 3 str). This camera has a potential of developing the new reagents. We have carried out several imaging reagent studies as examples; (1) 18F-FDG and 131I-MIBG simultaneous imaging for double clinical tracer imaging, (2) imaging of some minerals (Mn-54, Zn-65, Fe-59) in mouse and plants. In addition, ETCC has a potential of real-time monitoring of the Bragg peak location by imaging prompt gamma rays for the beam therapy. We carried out the water phantom experiment using 140MeV proton beam, and obtained the images of both 511 keV and high energy gamma rays (800-2,000keV). Here better correlation of the latter image to the Bragg peak has been observed. Another potential of ETCC is to reconstruct the 3D image using only one-head camera without rotations of both the target and camera. Good 3D images of the thyroid grant phantom and the mouse with tumor were observed. In order to advance those features to the practical use, we are improving the all components and then construct the multi-head ETCC system.

  16. Gadgetron: an open source framework for medical image reconstruction.

    PubMed

    Hansen, Michael Schacht; Sørensen, Thomas Sangild

    2013-06-01

    This work presents a new open source framework for medical image reconstruction called the "Gadgetron." The framework implements a flexible system for creating streaming data processing pipelines where data pass through a series of modules or "Gadgets" from raw data to reconstructed images. The data processing pipeline is configured dynamically at run-time based on an extensible markup language configuration description. The framework promotes reuse and sharing of reconstruction modules and new Gadgets can be added to the Gadgetron framework through a plugin-like architecture without recompiling the basic framework infrastructure. Gadgets are typically implemented in C/C++, but the framework includes wrapper Gadgets that allow the user to implement new modules in the Python scripting language for rapid prototyping. In addition to the streaming framework infrastructure, the Gadgetron comes with a set of dedicated toolboxes in shared libraries for medical image reconstruction. This includes generic toolboxes for data-parallel (e.g., GPU-based) execution of compute-intensive components. The basic framework architecture is independent of medical imaging modality, but this article focuses on its application to Cartesian and non-Cartesian parallel magnetic resonance imaging.

  17. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  18. Medical librarianship: a systems perspective.

    PubMed Central

    Cruzat, G S

    1980-01-01

    Medical or health sciences librarianship is viewed as a system whose components are the professional school, the professional group, and the professional association. As an open system it imports energy from these components, or subsystems, and transforms this energy into professionally identifiable products. The subsystems, in influencing the character of the medical and health sciences library profession, are interdependent and interrelated. However, linkages between the subsystems are becoming defective due primarily to lack of communication, information, and feedback. Stronger and more vigorous interaction among the subsystems is needed. PMID:7362921

  19. A cryptologic based trust center for medical images.

    PubMed Central

    Wong, S T

    1996-01-01

    OBJECTIVE: To investigate practical solutions that can integrate cryptographic techniques and picture archiving and communication systems (PACS) to improve the security of medical images. DESIGN: The PACS at the University of California San Francisco Medical Center consolidate images and associated data from various scanners into a centralized data archive and transmit them to remote display stations for review and consultation purposes. The purpose of this study is to investigate the model of a digital trust center that integrates cryptographic algorithms and protocols seamlessly into such a digital radiology environment to improve the security of medical images. MEASUREMENTS: The timing performance of encryption, decryption, and transmission of the cryptographic protocols over 81 volumetric PACS datasets has been measured. Lossless data compression is also applied before the encryption. The transmission performance is measured against three types of networks of different bandwidths: narrow-band Integrated Services Digital Network, Ethernet, and OC-3c Asynchronous Transfer Mode. RESULTS: The proposed digital trust center provides a cryptosystem solution to protect the confidentiality and to determine the authenticity of digital images in hospitals. The results of this study indicate that diagnostic images such as x-rays and magnetic resonance images could be routinely encrypted in PACS. However, applying encryption in teleradiology and PACS is a tradeoff between communications performance and security measures. CONCLUSION: Many people are uncertain about how to integrate cryptographic algorithms coherently into existing operations of the clinical enterprise. This paper describes a centralized cryptosystem architecture to ensure image data authenticity in a digital radiology department. The system performance has been evaluated in a hospital-integrated PACS environment. PMID:8930857

  20. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image storage device. 892.2010 Section 892.2010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device....

  1. The state of the art of medical imaging technology: from creation to archive and back.

    PubMed

    Gao, Xiaohong W; Qian, Yu; Hui, Rui

    2011-01-01

    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations. PMID:21915232

  2. Performance assessment of 3D surface imaging technique for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Recent development in optical 3D surface imaging technologies provide better ways to digitalize the 3D surface and its motion in real-time. The non-invasive 3D surface imaging approach has great potential for many medical imaging applications, such as motion monitoring of radiotherapy, pre/post evaluation of plastic surgery and dermatology, to name a few. Various commercial 3D surface imaging systems have appeared on the market with different dimension, speed and accuracy. For clinical applications, the accuracy, reproducibility and robustness across the widely heterogeneous skin color, tone, texture, shape properties, and ambient lighting is very crucial. Till now, a systematic approach for evaluating the performance of different 3D surface imaging systems still yet exist. In this paper, we present a systematic performance assessment approach to 3D surface imaging system assessment for medical applications. We use this assessment approach to exam a new real-time surface imaging system we developed, dubbed "Neo3D Camera", for image-guided radiotherapy (IGRT). The assessments include accuracy, field of view, coverage, repeatability, speed and sensitivity to environment, texture and color.

  3. Applications of terahertz (THz) technology to medical imaging

    NASA Astrophysics Data System (ADS)

    Arnone, Donald D.; Ciesla, Craig M.; Corchia, Alessandra; Egusa, S.; Pepper, Michael; Chamberlain, J. Martyn; Bezant, C.; Linfield, Edmund H.; Clothier, R.; Khammo, N.

    1999-09-01

    An imaging system has been developed based on pulses of Terahertz (THz) radiation generated and detected using all- optical effects accessed by irradiating semiconductors with ultrafast pulses of visible laser light. This technique, commonly referred to as T-Ray Imaging or THz Pulse Imaging (TPI), holds enormous promise for certain aspects of medical imaging. We have conducted an initial survey of possible medical applications of TPI and demonstrated that TPI images show good contrast between different animal tissue types. Moreover, the diagnostic power of TPI has been elicidated by the spectra available at each pixel in the image, which are markedly different for the different tissue types. This suggests that the spectral information inherent in TPI might be used to identify the type of soft and hard tissue at each pixel in an image and provide other diagnostic information not afforded by conventional imagin techniques. Preliminary TPI studies of pork skin show that 3D tomographic imaging of the skin surface and thickness is possible, and data from experiments on models of the human dermis are presented which demonstrate that different constituents of skin have different refractive indices. Lastly, we present the first THz image of human tissue, namely an extracted tooth. The time of flight of THz pulses through the tooth allows the thickness of the enamel to be determined, and is used to create an image showing the enamel and dentine regions. Absorption of THz pulses in the tooth allows the pulp cavity region to be identified. Initial evidence strongly suggests that TPI my be used to provide valuable diagnostic information pertaining to the enamel, dentine, and the pump cavity.

  4. Medical diagnosis system and method with multispectral imaging. [depth of burns and optical density of the skin

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Reilly, T. H. (Inventor)

    1979-01-01

    A skin diagnosis system includes a scanning and optical arrangement whereby light reflected from each incremental area (pixel) of the skin is directed simultaneously to three separate light filters, e.g., IR, red, and green. As a result, the three devices simultaneously produce three signals which are directly related to the reflectance of light of different wavelengths from the corresponding pixel. These three signals for each pixel after processing are used as inputs to one or more output devices to produce a visual color display and/or a hard copy color print, for one usable as a diagnostic aid by a physician.

  5. Expectation-Driven Text Extraction from Medical Ultrasound Images.

    PubMed

    Reul, Christian; Köberle, Philipp; Üçeyler, Nurcan; Puppe, Frank

    2016-01-01

    In this study an expectation-driven approach is proposed to extract data stored as pixel structures in medical ultrasound images. Prior knowledge about certain properties like the position of the text and its background and foreground grayscale values is utilized. Several open source Java libraries are used to pre-process the image and extract the textual information. The results are presented in an Excel table together with the outcome of several consistency checks. After manually correcting potential errors, the outcome is automatically stored in the main database. The proposed system yielded excellent results, reaching an accuracy of 99.94% and reducing the necessary human effort to a minimum. PMID:27577478

  6. Holography and the virtual patient: the holographic medical image

    NASA Astrophysics Data System (ADS)

    Ko, Kathryn; Erickson, Ronald R.; Webster, John M.

    1996-12-01

    Practical holographic systems utilizing the pulsed laser are finding potential applications in medicine. Exploiting both the hologram's true 3D image and holographic interferometry these techniques enhance the physician's vision beyond the 2D radiological imaging of even the best CT and MRI. The authors describe the use of pulsed laser holography as applied to the morphological specialties: anatomy, pathology, and surgery. The authors report on the Holographic Brain Anatomy Atlas for medical education; pathologic documentation with holography, and the use of holographic interferometry in surgical planning. The techniques are outlined and a discussion on the interpretation of holographic interferometry with living subjects is provided.

  7. Digital Pathology: Data-Intensive Frontier in Medical Imaging

    PubMed Central

    Cooper, Lee A. D.; Carter, Alexis B.; Farris, Alton B.; Wang, Fusheng; Kong, Jun; Gutman, David A.; Widener, Patrick; Pan, Tony C.; Cholleti, Sharath R.; Sharma, Ashish; Kurc, Tahsin M.; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Pathology is a medical subspecialty that practices the diagnosis of disease. Microscopic examination of tissue reveals information enabling the pathologist to render accurate diagnoses and to guide therapy. The basic process by which anatomic pathologists render diagnoses has remained relatively unchanged over the last century, yet advances in information technology now offer significant opportunities in image-based diagnostic and research applications. Pathology has lagged behind other healthcare practices such as radiology where digital adoption is widespread. As devices that generate whole slide images become more practical and affordable, practices will increasingly adopt this technology and eventually produce an explosion of data that will quickly eclipse the already vast quantities of radiology imaging data. These advances are accompanied by significant challenges for data management and storage, but they also introduce new opportunities to improve patient care by streamlining and standardizing diagnostic approaches and uncovering disease mechanisms. Computer-based image analysis is already available in commercial diagnostic systems, but further advances in image analysis algorithms are warranted in order to fully realize the benefits of digital pathology in medical discovery and patient care. In coming decades, pathology image analysis will extend beyond the streamlining of diagnostic workflows and minimizing interobserver variability and will begin to provide diagnostic assistance, identify therapeutic targets, and predict patient outcomes and therapeutic responses. PMID:25328166

  8. Image quality characteristics of handheld display devices for medical imaging.

    PubMed

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2 × 10(-5) mm(2) at 1 mm(-1), while handheld displays have values lower than 3.7 × 10(-6) mm(2). Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  9. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    PubMed Central

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  10. Adapting content-based image retrieval techniques for the semantic annotation of medical images.

    PubMed

    Kumar, Ashnil; Dyer, Shane; Kim, Jinman; Li, Changyang; Leong, Philip H W; Fulham, Michael; Feng, Dagan

    2016-04-01

    The automatic annotation of medical images is a prerequisite for building comprehensive semantic archives that can be used to enhance evidence-based diagnosis, physician education, and biomedical research. Annotation also has important applications in the automatic generation of structured radiology reports. Much of the prior research work has focused on annotating images with properties such as the modality of the image, or the biological system or body region being imaged. However, many challenges remain for the annotation of high-level semantic content in medical images (e.g., presence of calcification, vessel obstruction, etc.) due to the difficulty in discovering relationships and associations between low-level image features and high-level semantic concepts. This difficulty is further compounded by the lack of labelled training data. In this paper, we present a method for the automatic semantic annotation of medical images that leverages techniques from content-based image retrieval (CBIR). CBIR is a well-established image search technology that uses quantifiable low-level image features to represent the high-level semantic content depicted in those images. Our method extends CBIR techniques to identify or retrieve a collection of labelled images that have similar low-level features and then uses this collection to determine the best high-level semantic annotations. We demonstrate our annotation method using retrieval via weighted nearest-neighbour retrieval and multi-class classification to show that our approach is viable regardless of the underlying retrieval strategy. We experimentally compared our method with several well-established baseline techniques (classification and regression) and showed that our method achieved the highest accuracy in the annotation of liver computed tomography (CT) images.

  11. The IRMA code for unique classification of medical images

    NASA Astrophysics Data System (ADS)

    Lehmann, Thomas M.; Schubert, Henning; Keysers, Daniel; Kohnen, Michael; Wein, Berthold B.

    2003-05-01

    Modern communication standards such as Digital Imaging and Communication in Medicine (DICOM) include non-image data for a standardized description of study, patient, or technical parameters. However, these tags are rather roughly structured, ambiguous, and often optional. In this paper, we present a mono-hierarchical multi-axial classification code for medical images and emphasize its advantages for content-based image retrieval in medical applications (IRMA). Our so called IRMA coding system consists of four axes with three to four positions, each in {0,...9,a,...,z}, where "0" denotes "unspecified" to determine the end of a path along an axis. In particular, the technical code (T) describes the imaging modality; the directional code (D) models body orientations; the anatomical code (A) refers to the body region examined; and the biological code (B) describes the biological system examined. Hence, the entire code results in a character string of not more than 13 characters (IRMA: TTTT - DDD - AAA - BBB). The code can be easily extended by introducing characters in certain code positions, e.g., if new modalities are introduced. In contrast to other approaches, mixtures of one- and two-literal code positions are avoided which simplifies automatic code processing. Furthermore, the IRMA code obviates ambiguities resulting from overlapping code elements within the same level. Although this code was originally designed to be used in the IRMA project, other use of it is welcome.

  12. Cathode-ray tube displays for medical imaging.

    PubMed

    Keller, P A

    1990-02-01

    This paper will discuss the principles of cathode-ray tube displays in medical imaging and the parameters essential to the selection of displays for specific requirements. A discussion of cathode-ray tube fundamentals and medical requirements is included.

  13. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  14. Survey on Neural Networks Used for Medical Image Processing

    PubMed Central

    Shi, Zhenghao; He, Lifeng; Suzuki, Kenji; Nakamura, Tsuyoshi; Itoh, Hidenori

    2010-01-01

    This paper aims to present a review of neural networks used in medical image processing. We classify neural networks by its processing goals and the nature of medical images. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of neural network application for medical image processing and an outlook for the future research are also discussed. By this survey, we try to answer the following two important questions: (1) What are the major applications of neural networks in medical image processing now and in the nearby future? (2) What are the major strengths and weakness of applying neural networks for solving medical image processing tasks? We believe that this would be very helpful researchers who are involved in medical image processing with neural network techniques. PMID:26740861

  15. Medical imaging education in biomedical engineering curriculum: courseware development and application through a hybrid teaching model.

    PubMed

    Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice

    2012-01-01

    Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings.

  16. Medical imaging education in biomedical engineering curriculum: courseware development and application through a hybrid teaching model.

    PubMed

    Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice

    2012-01-01

    Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings. PMID:23367069

  17. Integrating patient digital photographs with medical imaging examinations.

    PubMed

    Ramamurthy, Senthil; Bhatti, Pamela; Arepalli, Chesnal D; Salama, Mohamed; Provenzale, James M; Tridandapani, Srini

    2013-10-01

    We introduce the concept, benefits, and general architecture for acquiring, storing, and displaying digital photographs along with medical imaging examinations. We also discuss a specific implementation built around an Android-based system for simultaneously acquiring digital photographs along with portable radiographs. By an innovative application of radiofrequency identification technology to radiographic cassettes, the system is able to maintain a tight relationship between these photographs and the radiographs within the picture archiving and communications system (PACS) environment. We provide a cost analysis demonstrating the economic feasibility of this technology. Since our architecture naturally integrates with patient identification methods, we also address patient privacy issues.

  18. Automated semantic indexing of imaging reports to support retrieval of medical images in the multimedia electronic medical record.

    PubMed

    Lowe, H J; Antipov, I; Hersh, W; Smith, C A; Mailhot, M

    1999-12-01

    This paper describes preliminary work evaluating automated semantic indexing of radiology imaging reports to represent images stored in the Image Engine multimedia medical record system at the University of Pittsburgh Medical Center. The authors used the SAPHIRE indexing system to automatically identify important biomedical concepts within radiology reports and represent these concepts with terms from the 1998 edition of the U.S. National Library of Medicine's Unified Medical Language System (UMLS) Metathesaurus. This automated UMLS indexing was then compared with manual UMLS indexing of the same reports. Human indexing identified appropriate UMLS Metathesaurus descriptors for 81% of the important biomedical concepts contained in the report set. SAPHIRE automatically identified UMLS Metathesaurus descriptors for 64% of the important biomedical concepts contained in the report set. The overall conclusions of this pilot study were that the UMLS metathesaurus provided adequate coverage of the majority of the important concepts contained within the radiology report test set and that SAPHIRE could automatically identify and translate almost two thirds of these concepts into appropriate UMLS descriptors. Further work is required to improve both the recall and precision of this automated concept extraction process. PMID:10805018

  19. Automated semantic indexing of imaging reports to support retrieval of medical images in the multimedia electronic medical record.

    PubMed

    Lowe, H J; Antipov, I; Hersh, W; Smith, C A; Mailhot, M

    1999-12-01

    This paper describes preliminary work evaluating automated semantic indexing of radiology imaging reports to represent images stored in the Image Engine multimedia medical record system at the University of Pittsburgh Medical Center. The authors used the SAPHIRE indexing system to automatically identify important biomedical concepts within radiology reports and represent these concepts with terms from the 1998 edition of the U.S. National Library of Medicine's Unified Medical Language System (UMLS) Metathesaurus. This automated UMLS indexing was then compared with manual UMLS indexing of the same reports. Human indexing identified appropriate UMLS Metathesaurus descriptors for 81% of the important biomedical concepts contained in the report set. SAPHIRE automatically identified UMLS Metathesaurus descriptors for 64% of the important biomedical concepts contained in the report set. The overall conclusions of this pilot study were that the UMLS metathesaurus provided adequate coverage of the majority of the important concepts contained within the radiology report test set and that SAPHIRE could automatically identify and translate almost two thirds of these concepts into appropriate UMLS descriptors. Further work is required to improve both the recall and precision of this automated concept extraction process.

  20. Hyperspectral imaging applied to medical diagnoses and food safety

    NASA Astrophysics Data System (ADS)

    Carrasco, Oscar; Gomez, Richard B.; Chainani, Arun; Roper, William E.

    2003-08-01

    This paper analyzes the feasibility and performance of HSI systems for medical diagnosis as well as for food safety. Illness prevention and early disease detection are key elements for maintaining good health. Health care practitioners worldwide rely on innovative electronic devices to accurately identify disease. Hyperspectral imaging (HSI) is an emerging technique that may provide a less invasive procedure than conventional diagnostic imaging. By analyzing reflected and fluorescent light applied to the human body, a HSI system serves as a diagnostic tool as well as a method for evaluating the effectiveness of applied therapies. The safe supply and production of food is also of paramount importance to public health illness prevention. Although this paper will focus on imaging and spectroscopy in food inspection procedures -- the detection of contaminated food sources -- to ensure food quality, HSI also shows promise in detecting pesticide levels in food production (agriculture.)

  1. [Adverse events and near misses in medical imaging].

    PubMed

    Brandão, Paulo; Rodrigues, Susana; Nelas, Luís; Neves, José; Alves, Vítor

    2011-01-01

    In 2000, the Institute of Medicine's report, To Err Is Human: Building a Safer Health System, caught the public attention documenting the magnitude of the medical error problem and the inherent patient safety: medical errors cause between 44,000 and 98,000 deaths annually in the United States. Currently, there is a growing interest in risk management on the medical field, particularly in the management of adverse events. It has been mainly due to the commitment of the World Health Organization, that this field of research has gained increasing the attention it deserves. Medical imaging is one of the high risk fields for the occurrence of errors, especially due to the multiplicity of techniques, the several stakeholders and the complexity of the whole circuit that involves the conduct of studies. Many of the methods used to analyze patient safety were adapted from risk-management techniques in high-risk industries (e.g. chemical, nuclear power and aviation industry). It is recognized that we can learn more from our mistakes than from our successes and the reporting systems in these industries have provided a valuable contribution to error prevention and risk management techniques. At a minimum, adverse events reporting systems can help to identify hazards and risks, providing important information on the system aspects that should be improved. However, the accumulation of potentially relevant data contributes little to healthcare services improvement. It is crucial to apply models to identify the underlying system failures, the root causes, and enhance the sharing of knowledge and experience. In this paper, it is suggested a solution to reduce adverse events, by identifying and eliminating the root causes that are in their source. How the Eindhoven Classification Model was adapted and extended specifically for the Medical Imaging field is also presented. The proposed approach includes the root causes analysis and introduces incomplete information concepts through

  2. Multi Spectral Imaging System

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor)

    1999-01-01

    An optical imaging system provides automatic co-registration of a plurality of multi spectral images of an object which are generated by a plurality of video cameras or other optical detectors. The imaging system includes a modular assembly of beam splitters, lens tubes, camera lenses and wavelength selective filters which facilitate easy reconfiguration and adjustment of the system for various applications. A primary lens assembly generates a real image of an object to be imaged on a reticle which is positioned at a fixed length from a beam splitter assembly. The beam splitter assembly separates a collimated image beam received from the reticle into multiple image beams, each of which is projected onto a corresponding one of a plurality of video cameras. The lens tubes which connect the beam splitter assembly to the cameras are adjustable in length to provide automatic co-registration of the images generated by each camera.

  3. Spectrographic imaging system

    DOEpatents

    Morris, Michael D.; Treado, Patrick J.

    1991-01-01

    An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

  4. Virtual organization of hospital medical imaging: a user satisfaction survey.

    PubMed

    Sicotte, Claude; Paré, Guy; Bini, Kobena Kra; Moreault, Marie-Pierre; Laverdure, Guy

    2010-12-01

    A virtual medical imaging department is an innovative and demanding organizational model, to the extent that the underlying goal is to achieve a continuous and advanced organizational integration of human and physical resources, clinical data, and clienteles. To better understand the kind of benefits offered, we conducted a survey of three groups of users--radiologists, radiological technologists, and medical specialists--working in a five-site virtual organization. We received 127 valid questionnaires, for an overall response rate of 66%. The assessments vary according to the use made of the system. The scores for system quality and the quality of the data produced were markedly higher for intra-hospital use (respectively 7.9 and 8.7 out of 10) than for inter-hospital use (5.4 and 7.0). Despite the negative assessments they made of inter-hospital use, users maintained a positive attitude toward some type of virtual organization of medical imaging. Indeed, the score for Overall satisfaction with the system was very high, 8.9 out of 10. Moreover, the scores for Intended future use of the system were very high for both intra-hospital use (8.9) and inter-hospital use (8.7). We also found significant differences in perceptions among user groups.

  5. [Is the PACS feasible for a large radiological department? Reflections on the image data volume of the Medical Radiation Institute of the University of Tübingen in 1983. Picture Archiving and Communication System].

    PubMed

    Bautz, W; Kolbe, J

    1986-06-01

    Picture Archiving and Communication Systems (PACS) are getting more and more important for departments of radiology with the increasing spread of digital imaging methods. To determine the demands made on such systems, we calculated the digital image data volume for all examinations carried out in 1983 at the Department of Medical Radiology of the University of Tübingen. 20.37% of all examinations were performed with digitalised equipment. Plain radiography takes the lion's share among the total number of image data. If digitalisation is based on a spatial resolution of 8 Lp/mm, the share is 98.4% of the total image data volume of 7 123 GByte. This figure is far in excess of the estimates stated in literature. The possibilities of image data reduction and feasibility of a major PACS are discussed. PMID:3524963

  6. Reverse hierarchy theory and medical image perception

    NASA Astrophysics Data System (ADS)

    Donovan, T.; Manning, D. J.

    2009-02-01

    We are unsure about what information is extracted from an image to allow a decision about pathology to be made. Our knowledge of the interplay between top down processing or bottom up, local or global perception, perceptual or cognitive processes is uncertain. However recent research has emphasised the importance of the global or holistic look in medical image perception in which recognition of abnormalities precedes search. Reverse Hierarchy Theory [1] is a useful general theory that helps to explain this. It also enables us to understand what information is extracted from an image and how this relates to expertise. Essentially the theory states that perceptual learning begins at high levels areas and progresses down to lower level areas when better signal to noise is needed. So perceptual learning, defined as an improvement in sensory abilities after training, stems from a gradual top down guided increase in usability of first high then lower level task relevant information. Evaluation of the scan paths of groups of observers with different levels of expertise when undertaking a lung nodule perception task seems to be consistent with the theory. Experts' perception is generally immediate and holistic suggesting high level representations whereas those with an intermediate level of expertise tend to be more variable in their scan paths. Interestingly naÃve observers have eye tracking metrics that are more similar to experts suggesting they take a common sense approach using perceptual skills we all have as they lack experience in being able to access the low level information from the chest radiograph.

  7. Medical image databases: a content-based retrieval approach.

    PubMed

    Tagare, H D; Jaffe, C C; Duncan, J

    1997-01-01

    Information contained in medical images differs considerably from that residing in alphanumeric format. The difference can be attributed to four characteristics: (1) the semantics of medical knowledge extractable from images is imprecise; (2) image information contains form and spatial data, which are not expressible in conventional language; (3) a large part of image information is geometric; (4) diagnostic inferences derived from images rest on an incomplete, continuously evolving model of normality. This paper explores the differentiating characteristics of text versus images and their impact on design of a medical image database intended to allow content-based indexing and retrieval. One strategy for implementing medical image databases is presented, which employs object-oriented iconic queries, semantics by association with prototypes, and a generic schema.

  8. A System For Automated Medical Photography

    NASA Astrophysics Data System (ADS)

    Tivattanasuk, Eva S.; Kaczoroski, Anthony J.; Rhodes, Michael L.

    1988-06-01

    A system is described that electronically controls the medical photography for a computed tomography (CT) scanner system. Multiple CT exams can be photographed with each image automatically adjusted to a specific gamma table presentation and positioned to any film location within a given film format. Our approach uses a library that can store 24 CT exam photography protocols. Library entries can be added, deleted, or edited. Mixed film formats, multiple image types, and automated annotation capabilities allow all CT exams to be filmed at our clinic cost-effectively and unattended. Using this automated approach to CT exam photography, one full-time equivalent CT technologist has been saved from the operational cost of our center. We outline the film protocol database, illustrate protocol options and by example, show the flexibility of this approach. Features of this system illustrate essential components of any such approach.

  9. Medical image fusion by wavelet transform modulus maxima

    NASA Astrophysics Data System (ADS)

    Guihong, Qu; Dali, Zhang; Pingfan, Yan

    2001-08-01

    Medical image fusion has been used to derive useful information from multimodality medical image data. In this research, we propose a novel method for multimodality medical image fusion. Using wavelet transform, we achieved a fusion scheme. Afusion rule is proposed and used for calculating the wavelet transformation modulus maxima of input images at different bandwidths and levels. To evaluate the fusion result, a metric based on mutual information (MI) is presented for measuring fusion effect. The performances of other two methods of image fusion based on wavelet transform are briefly described for comparison. The experiment results demonstrate the effectiveness of the fusion scheme.

  10. Blackboard architecture for medical image interpretation

    NASA Astrophysics Data System (ADS)

    Davis, Darryl N.; Taylor, Christopher J.

    1991-06-01

    There is a growing interest in using sophisticated knowledge-based systems for biomedical image interpretation. We present a principled attempt to use artificial intelligence methodologies in interpreting lateral skull x-ray images. Such radiographs are routinely used in cephalometric analysis to provide quantitative measurements useful to clinical orthodontists. Manual and interactive methods of analysis are known to be error prone and previous attempts to automate this analysis typically fail to capture the expertise and adaptability required to cope with the variability in biological structure and image quality. An integrated model-based system has been developed which makes use of a blackboard architecture and multiple knowledge sources. A model definition interface allows quantitative models, of feature appearance and location, to be built from examples as well as more qualitative modelling constructs. Visual task definition and blackboard control modules allow task-specific knowledge sources to act on information available to the blackboard in a hypothesise and test reasoning cycle. Further knowledge-based modules include object selection, location hypothesis, intelligent segmentation, and constraint propagation systems. Alternative solutions to given tasks are permitted.

  11. Network of fully integrated multispecialty hospital imaging systems

    NASA Astrophysics Data System (ADS)

    Dayhoff, Ruth E.; Kuzmak, Peter M.

    1994-05-01

    The Department of Veterans Affairs (VA) DHCP Imaging System records clinically significant diagnostic images selected by medical specialists in a variety of departments, including radiology, cardiology, gastroenterology, pathology, dermatology, hematology, surgery, podiatry, dental clinic, and emergency room. These images are displayed on workstations located throughout a medical center. All images are managed by the VA's hospital information system, allowing integrated displays of text and image data across medical specialties. Clinicians can view screens of `thumbnail' images for all studies or procedures performed on a selected patient. Two VA medical centers currently have DHCP Imaging Systems installed, and others are planned. All VA medical centers and other VA facilities are connected by a wide area packet-switched network. The VA's electronic mail software has been modified to allow inclusion of binary data such as images in addition to the traditional text data. Testing of this multimedia electronic mail system is underway for medical teleconsultation.

  12. Design Considerations Of A Compton Camera For Low Energy Medical Imaging

    NASA Astrophysics Data System (ADS)

    Harkness, L. J.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Grint, A. N.; Lazarus, I.; Judson, D. S.; Nolan, P. J.; Oxley, D. C.; Simpson, J.

    2009-12-01

    Development of a Compton camera for low energy medical imaging applications is underway. The ProSPECTus project aims to utilize position sensitive detectors to generate high quality images using electronic collimation. This method has the potential to significantly increase the imaging efficiency compared with mechanically collimated SPECT systems, a highly desirable improvement on clinical systems. Design considerations encompass the geometrical optimisation and evaluation of image quality from the system which is to be built and assessed.

  13. Medical Images Fusion with Patch Based Structure Tensor.

    PubMed

    Luo, Fen; Sun, Jiangfeng; Hou, Shouming

    2015-01-01

    Nowadays medical imaging has played an important role in clinical use, which provide important clues for medical diagnosis. In medical image fusion, the extraction of some fine details and description is critical. To solve this problem, a modified structure tensor by considering similarity between two patches is proposed. The patch based filter can suppress noise and add the robustness of the eigen-values of the structure tensor by allowing the use of more information of far away pixels. After defining the new structure tensor, we apply it into medical image fusion with a multi-resolution wavelet theory. The features are extracted and described by the eigen-values of two multi-modality source data. To test the performance of the proposed scheme, the CT and MR images are used as input source images for medical image fusion. The experimental results show that the proposed method can produce better results compared to some related approaches. PMID:26628927

  14. Multipurpose Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  15. Managing medical images and clinical information: InCor's experience.

    PubMed

    Furuie, Sergio S; Rebelo, Marina S; Moreno, Ramon A; Santos, Marcelo; Bertozzo, Nivaldo; Motta, Gustavo H M B; Pires, Fabio A; Gutierrez, Marco A

    2007-01-01

    Patients usually get medical assistance in several clinics and hospitals during their lifetime, archiving vital information in a dispersed way. Clearly, a proper patient care should take into account that information in order to check for incompatibilities, avoid unnecessary exams, and get relevant clinical history. The Heart Institute (InCor) of São Paulo, Brazil, has been committed to the goal of integrating all exams and clinical information within the institution and other hospitals. Since InCor is one of the six institutes of the University of São Paulo Medical School and each institute has its own information system, exchanging information among the institutes is also a very important aspect that has been considered. In the last few years, a system for transmission, archiving, retrieval, processing, and visualization of medical images integrated with a hospital information system has been successfully created and constitutes the InCor's electronic patient record (EPR). This work describes the experience in the effort to develop a functional and comprehensive EPR, which includes laboratory exams, images (static, dynamic, and three dimensional), clinical reports, documents, and even real-time vital signals. A security policy based on a contextual role-based access control model was implemented to regulate user's access to EPR. Currently, more than 10 TB of digital imaging and communications in medicine (DICOM) images have been stored using the proposed architecture and the EPR stores daily more than 11 GB of integrated data. The proposed storage subsystem allows 6 months of visibility for rapid retrieval and more than two years for automatic retrieval using a jukebox. This paper addresses also a prototype for the integration of distributed and heterogeneous EPR.

  16. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos, Stavros; Staggs, Michael C.

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  17. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos; Stavros , Staggs; Michael C.

    2006-03-21

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  18. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  19. One-class kernel subspace ensemble for medical image classification

    NASA Astrophysics Data System (ADS)

    Zhang, Yungang; Zhang, Bailing; Coenen, Frans; Xiao, Jimin; Lu, Wenjin

    2014-12-01

    Classification of medical images is an important issue in computer-assisted diagnosis. In this paper, a classification scheme based on a one-class kernel principle component analysis (KPCA) model ensemble has been proposed for the classification of medical images. The ensemble consists of one-class KPCA models trained using different image features from each image class, and a proposed product combining rule was used for combining the KPCA models to produce classification confidence scores for assigning an image to each class. The effectiveness of the proposed classification scheme was verified using a breast cancer biopsy image dataset and a 3D optical coherence tomography (OCT) retinal image set. The combination of different image features exploits the complementary strengths of these different feature extractors. The proposed classification scheme obtained promising results on the two medical image sets. The proposed method was also evaluated on the UCI breast cancer dataset (diagnostic), and a competitive result was obtained.

  20. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  1. A virtual image chain for perceived image quality of medical display

    NASA Astrophysics Data System (ADS)

    Marchessoux, Cédric; Jung, Jürgen

    2006-03-01

    This paper describes a virtual image chain for medical display (project VICTOR: granted in the 5th framework program by European commission). The chain starts from raw data of an image digitizer (CR, DR) or synthetic patterns and covers image enhancement (MUSICA by Agfa) and both display possibilities, hardcopy (film on viewing box) and softcopy (monitor). Key feature of the chain is a complete image wise approach. A first prototype is implemented in an object-oriented software platform. The display chain consists of several modules. Raw images are either taken from scanners (CR-DR) or from a pattern generator, in which characteristics of DR- CR systems are introduced by their MTF and their dose-dependent Poisson noise. The image undergoes image enhancement and comes to display. For soft display, color and monochrome monitors are used in the simulation. The image is down-sampled. The non-linear response of a color monitor is taken into account by the GOG or S-curve model, whereas the Standard Gray-Scale-Display-Function (DICOM) is used for monochrome display. The MTF of the monitor is applied on the image in intensity levels. For hardcopy display, the combination of film, printer, lightbox and viewing condition is modeled. The image is up-sampled and the DICOM-GSDF or a Kanamori Look-Up-Table is applied. An anisotropic model for the MTF of the printer is applied on the image in intensity levels. The density-dependent color (XYZ) of the hardcopy film is introduced by Look-Up-tables. Finally a Human Visual System Model is applied to the intensity images (XYZ in terms of cd/m2) in order to eliminate nonvisible differences. Comparison leads to visible differences, which are quantified by higher order image quality metrics. A specific image viewer is used for the visualization of the intensity image and the visual difference maps.

  2. MIMS - MEDICAL INFORMATION MANAGEMENT SYSTEM

    NASA Technical Reports Server (NTRS)

    Frankowski, J. W.

    1994-01-01

    MIMS, Medical Information Management System is an interactive, general purpose information storage and retrieval system. It was first designed to be used in medical data management, and can be used to handle all aspects of data related to patient care. Other areas of application for MIMS include: managing occupational safety data in the public and private sectors; handling judicial information where speed and accuracy are high priorities; systemizing purchasing and procurement systems; and analyzing organizational cost structures. Because of its free format design, MIMS can offer immediate assistance where manipulation of large data bases is required. File structures, data categories, field lengths and formats, including alphabetic and/or numeric, are all user defined. The user can quickly and efficiently extract, display, and analyze the data. Three means of extracting data are provided: certain short items of information, such as social security numbers, can be used to uniquely identify each record for quick access; records can be selected which match conditions defined by the user; and specific categories of data can be selected. Data may be displayed and analyzed in several ways which include: generating tabular information assembled from comparison of all the records on the system; generating statistical information on numeric data such as means, standard deviations and standard errors; and displaying formatted listings of output data. The MIMS program is written in Microsoft FORTRAN-77. It was designed to operate on IBM Personal Computers and compatibles running under PC or MS DOS 2.00 or higher. MIMS was developed in 1987.

  3. A Smartphone-based Medication Self-management System with Realtime Medication Monitoring

    PubMed Central

    Hayakawa, M.; Uchimura, Y.; Omae, K.; Waki, K.; Fujita, H.; Ohe, K.

    2013-01-01

    Background Most patients cannot remember their entire medication regimen and occasionally forget to take their medication. Objectives The objective of the study was to design, develop, and demonstrate the feasibility of a new type of medication self-management system using smartphones with real-time medication monitoring. Methods We designed and developed a smartphone-based medication self-management system (SMSS) based on interviews of 116 patients. The system offered patients two main functions by means of smartphones: (1) storage and provision of an accurate, portable medication history and medication-taking records of patients; and (2) provision of a reminder to take medication only when the patient has forgotten to take his/her medication. These functions were realized by two data input methods: (a) reading of prescription data represented in two-dimensional barcodes using the smartphone camera and getting the photographic images of the pills; and (b) real-time medication monitoring by novel user-friendly wireless pillboxes. Results Interviews suggested that a pocket-sized pillbox was demanded to support patient’s medication-taking outside the home and pillboxes for home use should be adaptable to the different means of pillbox storage. In accordance with the result, we designed and developed SMSS. Ten patients participated in the feasibility study. In 17 out of 47 cases (36.2%), patients took their medication upon being presented with reminders by the system. Correct medication-taking occurrence was improved using this system. Conclusions The SMSS is acceptable to patients and has the advantage of supporting ubiquitous medication self-management using a smartphone. We believe that the proposed system is feasible and provides an innovative solution to encourage medication self-management. PMID:23650486

  4. Towards knowledge-based retrieval of medical images. The role of semantic indexing, image content representation and knowledge-based retrieval.

    PubMed

    Lowe, H J; Antipov, I; Hersh, W; Smith, C A

    1998-01-01

    Medicine is increasingly image-intensive. The central importance of imaging technologies such as computerized tomography and magnetic resonance imaging in clinical decision making, combined with the trend to store many "traditional" clinical images such as conventional radiographs, microscopic pathology and dermatology images in digital format present both challenges and an opportunities for the designers of clinical information systems. The emergence of Multimedia Electronic Medical Record Systems (MEMRS), architectures that integrate medical images with text-based clinical data, will further hasten this trend. The development of these systems, storing a large and diverse set of medical images, suggests that in the future MEMRS will become important digital libraries supporting patient care, research and education. The representation and retrieval of clinical images within these systems is problematic as conventional database architectures and information retrieval models have, until recently, focused largely on text-based data. Medical imaging data differs in many ways from text-based medical data but perhaps the most important difference is that the information contained within imaging data is fundamentally knowledge-based. New representational and retrieval models for clinical images will be required to address this issue. Within the Image Engine multimedia medical record system project at the University of Pittsburgh we are evolving an approach to representation and retrieval of medical images which combines semantic indexing using the UMLS Metathesuarus, image content-based representation and knowledge-based image analysis. PMID:9929345

  5. Towards knowledge-based retrieval of medical images. The role of semantic indexing, image content representation and knowledge-based retrieval.

    PubMed

    Lowe, H J; Antipov, I; Hersh, W; Smith, C A

    1998-01-01

    Medicine is increasingly image-intensive. The central importance of imaging technologies such as computerized tomography and magnetic resonance imaging in clinical decision making, combined with the trend to store many "traditional" clinical images such as conventional radiographs, microscopic pathology and dermatology images in digital format present both challenges and an opportunities for the designers of clinical information systems. The emergence of Multimedia Electronic Medical Record Systems (MEMRS), architectures that integrate medical images with text-based clinical data, will further hasten this trend. The development of these systems, storing a large and diverse set of medical images, suggests that in the future MEMRS will become important digital libraries supporting patient care, research and education. The representation and retrieval of clinical images within these systems is problematic as conventional database architectures and information retrieval models have, until recently, focused largely on text-based data. Medical imaging data differs in many ways from text-based medical data but perhaps the most important difference is that the information contained within imaging data is fundamentally knowledge-based. New representational and retrieval models for clinical images will be required to address this issue. Within the Image Engine multimedia medical record system project at the University of Pittsburgh we are evolving an approach to representation and retrieval of medical images which combines semantic indexing using the UMLS Metathesuarus, image content-based representation and knowledge-based image analysis.

  6. Sensor-based architecture for medical imaging workflow analysis.

    PubMed

    Silva, Luís A Bastião; Campos, Samuel; Costa, Carlos; Oliveira, José Luis

    2014-08-01

    The growing use of computer systems in medical institutions has been generating a tremendous quantity of data. While these data have a critical role in assisting physicians in the clinical practice, the information that can be extracted goes far beyond this utilization. This article proposes a platform capable of assembling multiple data sources within a medical imaging laboratory, through a network of intelligent sensors. The proposed integration framework follows a SOA hybrid architecture based on an information sensor network, capable of collecting information from several sources in medical imaging laboratories. Currently, the system supports three types of sensors: DICOM repository meta-data, network workflows and examination reports. Each sensor is responsible for converting unstructured information from data sources into a common format that will then be semantically indexed in the framework engine. The platform was deployed in the Cardiology department of a central hospital, allowing identification of processes' characteristics and users' behaviours that were unknown before the utilization of this solution. PMID:24957389

  7. Large-Scale medical image analytics: Recent methodologies, applications and Future directions.

    PubMed

    Zhang, Shaoting; Metaxas, Dimitris

    2016-10-01

    Despite the ever-increasing amount and complexity of annotated medical image data, the development of large-scale medical image analysis algorithms has not kept pace with the need for methods that bridge the semantic gap between images and diagnoses. The goal of this position paper is to discuss and explore innovative and large-scale data science techniques in medical image analytics, which will benefit clinical decision-making and facilitate efficient medical data management. Particularly, we advocate that the scale of image retrieval systems should be significantly increased at which interactive systems can be effective for knowledge discovery in potentially large databases of medical images. For clinical relevance, such systems should return results in real-time, incorporate expert feedback, and be able to cope with the size, quality, and variety of the medical images and their associated metadata for a particular domain. The design, development, and testing of the such framework can significantly impact interactive mining in medical image databases that are growing rapidly in size and complexity and enable novel methods of analysis at much larger scales in an efficient, integrated fashion.

  8. Large-Scale medical image analytics: Recent methodologies, applications and Future directions.

    PubMed

    Zhang, Shaoting; Metaxas, Dimitris

    2016-10-01

    Despite the ever-increasing amount and complexity of annotated medical image data, the development of large-scale medical image analysis algorithms has not kept pace with the need for methods that bridge the semantic gap between images and diagnoses. The goal of this position paper is to discuss and explore innovative and large-scale data science techniques in medical image analytics, which will benefit clinical decision-making and facilitate efficient medical data management. Particularly, we advocate that the scale of image retrieval systems should be significantly increased at which interactive systems can be effective for knowledge discovery in potentially large databases of medical images. For clinical relevance, such systems should return results in real-time, incorporate expert feedback, and be able to cope with the size, quality, and variety of the medical images and their associated metadata for a particular domain. The design, development, and testing of the such framework can significantly impact interactive mining in medical image databases that are growing rapidly in size and complexity and enable novel methods of analysis at much larger scales in an efficient, integrated fashion. PMID:27503077

  9. Data Hiding Scheme on Medical Image using Graph Coloring

    NASA Astrophysics Data System (ADS)

    Astuti, Widi; Adiwijaya; Novia Wisety, Untari

    2015-06-01

    The utilization of digital medical images is now widely spread[4]. The medical images is supposed to get protection since it has probability to pass through unsecure network. Several watermarking techniques have been developed so that the digital medical images can be guaranteed in terms of its originality. In watermarking, the medical images becomes a protected object. Nevertheless, the medical images can actually be a medium of hiding secret data such as patient medical record. The data hiding is done by inserting data into image - usually called steganography in images. Because the medical images can influence the diagnose change, steganography will only be applied to non-interest region. Vector Quantization (VQ) is one of lossydata compression technique which is sufficiently prominent and frequently used. Generally, the VQ based steganography scheme still has limitation in terms of the data capacity which can be inserted. This research is aimed to make a Vector Quantization-based steganography scheme and graph coloring. The test result shows that the scheme can insert 28768 byte data which equals to 10077 characters for images area of 3696 pixels.

  10. A real-time flat-panel X-ray pixel imaging system for low-dose medical diagnostics and craniofacial applications.

    PubMed

    Chapuy, S; Dimcovski, D; Dimcovski, Z; Grigoriev, E; Grob, E; Ligier, Y; Pachoud, M; Riondel, F; Rüfenacht, D; Sayegh, C; Terrier, F; Valley, J F; Verdun, F R

    2000-01-01

    The aim of this study was to evaluate on-line performance of a real-time digital imaging system based on amorphous silicon technology and to compare it with conventional film-screen equipment. The digital detecting imager consists of (1) a converter, which transforms the energy of the incident X rays into light; (2) a real-time digital detecting system, capable of producing as many as 10 pictures per second using a large-area pixel matrix (20 x 20 cm2) based on solid-state amorphous silicon sensor technology with a pitch of 400 microns; and (3) appropriate computer tools for control, real-time image treatment, data representation, and off-line analysis. Different phantoms were used for qualitative comparison with the conventional film-screen technique, with images obtained with both systems at the normal dose (used as a reference), as well as with dose reduction by a factor of 10 to 100. Basic image quality parameters evaluated showed that the response of the detector is linear in a wide range of entrance air kerma; the dynamic range is higher compared with the conventional film-screen combination; the spatial resolution is 1.25 lp per millimeter, as expected from the pixel size; and good image quality is ensured at doses substantially lower than for the film-screen technique. The flat-panel X-ray imager based on amorphous silicon technology implemented in standard radiographic equipment permits acquisition of real-time images in radiology (as many as 10 images per second) of diagnostic quality with a marked reduction of dose (as much as 100 times) and better contrast compared with the standard film technique. Preliminary results obtained with a 100-micron pitch imager based on the same technology show better quality but a less substantial dose reduction. Applications in craniofacial surgery look promising.

  11. Medical physics personnel for medical imaging: requirements, conditions of involvement and staffing levels-French recommendations.

    PubMed

    Isambert, Aurélie; Le Du, Dominique; Valéro, Marc; Guilhem, Marie-Thérèse; Rousse, Carole; Dieudonné, Arnaud; Blanchard, Vincent; Pierrat, Noëlle; Salvat, Cécile

    2015-04-01

    The French regulations concerning the involvement of medical physicists in medical imaging procedures are relatively vague. In May 2013, the ASN and the SFPM issued recommendations regarding Medical Physics Personnel for Medical Imaging: Requirements, Conditions of Involvement and Staffing Levels. In these recommendations, the various areas of activity of medical physicists in radiology and nuclear medicine have been identified and described, and the time required to perform each task has been evaluated. Criteria for defining medical physics staffing levels are thus proposed. These criteria are defined according to the technical platform, the procedures and techniques practised on it, the number of patients treated and the number of persons in the medical and paramedical teams requiring periodic training. The result of this work is an aid available to each medical establishment to determine their own needs in terms of medical physics.

  12. Medical image processing on the GPU - past, present and future.

    PubMed

    Eklund, Anders; Dufort, Paul; Forsberg, Daniel; LaConte, Stephen M

    2013-12-01

    Graphics processing units (GPUs) are used today in a wide range of applications, mainly because they can dramatically accelerate parallel computing, are affordable and energy efficient. In the field of medical imaging, GPUs are in some cases crucial for enabling practical use of computationally demanding algorithms. This review presents the past and present work on GPU accelerated medical image processing, and is meant to serve as an overview and introduction to existing GPU implementations. The review covers GPU acceleration of basic image processing operations (filtering, interpolation, histogram estimation and distance transforms), the most commonly used algorithms in medical imaging (image registration, image segmentation and image denoising) and algorithms that are specific to individual modalities (CT, PET, SPECT, MRI, fMRI, DTI, ultrasound, optical imaging and microscopy). The review ends by highlighting some future possibilities and challenges.

  13. X-space MPI: magnetic nanoparticles for safe medical imaging.

    PubMed

    Goodwill, Patrick William; Saritas, Emine Ulku; Croft, Laura Rose; Kim, Tyson N; Krishnan, Kannan M; Schaffer, David V; Conolly, Steven M

    2012-07-24

    One quarter of all iodinated contrast X-ray clinical imaging studies are now performed on Chronic Kidney Disease (CKD) patients. Unfortunately, the iodine contrast agent used in X-ray is often toxic to CKD patients' weak kidneys, leading to significant morbidity and mortality. Hence, we are pioneering a new medical imaging method, called Magnetic Particle Imaging (MPI), to replace X-ray and CT iodinated angiography, especially for CKD patients. MPI uses magnetic nanoparticle contrast agents that are much safer than iodine for CKD patients. MPI already offers superb contrast and extraordinary sensitivity. The iron oxide nanoparticle tracers required for MPI are also used in MRI, and some are already approved for human use, but the contrast agents are far more effective at illuminating blood vessels when used in the MPI modality. We have recently developed a systems theoretic framework for MPI called x-space MPI, which has already dramatically improved the speed and robustness of MPI image reconstruction. X-space MPI has allowed us to optimize the hardware for fi ve MPI scanners. Moreover, x-space MPI provides a powerful framework for optimizing the size and magnetic properties of the iron oxide nanoparticle tracers used in MPI. Currently MPI nanoparticles have diameters in the 10-20 nanometer range, enabling millimeter-scale resolution in small animals. X-space MPI theory predicts that larger nanoparticles could enable up to 250 micrometer resolution imaging, which would represent a major breakthrough in safe imaging for CKD patients.

  14. Integrated ultrasound and gamma imaging probe for medical diagnosis

    NASA Astrophysics Data System (ADS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Polito, C.; Orlandi, C.; Fabbri, A.; De Vincentis, G.

    2016-03-01

    In the last few years, integrated multi-modality systems have been developed, aimed at improving the accuracy of medical diagnosis correlating information from different imaging techniques. In this contest, a novel dual modality probe is proposed, based on an ultrasound detector integrated with a small field of view single photon emission gamma camera. The probe, dedicated to visualize small organs or tissues located at short depths, performs dual modality images and permits to correlate morphological and functional information. The small field of view gamma camera consists of a continuous NaI:Tl scintillation crystal coupled with two multi-anode photomultiplier tubes. Both detectors were characterized in terms of position linearity and spatial resolution performances in order to guarantee the spatial correspondence between the ultrasound and the gamma images. Finally, dual-modality images of custom phantoms are obtained highlighting the good co-registration between ultrasound and gamma images, in terms of geometry and image processing, as a consequence of calibration procedures.

  15. Dicoogle Mobile: a medical imaging platform for Android.

    PubMed

    Viana-Ferreira, Carlos; Ferreira, Daniel; Valente, Frederico; Monteiro, Eriksson; Costa, Carlos; Oliveira, José Luís

    2012-01-01

    Mobile computing technologies are increasingly becoming a valuable asset in healthcare information systems. The adoption of these technologies helps to assist in improving quality of care, increasing productivity and facilitating clinical decision support. They provide practitioners with ubiquitous access to patient records, being actually an important component in telemedicine and tele-work environments. We have developed Dicoogle Mobile, an Android application that provides remote access to distributed medical imaging data through a cloud relay service. Besides, this application has the capability to store and index local imaging data, so that they can also be searched and visualized. In this paper, we will describe Dicoogle Mobile concept as well the architecture of the whole system that makes it running. PMID:22874241

  16. SmartWADO: an Extensible WADO Middleware for Regional Medical Image Sharing.

    PubMed

    Liu, Lijun; Liu, Li; Fu, Xiaodong; Huang, Qingsong; Zhang, Yin; Luo, Qiaoyi; Xiong, Xin

    2015-10-01

    Medical image sharing is an important problem in modern radiology, with wide applications in Internet and mobile devices. Some important features need to be added and optimized to medical image sharing. In this paper, we present an extensible Web Access to DICOM Persistent Objects (WADO) middleware based on image cache and real-time Web monitor technology for regional medical image sharing. We first develop the extension method of WADO standard and workflow of extended WADO service. Then, we design a medical image cache method to improve the performance of medical image on-demand transmission. Using the real-time monitor can discover the performance bottlenecks and optimized critical points. The experimental results show that the middleware effectively delivers medical images and reports to Web clients over the Internet, regardless of the platform used for access. It can be deployed in one hospital to provide WADO service to medical workers and also can be applied to regional picture archiving and communication systems (PACS) to transmit medical images and reports to Internet users in a way that is transparent to end-user applications. PMID:25813895

  17. Visions image operating system

    SciTech Connect

    Kohler, R.R.; Hanson, A.R.

    1982-01-01

    The image operating system is a complete software environment specifically designed for dynamic experimentation in scene analysis. The IOS consists of a high-level interpretive control language (LISP) with efficient image operators in a noninterpretive language. The image operators are viewed as local operators to be applied in parallel at all pixels to a set of input images. In order to carry out complex image analysis experiments an environment conducive to such experimentation was needed. This environment is provided by the visions image operating system based on a computational structure known as a processing cone proposed by Hanson and Riseman (1974, 1980) and implemented on a VAX-11/780 running VMS. 6 references.

  18. Spaceborne electronic imaging systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.

  19. The Changing Medical Care System: Some Implications for Medical Education.

    ERIC Educational Resources Information Center

    Foreman, Spencer

    1986-01-01

    The medical care system is undergoing widespread and significant changes. Individual hospitals may be disappearing as mergers, acquisitions, and a variety of multi-institutional arrangements become the dominant form and as a host of free-standing medical enterprises spread out into the community. (MLW)

  20. Imaging the lymphatic system.

    PubMed

    Munn, Lance L; Padera, Timothy P

    2014-11-01

    Visualization of the lymphatic system is clinically necessary during diagnosis or treatment of many conditions and diseases; it is used for identifying and monitoring lymphedema, for detecting metastatic lesions during cancer staging and for locating lymphatic structures so they can be spared during surgical procedures. Imaging lymphatic anatomy and function also plays an important role in experimental studies of lymphatic development and function, where spatial resolution and accessibility are better. Here, we review technologies for visualizing and imaging the lymphatic system for clinical applications. We then describe the use of lymphatic imaging in experimental systems as well as some of the emerging technologies for improving these methodologies.

  1. Imaging the lymphatic system

    PubMed Central

    Munn, Lance L.; Padera, Timothy P.

    2014-01-01

    Visualization of the lymphatic system is clinically necessary during diagnosis or treatment of many conditions and diseases; it is used for identifying and monitoring lymphedema, for detecting metastatic lesions during cancer staging and for locating lymphatic structures so they can be spared during surgical procedures. Imaging lymphatic anatomy and function also plays an important role in experimental studies of lymphatic development and function, where spatial resolution and accessibility are better. Here, we review technologies for visualizing and imaging the lymphatic system for clinical applications. We then describe the use of lymphatic imaging in experimental systems as well as some of the emerging technologies for improving these methodologies. PMID:24956510

  2. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  3. Quantitative luminescence imaging system

    DOEpatents

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  4. Quantitative luminescence imaging system

    DOEpatents

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  5. Nonrigid Medical Image Registration Based on Mesh Deformation Constraints

    PubMed Central

    Qiu, TianShuang; Guo, DongMei

    2013-01-01

    Regularizing the deformation field is an important aspect in nonrigid medical image registration. By covering the template image with a triangular mesh, this paper proposes a new regularization constraint in terms of connections between mesh vertices. The connection relationship is preserved by the spring analogy method. The method is evaluated by registering cerebral magnetic resonance imaging (MRI) image data obtained from different individuals. Experimental results show that the proposed method has good deformation ability and topology-preserving ability, providing a new way to the nonrigid medical image registration. PMID:23424604

  6. Radiation imaging system

    DOEpatents

    Immel, David M.; Bobbit, III, John T.; Plummer, Jean R.; Folsom, Matthew D.; Serrato, Michael G.

    2016-03-22

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  7. Radiation imaging system

    DOEpatents

    Bobbitt, III, John T.; Immel, David M.; Folsom, Matthew D.; Plummer, Jean R.; Serrato, Michael G.

    2016-06-28

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  8. Adaptive stereo medical image watermarking using non-corresponding blocks.

    PubMed

    Mohaghegh, H; Karimi, N; Soroushmehr, S M R; Samavi, S; Najarian, K

    2015-08-01

    Today with the advent of technology in different medical imaging fields, the use of stereoscopic images has increased. Furthermore, with the rapid growth in telemedicine for remote diagnosis, treatment, and surgery, there is a need for watermarking. This is for copyright protection and tracking of digital media. Also, the efficient use of bandwidth for transmission of such data is another concern. In this paper an adaptive watermarking scheme is proposed that considers human visual system in depth perception. Our proposed scheme modifies maximum singular values of wavelet coefficients of stereo pair for embedding watermark bits. Experimental results show high 3D visual quality of watermarked video frames. Moreover, comparison with a compatible state of the art method shows that the proposed method is highly robust against attacks such as AWGN, salt and pepper noise, and JPEG compression. PMID:26737224

  9. Data acquisition for a medical imaging MWPC detector

    NASA Astrophysics Data System (ADS)

    McKee, B. T. A.; Harvey, P. J.; MacPhail, J. D.

    1991-12-01

    Multiwire proportional chambers, combined with drilled Pb converter stacks, are used as position sensitive gamma-ray detectors for medical imaging at Queen's University. This paper describes novel features of the address readout and data acquisition system. To obtain the interaction position, induced charges from wires in each cathode plane are combined using a three-level encoding scheme into 16 channels for amplification and discrimination, and then decoded within 150 ns using a lookup table in a 64 Kbyte EPROM. A custom interface card in an AT-class personal computer provides handshaking, rate buffering, and diagnostic capabilities for the detector data. Real-time software controls the data transfer and provides extensive monitor and control functions. The data are then transferred through an Ethernet link to a workstation for subsequent image analysis.

  10. Adaptive stereo medical image watermarking using non-corresponding blocks.

    PubMed

    Mohaghegh, H; Karimi, N; Soroushmehr, S M R; Samavi, S; Najarian, K

    2015-01-01

    Today with the advent of technology in different medical imaging fields, the use of stereoscopic images has increased. Furthermore, with the rapid growth in telemedicine for remote diagnosis, treatment, and surgery, there is a need for watermarking. This is for copyright protection and tracking of digital media. Also, the efficient use of bandwidth for transmission of such data is another concern. In this paper an adaptive watermarking scheme is proposed that considers human visual system in depth perception. Our proposed scheme modifies maximum singular values of wavelet coefficients of stereo pair for embedding watermark bits. Experimental results show high 3D visual quality of watermarked video frames. Moreover, comparison with a compatible state of the art method shows that the proposed method is highly robust against attacks such as AWGN, salt and pepper noise, and JPEG compression.

  11. Software components for medical image visualization and surgical planning

    NASA Astrophysics Data System (ADS)

    Starreveld, Yves P.; Gobbi, David G.; Finnis, Kirk; Peters, Terence M.

    2001-05-01

    Purpose: The development of new applications in medical image visualization and surgical planning requires the completion of many common tasks such as image reading and re-sampling, segmentation, volume rendering, and surface display. Intra-operative use requires an interface to a tracking system and image registration, and the application requires basic, easy to understand user interface components. Rapid changes in computer and end-application hardware, as well as in operating systems and network environments make it desirable to have a hardware and operating system as an independent collection of reusable software components that can be assembled rapidly to prototype new applications. Methods: Using the OpenGL based Visualization Toolkit as a base, we have developed a set of components that implement the above mentioned tasks. The components are written in both C++ and Python, but all are accessible from Python, a byte compiled scripting language. The components have been used on the Red Hat Linux, Silicon Graphics Iris, Microsoft Windows, and Apple OS X platforms. Rigorous object-oriented software design methods have been applied to ensure hardware independence and a standard application programming interface (API). There are components to acquire, display, and register images from MRI, MRA, CT, Computed Rotational Angiography (CRA), Digital Subtraction Angiography (DSA), 2D and 3D ultrasound, video and physiological recordings. Interfaces to various tracking systems for intra-operative use have also been implemented. Results: The described components have been implemented and tested. To date they have been used to create image manipulation and viewing tools, a deep brain functional atlas, a 3D ultrasound acquisition and display platform, a prototype minimally invasive robotic coronary artery bypass graft planning system, a tracked neuro-endoscope guidance system and a frame-based stereotaxy neurosurgery planning tool. The frame-based stereotaxy module has been

  12. Creating a classification of image types in the medical literature for visual categorization

    NASA Astrophysics Data System (ADS)

    Müller, Henning; Kalpathy-Cramer, Jayashree; Demner-Fushman, Dina; Antani, Sameer

    2012-02-01

    Forum) and NLM's (National Library of Medicine) OpenI. Furtheron, mappings to NLM's MeSH (Medical Subject Headings), RSNA's RadLex (Radiological Society of North America, Radiology Lexicon), and the IRMA code are also attempted for relevant image types. Advantages derived from such hierarchical classification for medical image retrieval are being evaluated through benchmarks such as imageCLEF, and R&D systems such as NLM's OpenI. The goal is to extend this hierarchy progressively and (through adding image types occurring in the biomedical literature) to have a terminology for visual image classification based on image types distinguishable by visual means and occurring in the medical open access literature.

  13. [A medical image semantic modeling based on hierarchical Bayesian networks].

    PubMed

    Lin, Chunyi; Ma, Lihong; Yin, Junxun; Chen, Jianyu

    2009-04-01

    A semantic modeling approach for medical image semantic retrieval based on hierarchical Bayesian networks was proposed, in allusion to characters of medical images. It used GMM (Gaussian mixture models) to map low-level image features into object semantics with probabilities, then it captured high-level semantics through fusing these object semantics using a Bayesian network, so that it built a multi-layer medical image semantic model, aiming to enable automatic image annotation and semantic retrieval by using various keywords at different semantic levels. As for the validity of this method, we have built a multi-level semantic model from a small set of astrocytoma MRI (magnetic resonance imaging) samples, in order to extract semantics of astrocytoma in malignant degree. Experiment results show that this is a superior approach.

  14. The application of coded excitation technology in medical ultrasonic Doppler imaging

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Chen, Xiaodong; Bao, Jing; Yu, Daoyin

    2008-03-01

    Medical ultrasonic Doppler imaging is one of the most important domains of modern medical imaging technology. The application of coded excitation technology in medical ultrasonic Doppler imaging system has the potential of higher SNR and deeper penetration depth than conventional pulse-echo imaging system, it also improves the image quality, and enhances the sensitivity of feeble signal, furthermore, proper coded excitation is beneficial to received spectrum of Doppler signal. Firstly, this paper analyzes the application of coded excitation technology in medical ultrasonic Doppler imaging system abstractly, showing the advantage and bright future of coded excitation technology, then introduces the principle and the theory of coded excitation. Secondly, we compare some coded serials (including Chirp and fake Chirp signal, Barker codes, Golay's complementary serial, M-sequence, etc). Considering Mainlobe Width, Range Sidelobe Level, Signal-to-Noise Ratio and sensitivity of Doppler signal, we choose Barker codes as coded serial. At last, we design the coded excitation circuit. The result in B-mode imaging and Doppler flow measurement coincided with our expectation, which incarnated the advantage of application of coded excitation technology in Digital Medical Ultrasonic Doppler Endoscope Imaging System.

  15. Medical physics: some recollections in diagnostic X-ray imaging and therapeutic radiology.

    PubMed

    Gray, J E; Orton, C G

    2000-12-01

    Medical physics has changed dramatically since 1895. There was a period of slow evolutionary change during the first 70 years after Roentgen's discovery of x rays. With the advent of the computer, however, both diagnostic and therapeutic radiology have undergone rapid growth and changes. Technologic advances such as computed tomography and magnetic resonance imaging in diagnostic imaging and three-dimensional treatment planning systems, stereotactic radiosurgery, and intensity modulated radiation therapy in radiation oncology have resulted in substantial changes in medical physics. These advances have improved diagnostic imaging and radiation therapy while expanding the need for better educated and experienced medical physics staff.

  16. Medical image fusion based on non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Zhang, Daoming; Zhang, Xianda

    2009-10-01

    Medical image fusion is a process of obtaining a new composite image from two or more source images which are from different modalities. In this paper, we proposed a novel medical image fusion scheme based on the non-negative matrix factorization (NMF) algorithm, the only resulted basis image is just the fused image. Since the CT and MRI images have a lot of pixels which are zeros, the NMF algorithm can not be employed directly. To overcome this difficulty, we first add a positive bias to the original data matrix and remove the bias from the resulted fusion image after the NMF procedure. The experiment results show that the proposed approach outperforms the existing wavelet-based methods and Laplacian pyramid-based methods.

  17. Interpretation of Medical Imaging Data with a Mobile Application: A Mobile Digital Imaging Processing Environment

    PubMed Central

    Lin, Meng Kuan; Nicolini, Oliver; Waxenegger, Harald; Galloway, Graham J.; Ullmann, Jeremy F. P.; Janke, Andrew L.

    2013-01-01

    Digital Imaging Processing (DIP) requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and DIP service, called M-DIP. The objective of the system is to (1) automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC), Neuroimaging Informatics Technology Initiative (NIFTI) to RAW formats; (2) speed up querying of imaging measurement; and (3) display high-level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle-layer database, a stand-alone DIP server, and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data at multiple zoom levels and to increase its quality to meet users’ expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services. PMID:23847587

  18. [3D interactive clipping technology in medical image processing].

    PubMed

    Sun, Shaoping; Yang, Kaitai; Li, Bin; Li, Yuanjun; Liang, Jing

    2013-09-01

    The aim of this paper is to study the methods of 3D visualization and the 3D interactive clipping of CT/MRI image sequence in arbitrary orientation based on the Visualization Toolkit (VTK). A new method for 3D CT/MRI reconstructed image clipping is presented, which can clip 3D object and 3D space of medical image sequence to observe the inner structure using 3D widget for manipulating an infinite plane. Experiment results show that the proposed method can implement 3D interactive clipping of medical image effectively and get satisfied results with good quality in short time.

  19. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. A medical image storage device is a device that provides electronic storage and retrieval..., and digital memory. (b) Classification. Class I (general controls). The device is exempt from...

  20. An introduction to medical imaging with coherent terahertz frequency radiation.

    PubMed

    Fitzgerald, A J; Berry, E; Zinovev, N N; Walker, G C; Smith, M A; Chamberlain, J M

    2002-04-01

    Methods have recently been developed that make use of electromagnetic radiation at terahertz (THz) frequencies, the region of the spectrum between millimetre wavelengths and the infrared, for imaging purposes. Radiation at these wavelengths is non-ionizing and subject to far less Rayleigh scatter than visible or infrared wavelengths, making it suitable for medical applications. This paper introduces THz pulsed imaging and discusses its potential for in vivo medical applications in comparison with existing modalities.

  1. Visual performance in medical imaging using liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Tchou, Philip Marcel

    2007-12-01

    This thesis examined the contrast performance of liquid crystal display (LCD) devices for use in medical imaging. Novel experimental methods were used to measure the ability of medical LCD devices to produce just noticeable contrast. It was demonstrated that medical LCD devices are capable of high performance in medical imaging and are suitable for conducting psychovisual research experiments. Novel methods for measuring and controlling the luminance response of an LCD were presented in Chapter 3 and used to develop a software tools to apply DICOM GSDF calibrations. Several medical LCD systems were calibrated, demonstrating that the methods can be used to reliably measure luminance and manipulate fine contrast. Chapter 4 reports on a novel method to generate low contrast bi-level bar patterns by using the full palette of available gray values. The method was used in a two alternative forced choice (2AFC) psychovisual experiment to measure the contrast threshold of human observers. Using a z-score analysis method, the results were found to be consistent with the Barten model of contrast sensitivity. Chapter 5 examined error distortion associated with using z-scores. A maximum likelihood estimation (MLE) method was presented as an alternative and was used to reevaluate the results from Chapter 4. The new results were consistent with the Barten model. Simulations were conducted to evaluate the statistical precision of the MLE method in relation to the number and distribution of trials. In Chapter 6, 2AFC tests were conducted examining contrast thresholds for complex sinusoid, white noise, and filtered noise patterns. The sinusoid test results were consistent with the Barten model while the noise patterns required more contrast for visibility. The effects of adaptation were also demonstrated. A noise visibility index (NVI) was introduced to describe noise power weighted by contrast sensitivity. Just noticeable white and filtered noise patterns exhibited similar NVI

  2. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  3. Managing radiation use in medical imaging: a multifaceted challenge.

    PubMed

    Hricak, Hedvig; Brenner, David J; Adelstein, S James; Frush, Donald P; Hall, Eric J; Howell, Roger W; McCollough, Cynthia H; Mettler, Fred A; Pearce, Mark S; Suleiman, Orhan H; Thrall, James H; Wagner, Louis K

    2011-03-01

    This special report aims to inform the medical community about the many challenges involved in managing radiation exposure in a way that maximizes the benefit-risk ratio. The report discusses the state of current knowledge and key questions in regard to sources of medical imaging radiation exposure, radiation risk estimation, dose reduction strategies, and regulatory options.

  4. Multipurpose hyperspectral imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral i...

  5. Scorpion image segmentation system

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  6. Medical Imaging for Understanding Sleep Regulation

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth

    2011-10-01

    Sleep is essential for the health of the nervous system. Lack of sleep has a profound negative effect on cognitive ability and task performance. During sustained military operations, soldiers often suffer from decreased quality and quantity of sleep, increasing their susceptibility to neurological problems and limiting their ability to perform the challenging mental tasks that their missions require. In the civilian sector, inadequate sleep and overt sleep pathology are becoming more common, with many detrimental impacts. There is a strong need for new, in vivo studies of human brains during sleep, particularly the initial descent from wakefulness. Our research team is investigating sleep using a combination of magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalography (EEG). High resolution MRI combined with PET enables localization of biochemical processes (e.g., metabolism) to anatomical structures. MRI methods can also be used to examine functional connectivity among brain regions. Neural networks are dynamically reordered during different sleep stages, reflecting the disconnect with the waking world and the essential yet unconscious brain activity that occurs during sleep.[4pt] In collaboration with Linda Larson-Prior, Washington University; Alpay Ozcan, Virginia Tech; Seong Mun, Virginia Tech; and Zang-Hee Cho, Gachon University.

  7. Ontology modularization to improve semantic medical image annotation.

    PubMed

    Wennerberg, Pinar; Schulz, Klaus; Buitelaar, Paul

    2011-02-01

    Searching for medical images and patient reports is a significant challenge in a clinical setting. The contents of such documents are often not described in sufficient detail thus making it difficult to utilize the inherent wealth of information contained within them. Semantic image annotation addresses this problem by describing the contents of images and reports using medical ontologies. Medical images and patient reports are then linked to each other through common annotations. Subsequently, search algorithms can more effectively find related sets of documents on the basis of these semantic descriptions. A prerequisite to realizing such a semantic search engine is that the data contained within should have been previously annotated with concepts from medical ontologies. One major challenge in this regard is the size and complexity of medical ontologies as annotation sources. Manual annotation is particularly time consuming labor intensive in a clinical environment. In this article we propose an approach to reducing the size of clinical ontologies for more efficient manual image and text annotation. More precisely, our goal is to identify smaller fragments of a large anatomy ontology that are relevant for annotating medical images from patients suffering from lymphoma. Our work is in the area of ontology modularization, which is a recent and active field of research. We describe our approach, methods and data set in detail and we discuss our results.

  8. A survey of medical image registration - under review.

    PubMed

    Viergever, Max A; Maintz, J B Antoine; Klein, Stefan; Murphy, Keelin; Staring, Marius; Pluim, Josien P W

    2016-10-01

    A retrospective view on the past two decades of the field of medical image registration is presented, guided by the article "A survey of medical image registration" (Maintz and Viergever, 1998). It shows that the classification of the field introduced in that article is still usable, although some modifications to do justice to advances in the field would be due. The main changes over the last twenty years are the shift from extrinsic to intrinsic registration, the primacy of intensity-based registration, the breakthrough of nonlinear registration, the progress of inter-subject registration, and the availability of generic image registration software packages. Two problems that were called urgent already 20 years ago, are even more urgent nowadays: Validation of registration methods, and translation of results of image registration research to clinical practice. It may be concluded that the field of medical image registration has evolved, but still is in need of further development in various aspects.

  9. [Automatic segmentation of three dimension medical image series].

    PubMed

    Ding, Siyi; Yang, Jie; Yao, Lixiu; Xu, Qing

    2006-08-01

    We propose an improved version of regional competition algorithm in this paper, and apply it to the automatic segmentation of medical image series, particularly in the segmentation and recognition of brain tumor. The traditional regional competition is enhanced by combining the attractive aspects of fuzzy segmentation, and thus it provides an efficient approach to segment the fuzzy and heterogeneous medical images. In order to perform regional competition on medical image series, we utilize the segmentation result of a slice to initiate the next segmented slice, while the first slice is initialized using regional growing algorithm. Moreover, we develop an algorithm to recognize the tumors automatically, taking into account its characters. Experimental results show that our algorithm performs well on the segmentation of magnetic resonance imaging (MRI) image series with high speed and precision. PMID:17002088

  10. A similarity-based data warehousing environment for medical images.

    PubMed

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing.

  11. A similarity-based data warehousing environment for medical images.

    PubMed

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. PMID:26414378

  12. 3D thermal medical image visualization tool: Integration between MRI and thermographic images.

    PubMed

    Abreu de Souza, Mauren; Chagas Paz, André Augusto; Sanches, Ionildo Jóse; Nohama, Percy; Gamba, Humberto Remigio

    2014-01-01

    Three-dimensional medical image reconstruction using different images modalities require registration techniques that are, in general, based on the stacking of 2D MRI/CT images slices. In this way, the integration of two different imaging modalities: anatomical (MRI/CT) and physiological information (infrared image), to generate a 3D thermal model, is a new methodology still under development. This paper presents a 3D THERMO interface that provides flexibility for the 3D visualization: it incorporates the DICOM parameters; different color scale palettes at the final 3D model; 3D visualization at different planes of sections; and a filtering option that provides better image visualization. To summarize, the 3D thermographc medical image visualization provides a realistic and precise medical tool. The merging of two different imaging modalities allows better quality and more fidelity, especially for medical applications in which the temperature changes are clinically significant.

  13. Interactive Medical Image Segmentation using PDE Control of Active Contours

    PubMed Central

    Karasev, Peter; Kolesov, Ivan; Fritscher, Karl; Vela, Patricio; Mitchell, Phillip; Tannenbaum, Allen

    2014-01-01

    Segmentation of injured or unusual anatomic structures in medical imagery is a problem that has continued to elude fully automated solutions. In this paper, the goal of easy-to-use and consistent interactive segmentation is transformed into a control synthesis problem. A nominal level set PDE is assumed to be given; this open-loop system achieves correct segmentation under ideal conditions, but does not agree with a human expert's ideal boundary for real image data. Perturbing the state and dynamics of a level set PDE via the accumulated user input and an observer-like system leads to desirable closed-loop behavior. The input structure is designed such that a user can stabilize the boundary in some desired state without needing to understand any mathematical parameters. Effectiveness of the technique is illustrated with applications to the challenging segmentations of a patellar tendon in MR and a shattered femur in CT. PMID:23893712

  14. A Medical Image Backup Architecture Based on a NoSQL Database and Cloud Computing Services.

    PubMed

    Santos Simões de Almeida, Luan Henrique; Costa Oliveira, Marcelo

    2015-01-01

    The use of digital systems for storing medical images generates a huge volume of data. Digital images are commonly stored and managed on a Picture Archiving and Communication System (PACS), under the DICOM standard. However, PACS is limited because it is strongly dependent on the server's physical space. Alternatively, Cloud Computing arises as an extensive, low cost, and reconfigurable resource. However, medical images contain patient information that can not be made available in a public cloud. Therefore, a mechanism to anonymize these images is needed. This poster presents a solution for this issue by taking digital images from PACS, converting the information contained in each image file to a NoSQL database, and using cloud computing to store digital images.

  15. A Medical Image Backup Architecture Based on a NoSQL Database and Cloud Computing Services.

    PubMed

    Santos Simões de Almeida, Luan Henrique; Costa Oliveira, Marcelo

    2015-01-01

    The use of digital systems for storing medical images generates a huge volume of data. Digital images are commonly stored and managed on a Picture Archiving and Communication System (PACS), under the DICOM standard. However, PACS is limited because it is strongly dependent on the server's physical space. Alternatively, Cloud Computing arises as an extensive, low cost, and reconfigurable resource. However, medical images contain patient information that can not be made available in a public cloud. Therefore, a mechanism to anonymize these images is needed. This poster presents a solution for this issue by taking digital images from PACS, converting the information contained in each image file to a NoSQL database, and using cloud computing to store digital images. PMID:26262231

  16. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips

  17. Medical Image Authentication Using DPT Watermarking: A Preliminary Attempt

    NASA Astrophysics Data System (ADS)

    Wong, M. L. Dennis; Goh, Antionette W.-T.; Chua, Hong Siang

    Secure authentication of digital medical image content provides great value to the e-Health community and medical insurance industries. Fragile Watermarking has been proposed to provide the mechanism to authenticate digital medical image securely. Transform Domain based Watermarking are typically slower than spatial domain watermarking owing to the overhead in calculation of coefficients. In this paper, we propose a new Discrete Pascal Transform based watermarking technique. Preliminary experiment result shows authentication capability. Possible improvements on the proposed scheme are also presented before conclusions.

  18. Magnetite Nanoparticles for Medical MR Imaging

    PubMed Central

    Stephen, Zachary R.; Kievit, Forrest M.; Zhang, Miqin

    2011-01-01

    Nanotechnology has given scientists new tools for the development of advanced materials for the detection and diagnosis of disease. Iron oxide nanoparticles (SPIONs) in particular have been extensively investigated as novel magnetic resonance imaging (MRI) contrast agents due to a combination of favorable superparamagnetic properties, biodegradability, and surface properties of easy modification for improved in vivo kinetics and multifunctionality. This review discusses the basics of MR imaging, the origin of SPION’s unique magnetic properties, recent developments in MRI acquisition methods for detection of SPIONs, synthesis and post-synthesis processes that improve SPION’s imaging characteristics, and an outlook on the translational potential of SPIONs. PMID:22389583

  19. Student Perspectives of Imaging Anatomy in Undergraduate Medical Education

    ERIC Educational Resources Information Center

    Machado, Jorge Americo Dinis; Barbosa, Joselina Maria Pinto; Ferreira, Maria Amelia Duarte

    2013-01-01

    Radiological imaging is gaining relevance in the acquisition of competencies in clinical anatomy. The aim of this study was to evaluate the perceptions of medical students on teaching/learning of imaging anatomy as an integrated part of anatomical education. A questionnaire was designed to evaluate the perceptions of second-year students…

  20. User Oriented Platform for Data Analytics in Medical Imaging Repositories.

    PubMed

    Valerio, Miguel; Godinho, Tiago Marques; Costa, Carlos

    2016-01-01

    The production of medical imaging studies and associated data has been growing in the last decades. Their primary use is to support medical diagnosis and treatment processes. However, the secondary use of the tremendous amount of stored data is generally more limited. Nowadays, medical imaging repositories have turned into rich databanks holding not only the images themselves, but also a wide range of metadata related to the medical practice. Exploring these repositories through data analysis and business intelligence techniques has the potential of increasing the efficiency and quality of the medical practice. Nevertheless, the continuous production of tremendous amounts of data makes their analysis difficult by conventional approaches. This article proposes a novel automated methodology to derive knowledge from medical imaging repositories that does not disrupt the regular medical practice. Our method is able to apply statistical analysis and business intelligence techniques directly on top of live institutional repositories. It is a Web-based solution that provides extensive dashboard capabilities, including complete charting and reporting options, combined with data mining components. Moreover, it enables the operator to set a wide multitude of query parameters and operators through the use of an intuitive graphical interface.

  1. User Oriented Platform for Data Analytics in Medical Imaging Repositories.

    PubMed

    Valerio, Miguel; Godinho, Tiago Marques; Costa, Carlos

    2016-01-01

    The production of medical imaging studies and associated data has been growing in the last decades. Their primary use is to support medical diagnosis and treatment processes. However, the secondary use of the tremendous amount of stored data is generally more limited. Nowadays, medical imaging repositories have turned into rich databanks holding not only the images themselves, but also a wide range of metadata related to the medical practice. Exploring these repositories through data analysis and business intelligence techniques has the potential of increasing the efficiency and quality of the medical practice. Nevertheless, the continuous production of tremendous amounts of data makes their analysis difficult by conventional approaches. This article proposes a novel automated methodology to derive knowledge from medical imaging repositories that does not disrupt the regular medical practice. Our method is able to apply statistical analysis and business intelligence techniques directly on top of live institutional repositories. It is a Web-based solution that provides extensive dashboard capabilities, including complete charting and reporting options, combined with data mining components. Moreover, it enables the operator to set a wide multitude of query parameters and operators through the use of an intuitive graphical interface. PMID:27577479

  2. Principal Components Analysis In Medical Imaging

    NASA Astrophysics Data System (ADS)

    Weaver, J. B.; Huddleston, A. L.

    1986-06-01

    Principal components analysis, PCA, is basically a data reduction technique. PCA has been used in several problems in diagnostic radiology: processing radioisotope brain scans (Ref.1), automatic alignment of radionuclide images (Ref. 2), processing MRI images (Ref. 3,4), analyzing first-pass cardiac studies (Ref. 5) correcting for attenuation in bone mineral measurements (Ref. 6) and in dual energy x-ray imaging (Ref. 6,7). This paper will progress as follows; a brief introduction to the mathematics of PCA will be followed by two brief examples of how PCA has been used in the literature. Finally my own experience with PCA in dual-energy x-ray imaging will be given.

  3. Registering multiple medical images using the shared chain mutual information

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Wang, Qiang; Shen, Yi

    2007-07-01

    A new approach to the simultaneous registration of multiple medical images is proposed using shared chain mutual information (SCMI) as the matching measure. The presented method applies SCMI to measure the shared information between the multiple images. Registration is achieved by adjusting the relative position of the floating image until the SCMI between all the images is maximized. Using this measure, we registered three and four simulated magnetic resonance imaging (MRI) images using downhill simplex optimization to search for the optimal transformation parameters. Accuracy and validity of the proposed method for multiple-image registration are testified by comparing the results with that of two-image registration. Furthermore, the performance of the proposed method is validated by registering the real ultrasonic image sequence.

  4. Nanoengineered multimodal contrast agent for medical image guidance

    NASA Astrophysics Data System (ADS)

    Perkins, Gregory J.; Zheng, Jinzi; Brock, Kristy; Allen, Christine; Jaffray, David A.

    2005-04-01

    Multimodality imaging has gained momentum in radiation therapy planning and image-guided treatment delivery. Specifically, computed tomography (CT) and magnetic resonance (MR) imaging are two complementary imaging modalities often utilized in radiation therapy for visualization of anatomical structures for tumour delineation and accurate registration of image data sets for volumetric dose calculation. The development of a multimodal contrast agent for CT and MR with prolonged in vivo residence time would provide long-lasting spatial and temporal correspondence of the anatomical features of interest, and therefore facilitate multimodal image registration, treatment planning and delivery. The multimodal contrast agent investigated consists of nano-sized stealth liposomes encapsulating conventional iodine and gadolinium-based contrast agents. The average loading achieved was 33.5 +/- 7.1 mg/mL of iodine for iohexol and 9.8 +/- 2.0 mg/mL of gadolinium for gadoteridol. The average liposome diameter was 46.2 +/- 13.5 nm. The system was found to be stable in physiological buffer over a 15-day period, releasing 11.9 +/- 1.1% and 11.2 +/- 0.9% of the total amounts of iohexol and gadoteridol loaded, respectively. 200 minutes following in vivo administration, the contrast agent maintained a relative contrast enhancement of 81.4 +/- 13.05 differential Hounsfield units (ΔHU) in CT (40% decrease from the peak signal value achieved 3 minutes post-injection) and 731.9 +/- 144.2 differential signal intensity (ΔSI) in MR (46% decrease from the peak signal value achieved 3 minutes post-injection) in the blood (aorta), a relative contrast enhancement of 38.0 +/- 5.1 ΔHU (42% decrease from the peak signal value achieved 3 minutes post-injection) and 178.6 +/- 41.4 ΔSI (62% decrease from the peak signal value achieved 3 minutes post-injection) in the liver (parenchyma), a relative contrast enhancement of 9.1 +/- 1.7 ΔHU (94% decrease from the peak signal value achieved 3 minutes

  5. Medical imaging as a contributor to today's healthcare crisis.

    PubMed

    McVey, Lynn

    2008-01-01

    At the end of 2007, Medicare reported the increase in medical imaging costs overtook increases in pharmaceutical costs for the first time. Imaging costs accounted for a 20% increase, while pharmaceuticals accounted for just 10%. There are two common areas where imaging costs impact overall healthcare spending: unnecessary exams and operational management. This article does not suggest alternatives to today's imaging management practices. It provides economic information, which may be valuable to imaging managers who want to gauge the costs of operating their own departments to what is going on in the industry. PMID:18572722

  6. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  7. Communication and storage of digital medical images in database.

    PubMed

    Evangelista, N; Camapum, J; Amemiya, E

    2005-01-01

    This paper presents the development of an application for communication and storage of clinical images based upon the Digital Imaging and Communications in Medicine (DICOM) protocol. The proposed solution is composed of three different databases servers, PostgreSQL, Firebird and Oracle, and a DICOM client software, that uses the protocol TCP/IP. It provides the communication services, transmission, storage and administration of medical images. PMID:17281491

  8. Fast volume rendering for medical image.

    PubMed

    Ying, Hu; Xin-He, Xu

    2005-01-01

    In orders to improve the rendering speed of ray casting and make this technique a practical routine in medical applications, two new and improved techniques are described in this paper. First, an integrated method using "proximity clouds" technique is applied to speed up ray casting. The second technique for speeding up the 3D rendering is done through a parallel implementation based on "single computer multi CPU" model Four groups of CT data sets have been used to validate the improvement of the rendering speed. The result shown that the interactive rendering speed is up to 6-10 fps, which is almost real-time making our algorithm practical in medical visualization routine.

  9. XEMIS: A liquid xenon detector for medical imaging

    NASA Astrophysics Data System (ADS)

    Gallego Manzano, L.; Bassetto, S.; Beaupere, N.; Briend, P.; Carlier, T.; Cherel, M.; Cussonneau, J.-P.; Donnard, J.; Gorski, M.; Hamanishi, R.; Kraeber Bodéré, F.; Le Ray, P.; Lemaire, O.; Masbou, J.; Mihara, S.; Morteau, E.; Scotto Lavina, L.; Stutzmann, J.-S.; Tauchi, T.; Thers, D.

    2015-07-01

    A new medical imaging technique based on the precise 3D location of a radioactive source by the simultaneous detection of 3γ rays has been proposed by Subatech laboratory. To take advantage of this novel technique a detection device based on a liquid xenon Compton telescope and a specific (β+, γ) emitter radionuclide, 44Sc, are required. A first prototype of a liquid xenon time projection chamber called XEMIS1 has been successfully developed showing very promising results for the energy and spatial resolutions for the ionization signal in liquid xenon, thanks to an advanced cryogenics system, which has contributed to a high liquid xenon purity with a very good stability and an ultra-low noise front-end electronics (below 100 electrons) operating at liquid xenon temperature. The very positive results obtained with XEMIS1 have led to the development of a second prototype for small animal imaging, XEMIS2, which is now under development. To study the feasibility of the 3γ imaging technique and optimize the characteristics of the device, a complete Monte Carlo simulation has been also carried out. A preliminary study shows very positive results for the sensitivity, energy and spatial resolutions of XEMIS2.

  10. Advanced imaging communication system

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Rice, R. F.

    1977-01-01

    Key elements of system are imaging and nonimaging sensors, data compressor/decompressor, interleaved Reed-Solomon block coder, convolutional-encoded/Viterbi-decoded telemetry channel, and Reed-Solomon decoding. Data compression provides efficient representation of sensor data, and channel coding improves reliability of data transmission.

  11. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic pulsed echo imaging system....

  12. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic pulsed echo imaging system....

  13. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  14. Physical And Medical Attributes Of Six Contemporary Noninvasive Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.

    1981-11-01

    Digital subtraction angiography(DSA)is compared to five other noninvasive imaging methods with respect to physical attributes and medical applications. 1) Digital subtraction angiography measures flow channel (vessel) anatomy and vascular leaks in regions where signals from under and overlying vascular pools do not conflict in strength with the vessel or tissue of interest. 2) X-ray computed tomography, in principle, can separate the under and overlying signals, yet presently it is limited in speed, axial coverage, and computational burden for tasks DSA can efficiently perform. Possible exceptions are the dynamic spatial reconstructor (DSR) of Mayo Clinic and the system under construction at the University of California, San Francisco. 3) Heavy ion imaging measures electron density and is less sensitive to injected contrast than x-ray imaging which has the advantage of the photoelectric effect. A unique attribute of heavy ion imaging is its potential for treatment planning and the fact that beam hardening is not a physical problem. 4) Ultrasound detects surfaces, bulk tissue characteristics, and blood velocity. Doppler ultrasound competes with DSA in some regions of the body and generally involves less equipment and patient procedures. Ultrasound vessel imaging and range-gated Doppler have limitations due to sound absorption by atheromatous tissue and available imaging windows. 5) Emission tomography measures receptor site distribution, metabolism, permeability, and tissue perfusion. Resolution is limited to 7mm full width half maximum (FWHM) in the near future, and extraction of metabolic and perfusion information usually requires kinetic analyses with statistically poor data. The ability of positron tomography to measure metabolism (sugar, fatty acid, and oxygen utilization) and the ability to measure tissue perfusion with single photon tomography (17 mm FWHM) or PET (7 mm FWHM) using non-cyclotron produced radionuclides are the major unique features of emission

  15. A CMOS image sensor dedicated to medical gamma camera application

    NASA Astrophysics Data System (ADS)

    Salahuddin, Nur S.; Paindavoine, Michel; Ginhac, Dominique; Parmentier, Michel; Tamda, Najia

    2005-03-01

    Generally, medical Gamma Camera are based on the Anger principle. These cameras use a scintillator block coupled to a bulky array of photomultiplier tube (PMT). To simplify this, we designed a new integrated CMOS image sensor in order to replace bulky PMT photodetetors. We studied several photodiodes sensors including current mirror amplifiers. These photodiodes have been fabricated using a CMOS 0.6 micrometers process from Austria Mikro Systeme (AMS). Each sensor pixel in the array occupies respectively, 1mm x 1mm area, 0.5mm x 0.5mm area and 0.2mm 0.2mm area with fill factor 98 % and total chip area is 2 square millimeters. The sensor pixels show a logarithmic response in illumination and are capable of detecting very low green light emitting diode (less than 0.5 lux) . These results allow to use our sensor in new Gamma Camera solid-state concept.

  16. Oncological image analysis: medical and molecular image analysis

    NASA Astrophysics Data System (ADS)

    Brady, Michael

    2007-03-01

    This paper summarises the work we have been doing on joint projects with GE Healthcare on colorectal and liver cancer, and with Siemens Molecular Imaging on dynamic PET. First, we recall the salient facts about cancer and oncological image analysis. Then we introduce some of the work that we have done on analysing clinical MRI images of colorectal and liver cancer, specifically the detection of lymph nodes and segmentation of the circumferential resection margin. In the second part of the paper, we shift attention to the complementary aspect of molecular image analysis, illustrating our approach with some recent work on: tumour acidosis, tumour hypoxia, and multiply drug resistant tumours.

  17. Tactical Imaging System

    NASA Astrophysics Data System (ADS)

    Mocenter, Michael M.

    1990-02-01

    The ability to send photographic information to command centers is a vital element in performing effective near real-time reconnaissance and surveillance operations. This imagery, in conjunction with other battlefield data, provides the battlefield commander with up-to-date intelligence for making decisions. Until recently, the ability to provide this real-time information was severely restricted by the logistics of physically moving, developing, and then disseminating the film. This time delay resulted in out-of-date, stale intelligence. This problem situation has eased recently due to technological developments that have been instrumental in facilitating the dissemination of near real-time information to forward operating areas and behind enemy lines. The Naval Air Development Center (NAVAIRDEVCEN) has capitalized on these developments and established the Tactical Imaging System (TIS). This miniaturized, man-pack, SATCOM/HF transmitting system provides near real-time tactical imagery. It consists of an image sensor, image intensifier, zoom lens, and image transmission processor. This paper provides an overview of the TIS components, specifications, operations, and future developments and applications. The TIS will have potential application in areas such as identification (friend or foe), reconnaissance, surveillance, and battlefield assessment. Under the TIS program, NAVAIRDEVCEN has developed hands-on experience in still video images and related technologies, including fleet satellite communications, HF transmission, image compression algorithms, VSLI integrated circuitry design, and day/night imagery techniques. NAVAIRDEVCEN has developed a complete, miniaturized system to conduct operational demonstrations, and to demonstrate operational tactics and utilization concepts. This paper provides an overview of the TIS components, specifications, operations, and future developments and applications.

  18. RadGSP: a medical image display and user interface for UWGSP3

    NASA Astrophysics Data System (ADS)

    Yee, David K.; Lee, Woobin; Kim, Donglok; Haass, Clark D.; Rowberg, Alan H.; Kim, Yongmin

    1991-05-01

    Many issues must be addressed and resolved in order to bring a complete imaging workstation into everyday use by radiologists and medical researchers. Important design issues for developing an imaging workstation include image quality, system response time, the user interface and image storage. The Image Computing Systems Laboratory (ICSL) at the University of Washington has been developing a series of inexpensive graphics and image processing workstations with high performance by taking advantage of a sharp decrease in hardware costs, increasingly more powerful VLSI chips, and versatile personal computers and workstations. After gaining experience with two previous image processing systems, UWGSP3 (University of Washington Graphics System Processor #3), a third-generation workstation based on the NeXT Computer and UWGSP3-HI, a host-independent version, that can work with any host computer via an interface card, were developed. UWGSP3, a highly integrated, low-cost workstation, is a complete image display and computing system capable of meeting many of the requirements of a medical imaging workstation provided that a suitable user interface is developed. To demonstrate this capability, RadGSP, a prototype user interface and application software for radiologist use, has been developed. This paper will first describe the UWGSP3-HI system for background information before describing the implementation and evaluation of RadGSP, and current radiology imaging workstation research in progress at ICSL.

  19. Comparison of automated medication-management systems.

    PubMed

    Perini, V J; Vermeulen, L C

    1994-08-01

    Automated devices for managing medication distribution are described. Shrinking operating budgets are causing many departments of pharmacy to consider automation to maximize the cost-effective use of professional personnel. Many devices and systems that are currently available or under development can help with (1) distribution of medication to and from the patient care area, (2) distribution of medication directly to the patient, (3) inventory control, (4) management of controlled substances, or (5) documentation of medication administration. Medication-management devices based in the patient care unit (Lionville CDModule, Access, Meditrol, Argus, MedStation, Sure-Med, and SelecTrac-Rx) are designed to replace manual filling of unit dose carts or to increase control over floor-stock medications and controlled substances. They provide immediate access to medications but can take extra time to fill. Centrally located medication-management systems (Automated Pharmacy Station, ATC-212, and Medispense) are designed to replace or improve a manual system for filling unit dose carts. They may have financial and practical advantages over systems based in the patient care unit because they avoid redundant inventories. However, a manual system is still needed for some medications, particularly those that need refrigeration. Several point-of-care information systems also have medication-management components (MedTake, CliniCare, Automated Medication Administration Tracking, and MedLynk). They provide rapid access to patient information and facilitate documentation. Many incorporate bar-code technology and radio-frequency transmission of data. An automated management system can combine increased efficiency with decreased risk of error. Descriptions of available systems may help pharmacists choose a system that meets their needs.

  20. Watermarking techniques used in medical images: a survey.

    PubMed

    Mousavi, Seyed Mojtaba; Naghsh, Alireza; Abu-Bakar, S A R

    2014-12-01

    The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. As a result of this, there is a need for medical image watermarking (MIW). However, MIW needs to be performed with special care for two reasons. Firstly, the watermarking procedure cannot compromise the quality of the image. Secondly, confidential patient information embedded within the image should be flawlessly retrievable without risk of error after image decompressing. Despite extensive research undertaken in this area, there is still no method available to fulfill all the requirements of MIW. This paper aims to provide a useful survey on watermarking and offer a clear perspective for interested researchers by analyzing the strengths and weaknesses of different existing methods.

  1. Computation of morphological texture features for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Patel, Manish J.; Kehtarnavaz, Nasser; Dougherty, Edward R.; Batman, Sinan; Sivakumar, Krishnamoorthy; Popov, Antony T.

    1998-06-01

    Texture is an important attribute which is widely used in various image analysis applications. Among texture features, morphological texture features are least utilized in medical image analysis. From a computational standpoint, extracting morphological texture features from an image is a challenging task. The computational problem is made even greater in medical imaging applications where large images such as mammograms are to be analyzed. This paper discusses an efficient method to compute morphological texture features for any geometry of a structuring element corresponding to a texture type. A benchmarking of the code on three machines (Sun SPARC 20, Pentium II based Dell 400 workstation, and SGI Power Challenge 10000XL) as well as a parallel processing implementation was performed to obtain an optimum processing configuration. A sample processed mammogram is shown to illustrate the code outcome.

  2. Hybrid segmentation framework for 3D medical image analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  3. Quantitative Luminescence Imaging System

    SciTech Connect

    Batishko, C.R.; Stahl, K.A.; Fecht, B.A.

    1992-12-31

    The goal of the MEASUREMENT OF CHEMILUMINESCENCE project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

  4. Clinical challenges associated with incorporation of nonradiology images into the electronic medical record

    NASA Astrophysics Data System (ADS)

    Siegel, Eliot L.; Reiner, Bruce I.

    2001-08-01

    To date, the majority of Picture Archival and Communication Systems (PACS) have been utilized only for capture, storage, and display of radiology and in some cases, nuclear medicine images. Medical images for other subspecialty areas are currently stored in local, independent systems, which typically are not accessible throughout the healthcare enterprise and do not communicate with other hospital information or image management systems. It is likely that during the next few years, healthcare centers will expand PAC system capability to incorporate these multimedia data or alternatively, hospital-wide electronic patient record systems will be able to provide this function.

  5. Texture-based medical image compression.

    PubMed

    Bairagi, Vinayak K; Sapkal, Ashok M; Tapaswi, Ankita

    2013-02-01

    Image processing is one of the most researched areas these days due to the flooding of the internet with an overload of images. The noble medicine industry is not left untouched. It has also suffered with an excess of patient record storage and maintenance. With the advent of automation of the industries in the world, the medicine industry has sought to change and provide a more portable feel to it, leading to the fields of telemedicine and such. Our algorithm comes in handy in such scenarios where large amount of data needs to be transmitted over the network for perusal by another consultant. We aim for a visual quality approach in our algorithm rather than pixel-wise fidelity. We utilize parameters of edges and textures as the basic parameters in our compression algorithm.

  6. Conceptual Drivers for an Exploration Medical System

    NASA Technical Reports Server (NTRS)

    Antonsen, E.; Canga, M.

    2016-01-01

    Interplanetary spaceflight provides unique challenges that have not been encountered in prior spaceflight experience. Extended distance and timeframes introduce new challenges such as an inability to resupply medications and consumables, inability to evacuate injured or ill crew, and communication delays that introduce a requirement for some level of autonomous medical capability. Because of these challenges the approaches used in prior programs have limited application to a proposed three year Mars mission. This paper proposes a paradigm shift in the approach to medical risk mitigation for crew health and mission objectives threatened by inadequate medical capabilities in the setting of severely limited resources. A conceptual approach is outlined to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this new paradigm. Using NASA Design Reference Missions this process assesses each mission phase to deconstruct medical needs at any point during a mission. Two operational categories are proposed, nominal operations (pre-planned activities) and contingency operations (medical conditions requiring evaluation) that meld clinical needs and research needs into a single system. These definitions are used to derive a task level analysis to support quantifiable studies into a medical capabilities trade. This trade allows system design to proceed from both a mission centric and ethics-based approach to medical limitations in an exploration class mission.

  7. Conceptual Drivers for an Exploration Medical System

    NASA Technical Reports Server (NTRS)

    Antonsen, Erik; Hanson, Andrea; Shah, Ronak; Reed, Rebekah; Canga, Michael

    2016-01-01

    Interplanetary spaceflight, such as NASA's proposed three-year mission to Mars, provides unique and novel challenges when compared with human spaceflight to date. Extended distance and multi-year missions introduce new elements of operational complexity and additional risk. These elements include: inability to resupply medications and consumables, inability to evacuate injured or ill crew, uncharted psychosocial conditions, and communication delays that create a requirement for some level of autonomous medical capability. Because of these unique challenges, the approaches used in prior programs have limited application to a Mars mission. On a Mars mission, resource limitations will significantly constrain available medical capabilities, and require a paradigm shift in the approach to medical system design and risk mitigation for crew health. To respond to this need for a new paradigm, the Exploration Medical Capability (ExMC) Element is assessing each Mars mission phase-transit, surface stay, rendezvous, extravehicular activity, and return-to identify and prioritize medical needs for the journey beyond low Earth orbit (LEO). ExMC is addressing both planned medical operations, and unplanned contingency medical operations that meld clinical needs and research needs into a single system. This assessment is being used to derive a gap analysis and studies to support meaningful medical capabilities trades. These trades, in turn, allow the exploration medical system design to proceed from both a mission centric and ethics-based approach, and to manage the risks associated with the medical limitations inherent in an exploration class mission. This paper outlines the conceptual drivers used to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this paradigm. Keywords: (Max 6 keywords: exploration, medicine, spaceflight, Mars, research, NASA)

  8. [A medical consumable material management information system].

    PubMed

    Tang, Guoping; Hu, Liang

    2014-05-01

    Medical consumables material is essential supplies to carry out medical work, which has a wide range of varieties and a large amount of usage. How to manage it feasibly and efficiently that has been a topic of concern to everyone. This article discussed about how to design a medical consumable material management information system that has a set of standardized processes, bring together medical supplies administrator, suppliers and clinical departments. Advanced management mode, enterprise resource planning (ERP) applied to the whole system design process. PMID:25241525

  9. Oral antioxidants for radioprotection during medical imaging examinations

    NASA Astrophysics Data System (ADS)

    Velauthapillai, Nivethan

    The oncogenic effect of ionizing radiation (IR) is clearly established and occurs in response to DNA damage. Many diagnostic imaging exams make use of IR and the oncogenic risk of IR-based imaging has been calculated. We hypothesized that the DNA damage sustained from IR exposure during medical imaging exams could be reduced by pre-medicating patients with antioxidants. First, we tested and validated a method for measuring DNA double-strand breaks (DSBs) in peripheral blood mononuclear cells (PBMCs) exposed to low doses of ionizing radiation. Afterwards, we conducted a pilot clinical study in which we administered oral antioxidants to patients undergoing bone scans, prior to radiotracer injection. We showed that oral antioxidant pre-medication reduced the number of DSBs in PBMCs induced by radiotracer injection. Our study shows proof-of-principle for this simple and inexpensive approach to radioprotection in the clinical setting.

  10. Contour detect in the medical image by shearlet transform

    NASA Astrophysics Data System (ADS)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Rios, Ramiro; Simonov, Konstantin; Romanenko, Alexey

    2015-07-01

    Contour detect in the urology medical image. The investigation algorithm FFST revealed that the contours of objects can be obtained as the sum of the coefficients shearlet transform a fixed value for the last scale and the of all possible values of the shift parameter. The results of this task using a modified algorithm FFST for data processing urology image is show. In the results of the corresponding calculations for some images and a comparison with filters Sobel and Prewitt. Shows the relevant calculations for some images and a comparison with Sobel and Prewitt filters respectively.

  11. FEM-based simulation of tumor growth in medical image

    NASA Astrophysics Data System (ADS)

    Luo, Shuqian; Nie, Ying

    2004-05-01

    Brain model has found wide applications in areas including surgical-path planning, image-guided surgery systems, and virtual medical environments. In comparison with the modeling of normal brain anatomy, the modeling of anatomical abnormalities appears to be rather weak. Particularly, there are considerable differences between abnormal brain images and normal brain images, due to the growth of brain tumor. In order to find the correspondence between abnormal brain images and normal ones, it is necessary to make an estimation or simulation of the brain deformation. In this paper, a deformable model of brain tissue with both geometric and physical nonlinear properties based on finite element method is presented. It is assumed that the brain tissue are nonlinearly elastic solids obeying the equations of an incompressible nonlinearly elastics neo-Hookean model. we incorporate the physical inhomogeneous of brain tissue into our FEM model. The non-linearity of the model needs to solve the deformation of the model using an iteration method. The Updated Lagrange for iteration is used. To assure the convergence of iteration, we adopt the fixed arc length method. This model has advantages over those linear models in its more real tissue properties and its capability of simulating more serious brain deformation. The inclusion of second order displacement items into the balance and geometry functions allows for the estimation of more serious brain deformation. We referenced the model presented by Stelios K so as to ascertain the initial position of tumor as well as our tumor model definition. Furthermore, we expend it from 2-D to 3-D and simplify the calculation process.

  12. Multimodality medical image database for temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-05-01

    This paper presents the development of a human brain multi-modality database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as non-verbal Wechsler memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication matches the neurosurgeons expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  13. Education for Emergency Medical Systems

    ERIC Educational Resources Information Center

    Abercrombie, Thompson T.

    1977-01-01

    Four levels of emergency medical technician training offered at the School of Community and Allied Health Resources, University of Alabama, Birmingham, are described. The current last step in training is the associate degree. Also described are two other programs, one on emergency procedures for allied health specialists and an elective in…

  14. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Karpetas, G. E.; Fountos, G. P.; Kalyvas, N. I.; Martini, Niki; Koukou, Vaia; Valais, I. G.; Kandarakis, I. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations.

  15. Medical Imaging of Oral and Oropharyngeal Cancer.

    PubMed

    Anderson, Susan M

    2015-01-01

    Oral cancer is associated with documented risk factors, yet no comprehensive screening program is in place in the United States for early detection of the disease. Oral cancer often is diagnosed in more advanced stages, resulting in a poor prognosis. Dental practitioners and radiographers play an important role in the management of the disease and in helping to improve the quality of life for people who have oral cancer. This article discusses types of oral and oropharyngeal cancer, their diagnosis, treatment options, and the role of dental imaging in patients with these cancers. PMID:26538220

  16. Linking medical records to an expert system

    NASA Technical Reports Server (NTRS)

    Naeymi-Rad, Frank; Trace, David; Desouzaalmeida, Fabio

    1991-01-01

    This presentation will be done using the IMR-Entry (Intelligent Medical Record Entry) system. IMR-Entry is a software program developed as a front-end to our diagnostic consultant software MEDAS (Medical Emergency Decision Assistance System). MEDAS (the Medical Emergency Diagnostic Assistance System) is a diagnostic consultant system using a multimembership Bayesian design for its inference engine and relational database technology for its knowledge base maintenance. Research on MEDAS began at the University of Southern California and the Institute of Critical Care in the mid 1970's with support from NASA and NSF. The MEDAS project moved to Chicago in 1982; its current progress is due to collaboration between Illinois Institute of Technology, The Chicago Medical School, Lake Forest College and NASA at KSC. Since the purpose of an expert system is to derive a hypothesis, its communication vocabulary is limited to features used by its knowledge base. The development of a comprehensive problem based medical record entry system which could handshake with an expert system while creating an electronic medical record at the same time was studied. IMR-E is a computer based patient record that serves as a front end to the expert system MEDAS. IMR-E is a graphically oriented comprehensive medical record. The programs major components are demonstrated.

  17. Secure public cloud platform for medical images sharing.

    PubMed

    Pan, Wei; Coatrieux, Gouenou; Bouslimi, Dalel; Prigent, Nicolas

    2015-01-01

    Cloud computing promises medical imaging services offering large storage and computing capabilities for limited costs. In this data outsourcing framework, one of the greatest issues to deal with is data security. To do so, we propose to secure a public cloud platform devoted to medical image sharing by defining and deploying a security policy so as to control various security mechanisms. This policy stands on a risk assessment we conducted so as to identify security objectives with a special interest for digital content protection. These objectives are addressed by means of different security mechanisms like access and usage control policy, partial-encryption and watermarking. PMID:25991144

  18. Optimal embedding for shape indexing in medical image databases.

    PubMed

    Qian, Xiaoning; Tagare, Hemant D

    2005-01-01

    Fast retrieval using organ shapes is crucial in medical image databases since shape is a clinically prominent feature. In this paper, we propose that 2-D shapes in medical image databases can be indexed by embedding them into a vector space and using efficient vector space indexing. An optimal shape space embedding is proposed for this purpose. Experimental results of indexing vertebral shapes in the NHANES II database are presented. The results show that vector space indexing following embedding gives superior performance than metric indexing.

  19. Medical Imaging of Neglected Tropical Diseases of the Americas.

    PubMed

    Jones, Patrick; Mazal, Jonathan

    2016-01-01

    Neglected tropical diseases are a group of protozoan, parasitic, bacterial, and viral diseases endemic in 149 countries causing substantial illness globally. Extreme poverty and warm tropical climates are the 2 most potent forces promoting the spread of neglected tropical diseases. These forces are prevalent in Central and South America, as well as the U.S. Gulf Coast. Advanced cases often require specialized medical imaging for diagnosis, disease staging, and follow-up. This article offers a review of epidemiology, pathophysiology, clinical manifestations, diagnosis (with special attention to medical imaging), and treatment of neglected tropical diseases specific to the Americas.

  20. Imaging system fundamentals

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2011-05-01

    Point-and-shoot, TV studio broadcast, and thermal infrared imaging cameras have significantly different applications. A parameter that applies to all imaging systems is Fλ/d, where F is the focal ratio, λ is the wavelength, and d is the detector size. Fλ/d uniquely defines the shape of the camera modulation transfer function. When Fλ/d<2, aliased signal corrupts the imagery. Mathematically, the worst case analysis assumes that the scene contains all spatial frequencies with equal amplitudes. This quantifies the potential for aliasing and is called the spurious response. Digital data cannot be seen; it resides in a computer. Cathode ray tubes, flat panel displays, and printers convert the data into an analog format and are called reconstruction filters. The human visual system is an additional reconstruction filter. Different displays and variable viewing distance affect the perceived image quality. Simulated imagery illustrates different Fλ/d ratios, displays, and sampling artifacts. Since the human visual system is primarily sensitive to intensity variations, aliasing (a spatial frequency phenomenon) is not considered bothersome in most situations.

  1. Technical challenges for the construction of a medical image database

    NASA Astrophysics Data System (ADS)

    Ring, Francis J.; Ammer, Kurt; Wiecek, Boguslaw; Plassmann, Peter; Jones, Carl D.; Jung, Anna; Murawski, Piotr

    2005-10-01

    Infrared thermal imaging was first made available to medicine in the early 1960's. Despite a large number of research publications on the clinical application of the technique, the images have been largely qualitative. This is in part due to the imaging technology itself, and the problem of data exchange between different medical users, with different hardware. An Anglo Polish collaborative study was set up in 2001 to identify and resolve the sources of error and problems in medical thermal imaging. Standardisation of the patient preparation, imaging hardware, image capture and analysis has been studied and developed by the group. A network of specialist centres in Europe is planned to work to establish the first digital reference atlas of quantifiable images of the normal healthy human body. Further processing techniques can then be used to classify abnormalities found in disease states. The follow up of drug treatment has been successfully monitored in clinical trials with quantitative thermal imaging. The collection of normal reference images is in progress. This paper specifies the areas found to be the source of unwanted variables, and the protocols to overcome them.

  2. Consistency and standardization of color in medical imaging: a consensus report.

    PubMed

    Badano, Aldo; Revie, Craig; Casertano, Andrew; Cheng, Wei-Chung; Green, Phil; Kimpe, Tom; Krupinski, Elizabeth; Sisson, Christye; Skrøvseth, Stein; Treanor, Darren; Boynton, Paul; Clunie, David; Flynn, Michael J; Heki, Tatsuo; Hewitt, Stephen; Homma, Hiroyuki; Masia, Andy; Matsui, Takashi; Nagy, Balázs; Nishibori, Masahiro; Penczek, John; Schopf, Thomas; Yagi, Yukako; Yokoi, Hideto

    2015-02-01

    This article summarizes the consensus reached at the Summit on Color in Medical Imaging held at the Food and Drug Administration (FDA) on May 8-9, 2013, co-sponsored by the FDA and ICC (International Color Consortium). The purpose of the meeting was to gather information on how color is currently handled by medical imaging systems to identify areas where there is a need for improvement, to define objective requirements, and to facilitate consensus development of best practices. Participants were asked to identify areas of concern and unmet needs. This summary documents the topics that were discussed at the meeting and recommendations that were made by the participants. Key areas identified where improvements in color would provide immediate tangible benefits were those of digital microscopy, telemedicine, medical photography (particularly ophthalmic and dental photography), and display calibration. Work in these and other related areas has been started within several professional groups, including the creation of the ICC Medical Imaging Working Group.

  3. Imaging requirements for medical applications of additive manufacturing.

    PubMed

    Huotilainen, Eero; Paloheimo, Markku; Salmi, Mika; Paloheimo, Kaija-Stiina; Björkstrand, Roy; Tuomi, Jukka; Markkola, Antti; Mäkitie, Antti

    2014-02-01

    Additive manufacturing (AM), formerly known as rapid prototyping, is steadily shifting its focus from industrial prototyping to medical applications as AM processes, bioadaptive materials, and medical imaging technologies develop, and the benefits of the techniques gain wider knowledge among clinicians. This article gives an overview of the main requirements for medical imaging affected by needs of AM, as well as provides a brief literature review from existing clinical cases concentrating especially on the kind of radiology they required. As an example application, a pair of CT images of the facial skull base was turned into 3D models in order to illustrate the significance of suitable imaging parameters. Additionally, the model was printed into a preoperative medical model with a popular AM device. Successful clinical cases of AM are recognized to rely heavily on efficient collaboration between various disciplines - notably operating surgeons, radiologists, and engineers. The single main requirement separating tangible model creation from traditional imaging objectives such as diagnostics and preoperative planning is the increased need for anatomical accuracy in all three spatial dimensions, but depending on the application, other specific requirements may be present as well. This article essentially intends to narrow the potential communication gap between radiologists and engineers who work with projects involving AM by showcasing the overlap between the two disciplines.

  4. Globus MEDICUS - federation of DICOM medical imaging devices into healthcare Grids.

    PubMed

    Erberich, Stephan G; Silverstein, Jonathan C; Chervenak, Ann; Schuler, Robert; Nelson, Marvin D; Kesselman, Carl

    2007-01-01

    The Digital Imaging and Communications in Medicine (DICOM) standard defines Radiology medical device interoperability and image data exchange between modalities, image databases - Picture Archiving and Communication Systems (PACS) - and image review end-points. However the scope of DICOM and PACS technology is currently limited to the trusted and static environment of the hospital. In order to meet the demand for ad-hoc tele-radiology and image guided medical procedures within the global healthcare enterprise, a new technology must provide mobility, security, flexible scale of operations, and rapid responsiveness for DICOM medical devices and subsequently medical image data. Grid technology, an informatics approach to securely federate independently operated computing, storage, and data management resources at the global scale over public networks, meets these core requirements. Here we present an approach to federate DICOM and PACS devices for large-scale medical image workflows within a global healthcare enterprise. The Globus MEDICUS (Medical Imaging and Computing for Unified Information Sharing) project uses the standards-based Globus Toolkit Grid infrastructure to vertically integrate a new service for DICOM devices - the DICOM Grid Interface Service (DGIS). This new service translates between DICOM and Grid operations and thus transparently extends DICOM to Globus based Grid infrastructure. This Grid image workflow paradigm has been designed to provide not only solutions for global image communication, but fault-tolerance and disaster recovery using Grid data replication technology. Actual use-case of 40 MEDICUS Grid connected international hospitals of the Childerns Oncology Group and the Neuroblastoma Cancer Foundation and further clinical applications are discussed. The open-source Globus MEDICU http://dev.globus.org/wiki/Incubator/MEDICUS. PMID:17476069

  5. Infrared medical image visualization and anomalies analysis method

    NASA Astrophysics Data System (ADS)

    Gong, Jing; Chen, Zhong; Fan, Jing; Yan, Liang

    2015-12-01

    Infrared medical examination finds the diseases through scanning the overall human body temperature and obtaining the temperature anomalies of the corresponding parts with the infrared thermal equipment. In order to obtain the temperature anomalies and disease parts, Infrared Medical Image Visualization and Anomalies Analysis Method is proposed in this paper. Firstly, visualize the original data into a single channel gray image: secondly, turn the normalized gray image into a pseudo color image; thirdly, a method of background segmentation is taken to filter out background noise; fourthly, cluster those special pixels with the breadth-first search algorithm; lastly, mark the regions of the temperature anomalies or disease parts. The test is shown that it's an efficient and accurate way to intuitively analyze and diagnose body disease parts through the temperature anomalies.

  6. Novel medical imaging technologies for disease diagnosis and treatment

    NASA Astrophysics Data System (ADS)

    Olego, Diego

    2009-03-01

    New clinical approaches for disease diagnosis, treatment and monitoring will rely on the ability of simultaneously obtaining anatomical, functional and biological information. Medical imaging technologies in combination with targeted contrast agents play a key role in delivering with ever increasing temporal and spatial resolution structural and functional information about conditions and pathologies in cardiology, oncology and neurology fields among others. This presentation will review the clinical motivations and physics challenges in on-going developments of new medical imaging techniques and the associated contrast agents. Examples to be discussed are: *The enrichment of computer tomography with spectral sensitivity for the diagnosis of vulnerable sclerotic plaque. *Time of flight positron emission tomography for improved resolution in metabolic characterization of pathologies. *Magnetic particle imaging -a novel imaging modality based on in-vivo measurement of the local concentration of iron oxide nano-particles - for blood perfusion measurement with better sensitivity, spatial resolution and 3D real time acquisition. *Focused ultrasound for therapy delivery.

  7. Physical Optics Based Computational Imaging Systems

    NASA Astrophysics Data System (ADS)

    Olivas, Stephen Joseph

    There is an ongoing demand on behalf of the consumer, medical and military industries to make lighter weight, higher resolution, wider field-of-view and extended depth-of-focus cameras. This leads to design trade-offs between performance and cost, be it size, weight, power, or expense. This has brought attention to finding new ways to extend the design space while adhering to cost constraints. Extending the functionality of an imager in order to achieve extraordinary performance is a common theme of computational imaging, a field of study which uses additional hardware along with tailored algorithms to formulate and solve inverse problems in imaging. This dissertation details four specific systems within this emerging field: a Fiber Bundle Relayed Imaging System, an Extended Depth-of-Focus Imaging System, a Platform Motion Blur Image Restoration System, and a Compressive Imaging System. The Fiber Bundle Relayed Imaging System is part of a larger project, where the work presented in this thesis was to use image processing techniques to mitigate problems inherent to fiber bundle image relay and then, form high-resolution wide field-of-view panoramas captured from multiple sensors within a custom state-of-the-art imager. The Extended Depth-of-Focus System goals were to characterize the angular and depth dependence of the PSF of a focal swept imager in order to increase the acceptably focused imaged scene depth. The goal of the Platform Motion Blur Image Restoration System was to build a system that can capture a high signal-to-noise ratio (SNR), long-exposure image which is inherently blurred while at the same time capturing motion data using additional optical sensors in order to deblur the degraded images. Lastly, the objective of the Compressive Imager was to design and build a system functionally similar to the Single Pixel Camera and use it to test new sampling methods for image generation and to characterize it against a traditional camera. These computational

  8. Managing waiting times in diagnostic medical imaging

    PubMed Central

    Nuti, Sabina; Vainieri, Milena

    2012-01-01

    Objective This paper aims to analyse the variation in the delivery of diagnostic imaging services in order to suggest possible solutions for the reduction of waiting times, increase the quality of services and reduce financial costs. Design This study provides a logic model to manage waiting times in a regional context. Waiting times measured per day were compared on the basis of the variability in the use rates of CT and MRI examinations in Tuscany for the population, as well as on the basis of the capacity offered with respect to the number of radiologists available. The analysis was performed at the local health authority level to support the decision-making process of local managers. Setting Diagnostic imaging services, in particular the CT and MRI examinations. The study involved all the 12 local health authorities that provide services for 3.7 million inhabitants of the Italian Tuscany Region. Primary and secondary outcome measures Participants: the study uses regional administrative data on outpatients and survey data on inpatient diagnostic examinations in order to measure productivity. Primary and secondary outcome measures The study uses the volumes per 1000 inhabitants, the days of waiting times and the number of examinations per radiologist. Variability was measured using the traditional SD measures. Results A significant variation in areas considered homogeneous in terms of age, gender or mortality may indicate that the use of radiological services is not optimal and underuse or overuse occurs and that there is room for improvement in the service organisation. Conclusions Considering that there is a high level of variability among district use rates and waiting times, this study provides managers with a specific tool to find the cause of the problem, identify a possible solution, assess the financial impact and initiate the eventual reduction of waste. PMID:23242480

  9. A medical imaging and visualization toolkit in Java.

    PubMed

    Huang, Su; Baimouratov, Rafail; Xiao, Pengdong; Ananthasubramaniam, Anand; Nowinski, Wieslaw L

    2006-03-01

    Medical imaging research and clinical applications usually require combination and integration of various techniques ranging from image processing and analysis to realistic visualization to user-friendly interaction. Researchers with different backgrounds coming from diverse areas have been using numerous types of hardware, software, and environments to obtain their results. We also observe that students often build their tools from scratch resulting in redundant work. A generic and flexible medical imaging and visualization toolkit would be helpful in medical research and educational institutes to reduce redundant development work and hence increase research efficiency. This paper presents our experience in developing a Medical Imaging and Visualization Toolkit (BIL-kit) that is a set of comprehensive libraries as well as a number of interactive tools. The BIL-kit covers a wide range of fundamental functions from image conversion and transformation, image segmentation, and analysis to geometric model generation and manipulation, all the way up to 3D visualization and interactive simulation. The toolkit design and implementation emphasize the reusability and flexibility. BIL-kit is implemented in the Java language so that it works in hybrid and dynamic research and educational environments. This also allows the toolkit to extend its usage for the development of Web-based applications. Several BIL-kit-based tools and applications are presented including image converter, image processor, general anatomy model simulator, vascular modeling environment, and volume viewer. BIL-kit is a suitable platform for researchers and students to develop visualization and simulation prototypes, and it can also be used for the development of clinical applications.

  10. High definition ultrasound imaging for battlefield medical applications

    SciTech Connect

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M.; Rogers, B; Walsh, N.

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  11. National Costs Of The Medical Liability System

    PubMed Central

    Mello, Michelle M.; Chandra, Amitabh; Gawande, Atul A.; Studdert, David M.

    2011-01-01

    Concerns about reducing the rate of growth of health expenditures have reignited interest in medical liability reforms and their potential to save money by reducing the practice of defensive medicine. It is not easy to estimate the costs of the medical liability system, however. This article identifies the various components of liability system costs, generates national estimates for each component, and discusses the level of evidence available to support the estimates. Overall annual medical liability system costs, including defensive medicine, are estimated to be $55.6 billion in 2008 dollars, or 2.4 percent of total health care spending. PMID:20820010

  12. Comparison Of Image Display Techniques For Solid Models In Medical Imaging

    NASA Astrophysics Data System (ADS)

    Wood, Sally L.; Fellingham, Linda L.; Massicotte, Jean B.; Dev, Parvati

    1985-09-01

    Presenting three-dimensional information in the form of 3D solid models rather than as a sequence of two-dimensional intensity images provides many benefits in presurgical planning and diagnostic radiography. Although the model generation process does not add information to the sequential slice data, it does present images of organs and bony structures in a form more like the expected view of solid objects in natural scenes. Surface shapes and details of surface variations, which would require practiced observation of two-dimensional intensity data, are readily visible in the solid model displays making this information immediately available to a broad cross section of medical personnel. After a year of experience with a commercially available system, a Contour Medical Systems CEMAX-l000, which accepts input from several CT or MR scanner models and provides basic solid model displays, additional types of solid model viewing have been made available to clinical personnel for preliminary evaluation. The advantages and disadvantages in terms of subjective display quality, information content, and computational cost of several display methods have been investigated. Display of solid models by range encoding, heuristic mappings of intensity levels, and complete reflectance models have been compared for black-and-white and monochromatic color images. The option of displaying multiple objects in contrasting colors both as opaque and transparent objects has also been tested. Methods of surface acquisition from the two-dimensional data have been varied to match the material of interest and the characteristics of the original intensity data allowing improved representation of soft tissue. Finally, the utility of several types of time varying imagery is discussed, including the advantages of viewing rotating solid objects compared to viewing a collage of still pictures in many orientations. Some clinical examples of these experimental image display techniques are presented

  13. Safe storage and multi-modal search for medical images.

    PubMed

    Kommeri, Jukka; Niinimäki, Marko; Müller, Henning

    2011-01-01

    Modern hospitals produce enormous amounts of data in all departments, from images, to lab results, medication use, and release letters. Since several years these data are most often produced in digital form, making them accessible for researchers to optimize the outcome of care process and analyze all available data across patients. The Geneva University Hospitals (HUG) are no exception with its daily radiology department's output of over 140'000 images in 2010, with a majority of them being tomographic slices. In this paper we introduce tools for uploading and accessing DICOM images and associated metadata in a secure Grid storage. These data are made available for authorized persons using a Grid security framework, as security is a main problem in secondary use of image data, where images are to be stored outside of the clinical image archive. Our tool combines the security and metadata access of a Grid middleware with the visual search that uses GIFT. PMID:21893790

  14. Watermarking of ultrasound medical images in teleradiology using compressed watermark.

    PubMed

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohamad; Ali, Mushtaq

    2016-01-01

    The open accessibility of Internet-based medical images in teleradialogy face security threats due to the nonsecured communication media. This paper discusses the spatial domain watermarking of ultrasound medical images for content authentication, tamper detection, and lossless recovery. For this purpose, the image is divided into two main parts, the region of interest (ROI) and region of noninterest (RONI). The defined ROI and its hash value are combined as watermark, lossless compressed, and embedded into the RONI part of images at pixel's least significant bits (LSBs). The watermark lossless compression and embedding at pixel's LSBs preserve image diagnostic and perceptual qualities. Different lossless compression techniques including Lempel-Ziv-Welch (LZW) were tested for watermark compression. The performances of these techniques were compared based on more bit reduction and compression ratio. LZW was found better than others and used in tamper detection and recovery watermarking of medical images (TDARWMI) scheme development to be used for ROI authentication, tamper detection, localization, and lossless recovery. TDARWMI performance was compared and found to be better than other watermarking schemes.

  15. Digital Topology and Geometry in Medical Imaging: A Survey.

    PubMed

    Saha, Punam K; Strand, Robin; Borgefors, Gunilla

    2015-09-01

    Digital topology and geometry refers to the use of topologic and geometric properties and features for images defined in digital grids. Such methods have been widely used in many medical imaging applications, including image segmentation, visualization, manipulation, interpolation, registration, surface-tracking, object representation, correction, quantitative morphometry etc. Digital topology and geometry play important roles in medical imaging research by enriching the scope of target outcomes and by adding strong theoretical foundations with enhanced stability, fidelity, and efficiency. This paper presents a comprehensive yet compact survey on results, principles, and insights of methods related to digital topology and geometry with strong emphasis on understanding their roles in various medical imaging applications. Specifically, this paper reviews methods related to distance analysis and path propagation, connectivity, surface-tracking, image segmentation, boundary and centerline detection, topology preservation and local topological properties, skeletonization, and object representation, correction, and quantitative morphometry. A common thread among the topics reviewed in this paper is that their theory and algorithms use the principle of digital path connectivity, path propagation, and neighborhood analysis.

  16. Watermarking of ultrasound medical images in teleradiology using compressed watermark.

    PubMed

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohamad; Ali, Mushtaq

    2016-01-01

    The open accessibility of Internet-based medical images in teleradialogy face security threats due to the nonsecured communication media. This paper discusses the spatial domain watermarking of ultrasound medical images for content authentication, tamper detection, and lossless recovery. For this purpose, the image is divided into two main parts, the region of interest (ROI) and region of noninterest (RONI). The defined ROI and its hash value are combined as watermark, lossless compressed, and embedded into the RONI part of images at pixel's least significant bits (LSBs). The watermark lossless compression and embedding at pixel's LSBs preserve image diagnostic and perceptual qualities. Different lossless compression techniques including Lempel-Ziv-Welch (LZW) were tested for watermark compression. The performances of these techniques were compared based on more bit reduction and compression ratio. LZW was found better than others and used in tamper detection and recovery watermarking of medical images (TDARWMI) scheme development to be used for ROI authentication, tamper detection, localization, and lossless recovery. TDARWMI performance was compared and found to be better than other watermarking schemes. PMID:26839914

  17. Shape similarity analysis of regions of interest in medical images

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Charisi, Amalia; Latecki, Longin Jan; Gee, James; Megalooikonomou, Vasilis

    2010-03-01

    In this work, we introduce a new representation technique of 2D contour shapes and a sequence similarity measure to characterize 2D regions of interest in medical images. First, we define a distance function on contour points in order to map the shape of a given contour to a sequence of real numbers. Thus, the computation of shape similarity is reduced to the matching of the obtained sequences. Since both a query and a target sequence may be noisy, i.e., contain some outlier elements, it is desirable to exclude the outliers in order to obtain a robust matching performance. For the computation of shape similarity, we propose the use of an algorithm which performs elastic matching of two sequences. The contribution of our approach is that, unlike previous works that require images to be warped according to a template image for measuring their similarity, it obviates this need, therefore it can estimate image similarity for any type of medical image in a fast and efficient manner. To demonstrate our method's applicability, we analyzed a brain image dataset consisting of corpus callosum shapes, and we investigated the structural differences between children with chromosome 22q11.2 deletion syndrome and controls. Our findings indicate that our method is quite effective and it can be easily applied on medical diagnosis in all cases of which shape difference is an important clue.

  18. A National Medical Information System for Senegal: Architecture and Services.

    PubMed

    Camara, Gaoussou; Diallo, Al Hassim; Lo, Moussa; Tendeng, Jacques-Noël; Lo, Seynabou

    2016-01-01

    In Senegal, great amounts of data are daily generated by medical activities such as consultation, hospitalization, blood test, x-ray, birth, death, etc. These data are still recorded in register, printed images, audios and movies which are manually processed. However, some medical organizations have their own software for non-standardized patient record management, appointment, wages, etc. without any possibility of sharing these data or communicating with other medical structures. This leads to lots of limitations in reusing or sharing these data because of their possible structural and semantic heterogeneity. To overcome these problems we have proposed a National Medical Information System for Senegal (SIMENS). As an integrated platform, SIMENS provides an EHR system that supports healthcare activities, a mobile version and a web portal. The SIMENS architecture proposes also a data and application integration services for supporting interoperability and decision making. PMID:27577338

  19. A semantically-aided approach for online annotation and retrieval of medical images.

    PubMed

    Kyriazos, George K; Gerostathopoulos, Ilias Th; Kolias, Vassileios D; Stoitsis, John S; Nikita, Konstantina S

    2011-01-01

    The need for annotating the continuously increasing volume of medical image data is recognized from medical experts for a variety of purposes, regardless if this is medical practice, research or education. The rich information content latent in medical images can be made explicit and formal with the use of well-defined ontologies. Evolution of the Semantic Web now offers a unique opportunity of a web-based, service-oriented approach. Remote access to FMA and ICD-10 reference ontologies provides the ontological annotation framework. The proposed system utilizes this infrastructure to provide a customizable and robust annotation procedure. It also provides an intelligent search mechanism indicating the advantages of semantic over keyword search. The common representation layer discussed facilitates interoperability between institutions and systems, while semantic content enables inference and knowledge integration.

  20. Regional medical campuses: a new classification system.

    PubMed

    Cheifetz, Craig E; McOwen, Katherine S; Gagne, Pierre; Wong, Jennifer L

    2014-08-01

    There is burgeoning belief that regional medical campuses (RMCs) are a significant part of the narrative about medical education and the health care workforce in the United States and Canada. Although RMCs are not new, in the recent years of medical education enrollment expansion, they have seen their numbers increase. Class expansion explains the rapid growth of RMCs in the past 10 years, but it does not adequately describe their function. Often, RMCs have missions that differ from their main campus, especially in the areas of rural and community medicine. The absence of an easy-to-use classification system has led to a lack of current research about RMCs as evidenced by the small number of articles in the current literature. The authors describe the process of the Group on Regional Medical Campuses used to develop attributes of a campus separate from the main campus that constitute a "classification" of a campus as an RMC. The system is broken into four models-basic science, clinical, longitudinal, and combined-and is linked to Liaison Committee on Medical Education standards. It is applicable to all schools and can be applied by any medical school dean or medical education researcher. The classification system paves the way for stakeholders to agree on a denominator of RMCs and conduct future research about their impact on medical education.

  1. A QR Code Based Zero-Watermarking Scheme for Authentication of Medical Images in Teleradiology Cloud

    PubMed Central

    Seenivasagam, V.; Velumani, R.

    2013-01-01

    Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)—Singular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu's invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks. PMID:23970943

  2. A QR code based zero-watermarking scheme for authentication of medical images in teleradiology cloud.

    PubMed

    Seenivasagam, V; Velumani, R

    2013-01-01

    Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)-Singular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu's invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks.

  3. A QR code based zero-watermarking scheme for authentication of medical images in teleradiology cloud.

    PubMed

    Seenivasagam, V; Velumani, R

    2013-01-01

    Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)-Singular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu's invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks. PMID:23970943

  4. Medical image noise reduction using the Sylvester-Lyapunov equation.

    PubMed

    Sanches, João M; Nascimento, Jacinto C; Marques, Jorge S

    2008-09-01

    Multiplicative noise is often present in medical and biological imaging, such as magnetic resonance imaging (MRI), Ultrasound, positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence microscopy. Noise reduction in medical images is a difficult task in which linear filtering algorithms usually fail. Bayesian algorithms have been used with success but they are time consuming and computationally demanding. In addition, the increasing importance of the 3-D and 4-D medical image analysis in medical diagnosis procedures increases the amount of data that must be efficiently processed. This paper presents a Bayesian denoising algorithm which copes with additive white Gaussian and multiplicative noise described by Poisson and Rayleigh distributions. The algorithm is based on the maximum a posteriori (MAP) criterion, and edge preserving priors which avoid the distortion of relevant anatomical details. The main contribution of the paper is the unification of a set of Bayesian denoising algorithms for additive and multiplicative noise using a well-known mathematical framework, the Sylvester-Lyapunov equation, developed in the context of the Control theory.

  5. Correlation Research of Medical Security Management System Network Platform in Medical Practice

    NASA Astrophysics Data System (ADS)

    Jie, Wang; Fan, Zhang; Jian, Hao; Li-nong, Yu; Jun, Fei; Ping, Hao; Ya-wei, Shen; Yue-jin, Chang

    Objective-The related research of medical security management system network in medical practice. Methods-Establishing network platform of medical safety management system, medical security network host station, medical security management system(C/S), medical security management system of departments and sections, comprehensive query, medical security disposal and examination system. Results-In medical safety management, medical security management system can reflect the hospital medical security problem, and can achieve real-time detection and improve the medical security incident detection rate. Conclusion-The application of the research in the hospital management implementation, can find hospital medical security hidden danger and the problems of medical disputes, and can help in resolving medical disputes in time and achieve good work efficiency, which is worth applying in the hospital practice.

  6. SemVisM: semantic visualizer for medical image

    NASA Astrophysics Data System (ADS)

    Landaeta, Luis; La Cruz, Alexandra; Baranya, Alexander; Vidal, María.-Esther

    2015-01-01

    SemVisM is a toolbox that combines medical informatics and computer graphics tools for reducing the semantic gap between low-level features and high-level semantic concepts/terms in the images. This paper presents a novel strategy for visualizing medical data annotated semantically, combining rendering techniques, and segmentation algorithms. SemVisM comprises two main components: i) AMORE (A Modest vOlume REgister) to handle input data (RAW, DAT or DICOM) and to initially annotate the images using terms defined on medical ontologies (e.g., MesH, FMA or RadLex), and ii) VOLPROB (VOlume PRObability Builder) for generating the annotated volumetric data containing the classified voxels that belong to a particular tissue. SemVisM is built on top of the semantic visualizer ANISE.1

  7. Pake Prize Talk: The Future of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Edelheit, Lonnie

    2001-03-01

    Discussed will be a brief history and status of the major medical imaging modalities, including X-ray Radiography and Fluoroscopy, Computerized Tomography, Magnetic Resonance Imaging, Ultrasound and Nuclear Medicine (including Positron Emission Tomography). Also covered will be potential new modalities such as Optical, Magnetic and Electric Field Imaging. In addition, the presentation will include a projection of future advances of each modality along with a discussion of some of the major challenges and more speculative projections of a few game-changing possibilities.

  8. Medical Image Compression Using a New Subband Coding Method

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen; Tucker, Doug

    1995-01-01

    A recently introduced iterative complexity- and entropy-constrained subband quantization design algorithm is generalized and applied to medical image compression. In particular, the corresponding subband coder is used to encode Computed Tomography (CT) axial slice head images, where statistical dependencies between neighboring image subbands are exploited. Inter-slice conditioning is also employed for further improvements in compression performance. The subband coder features many advantages such as relatively low complexity and operation over a very wide range of bit rates. Experimental results demonstrate that the performance of the new subband coder is relatively good, both objectively and subjectively.

  9. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    NASA Astrophysics Data System (ADS)

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  10. [P.A.I.S., a personal medical information system. A comprehensive medical knowledge base].

    PubMed

    Münch, E

    1994-06-01

    The electronic medical knowledge data base DOPIS is a compliation of knowledge from various special fields of medicine. Using uniform nomenclature, the data are presented on demand as they would be in a book chapter. Concise updates can be performed at low cost. The primary structure of the concept is the division of medical knowledge into data banks on diagnosis, literature, medication and pharmacology, as well as so-called electronic textbooks. All data banks and electronic textbooks are connected associatively. Visual information is obtained via the image data bank connected to the diagnosis data bank and the electronic books. Moreover, DOPIS has an integrated patient findings system, as well as an image processing and archiving system with research values enabling research functions. The diagnosis and literature data banks can be modified by the user or author, or fed with their own data (a so-called Expert System Shell). For authors from special fields working on the project, an extra Medical Electronic Publishing System has been developed and made available for the electronic textbooks. The model for the knowledge data base has been developed in the field of ENT, the programme implemented and initially ENT data have been stored.

  11. New generation of medical laser systems

    NASA Astrophysics Data System (ADS)

    Konov, Vitali I.; Prokhorov, Alexander M.; Silenok, Alexander S.

    1990-09-01

    Advantages and fields of application for modern medical laser systems with fiber optic cables optical diagnostics of the irradiated zone and beam parameters optimized for concrete type of operation are considered.

  12. A machine learning approach to quantifying noise in medical images

    NASA Astrophysics Data System (ADS)

    Chowdhury, Aritra; Sevinsky, Christopher J.; Yener, Bülent; Aggour, Kareem S.; Gustafson, Steven M.

    2016-03-01

    As advances in medical imaging technology are resulting in significant growth of biomedical image data, new techniques are needed to automate the process of identifying images of low quality. Automation is needed because it is very time consuming for a domain expert such as a medical practitioner or a biologist to manually separate good images from bad ones. While there are plenty of de-noising algorithms in the literature, their focus is on designing filters which are necessary but not sufficient for determining how useful an image is to a domain expert. Thus a computational tool is needed to assign a score to each image based on its perceived quality. In this paper, we introduce a machine learning-based score and call it the Quality of Image (QoI) score. The QoI score is computed by combining the confidence values of two popular classification techniques—support vector machines (SVMs) and Naïve Bayes classifiers. We test our technique on clinical image data obtained from cancerous tissue samples. We used 747 tissue samples that are stained by four different markers (abbreviated as CK15, pck26, E_cad and Vimentin) leading to a total of 2,988 images. The results show that images can be classified as good (high QoI), bad (low QoI) or ugly (intermediate QoI) based on their QoI scores. Our automated labeling is in agreement with the domain experts with a bi-modal classification accuracy of 94%, on average. Furthermore, ugly images can be recovered and forwarded for further post-processing.

  13. An OGSA Middleware for managing medical images using ontologies.

    PubMed

    Espert, Ignacio Blanquer; Garcáa, Vicente Hernández; Quilis, J Damià Segrelles

    2005-10-01

    This article presents a Middleware based on Grid Technologies that addresses the problem of sharing, transferring and processing DICOM medical images in a distributed environment using an ontological schema to create virtual communities and to define common targets. It defines a distributed storage that builds-up virtual repositories integrating different individual image repositories providing global searching, progressive transmission, automatic encryption and pseudo-anonimisation and a link to remote processing services. Users from a Virtual Organisation can share the cases that are relevant for their communities or research areas, epidemiological studies or even deeper analysis of complex individual cases. Software architecture has been defined for solving the problems that has been exposed before. Briefly, the architecture comprises five layers (from the more physical layer to the more logical layer) based in Grid Technologies. The lowest level layers (Core Middleware Layer and Server Services sc layer) are composed of Grid Services that implement the global managing of resources. The Middleware Components Layer provides a transparent view of the Grid environment and it has been the main objective of this work. Finally, the highest layer (the Application Layer) comprises the applications, and a simple application has been implemented for testing the components developed in the Components Middleware Layer. Other side-results of this work are the services developed in the Middleware Components Layer for managing DICOM images, creating virtual DICOM storages, progressive transmission, automatic encryption and pseudo-anonimisation depending on the ontologies. Other results, such as the Grid Services developed in the lowest layers, are also described in this article. Finally a brief performance analysis and several snapshots from the applications developed are shown. The performance analysis proves that the components developed in this work provide image processing

  14. Open source tools for standardized privacy protection of medical images

    NASA Astrophysics Data System (ADS)

    Lien, Chung-Yueh; Onken, Michael; Eichelberg, Marco; Kao, Tsair; Hein, Andreas

    2011-03-01

    In addition to the primary care context, medical images are often useful for research projects and community healthcare networks, so-called "secondary use". Patient privacy becomes an issue in such scenarios since the disclosure of personal health information (PHI) has to be prevented in a sharing environment. In general, most PHIs should be completely removed from the images according to the respective privacy regulations, but some basic and alleviated data is usually required for accurate image interpretation. Our objective is to utilize and enhance these specifications in order to provide reliable software implementations for de- and re-identification of medical images suitable for online and offline delivery. DICOM (Digital Imaging and Communications in Medicine) images are de-identified by replacing PHI-specific information with values still being reasonable for imaging diagnosis and patient indexing. In this paper, this approach is evaluated based on a prototype implementation built on top of the open source framework DCMTK (DICOM Toolkit) utilizing standardized de- and re-identification mechanisms. A set of tools has been developed for DICOM de-identification that meets privacy requirements of an offline and online sharing environment and fully relies on standard-based methods.

  15. Multimodal Medical Image Fusion by Adaptive Manifold Filter.

    PubMed

    Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna

    2015-01-01

    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images. PMID:26664494

  16. The Imaging and Medical Beam Line at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  17. A review of medical image watermarking requirements for teleradiology.

    PubMed

    Nyeem, Hussain; Boles, Wageeh; Boyd, Colin

    2013-04-01

    Teleradiology allows medical images to be transmitted over electronic networks for clinical interpretation and for improved healthcare access, delivery, and standards. Although such remote transmission of the images is raising various new and complex legal and ethical issues, including image retention and fraud, privacy, malpractice liability, etc., considerations of the security measures used in teleradiology remain unchanged. Addressing this problem naturally warrants investigations on the security measures for their relative functional limitations and for the scope of considering them further. In this paper, starting with various security and privacy standards, the security requirements of medical images as well as expected threats in teleradiology are reviewed. This will make it possible to determine the limitations of the conventional measures used against the expected threats. Furthermore, we thoroughly study the utilization of digital watermarking for teleradiology. Following the key attributes and roles of various watermarking parameters, justification for watermarking over conventional security measures is made in terms of their various objectives, properties, and requirements. We also outline the main objectives of medical image watermarking for teleradiology and provide recommendations on suitable watermarking techniques and their characterization. Finally, concluding remarks and directions for future research are presented.

  18. The Imaging and Medical Beam Line at the Australian Synchrotron

    SciTech Connect

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-23

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the 'Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1 - monochromatic and white - to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  19. Differentiation applied to lossless compression of medical images.

    PubMed

    Nijim, Y W; Stearns, S D; Mikhael, W B

    1996-01-01

    Lossless compression of medical images using a proposed differentiation technique is explored. This scheme is based on computing weighted differences between neighboring pixel values. The performance of the proposed approach, for the lossless compression of magnetic resonance (MR) images and ultrasonic images, is evaluated and compared with the lossless linear predictor and the lossless Joint Photographic Experts Group (JPEG) standard. The residue sequence of these techniques is coded using arithmetic coding. The proposed scheme yields compression measures, in terms of bits per pixel, that are comparable with or lower than those obtained using the linear predictor and the lossless JPEG standard, respectively, with 8-b medical images. The advantages of the differentiation technique presented here over the linear predictor are: 1) the coefficients of the differentiator are known by the encoder and the decoder, which eliminates the need to compute or encode these coefficients, and 21 the computational complexity is greatly reduced. These advantages are particularly attractive in real time processing for compressing and decompressing medical images. PMID:18215936

  20. The medical physics specialization system in Poland.

    PubMed

    Bulski, Wojciech; Kukołowicz, Paweł; Skrzyński, Witold

    2016-07-01

    This paper presents the situation of the profession of medical physicists in Poland. The official recognition of the profession of medical physicist in Polish legislation was in 2002. In recent years, more and more Universities which have Physics Faculties introduce a medical physics specialty. At present, there are about 15 Universities which offer such programmes. These Universities are able to graduate about 150 medical physicists per year. In 2002, the Ministry of Health introduced a programme of postgraduate specialization in medical physics along the same rules employed in the specialization of physicians in various branches of medicine. Five institutions, mostly large oncology centres, were selected as teaching institutions, based on their experience, the quality of the medical physics professionals, staffing levels, equipment availability, lecture halls, etc. The first cycle of the specialization programme started in 2006, and the first candidates completed their training at the end of 2008, and passed their official state exams in May 2009. As of January 2016, there are 196 specialized medical physicists in Poland. Another about 120 medical physicists are undergoing specialization. The system of training of medical physics professionals in Poland is well established. The principles of postgraduate training and specialization are well defined and the curriculum of the training is very demanding. The programme of specialization was revised in 2011 and is in accordance with EC and EFOMP recommendations. PMID:27378393

  1. The medical physics specialization system in Poland.

    PubMed

    Bulski, Wojciech; Kukołowicz, Paweł; Skrzyński, Witold

    2016-07-01

    This paper presents the situation of the profession of medical physicists in Poland. The official recognition of the profession of medical physicist in Polish legislation was in 2002. In recent years, more and more Universities which have Physics Faculties introduce a medical physics specialty. At present, there are about 15 Universities which offer such programmes. These Universities are able to graduate about 150 medical physicists per year. In 2002, the Ministry of Health introduced a programme of postgraduate specialization in medical physics along the same rules employed in the specialization of physicians in various branches of medicine. Five institutions, mostly large oncology centres, were selected as teaching institutions, based on their experience, the quality of the medical physics professionals, staffing levels, equipment availability, lecture halls, etc. The first cycle of the specialization programme started in 2006, and the first candidates completed their training at the end of 2008, and passed their official state exams in May 2009. As of January 2016, there are 196 specialized medical physicists in Poland. Another about 120 medical physicists are undergoing specialization. The system of training of medical physics professionals in Poland is well established. The principles of postgraduate training and specialization are well defined and the curriculum of the training is very demanding. The programme of specialization was revised in 2011 and is in accordance with EC and EFOMP recommendations.

  2. Robust Medical Isotope Production System

    SciTech Connect

    Klein, Steven Karl; Kimpland, Robert Herbert

    2015-06-15

    The success of this theoretical undertaking provided confidence that the behavior of new and evolving designs of fissile solution systems may be accurately estimated. Scaled up versions of SUPO, subcritical acceleratordriven systems, and other evolutionary designs have been examined.

  3. Physics-based deformable organisms for medical image analysis

    NASA Astrophysics Data System (ADS)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  4. A service protocol for post-processing of medical images on the mobile device

    NASA Astrophysics Data System (ADS)

    He, Longjun; Ming, Xing; Xu, Lang; Liu, Qian

    2014-03-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. It is uneasy and time-consuming for transferring medical images with large data size from picture archiving and communication system to mobile client, since the wireless network is unstable and limited by bandwidth. Besides, limited by computing capability, memory and power endurance, it is hard to provide a satisfactory quality of experience for radiologists to handle some complex post-processing of medical images on the mobile device, such as real-time direct interactive three-dimensional visualization. In this work, remote rendering technology is employed to implement the post-processing of medical images instead of local rendering, and a service protocol is developed to standardize the communication between the render server and mobile client. In order to make mobile devices with different platforms be able to access post-processing of medical images, the Extensible Markup Language is taken to describe this protocol, which contains four main parts: user authentication, medical image query/ retrieval, 2D post-processing (e.g. window leveling, pixel values obtained) and 3D post-processing (e.g. maximum intensity projection, multi-planar reconstruction, curved planar reformation and direct volume rendering). And then an instance is implemented to verify the protocol. This instance can support the mobile device access post-processing of medical image services on the render server via a client application or on the web page.

  5. Exploration Medical System Demonstration (EMSD) Project

    NASA Technical Reports Server (NTRS)

    Chin, Duane

    2012-01-01

    The Exploration Medical System Demonstration (EMSD) is a project under the Exploration Medical Capability (ExMC) element managed by the Human Research Program (HRP). The vision for the EMSD is to utilize ISS as a test bed to show that several medical technologies needed for an exploration mission and medical informatics tools for managing evidence and decision making can be integrated into a single system and used by the on-orbit crew in an efficient and meaningful manner. Objectives: a) Reduce and even possibly eliminate the time required for on-orbit crew and ground personnel (which include Surgeon, Biomedical Engineer (BME) Flight Controller, and Medical Operations Data Specialist) to access and move medical data from one application to another. b) Demonstrate that the on-orbit crew has the ability to access medical data/information using an intuitive and crew-friendly software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management framework and architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities.

  6. [Provision System of Medical Narcotics].

    PubMed

    Kushida, Kazuki; Toshima, Chiaki; Fujimaki, Yoko; Watanabe, Mutsuko; Hirohara, Masayoshi

    2015-12-01

    Patients with cancer are increasingly opting for home health care, resulting in a rapid increase in the number of prescriptions for narcotics aimed at pain control. As these narcotics are issued by pharmacies only upon presentation of valid prescriptions, the quantity stored in the pharmacies is of importance. Although many pharmaceutical outlets are certified for retail sale of narcotic drugs, the available stock is often extremely limited in variety and quantity. Affiliated stores of wholesale(or central wholesale)dealers do not always have the necessary certifications to provide medical narcotics. Invariably, the quantity stored by individual branches or sales offices is also limited. Hence, it may prove difficult to urgently secure the necessary and appropriate drugs according to prescription in certain areas of the community. This report discusses the problems faced by wholesalers and pharmacies during acquisition, storage, supply, and issue of prescription opioids from a stockpiling perspective.

  7. Volumetric depth peeling for medical image display

    NASA Astrophysics Data System (ADS)

    Borland, David; Clarke, John P.; Fielding, Julia R.; TaylorII, Russell M.

    2006-01-01

    Volumetric depth peeling (VDP) is an extension to volume rendering that enables display of otherwise occluded features in volume data sets. VDP decouples occlusion calculation from the volume rendering transfer function, enabling independent optimization of settings for rendering and occlusion. The algorithm is flexible enough to handle multiple regions occluding the object of interest, as well as object self-occlusion, and requires no pre-segmentation of the data set. VDP was developed as an improvement for virtual arthroscopy for the diagnosis of shoulder-joint trauma, and has been generalized for use in other simple and complex joints, and to enable non-invasive urology studies. In virtual arthroscopy, the surfaces in the joints often occlude each other, allowing limited viewpoints from which to evaluate these surfaces. In urology studies, the physician would like to position the virtual camera outside the kidney collecting system and see inside it. By rendering invisible all voxels between the observer's point of view and objects of interest, VDP enables viewing from unconstrained positions. In essence, VDP can be viewed as a technique for automatically defining an optimal data- and task-dependent clipping surface. Radiologists using VDP display have been able to perform evaluations of pathologies more easily and more rapidly than with clinical arthroscopy, standard volume rendering, or standard MRI/CT slice viewing.

  8. WebMIRS: web-based medical information retrieval system

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Pillemer, Stanley R.; Lawrence, Reva C.; Goh, Gin-Hua; Neve, Leif; Thoma, George R.

    1997-12-01

    At the Lister Hill National Center for Biomedical Communications, a research and development division of the National Library of Medicine (NLM), we are developing a prototype multimedia database system to provide World Wide Web access to biomedical databases. WebMIRS (Web-based Medical Information Retrieval System) will allow access to databases containing text and images and will allow database query by standard SQL, by image content, or by a combination of the two. The system is being developed in the form of Java applets, which will communicate with the Informix DBMS on an NLM Sun workstation running the Solaris operating system. The system architecture will allow access from any hardware platform, which supports a Java-enabled Web browser, such as Netscape or Internet Explorer. Initial databases will include data from two national health surveys conducted by the National Center for Health Statistics (NCHS), and will include x-ray images from those surveys. In addition to describing in- house research in database access systems, this paper describes ongoing work toward querying by image content. Image content search capability will include capability to search for x-ray images similar to an input image with respect to vertebral morphometry used to characterize features such as fractures and disc space narrowing.

  9. Compact multi-spectral imaging system for dermatology and neurosurgery

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke Jan; de Roode, Rowland; Verdaasdonk, Rudolf

    2007-03-01

    A compact multi-spectral imaging system is presented as diagnostic tool in dermatology and neurosurgery. Using an electronically tunable filter, a sensitive high resolution digital camera, 140 spectral images from 400 nm up to 720 nm are acquired in 40 s. Advanced image processing algorithms are used to enable interactive acquisition, viewing, image registration and image analysis. Experiments in the department of dermatology and neurosurgery show that multispectral imaging reveals much more detail than conventional medical photography or a surgical microscope, as images can be reprocessed to enhance the view on e.g. tumor boundaries. Using a hardware-based interactive registration algorithm, multi-spectral images can be aligned to correct for motion occurred during image acquisition or to compare acquisitions from different moments in time. The system shows to be a powerful diagnostics tool for medical imaging in the visual and near IR range.

  10. Interventional therapy procedures assisted by medical imaging and simulation. The experience of U 703 Inserm (Lille France).

    PubMed

    Vermandel, M; Betrouni, N; Rousseau, J; Dubois, P

    2007-01-01

    Since the early 1990s, minimally invasive techniques have been increasingly used in ever more and diversified fields of application. These techniques have some shared characteristics (predominant role of medical imaging, intensive use of new communication technologies, a multidisciplinary medical and scientific framework, etc.) but also shared specific problems (high-tech tools unfamiliar to the medical users, a major and long period of time for technological development, unavailability of training systems, difficulties in obtaining regulatory approval). For a long time, our Laboratory of Medical Physics (U 703 Inserm) has developed an innovative research activity in biomedical engineering in the field of assisted therapy, medical imaging and medical simulation. This paper presents the general context of interventional therapy procedures assisted by image and simulation and describes our scientific activities based on realistic objectives close to medical practice.

  11. Mimos: a description framework for exchanging medical image processing results.

    PubMed

    Aubry, F; Todd-Pokropek, A

    2001-01-01

    Image processing plays increasingly important role in using medical images, both for routine as for research purposes, due to the growing interest in functional studies (PET, MR, etc.). Unfortunately, there exist nearly as many formats for data and results coding as image processing procedures. If Dicom presently supports a kind of structured reporting of image studies, it does not take into account the semantics of the image handling domain. This can impede the exchange and the interpretation of processing results. In order to facilitate the use of image processing results, we have designed a framework for representing image processing results. This framework, whose principle is called an "ontology" in the literature, extends the formalism, which we have used in our previous work on image databases. It permits a systematic representation of the entities and information involved in the processing, that is not only input data, command parameters, output data, but also software and hardware descriptions, and relationships between these different parameters. Consequently, this framework allows the building of standardized documents, which can be exchanged amongst various users. As the framework is based on a formal grammar, documents can be encoded using XML. They are thus compatible with Internet / Intranet technology. In this paper, the main characteristics of the framework are presented and illustrated. We also discuss implementation issues in order to be able to integrate documents, and correlated images, handling these with a classical Web browser.

  12. Total variation minimization-based multimodality medical image reconstruction

    NASA Astrophysics Data System (ADS)

    Cui, Xuelin; Yu, Hengyong; Wang, Ge; Mili, Lamine

    2014-09-01

    Since its recent inception, simultaneous image reconstruction for multimodality fusion has received a great deal of attention due to its superior imaging performance. On the other hand, the compressed sensing (CS)-based image reconstruction methods have undergone a rapid development because of their ability to significantly reduce the amount of raw data. In this work, we combine computed tomography (CT) and magnetic resonance imaging (MRI) into a single CS-based reconstruction framework. From a theoretical viewpoint, the CS-based reconstruction methods require prior sparsity knowledge to perform reconstruction. In addition to the conventional data fidelity term, the multimodality imaging information is utilized to improve the reconstruction quality. Prior information in this context is that most of the medical images can be approximated as piecewise constant model, and the discrete gradient transform (DGT), whose norm is the total variation (TV), can serve as a sparse representation. More importantly, the multimodality images from the same object must share structural similarity, which can be captured by DGT. The prior information on similar distributions from the sparse DGTs is employed to improve the CT and MRI image quality synergistically for a CT-MRI scanner platform. Numerical simulation with undersampled CT and MRI datasets is conducted to demonstrate the merits of the proposed hybrid image reconstruction approach. Our preliminary results confirm that the proposed method outperforms the conventional CT and MRI reconstructions when they are applied separately.

  13. Improving medical imaging report turnaround times: the role of technolgy.

    PubMed

    Marquez, Luis O; Stewart, Howard

    2005-01-01

    At Southern Ohio Medical Center (SOMC), the medical imaging department and the radiologists expressed a strong desire to improve workflow. The improved workflow was a major motivating factor toward implementing a new RIS and speech recognition technology. The need to monitor workflow in a real-time fashion and to evaluate productivity and resources necessitated that a new solution be found. A decision was made to roll out both the new RIS product and speech recognition to maximize the resources to interface and implement the new solution. Prior to implementation of the new RIS, the medical imaging department operated in a conventional electronic-order-entry to paper request manner. The paper request followed the study through exam completion to the radiologist. SOMC entered into a contract with its PACS vendor to participate in beta testing and clinical trials for a new RIS product for the US market. Backup plans were created in the event the product failed to function as planned--either during the beta testing period or during clinical trails. The last piece of the technology puzzle to improve report turnaround time was voice recognition technology. Speech recognition enhanced the RIS technology as soon as it was implemented. The results show that the project has been a success. The new RIS, combined with speech recognition and the PACS, makes for a very effective solution to patient, exam, and results management in the medical imaging department.

  14. Automated medical image modality recognition by fusion of visual and text information.

    PubMed

    Codella, Noel; Connell, Jonathan; Pankanti, Sharath; Merler, Michele; Smith, John R

    2014-01-01

    In this work, we present a framework for medical image modality recognition based on a fusion of both visual and text classification methods. Experiments are performed on the public ImageCLEF 2013 medical image modality dataset, which provides figure images and associated fulltext articles from PubMed as components of the benchmark. The presented visual-based system creates ensemble models across a broad set of visual features using a multi-stage learning approach that best optimizes per-class feature selection while simultaneously utilizing all available data for training. The text subsystem uses a pseudoprobabilistic scoring method based on detection of suggestive patterns, analyzing both the figure captions and mentions of the figures in the main text. Our proposed system yields state-of-the-art performance in all 3 categories of visual-only (82.2%), text-only (69.6%), and fusion tasks (83.5%). PMID:25485415

  15. Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks.

    PubMed

    Schlegl, Thomas; Waldstein, Sebastian M; Vogl, Wolf-Dieter; Schmidt-Erfurth, Ursula; Langs, Georg

    2015-01-01

    Learning representative computational models from medical imaging data requires large training data sets. Often, voxel-level annotation is unfeasible for sufficient amounts of data. An alternative to manual annotation, is to use the enormous amount of knowledge encoded in imaging data and corresponding reports generated during clinical routine. Weakly supervised learning approaches can link volume-level labels to image content but suffer from the typical label distributions in medical imaging data where only a small part consists of clinically relevant abnormal structures. In this paper we propose to use a semantic representation of clinical reports as a learning target that is predicted from imaging data by a convolutional neural network. We demonstrate how we can learn accurate voxel-level classifiers based on weak volume-level semantic descriptions on a set of 157 optical coherence tomography (OCT) volumes. We specifically show how semantic information increases classification accuracy for intraretinal cystoid fluid (IRC), subretinal fluid (SRF) and normal retinal tissue, and how the learning algorithm links semantic concepts to image content and geometry.

  16. Combining text retrieval and content-based image retrieval for searching a large-scale medical image database in an integrated RIS/PACS environment

    NASA Astrophysics Data System (ADS)

    He, Zhenyu; Zhu, Yanjie; Ling, Tonghui; Zhang, Jianguo

    2009-02-01

    Medical imaging modalities generate huge amount of medical images daily, and there are urgent demands to search large-scale image databases in an RIS-integrated PACS environment to support medical research and diagnosis by using image visual content to find visually similar images. However, most of current content-based image retrieval (CBIR) systems require distance computations to perform query by image content. Distance computations can be time consuming when image database grows large, and thus limits the usability of such systems. Furthermore, there is still a semantic gap between the low-level visual features automatically extracted and the high-level concepts that users normally search for. To address these problems, we propose a novel framework that combines text retrieval and CBIR techniques in order to support searching large-scale medical image database while integrated RIS/PACS is in place. A prototype system for CBIR has been implemented, which can query similar medical images both by their visual content and relevant semantic descriptions (symptoms and/or possible diagnosis). It also can be used as a decision support tool for radiology diagnosis and a learning tool for education.

  17. Medical Imaging Field of Magnetic Resonance Imaging: Identification of Specialties within the Field

    ERIC Educational Resources Information Center

    Grey, Michael L.

    2009-01-01

    This study was conducted to determine if specialty areas are emerging in the magnetic resonance imaging (MRI) profession due to advancements made in the medical sciences, imaging technology, and clinical applications used in MRI that would require new developments in education/training programs and national registry examinations. In this…

  18. Multimodality medical image fusion: probabilistic quantification, segmentation, and registration

    NASA Astrophysics Data System (ADS)

    Wang, Yue J.; Freedman, Matthew T.; Xuan, Jian Hua; Zheng, Qinfen; Mun, Seong K.

    1998-06-01

    Multimodality medical image fusion is becoming increasingly important in clinical applications, which involves information processing, registration and visualization of interventional and/or diagnostic images obtained from different modalities. This work is to develop a multimodality medical image fusion technique through probabilistic quantification, segmentation, and registration, based on statistical data mapping, multiple feature correlation, and probabilistic mean ergodic theorems. The goal of image fusion is to geometrically align two or more image areas/volumes so that pixels/voxels representing the same underlying anatomical structure can be superimposed meaningfully. Three steps are involved. To accurately extract the regions of interest, we developed the model supported Bayesian relaxation labeling, and edge detection and region growing integrated algorithms to segment the images into objects. After identifying the shift-invariant features (i.e., edge and region information), we provided an accurate and robust registration technique which is based on matching multiple binary feature images through a site model based image re-projection. The image was initially segmented into specified number of regions. A rough contour can be obtained by delineating and merging some of the segmented regions. We applied region growing and morphological filtering to extract the contour and get rid of some disconnected residual pixels after segmentation. The matching algorithm is implemented as follows: (1) the centroids of PET/CT and MR images are computed and then translated to the center of both images. (2) preliminary registration is performed first to determine an initial range of scaling factors and rotations, and the MR image is then resampled according to the specified parameters. (3) the total binary difference of the corresponding binary maps in both images is calculated for the selected registration parameters, and the final registration is achieved when the

  19. Interoperability Standards for Medical Simulation Systems

    NASA Technical Reports Server (NTRS)

    Tolk, Andreas; Diallo, Saikou Y.; Padilla, Jose J.

    2012-01-01

    The Modeling and Simulation Community successfully developed and applied interoperability standards like the Distributed Interactive Simulation (DIS) protocol (IEEE 1278) and the High Level Architecture (HLA) (IEEE 1516). These standards were applied for world-wide distributed simulation events for several years. However, this paper shows that some of the assumptions and constraints underlying the philosophy of these current standards are not valid for Medical Simulation Systems. This paper describes the standards, the philosophy and the limits for medical applications and recommends necessary extensions of the standards to support medical simulation.

  20. Medical Image Resource Center--making electronic teaching files from PACS.

    PubMed

    Lim, C C Tchoyoson; Yang, Guo Liang; Nowinski, Wieslaw L; Hui, Francis

    2003-12-01

    A picture archive and communications system (PACS) is a rich source of images and data suitable for creating electronic teaching files (ETF). However, the potential for PACS to support nonclinical applications has not been fully realized: at present there is no mechanism for PACS to identify and store teaching files; neither is there a standardized method for sharing such teaching images. The Medical Image Resource Center (MIRC) is a new central image repository that defines standards for data exchange among different centers. We developed an ETF server that retrieves digital imaging and communication in medicine (DICOM) images from PACS, and enables users to create teaching files that conform to the new MIRC schema. We test-populated our ETF server with illustrative images from the clinical case load of the National Neuroscience Institute, Singapore. Together, PACS and MIRC have the potential to benefit radiology teaching and research.