Science.gov

Sample records for medicine heart imaging

  1. Heart failure - medicines

    MedlinePlus

    CHF - medicines; Congestive heart failure - medicines; Cardiomyopathy - medicines; HF - medicines ... You will need to take most of your heart failure medicines every day. Some medicines are taken ...

  2. Heart imaging method

    DOEpatents

    Collins, H. Dale; Gribble, R. Parks; Busse, Lawrence J.

    1991-01-01

    A method for providing an image of the human heart's electrical system derives time-of-flight data from an array of EKG electrodes and this data is transformed into phase information. The phase information, treated as a hologram, is reconstructed to provide an image in one or two dimensions of the electrical system of the functioning heart.

  3. Heart Imaging System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Johnson Space Flight Center's device to test astronauts' heart function in microgravity has led to the MultiWire Gamma Camera, which images heart conditions six times faster than conventional devices. Dr. Jeffrey Lacy, who developed the technology as a NASA researcher, later formed Proportional Technologies, Inc. to develop a commercially viable process that would enable use of Tantalum-178 (Ta-178), a radio-pharmaceutical. His company supplies the generator for the radioactive Ta-178 to Xenos Medical Systems, which markets the camera. Ta-178 can only be optimally imaged with the camera. Because the body is subjected to it for only nine minutes, the radiation dose is significantly reduced and the technique can be used more frequently. Ta-178 also enables the camera to be used on pediatric patients who are rarely studied with conventional isotopes because of the high radiation dosage.

  4. Heart Rate Variability Analysis in General Medicine

    PubMed Central

    Gang, Yi; Malik, Marek

    2003-01-01

    Autonomic nervous system plays an integral role in homeostasis. Autonomic modulation can frequently be altered in patients with cardiac disorders as well as in patients with other critical illnesses or injuries. Assessment of heart rate variability is based on analysis of consecutive normal R-R intervals and may provide quantitative information on the modulation of cardiac vagal and sympathetic nerve input. The hypothesis that depressed heart rate variability may occur over a broad range of illness and injury, and may inversely correlated with disease severity and outcome has been tested in various clinical settings over the last decade. This article reviews recent literature concerning the potential clinical implications and limitations of heart rate variability assessment in general medicine. PMID:16943988

  5. [Anthropology at the heart of medicine].

    PubMed

    Vidal, Laurent

    2008-10-01

    Anthropology and medicine share many concerns, but have had trouble collaborating in the past. The anthropologist has had to plead both with his colleagues and physicians to move beyond a < culturalist > vision that would confine him to the study of traditional or alternative medicines and representations of populations and the sick. The anthropologist's approach perceived as intrusive has also raised fears in the medical world. These reciprocal misunderstandings and stereotypes need to be overcome by an anthropology that studies the practices and knowledge of modern medicine as they are elaborated daily. Anthropology will dialogue with medicine without judging it. In its turn, medicine will open its sites of healing and teaching to the anthropologist. Anthropology at the heart of medicine is organized around the idea that the paths and expectations of health professionals reflect the specicifities of the local system of health. The individual dimensions of practices cannot be divorced from the functioning of structures of health and decision. Finally, like any other kind of anthropology, medical anthropology must scrutinize its own methods and ethics in a critical way.

  6. Heart, front view (image)

    MedlinePlus

    ... the heart. The vessels colored blue indicate the transport of blood with relatively low content of oxygen ... carbon dioxide. The vessels colored red indicate the transport of blood with relatively high content of oxygen ...

  7. Clinical imaging in regenerative medicine

    PubMed Central

    Naumova, Anna V; Modo, Michel; Moore, Anna; Murry, Charles E; Frank, Joseph A

    2014-01-01

    In regenerative medicine, clinical imaging is indispensable for characterizing damaged tissue and for measuring the safety and efficacy of therapy. However, the ability to track the fate and function of transplanted cells with current technologies is limited. Exogenous contrast labels such as nanoparticles give a strong signal in the short term but are unreliable long term. Genetically encoded labels are good both short- and long-term in animals, but in the human setting they raise regulatory issues related to the safety of genomic integration and potential immunogenicity of reporter proteins. Imaging studies in brain, heart and islets share a common set of challenges, including developing novel labeling approaches to improve detection thresholds and early delineation of toxicity and function. Key areas for future research include addressing safety concerns associated with genetic labels and developing methods to follow cell survival, differentiation and integration with host tissue. Imaging may bridge the gap between cell therapies and health outcomes by elucidating mechanisms of action through longitudinal monitoring. PMID:25093889

  8. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  9. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George

    1986-01-07

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  10. Infrared thermal imaging in medicine.

    PubMed

    Ring, E F J; Ammer, K

    2012-03-01

    This review describes the features of modern infrared imaging technology and the standardization protocols for thermal imaging in medicine. The technique essentially uses naturally emitted infrared radiation from the skin surface. Recent studies have investigated the influence of equipment and the methods of image recording. The credibility and acceptance of thermal imaging in medicine is subject to critical use of the technology and proper understanding of thermal physiology. Finally, we review established and evolving medical applications for thermal imaging, including inflammatory diseases, complex regional pain syndrome and Raynaud's phenomenon. Recent interest in the potential applications for fever screening is described, and some other areas of medicine where some research papers have included thermal imaging as an assessment modality. In certain applications thermal imaging is shown to provide objective measurement of temperature changes that are clinically significant.

  11. Radiopharmaceuticals for imaging the heart

    DOEpatents

    Green, Mark A.; Tsang, Brenda W.

    1994-01-01

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography.

  12. Radiopharmaceuticals for imaging the heart

    DOEpatents

    Green, M.A.; Tsang, B.W.

    1994-06-28

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography. 6 figures.

  13. Heart Sonar Images

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Stanford University cardiologists, with the help of Ames engineers, have validated the operation of the echo-cardioscope to monitor cardiac functions of astronauts in flight. This device forms images of internal structures using high-frequency sound. The instrument is compact, lightweight, portable, and DC powered for safety. The battery powered ultrasonic device, being isolated from its electrical environment, has an inherent safety advantage especially with infants.

  14. Hypoplastic left heart syndrome (image)

    MedlinePlus

    Hypoplastic left heart syndrome is a congenital heart condition that occurs during the development of the heart in the ... womb. During the heart's development, parts of the left side of the heart (mitral valve, left ventricle ...

  15. Congenital heart defects and medical imaging.

    PubMed

    Gehin, Connie; Ragsdale, Lisa

    2013-01-01

    Radiologic technologists perform imaging studies that are useful in the diagnosis of congenital heart defects in infants and adults. These studies also help to monitor congenital heart defect repairs in adults. This article describes the development and functional anatomy of the heart, along with the epidemiology and anatomy of congenital heart defects. It also discusses the increasing population of adults who have congenital heart defects and the most effective modalities for diagnosing, evaluating, and monitoring congenital heart defects.

  16. 3D Whole Heart Imaging for Congenital Heart Disease

    PubMed Central

    Greil, Gerald; Tandon, Animesh (Aashoo); Silva Vieira, Miguel; Hussain, Tarique

    2017-01-01

    Three-dimensional (3D) whole heart techniques form a cornerstone in cardiovascular magnetic resonance imaging of congenital heart disease (CHD). It offers significant advantages over other CHD imaging modalities and techniques: no ionizing radiation; ability to be run free-breathing; ECG-gated dual-phase imaging for accurate measurements and tissue properties estimation; and higher signal-to-noise ratio and isotropic voxel resolution for multiplanar reformatting assessment. However, there are limitations, such as potentially long acquisition times with image quality degradation. Recent advances in and current applications of 3D whole heart imaging in CHD are detailed, as well as future directions. PMID:28289674

  17. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  18. Heart valve surgery - series (image)

    MedlinePlus

    There are four valves in the heart: aortic valve, mitral valve, tricuspid valve, and pulmonary valve. The valves are designed to control the direction of blood flow through the heart. The opening and closing of the heart valves produce the heart-beat sounds.

  19. [Heart failure: role of cardiovascular imaging].

    PubMed

    Díaz Navarro, Rienzi

    2016-10-11

    The usefulness of echocardiography and the new noninvasive cardiac techniques in assessing heart failure is analyzed. The usefulness of non-invasive CT coronary angiography, as well as the growing applications of magnetic resonance imaging (MRI) in the study of ischemic heart disease, cardiomyopathy and arrhythmogenic right ventricular dysplasia is considered. For this puspose, some clinical cases are used. The combined use of these techniques, especially in patients in whom the etiology of heart failure is ischemic heart disease or cardiomyopathy is emphasized.

  20. Magnetic resonance imaging of congenital heart disease

    SciTech Connect

    Fletcher, B.D.; Jacobstein, M.D.

    1988-01-01

    Focusing primarily on MR imaging of the heart, this book covers other diagnostic imaging modalities as well. The authors review new technologies and diagnostic procedures pertinent to congenital heat disease and present each congenital heat abnormality as a separate entity.

  1. Digoxin: A Medicine for Heart Problems

    MedlinePlus

    ... be caused by a heart problem called atrial fibrillation. Digoxin helps by slowing down and controlling the ... any of these symptoms.If you have atrial fibrillation, the following symptoms may mean that you are ...

  2. Infant open heart surgery (image)

    MedlinePlus

    During open-heart surgery an incision is made through the breastbone (sternum) while the child is under general anesthesia. ... During open-heart surgery an incision is made through the breastbone (sternum) while the child is under general anesthesia.

  3. Heart Palpitation From Traditional and Modern Medicine Perspectives

    PubMed Central

    Ershadifar, Tabassom; Minaiee, Bagher; Gharooni, Manouchehr; Isfahani, Mohammad Mahdi; Nikbakht Nasrabadi, Alireza; Nazem, Esmaiel; Gousheguir, Ashraf Aldin; Kazemi Saleh, Davod

    2014-01-01

    Background: Palpitation is a sign of a disease and is very common in general population. For this purpose we decided to explain it in this study. Objectives: The purpose of this study was to describe the palpitation in both modern and traditional medicine aspect. It may help us to diagnose and cure better because the traditional medicine view is holistic and different from modern medicine. Materials and Methods: We addressed some descriptions to the articles of traditional medicine subjects which have published recently. Palpitation in modern medicine was extracted from medical books such as Braunwald, Harrison and Guyton physiology and some related articles obtained from authentic journals in PubMed and Ovid and Google scholar between1990 to 2013. Results: According to modern medicine, there are many causes for palpitation and in some cases it is cured symptomatically. In traditional medicine view, palpitation has been explained completely and many causes have been described. Its aspect is holistic and it cures causatively. The traditional medicine scientists evaluated the body based on Humors and temperament. Temperament can be changed to dis-temperament in diseases. Humors are divided in 4 items: sanguine, humid or phlegm, melancholy and bile. Palpitation is a disease, it is heart vibration and is caused by an abnormal substance in the heart itself or its membrane or other adjacent organs that would result in the heart suffering. Conclusions: Our data of this article suggests that causes of palpitation in the aspect of traditional medicine are completely different from modern medicine. It can help us to approach and treat this symptom better and with lower side effects than chemical drugs. According to this article we are able to detect a new approach in palpitation. PMID:24719741

  4. Functional imaging for regenerative medicine.

    PubMed

    Leahy, Martin; Thompson, Kerry; Zafar, Haroon; Alexandrov, Sergey; Foley, Mark; O'Flatharta, Cathal; Dockery, Peter

    2016-04-19

    In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can be divided according to whether labels are used and as to whether the imaging can be done in vivo. In vivo human imaging places additional restrictions on the imaging tools that can be used. Microscopies and nanoscopies, especially those requiring fluorescent markers, have made an extraordinary impact on discovery at the molecular and cellular level, but due to their very limited ability to focus in the scattering tissues encountered for in vivo applications they are largely confined to superficial imaging applications in research laboratories. Nanoscopy, which has tremendous benefits in resolution, is limited to the near-field (e.g. near-field scanning optical microscope (NSNOM)) or to very high light intensity (e.g. stimulated emission depletion (STED)) or to slow stochastic events (photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)). In all cases, nanoscopy is limited to very superficial applications. Imaging depth may be increased using multiphoton or coherence gating tricks. Scattering dominates the limitation on imaging depth in most tissues and this can be mitigated by the application of optical clearing techniques that can impose mild (e.g. topical application of glycerol) or severe (e.g. CLARITY) changes to the tissue to be imaged. Progression of therapies through to clinical trials requires some thought as to the imaging and sensing modalities that should be used. Smoother progression is facilitated by the use of

  5. Cardiac imaging in valvular heart disease.

    PubMed

    Choo, W S; Steeds, R P

    2011-12-01

    The aim of this article is to provide a perspective on the relative importance and contribution of different imaging modalities in patients with valvular heart disease. Valvular heart disease is increasing in prevalence across Europe, at a time when the clinical ability of physicians to diagnose and assess severity is declining. Increasing reliance is placed on echocardiography, which is the mainstay of cardiac imaging in valvular heart disease. This article outlines the techniques used in this context and their limitations, identifying areas in which dynamic imaging with cardiovascular magnetic resonance and multislice CT are expanding.

  6. Cardiac imaging in valvular heart disease

    PubMed Central

    Choo, W S; Steeds, R P

    2011-01-01

    The aim of this article is to provide a perspective on the relative importance and contribution of different imaging modalities in patients with valvular heart disease. Valvular heart disease is increasing in prevalence across Europe, at a time when the clinical ability of physicians to diagnose and assess severity is declining. Increasing reliance is placed on echocardiography, which is the mainstay of cardiac imaging in valvular heart disease. This article outlines the techniques used in this context and their limitations, identifying areas in which dynamic imaging with cardiovascular magnetic resonance and multislice CT are expanding. PMID:22723532

  7. Perspective on precision medicine in paediatric heart failure.

    PubMed

    Fridman, Michael D; Mital, Seema

    2017-03-01

    In 2015, President Obama launched the Precision Medicine Initiative (PMI), which introduced new funding to a method of research with the potential to study rare and complex diseases. Paediatric heart failure, a heterogeneous syndrome affecting approximately 1 in 100000 children, is one such condition in which precision medicine techniques may be applied with great benefit. Current heart failure therapies target downstream effects of heart failure rather than the underlying cause of heart failure. As such, they are often ineffective in paediatric heart failure, which is typically of primary (e.g. genetic) rather than secondary (e.g. acquired) aetiology. It is, therefore, important to develop therapies that can target the causes of heart failure in children with greater specificity thereby decreasing morbidity, mortality and burden of illness on both patients and their families. The benefits of co-ordinated research in genomics, proteomics, metabolomics, transcriptomics and phenomics along with dietary, lifestyle and social factors have led to novel therapeutic and prognostic applications in other fields such as oncology. Applying such co-ordinated research efforts to heart failure constitutes an important step in advancing care and improving the lives of those affected.

  8. Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine

    PubMed Central

    Lui, Kathy O.; Tandon, Nina

    2012-01-01

    The idea of extending the lifetime of our organs is as old as humankind, fueled by major advances in organ transplantation, novel drugs, and medical devices. However, true regeneration of human tissue has becoming increasingly plausible only in recent years. The human heart has always been a focus of such efforts, given its notorious inability to repair itself following injury or disease. We discuss here the emerging bioengineering approaches to regeneration of heart muscle as a paradigm for regenerative medicine. Our focus is on biologically inspired strategies for heart regeneration, knowledge gained thus far about how to make a “perfect” heart graft, and the challenges that remain to be addressed for tissue-engineered heart regeneration to become a clinical reality. We emphasize the need for interdisciplinary research and training, as recent progress in the field is largely being made at the interfaces between cardiology, stem cell science, and bioengineering. PMID:21568715

  9. Heart-Lung Interactions in Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Guy, Harold J. B.; Prisk, Gordon Kim

    1991-01-01

    Few of the heart-lung interactions that are discussed have been studied in any detail in the aerospace environment, but is seems that many such interactions must occur in the setting of altered accelerative loadings and pressure breathing. That few investigations are in progress suggests that clinical and academic laboratory investigators and aerospace organizations are further apart than during the pioneering work on pressure breathing and acceleration tolerance in the 1940s. The purpose is to reintroduce some of the perennial problems of aviation physiology as well as some newer aerospace concerns that may be of interest. Many possible heart-lung interactions are pondered, by necessity often drawing on data from within the aviation field, collected before the modern understanding of these interactions developed, or on recent laboratory data that may not be strictly applicable. In the field of zero-gravity effects, speculation inevitably outruns the sparse available data.

  10. (New imaging systems in nuclear medicine)

    SciTech Connect

    Not Available

    1990-01-01

    Further progress has been made on improving the uniformity and stability of PCR-I, the single ring analog coded tomograph. This camera has been employed in a wide range of animal studies described below. Data from PCR-I have been used in various image processing procedures. These include motion pictures of dog heart, comparison of PET and MRI image in dog heart and rat brain and quantitation of tumor metabolism in the nude mouse using blood data from heart images. A SUN workstation with TAAC board has been used to produce gated three-dimensional images of the dog heart. The ANALYZE program from the Mayo Clinic has also been mounted on a SUN workstation for comparison of images and image processing. 15 refs., 6 figs.

  11. Nuclear Medicine Imaging in Pediatric Neurology

    PubMed Central

    Akdemir, Ümit Özgür; Atay Kapucu, Lütfiye Özlem

    2016-01-01

    Nuclear medicine imaging can provide important complementary information in the management of pediatric patients with neurological diseases. Pre-surgical localization of the epileptogenic focus in medically refractory epilepsy patients is the most common indication for nuclear medicine imaging in pediatric neurology. In patients with temporal lobe epilepsy, nuclear medicine imaging is particularly useful when magnetic resonance imaging findings are normal or its findings are discordant with electroencephalogram findings. In pediatric patients with brain tumors, nuclear medicine imaging can be clinically helpful in the diagnosis, directing biopsy, planning therapy, differentiating tumor recurrence from post-treatment sequelae, and assessment of response to therapy. Among other neurological diseases in which nuclear medicine has proved to be useful are patients with head trauma, inflammatory-infectious diseases and hypoxic-ischemic encephalopathy. PMID:27299282

  12. Impact of obesity on nuclear medicine imaging.

    PubMed

    Ghanem, Mohammad A; Kazim, Nafeesa A; Elgazzar, Abdelhamid H

    2011-03-01

    Obesity, with its alarming increase among adults and children, represents a significant health problem with serious medical, social, psychologic, and economic reverberations. The burden of this problem significantly affects the medical care system, including medical imaging. The effect of obesity on nuclear medicine imaging spans many aspects, from preimaging patient preparation to radiotracer administration, image acquisition, and image interpretation. The acquired images may be suboptimal because of artifacts due to soft-tissue attenuation and incomplete whole-body coverage, and quantification may be suboptimal, especially for PET. Other difficulties include mechanical problems such as the weight limit of the imaging table and the bore size of the PET or SPECT/CT scanner and the need to alter the timing, duration, or protocol of many imaging procedures. These issues are discussed in this review, which clarifies the impact of this epidemic health problem on nuclear medicine services and proposes possible solutions to overcome obesity-related difficulties encountered in nuclear medicine practice.

  13. Physical activity - preventive medicine (image)

    MedlinePlus

    Physical activity contributes to health by reducing the heart rate, decreasing the risk for cardiovascular disease, and reducing the amount of bone loss that is associated with age and osteoporosis. Physical ...

  14. An overview of nuclear medicine imaging procedures.

    PubMed

    Hogg, Peter; Lawson, Richard

    2015-11-25

    Nuclear medicine imaging is not generally well understood by nurses who work outside this area. Consequently, nurses can find themselves unable to answer patients' questions about nuclear medicine imaging procedures or give them proper information before they attend for a test. This article aims to explain what is involved in some common diagnostic nuclear medicine imaging procedures so that nurses are able to discuss this with patients. It also addresses some common issues about radiation protection that nurses might encounter in their usual working routine. The article includes links to videos showing some typical nuclear medicine imaging procedures from a patient's point of view and links to an e-Learning for Healthcare online resource that provides detailed information for nurses.

  15. Echocardiographic image of an active human heart

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Echocardiographic images provide quick, safe images of the heart as it beats. While a state-of-the art echocardiograph unit is part of the Human Research Facility on International Space Station, quick transmission of images and data to Earth is a challenge. NASA is developing techniques to improve the echocardiography available to diagnose sick astronauts as well as study the long-term effects of space travel on their health. Echocardiography uses ultrasound, generated in a sensor head placed against the patient's chest, to produce images of the structure of the heart walls and valves. However, ultrasonic imaging creates an enormous volume of data, up to 220 million bits per second. This can challenge ISS communications as well as Earth-based providers. Compressing data for rapid transmission back to Earth can degrade the quality of the images. Researchers at the Cleveland Clinic Foundation are working with NASA to develop compression techniques that meet imaging standards now used on the Internet and by the medical community, and that ensure that physicians receive quality diagnostic images.

  16. Fluorescent Cell Imaging in Regenerative Medicine

    PubMed Central

    Sapoznik, Etai; Niu, Guoguang; Zhou, Yu; Murphy, Sean V.; Soker, Shay

    2016-01-01

    Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as intra-vital microscopy and Förster resonance energy transfer, are providing new insights into cellular behavior, including cell migration, morphology, and phenotypic changes in a dynamic environment. Such applications, combined with multimodal imaging, significantly expand the utility of fluorescent protein imaging in research and clinical applications of regenerative medicine. PMID:27158228

  17. Cardiac Imaging in Heart Failure with Comorbidities.

    PubMed

    Wong, Chiew; Chen, Sylvia; Iyngkaran, Pupalan

    2017-01-01

    Imaging modalities stand at the frontiers for progress in congestive heart failure (CHF) screening, risk stratification and monitoring. Advancements in echocardiography (ECHO) and Magnetic Resonance Imaging (MRI) have allowed for improved tissue characterizations, cardiac motion analysis, and cardiac performance analysis under stress. Common cardiac comorbidities such as hypertension, metabolic syndromes and chronic renal failure contribute to cardiac remodeling, sharing similar pathophysiological mechanisms starting with interstitial changes, structural changes and finally clinical CHF. These imaging techniques can potentially detect changes earlier. Such information could have clinical benefits for screening, planning preventive therapies and risk stratifying patients. Imaging reports have often focused on traditional measures without factoring these novel parameters. This review is aimed at providing a synopsis on how we can use this information to assess and monitor improvements for CHF with comorbidities.

  18. Images of the Heart: Archetypal Imagery in Therapeutic Artwork.

    ERIC Educational Resources Information Center

    Kidd, Judith; Wix, Linney

    1996-01-01

    Explores the "heart" image in art, myth, literature, and religion. Examines an archetypal art therapy approach to the use of the heart in the artmaking processes of two child clients seen in individual and group art therapy. Uses the historical exploration of the heart as a background against which to view personal use of the heart image…

  19. ``THE UNVEILED HEART'' a teaching program in cardiovascular nuclear medicine

    NASA Astrophysics Data System (ADS)

    Itti, Roland; Merabet, Yasmina; Roca, Ramona; Bontemps, Laurence; Itti, Emmanuel

    2004-07-01

    The functional investigation of cardiac diseases using nuclear techniques involves several variables, such as myocardial perfusion, cellular viability or mechanical contraction. The combined, topographical and quantitative assessment of these variables can characterize the functional state of the heart in terms of normal myocardium, ischemia, hibernation or necrosis. The teaching program, "The Unveiled Heart", has been designed in order to help nuclear physicians or cardiologists approaching these concepts and their implications for diagnosis of coronary artery disease, optimization of therapeutic strategies and prognosis evaluation. Anatomical correlations with coronary angiographic results obtained during balloon occlusion at the time of coronary angioplasty demonstrate the complementary role of imaging techniques and highlight the patient to patient variability of risk areas. A sectorial model derived from a polar projection of the myocardium presents for each sector the probability of involvement of a given coronary artery.

  20. General comparison of functional imaging in nuclear medicine with other modalities

    SciTech Connect

    Adam, W.E.

    1987-01-01

    New (noninvasive) diagnostic procedures in medicine (ultrasound (US), digital subtraction angiography (DSA), computed tomography (CT), nuclear magnetic resonance (NMR)) create a need for a review of the clinical utility of functional imaging in nuclear medicine. A general approach that is valid for all imaging procedures is not possible. For this reason, an individual assessment for each class of functional imaging is necessary, taking into account the complexity and sophistication of the various imaging procedures. This leads to a hierarchical order: first order functional imaging: imaging of organ motion (heart, lungs, blood); second order functional imaging: imaging of excretory function (kidneys, liver); and third and fourth order functional imaging: imaging of metabolism (except excretory function). First order functional imaging is possible fundamentally, although with limitations in detail, by all modalities. Second order functional imaging is not possible with US. Third and fourth order functional imaging is a privilege of nuclear medicine alone. Up to now, NMR has not proven clinically useful to produce metabolic images in its true sense. First and second order functional imaging of nonradioactive procedures face severe disadvantages, including difficulties in performing stress investigations, which are essential for coronary heart disease, limited capability for true quantitative information (eg, kidney clearance in mL/min), side effects of contrast media and paramagnetic substances, and high costs. 58 references.

  1. Digital Imaging and Communications in Medicine

    NASA Astrophysics Data System (ADS)

    Onken, Michael; Eichelberg, Marco; Riesmeier, Jörg; Jensch, Peter

    Over the past 15 years Digital Imaging and Communications in Medicine (DICOM) has established itself as the international standard for medical image communication. Most medical imaging equipment uses DICOM network and media services to export image data, thus making this standard highly relevant for medical image processing. The first section of this chapter provides a basic introduction into DICOM with its more than 3,600 pages of technical documentation, followed by a section covering selected advanced topics of special interest for medical image processing. The introductory text familiarizes the reader with the standard's main concepts such as information objects and DICOM media and network services. The rendering pipeline for image display and the concept of DICOM conformance are also discussed. Specialized DICOM services such as advanced image display services that provide means for storing how an image was viewed ("Softcopy Presentation States") and how multiple images should be aligned on an output device ("Structured Display" and "Hanging Protocols") are described. We further describe DICOM's sophisticated approach ("Structured Reporting") for storing structured documents such as CAD information, which is then covered in more detail. Finally, the last section provides an insight into a newly developed DICOM service called "Application Hosting", which introduces a standardized plug-in architecture for image processing, thus permitting users to utilize cross-vendor image processing plug-ins in DICOM applications.

  2. Coded-aperture imaging in nuclear medicine

    NASA Technical Reports Server (NTRS)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  3. Coded-aperture imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-11-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  4. Advanced imaging in valvular heart disease.

    PubMed

    Bax, Jeroen J; Delgado, Victoria

    2017-04-01

    Although echocardiography remains the mainstay imaging technique for the evaluation of patients with valvular heart disease (VHD), innovations in noninvasive imaging in the past few years have provided new insights into the pathophysiology and quantification of VHD, early detection of left ventricular (LV) dysfunction, and advanced prognostic assessment. The severity grading of valve dysfunction has been refined with the use of Doppler echocardiography, cardiac magnetic resonance (CMR), and CT imaging. LV ejection fraction remains an important criterion when deciding whether patients should be referred for surgery. However, echocardiographic strain imaging can now detect impaired LV systolic function before LV ejection fraction reduces, thus provoking the debate on whether patients with severe VHD should be referred for surgery at an earlier stage (before symptom onset). Impaired LV strain correlates with the amount of myocardial fibrosis detected with CMR techniques. Furthermore, accumulating data show that the extent of fibrosis associated with severe VHD has important prognostic implications. The present Review focuses on using these novel imaging modalities to assess pathophysiology, early LV dysfunction, and prognosis of major VHDs, including aortic stenosis, mitral regurgitation, and aortic regurgitation.

  5. Imaging the Heart of Our Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    New radio images of the center of the Milky Way are providing an unprecedented view of the structure and processes occurring in the Galactic center.JVLA images of Sgr A at 5.5 GHz. The large-scale, bright ring structure is Sgr A East, a supernova remnant. The mini-spiral structure along the lower-right edge of the ring is Sgr A West, and Sgr A* is located near the center of the mini-spiral structure. Click for a closer look! [Zhao et al. 2016]Improved Radio ViewA recent study led by Jun-Hui Zhao (Harvard-Smithsonian Center for Astrophysics) presents new images of the Galactic center using the Jansky Very Large Array (JVLA) at 5.5 GHz. The images center on the radio-bright zone at the core of our galaxy, with the field of view covering the central 13 of the Milky Way equivalent to a physical size of ~100 light-years.Due to recent hardware and software improvements in the VLA, these images are much deeper than any previously obtained of the Galactic center, reaching an unprecedented 100,000:1 dynamic range. Not only do these observations provide a detailed view of previously known structures within the Sagittarius A radio complex in the Milky Ways heart, but they also reveal new features that can help us understand the processes that formed this bright complex.Features in Sagittarius ASgr A consists of three main components nested within each other: the supernova remnant Sgr A East, the mini-spiral structure Sgr A West (located off-center within the Sgr A East structure), and the compact radio source Sgr A* (located near the center of the mini-spiral). Sgr A* is the supermassive black hole that resides at the very center of the Milky Way.The newest JVLA images reveal numerous filamentary sources that trace out two radio lobes, oriented nearly perpendicular to the Galactic plane and ~50 light-years in size. These are smaller radio counterparts to the enormous (on the scale of 30,000 light-years!) gamma-ray Fermi bubbles that have been observed to extend from the

  6. The Quantitative Imaging Network in Precision Medicine

    PubMed Central

    Nordstrom, Robert J.

    2017-01-01

    Precision medicine is a healthcare model that seeks to incorporate a wealth of patient information to identify and classify disease progression and to provide tailored therapeutic solutions for individual patients. Interventions are based on knowledge of molecular and mechanistic causes, pathogenesis and pathology of disease. Individual characteristics of the patients are then used to select appropriate healthcare options. Imaging is playing an increasingly important role in identifying relevant characteristics that help to stratify patients for different interventions. However, lack of standards, limitations in image-processing interoperability, and errors in data collection can limit the applicability of imaging in clinical decision support. Quantitative imaging is the attempt to extract reliable, numerical information from images to eliminate qualitative judgments and errors for providing accurate measures of tumor response to therapy or for predicting future response. This issue of Tomography reports quantitative imaging developments made by several members of the National Cancer Institute Quantitative Imaging Network, a program dedicated to the promotion of quantitative imaging methods for clinical decision support. PMID:28083563

  7. Imaging of Muscle Injuries in Sports Medicine: Sports Imaging Series.

    PubMed

    Guermazi, Ali; Roemer, Frank W; Robinson, Philip; Tol, Johannes L; Regatte, Ravindar R; Crema, Michel D

    2017-03-01

    In sports-related muscle injuries, the main goal of the sports medicine physician is to return the athlete to competition-balanced against the need to prevent the injury from worsening or recurring. Prognosis based on the available clinical and imaging information is crucial. Imaging is crucial to confirm and assess the extent of sports-related muscle injuries and may help to guide management, which directly affects the prognosis. This is especially important when the diagnosis or grade of injury is unclear, when recovery is taking longer than expected, and when interventional or surgical management may be necessary. Several imaging techniques are widely available, with ultrasonography and magnetic resonance imaging currently the most frequently applied in sports medicine. This state of the art review will discuss the main imaging modalities for the assessment of sports-related muscle injuries, including advanced imaging techniques, with the focus on the clinical relevance of imaging features of muscle injuries. (©) RSNA, 2017 Online supplemental material is available for this article.

  8. Fetal heart and uterine contraction monitor (image)

    MedlinePlus

    The fetal heart monitor and uterine contraction monitor provide a continuous record of the baby's heart rate and the mother's contraction rate as labor progresses. This device can provide early warning of fetal distress.

  9. Being active after a heart attack (image)

    MedlinePlus

    ... best activity when you start exercising after a heart attack. Start slowly, and increase the amount of time ... best activity when you start exercising after a heart attack. Start slowly, and increase the amount of time ...

  10. Generation to Generation: The Heart of Family Medicine

    ERIC Educational Resources Information Center

    Winter, Robin O.

    2012-01-01

    According to the American Board of Family Medicine, "The scope of family medicine encompasses all ages, both sexes, each organ system and every disease entity." What makes the seemingly daunting task of practicing family medicine possible is that family physicians learn to utilize similar clinical reasoning for all of their patients regardless of…

  11. PET and SPECT imaging in veterinary medicine.

    PubMed

    LeBlanc, Amy K; Peremans, Kathelijne

    2014-01-01

    Veterinarians have gained increasing access to positron emission tomography (PET and PET/CT) imaging facilities, allowing them to use this powerful molecular imaging technique for clinical and research applications. SPECT is currently being used more in Europe than in the United States and has been shown to be useful in veterinary oncology and in the evaluation of orthopedic diseases. SPECT brain perfusion and receptor imaging is used to investigate behavioral disorders in animals that have interesting similarities to human psychiatric disorders. This article provides an overview of the potential applications of PET and SPECT. The use of commercially available and investigational PET radiopharmaceuticals in the management of veterinary disease has been discussed. To date, most of the work in this field has utilized the commercially available PET tracer, (18)F-fluorodeoxyglucose for oncologic imaging. Normal biodistribution studies in several companion animal species (cats, dogs, and birds) have been published to assist in lesion detection and interpretation for veterinary radiologists and clinicians. Studies evaluating other (18)F-labeled tracers for research applications are underway at several institutions and companion animal models of human diseases are being increasingly recognized for their value in biomarker and therapy development. Although PET and SPECT technologies are in their infancy for clinical veterinary medicine, increasing access to and interest in these applications and other molecular imaging techniques has led to a greater knowledge and collective body of expertise for veterinarians worldwide. Initiation and fostering of physician-veterinarian collaborations are key components to the forward movement of this field.

  12. Regenerative medicine for the treatment of heart disease.

    PubMed

    Hansson, E M; Lendahl, U

    2013-03-01

    Heart failure is a major cause of mortality worldwide with a steady increase in prevalence. There is currently no available cure beyond orthotopic heart transplantation, which for a number of reasons is an option only for a small fraction of all patients. Considerable hope has therefore been placed on the possibility of treating a failing heart by replacing lost cardiomyocytes, either through transplantation of various types of stem cells or by boosting endogenous regenerative mechanisms in the heart. Here, we review the current status of stem and progenitor cell-based therapies for heart disease. We discuss the pros and cons of different stem and progenitor cell types that can be considered for transplantation and describe recent advances in the understanding of how cardiomyocytes normally differentiate and how these cells can be generated from more immature cells ex vivo. Finally, we consider the possibility of activation of endogenous stem and progenitor cells to treat heart failure.

  13. Anatomic and functional imaging of congenital heart disease with digital subtraction angiography

    SciTech Connect

    Buonocore, E.; Pavlicek, W.; Modic, M.T.; Meaney, T.F.; O'Donovan, P.B.; Grossman, L.B.; Moodie, D.S.; Yiannikas, J.

    1983-06-01

    Digital subtraction angiography (DSA) of the heart was performed in 54 patients for the evaluation of congenital heart diagnostic images and accurate physiologic shunt data that compared favorably with catheter angiography and nuclear medicine studies. Retrospective analysis of this series of patients indicated that DSA studies contributed sufficient informantion to shorten significantly or modify cardiac catheterization in 85% (79/93) of the defects that were identified. Interatrial septal defects were particularly well diagnosed, with identification occurring in 10 of 10 cases, wheseas intraventricular septal defects were identified in only 6 of 9 patients. Evaluation of postsurgical patients was accurate in 19 of 20 cases.

  14. Nuclear cardiac imaging for the diagnosis and management of heart failure: what can be learned from recent guidelines?

    PubMed

    Vervloet, Delphine M; DE Sutter, Johan

    2016-01-20

    The aim of this review is to provide the clinical cardiologist and nuclear medicine specialist a brief overview of the currently accepted clinical use of cardiac nuclear imaging for the diagnosis and management of patients with heart failure based on recent (2012-2015) European Society of Cardiology (ESC) guidelines. We used the most recent ESC guidelines on heart failure, management of stable coronary artery disease, cardiac pacing, myocardial revascularisation, non-cardiac surgery and ventricular arrhythmias and sudden death. Nowadays cardiac nuclear imaging is useful in almost every step in heart failure from diagnostics to treatment. In first diagnosis of heart failure radionuclide imaging can provide information on ventricular function and volumes and nuclear imaging techniques provide accurate and reproducible left ventricular function assessment. In work out of the aetiology of the heart failure CMR, SPECT and PET imaging can demonstrate presence of inducible ischemia and myocardial viability. For prognostic information MIBG might be promising in the future. In treatment planning cardiac nuclear imaging is important to evaluate new angina and to assess accurate left ventricular ejection fraction before cardiac resynchronization therapy. Imaging stress testing is useful in the preoperative evaluation for non-cardiac surgery of heart failure patients. There is until now no recommended place for cardiac nuclear imaging in the follow-up of heart failure patients or prior to the initiation of cardiac rehabilitation.

  15. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  16. Basic imaging in congenital heart disease. 3rd Ed

    SciTech Connect

    Swischuk, L.E.; Sapire, D.W.

    1986-01-01

    The book retains its previous format with chapters on embryology, plain film interpretation, classification of pulmonary vascular patterns, cardiac malpositions and vascular anomalies, and illustrative cases. The book is organized with an abundance of illustrative figures, diagrams, and image reproductions. These include plain chest radiographs, angiograms, echocardiograms, and MR images. The authors present the pathophysiology and imaging of congenital heart lesions.

  17. Seismic imaging of the Medicine Lake Caldera

    SciTech Connect

    Zucca, J.J.; Evans, J.R.; Kasameyer, P.W.

    1987-04-01

    Medicine Lake Volcano, a broad shield volcano about 50 km east of Mount Shasta in northern California, produced rhylotic eruptions as recently as 400 years ago. Because of this recent activity it is of considerable interest to producers of geothermal energy. The USGS and LLNL conducted an active seismic experiment designed to explore the area beneath and around the caldera. This experiment had two purposes: To produce high-quality velocity and attenuation images of the young magma body presumed to be the source for the young volcanic features, and to collect a dataset that can be used to develop and test seismic imaging methods that may be useful for understanding other geothermal systems. Eight large explosions were detonated in a 50 km radius circle around the volcano, a distance chosen to produce strong upward traveling signals through the area of interest. The data were inverted using Aki's method to produce three-dimensional velocity and attenuation images of the sub-surface. Preliminary interpretation shows low velocity and attenuation on the flanks of the volcano, and coincident high attenuation values and low velocities (-20%) from 3 to 5 km beneath the center of the caldera. This zone may be a region of partial melt which fed the youngest eruptions.

  18. Herbal Supplements May Not Mix with Heart Medicines

    MedlinePlus

    Healthy Lifestyle Consumer health Some herbal supplements can have dangerous interactions with heart medications. By Mayo Clinic Staff ... 26, 2016 Original article: http://www.mayoclinic.org/healthy-lifestyle/consumer-health/in-depth/herbal-supplements/art-20046488 . ...

  19. Nuclear medicine imaging of bone infections.

    PubMed

    Love, C; Palestro, C J

    2016-07-01

    Osteomyelitis is a broad group of infectious diseases that involve the bone and/or bone marrow. It can arise haematogenously, via extension from a contiguous infection, or by direct inoculation during surgery or trauma. The diagnosis is not always obvious and imaging tests are frequently performed as part of the diagnostic work-up. Commonly performed radionuclide tests include technetium-99m ((99m)Tc)-diphosphonate bone scintigraphy (bone), and gallium-67 ((67)Ga) and in vitro labelled leukocyte (white blood cell; WBC) imaging. Although they are useful, each of these tests has limitations. Bone scintigraphy is sensitive but not specific, especially when underlying osseous abnormalities are present. (67)Ga accumulates in tumour, trauma, and in aseptic inflammation; furthermore, there is typically an interval of 1-3 days between radiopharmaceutical injection of and imaging. Currently, this agent is used primarily for spinal infections. Except for the spine, WBC imaging is the nuclear medicine test of choice for diagnosing complicating osteomyelitis. The in vitro leukocyte labelling process requires skilled personnel, is laborious, and is not always available. Complementary marrow imaging is usually required to maximise accuracy. Not surprisingly, alternative radiopharmaceuticals are continuously being investigated. Radiolabelled anti-granulocyte antibodies and antibody fragments, investigated as in vivo leukocyte labelling agents, have their own limitations and are not widely available. (111)In-biotin is useful for diagnosing spinal infections. Radiolabelled synthetic fragments of ubiquicidin, a naturally occurring human antimicrobial peptide that targets bacteria, have shown promise as infection specific radiopharmaceuticals. 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET) with or without computed tomography (CT) is very useful in musculoskeletal infection. Sensitivities of more than 95% and specificities ranging from 75-99% have been

  20. High Contrast Ultrafast Imaging of the Human Heart

    PubMed Central

    Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael

    2014-01-01

    Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135

  1. Biomedical engineering in heart-brain medicine: a review.

    PubMed

    Katona, Peter G

    2010-07-01

    New reports have emerged exploring the use of electrical stimulation of peripheral nerves in patients for the treatment of depression, heart failure, and hypertension. Abolishing renal sympathetic nerve activity in resistant hypertension has also been described. Since nerve bundles carry a variety of signals to multiple organs, it is necessary to develop technologies to stimulate or block targeted nerve fibers selectively. Mathematical modeling is a major tool for such development. Purposeful modeling is also needed to quantitatively characterize complex heart-brain interactions, allowing an improved understanding of physiological and clinical measurements. Automated control of therapeutic devices is a possible eventual outcome.

  2. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  3. Role of Imaging in the Era of Precision Medicine.

    PubMed

    Giardino, Angela; Gupta, Supriya; Olson, Emmi; Sepulveda, Karla; Lenchik, Leon; Ivanidze, Jana; Rakow-Penner, Rebecca; Patel, Midhir J; Subramaniam, Rathan M; Ganeshan, Dhakshinamoorthy

    2017-01-25

    Precision medicine is an emerging approach for treating medical disorders, which takes into account individual variability in genetic and environmental factors. Preventive or therapeutic interventions can then be directed to those who will benefit most from targeted interventions, thereby maximizing benefits and minimizing costs and complications. Precision medicine is gaining increasing recognition by clinicians, healthcare systems, pharmaceutical companies, patients, and the government. Imaging plays a critical role in precision medicine including screening, early diagnosis, guiding treatment, evaluating response to therapy, and assessing likelihood of disease recurrence. The Association of University Radiologists Radiology Research Alliance Precision Imaging Task Force convened to explore the current and future role of imaging in the era of precision medicine and summarized its finding in this article. We review the increasingly important role of imaging in various oncological and non-oncological disorders. We also highlight the challenges for radiology in the era of precision medicine.

  4. Role of cardiovascular imaging in selection of donor hearts

    PubMed Central

    Nair, Nandini; Gongora, Enrique

    2015-01-01

    AIM:To perform a systematic review of literature on use of cardiovascular imaging in assessment of donor hearts. METHODS: A systematic search of current literature from January 1965 to August 2015 was performed using PubMed and Google Scholar to investigate the different imaging modalities used to assess donor hearts. RESULTS: Recent literature still estimates only a 32% utilization of available donor hearts in the United States. Most common imaging modality used is transthoracic echocardiography. Use of advanced imaging modalities such as 3D echocardiography, cardiac computer tomography and cardiac magnetic resonance to evaluate donor hearts is not reported in literature. This review attempts to highlight the relevant imaging modalities that can be used to assess cardiac function in a time-efficient manner. The algorithm suggested in this review would hopefully pave the way to standardized protocols that can be adopted by organ procuring organizations to increase the donor pool. CONCLUSION: Use of advanced imaging techniques for a thorough assessment of organs will likely increase the donor pool. PMID:26722663

  5. Confocal Imaging of the Embryonic Heart: How Deep?

    NASA Astrophysics Data System (ADS)

    Miller, Christine E.; Thompson, Robert P.; Bigelow, Michael R.; Gittinger, George; Trusk, Thomas C.; Sedmera, David

    2005-06-01

    Confocal microscopy allows for optical sectioning of tissues, thus obviating the need for physical sectioning and subsequent registration to obtain a three-dimensional representation of tissue architecture. However, practicalities such as tissue opacity, light penetration, and detector sensitivity have usually limited the available depth of imaging to 200 [mu]m. With the emergence of newer, more powerful systems, we attempted to push these limits to those dictated by the working distance of the objective. We used whole-mount immunohistochemical staining followed by clearing with benzyl alcohol-benzyl benzoate (BABB) to visualize three-dimensional myocardial architecture. Confocal imaging of entire chick embryonic hearts up to a depth of 1.5 mm with voxel dimensions of 3 [mu]m was achieved with a 10× dry objective. For the purpose of screening for congenital heart defects, we used endocardial painting with fluorescently labeled poly-L-lysine and imaged BABB-cleared hearts with a 5× objective up to a depth of 2 mm. Two-photon imaging of whole-mount specimens stained with Hoechst nuclear dye produced clear images all the way through stage 29 hearts without significant signal attenuation. Thus, currently available systems allow confocal imaging of fixed samples to previously unattainable depths, the current limiting factors being objective working distance, antibody penetration, specimen autofluorescence, and incomplete clearing.

  6. Image stabilisation of the beating heart by local linear interpolation

    NASA Astrophysics Data System (ADS)

    Gröger, Martin; Hirzinger, Gerd

    2006-03-01

    The stabilisation of motion on the beating heart is investigated in the context of minimally invasive robotic surgery. Although reduced by mechanical stabilisers, residual tissue motion makes safe surgery still difficult and time consuming. Compensation for this movement is therefore highly desirable. Motion can be captured by tracking natural landmarks on the heart surface recorded by a video endoscope. Stabilisation is achieved by transforming the images using a motion field calculated from captured local motion. Since the surface of the beating heart is distorted nonlinearly, compensating the occurring motion with a constant image correction factor is not sufficient. Therefore, heart motion is captured by several landmarks, the motion between which is interpolated such that locally appropriate motion correction values are obtained. To estimate the motion between the landmark positions, a triangulation is built and motion information in each triangle is approximated by linear interpolation. Motion compensation is evaluated by calculating the optical flow remaining in the stabilised images. The proposed linear interpolation model is able to reduce motion significantly and can also be implemented efficiently to stabilise images of the beating heart in realtime.

  7. The Sacred Heart Hospice: an Australian centre for palliative medicine.

    PubMed

    Stuart-Harris, R

    1995-09-01

    The Sacred Heart Hospice, Sydney, was founded in 1890 and is the largest inpatient palliative-care facility in Australia. Patients with advanced cancer form the predominant patient group, although patients with HIV/AIDS account for approximately 20% of admissions. A community-outreach service, established in 1983, cares for more patients at home than in the Hospice. Recently the Hospice has participated in a number of clinical trials and intends to become a regional centre for palliative-care research, education and training.

  8. [Mechano-bioscience in heart disease and regenerative medicine.

    PubMed

    Kurotsu, Shota; Ieda, Masaki

    During cardiac development and maturation, the heart continuously receives hemodynamic stimuli, referred to mechanical stress. Mechanical stress governs both cardiac development and differentiation, and also plays an important role in the maintenance of cardiac homeostasis. Indeed, cardiac hypertrophic changes emerge as a result of adaptation to mechanical overload. However, it is difficult to measure the mechanical stress precisely. Therefore, the molecular mechanisms of hemodynamics-related diseases are minimally understood. The progress in mechanobioscience field has a potential to uncover the mechanisms of cardiac diseases, and is expected to result in drug discovery in the future.

  9. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  10. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  11. Radionuclide Imaging of Neurohormonal System of the Heart

    PubMed Central

    Chen, Xinyu; Werner, Rudolf A.; Javadi, Mehrbod S.; Maya, Yoshifumi; Decker, Michael; Lapa, Constantin; Herrmann, Ken; Higuchi, Takahiro

    2015-01-01

    Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included. PMID:25825596

  12. Radionuclide imaging of neurohormonal system of the heart.

    PubMed

    Chen, Xinyu; Werner, Rudolf A; Javadi, Mehrbod S; Maya, Yoshifumi; Decker, Michael; Lapa, Constantin; Herrmann, Ken; Higuchi, Takahiro

    2015-01-01

    Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included.

  13. Uptake of myocardial imaging agents by rejected hearts

    SciTech Connect

    Bergsland, J.; Carr, E.A.; Carroll, M.; Wright, J.W.; Feldman, M.J.; Massucci, J.; Bhayana, J.N.; Gona, J.M.

    1985-09-01

    Technetium 99 m pyrophosphate, Gallium 67 and Thallium 201 uptakes were measured in heterotopically transplanted rat hearts. Five days after transplantation, Technetium 99 m pyrophosphate, and Gallium 67 uptakes were significantly higher in allogeneic grafts than in syngeneic grafts. At an early stage of rejection (three days after transplantation), only Technetium 99 m pyrophosphate uptake in the left ventricle of allogeneic grafts showed a significant difference (p less than 0.04). At five days, Thallium 201 uptake was significantly lower in allo- than syngeneic grafts. There was a positive correlation between radionuclide uptake and histologic degree of rejection for Technetium 99 m pyrophosphate and Gallium 67 while Thallium 201 uptake correlated negatively. Analysis of variance revealed that hearts with no or minimal rejection had statistically different uptakes than hearts with mild to moderate rejection. These results suggest that uptake of imaging agents might be useful in the diagnosis of rejection of the transplanted heart.

  14. Polarized spatial frequency domain imaging of heart valve fiber structure

    NASA Astrophysics Data System (ADS)

    Goth, Will; Yang, Bin; Lesicko, John; Allen, Alicia; Sacks, Michael S.; Tunnell, James W.

    2016-03-01

    Our group previously introduced Polarized Spatial Frequency Domain Imaging (PSFDI), a wide-field, reflectance imaging technique which we used to empirically map fiber direction in porcine pulmonary heart valve leaflets (PHVL) without optical clearing or physical sectioning of the sample. Presented is an extended analysis of our PSFDI results using an inverse Mueller matrix model of polarized light scattering that allows additional maps of fiber orientation distribution, along with instrumentation permitting increased imaging speed for dynamic PHVL fiber measurements. We imaged electrospun fiber phantoms with PSFDI, and then compared these measurements to SEM data collected for the same phantoms. PHVL was then imaged and compared to results of the same leaflets optically cleared and imaged with small angle light scattering (SALS). The static PHVL images showed distinct regional variance of fiber orientation distribution, matching our SALS results. We used our improved imaging speed to observe bovine tendon subjected to dynamic loading using a biaxial stretching device. Our dynamic imaging experiment showed trackable changes in the fiber microstructure of biological tissue under loading. Our new PSFDI analysis model and instrumentation allows characterization of fiber structure within heart valve tissues (as validated with SALS measurements), along with imaging of dynamic fiber remodeling. The experimental data will be used as inputs to our constitutive models of PHVL tissue to fully characterize these tissues' elastic behavior, and has immediate application in determining the mechanisms of structural and functional failure in PHVLs used as bio-prosthetic implants.

  15. Translational research of optical molecular imaging for personalized medicine.

    PubMed

    Qin, C; Ma, X; Tian, J

    2013-12-01

    In the medical imaging field, molecular imaging is a rapidly developing discipline and forms many imaging modalities, providing us effective tools to visualize, characterize, and measure molecular and cellular mechanisms in complex biological processes of living organisms, which can deepen our understanding of biology and accelerate preclinical research including cancer study and medicine discovery. Among many molecular imaging modalities, although the penetration depth of optical imaging and the approved optical probes used for clinics are limited, it has evolved considerably and has seen spectacular advances in basic biomedical research and new drug development. With the completion of human genome sequencing and the emergence of personalized medicine, the specific drug should be matched to not only the right disease but also to the right person, and optical molecular imaging should serve as a strong adjunct to develop personalized medicine by finding the optimal drug based on an individual's proteome and genome. In this process, the computational methodology and imaging system as well as the biomedical application regarding optical molecular imaging will play a crucial role. This review will focus on recent typical translational studies of optical molecular imaging for personalized medicine followed by a concise introduction. Finally, the current challenges and the future development of optical molecular imaging are given according to the understanding of the authors, and the review is then concluded.

  16. Regenerative Medicine for the Heart: Perspectives on Stem-Cell Therapy

    PubMed Central

    Cho, Gun-Sik; Fernandez, Laviel

    2014-01-01

    Abstract Significance: Despite decades of progress in cardiovascular biology and medicine, heart disease remains the leading cause of death, and there is no cure for the failing heart. Since heart failure is mostly caused by loss or dysfunction of cardiomyocytes (CMs), replacing dead or damaged CMs with new CMs might be an ideal way to reverse the disease. However, the adult heart is composed mainly of terminally differentiated CMs that have no significant self-regeneration capacity. Recent Advances: Stem cells have tremendous regenerative potential and, thus, current cardiac regenerative research has focused on developing stem cell sources to repair damaged myocardium. Critical Issues: In this review, we examine the potential sources of cells that could be used for heart therapies, including embryonic stem cells and induced pluripotent stem cells, as well as alternative methods for activating the endogenous regenerative mechanisms of the heart via transdifferentiation and cell reprogramming. We also discuss the current state of knowledge of cell purification, delivery, and retention. Future Directions: Efforts are underway to improve the current stem cell strategies and methodologies, which will accelerate the development of innovative stem-cell therapies for heart regeneration. Antioxid. Redox Signal. 21, 2018–2031. PMID:25133793

  17. [Western and traditional Chinese medicine disease management programs of chronic heart failure].

    PubMed

    Liang, Zhaoming; Sheng, Xiaogang; Pan, Guangming

    2012-06-01

    Chronic heart failure (CHF) is one of the greatest disease in modem medicine as chronic disease . It cost lots of financial resources to deal with. Western and traditional Chinese medicine Disease management programs (DMP) can notability improve the qualities of life and reduce the expenses for CHF. The disease management programs of CHF have achieved kind of success, but the management programs method witch is of traditional Chinese medicine (TCM) characteristic idea carry into testing execution in few TCM hospitals only. This article review the necessary of DMP research, advances in research of DMP research, and relationship between management programs method of Western and traditional Chinese medicine and illness state improvement of CHF patients.

  18. Perspectives in molecular imaging through translational research, human medicine, and veterinary medicine.

    PubMed

    Berry, Clifford R; Garg, Predeep

    2014-01-01

    The concept of molecular imaging has taken off over the past 15 years to the point of the renaming of the Society of Nuclear Medicine (Society of Nuclear Medicine and Molecular Imaging) and Journals (European Journal of Nuclear Medicine and Molecular Imaging) and offering of medical fellowships specific to this area of study. Molecular imaging has always been at the core of functional imaging related to nuclear medicine. Even before the phrase molecular imaging came into vogue, radionuclides and radiopharmaceuticals were developed that targeted select physiological processes, proteins, receptor analogs, antibody-antigen interactions, metabolites and specific metabolic pathways. In addition, with the advent of genomic imaging, targeted genomic therapy, and theranostics, a number of novel radiopharmaceuticals for the detection and therapy of specific tumor types based on unique biological and cellular properties of the tumor itself have been realized. However, molecular imaging and therapeutics as well as the concept of theranostics are yet to be fully realized. The purpose of this review article is to present an overview of the translational approaches to targeted molecular imaging with application to some naturally occurring animal models of human disease.

  19. Image quality, compression and segmentation in medicine.

    PubMed

    Morgan, Pam; Frankish, Clive

    2002-12-01

    This review considers image quality in the context of the evolving technology of image compression, and the effects image compression has on perceived quality. The concepts of lossless, perceptually lossless, and diagnostically lossless but lossy compression are described, as well as the possibility of segmented images, combining lossy compression with perceptually lossless regions of interest. The different requirements for diagnostic and training images are also discussed. The lack of established methods for image quality evaluation is highlighted and available methods discussed in the light of the information that may be inferred from them. Confounding variables are also identified. Areas requiring further research are illustrated, including differences in perceptual quality requirements for different image modalities, image regions, diagnostic subtleties, and tasks. It is argued that existing tools for measuring image quality need to be refined and new methods developed. The ultimate aim should be the development of standards for image quality evaluation which take into consideration both the task requirements of the images and the acceptability of the images to the users.

  20. NADH fluorescence imaging of isolated biventricular working rabbit hearts.

    PubMed

    Asfour, Huda; Wengrowski, Anastasia M; Jaimes, Rafael; Swift, Luther M; Kay, Matthew W

    2012-07-24

    Since its inception by Langendorff(1), the isolated perfused heart remains a prominent tool for studying cardiac physiology(2). However, it is not well-suited for studies of cardiac metabolism, which require the heart to perform work within the context of physiologic preload and afterload pressures. Neely introduced modifications to the Langendorff technique to establish appropriate left ventricular (LV) preload and afterload pressures(3). The model is known as the isolated LV working heart model and has been used extensively to study LV performance and metabolism(4-6). This model, however, does not provide a properly loaded right ventricle (RV). Demmy et al. first reported a biventricular model as a modification of the LV working heart model(7, 8). They found that stroke volume, cardiac output, and pressure development improved in hearts converted from working LV mode to biventricular working mode(8). A properly loaded RV also diminishes abnormal pressure gradients across the septum to improve septal function. Biventricular working hearts have been shown to maintain aortic output, pulmonary flow, mean aortic pressure, heart rate, and myocardial ATP levels for up to 3 hours(8). When studying the metabolic effects of myocardial injury, such as ischemia, it is often necessary to identify the location of the affected tissue. This can be done by imaging the fluorescence of NADH (the reduced form of nicotinamide adenine dinucleotide)(9-11), a coenzyme found in large quantities in the mitochondria. NADH fluorescence (fNADH) displays a near linearly inverse relationship with local oxygen concentration(12) and provides a measure of mitochondrial redox state(13). fNADH imaging during hypoxic and ischemic conditions has been used as a dye-free method to identify hypoxic regions(14, 15) and to monitor the progression of hypoxic conditions over time(10). The objective of the method is to monitor the mitochondrial redox state of biventricular working hearts during protocols

  1. Postmortem magnetic resonance imaging of the heart ex situ: development of technical protocols.

    PubMed

    Bruguier, C; Egger, C; Vallée, J P; Grimm, J; Boulanger, X; Jackowski, C; Mangin, P; Grabherr, S

    2015-05-01

    Postmortem MRI (PMMR) examinations are seldom performed in legal medicine due to long examination times, unfamiliarity with the technique, and high costs. Furthermore, it is difficult to obtain access to an MRI device used for patients in clinical settings to image an entire human body. An alternative is available: ex situ organ examination. To our knowledge, there is no standardized protocol that includes ex situ organ preparation and scanning parameters for postmortem MRI. Thus, our objective was to develop a standard procedure for ex situ heart PMMR examinations. We also tested the oily contrast agent Angiofil® commonly used for PMCT angiography, for its applicability in MRI. We worked with a 3 Tesla MRI device and 32-channel head coils. Twelve porcine hearts were used to test different materials to find the best way to prepare and place organs in the device and to test scanning parameters. For coronary MR angiography, we tested different mixtures of Angiofil® and different injection materials. In a second step, 17 human hearts were examined to test the procedure and its applicability to human organs. We established two standardized protocols: one for preparation of the heart and another for scanning parameters based on experience in clinical practice. The established protocols enabled a standardized technical procedure with comparable radiological images, allowing for easy radiological reading. The performance of coronary MR angiography enabled detailed coronary assessment and revealed the utility of Angiofil® as a contrast agent for PMMR. Our simple, reproducible method for performing heart examinations ex situ yields high quality images and visualization of the coronary arteries.

  2. Moreton Lecture: Imaging in the Age of Precision Medicine.

    PubMed

    Thrall, James H

    2015-10-01

    The term "precision medicine" (also known as "personalized medicine") is broadly defined as the tailoring of medical treatment to the individual characteristics of each patient. This process entails classifying patients into subpopulations that differ in their susceptibility to a particular disease, in the biology and/or prognosis of those diseases they may develop, or in their response to a specific treatment. Subpopulations are defined through systematic analysis and classification of patients' genotypic and phenotypic characteristics. Image findings are surrogates for phenotype manifestation of disease, and radiology reports are written descriptions of imaging phenotypes. Imaging phenotypes are often presented as classification, grading, or scoring systems that help assign patients to subpopulations for selecting treatment or assessing prognosis. The "spot sign score" that reflects the severity of bleeding in intracerebral hemorrhage is an example that has been used as an inclusion criterion in clinical trials. The term "radiogenomics" is used to describe the study of linkage between a patient's genotype and imaging phenotype. When a patient's genotype is known, it often suggests a surveillance role for imaging to determine clinical occurrence, location, extent, and severity of the associated disease; for example, use of breast imaging for enhanced surveillance in women known to harbor the BRCA1 and BRCA2 genes. Imaging is poised to play major roles in the age of precision medicine. The imaging community needs to learn new terminology and think in terms of how imaging phenotypes and imaging surveillance of patients with known genetic mutations can contribute to the concept.

  3. [The application of X-ray imaging in forensic medicine].

    PubMed

    Kučerová, Stěpánka; Safr, Miroslav; Ublová, Michaela; Urbanová, Petra; Hejna, Petr

    2014-07-01

    X-ray is the most common, basic and essential imaging method used in forensic medicine. It serves to display and localize the foreign objects in the body and helps to detect various traumatic and pathological changes. X-ray imaging is valuable in anthropological assessment of an individual. X-ray allows non-invasive evaluation of important findings before the autopsy and thus selection of the optimal strategy for dissection. Basic indications for postmortem X-ray imaging in forensic medicine include gunshot and explosive fatalities (identification and localization of projectiles or other components of ammunition, visualization of secondary missiles), sharp force injuries (air embolism, identification of the weapon) and motor vehicle related deaths. The method is also helpful for complex injury evaluation in abused victims or in persons where abuse is suspected. Finally, X-ray imaging still remains the gold standard method for identification of unknown deceased. With time modern imaging methods, especially computed tomography and magnetic resonance imaging, are more and more applied in forensic medicine. Their application extends possibilities of the visualization the bony structures toward a more detailed imaging of soft tissues and internal organs. The application of modern imaging methods in postmortem body investigation is known as digital or virtual autopsy. At present digital postmortem imaging is considered as a bloodless alternative to the conventional autopsy.

  4. The impact of functional imaging on radiation medicine.

    PubMed

    Sharma, Nidhi; Neumann, Donald; Macklis, Roger

    2008-09-15

    Radiation medicine has previously utilized planning methods based primarily on anatomic and volumetric imaging technologies such as CT (Computerized Tomography), ultrasound, and MRI (Magnetic Resonance Imaging). In recent years, it has become apparent that a new dimension of non-invasive imaging studies may hold great promise for expanding the utility and effectiveness of the treatment planning process. Functional imaging such as PET (Positron Emission Tomography) studies and other nuclear medicine based assays are beginning to occupy a larger place in the oncology imaging world. Unlike the previously mentioned anatomic imaging methodologies, functional imaging allows differentiation between metabolically dead and dying cells and those which are actively metabolizing. The ability of functional imaging to reproducibly select viable and active cell populations in a non-invasive manner is now undergoing validation for many types of tumor cells. Many histologic subtypes appear amenable to this approach, with impressive sensitivity and selectivity reported. For clinical radiation medicine, the ability to differentiate between different levels and types of metabolic activity allows the possibility of risk based focal treatments in which the radiation doses and fields are more tightly connected to the perceived risk of recurrence or progression at each location. This review will summarize many of the basic principles involved in the field of functional PET imaging for radiation oncology planning and describe some of the major relevant published data behind this expanding trend.

  5. Nuclear medicine annual, 1984

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1984-01-01

    The following topics are reviewed in this work: nuclear physicians role in planning for and handling radiation accidents; the role of nuclear medicine in evaluating the hypertensive patient; studies of the heart with radionuclides; role of radionuclide imaging in the patient undergoing chemotherapy; hematologic nuclear medicine; the role of nuclear medicine in sports related injuries; radionuclide evaluation of hepatic function with emphasis on cholestatis.

  6. Exercise testing and stress imaging in valvular heart disease.

    PubMed

    Henri, Christine; Piérard, Luc A; Lancellotti, Patrizio; Mongeon, François-Pierre; Pibarot, Philippe; Basmadjian, Arsène J

    2014-09-01

    The role of exercise testing and stress imaging in the management of patients with valvular heart disease (VHD) is reviewed in this article. The American College of Cardiology/American Heart Association and the European Society of Cardiology/European Association of Cardiothoracic Surgery have recently put emphasis on the role of exercise testing to clarify symptom status and the use of stress imaging to assess the dynamic component of valvular abnormalities and unmask subclinical myocardial dysfunction that could be missed at rest. Recent studies have demonstrated the incremental prognostic value of exercise echocardiography for asymptomatic patients with severe aortic stenosis, moderate-severe mitral stenosis, and severe primary mitral regurgitation. In patients with low-flow, low-gradient aortic stenosis, dobutamine stress echocardiography is recommended to differentiate true severe from pseudosevere aortic stenosis. Data on the prognostic value of stress echocardiography in aortic regurgitation and functional mitral regurgitation are less robust. Data are sparse on the use of stress imaging in right-sided VHD, however recent studies using stress cardiovascular magnetic resonance imaging offer some prognostic information. Although the strongest recommendations for surgical treatment continue to be based on symptom status and resting left ventricular repercussions, stress imaging can be useful to optimize risk stratification and timing of surgery in VHD. Randomized clinical trials are required to confirm that clinical decision-making based on stress imaging can lead to improved outcomes.

  7. Imaging of congenital heart disease in adults: choice of modalities.

    PubMed

    Orwat, Stefan; Diller, Gerhard-Paul; Baumgartner, Helmut

    2014-01-01

    Major advances in noninvasive imaging of adult congenital heart disease have been accomplished. These tools play now a key role in comprehensive diagnostic work-up, decision for intervention, evaluation for the suitability of specific therapeutic options, monitoring of interventions and regular follow-up. Besides echocardiography, magnetic resonance (CMR) and computed tomography (CT) have gained particular importance. The choice of imaging modality has thus become a critical issue. This review summarizes strengths and limitations of the different imaging modalities and how they may be used in a complementary fashion. Echocardiography obviously remains the workhorse of imaging routinely used in all patients. However, in complex disease and after surgery echocardiography alone frequently remains insufficient. CMR is particularly useful in this setting and allows reproducible and accurate quantification of ventricular function and comprehensive assessment of cardiac anatomy, aorta, pulmonary arteries and venous return including complex flow measurements. CT is preferred when CMR is contraindicated, when superior spatial resolution is required or when "metallic" artefacts limit CMR imaging. In conclusion, the use of currently available imaging modalities in adult congenital heart disease needs to be complementary. Echocardiography remains the basis tool, CMR and CT should be added considering specific open questions and the ability to answer them, availability and economic issues.

  8. New medicinal products for chronic heart failure: advances in clinical trial design and efficacy assessment.

    PubMed

    Cowie, Martin R; Filippatos, Gerasimos S; Alonso Garcia, Maria de Los Angeles; Anker, Stefan D; Baczynska, Anna; Bloomfield, Daniel M; Borentain, Maria; Bruins Slot, Karsten; Cronin, Maureen; Doevendans, Pieter A; El-Gazayerly, Amany; Gimpelewicz, Claudio; Honarpour, Narimon; Janmohamed, Salim; Janssen, Heidi; Kim, Albert M; Lautsch, Dominik; Laws, Ian; Lefkowitz, Martin; Lopez-Sendon, Jose; Lyon, Alexander R; Malik, Fady I; McMurray, John J V; Metra, Marco; Figueroa Perez, Santiago; Pfeffer, Marc A; Pocock, Stuart J; Ponikowski, Piotr; Prasad, Krishna; Richard-Lordereau, Isabelle; Roessig, Lothar; Rosano, Giuseppe M C; Sherman, Warren; Stough, Wendy Gattis; Swedberg, Karl; Tyl, Benoit; Zannad, Faiez; Boulton, Caroline; De Graeff, Pieter

    2017-03-27

    Despite the availability of a number of different classes of therapeutic agents with proven efficacy in heart failure, the clinical course of heart failure patients is characterized by a reduction in life expectancy, a progressive decline in health-related quality of life and functional status, as well as a high risk of hospitalization. New approaches are needed to address the unmet medical needs of this patient population. The European Medicines Agency (EMA) is undertaking a revision of its Guideline on Clinical Investigation of Medicinal Products for the Treatment of Chronic Heart Failure. The draft version of the Guideline was released for public consultation in January 2016. The Cardiovascular Round Table of the European Society of Cardiology (ESC), in partnership with the Heart Failure Association of the ESC, convened a dedicated two-day workshop to discuss three main topic areas of major interest in the field and addressed in this draft EMA guideline: (i) assessment of efficacy (i.e. endpoint selection and statistical analysis); (ii) clinical trial design (i.e. issues pertaining to patient population, optimal medical therapy, run-in period); and (iii) research approaches for testing novel therapeutic principles (i.e. cell therapy). This paper summarizes the key outputs from the workshop, reviews areas of expert consensus, and identifies gaps that require further research or discussion. Collaboration between regulators, industry, clinical trialists, cardiologists, health technology assessment bodies, payers, and patient organizations is critical to address the ongoing challenge of heart failure and to ensure the development and market access of new therapeutics in a scientifically robust, practical and safe way.

  9. Imaging the mechanics and electromechanics of the heart.

    PubMed

    Konofagou, Elisa E; Fung-Kee-Fung, Simon; Luo, Jianwen; Pernot, Mathieu

    2006-01-01

    The heart is a mechanical pump that is electrically driven. We have previously shown that the contractility of the cardiac muscle can reliably be used in order to assess the extent of ischemia using myocardial elastography. Myocardial elastography estimates displacement and strain during the natural contraction of the myocardium using signal processing techniques on echocardiograms in order to assess the change in mechanical properties as a result of disease. In this paper, we showed that elastographic techniques can be used to estimate and image both the mechanics and electromechanics of normal and pathological hearts in vivo. In order to image the mechanics throughout the entire cardiac cycle, the minimum frame rate was determined to be on the order of 150 fps in a long-axis view and 300 fps in a short-axis view. The incremental and cumulative displacement and strains were measured and imaged for the characterization of normal function and differentiation from infracted myocardium. In order to image the electromechanical function, the incremental displacement was imaged inconsecutive cardiac cycles during end-systole in both dogs and humans. The contraction wave velocity in normal dogs was found to be twice higher than in normal humans and twice lower than in ischemic dogs. In conclusion, we have demonstrated that elastographic techniques can be used to detect and quantify the mechanics and electromechanics of the myocardium in vivo. Ongoing investigations entail assessment of myocardial elastography in characterizing and quantifying ischemia and infarction in vivo.

  10. Beating heart mitral valve repair with integrated ultrasound imaging

    NASA Astrophysics Data System (ADS)

    McLeod, A. Jonathan; Moore, John T.; Peters, Terry M.

    2015-03-01

    Beating heart valve therapies rely extensively on image guidance to treat patients who would be considered inoperable with conventional surgery. Mitral valve repair techniques including the MitrClip, NeoChord, and emerging transcatheter mitral valve replacement techniques rely on transesophageal echocardiography for guidance. These images are often difficult to interpret as the tool will cause shadowing artifacts that occlude tissue near the target site. Here, we integrate ultrasound imaging directly into the NeoChord device. This provides an unobstructed imaging plane that can visualize the valve lea ets as they are engaged by the device and can aid in achieving both a proper bite and spacing between the neochordae implants. A proof of concept user study in a phantom environment is performed to provide a proof of concept for this device.

  11. 3D imaging in CUBIC-cleared mouse heart tissue: going deeper

    PubMed Central

    Nehrhoff, Imke; Bocancea, Diana; Vaquero, Javier; Vaquero, Juan José; Ripoll, Jorge; Desco, Manuel; Gómez-Gaviro, María Victoria

    2016-01-01

    The ability to acquire high resolution 3D images of the heart enables to study heart diseases more in detail. In this work, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was optimized for thick mouse heart sections to enhance the penetration depth of the confocal microscope lasers into the tissue. In addition, the optimized CUBIC clearing of the heart enhances antibody penetration into the tissue by a factor of five. The present protocol enables deep 3D high-quality image acquisition in the heart allowing a much more accurate assessment of the cellular and structural changes that underlie heart diseases. PMID:27699132

  12. 3D imaging in CUBIC-cleared mouse heart tissue: going deeper.

    PubMed

    Nehrhoff, Imke; Bocancea, Diana; Vaquero, Javier; Vaquero, Juan José; Ripoll, Jorge; Desco, Manuel; Gómez-Gaviro, María Victoria

    2016-09-01

    The ability to acquire high resolution 3D images of the heart enables to study heart diseases more in detail. In this work, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was optimized for thick mouse heart sections to enhance the penetration depth of the confocal microscope lasers into the tissue. In addition, the optimized CUBIC clearing of the heart enhances antibody penetration into the tissue by a factor of five. The present protocol enables deep 3D high-quality image acquisition in the heart allowing a much more accurate assessment of the cellular and structural changes that underlie heart diseases.

  13. Advanced Echocardiographic Imaging of the Congenitally Malformed Heart

    PubMed Central

    Black, D; Vettukattil, J

    2013-01-01

    There have been significant advancements in the ability of echocardiography to provide both morphological and functional information in children with congenitally malformed hearts. This progress has come through the development of improved technology such as matrix array probes and software which allows for the off line analysis of images to a high standard. This article focuses on these developments and discusses some newer concepts in advanced echocardiography such is multi-planar reformatting [MPR] and tissue motion annular displacement [TMAD]. Our aim is to discuss important aspects related to the quality and reproducibility of data, to review the most recent published data regarding advanced echocardiography in the malformed heart and to guide the reader to appropriate text for overcoming the technical challenges of using these methods. Many of the technical aspects of image acquisition and post processing have been discussed in recent reviews by the authors and we would urge readers to study these texts to gain a greater understanding [1]. The quality of the two dimensional image is paramount in both strain analysis and three dimensional echocardiography. An awareness of how to improve image quality is vital to acquiring accurate and usable data. Three dimensional echocardiography (3DE) is an attempt to visualise the dynamic morphology of the heart. Although published media is the basis for theoretical knowledge of how to practically acquire images, electronic media [eg.www.3dechocardiography.com] is the only way of visualising the advantages of this technology in real time. It is important to be aware of the limitations of this technology and that much of the data gleaned from using these methods is at a research stage and not yet in regular clinical practice. PMID:23228075

  14. Nuclear magnetic resonance imaging in medicine

    PubMed Central

    McKinstry, C S

    1986-01-01

    Using the technique of nuclear magnetic resonance (NMR, MR, MRI), the first images displaying pathology in humans were published in 1980.1 Since then, there has been a rapid extension in the use of the technique, with an estimated 225 machines in use in the USA at the end of 1985.2 Considerable enthusiasm has been expressed for this new imaging technique,3 although awareness of its high cost in the present economic climate has led to reservations being expressed in other quarters.2 The aim of this article is to give an outline of the present state of NMR, and indicate some possible future developments. ImagesFig 1Fig 2Fig 3(a)Fig 3 (b)Fig 4Fig 5Fig 6Fig 7 (a)Fig 7 (b)Fig 8Fig 9Fig 10 PMID:3811023

  15. Heavy-Ion <span class="hlt">Imaging</span> Applied To <span class="hlt">Medicine</span>

    SciTech Connect

    Fabrikant, J. I.; Tobias, C. A.; Capp, M. P.; Benton, E. V.; Holley, W. R.; Gray, Joel E.; Hendee, William R.; Haus, Andrew G.; Properzio, William S.

    1980-08-18

    Heavy particle radiography is a newly developed noninvasive low dose imaging procedure with increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high energy ions, primarily carbon and neon, at the BEVALAC accelerator at the Lawrence Berkeley Laboratory. The research program applied to medicine utilizes heavy-ion radiography for low dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures and brain and spinal neoplasms. The presentation will be illustrated with clinical cases under study. Discussion will include the potential of heavy-ion imaging, and particularly reconstruction tomography, as an adjunct to existing diagnostic imaging procedures in medicine, both for the applications to the diagnosis, management and treatment of clinical cancer in man, but also for the early detection of small soft tissue tumors at low radiation dose.

  16. [Possibilities of use of digital imaging in forensic medicine].

    PubMed

    Gaval'a, P; Ivicsics, I; Mlynár, J; Novomeský, F

    2005-07-01

    Based on the daily practice with digital photography and documentation, the authors point out the achievements of the computer technologies implementation to the practice of forensic medicine. The modern methods of imaging, especially the digital photography, offer a wide spectrum of use in forensic medicine--the digital documentation and archivation of autopsy findings, the possibility of immediate consultation of findings with another experts via Internet, and many others. Another possibility is a creation of digital photographic atlas of forensic medicine as a useful aid in pre- and postgradual study. Thus the application of the state-of-the-art computer technologies to the forensic medicine discloses the unknown before possibilities for further development of such a discipline of human medical sciences.

  17. Imaging of primary bone tumors in veterinary medicine: which differences?

    PubMed

    Vanel, Maïa; Blond, Laurent; Vanel, Daniel

    2013-12-01

    Veterinary medicine is most often a mysterious world for the human doctors. However, animals are important for human medicine thanks to the numerous biological similarities. Primary bone tumors are not uncommon in veterinary medicine and especially in small domestic animals as dogs and cats. As in human medicine, osteosarcoma is the most common one and especially in the long bones extremities. In the malignant bone tumor family, chondrosarcoma, fibrosarcoma and hemangiosarcoma are following. Benign bone tumors as osteoma, osteochondroma and bone cysts do exist but are rare and of little clinical significance. Diagnostic modalities used depend widely on the owner willing to treat his animal. Radiographs and bone biopsy are the standard to make a diagnosis but CT, nuclear medicine and MRI are more an more used. As amputation is treatment number one in appendicular bone tumor in veterinary medicine, this explains on the one hand why more recent imaging modalities are not always necessary and on the other hand, that prognostic on large animals is so poor that it is not much studied. Chemotherapy is sometimes associated with the surgery procedure, depending on the aggressivity of the tumor. Although, the strakes differs a lot between veterinary and human medicine, biological behavior are almost the same and should led to a beneficial team work between all.

  18. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    PubMed Central

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  19. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Fry, Charles G.

    2004-01-01

    Nobel Prize in Medicine awarded in December 2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of magnetic resonance imaging (MRI), a long overdue recognition of the huge impact MRI has had in medical diagnostics and research is mentioned. MRI was derived, and remains an extension of nuclear magnetic resonance…

  20. Content-Based Image Retrieval in Medicine

    PubMed Central

    Long, L. Rodney; Antani, Sameer; Deserno, Thomas M.; Thoma, George R.

    2009-01-01

    Content-based image retrieval (CBIR) technology has been proposed to benefit not only the management of increasingly large image collections, but also to aid clinical care, biomedical research, and education. Based on a literature review, we conclude that there is widespread enthusiasm for CBIR in the engineering research community, but the application of this technology to solve practical medical problems is a goal yet to be realized. Furthermore, we highlight “gaps” between desired CBIR system functionality and what has been achieved to date, present for illustration a comparative analysis of four state-of-the-art CBIR implementations using the gap approach, and suggest that high-priority gaps to be overcome lie in CBIR interfaces and functionality that better serve the clinical and biomedical research communities. PMID:20523757

  1. Hyperspectral imaging applied to forensic medicine

    NASA Astrophysics Data System (ADS)

    Malkoff, Donald B.; Oliver, William R.

    2000-03-01

    Remote sensing techniques now include the use of hyperspectral infrared imaging sensors covering the mid-and- long wave regions of the spectrum. They have found use in military surveillance applications due to their capability for detection and classification of a large variety of both naturally occurring and man-made substances. The images they produce reveal the spatial distributions of spectral patterns that reflect differences in material temperature, texture, and composition. A program is proposed for demonstrating proof-of-concept in using a portable sensor of this type for crime scene investigations. It is anticipated to be useful in discovering and documenting the affects of trauma and/or naturally occurring illnesses, as well as detecting blood spills, tire patterns, toxic chemicals, skin injection sites, blunt traumas to the body, fluid accumulations, congenital biochemical defects, and a host of other conditions and diseases. This approach can significantly enhance capabilities for determining the circumstances of death. Potential users include law enforcement organizations (police, FBI, CIA), medical examiners, hospitals/emergency rooms, and medical laboratories. Many of the image analysis algorithms already in place for hyperspectral remote sensing and crime scene investigations can be applied to the interpretation of data obtained in this program.

  2. Tissue Doppler Imaging in Coronary Artery Diseases and Heart Failure

    PubMed Central

    Correale, Michele; Totaro, Antonio; Ieva, Riccardo; Ferraretti, Armando; Musaico, Francesco; Biase, Matteo Di

    2012-01-01

    Recent studies have explored the prognostic role of TDI-derived parameters in major cardiac diseases, such as coronary artery disease (CAD) and heart failure (HF). In these conditions, myocardial mitral annular systolic (S’) and early diastolic (E’) velocities have been shown to predict mortality or cardiovascular events. In heart failure non invasive assessment of LV diastolic pressure by transmitral to mitral annular early diastolic velocity ratio (E/E’) is a strong prognosticator, especially when E/E’ is > or =15. Moreover, other parameters derived by TDI, as cardiac time intervals and Myocardial Performance Index, might play a role in the prognostic stratification in CAD and HF. Recently, a three-dimensional (3-D) TDI imaging modality, triplane TDI, has become available, and this allows calculation of 3-Dvolumes and LV ejection fraction. We present a brief update of TDI. PMID:22845815

  3. Image-Capture Devices Extend Medicine's Reach

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Johnson Space Center, Henry Ford Hospital in Detroit, and Houston-based Wyle Laboratories collaborated on NASA's Advanced Diagnostic Ultrasound in Microgravity (ADUM) experiment, which developed revolutionary medical ultrasound diagnostic techniques for long-distance use. Mediphan, a Canadian company with U.S. operations in Springfield, New Jersey drew on NASA expertise to create frame-grabber and data archiving technology that enables ultrasound users with minimal training to send diagnostic-quality ultrasound images and video to medical professionals via the Internet in near real time allowing patients as varied as professional athletes, Olympians, and mountain climbers to receive medical attention as soon as it is needed.

  4. Australian per caput dose from diagnostic imaging and nuclear medicine.

    PubMed

    Hayton, A; Wallace, A; Marks, P; Edmonds, K; Tingey, D; Johnston, P

    2013-10-01

    The largest man-made contributor to the ionising radiation dose to the Australian population is from diagnostic imaging and nuclear medicine. The last estimation of this dose was made in 2004 (1.3 mSv), this paper describes a recent re-evaluation of this dose to reflect the changes in imaging trends and technology. The estimation was calculated by summing the dose from five modalities, computed tomography (CT), general radiography/fluoroscopy, interventional procedures, mammography and nuclear medicine. Estimates were made using Australian frequency data and dose data from a range of Australian and international sources of average effective dose values. The ionising radiation dose to the Australian population in 2010 from diagnostic imaging and nuclear medicine is estimated to be 1.7 mSv (1.11 mSv CT, 0.30 mSv general radiography/fluoroscopy, 0.17 mSv interventional procedures, 0.03 mSv mammography and 0.10 mSv nuclear medicine). This exceeds the estimate of 1.5 mSv per person from natural background and cosmic radiation.

  5. Imaging techniques for visualizing and phenotyping congenital heart defects in murine models.

    PubMed

    Liu, Xiaoqin; Tobita, Kimimasa; Francis, Richard J B; Lo, Cecilia W

    2013-06-01

    Mouse model is ideal for investigating the genetic and developmental etiology of congenital heart disease. However, cardiovascular phenotyping for the precise diagnosis of structural heart defects in mice remain challenging. With rapid advances in imaging techniques, there are now high throughput phenotyping tools available for the diagnosis of structural heart defects. In this review, we discuss the efficacy of four different imaging modalities for congenital heart disease diagnosis in fetal/neonatal mice, including noninvasive fetal echocardiography, micro-computed tomography (micro-CT), micro-magnetic resonance imaging (micro-MRI), and episcopic fluorescence image capture (EFIC) histopathology. The experience we have gained in the use of these imaging modalities in a large-scale mouse mutagenesis screen have validated their efficacy for congenital heart defect diagnosis in the tiny hearts of fetal and newborn mice. These cutting edge phenotyping tools will be invaluable for furthering our understanding of the developmental etiology of congenital heart disease.

  6. (New imaging systems in nuclear medicine)

    SciTech Connect

    Not Available

    1991-01-01

    We continue to use and maintain PCR-I, the single-slice high- resolution high-sensitivity positron emission tomograph, while development proceeds on PCR-II, a three-dimensional PET system. A two-dimensional BGO scintillation detector has been designed and we are nearing completion of the detector, including the light guide, crystals and phototube assembly, and the gantry electronics. We are currently exploring techniques for a very high resolution (sub-mm) PET imaging system. We are using the current PCR-I system to assess changes in presynaptic dopamine receptors and glucose utilization in current biological models of Huntington's disease. Our preliminary studies support the use of the primate (Cynomolgus monkey) model of Huntington's disease to monitor in vivo functional changes. We are planning to extend this study to examine the MPTP model of Parkinson disease, and to assess the therapeutic value of D{sub 1} dopamine receptor agonists for treatment of MPTP-induced neurological defects. 13 refs., 5 figs. (MHB)

  7. Spectral photoplethysmographic imaging sensor fusion for enhanced heart rate detection

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Clausi, David A.; Wong, Alexander

    2016-03-01

    Continuous heart rate monitoring can provide important context for quantitative clinical assessment in scenarios such as long-term health monitoring and disability prevention. Photoplethysmographic imaging (PPGI) systems are particularly useful for such monitoring scenarios as contact-based devices pose problems related to comfort and mobility. Each pixel can be regarded as a virtual PPG sensor, thus enabling simultaneous measurements of multiple skin sites. Existing PPGI systems analyze temporal PPGI sensor uctuations related to hemodynamic pulsations across a region of interest to extract the blood pulse signal. However, due to spatially varying optical properties of the skin, the blood pulse signal may not be consistent across all PPGI sensors, leading to inaccurate heart rate monitoring. To increase the hemodynamic signal-to-noise ratio (SNR), we propose a novel spectral PPGI sensor fusion method for enhanced estimation of the true blood pulse signal. Motivated by the observation that PPGI sensors with high hemodynamic SNR exhibit a spectral energy peak at the heart rate frequency, an entropy-based fusion model was formulated to combine PPGI sensors based on the sensors' spectral energy distribution. The optical PPGI device comprised a near infrared (NIR) sensitive camera and an 850 nm LED. Spatially uniform irradiance was achieved by placing optical elements along the LED beam, providing consistent illumination across the skin area. Dual-mode temporally coded illumination was used to negate the temporal effect of ambient illumination. Experimental results show that the spectrally weighted PPGI method can accurately and consistently extract heart rate information where traditional region-based averaging fails.

  8. The role of radionuclide imaging in heart failure.

    PubMed

    Gulati, Vinay; Ching, Gilbert; Heller, Gary V

    2013-12-01

    The incidence of heart failure (HF) is increasing and it remains the only area in cardiovascular disease wherein hospitalization rates and mortalities have worsened in the past 25 years. This review is provided to assess the role of radionuclide imaging in HF. The focus is on three aspects: the value of nuclear imaging to distinguish ischemic from non-ischemic etiologies; risk stratification of patients with HF with evaluation of candidates for specific treatment strategies; and the role of cardiac neuronal imaging in patients with HF. Distinguishing ischemic from non-ischemic cardiomyopathy is important because patients with ischemic cardiomyopathy can potentially have dramatic improvement with revascularization. Single photon emission computed tomography (SPECT) has excellent reported sensitivity and negative predictive value in the detection of coronary artery disease in HF patients. SPECT imaging is also useful in establishing treatment strategies in patients with HF, including those with new onset CHF. Cardiac neuronal imaging of mIBG is particularly helpful in risk stratification of patients with HF. The modality can be used to monitor the response to therapy as dysfunctional mIBG uptake may show improvement with pharmacological treatment.

  9. [Cardiac magnetic resonance imaging of congenital heart defects in adults].

    PubMed

    Bastarrika Alemañ, G; Gavira Gómez, J J; Zudaire Díaz-Tejeiro, B; Castaño Rodríguez, S; Romero Ibarra, C; Sáenz de Buruaga, J D

    2007-01-01

    The study of congenital cardiopathies (CC) is one of the most clearly established indications of cardiac magnetic resonance imaging (CMRI). Different sequences, including anatomic, functional, flow (phase contrast), and 3D angiographic sequences, enable the diagnosis, treatment planning, and follow-up of these conditions. CMRI allows the anatomy, function, and alterations of flow in these cardiopathies to be evaluated in a single examination. Three-dimensional MR angiography enables the study of the great vessels and the anomalies associated to congenital heart defects in adults. This article describes an examination protocol and provides examples of MR images of the most common CC in adults: atrial septal defect, interventricular communication, atrioventricular canal, tetralogy of Fallot, transposition of the great arteries, congenitally corrected transposition of the great arteries, bicuspid aortic valve, subaortic stenosis, aortic coarctation, and Ebstein's anomaly.

  10. Functional renal imaging: new trends in radiology and nuclear medicine.

    PubMed

    Durand, Emmanuel; Chaumet-Riffaud, Philippe; Grenier, Nicolas

    2011-01-01

    The objective of this work is to compare the characteristics of various techniques for functional renal imaging, with a focus on nuclear medicine and magnetic resonance imaging. Even with low spatial resolution and rather poor signal-to-noise ratio, classical nuclear medicine has the advantage of linearity and good sensitivity. It remains the gold standard technique for renal relative functional assessment. Technetium-99m ((99m)Tc)-labeled diethylenetriamine penta-acetate remains the reference glomerular tracer. Tubular tracers have been improved: (123)I- or (131)I-hippuran, (99m)Tc-MAG3 and, recently, (99m)Tc-nitrilotriacetic acid. However, advancement in molecular imaging has not produced a groundbreaking tracer. Renal magnetic resonance imaging with classical gadolinated tracers probably has potential in this domain but has a lack of linearity and, therefore, its value still needs evaluation. Moreover, the advent of nephrogenic systemic fibrosis has delayed its expansion. Other developments, such as diffusion or blood oxygen level-dependent imaging, may have a role in the future. The other modalities have a limited role in clinical practice for functional renal imaging.

  11. Real-time optical gating for three-dimensional beating heart imaging

    NASA Astrophysics Data System (ADS)

    Taylor, Jonathan M.; Saunter, Christopher D.; Love, Gordon D.; Girkin, John M.; Henderson, Deborah J.; Chaudhry, Bill

    2011-11-01

    We demonstrate real-time microscope image gating to an arbitrary position in the cycle of the beating heart of a zebrafish embryo. We show how this can be used for high-precision prospective gating of fluorescence image slices of the moving heart. We also present initial results demonstrating the application of this technique to 3-D structural imaging of the beating embryonic heart.

  12. Double chambered right ventricle: depiction at three-dimensional whole heart magnetic resonance imaging.

    PubMed

    Sato, Yuichi; Matsumoto, Naoya; Matsuo, Shinro; Miyamoto, Takashi; Iida, Kiyoshi; Kunimasa, Taeko; Kunimoto, Satoshi; Saito, Satoshi

    2007-06-25

    Double chambered right ventricle (DCRV) is a rare form of congenital heart disease in which the right ventricle is divided into a high-pressure inlet site and a low-pressure outlet site by anomalous muscle bands. Whole heart magnetic resonance imaging (MRI) which depicts 3-dimensional anatomy of the heart and coronary arteries was useful to diagnose DCRV.

  13. Tensor Factorization for Precision Medicine in Heart Failure with Preserved Ejection Fraction.

    PubMed

    Luo, Yuan; Ahmad, Faraz S; Shah, Sanjiv J

    2017-01-23

    Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome that may benefit from improved subtyping in order to better characterize its pathophysiology and to develop novel targeted therapies. The United States Precision Medicine Initiative comes amid the rapid growth in quantity and modality of clinical data for HFpEF patients ranging from deep phenotypic to trans-omic data. Tensor factorization, a form of machine learning, allows for the integration of multiple data modalities to derive clinically relevant HFpEF subtypes that may have significant differences in underlying pathophysiology and differential response to therapies. Tensor factorization also allows for better interpretability by supporting dimensionality reduction and identifying latent groups of data for meaningful summarization of both features and disease outcomes. In this narrative review, we analyze the modest literature on the application of tensor factorization to related biomedical fields including genotyping and phenotyping. Based on the cited work including work of our own, we suggest multiple tensor factorization formulations capable of integrating the deep phenotypic and trans-omic modalities of data for HFpEF, or accounting for interactions between genetic variants at different omic hierarchies. We encourage extensive experimental studies to tackle challenges in applying tensor factorization for precision medicine in HFpEF, including effectively incorporating existing medical knowledge, properly accounting for uncertainty, and efficiently enforcing sparsity for better interpretability.

  14. Overall system design of a PACS for nuclear medicine images

    NASA Astrophysics Data System (ADS)

    Ottes, Fenno P.; Bakker, Albert R.; VanGennip, Chel; van Poppel, Bas M.; Toussaint, Pieter J.; Weber, Ruud; Weier, Onno

    1996-05-01

    This paper describes the global system design of a PACS for nuclear medicine images. This NM PACS provides facilities for image capture, storage, display, manipulation and analysis. The NM PACS workstation displays besides images also the patient data from the HIS database. The NM PACS is equipped with well-defined HIS interface, which provides interoperability with HIS systems. The system design of the NM PACS is based on: a twin client-server concept, i.e. each workstation can run a HIS client and a PACS client, each interfaced with their own server. The HIS and the PACS servers are in turn inter-connected. The PACS images can be retrieved and displayed by evoking a command to a HIS menu. The X-protocol, together with GUI tools, such as Builder Xcsessory and the Motif tools in the Xmt library, are used to create the software modules that displays, manipulates and analyzes the images. The image file storage architecture consists of a single layer, namely an array of magnetical disks.

  15. New imaging systems in nuclear medicine. Technical progress report, January 1, 1985-November 1, 1985

    SciTech Connect

    Brownell, G.L.

    1985-01-01

    Developments of improved imaging systems in nuclear medicine are reported with emphasis on development of positron emission tomographs that combine high resolution, with high sensitivity and high count rate capability. A second generation cylindrical analog positron camera design has provided excellent light collection with limited light spread, characteristics needed for high spatial and temporal resolution. Other aspects of the camera development include the design of associated electronics, and provision for data storage and processing. Utilizing the above camera basic studies have been performed to evaluate blood flow in the cat brain stem during auditory stimulation, ventilation in the dog using /sup 13/N and blood flow in the canine heart. 2 refs., 2 figs.

  16. Japanese consensus guidelines for pediatric nuclear medicine. Part 1: Pediatric radiopharmaceutical administered doses (JSNM pediatric dosage card). Part 2: Technical considerations for pediatric nuclear medicine imaging procedures.

    PubMed

    Koizumi, Kiyoshi; Masaki, Hidekazu; Matsuda, Hiroshi; Uchiyama, Mayuki; Okuno, Mitsuo; Oguma, Eiji; Onuma, Hiroshi; Kanegawa, Kimio; Kanaya, Shinichi; Kamiyama, Hiroshi; Karasawa, Kensuke; Kitamura, Masayuki; Kida, Tetsuo; Kono, Tatsuo; Kondo, Chisato; Sasaki, Masayuki; Terada, Hitoshi; Nakanishi, Atsushi; Hashimoto, Teisuke; Hataya, Hiroshi; Hamano, Shin-ichiro; Hirono, Keishi; Fujita, Yukihiko; Hoshino, Ken; Yano, Masayuki; Watanabe, Seiichi

    2014-06-01

    The Japanese Society of Nuclear Medicine has recently published the consensus guidelines for pediatric nuclear medicine. This article is the English version of the guidelines. Part 1 proposes the dose optimization in pediatric nuclear medicine studies. Part 2 comprehensively discusses imaging techniques for the appropriate conduct of pediatric nuclear medicine procedures, considering the characteristics of imaging in children.

  17. Functional magnetic resonance imaging in medicine and physiology

    SciTech Connect

    Moonen, C.T.W.; van Zijl, P.C.M.; Frank, J.A.; Bihan, D.L.; Becker, E.D. )

    1990-10-05

    Magnetic resonance imaging (MRI) is a well-established diagnostic tool that provides detailed information about macroscopic structure and anatomy. Recent advances in MRI allow the noninvasive spatial evaluation of various biophysical and biochemical processes in living systems. Specifically, the motion of water can be measured in processes such as vascular flow, capillary flow, diffusion, and exchange. In addition, the concentrations of various metabolites can be determined for the assessment of regional regulation of metabolism. Examples are given that demonstrate the use of functional MRI for clinical and research purposes. This development adds a new dimension to the application of magnetic resonance to medicine and physiology.

  18. Advances in material design for regenerative medicine, drug delivery and targeting/imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many of the major breakthroughs and paradigm shifts in medicine to date have occurred due to innovations and materials and/or application/implementation of materials in clinical medicine. Artificial heart valves, implantable cardiac devices, limb prosthesis, cardiovascular stents, orthopedic implan...

  19. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis

    PubMed Central

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine. PMID:28078184

  20. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis.

    PubMed

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine.

  1. Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.

    PubMed

    Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro

    2017-02-01

    Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.

  2. Molecular imaging in traditional Chinese medicine therapy for neurological diseases.

    PubMed

    Wang, Zefeng; Wan, Haitong; Li, Jinhui; Zhang, Hong; Tian, Mei

    2013-01-01

    With the speeding tendency of aging society, human neurological disorders have posed an ever increasing threat to public health care. Human neurological diseases include ischemic brain injury, Alzheimer's disease, Parkinson's disease, and spinal cord injury, which are induced by impairment or specific degeneration of different types of neurons in central nervous system. Currently, there are no more effective treatments against these diseases. Traditional Chinese medicine (TCM) is focused on, which can provide new strategies for the therapy in neurological disorders. TCM, including Chinese herb medicine, acupuncture, and other nonmedication therapies, has its unique therapies in treating neurological diseases. In order to improve the treatment of these disorders by optimizing strategies using TCM and evaluate the therapeutic effects, we have summarized molecular imaging, a new promising technology, to assess noninvasively disease specific in cellular and molecular levels of living models in vivo, that was applied in TCM therapy for neurological diseases. In this review, we mainly focus on applying diverse molecular imaging methodologies in different TCM therapies and monitoring neurological disease, and unveiling the mysteries of TCM.

  3. Molecular Imaging in Traditional Chinese Medicine Therapy for Neurological Diseases

    PubMed Central

    Wan, Haitong; Li, Jinhui; Zhang, Hong; Tian, Mei

    2013-01-01

    With the speeding tendency of aging society, human neurological disorders have posed an ever increasing threat to public health care. Human neurological diseases include ischemic brain injury, Alzheimer's disease, Parkinson's disease, and spinal cord injury, which are induced by impairment or specific degeneration of different types of neurons in central nervous system. Currently, there are no more effective treatments against these diseases. Traditional Chinese medicine (TCM) is focused on, which can provide new strategies for the therapy in neurological disorders. TCM, including Chinese herb medicine, acupuncture, and other nonmedication therapies, has its unique therapies in treating neurological diseases. In order to improve the treatment of these disorders by optimizing strategies using TCM and evaluate the therapeutic effects, we have summarized molecular imaging, a new promising technology, to assess noninvasively disease specific in cellular and molecular levels of living models in vivo, that was applied in TCM therapy for neurological diseases. In this review, we mainly focus on applying diverse molecular imaging methodologies in different TCM therapies and monitoring neurological disease, and unveiling the mysteries of TCM. PMID:24222911

  4. State of play of pharmacogenetics and personalized medicine in heart failure.

    PubMed

    Parry, Helen M; Doney, Alex S F; Palmer, Colin N A; Lang, Chim C

    2013-12-01

    Heart failure is a common disease with high levels of morbidity and mortality. A large body of evidence guiding treatment shows prognostic benefit with beta-blockers and angiotensin-converting enzyme inhibitors, while diuretics are commonly prescribed for symptomatic benefit. Wide variation in drug response between clinically similar patients is a significant problem. Evidence suggests this may have a genetic component. Variation in candidate genes including the beta-1, beta-2, and alpha-2 adrenergic receptors, the renin-angiotensin-aldosterone pathway and genes involved in renal electrolyte handling with diuretics may be important. Single-nucleotide polymorphisms (SNPs) potentially influencing drug response include the Arg 389 Gly variant and the Ser 49 Gly variant in the beta-1 adrenergic receptor, the Arg 16 Gly, Gln 27 Glu, and Thr 164 Ile polymorphisms within the beta-2 adrenergic receptor, an insertion at the 287th base pair in the angiotensin-converting enzyme and the Gly 264 Ala mutation in the sodium chloride co-transporter. However, research addressing the clinical significance of these polymorphisms has yielded conflicting results that have had no influence on clinical practice. Genome-wide association studies may provide an alternative approach to discovering genetic variations influencing drug response, a relatively unchartered area in heart failure management. If future work in this area produces a strong case that variation in drug response has a specific and clinically meaningful genetic component, this could be used to guide drug dosing based on genotype; a step forward in the journey toward personally tailored medicine.

  5. Blood stasis syndrome of coronary heart disease: A perspective of modern medicine.

    PubMed

    Yu, Gui; Wang, Jie

    2014-04-01

    The medical community as a whole is attempting to start preventive therapy for coronary heart disease (CHD) patients earlier in life. However, the main limitations of such interventions are drug resistance and adverse reactions. Additionally, traditional biomarker discovery methods for CHD focus on the behavior of individual biomarkers regardless of their relevance. These limitations have led to attempting novel approaches to multi-dimensionally investigate CHD and identify safe and efficacious therapies for preventing CHD. Recently, the benefit of Chinese medicine (CM) in CHD has been proven by increasing clinical evidence. More importantly, linking CM theory with modern biomedicine may lead to new scientific discoveries. According to CM theory, all treatments for patients should be based on patients' syndromes. A recent epidemiological investigation has demonstrated that blood stasis syndrome (BSS) is the major syndrome type of CHD. BSS is a type of complex pathophysiological state characterized by decreased or impeded blood flow. Common clinical features of BSS include a darkish complexion, scaly dry skin, and cyanosis of the lips and nails, a purple or dark tongue with purple spots, a thready and hesitant pulse, and stabbing or pricking pain fixed in location accompanied by tenderness, mass formation and ecchymosis or petechiae. The severity of BSS is significantly correlated with the complexity of coronary lesions and the degree of stenosis, and is an important factor affecting the occurrence of restenosis after percutaneous coronary intervention. The mechanisms of BSS of CHD patients should be investigated from a modern medicine perspective. Although many studies have attempted to explore the biomedical mechanisms of BSS of CHD, from hemorheological disorders to inflammation and immune responses, the global picture of BSS of CHD is still unclear. In this article, the current status of studies investigating the biomedical mechanisms of BSS of CHD and future

  6. Imaging atrial arrhythmic intracellular calcium in intact heart

    PubMed Central

    Xie, Wenjun; Santulli, Gaetano; Guo, Xiaoxiao; Gao, Melanie; Chen, Bi-Xing; Marks, Andrew R.

    2014-01-01

    Abnormalities in intracellular Ca2+ signaling have been proposed to play an essential role in the pathophysiology of atrial arrhythmias. However, a direct observation of intracellular Ca2+ in atrial myocytes during atrial arrhythmias is lacking. Here, we have developed an ex vivo model of simultaneous Ca2+ imaging and electrocardiographic recording in cardiac atria. Using this system we were able to record atrial arrhythmic intracellular Ca2+ activities. Our results indicate that atrial arrhythmias can be tightly linked to intracellular Ca2+ waves and Ca2+ alternans. Moreover, we applied this strategy to analyze Ca2+ signals in the hearts of WT and knock-in mice harboring a ‘leaky’ type 2 ryanodine receptor (RyR2-R2474S). We showed that sarcoplasmic reticulum (SR) Ca2+ leak increases the susceptibility to Ca2+ alternans and Ca2+ waves increasing the incidence of atrial arrhythmias. Reduction of SR Ca2+ leak via RyR2 by acute treatment with S107 reduced both Ca2+ alternans and Ca2+ waves, and prevented atrial arrhythmias. PMID:24041536

  7. Imaging atrial arrhythmic intracellular calcium in intact heart.

    PubMed

    Xie, Wenjun; Santulli, Gaetano; Guo, Xiaoxiao; Gao, Melanie; Chen, Bi-Xing; Marks, Andrew R

    2013-11-01

    Abnormalities in intracellular Ca(2+) signaling have been proposed to play an essential role in the pathophysiology of atrial arrhythmias. However, a direct observation of intracellular Ca(2+) in atrial myocytes during atrial arrhythmias is lacking. Here, we have developed an ex vivo model of simultaneous Ca(2+) imaging and electrocardiographic recording in cardiac atria. Using this system we were able to record atrial arrhythmic intracellular Ca(2+) activities. Our results indicate that atrial arrhythmias can be tightly linked to intracellular Ca(2+) waves and Ca(2+) alternans. Moreover, we applied this strategy to analyze Ca(2+) signals in the hearts of WT and knock-in mice harboring a 'leaky' type 2 ryanodine receptor (RyR2-R2474S). We showed that sarcoplasmic reticulum (SR) Ca(2+) leak increases the susceptibility to Ca(2+) alternans and Ca(2+) waves increasing the incidence of atrial arrhythmias. Reduction of SR Ca(2+) leak via RyR2 by acute treatment with S107 reduced both Ca(2+) alternans and Ca(2+) waves, and prevented atrial arrhythmias.

  8. [Present status and trend of heart fluid mechanics research based on medical image analysis].

    PubMed

    Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo

    2014-06-01

    With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields.

  9. Applying Image Gently SM and Image Wisely SM in nuclear medicine.

    PubMed

    Jafari, Mary Ellen; Daus, Alan M

    2013-02-01

    Although computed tomography (CT) scan radiation dose has drawn much attention, radiation dose from nuclear medicine procedures should not be overlooked. An estimated 19.7 million nuclear medicine procedures are done annually in the United States, with patient radiation dose comparable to that from CT scans. Nuclear medicine departments should implement Image Gently SM and Image Wisely SM recommendations to reduce nuclear medicine patient radiation dose. Pediatric administered radiopharmaceutical doses should be compared with the North American Consensus Guidelines for Administered Radiopharmaceutical Activities in Children and Adolescents, and adult doses should be compared with national and international standards. In a 2011 patient quality and safety initiative at Gundersen Lutheran Health System, 24 pediatric protocols and 52 adult protocols were compared with standards. Doses not comparable to the recommended values were adjusted accordingly and the resultant image quality evaluated. Additional steps to reduce patient radiation dose include decision support to reduce inappropriate ordering, technique optimization for the CT portion of single-photon emission computed tomography/computed tomography and positron emission tomography/computed tomography scans, use of vendor's dose reduction camera and software technology, use of shorter lived radiopharmaceuticals, and "right sizing" patient doses by weight.

  10. [Using functional brain imaging technique to study central mechanism of acupuncture therapy for chronic stable angina pectoris in view of heart-brain correlation].

    PubMed

    Li, Zheng-Jie; Zeng, Fang; Lan, Lei; Yang, Jie; Zhang, Di; Liang, Fan-Rong

    2014-08-01

    Heart-brain correlation is an important component of Chinese medicine about the theory of zang-fu organs, which is still valuable for acupuncture clinical practice. Nowadays, increasing evidence supports the close association between the heart-brain axis, central autonomic nerve network and cardiovascular diseases, as well as the extensive regulative effects of acupuncture intervention on the heart-brain axis, functional connectivity of the brain, automatic nerve activities and cardiac functions. Therefore, the authors of the present paper hold that from the viewpoint of the heart-brain relationship, and by combining non-invasive functional brain imaging techniques with the patients' subjective and objective clinical indexes, our researchers will possibly and systematically reveal the underlying central mechanisms of acupuncture therapy in the treatment of chronic stable angina pectoris. However, the concrete biochemical mechanism should be proved via other advanced biological techniques.

  11. Historic images in nuclear medicine: 1976: the first issue of clinical nuclear medicine and the first human FDG study.

    PubMed

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-08-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone of this evolving and exciting discipline.

  12. Time-lapse imaging of human heart motion with switched array UWB radar.

    PubMed

    Brovoll, Sverre; Berger, Tor; Paichard, Yoann; Aardal, Øyvind; Lande, Tor Sverre; Hamran, Svein-Erik

    2014-10-01

    Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart.

  13. [The image of Byzantine medicine in the satire "Timarion"].

    PubMed

    Leven, K H

    1990-01-01

    Byzantine medicine is usually regarded as a static and non-creative descendant of classical Greek medicine, a point of view confirmed by the Byzantine medical texts. In this essay, the anonymous satire "Timarion" is analyzed in respect to its image of contemporary medical theory. Timarion, the fictive narrator, falls ill with a fever and is brought to Hades by two conductors of souls. They assert that he cannot survive, because he has secreted all his elementary bile. According to a decree by Asclepios and Hippocrates posted in Hades, any person that has lost one of his four elements may not live longer. In Hades Timarion sues to the court of judges of the dead. His lawyer, the sophist Theodore of Smyrna, persuades the judges that the bile excreted by Timarion has not been elementary in the sense of humoral pathology. So Timarion is allowed to return to life. The author of the satire ridicules the fundamental axiom of the four humours. Asclepios, Hippocrates and Erasistratos, who are attached to the infernal court as experts, cannot defend their theory against the convincing arguments of a sophist. The "divine" Galen, who probably would have been able to, is absent in order to complete a book of his. The "Timarion" with its harsh critique of medical theory is very amusing and a rare example of "actuality" in Byzantine literature.

  14. Anatomical delineation of congenital heart disease using 3D magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Adams Bornemeier, Renee; Fellows, Kenneth E.; Fogel, Mark A.; Weinberg, Paul M.

    1994-05-01

    Anatomic delineation of the heart and great vessels is a necessity when managing children with congenital heart disease. Spatial orientation of the vessels and chambers in the heart and the heart itself may be quite abnormal. Though magnetic resonance imaging provides a noninvasive means for determining the anatomy, the intricate interrelationships between many structures are difficult to conceptualize from a 2-D format. Taking the 2-D images and using a volumetric analysis package allows for a 3-D replica of the heart to be created. This model can then be used to view the anatomy and spatial arrangement of the cardiac structures. This information may be utilized by the physicians to assist in the clinical management of these children.

  15. Endogenous contrast blood flow imaging in embryonic hearts using hemoglobin contrast subtraction angiography

    PubMed Central

    Deniz, Engin; Jonas, Stephan; Khokha, Mustafa; Choma, Michael A.

    2013-01-01

    The genetic basis of congenital heart disease (CHD) is yet to be defined, and the interactions between the malformed heart and biomechanical cardiac performance remain poorly understood. Functional optical imaging enables detailed biomechanical phenotyping of cardiac dysfunction in small animal models, which in turn enables specific gene-phenotype relationship. We have developed a new microangiography technique based on flow imaging using endogenous hemoglobin contrast enabling in vivo assessment and biomechanical phenotyping of Xenopus tropicalis embryonic heart. We demonstrated that hemoglobin contrast angiography can be used to quantify physiological response to treatment with well-established cardioactive drugs. PMID:22825198

  16. Sequential en-face optical coherence tomography imaging and monitoring of Drosophila Melanogaster larval heart

    NASA Astrophysics Data System (ADS)

    Bradu, A.; Ma, Lisha; Bloor, J.; Podoleanu, A. GH.

    2009-02-01

    This article demonstrates two modalities to acquire information on cardiac function in larval Drosophila Melanogaster: in-vivo imaging and heartbeat monitoring. To achieve these goals a dedicated imaging instrument able to provide simultaneous en-face Optical Coherence Tomography (OCT) and Laser Scanning Confocal Microscopy (LSCM) images has been developed. With this dual imaging system, the heart can easily be located and visualised within the specimen and the change of the heart shape in a cardiac cycle monitored. The system can easily be switched to a stethoscopic regime, simply by interrupting the scanning of the light beam across the sample, after selecting the point of interest in the imaging regime. Here we have used targeted gene expression to knockdown the myospheroid (mys) gene in the larval heart using a specific RNAi construct. By knocking down a β integrin subunit encoded by mys we have recorded an enlarged heart chamber in both diastolic and systolic states. Also, the fraction of reduction of the chamber diameter was smaller in the knockdown heart. These phenotypic differences indicate that impaired cardiac contractility occurs in the heart where the integrin gene express level is reduced. As far as we are aware, this is for the first time when it is shown in Drosophila that integrins have a direct relationship to a dilated heart defect, and conseqThis article demonstrates two modalities to acquire information on cardiac function in larval Drosophila Melanogaster: in-vivo imaging and heartbeat monitoring. To achieve these goals a dedicated imaging instrument able to provide simultaneous en-face Optical Coherence Tomography (OCT) and Laser Scanning Confocal Microscopy (LSCM) images has been developed. With this dual imaging system, the heart can easily be located and visualised within the specimen and the change of the heart shape in a cardiac cycle monitored. The system can easily be switched to a stethoscopic regime, simply by interrupting the

  17. Chinese Herbal Medicine Image Recognition and Retrieval by Convolutional Neural Network

    PubMed Central

    Sun, Xin; Qian, Huinan

    2016-01-01

    Chinese herbal medicine image recognition and retrieval have great potential of practical applications. Several previous studies have focused on the recognition with hand-crafted image features, but there are two limitations in them. Firstly, most of these hand-crafted features are low-level image representation, which is easily affected by noise and background. Secondly, the medicine images are very clean without any backgrounds, which makes it difficult to use in practical applications. Therefore, designing high-level image representation for recognition and retrieval in real world medicine images is facing a great challenge. Inspired by the recent progress of deep learning in computer vision, we realize that deep learning methods may provide robust medicine image representation. In this paper, we propose to use the Convolutional Neural Network (CNN) for Chinese herbal medicine image recognition and retrieval. For the recognition problem, we use the softmax loss to optimize the recognition network; then for the retrieval problem, we fine-tune the recognition network by adding a triplet loss to search for the most similar medicine images. To evaluate our method, we construct a public database of herbal medicine images with cluttered backgrounds, which has in total 5523 images with 95 popular Chinese medicine categories. Experimental results show that our method can achieve the average recognition precision of 71% and the average retrieval precision of 53% over all the 95 medicine categories, which are quite promising given the fact that the real world images have multiple pieces of occluded herbal and cluttered backgrounds. Besides, our proposed method achieves the state-of-the-art performance by improving previous studies with a large margin. PMID:27258404

  18. Chinese Herbal Medicine Image Recognition and Retrieval by Convolutional Neural Network.

    PubMed

    Sun, Xin; Qian, Huinan

    2016-01-01

    Chinese herbal medicine image recognition and retrieval have great potential of practical applications. Several previous studies have focused on the recognition with hand-crafted image features, but there are two limitations in them. Firstly, most of these hand-crafted features are low-level image representation, which is easily affected by noise and background. Secondly, the medicine images are very clean without any backgrounds, which makes it difficult to use in practical applications. Therefore, designing high-level image representation for recognition and retrieval in real world medicine images is facing a great challenge. Inspired by the recent progress of deep learning in computer vision, we realize that deep learning methods may provide robust medicine image representation. In this paper, we propose to use the Convolutional Neural Network (CNN) for Chinese herbal medicine image recognition and retrieval. For the recognition problem, we use the softmax loss to optimize the recognition network; then for the retrieval problem, we fine-tune the recognition network by adding a triplet loss to search for the most similar medicine images. To evaluate our method, we construct a public database of herbal medicine images with cluttered backgrounds, which has in total 5523 images with 95 popular Chinese medicine categories. Experimental results show that our method can achieve the average recognition precision of 71% and the average retrieval precision of 53% over all the 95 medicine categories, which are quite promising given the fact that the real world images have multiple pieces of occluded herbal and cluttered backgrounds. Besides, our proposed method achieves the state-of-the-art performance by improving previous studies with a large margin.

  19. Optical imaging of irradiated and non-irradiated hearts (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bolin, Stephanie; Chen, Guanchu; Medhora, Meetha M.; Camara, Amadou K. S.; Ranji, Mahsa

    2016-03-01

    Objective: In this study, the metabolic state of the heart tissue is studied in a rodent model of ischemia and reperfusion (IR) in rats exposed to irradiation injury using a cryofluorescence imaging technique. Mitochondrial metabolic state is evaluated by autofluorescence of mitochondrial metabolic coenzymes NADH and FAD. The redox ratio (NADH/FAD) is used as a biochemical/metabolic marker of oxidative stress, before, during and after IR. Materials and methods: Hearts were extracted from non-irradiated (control) and irradiated rats (Irr) given 15 Gy whole thorax irradiation rats (WTI). After 35 days, before the onset of radiation pneumonitis, these two groups of hearts were subjected to one of three treatments; Time control (TC; hearts perfused for the duration of the protocol without ischemia or IR), 25 minutes ischemia with no reperfusion and 25 minutes ischemia followed by 60 minutes reperfusion (IR). Hearts were removed from the Langendorff perfusion system and immediately snap frozen in liquid N2 to preserve the metabolic state after injury; 3-dimensional (3D) cryo-fluorescent imager was used to obtain in fixed time NADH and FAD fluorescence images and their distribution across the entire ventricles. In this study, a 30-μm axial resolution was used resulting in 550 cross-section images per heart. The 3D images of the redox ratio and their respective histograms were calculated in the six groups of hearts. Results: We compared the mean values of the redox ratio in each group, which demonstrate a reduced mitochondrial redox state in both irradiated and non-irradiated ischemic hearts and an oxidized mitochondrial redox state for both irradiated and non-irradiated ischemia-reperfusion hearts compared to control hearts. For non-irradiated hearts, ischemia and IR injuries resulted respectively in 61% increase and 54% decrease in redox ratio when compared with TC. For irradiated hearts, ischemia and IR injuries resulted respectively in 90% increase and 50% decrease

  20. Knowledge-based factor analysis of multidimensional nuclear medicine image sequences

    NASA Astrophysics Data System (ADS)

    Yap, Jeffrey T.; Chen, Chin-Tu; Cooper, Malcolm; Treffert, Jon D.

    1994-05-01

    We have developed a knowledge-based approach to analyzing dynamic nuclear medicine data sets using factor analysis. Prior knowledge is used as constraints to produce factor images and their associated time functions which are physically and physiologically realistic. These methods have been applied to both planar and tomographic image sequences acquired using various single-photon emitting and positron emitting radiotracers. Computer-simulated data, non-human primate studies, and human clinical studies have been used to develop and evaluate the methodology. The organ systems studied include the kidneys, heart, brain, liver, and bone. The factors generated represent various isolated aspects of physiologic function, such as tissue perfusion and clearance. In some clinical studies, the factors have indicated the potential to isolate diseased tissue from normally functioning tissue. In addition, the factor analysis of data acquired using newly developed radioligands has shown the ability to differentiate the specific binding of the radioligand to the targeted receptors from the non-specific binding. This suggests the potential use of factor analysis in the development and evaluation of radiolabeled compounds as well as in the investigation of specific receptor systems and their role in diagnosing disease.

  1. 4D optical coherence tomography of the embryonic heart using gated imaging

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rothenberg, Florence; Roy, Debashish; Nikolski, Vladimir P.; Wilson, David L.; Efimov, Igor R.; Rollins, Andrew M.

    2005-04-01

    Computed tomography (CT), ultrasound, and magnetic resonance imaging have been used to image and diagnose diseases of the human heart. By gating the acquisition of the images to the heart cycle (gated imaging), these modalities enable one to produce 3D images of the heart without significant motion artifact and to more accurately calculate various parameters such as ejection fractions [1-3]. Unfortunately, these imaging modalities give inadequate resolution when investigating embryonic development in animal models. Defects in developmental mechanisms during embryogenesis have long been thought to result in congenital cardiac anomalies. Our understanding of normal mechanisms of heart development and how abnormalities can lead to defects has been hampered by our inability to detect anatomic and physiologic changes in these small (<2mm) organs. Optical coherence tomography (OCT) has made it possible to visualize internal structures of the living embryonic heart with high-resolution in two- and threedimensions. OCT offers higher resolution than ultrasound (30 um axial, 90 um lateral) and magnetic resonance microscopy (25 um axial, 31 um lateral) [4, 5], with greater depth penetration over confocal microscopy (200 um). Optical coherence tomography (OCT) uses back reflected light from a sample to create an image with axial resolutions ranging from 2-15 um, while penetrating 1-2 mm in depth [6]. In the past, OCT groups estimated ejection fractions using 2D images in a Xenopus laevis [7], created 3D renderings of chick embryo hearts [8], and used a gated reconstruction technique to produce 2D Doppler OCT image of an in vivo Xenopus laevis heart [9]. In this paper we present a gated imaging system that allowed us to produce a 16-frame 3D movie of a beating chick embryo heart. The heart was excised from a day two (stage 13) chicken embryo and electrically paced at 1 Hz. We acquired 2D images (B-scans) in 62.5 ms, which provides enough temporal resolution to distinguish end

  2. Incorporating imaging into personalized medicine for the detection of prostate cancer: Pharmacological research-Urogenital pharmacology.

    PubMed

    Mertan, Francesca; Turkbey, Baris

    2016-12-01

    Imaging has played an important role in the administration of personalized medicine. From diagnosing diseases to guiding therapies, imaging has become an all-encompassing modality. With respect to prostate cancer, personalized management of the disease has been transformed by imaging. Specifically, multiparametric magnetic resonance imaging has emerged as a vital player in the detection, characterization, and localization of the disease thus making the incorporation of imaging in personalized prostate cancer management integral. In this review, the current role of imaging in personalized medicine for the management of prostate cancer is discussed.

  3. Optimized Three Dimensional Sodium Imaging of the Human Heart on a Clinical 3T scanner

    PubMed Central

    Gai, Neville D.; Rochitte, Carlos; Nacif, Marcelo S.; Bluemke, David A.

    2014-01-01

    Purpose Optimization of sequence and sequence parameters to allow 3D sodium imaging of the entire human heart in-vivo in a clinically reasonable time. Theory and Methods A stack of spirals pulse sequence was optimized for cardiac imaging by considering factors such as spoiling, nutation angles, repetition time, echo time, T1/T2 relaxation, off-resonance, data acquisition window, motion and segmented k-space acquisition. Simulations based on Bloch equations as well as the exact trajectory used for data acquisition provided the basis for choice of parameter combinations for sodium imaging. Sodium phantom scanning was used to validate the choice of parameters and for corroboration with simulations. In-vivo cardiac imaging in six volunteers was also done with an optimized sequence. Results Phantom studies showed good correlation with simulation results. Images obtained from human volunteers showed that the heart can be imaged with a nominal resolution of 5 × 5 × 10 mm3 and with SNR>15 (in the septum) in about 6-10 minutes. Long axis views of the reformatted human heart show true 3D imaging capability. Conclusion Optimization of the sequence and its parameters allowed in-vivo 3D sodium imaging of the entire human heart in a clinically reasonable time. PMID:24639022

  4. Personalized medicine in the care of the child with congenital heart disease: discovery to application.

    PubMed

    Binesh Marvasti, Tina; D'Alessandro, Lisa C A; Manase, Dorin; Papaz, Tanya; Mital, Seema

    2013-01-01

    On October 27-28, 2012, the SickKids Labatt Family Heart Centre and the Heart Centre Biobank Registry hosted the second international GenomeHeart symposium in Toronto, Ontario. The symposium featured experts in cardiology, developmental biology, pharmacology, genomics, bioinformatics, stem cell biology, biobanking, and ethics. The theme of this year's symposium was the application of emerging technologies in genomics, proteomics, transcriptomics, and bioinformatics to diagnostics and therapeutics of the child with heart disease. Social, ethical, and economic issues were also discussed in the context of clinical translation. We highlight some of the themes that emerged from this exciting 2-day event.

  5. TIMMI2 Images the Heart of the Orion Nebula

    NASA Astrophysics Data System (ADS)

    2001-03-01

    with ESO's new Thermal Infrared MultiMode Instrument (TIMMI2) , now mounted at the Cassegrain focus of the 3.6-m telescope on La Silla. The area is located close to the Trapezium cluster and is identified on a near-infrared image ( PR Photo 12a/01 ) obtained with the ISAAC instrument at the 8.2-m VLT ANTU telescope (cf. ESO PR Photos 03a-d/01 ). The complex itself is so heavily obscured by the dust cloud that it is not visible at this wavelength. However, the dust is more transparent at longer wavelengths and the complex is clearly seen on images obtained with TIMMI2 at wavelengths of 10.3 µm ( PR Photo 12b/01 ; with isophotes at the brightest object) and 20.0µm, ( PR Photo 12c/01 ). They show in some detail the structures around the compact sources and the extended thermal emission from the dust. The ratio of these two photos ( PR Photo 12d/01 ) illustrates how the temperature of the dust in this area varies. The brighter areas are the hotter ones. Technical information about these photos is available below. A group of astronomers [1] has recently imaged a star-forming region in the Orion Nebula with a new and powerful astronomical instrument, the Thermal Infrared MultiMode Instrument (TIMMI2) , now available at the La Silla Observatory. In addition to being scientifically very interesting, these observations also provide a demonstration of the impressive capabilities of this new facility. It has been known for some time that the "BN/KL Complex" is a site of recent, massive star formation. It is located deep inside the Orion Nebula ( PR Photo 12a/01 ) and is observed as a cluster of infrared-emitting objects and compact regions of ionized Hydrogen ("H II regions"), associated with intricate interstellar dust filaments and circumstellar dust clouds. There are also several hot and large stars in this heavily obscured area - together they shine as bright as 100,000 suns. It is a difficult task to identify the main sources of heating in this region - the "heart" of the

  6. Novel Fingertip Image-Based Heart Rate Detection Methods for a Smartphone.

    PubMed

    Zaman, Rifat; Cho, Chae Ho; Hartmann-Vaccarezza, Konrad; Phan, Tra Nguyen; Yoon, Gwonchan; Chong, Jo Woon

    2017-02-12

    We hypothesize that our smartphone-based fingertip image-based heart rate detection methods reliably detect the heart rhythm and rate of subjects. We propose fingertip curve line movement-based and fingertip image intensity-based detection methods, which both use the movement of successive fingertip images obtained from smartphone cameras. To investigate the performance of the proposed methods, heart rhythm and rate of the proposed methods are compared to those of the conventional method, which is based on average image pixel intensity. Using a smartphone, we collected 120 s pulsatile time series from each recruited subject. The results show that the proposed fingertip curve line movement-based method detects heart rate with a maximum deviation of 0.0832 Hz and 0.124 Hz using time- and frequency-domain based estimation, respectively, compared to the conventional method. Moreover, another proposed fingertip image intensity-based method detects heart rate with a maximum deviation of 0.125 Hz and 0.03 Hz using time- and frequency-based estimation, respectively.

  7. Novel Fingertip Image-Based Heart Rate Detection Methods for a Smartphone

    PubMed Central

    Zaman, Rifat; Cho, Chae Ho; Hartmann-Vaccarezza, Konrad; Phan, Tra Nguyen; Yoon, Gwonchan; Chong, Jo Woon

    2017-01-01

    We hypothesize that our fingertip image-based heart rate detection methods using smartphone reliably detect the heart rhythm and rate of subjects. We propose fingertip curve line movement-based and fingertip image intensity-based detection methods, which both use the movement of successive fingertip images obtained from smartphone cameras. To investigate the performance of the proposed methods, heart rhythm and rate of the proposed methods are compared to those of the conventional method, which is based on average image pixel intensity. Using a smartphone, we collected 120 s pulsatile time series data from each recruited subject. The results show that the proposed fingertip curve line movement-based method detects heart rate with a maximum deviation of 0.0832 Hz and 0.124 Hz using time- and frequency-domain based estimation, respectively, compared to the conventional method. Moreover, another proposed fingertip image intensity-based method detects heart rate with a maximum deviation of 0.125 Hz and 0.03 Hz using time- and frequency-based estimation, respectively. PMID:28208678

  8. Heart palpitations

    MedlinePlus

    ... occur. Try deep relaxation or breathing exercises. Practice yoga, meditation, or tai chi. Get regular exercise. Do ... M. Editorial team. Images Heart chambers Heart beat Yoga Arrhythmia Read more Atrial Fibrillation Read more Heart ...

  9. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part III: Cyanotic Heart Diseases and Complex Congenital Anomalies

    PubMed Central

    Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-01-01

    From the stand point of radiographic analysis most of the complex cyanotic congenital heart diseases (CHD), can be divided into those associated with decreased or increased pulmonary vascularity. Combination of a specific cardiac configuration and status of lung vasculature in a clinical context allows plain film diagnosis to be predicted in some CHD. Correlation of the position of the cardiac apex in relation to the visceral situs is an important information that can be obtained from the plain film. This information helps in gathering information about the atrio-ventricular, ventricular arterial concordance or discordance. Categorization of the cyanotic heart disease based on vascularity is presented below. Thorough understanding of cardiac anatomy by different imaging methods is essential in understanding and interpreting complex cardiac disease. Basic anatomical details and background for interpretation are provided in the previous parts of this presentation. PMID:27630924

  10. Three-dimensional segmentation of the heart muscle using image statistics

    NASA Astrophysics Data System (ADS)

    Nillesen, Maartje M.; Lopata, Richard G. P.; Gerrits, Inge H.; Kapusta, Livia; Huisman, Henkjan H.; Thijssen, Johan M.; de Korte, Chris L.

    2006-03-01

    Segmentation of the heart muscle in 3D echocardiographic images provides a tool for visualization of cardiac anatomy and assessment of heart function, and serves as an important pre-processing step for cardiac strain imaging. By incorporating spatial and temporal information of 3D ultrasound image sequences (4D), a fully automated method using image statistics was developed to perform 3D segmentation of the heart muscle. 3D rf-data were acquired with a Philips SONOS 7500 live 3D ultrasound system, and an X4 matrix array transducer (2-4 MHz). Left ventricular images of five healthy children were taken in transthoracial short/long axis view. As a first step, image statistics of blood and heart muscle were investigated. Next, based on these statistics, an adaptive mean squares filter was selected and applied to the images. Window size was related to speckle size (5x2 speckles). The degree of adaptive filtering was automatically steered by the local homogeneity of tissue. As a result, discrimination of heart muscle and blood was optimized, while sharpness of edges was preserved. After this pre-processing stage, homomorphic filtering and automatic thresholding were performed to obtain the inner borders of the heart muscle. Finally, a deformable contour algorithm was used to yield a closed contour of the left ventricular cavity in each elevational plane. Each contour was optimized using contours of the surrounding planes (spatial and temporal) as limiting condition to ensure spatial and temporal continuity. Better segmentation of the ventricle was obtained using 4D information than using information of each plane separately.

  11. Managing Your Medicines

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More Managing Your Medicines Updated:Oct 27,2016 If you have heart ... Weight • Tools & Resources Heart Insight Supplement: Know Your Medicines Keeping track of your medicines can be overwhelming. ...

  12. The causal conundrum: the diet-heart debates and the management of uncertainty in American medicine.

    PubMed

    Olszewski, Todd M

    2015-04-01

    Starting in the 1950s, physicians and researchers began to debate the exact nature of the relationship among blood cholesterol, diet, and cardiovascular risk. Using professional medical, public health, and scientific journals, this article examines the history of a series of intense and sustained debates regarding the credibility of the diet-heart hypothesis, which proposed that diet was causally linked to coronary artery disease. Brought about by intellectual disagreements and illuminated by personal quarrels, these debates created a profound professional rift among researchers who debated whether observational data could be used to prove that dietary intake caused heart disease and who sought to differentiate between "good" and "bad" science. But while the debate persisted into the early 1980s, Americans had begun to adopt the diet-heart hypothesis as public health truth as early as the 1960s, embracing cookbooks promoting "heart healthy" diets that promised to prevent coronary artery disease. Although critics and advocates of diet-heart continued to debate the theory's finer points, the widespread adoption of diet-heart in American homes meant that the debate had become almost moot by the time the National Heart, Lung, and Blood Institute officially endorsed the hypothesis in the 1980s.

  13. Nuclear medicine imaging and therapy: gender biases in disease.

    PubMed

    Moncayo, Valeria M; Aarsvold, John N; Alazraki, Naomi P

    2014-01-01

    Gender-based medicine is medical research and care conducted with conscious consideration of the sex and gender differences of subjects and patients. This issue of Seminars is focused on diseases for which nuclear medicine is part of routine management and for which the diseases have sex- or gender-based differences that affect incidence or pathophysiology and that thus have differences that can potentially affect the results of the relevant nuclear medicine studies. In this first article, we discuss neurologic diseases, certain gastrointestinal conditions, and thyroid conditions. The discussion is in the context of those sex- or gender-based aspects of these diseases that should be considered in the performance, interpretation, and reporting of the relevant nuclear medicine studies. Cardiovascular diseases, gynecologic diseases, bone conditions such as osteoporosis, pediatric occurrences of some diseases, human immunodeficiency virus-related conditions, and the radiation dose considerations of nuclear medicine studies are discussed in the other articles in this issue.

  14. Clinical applications of magnetic resonance imaging (MRI) of the heart

    SciTech Connect

    Westcott, J.L.; Steiner, R.M.

    1986-01-01

    The rapid progress of MRI has been remarkable, and it is clear that it will become an important method for cardiac imaging. Its major advantages are the lack of ionizing radiation and the ability to obtain excellent global images of the cardiac walls and chambers without the need for contrast injection or cardiac catheterization. High resolution surface coil imaging, tissue spectroscopy, and other improvements and applications should be rapidly forthcoming.

  15. Noninvasive imaging of heart chamber in Drosophila with dual-beam optical coherence tomography.

    PubMed

    Tsai, Meng-Tsan; Lee, Cheng-Kuang; Chang, Feng-Yu; Wu, June-Tai; Wu, Chung-Pu; Chi, Ting-Ta; Yang, C C

    2013-09-01

    The heart chamber of an adult Drosophila is approximately 2 mm long and 0.5 mm wide, and the interwall separation of different heart portions during systole and diastole range from tens of micrometers to hundreds of micrometers. Furthermore, the heart chamber has a curved structure, which results in the larger differences in depth between the different heart portions. However, applying the wavelength calibration process before Fourier transform in an optical coherence tomography (OCT) system may cause degradation in system sensitivity and longitudinal resolution when the optical path difference between the reference and sample arms increases, which makes imaging the entire heart chamber difficult with OCT system. Additionally, since the heartbeat rate of Drosophila is approximately 6 beats/s, a high-speed OCT system is necessary to record the dynamics of the heat beats. In this study, we propose a new approach to visualize the entire heart chamber including the conical chamber and four ostia portions, and to observe the retrograde and anterograde beats. A buffered Fourier-domain mode-locked (FDML) laser is implemented to provide a high imaging speed. Two output ports of the buffered FDML laser are used simultaneously to scan the different heart portions of Drosophila, and the effective A-scan rate of the OCT system can be doubled. Then, the two scanned images are merged into a single B-mode scan. Furthermore, with dual-beam OCT system, the beating behaviors of the different heart portions from 7-day-old and 21-day-old flies are compared.

  16. Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity

    NASA Astrophysics Data System (ADS)

    Masson, Jean-Baptiste; Sauviat, Martin-Pierre; Gallot, Guilhem

    2006-10-01

    The authors demonstrate the direct, noninvasive and time resolved imaging of functional frog auricular fibers by ionic contrast terahertz (ICT) near field microscopy. This technique provides quantitative, time-dependent measurement of ionic flow during auricular muscle electrical activity, and opens the way of direct noninvasive imaging of cardiac activity under stimulation. ICT microscopy technique was associated with full three-dimensional simulation enabling to measure precisely the fiber sizes. This technique coupled to waveguide technology should provide the grounds to development of advanced in vivo ion flux measurement in mammalian hearts, allowing the prediction of heart attack from change in K+ fluxes.

  17. Cardiovascular translational medicine (III). Genomics and proteomics in heart failure research.

    PubMed

    González, Arantxa; López, Begoña; Beaumont, Javier; Ravassa, Susana; Arias, Teresa; Hermida, Nerea; Zudaire, Amaia; Díez, Javier

    2009-03-01

    Heart failure is a complex syndrome and is one of the main causes of morbidity and mortality in developed countries. Despite considerable research effort in recent years, heart failure prevention and treatment strategies still suffer significant limitations. New theoretical and technical approaches are, therefore, required. It is in this context that the "omic" sciences have a role to play in heart failure. The incorporation of "omic" methodologies into the study of human disease has substantially changed biological approaches to disease and has given an enormous impetus to the search for new disease mechanisms, as well as for novel biomarkers and therapeutic targets. The application of genomics, proteomics and metabonomics to heart failure research could increase our understanding of the origin and development of the different processes contributing to this syndrome, thereby enabling the establishment of specific diagnostic profiles and therapeutic templates that could help improve the poor prognosis associated with heart failure. This brief review contains a short description of the fundamental principles of the "omic" sciences and an evaluation of how these new techniques are currently contributing to research into human heart failure. The focus is mainly on the analysis of gene expression microarrays in the field of genomics and on studies using two-dimensional electrophoresis with mass spectrometry in the area of proteomics.

  18. Photonics in cardiovascular medicine

    NASA Astrophysics Data System (ADS)

    van Soest, Gijs; Regar, Evelyn; van der Steen, Antonius F. W.

    2015-10-01

    The use of photonics technology is bringing new capabilities and insights to cardiovascular medicine. Intracoronary imaging and sensing, laser ablation and optical pacing are just some of the functions being explored to help diagnose and treat conditions of the heart and arteries.

  19. Point-of-Care Technologies for the Advancement of Precision Medicine in Heart, Lung, Blood, and Sleep Disorders

    PubMed Central

    Jamieson, Brian G.; Chui, Chi On; Mao, Yufei; Shin, Kyeong-Sik; Huang, Tony Jun; Huang, Po-Hsun; Ren, Liqiang; Adhikari, Bishow; Chen, Jue; Iturriaga, Erin

    2016-01-01

    The commercialization of new point of care technologies holds great potential in facilitating and advancing precision medicine in heart, lung, blood, and sleep (HLBS) disorders. The delivery of individually tailored health care to a patient depends on how well that patient’s health condition can be interrogated and monitored. Point of care technologies may enable access to rapid and cost-effective interrogation of a patient’s health condition in near real time. Currently, physiological data are largely limited to single-time-point collection at the hospital or clinic, whereas critical information on some conditions must be collected in the home, when symptoms occur, or at regular intervals over time. A variety of HLBS disorders are highly dependent on transient variables, such as patient activity level, environment, time of day, and so on. Consequently, the National Heart Lung and Blood Institute sponsored a request for applications to support the development and commercialization of novel point-of-care technologies through small businesses (RFA-HL-14-011 and RFA-HL-14-017). Three of the supported research projects are described to highlight particular point-of-care needs for HLBS disorders and the breadth of emerging technologies. While significant obstacles remain to the commercialization of such technologies, these advancements will be required to achieve precision medicine. PMID:27602308

  20. Young community of EACVI: the transition from EACVI Club 35 to Heart Imagers of Tomorrow: a promising yet challenging step

    PubMed Central

    Grapsa, Julia; Cameli, Matteo; Granier, Camille; Muraru, Denisa; Ernande, Laura; Popescu, Bogdan A.; Lancellotti, Patrizio; Habib, Gilbert

    2016-01-01

    The purpose of this review is to summarize the activity and potential of the young community of European Association of Cardiovascular Imaging and to highlight the transition from Club 35 to ‘Heart Imagers of tomorrow’. PMID:26690950

  1. Live imaging and modeling for shear stress quantification in the embryonic zebrafish heart.

    PubMed

    Boselli, Francesco; Vermot, Julien

    2016-02-01

    Hemodynamic shear stress is sensed by the endocardial cells composing the inner cell layer of the heart, and plays a major role in cardiac morphogenesis. Yet, the underlying hemodynamics and the associated mechanical stimuli experienced by endocardial cells remains poorly understood. Progress in the field has been hampered by the need for high temporal resolution imaging allowing the flow profiles generated in the beating heart to be resolved. To fill this gap, we propose a method to analyze the wall dynamics, the flow field, and the wall shear stress of the developing zebrafish heart. This method combines live confocal imaging and computational fluid dynamics to overcome difficulties related to live imaging of blood flow in the developing heart. To provide an example of the applicability of the method, we discuss the hemodynamic frequency content sensed by endocardial cells at the onset of valve formation, and how the fundamental frequency of the wall shear stress represents a unique mechanical cue to endocardial, heart-valve precursors.

  2. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part I: Clinical Perspective, Anatomy and Imaging Techniques

    PubMed Central

    Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-01-01

    Rapid evolution in technology in the recent years has lead to availability of multiple options for cardiac imaging. Availability of multiple options of varying capability, poses a challenge for optimal imaging choice. While new imaging choices are added, some of the established methods find their role re-defined. State of the art imaging practices are limited to few specialist cardiac centres, depriving many radiologists and radiologist in-training of optimal exposure to the field. This presentation is aimed at providing a broad idea about complexity of clinical problem, imaging options and a large library of images of congenital heart disease. Some emphasis is made as to the need of proper balance between performing examination with technical excellence in an ideal situation against the need of the majority of patients who are investigated with less optimal resources. Cases of congenital cardiac disease are presented in an illustrative way, showing imaging appearances in multiple modalities, highlighting specific observations in given instance. PMID:27376034

  3. Building and Querying RDF/OWL Database of Semantically Annotated Nuclear Medicine Images.

    PubMed

    Hwang, Kyung Hoon; Lee, Haejun; Koh, Geon; Willrett, Debra; Rubin, Daniel L

    2017-02-01

    As the use of positron emission tomography-computed tomography (PET-CT) has increased rapidly, there is a need to retrieve relevant medical images that can assist image interpretation. However, the images themselves lack the explicit information needed for query. We constructed a semantically structured database of nuclear medicine images using the Annotation and Image Markup (AIM) format and evaluated the ability the AIM annotations to improve image search. We created AIM annotation templates specific to the nuclear medicine domain and used them to annotate 100 nuclear medicine PET-CT studies in AIM format using controlled vocabulary. We evaluated image retrieval from 20 specific clinical queries. As the gold standard, two nuclear medicine physicians manually retrieved the relevant images from the image database using free text search of radiology reports for the same queries. We compared query results with the manually retrieved results obtained by the physicians. The query performance indicated a 98 % recall for simple queries and a 89 % recall for complex queries. In total, the queries provided 95 % (75 of 79 images) recall, 100 % precision, and an F1 score of 0.97 for the 20 clinical queries. Three of the four images missed by the queries required reasoning for successful retrieval. Nuclear medicine images augmented using semantic annotations in AIM enabled high recall and precision for simple queries, helping physicians to retrieve the relevant images. Further study using a larger data set and the implementation of an inference engine may improve query results for more complex queries.

  4. Doppler tissue imaging for assessing left ventricular diastolic dysfunction in heart transplant rejection

    PubMed Central

    Stengel, S; Allemann, Y; Zimmerli, M; Lipp, E; Kucher, N; Mohacsi, P; Seiler, C

    2001-01-01

    OBJECTIVE—To test the hypothesis that diastolic mitral annular motion velocity, as determined by Doppler tissue imaging and left ventricular diastolic flow propagation velocity, is related to the histological degree of heart transplant rejection according to the International Society of Heart and Lung Transplantation (ISHLT).
METHODS—In 41 heart transplant recipients undergoing 151 myocardial biopsies, the following Doppler echocardiographic measurements were performed within one hour of biopsy: transmitral and pulmonary vein flow indices; mitral annular motion velocity indices; left ventricular diastolic flow propagation velocity.
RESULTS—Late diastolic mitral annular motion velocity (ADTI) and mitral annular systolic contraction velocity (SCDTI) were higher in patients with ISHLT < IIIA than in those with ISHLT ⩾ IIIA (ADTI, 8.8 cm/s v 7.7 cm/s (p = 0.03); SCDTI, 19.3 cm/s v 9.3 cm/s (p < 0.05)). Sensitivity and specificity of ADTI < 8.7 cm/s (the best cut off value) in predicting significant heart transplant rejection were 82% and 53%, respectively. Early diastolic mitral annular motion velocity (EDTI) and flow propagation velocity were not related to the histological degree of heart transplant rejection.
CONCLUSIONS—Doppler tissue imaging of the mitral annulus is useful in diagnosing heart transplant rejection because a high late diastolic mitral annular motion velocity can reliably exclude severe rejection. However, a reduced late diastolic mitral annular motion velocity cannot predict severe rejection reliably because it is not specific enough.


Keywords: heart transplant rejection; diastolic function; Doppler tissue imaging; echocardiography PMID:11559685

  5. Uncovering brain-heart information through advanced signal and image processing.

    PubMed

    Valenza, Gaetano; Toschi, Nicola; Barbieri, Riccardo

    2016-05-13

    Through their dynamical interplay, the brain and the heart ensure fundamental homeostasis and mediate a number of physiological functions as well as their disease-related aberrations. Although a vast number of ad hoc analytical and computational tools have been recently applied to the non-invasive characterization of brain and heart dynamic functioning, little attention has been devoted to combining information to unveil the interactions between these two physiological systems. This theme issue collects contributions from leading experts dealing with the development of advanced analytical and computational tools in the field of biomedical signal and image processing. It includes perspectives on recent advances in 7 T magnetic resonance imaging as well as electroencephalogram, electrocardiogram and cerebrovascular flow processing, with the specific aim of elucidating methods to uncover novel biological and physiological correlates of brain-heart physiology and physiopathology.

  6. Uncovering brain–heart information through advanced signal and image processing

    PubMed Central

    Toschi, Nicola; Barbieri, Riccardo

    2016-01-01

    Through their dynamical interplay, the brain and the heart ensure fundamental homeostasis and mediate a number of physiological functions as well as their disease-related aberrations. Although a vast number of ad hoc analytical and computational tools have been recently applied to the non-invasive characterization of brain and heart dynamic functioning, little attention has been devoted to combining information to unveil the interactions between these two physiological systems. This theme issue collects contributions from leading experts dealing with the development of advanced analytical and computational tools in the field of biomedical signal and image processing. It includes perspectives on recent advances in 7 T magnetic resonance imaging as well as electroencephalogram, electrocardiogram and cerebrovascular flow processing, with the specific aim of elucidating methods to uncover novel biological and physiological correlates of brain–heart physiology and physiopathology. PMID:27044995

  7. Cardiovascular Magnetic Resonance Imaging for Structural and Valvular Heart Disease Interventions.

    PubMed

    Cavalcante, João L; Lalude, Omosalewa O; Schoenhagen, Paul; Lerakis, Stamatios

    2016-03-14

    The field of percutaneous interventions for the treatment of structural and valvular heart diseases has been expanding rapidly in the last 5 years. Noninvasive cardiac imaging has been a critical part of the planning, procedural guidance, and follow-up of these procedures. Although echocardiography and cardiovascular computed tomography are the most commonly used and studied imaging techniques in this field today, advances in cardiovascular magnetic resonance imaging continue to provide important contributions in the comprehensive assessment and management of these patients. In this comprehensive paper, we will review and demonstrate how cardiovascular magnetic resonance imaging can be used to assist in diagnosis, treatment planning, and follow-up of patients who are being considered for and/or who have undergone interventions for structural and valvular heart diseases.

  8. Current research in nuclear medicine and molecular imaging: highlights of the 23rd Annual EANM Congress.

    PubMed

    Carrió, Ignasi

    2011-02-01

    The most recent research developments in nuclear medicine and molecular imaging were presented at the 2010 Annual Congress of the EANM. This review summarizes some of the most relevant contributions made in the fields of oncology, cardiovascular science, neurology and psychiatry, technological innovation and novel tracers. Presentations covered basic and clinical research in nuclear medicine and molecular imaging, and diagnostic and therapeutic applications of radioisotopes and radiopharmaceuticals on a global scale. The results reported demonstrate that investigative strategies using nuclear medicine techniques facilitate effective diagnosis and management of patients with most prevalent disease states. At the same time novel tracers and technologies are being explored, which hold promise for future new applications of nuclear medicine and molecular imaging in research and clinical practice.

  9. Expecting the holistic regulation from Chinese medicine based on the "solar system" hypothesis of ischemic heart disease.

    PubMed

    Luo, Jing; Wang, An-Lu; Xu, Hao; Shi, Da-Zhuo; Chen, Ke-Ji

    2016-11-01

    Stenosis of the coronary artery has been considered as an essential component of ischemic heart disease (IHD). Consequently, revascularization [e.g., percutaneous coronary intervention (PCI) and coronary artery bypass] has been the primary therapeutic approach to IHD. Such strategy has indeed revolutionized the management of IHD patients. However, not all patients with myocardial ischemia have visible coronary stenosis. Moreover, cardiovascular events occur in nearly 20% patients with stable coronary artery disease who have undergone PCI. The recently proposed "solar system" hypothesis of IHD postulates that coronary stenosis is only one (albeit important) of its features. Mechanistic contribution and clinical implication of multiple pathophysiological processes beyond coronary stenosis are highlighted in this hypothesis. On the basis of a holistic regulation and individualized medicine, Chinese medicine (CM) has been used in the real-world setting to manage a variety of diseases, including IHD, for more than two thousands years. In this article, we summarize the evidence of CM that supports the "solar system" IHD hypothesis, and argue for a comprehensive approach to IHD. At the theoretical level, the central features of this approach include a holistic view of disease and human subjects, as well as individualized medicine. At the practical level, this approach emphasizes anoxia-tolerance and self-healing.

  10. 2015 proceedings of the National Heart, Lung, and Blood Institute's State of the Science in Transfusion Medicine symposium.

    PubMed

    Spitalnik, Steven L; Triulzi, Darrell; Devine, Dana V; Dzik, Walter H; Eder, Anne F; Gernsheimer, Terry; Josephson, Cassandra D; Kor, Daryl J; Luban, Naomi L C; Roubinian, Nareg H; Mondoro, Traci; Welniak, Lisbeth A; Zou, Shimian; Glynn, Simone

    2015-09-01

    On March 25 and 26, 2015, the National Heart, Lung, and Blood Institute sponsored a meeting on the State of the Science in Transfusion Medicine on the National Institutes of Health (NIH) campus in Bethesda, Maryland, which was attended by a diverse group of 330 registrants. The meeting's goal was to identify important research questions that could be answered in the next 5 to 10 years and which would have the potential to transform the clinical practice of transfusion medicine. These questions could be addressed by basic, translational, and/or clinical research studies and were focused on four areas: the three "classical" transfusion products (i.e., red blood cells, platelets, and plasma) and blood donor issues. Before the meeting, four working groups, one for each area, prepared five major questions for discussion along with a list of five to 10 additional questions for consideration. At the meeting itself, all of these questions, and others, were discussed in keynote lectures, small-group breakout sessions, and large-group sessions with open discourse involving all meeting attendees. In addition to the final lists of questions, provided herein, the meeting attendees identified multiple overarching, cross-cutting themes that addressed issues common to all four areas; the latter are also provided. It is anticipated that addressing these scientific priorities, with careful attention to the overarching themes, will inform funding priorities developed by the NIH and provide a solid research platform for transforming the future practice of transfusion medicine.

  11. 2015 Proceedings of the National Heart, Lung, and Blood Institute's State of the Science in Transfusion Medicine Symposium

    PubMed Central

    Spitalnik, Steven L.; Triulzi, Darrell; Devine, Dana V.; Dzik, Walter H.; Eder, Anne F.; Gernsheimer, Terry; Josephson, Cassandra D.; Kor, Daryl J.; Luban, Naomi L. C.; Roubinian, Nareg H.; Mondoro, Traci; Welniak, Lisbeth A.; Zou, Shimian; Glynn, Simone

    2015-01-01

    On March 25-26, 2015, the National Heart, Lung, and Blood Institute sponsored a meeting on the State of the Science in Transfusion Medicine on the NIH campus in Bethesda, MD, which was attended by a diverse group of 330 registrants. The meeting's goal was to identify important research questions that could be answered in the next 5-10 years, and which would have the potential to transform the clinical practice of transfusion medicine. These questions could be addressed by basic, translational, and/or clinical research studies and were focused on four areas: the three “classical” transfusion products (i.e., red blood cells, platelets, and plasma) and blood donor issues. Prior to the meeting, four Working Groups, one for each area, prepared five major questions for discussion along with a list of 5-10 additional questions for consideration. At the meeting itself, all of these questions, and others, were discussed in Keynote lectures, small group breakout sessions, and large group sessions with open discourse involving all meeting attendees. In addition to the final lists of questions, provided herein, the meeting attendees identified multiple overarching, cross-cutting themes that addressed issues common to all four areas; the latter are also provided. It is anticipated that addressing these scientific priorities, with careful attention to the overarching themes, will inform funding priorities developed by the NIH and provide a solid research platform for transforming the future practice of transfusion medicine. PMID:26260861

  12. [Evaluation of therapy for dilated cardiomyopathy with heart failure by iodine-123 metaiodobenzylguanidine imaging: comparison with heart rate variability power spectral analysis].

    PubMed

    Li, S; Ikeda, J; Takita, T; Sekiguchi, Y; Demachi, J; Chikama, H; Goto, A; Shirato, K

    1998-11-01

    The relationship between the myocardial uptake of iodine-123 metaiodobenzylguanidine (123I-MIBG) and heart rate variability parameters has not been determined. This study determined the relationship between the change in myocardial uptake of 123I-MIBG and improvement in left ventricular function after treatment, to determine the usefulness of 123I-MIBG imaging to assess the effect of therapy on heart failure due to dilated cardiomyopathy (DCM). 123I-MIBG imaging and power spectral analysis of heart rate variability were performed before and after treatment in 17 patients with heart failure due to DCM. The following parameters were compared before and after treatment: New York Heart Association (NYHA) functional class, radiographic cardiothoracic ratio (CTR), blood pressure, echocardiographic data [left ventricular end-systolic (LVDs) and end-diastolic (LVDd) diameters, left ventricular ejection fraction (LVEF)], plasma concentrations of norepinephrine and epinephrine, heart rate variability power spectral analysis data [mean low frequency (MLF) and high frequency power (MHF)] and the myocardium to mediastinum activity ratio (MYO/M) obtained in early and late images, and washout rate calculated by anterior planar imaging of 123I-MIBG. The NYHA functional class, LVEF, LVDs, CTR, MLF and MHF improved after treatment. Early MYO/M and late MYO/M improved after treatment. The rate of increase in late MYO/M was positively correlated with the rate of improvement of LVEF after treatment. Furthermore, the late MYO/M was negatively correlated with MLF. Washout rate revealed no correlation with hemodynamic parameters. These findings suggest that late MYO/M is more useful than washout rate to assess the effect of treatment on heart failure due to DCM. Furthermore, the 123I-MIBG imaging and heart rate variability parameters are useful to assess the autonomic tone in DCM with heart failure.

  13. Medicine Wheel Imag(in)ings: Exploring Holistic Curriculum Perspectives

    ERIC Educational Resources Information Center

    Kind, Sylvia; Irwin, Rita L.; Grauer, Kit; de Cosson, Alex

    2005-01-01

    Education is longing for a deeper more connected, more inclusive, and more aware way of knowing. One that connects heart and hand and head and does not split knowledge into dualities of thought and being, mind and body, emotion and intellect, but resonates with a wholeness and fullness that engages every part of one's being. Engagement with the…

  14. Semi-automated measurements of heart-to-mediastinum ratio on 123I-MIBG myocardial scintigrams by using image fusion method with chest X-ray images

    NASA Astrophysics Data System (ADS)

    Kawai, Ryosuke; Hara, Takeshi; Katafuchi, Tetsuro; Ishihara, Tadahiko; Zhou, Xiangrong; Muramatsu, Chisako; Abe, Yoshiteru; Fujita, Hiroshi

    2015-03-01

    MIBG (iodine-123-meta-iodobenzylguanidine) is a radioactive medicine that is used to help diagnose not only myocardial diseases but also Parkinson's diseases (PD) and dementia with Lewy Bodies (DLB). The difficulty of the segmentation around the myocardium often reduces the consistency of measurement results. One of the most common measurement methods is the ratio of the uptake values of the heart to mediastinum (H/M). This ratio will be a stable independent of the operators when the uptake value in the myocardium region is clearly higher than that in background, however, it will be unreliable indices when the myocardium region is unclear because of the low uptake values. This study aims to develop a new measurement method by using the image fusion of three modalities of MIBG scintigrams, 201-Tl scintigrams, and chest radiograms, to increase the reliability of the H/M measurement results. Our automated method consists of the following steps: (1) construct left ventricular (LV) map from 201-Tl myocardium image database, (2) determine heart region in chest radiograms, (3) determine mediastinum region in chest radiograms, (4) perform image fusion of chest radiograms and MIBG scintigrams, and 5) perform H/M measurements on MIBG scintigrams by using the locations of heart and mediastinum determined on the chest radiograms. We collected 165 cases with 201-Tl scintigrams and chest radiograms to construct the LV map. Another 65 cases with MIBG scintigrams and chest radiograms were also collected for the measurements. Four radiological technologists (RTs) manually measured the H/M in the MIBG images. We compared the four RTs' results with our computer outputs by using Pearson's correlation, the Bland-Altman method, and the equivalency test method. As a result, the correlations of the H/M between four the RTs and the computer were 0.85 to 0.88. We confirmed systematic errors between the four RTs and the computer as well as among the four RTs. The variation range of the H

  15. Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit

    2015-01-01

    Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821

  16. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled 'Instrumentation and Quantitative Methods of Evaluation.' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  17. Towards Rapid Screening of Tagged MR Images of the Heart

    DTIC Science & Technology

    2007-11-02

    tag line from above of the infracted human cardiac image. The exaggerated curvature is because of zooming on the tag and unequal scaling of both axis...National Magnetic Resonance Conference, Izmir 2000 [9]. Goksel D., Ozkan M. ve Ozturk C., “MR Tag Analysis using Harmonic Phase Method”, 9. Signal Processing Conference, Northern Cyprus 2000

  18. Molecular morphology of the chick heart visualized by MALDI imaging mass spectrometry.

    PubMed

    Grey, Angus C; Gelasco, Andrew K; Section, Jarren; Moreno-Rodriguez, Ricardo A; Krug, Edward L; Schey, Kevin L

    2010-05-01

    Utilization of MALDI-MS (matrix-assisted laser desorption/ionization mass spectrometry) for tissue imaging is a relatively new proteomic technique that simultaneously maps the spatial distribution of multiple proteins directly within a single frozen tissue section. Here, we report the development of a methodology to apply MALDI tissue imaging to chick heart tissue sections acquired from fixed and paraffin-embedded samples. This protocol produces molecular images that can be related to the high-quality histological tissue sections. Perfused term chick hearts were fixed in acidic ethanol and embedded in paraffin wax. Tissue sections (15 microm) were collected onto conductive slides, deparaffinized with xylene, and transitioned into water with graded ethanol washes and allowed to air dry. In separate experiments, three different MALDI matrices were applied to chick heart tissue sections through repeated cycles from a glass nebulizer. Tissue sections were then analyzed by MALDI mass spectrometry using a raster step-size of 75-100 microm, and molecular images for specific m/z ratios reconstituted. MALDI tissue imaging revealed spatially resolved protein signals within single heart sections that are specific to structures or regions of the heart, for example, vessels, valves, endocardium, myocardium, or septa. Moreover, no prior knowledge of protein expression is required as is the case for immunohistochemistry and in situ hybridization methodologies. The ability to simultaneously localize a large number of unique protein signals within a single tissue section, with good preservation of histological features, provides cardiovascular researchers a new tool to give insight into the molecular mechanisms underlying normal and pathological conditions.

  19. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    NASA Astrophysics Data System (ADS)

    Gu, Songxiang; Gupta, Rajiv; Kyprianou, Iacovos

    2011-09-01

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  20. Structure and function relationship of Zebrafish embryonic heart from confocal microscopy images

    NASA Astrophysics Data System (ADS)

    Moghaddam, Abbas N.; Forouhar, Arian; Liebling, Michael; Tsai, Huai-Jen; Gharib, Morteza

    2006-03-01

    Confocal microscopy enables us to track myocytes in the embryonic zebrafish heart. The Zeiss LSM 5 Live high speed confocal microscope has been used to take optical sections (at 3 μm intervals and 151 frames per second) through a fluorescently labeled zebrafish heart at two developmental stages (26 and 34 hours post fertilization (hpf)). This data provides unique information allowing us to conjecture on the morphology and biomechanics of the developing vertebrate heart. Nevertheless, the myocytes, whose positions could be determined in a reliable manner, were located sparsely and mostly in one side of the heart tube. This difficulty was overcome using computational methods, that give longitudinal, radial and circumferential displacements of the myocytes as well as their contractile behavior. Applied strain analysis has shown that in the early embryonic heart tube, only the caudal region (near the in-flow) and another point in the middle of the tube can be active; the rest appears to be mostly passive. This statement is based on the delay between major strain and displacement which a material point experiences. Wave-like propagation of all three components of the displacement, especially in the circumferential direction, as well as the almost-periodic changes of the maximum strain support the hypothesis of helical muscle structure embedded in the tube. Changes of geometry in the embryonic heart after several hours are used to verify speculations about the structure based on the earlier images and aforementioned methods.

  1. Stability of membrane potential in heart mitochondria: Single mitochondrion imaging

    SciTech Connect

    Uechi, Yukiko; Yoshioka, Hisashi; Morikawa, Daisuke; Ohta, Yoshihiro . E-mail: ohta@cc.tuat.ac.jp

    2006-06-16

    Mitochondrial membrane potential ({delta}{psi} {sub m}) plays an important role in cellular activity. Although {delta}{psi} {sub m} of intracellular mitochondria are relatively stable, the recent experiments with isolated mitochondria demonstrate that individual mitochondria show frequent fluctuations of {delta}{psi} {sub m}. The current study is performed to investigate the factors that stabilize {delta}{psi} {sub m} in cells by observing {delta}{psi} {sub m} of individual isolated mitochondria with fluorescence microscopy. Here, we report that (1) the transient depolarizations are also induced for mitochondria in plasma membrane permeabilized cells, (2) almost all mitochondria isolated from porcine hearts show the transient depolarizations that is enhanced with the net efflux of protons from the matrix to the intermembrane space, and (3) ATP and ADP significantly inhibit the transient depolarizations by plural mechanisms. These results suggest that the suppression of acute alkalinization of the matrix together with the presence of ATP and ADP contributes to the stabilization of {delta}{psi} {sub m} in cells.

  2. Heart PET scan

    MedlinePlus

    Heart nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Mann DL, ... A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, ...

  3. A Poisson resampling method for simulating reduced counts in nuclear medicine images.

    PubMed

    White, Duncan; Lawson, Richard S

    2015-05-07

    Nuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times. However, because acquisition and processing parameters vary, each user should ideally evaluate the use of images with reduced counts within their own department, and this is best done by simulating reduced-count images from the original data. Reducing the counts in an image by division and rounding off to the nearest integer value, even if additional Poisson noise is added, is inadequate because it gives incorrect counting statistics. This technical note describes how, by applying Poisson resampling to the original raw data, simulated reduced-count images can be obtained while maintaining appropriate counting statistics. The authors have developed manufacturer independent software that can retrospectively generate simulated data with reduced counts from any acquired nuclear medicine image.

  4. A Poisson resampling method for simulating reduced counts in nuclear medicine images

    NASA Astrophysics Data System (ADS)

    White, Duncan; Lawson, Richard S.

    2015-05-01

    Nuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times. However, because acquisition and processing parameters vary, each user should ideally evaluate the use of images with reduced counts within their own department, and this is best done by simulating reduced-count images from the original data. Reducing the counts in an image by division and rounding off to the nearest integer value, even if additional Poisson noise is added, is inadequate because it gives incorrect counting statistics. This technical note describes how, by applying Poisson resampling to the original raw data, simulated reduced-count images can be obtained while maintaining appropriate counting statistics. The authors have developed manufacturer independent software that can retrospectively generate simulated data with reduced counts from any acquired nuclear medicine image.

  5. Multispot two-photon imaging of mice heart tissue detecting calcium waves

    NASA Astrophysics Data System (ADS)

    de Mauro, C.; Cecchetti, C. A.; Alfieri, D.; Borile, G.; Mongillo, M.; Pavone, F. S.

    2012-06-01

    High rate, full field image acquisition in multiphoton imaging is achievable by parallelization of the excitation and of the detection paths. Via a Diffractive Optical Elements (DOEs) which splits a pulsed laser, and a spatial resolved descanned detection path, a new approach to microscopy has been developed. By exploiting the three operating mode, single beam, 16 beamlets or 64 beamlets, the best experimental conditions can be found by adapting the power per beamlet. This Multiphoton Multispot system (MCube) has been characterized in thick tissue samples, and subsequently used for the first time for Ca2+ imaging of acute heart slices. A test sample with fixed mice heart slices with embedded sub-resolution fluorescent beads has been used to test the capability of optical axial resolution up to ~200 microns in depth. Radial and axial resolutions of 0.6 microns and 3 microns have been respectively obtained with a 40X water immersion objective, getting close to the theoretical limit. Then images of heart slices cardiomyocites, loaded with Fluo4-AM have been acquired. The formation of Ca2+ waves during electrostimulated beating has been observed, and the possibility of easily acquire full frame images at 15 Hz (16 beamlets) has been demonstrated, towards the in vivo study of time resolved cellular dynamics and arrhythmia trigger mechanisms in particular. A very high speed two-photon Random Access system for in vivo electrophysiological studies, towards the correlation of voltage and calcium signals in arrhythmia phenomena, is now under developing at Light4tech.

  6. In vivo imaging of the Drosophila Melanogaster heart using a novel optical coherence tomography microscope

    NASA Astrophysics Data System (ADS)

    Izatt, Susan D.; Choma, Michael A.; Israel, Steven; Wessells, Robert J.; Bodmer, Rolf; Izatt, Joseph A.

    2005-03-01

    Real time in vivo optical coherence tomography (OCT) imaging of the adult fruit fly Drosophila melanogaster heart using a newly designed OCT microscope allows accurate assessment of cardiac anatomy and function. D. melanogaster has been used extensively in genetic research for over a century, but in vivo evaluation of the heart has been limited by available imaging technology. The ability to assess phenotypic changes with micrometer-scale resolution noninvasively in genetic models such as D. melanogaster is needed in the advancing fields of developmental biology and genetics. We have developed a dedicated small animal OCT imaging system incorporating a state-of-the-art, real time OCT scanner integrated into a standard stereo zoom microscope which allows for simultaneous OCT and video imaging. System capabilities include A-scan, B-scan, and M-scan imaging as well as automated 3D volumetric acquisition and visualization. Transverse and sagittal B-mode scans of the four chambered D. melanogaster heart have been obtained with the OCT microscope and are consistent with detailed anatomical studies from the literature. Further analysis by M-mode scanning is currently under way to assess cardiac function as a function of age and sex by determination of shortening fraction and ejection fraction. These studies create control cardiac data on the wild type D. melanogaster, allowing subsequent evaluation of phenotypic cardiac changes in this model after regulated genetic mutation.

  7. Immune cells detection of the in vivo rejecting heart in USPIO-enhanced magnetic resonance imaging.

    PubMed

    Chang, Hsun-Hsien; Moura, José M F; Wu, Yijen L; Ho, Chien

    2006-01-01

    Contrast-enhanced magnetic resonance imaging (MRI) is useful to study the infiltration of immune cells, in particular macrophages. Contrast agents, for example ultra-small superparamagnetic iron oxide (USPIO) particles, administered intravenously into the blood stream will be engulfed by macrophages circulating in the circulation system. When a transplanted heart rejects, macrophages and other immune cells will infiltrate the rejecting tissue. Imaged by T*2 weighted MRI, USPIO-labeled macrophages will display dark pixel intensities. Detecting the presence of USPIO particles in the images facilitates the study of heart rejection. We cast the problem of detecting the presence of USPIO-labeled myocardium in the framework of spectral graph theory, and treat our decision function as a level set function on the image. The pixels with positive level set values correspond to the presence of immune cells, and negative to the absence. When the image is modeled by a graph, the spectral analysis of the graph Laplacian provides a basis to represent the level set function. We develop from the Cheeger constant of the graph an objective functional of the level set function. The minimization of the objective leads to the optimal level set function. Experimental results suggest the feasibility of our approach in the study of rejecting hearts.

  8. Role of Imaging Techniques for Diagnosis, Prognosis and Management of Heart Failure Patients: Cardiac Magnetic Resonance

    PubMed Central

    Gonzalez, Jorge A.; Kramer, Christopher M.

    2015-01-01

    Cardiac Magnetic Resonance (CMR) has evolved into a major tool for the diagnosis and assessment of prognosis of patients suffering from heart failure. Anatomical and structural imaging, functional assessment, T1 and T2 mapping tissue characterization and late gadolinium enhancement (LGE) have provided clinicians with tools to distinguish between non-ischemic and ischemic cardiomyopathies and to identify the etiology of non-ischemic cardiomyopathies. LGE is a useful tool to predict the likelihood of functional recovery after revascularization in patients with CAD and to guide the LV lead placement in those who qualify for cardiac resynchronization (CRT) therapy. In addition, the presence of LGE and its extent in myocardial tissue relates to overall cardiovascular outcomes. Emerging roles for cardiac imaging in Heart Failure with Preserved Ejection Fraction (HFpEF) are being studied and CMR continues to be among the most promising noninvasive imaging alternatives in the diagnosis of this disease. PMID:26041670

  9. Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine.

    PubMed

    Sevick-Muraca, Eva M; Rasmussen, John C

    2008-01-01

    We compare and contrast the development of optical molecular imaging techniques with nuclear medicine with a didactic emphasis for initiating readers into the field of molecular imaging. The nuclear imaging techniques of gamma scintigraphy, single-photon emission computed tomography, and positron emission tomography are first briefly reviewed. The molecular optical imaging techniques of bioluminescence and fluorescence using gene reporter/probes and gene reporters are described prior to introducing the governing factors of autofluorescence and excitation light leakage. The use of dual-labeled, near-infrared excitable and radio-labeled agents are described with comparative measurements between planar fluorescence and nuclear molecular imaging. The concept of time-independent and -dependent measurements is described with emphasis on integrating time-dependent measurements made in the frequency domain for 3-D tomography. Finally, we comment on the challenges and progress for translating near-infrared (NIR) molecular imaging agents for personalized medicine.

  10. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants

    SciTech Connect

    Glowniak, J.V.; Turner, F.E.; Gray, L.L.; Palac, R.T.; Lagunas-Solar, M.C.; Woodward, W.R.

    1989-07-01

    Iodine-123 metaiodobenzylguanidine ((/sup 123/I)MIBG) is a norepinephrine analog which can be used to image the sympathetic innervation of the heart. In this study, cardiac imaging with (/sup 123/I)MIBG was performed in patients with idiopathic congestive cardiomyopathy and compared to normal controls. Initial uptake, half-time of tracer within the heart, and heart to lung ratios were all significantly reduced in patients compared to normals. Uptake in lungs, liver, salivary glands, and spleen was similar in controls and patients with cardiomyopathy indicating that decreased MIBG uptake was not a generalized abnormality in these patients. Iodine-123 MIBG imaging was also performed in cardiac transplant patients to determine cardiac nonneuronal uptake. Uptake in transplants was less than 10% of normals in the first 2 hr and nearly undetectable after 16 hr. The decreased uptake of MIBG suggests cardiac sympathetic nerve dysfunction while the rapid washout of MIBG from the heart suggests increased cardiac sympathetic nerve activity in idiopathic congestive cardiomyopathy.

  11. Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images.

    PubMed

    Young, A A

    1999-12-01

    Although magnetic resonance tissue tagging is a useful tool for the non-invasive measurement of three-dimensional (3-D) heart wall motion, the clinical utility of current analysis techniques is limited by the prohibitively long time required for image analysis. A method was therefore developed for the reconstruction of 3-D heart wall motion directly from tagged magnetic resonance images, without prior identification of ventricular boundaries or tag stripe locations. The method utilized a finite-element model to describe the shape and motion of the heart. Initially, the model geometry was determined at the time of tag creation by fitting a small number of guide points which were placed interactively on the images. Model tags were then created within the model as material surfaces which defined the location of the magnetic tags. An objective function was derived to measure the degree of match between the model tags and the image stripes. The objective was minimized by allowing the model to deform directly under the influence of the images, utilizing an efficient method for calculating image-derived motion constraints. The model deformation could also be manipulated interactively by guide points. Experiments were performed using clinical images of a normal volunteer, as well as simulated images in which the true motion was specified. The root-mean-squared errors between the known and calculated displacement and strain for the simulated images were similar to those obtained using previous stripe-tracking and model-fitting methods. A significant improvement in analysis time was obtained for the normal volunteer and further improvements may allow the method to be applied in a 'real-time' clinical environment.

  12. Imaging the beating heart in the mouse using intravital microscopy techniques

    PubMed Central

    Vinegoni, Claudio; Aguirre, Aaron D; Lee, Sungon; Weissleder, Ralph

    2017-01-01

    Real-time microscopic imaging of moving organs at single-cell resolution represents a major challenge in studying complex biology in living systems. Motion of the tissue from the cardiac and respiratory cycles severely limits intravital microscopy by compromising ultimate spatial and temporal imaging resolution. However, significant recent advances have enabled single-cell resolution imaging to be achieved in vivo. In this protocol, we describe experimental procedures for intravital microscopy based on a combination of thoracic surgery, tissue stabilizers and acquisition gating methods, which enable imaging at the single-cell level in the beating heart in the mouse. Setup of the model is typically completed in 1 h, which allows 2 h or more of continuous cardiac imaging. This protocol can be readily adapted for the imaging of other moving organs, and it will therefore broadly facilitate in vivo high-resolution microscopy studies. PMID:26492138

  13. NCRP report 160 and what it means for medical imaging and nuclear medicine.

    PubMed

    Bolus, Norman E

    2013-12-01

    The purpose of this paper is to briefly explain report 160 of the National Council on Radiation Protection and Measurement and the significance of the report to medical imaging as a whole and nuclear medicine specifically. The implications of the findings of report 160 have had repercussions and will continue to affect all of ionizing radiation medical imaging. The nuclear medicine community should have an understanding of why and how report 160 is important. After reading this article, the nuclear medicine technologist will be familiar with the main focus of report 160, the significant change that has occurred since the 1980s in the ionizing radiation exposure of people in the United States, the primary background source of ionizing radiation in the United States, the primary medical exposure to ionizing radiation in the United States, trends in nuclear medicine procedures and patient exposure, and a comparison of population doses between 2006 and the early 1980s as outlined in report 160.

  14. Nuclear medicine in the management of patients with heart failure: guidance from an expert panel of the International Atomic Energy Agency (IAEA).

    PubMed

    Peix, Amalia; Mesquita, Claudio Tinoco; Paez, Diana; Pereira, Carlos Cunha; Felix, Renata; Gutierrez, Claudia; Jaimovich, Rodrigo; Ianni, Barbara Maria; Soares, Jose; Olaya, Pastor; Rodriguez, Ma Victoria; Flotats, Albert; Giubbini, Raffaele; Travin, Mark; Garcia, Ernest V

    2014-08-01

    Heart failure is increasing worldwide at epidemic proportions, resulting in considerable disability, mortality, and increase in healthcare costs. Gated myocardial perfusion single photon emission computed tomography or PET imaging is the most prominent imaging modality capable of providing information on global and regional ventricular function, the presence of intraventricular synchronism, myocardial perfusion, and viability on the same test. In addition, I-mIBG scintigraphy is the only imaging technique approved by various regulatory agencies able to provide information regarding the adrenergic function of the heart. Therefore, both myocardial perfusion and adrenergic imaging are useful tools in the workup and management of heart failure patients. This guide is intended to reinforce the information on the use of nuclear cardiology techniques for the assessment of heart failure and associated myocardial disease.

  15. Children's (Pediatric) Nuclear Medicine

    MedlinePlus Videos and Cool Tools

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  16. Colour atlas of first pass functional imaging of the heart

    SciTech Connect

    Schad, N.; Andrews, E.J.; Fleming, J.W.

    1985-01-01

    This book contains 21 chapters. Some of the titles are: Functional imaging; Fist pass radionuclide studies in evaluation of mitral valve replacement in chronic insufficiency using Bjork-Shiley tilting disc valves; First pass radionuclide studies in evaluation of left and right ventricular function in patients with bioprosthetic mitral valve replacement after 9-11 years; and First pass radionuclide studies in the evaluation of long term (up to about 15 years) follow up of aortic valve replacement using Starr-Edwards ball prosthesis.

  17. The accuracy and efficacy of palpation versus image-guided peripheral injections in sports medicine.

    PubMed

    Hall, Mederic M

    2013-01-01

    There is much debate in the sports medicine community regarding the need for image guidance during peripheral joint and soft tissue injections. With the increasing availability of office-based ultrasound, many injections that were performed previously with a palpation-guided technique are being performed now under direct sonographic guidance. However some question the need for such guidance, particularly given the increased cost. This manuscript will review the reported accuracy and efficacy for various injections commonly performed in a sports medicine practice.

  18. Heart Research

    NASA Technical Reports Server (NTRS)

    1991-01-01

    James Antaki and a group of researchers from the University of Pittsburgh School of Medicine used many elements of the Technology Utilization Program while looking for a way to visualize and track material points within the heart muscle. What they needed were tiny artificial "eggs" containing copper sulfate solution, small enough (about 2 mm in diameter) that they would not injure the heart, and large enough to be seen in Magnetic Resonance Imaging (MRI) images; they also had to be biocompatible and tough enough to withstand the beating of the muscle. The group could not make nor buy sufficient containers. After reading an article on microspheres in NASA Tech Briefs, and a complete set of reports on microencapsulation from the Jet Propulsion Laboratory (JPL), JPL put Antaki in touch with Dr.Taylor Wang of Vanderbilt University who helped construct the myocardial markers. The research is expected to lead to improved understanding of how the heart works and what takes place when it fails.

  19. Progressive Left Ventricular Hypertrophy after Heart Transplantation: Insights and Mechanisms Suggested by Multimodal Images

    PubMed Central

    Garikapati, Kiran; Williams, Celeste T.

    2016-01-01

    Immunosuppression is the typical measure to prevent rejection after heart transplantation. Although rejection is the usual cause of cardiac hypertrophy, numerous other factors warrant consideration. Calcineurin inhibitors rarely cause hypertrophic cardiomyopathy; the few relevant reports have described children after orthotopic kidney or liver transplantation. We present the case of a 73-year-old woman, an asymptomatic orthotopic heart transplantation patient, in whom chronic immunosuppression with prednisone and cyclosporine apparently caused a phenotype of hypertrophic cardiomyopathy. The natural course of her midapical hypertrophy was revealed by single-photon-emission computed tomography, positron-emission tomography, and 2-dimensional echocardiography. Clinicians and radiographers should be alert to progressive left ventricular hypertrophy and various perfusion patterns in heart transplantation patients even in the absence of underlying coronary artery disease. Toward this end, we recommend that advanced imaging methods be used to their fullest extent. PMID:27047289

  20. Medicines

    MedlinePlus

    ... better. In the United States, the Food and Drug Administration is in charge of assuring the safety ... prescription and over-the-counter medicines. Even safe drugs can cause unwanted side effects or interactions with ...

  1. Bodies, hearts, and minds: Why emotions matter to historians of science and medicine.

    PubMed

    Alberti, Fay Bound

    2009-12-01

    The histories of emotion address many fundamental themes of science and medicine. These include the ways the body and its workings have been historically observed and measured, the rise of the mind sciences, and the anthropological analyses by which "ways of knowing" are culturally situated. Yet such histories bring their own challenges, not least in how historians of science and medicine view the relationship between bodies, minds, and emotions. This essay explores some of the methodological challenges of emotion history, using the sudden death of the surgeon John Hunter from cardiac disease as a case study. It argues that we need to let go of many of our modem assumptions about the origin of emotions, and "brainhood", that dominate discussions of identity, in order to explore the historical meanings of emotions as products of the body as well as the mind.

  2. Bodies, Hearts and Minds: Why Emotions Matter to Historians of Science and Medicine

    PubMed Central

    Bound Alberti, Fay

    2015-01-01

    The history of emotion addresses many fundamental themes of science and medicine. These include the ways the body and its workings have been historically observed and measured; the rise of the mind sciences; and the anthropological analyses by which “ways of knowing” are culturally situated. Yet studying emotions brings its own challenges, not least in how historians of science and medicine view the relationship between bodies, minds and emotions. This paper explores some of the methodological challenges of emotion history, using the surgeon John Hunter’s sudden death from cardiac disease as a case study. It argues that we need to let go of many of our modern assumptions about the origin of emotions, and “brainhood” that dominate discussions of identity, in order to explore the historical meanings of emotions as products of the body as well as the mind. PMID:20380348

  3. Cardiac imaging in adults

    SciTech Connect

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  4. Applicability of three-dimensional imaging techniques in fetal medicine*

    PubMed Central

    Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson

    2016-01-01

    Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. PMID:27818540

  5. Acoustic imaging with time reversal methods: From medicine to NDT

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2015-03-01

    This talk will present an overview of the research conducted on ultrasonic time-reversal methods applied to biomedical imaging and to non-destructive testing. We will first describe iterative time-reversal techniques that allow both focusing ultrasonic waves on reflectors in tissues (kidney stones, micro-calcifications, contrast agents) or on flaws in solid materials. We will also show that time-reversal focusing does not need the presence of bright reflectors but it can be achieved only from the speckle noise generated by random distributions of non-resolved scatterers. We will describe the applications of this concept to correct distortions and aberrations in ultrasonic imaging and in NDT. In the second part of the talk we will describe the concept of time-reversal processors to get ultrafast ultrasonic images with typical frame rates of order of 10.000 F/s. It is the field of ultrafast ultrasonic imaging that has plenty medical applications and can be of great interest in NDT. We will describe some applications in the biomedical domain: Quantitative Elasticity imaging of tissues by following shear wave propagation to improve cancer detection and Ultrafast Doppler imaging that allows ultrasonic functional imaging.

  6. Altered sympathetic nervous system signaling in the diabetic heart: emerging targets for molecular imaging

    PubMed Central

    Thackeray, James T; Beanlands, Rob S; DaSilva, Jean N

    2012-01-01

    Diabetes is commonly associated with increased risk of cardiovascular morbidity and mortality. Perturbations in sympathetic nervous system (SNS) signaling have been linked to the progression of diabetic heart disease. Glucose, insulin, and free fatty acids contribute to elevated sympathetic nervous activity and norepinephrine release. Reduced left ventricular compliance and impaired cardiac function lead to further SNS activation. Chronic elevation of cardiac norepinephrine culminates in altered expression of pre- and post-synaptic sympathetic signaling elements, changes in calcium regulatory proteins, and abnormal contraction-excitation coupling. Clinically, these factors manifest as altered resting heart rate, depressed heart rate variability, and impaired cardiac autonomic reflex, which may contribute to elevated cardiovascular risk. Development of molecular imaging probes enable a comprehensive evaluation of cardiac SNS signaling at the neuron, postsynaptic receptor, and intracellular second messenger sites of signal transduction, providing mechanistic insights into cardiac pathology. This review will examine the evidence for abnormal SNS signaling in the diabetic heart and establish the physiological consequences of these changes, drawing from basic biological research in isolated heart and rodent models of diabetes, as well as from clinical reports. Particular attention will be paid to the use of molecular imaging approaches to non-invasively characterize and evaluate sympathetic signal transduction in diabetes, including pre-synaptic norepinephrine reuptake assessment using 11C-meta-hydroxyephedrine (11C-HED) with PET or 123I-metaiodobenzylguanidine (123I-MIBG) with SPECT, and postsynaptic β-adrenoceptor density measurements using CGP12177 derivatives. Finally, the review will attempt to define the future role of these non-invasive nuclear imaging techniques in diabetes research and clinical care. PMID:23133819

  7. Photoplethysmographic imaging via spectrally demultiplexed erythema fluctuation analysis for remote heart rate monitoring

    NASA Astrophysics Data System (ADS)

    Deglint, Jason; Chung, Audrey G.; Chwyl, Brendan; Amelard, Robert; Kazemzadeh, Farnoud; Wang, Xiao Yu; Clausi, David A.; Wong, Alexander

    2016-03-01

    Traditional photoplethysmographic imaging (PPGI) systems use the red, green, and blue (RGB) broadband measurements of a consumer digital camera to remotely estimate a patients heart rate; however, these broadband RGB signals are often corrupted by ambient noise, making the extraction of subtle fluctuations indicative of heart rate difficult. Therefore, the use of narrow-band spectral measurements can significantly improve the accuracy. We propose a novel digital spectral demultiplexing (DSD) method to infer narrow-band spectral information from acquired broadband RGB measurements in order to estimate heart rate via the computation of motion- compensated skin erythema fluctuation. Using high-resolution video recordings of human participants, multiple measurement locations are automatically identified on the cheeks of an individual, and motion-compensated broadband reflectance measurements are acquired at each measurement location over time via measurement location tracking. The motion-compensated broadband reflectance measurements are spectrally demultiplexed using a non-linear inverse model based on the spectral sensitivity of the camera's detector. A PPG signal is then computed from the demultiplexed narrow-band spectral information via skin erythema fluctuation analysis, with improved signal-to-noise ratio allowing for reliable remote heart rate measurements. To assess the effectiveness of the proposed system, a set of experiments involving human motion in a front-facing position were performed under ambient lighting conditions. Experimental results indicate that the proposed system achieves robust and accurate heart rate measurements and can provide additional information about the participant beyond the capabilities of traditional PPGI methods.

  8. Nuclear magnetic resonance zeugmatographic imaging of the heart: application to the study of ventricular septal defect. [Lambs

    SciTech Connect

    Heneghan, M.A.; Biancaniello, T.M.; Heidel, E.; Peterson, S.B.; Marsh, M.J.; Lauterbur, P.C.

    1982-04-01

    The present work was undertaken to determine the applicability of nuclear magnetic resonance (NMR) imaging to the study of congenital heart disease. Three-dimensional proton density images of preserved lamb hearts with and without an artificially created ventricular septal defect were reconstructed and displayed in multiple planes. Sections obtained in the sagittal plane through the ventricular septum clearly showed the size, shape, and location of the defect. Results of these experiments suggest that NMR zeugmatography will become a valuable addition to existing imaging techniques for the study of congenital heart disease.

  9. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease

    PubMed Central

    Keliher, Edmund J.; Ye, Yu-Xiang; Wojtkiewicz, Gregory R.; Aguirre, Aaron D.; Tricot, Benoit; Senders, Max L.; Groenen, Hannah; Fay, Francois; Perez-Medina, Carlos; Calcagno, Claudia; Carlucci, Giuseppe; Reiner, Thomas; Sun, Yuan; Courties, Gabriel; Iwamoto, Yoshiko; Kim, Hye-Yeong; Wang, Cuihua; Chen, John W.; Swirski, Filip K.; Wey, Hsiao-Ying; Hooker, Jacob; Fayad, Zahi A.; Mulder, Willem J. M.; Weissleder, Ralph; Nahrendorf, Matthias

    2017-01-01

    Tissue macrophage numbers vary during health versus disease. Abundant inflammatory macrophages destruct tissues, leading to atherosclerosis, myocardial infarction and heart failure. Emerging therapeutic options create interest in monitoring macrophages in patients. Here we describe positron emission tomography (PET) imaging with 18F-Macroflor, a modified polyglucose nanoparticle with high avidity for macrophages. Due to its small size, Macroflor is excreted renally, a prerequisite for imaging with the isotope flourine-18. The particle's short blood half-life, measured in three species, including a primate, enables macrophage imaging in inflamed cardiovascular tissues. Macroflor enriches in cardiac and plaque macrophages, thereby increasing PET signal in murine infarcts and both mouse and rabbit atherosclerotic plaques. In PET/magnetic resonance imaging (MRI) experiments, Macroflor PET imaging detects changes in macrophage population size while molecular MRI reports on increasing or resolving inflammation. These data suggest that Macroflor PET/MRI could be a clinical tool to non-invasively monitor macrophage biology. PMID:28091604

  10. Acute Heart Failure and a Pseudo Cystic Image in the Left Ventricle

    PubMed Central

    RIMBAS, Roxana C.; VINEREANU, Dragos

    2014-01-01

    The association between acute heart failure (AHF) and cardiac tumor may change the short and long term management of both conditions. A 51-year-old man presented with signs of AHF. ECG showed sinus tachycardia and left ventricular (LV) hypertrophy. Chest x-Ray found dilated heart and pulmonary congestion. There were no significant changes in blood tests. Transthoracic echocardiography revealed chambers dilation, and LV ejection fraction (LVEF) of 17%. Unexpectedly, we found an apical 2/2 cm cystic image in the LV. This had a myocardium-like membrane, seen better in 3D echocardiography, suggestive for hydatic cyst. Cerebral, thoracic, and abdomino-pelvic CT scan showed no hydatic lesions. Anti-Echinococcus antibodies were negative. Initially the clinical challenge was the management of the tumor in a patient with AHF and dilated cardiomyopathy. He was treated for AHF and followed up for the cystic image. He exhibited significant improvement of the clinical status and LVEF (increased to 42 %), with important cardiac reverse remodeling. Surprisingly, the apical cystic image disappeared. However, we found a hypertrophic aberrant cordae from apex to mid-septum, in the same position as the previous image. Thus, we believe that this cordae, by important remodeling and torsion generated the cystic image. This case highlights the importance of serial 2D and 3D echo examinations in patients with severely remodeled LV, and also with tumoral images. PMID:25705277

  11. Mid-level image representations for real-time heart view plane classification of echocardiograms.

    PubMed

    Penatti, Otávio A B; Werneck, Rafael de O; de Almeida, Waldir R; Stein, Bernardo V; Pazinato, Daniel V; Mendes Júnior, Pedro R; Torres, Ricardo da S; Rocha, Anderson

    2015-11-01

    In this paper, we explore mid-level image representations for real-time heart view plane classification of 2D echocardiogram ultrasound images. The proposed representations rely on bags of visual words, successfully used by the computer vision community in visual recognition problems. An important element of the proposed representations is the image sampling with large regions, drastically reducing the execution time of the image characterization procedure. Throughout an extensive set of experiments, we evaluate the proposed approach against different image descriptors for classifying four heart view planes. The results show that our approach is effective and efficient for the target problem, making it suitable for use in real-time setups. The proposed representations are also robust to different image transformations, e.g., downsampling, noise filtering, and different machine learning classifiers, keeping classification accuracy above 90%. Feature extraction can be performed in 30 fps or 60 fps in some cases. This paper also includes an in-depth review of the literature in the area of automatic echocardiogram view classification giving the reader a through comprehension of this field of study.

  12. Living with Heart Valve Disease

    MedlinePlus

    ... page from the NHLBI on Twitter. Living With Heart Valve Disease Heart valve disease is a lifelong condition. However, ... all of your medicines as prescribed. Pregnancy and Heart Valve Disease Mild or moderate heart valve disease during pregnancy ...

  13. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  14. Nuclear medicine in the acute clinical setting: indications, imaging findings, and potential pitfalls.

    PubMed

    Uliel, Livnat; Mellnick, Vincent M; Menias, Christine O; Holz, Andrew L; McConathy, Jonathan

    2013-01-01

    Nuclear medicine imaging provides valuable functional information that complements information obtained with anatomic imaging techniques in the evaluation of patients with specific acute clinical manifestations. Nuclear medicine studies are most often used in conjunction with other imaging modalities and as a problem-solving tool. Under certain circumstances a nuclear medicine study may be indicated as the first-line imaging modality, as in the case of renal scintigraphy for transplant dysfunction in the early postoperative period. Nuclear imaging may be preferred when a conventional first-line study is contraindicated or when it is important to minimize radiation exposure. The portability of nuclear imaging offers particular advantages for the evaluation of critically ill patients whose clinical condition is unstable and who cannot be safely transported out of the intensive care unit. The ability to visualize physiologic and pathophysiologic processes over relatively long time periods without adding to the patient's radiation exposure contributes to the high diagnostic sensitivity of several types of nuclear medicine studies. Viewing the acquired images in the cine mode adds to the value of these studies for diagnosing and characterizing dynamic abnormalities such as intermittent internal bleeding and bile or urine leakage. In this pictorial review, the spectrum of nuclear medicine studies commonly performed in the acute care setting is reviewed according to body systems and organs, with detailed descriptions of the indications, technical considerations, findings, and potential pitfalls of each type of study. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.332125098/-/DC1.

  15. Integrated package for interactive analysis and interpretation of nuclear medicine images

    NASA Astrophysics Data System (ADS)

    Silva, Augusto F. d.; Sousa Pereira, Antonio; Botelho, M. F.; de Lima, J. J.

    1992-06-01

    This paper describes a software package based on a set of integrated tools intended to be used in nuclear medicine imaging environments. These tools, following a functionally consistent and open architecture, aim to provide an efficient and user-friendly way for handling the analysis and interpretation of nuclear medicine images in a broad range of applications. The Image, Graphics, and Colors tools are the basic building blocks. Besides basic image handling facilities, the Image tool was designed to accomplish both conventional and special purposed processing tasks. Among these, the interactive definition of organ shaped regions of interest, functional imaging (e.g., mean transit time images in ventilatory lung studies) and activity quantitation should be pointed out as the most intensively used facilities. The Graphics tool is used mainly to display and analyze the activity/time curves resulting from parametric related studies. As intensity color coding has gained wide acceptance in nuclear medicine it was thought convenient to implement a Colors tool intended to provide interactive intensity manipulation. The X Window graphics interface system is the basis for the implementation of this set of independent but intercommunicating tools which are intended to run on all UNIX workstations provided with, at least, an 8 bit depth frame buffer.

  16. Leg Edema Quantification for Heart Failure Patients via 3D Imaging

    PubMed Central

    Hayn, Dieter; Fruhwald, Friedrich; Riedel, Arthur; Falgenhauer, Markus; Schreier, Günter

    2013-01-01

    Heart failure is a common cardiac disease in elderly patients. After discharge, approximately 50% of all patients are readmitted to a hospital within six months. Recent studies show that home monitoring of heart failure patients can reduce the number of readmissions. Still, a large number of false positive alarms as well as underdiagnoses in other cases require more accurate alarm generation algorithms. New low-cost sensors for leg edema detection could be the missing link to help home monitoring to its breakthrough. We evaluated a 3D camera-based measurement setup in order to geometrically detect and quantify leg edemas. 3D images of legs were taken and geometric parameters were extracted semi-automatically from the images. Intra-subject variability for five healthy subjects was evaluated. Thereafter, correlation of 3D parameters with body weight and leg circumference was assessed during a clinical study at the Medical University of Graz. Strong correlation was found in between both reference values and instep height, while correlation in between curvature of the lower leg and references was very low. We conclude that 3D imaging might be a useful and cost-effective extension of home monitoring for heart failure patients, though further (prospective) studies are needed. PMID:23948874

  17. Leg edema quantification for heart failure patients via 3D imaging.

    PubMed

    Hayn, Dieter; Fruhwald, Friedrich; Riedel, Arthur; Falgenhauer, Markus; Schreier, Günter

    2013-08-14

    Heart failure is a common cardiac disease in elderly patients. After discharge, approximately 50% of all patients are readmitted to a hospital within six months. Recent studies show that home monitoring of heart failure patients can reduce the number of readmissions. Still, a large number of false positive alarms as well as underdiagnoses in other cases require more accurate alarm generation algorithms. New low-cost sensors for leg edema detection could be the missing link to help home monitoring to its breakthrough. We evaluated a 3D camera-based measurement setup in order to geometrically detect and quantify leg edemas. 3D images of legs were taken and geometric parameters were extracted semi-automatically from the images. Intra-subject variability for five healthy subjects was evaluated. Thereafter, correlation of 3D parameters with body weight and leg circumference was assessed during a clinical study at the Medical University of Graz. Strong correlation was found in between both reference values and instep height, while correlation in between curvature of the lower leg and references was very low. We conclude that 3D imaging might be a useful and cost-effective extension of home monitoring for heart failure patients, though further (prospective) studies are needed.

  18. [New challenges and perspectives in nuclear medicine imaging].

    PubMed

    Borbély, Katalin

    2014-12-01

    Hybrid positron emission tomography/computer tomography (PET/CT) and single photon emission computer tomography/computer tomography (SPECT/CT) have resulted in significant advances both in medical research and routine clinical use. The most recent multimodality system that combines PET and magnetic resonance imaging (MRI) offers new potentials unthinkable before. The hybrid techniques allow obtaining simultaneous morphologic, functional, and molecular information of a living system. The proper use of multimodality imaging is of high importance as they facilitate both basic medical research and clinical practice.

  19. Molecular Imaging and Precision Medicine in Head and Neck Cancer.

    PubMed

    Mena, Esther; Thippsandra, Shwetha; Yanamadala, Anusha; Redy, Siddaling; Pattanayak, Puskar; Subramaniam, Rathan M

    2017-01-01

    The concept of using tumor genomic profiling information has revolutionized personalized cancer treatment. Head and neck (HN) cancer management is being influenced by recent discoveries of activating mutations in epidermal growth factor receptor and related targeted therapies with tyrosine kinase inhibitors, targeted therapies for Kristen Rat Sarcoma, and MET proto-oncogenes. Molecular imaging using PET plays an important role in assessing the biologic behavior of HN cancer with the goal of delivering individualized cancer treatment. This review summarizes recent genomic discoveries in HN cancer and their implications for functional PET imaging in assessing response to targeted therapies, and drug resistance mechanisms.

  20. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  1. A Java viewer to publish Digital Imaging and Communications in Medicine (DICOM) radiologic images on the World Wide Web.

    PubMed

    Setti, E; Musumeci, R

    2001-06-01

    The world wide web is an exciting service that allows one to publish electronic documents made of text and images on the internet. Client software called a web browser can access these documents, and display and print them. The most popular browsers are currently Microsoft Internet Explorer (Microsoft, Redmond, WA) and Netscape Communicator (Netscape Communications, Mountain View, CA). These browsers can display text in hypertext markup language (HTML) format and images in Joint Photographic Expert Group (JPEG) and Graphic Interchange Format (GIF). Currently, neither browser can display radiologic images in native Digital Imaging and Communications in Medicine (DICOM) format. With the aim to publish radiologic images on the internet, we wrote a dedicated Java applet. Our software can display radiologic and histologic images in DICOM, JPEG, and GIF formats, and provides a a number of functions like windowing and magnification lens. The applet is compatible with some web browsers, even the older versions. The software is free and available from the author.

  2. Clinical applications of radionuclide imaging in the evaluation and management of patients with congenital heart disease.

    PubMed

    Partington, Sara L; Valente, Anne Marie; Landzberg, Michael; Grant, Frederick; Di Carli, Marcelo F; Dorbala, Sharmila

    2016-02-01

    Non-invasive testing of children with congenital heart disease (CHD) began in the 1950s with the introduction of radionuclide studies to assess shunt fractions, pulmonary blood flow, and ventricular contractile function. Echocardiography and cardiac magnetic resonance imaging have since replaced radionuclide imaging in many of these roles. Concurrently, percutaneous and surgical repairs of complex CHD evolved, creating new roles for radionuclide imaging. In this paper on applications of radionuclide imaging in CHD, we review the multiple mechanisms for myocardial ischemia in CHD. We critically compare optimal radionuclide imaging techniques to other imaging modalities for assessing ischemia in CHD. We present the current role of nuclear imaging for assessing viability and pulmonary blood flow. We highlight the value added by advances in dedicated cardiac SPECT scanners, novel reconstruction software, and cardiac PET in performing low-dose radionuclide imaging in CHD. Finally, we discuss the emerging clinical indications for radionuclide imaging in CHD including coronary flow reserve assessment and evaluation of cardiovascular prosthesis and device infections.

  3. 256-slice CT coronary angiography in atrial fibrillation: The impact of mean heart rate and heart rate variability on image quality

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Kuang; Hsu, Shih-Ming; Mok, Greta S. P.; Law, Wei-Yip; Lu, Kun-Mu; Yang, Ching-Ching; Wu, Tung-Hsin

    2011-08-01

    The aim of this study was to evaluate the image quality of 256-MDCT in atrial fibrillation and to compare the findings with those among patients in sinus rhythm.MaterialsAll reconstructed images were evaluated by two independent experienced readers blinded to patient information, heart rate, and ECG results to assess the diagnostic quality of images of the coronary artery segments using axial images, multi-planar reformations, maximum intensity projections, and volume rendering technique.ResultsNo statistical significance was detected in terms of the overall image quality between patients in sinus rhythm and with atrial fibrillation. Pearson's correlation analysis showed no significant association between image quality and mean heart rate no matter for patients in sinus rhythm or with atrial fibrillation. Similarly, there was no correlation between image quality and heart rate variability for either patients in sinus rhythm or with atrial fibrillation. Our results showed that the optimal reconstruction window depends on patient's HR, and the pattern for patients in atrial fibrillation is similar to that obtained from non-atrial fibrillation patients.ConclusionThis study shows the potential of using 256-MDCT coronary angiography in patients with atrial fibrillation. Our results suggest that when appropriate reconstruction timing window is applied, patients with atrial fibrillation do not have to be excluded from MDCT coronary angiographic examinations.

  4. Genetic imaging consortium for addiction medicine: From neuroimaging to genes.

    PubMed

    Mackey, Scott; Kan, Kees-Jan; Chaarani, Bader; Alia-Klein, Nelly; Batalla, Albert; Brooks, Samantha; Cousijn, Janna; Dagher, Alain; de Ruiter, Michiel; Desrivieres, Sylvane; Feldstein Ewing, Sarah W; Goldstein, Rita Z; Goudriaan, Anna E; Heitzeg, Mary M; Hutchison, Kent; Li, Chiang-Shan R; London, Edythe D; Lorenzetti, Valentina; Luijten, Maartje; Martin-Santos, Rocio; Morales, Angelica M; Paulus, Martin P; Paus, Tomas; Pearlson, Godfrey; Schluter, Renée; Momenan, Reza; Schmaal, Lianne; Schumann, Gunter; Sinha, Rajita; Sjoerds, Zsuzsika; Stein, Dan J; Stein, Elliot A; Solowij, Nadia; Tapert, Susan; Uhlmann, Anne; Veltman, Dick; van Holst, Ruth; Walter, Henrik; Wright, Margaret J; Yucel, Murat; Yurgelun-Todd, Deborah; Hibar, Derrek P; Jahanshad, Neda; Thompson, Paul M; Glahn, David C; Garavan, Hugh; Conrod, Patricia

    2016-01-01

    Since the sample size of a typical neuroimaging study lacks sufficient statistical power to explore unknown genomic associations with brain phenotypes, several international genetic imaging consortia have been organized in recent years to pool data across sites. The challenges and achievements of these consortia are considered here with the goal of leveraging these resources to study addiction. The authors of this review have joined together to form an Addiction working group within the framework of the ENIGMA project, a meta-analytic approach to multisite genetic imaging data. Collectively, the Addiction working group possesses neuroimaging and genomic data obtained from over 10,000 subjects. The deadline for contributing data to the first round of analyses occurred at the beginning of May 2015. The studies performed on this data should significantly impact our understanding of the genetic and neurobiological basis of addiction.

  5. Three-phase radionuclide bone imaging in sports medicine

    SciTech Connect

    Rupani, H.D.; Holder, L.E.; Espinola, D.A.; Engin, S.I.

    1985-07-01

    Three-phase radionuclide bone (TPB) imaging was performed on 238 patients with sports-related injuries. A wide variety of lesions was encountered, but the most frequent lesions seen were stress fractures of the lower part of the leg at the junction of the middle and distal thirds of the posterior tibial cortex (42 of 79 lesions). There were no differences in the type, location, or distribution of lesions between males and females or between competitive and noncompetitive athletes. In 110 cases, bone stress lesions were often diagnosed when radiographs were normal, whereas subacute or chronic soft-tissue abnormalities had few specific scintigraphic features. TPB imaging provides significant early diagnostic information about bone stress lesions. Normal examination results (53 cases) exclude underlying osseous pathologic conditions.

  6. Structural imaging for addiction medicine: From neurostructure to neuroplasticity

    PubMed Central

    Brown, Gregory G.; Jacobus, Joanna; McKenna, Benjamin

    2016-01-01

    Quantitative morphometry and diffusion tensor imaging have provided new insights into structural brain changes associated with drugs of abuse. In this chapter, we review recent studies using these methods to investigate structural brain abnormalities associated with excessive use of marijuana, stimulants, and opiates. Although many brain regions have been associated with structural abnormalities following abuse of these drugs, brain systems underlying inhibition, mood regulation, and reward are particularly involved. Candidate pathological mechanisms underlying these structural abnormalities include the direct toxic effects of the drugs, neuroinflammation, ischemia, hemorrhage, and abnormal brain development. Returning damaged brain areas to neural health would involve enhancing neuroplasticity. Behavioral, environmental, pharmacological, and cell-based therapies have been correlated with enhanced neuroplasticity following brain injury, providing a basis for new treatments of brain changes associated with excessive drug use. When testing new treatments, structural imaging may prove useful in selecting patients, monitoring recovery, and perhaps, tailoring interventions. PMID:26822356

  7. Functional infrared imaging in medicine: a quantitative diagnostic approach.

    PubMed

    Merla, A; Romani, G L

    2006-01-01

    The role and the potentialities of high-resolution infrared thermography, combined to bio-heat modelling, have been largely described in the last years in a wide variety of biomedical applications. Quantitative assessment over time of the cutaneous temperature and/or of other biomedical parameters related to the temperature (e.g., cutaneous blood flow, thermal inertia, sympathetic skin response) allows for a better and more complete understanding and description of functional processes involved and/or altered in presence of ailment and interfering with the regular cutaneous thermoregulation. Such an approach to thermal medical imaging requires both new methodologies and tools, like diagnostic paradigms, appropriate software for data analysis and, even, a completely new way to look at data processing. In this paper, some of the studies recently made in our laboratory are presented and described, with the general intent of introducing the reader to these innovative methods to obtain quantitative diagnostic tools based on thermal imaging.

  8. [The application of radiological image in forensic medicine].

    PubMed

    Zhang, Ji-Zong; Che, Hong-Min; Xu, Li-Xiang

    2006-04-01

    Personal identification is an important work in forensic investigation included sex discrimination, age and stature estimation. Human identification depended on radiological image technique analysis is a practice and proper method in forensic science field. This paper intended to understand the advantage and defect by reviewed the employing of forensic radiology in forensic science field broadly and provide a reference to perfect the application of forensic radiology in forensic science field.

  9. The biochemical pharmacology of renin inhibitors: implications for translational medicine in hypertension, diabetic nephropathy and heart failure: expectations and reality.

    PubMed

    Abassi, Zaid; Winaver, Joseph; Feuerstein, Giora Z

    2009-10-15

    The renin-angiotensin-aldosterone system (RAAS) plays a dominant role in the pathophysiology of hypertension, Diabetes mellitus (DM), chronic kidney disease (CKD) and chronic heart failure (CHF). Therefore, drugs that block key components of the RAAS such as ACE inhibitors (ACEi) and angiotensin receptor blockers (ARBs) have gained wide clinical use for these indications. Despite progress, the morbidity and mortality of patients treated with ACEi or ARBs remain high. Small molecules that directly inhibit renin (DRI) and are orally active have also been developed and one such drug, aliskiren, was introduced into clinical use for treatment of hypertension in 2007. Further clinical trials aimed to expand the therapeutic use of aliskiren are in progress for CKD-DM and CHF. In this review we analyze and review the translational medicine prospects of aliskiren in respect to the biochemical pharmacology of the RAAS, the marketed RAAS modulators and the new emerging science regarding the role of prorenin, renin and renin receptors in cardiovascular biology and disease. The information already gained with aliskiren, raises questions regarding the advantages of DRIs as monotherapy compared to marketed ACEis and ARBs, their potential added value in combination with other RAAS modulators and other unproven benefits in relation to prorenin and renin receptor biology. This review will also indicate basic and clinical research needs that are critical to determine whether DRIs can provide meaningful added medical benefits over contemporary medicines that regulate the RAAS, and the need to identify patients that are more likely to benefit from DRIs and any possible long term adverse effects.

  10. Integrated Colony Imaging, Analysis, and Selection Device for Regenerative Medicine.

    PubMed

    Kwee, Edward; Herderick, Edward E; Adams, Thomas; Dunn, James; Germanowski, Robert; Krakosh, Frank; Boehm, Cynthia; Monnich, James; Powell, Kimerly; Muschler, George

    2017-04-01

    Stem and progenitor cells derived from human tissues are being developed as cell sources for cell-based assays and therapies. However, tissue-derived stem and progenitor cells are heterogeneous. Differences in observed clones of stem cells likely reflect important aspects of the underlying state of the source cells, as well as future potency for cell therapies. This paper describes a colony analysis and picking device that provides quantitative analysis of heterogeneous cell populations and precise tools for cell picking for research or biomanufacturing applications. We describe an integrated robotic system that enables image acquisition and automated image analysis to be coupled with rapid automated selection of individual colonies in adherent cell cultures. Other automated systems have demonstrated feasibility with picking from semisolid media or off feeder layers. We demonstrate the capability to pick adherent bone-derived stem cells from tissue culture plastic. Cells are efficiently picked from a target site and transferred to a recipient well plate. Cells demonstrate viability and adherence and maintain biologic potential for surface markers CD73 and CD90 based on phase contrast and fluorescence imaging 6 days after transfer. Methods developed here can be applied to the study of other stem cell types and automated culture of cells.

  11. Heart Attack

    MedlinePlus

    ... yourself MedlinePlus for More Information National Institute on Aging Related Topics Heart Failure High Blood Cholesterol High ... us | Customer Support | site map National Institute on Aging | U.S. National Library of Medicine | National Institutes of ...

  12. Gallium-67 imaging in human heart transplantation: correlation with endomyocardial biopsy

    SciTech Connect

    Meneguetti, J.C.; Camargo, E.E.; Soares, J. Jr.; Bellotti, G.; Bocchi, E.; Higuchi, M.L.; Stolff, N.; Hironaka, F.H.; Buchpiguel, C.A.; Pileggi, F.

    1987-05-01

    Endomyocardial biopsy seems to be the most accurate method to use for diagnosis and follow-up of acute rejection of the transplanted heart. This investigation compared a noninvasive procedure, gallium-67 imaging, with endomyocardial biopsy in the detection of acute rejection in heart transplantation. Seven male patients (aged 41 to 54 years) sequentially had 46 gallium-67 scintigrams and 46 endomyocardial biopsies between 1 week and 8 months after transplantation. Both studies were obtained in the same day, 48 hours after the administration of an intravenous injection of gallium-67 citrate. Cardiac uptake was graded as negative, mild, moderate, and marked according to an increasing count ratio with rib and sternal uptakes. Histologic findings were graded as negative, mild acute rejection, moderate acute rejection, severe acute rejection, resolving rejection, and nonspecific reaction. Negative biopsies were not found with moderate uptake, and neither moderate nor severe acute rejection were found with negative scintigrams. Imaging sensitivity was 83% with 17% false negatives and 9% false positives. Of seven studies with moderate uptake, five showed moderate acute rejection, and the patients had specific therapy with a decline in uptake, which correlated with resolving rejection. It is conceivable that in the future this technique may be used as a screening procedure for sequential endomyocardial biopsies in the follow-up of heart transplant patients.

  13. Uptake of perfusion imaging agents by transplanted hearts: an experimental study in rats

    SciTech Connect

    Bergsland, J.; Carr, E.A. Jr.; Carroll, M.; Feldman, M.J.; Kung, H.; Wright, J.R.

    1989-02-01

    There is a need for a reliable noninvasive marker of rejection in transplanted hearts. Endomyocardial biopsy is now the universally accepted diagnostic method of choice, but the invasiveness of the procedure and the limited size of the sample obtained makes this method far from ideal. As coronary blood flow may be expected to decrease during acute rejection, there has been interest in thallium-201 chloride (T1), a perfusion marker, as an imaging agent for diagnosing cardiac rejection. Hexakis(t-butylisonitrile)-technetium (Tc-TBI) is a representative of a new class of radiopharmaceuticals proposed as perfusion markers. We have compared the uptake of these imaging agents in a rat model of cardiac transplantation. Uptake of Tc-TBI as well as of T1 was significantly lower in rejecting than in nonrejecting hearts. This change was found in both left (LV) and right (RV) ventricles. Allografts in animals treated with cyclosporine (CyA) showed less severe rejection and higher uptakes of both imaging agents as compared to unmodified rejection. Our results suggest that perfusion imaging with these radionuclides is a potentially useful approach to the problem of detecting allograft rejection.

  14. First in vivo traveling wave magnetic particle imaging of a beating mouse heart

    NASA Astrophysics Data System (ADS)

    Vogel, P.; Rückert, M. A.; Klauer, P.; Kullmann, W. H.; Jakob, P. M.; Behr, V. C.

    2016-09-01

    Magnetic particle imaging (MPI) is a non-invasive imaging modality for direct detection of superparamagnetic iron-oxide nanoparticles based on the nonlinear magnetization response of magnetic materials to alternating magnetic fields. This highly sensitive and rapid method allows both a quantitative and a qualitative analysis of the measured signal. Since the first publication of MPI in 2005 several different scanner concepts have been presented and in 2009 the first in vivo imaging results of a beating mouse heart were shown. However, since the field of view (FOV) of the first MPI-scanner only covers a small region several approaches and hardware enhancements were presented to overcome this issue and could increase the FOV on cost of acquisition speed. In 2014 an alternative scanner concept, the traveling wave MPI (TWMPI), was presented, which allows scanning an entire mouse-sized volume at once. In this paper the first in vivo imaging results using the TWMPI system are presented. By optimizing the trajectory the temporal resolution is sufficiently high to resolve the dynamic of a beating mouse heart.

  15. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    SciTech Connect

    Cooper, M.; Beck, R.N.

    1992-06-01

    This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of (F18)fluorinated benzamides (dopamine D-2 receptor tracers), (F18)fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of (F18)-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks.

  16. The future of imaging in veterinary oncology: learning from human medicine.

    PubMed

    Mattoon, John S; Bryan, Jeffrey N

    2013-09-01

    Imaging technology is critical for adequate diagnosis and staging in human and veterinary oncology. Sensitive detection of lesions is necessary to determine appropriate local or systemic therapy and to monitor therapeutic results. New technology in digital radiography, ultrasound, and computed tomography (CT) scanning are now widely available in veterinary medicine. Advanced imaging with high-detail CT scans, magnetic resonance imaging (MRI), and positron-emission tomography (PET) are now available in academic centers and some private specialty practices. This review describes the current and future applications of these new imaging systems and modalities in veterinary oncology and how advanced imaging contributes to diagnosis, staging, and monitoring of cancers. The potential of molecular imaging for accurate, minimally invasive diagnosis and monitoring is discussed.

  17. Cancer Imaging at the Crossroads of Precision Medicine: Perspective From an Academic Imaging Department in a Comprehensive Cancer Center.

    PubMed

    Van den Abbeele, Annick D; Krajewski, Katherine M; Tirumani, Sree Harsha; Fennessy, Fiona M; DiPiro, Pamela J; Nguyen, Quang-Dé; Harris, Gordon J; Jacene, Heather A; Lefever, Greg; Ramaiya, Nikhil H

    2016-04-01

    The authors propose one possible vision for the transformative role that cancer imaging in an academic setting can play in the current era of personalized and precision medicine by sharing a conceptual model that is based on experience and lessons learned designing a multidisciplinary, integrated clinical and research practice at their institution. The authors' practice and focus are disease-centric rather than imaging-centric. A "wall-less" infrastructure has been developed, with bidirectional integration of preclinical and clinical cancer imaging research platforms, enabling rapid translation of novel cancer drugs from discovery to clinical trial evaluation. The talents and expertise of medical professionals, scientists, and staff members have been coordinated in a horizontal and vertical fashion through the creation of Cancer Imaging Consultation Services and the "Adopt-a-Radiologist" campaign. Subspecialized imaging consultation services at the hub of an outpatient cancer center facilitate patient decision support and management at the point of care. The Adopt-a-Radiologist campaign has led to the creation of a novel generation of imaging clinician-scientists, fostered new collaborations, increased clinical and academic productivity, and improved employee satisfaction. Translational cancer research is supported, with a focus on early in vivo testing of novel cancer drugs, co-clinical trials, and longitudinal tumor imaging metrics through the imaging research core laboratory. Finally, a dedicated cancer imaging fellowship has been developed, promoting the future generation of cancer imaging specialists as multidisciplinary, multitalented professionals who are trained to effectively communicate with clinical colleagues and positively influence patient care.

  18. Ethics and images of suffering bodies in humanitarian medicine.

    PubMed

    Calain, Philippe

    2013-12-01

    Media representations of suffering bodies from medical humanitarian organisations raise ethical questions, which deserve critical attention for at least three reasons. Firstly, there is a normative vacuum at the intersection of medical ethics, humanitarian ethics and the ethics of photojournalism. Secondly, the perpetuation of stereotypes of illness, famine or disasters, and their political derivations are a source of moral criticism, to which humanitarian medicine is not immune. Thirdly, accidental encounters between members of the health professions and members of the press in the humanitarian arena can result in misunderstandings and moral tension. From an ethics perspective the problem can be specified and better understood through two successive stages of reasoning. Firstly, by applying criteria of medical ethics to the concrete example of an advertising poster from a medical humanitarian organisation, I observe that media representations of suffering bodies would generally not meet ethical standards commonly applied in medical practice. Secondly, I try to identify what overriding humanitarian imperatives could outweigh such reservations. The possibility of action and the expression of moral outrage are two relevant humanitarian values which can further be spelt out through a semantic analysis of 'témoignage' (testimony). While the exact balance between the opposing sets of considerations (medical ethics and humanitarian perspectives) is difficult to appraise, awareness of all values at stake is an important initial standpoint for ethical deliberations of media representations of suffering bodies. Future pragmatic approaches to the issue should include: exploring ethical values endorsed by photojournalism, questioning current social norms about the display of suffering, collecting empirical data from past or potential victims of disasters in diverse cultural settings, and developing new canons with more creative or less problematic representations of

  19. Whole Heart Coronary Imaging with Flexible Acquisition Window and Trigger Delay

    PubMed Central

    Kawaji, Keigo; Foppa, Murilo; Roujol, Sébastien; Akçakaya, Mehmet; Nezafat, Reza

    2015-01-01

    Coronary magnetic resonance imaging (MRI) requires a correctly timed trigger delay derived from a scout cine scan to synchronize k-space acquisition with the quiescent period of the cardiac cycle. However, heart rate changes between breath-held cine and free-breathing coronary imaging may result in inaccurate timing errors. Additionally, the determined trigger delay may not reflect the period of minimal motion for both left and right coronary arteries or different segments. In this work, we present a whole-heart coronary imaging approach that allows flexible selection of the trigger delay timings by performing k-space sampling over an enlarged acquisition window. Our approach addresses coronary motion in an interactive manner by allowing the operator to determine the temporal window with minimal cardiac motion for each artery region. An electrocardiogram-gated, k-space segmented 3D radial stack-of-stars sequence that employs a custom rotation angle is developed. An interactive reconstruction and visualization platform is then employed to determine the subset of the enlarged acquisition window for minimal coronary motion. Coronary MRI was acquired on eight healthy subjects (5 male, mean age = 37 ± 18 years), where an enlarged acquisition window of 166–220 ms was set 50 ms prior to the scout-derived trigger delay. Coronary visualization and sharpness scores were compared between the standard 120 ms window set at the trigger delay, and those reconstructed using a manually adjusted window. The proposed method using manual adjustment was able to recover delineation of five mid and distal right coronary artery regions that were otherwise not visible from the standard window, and the sharpness scores improved in all coronary regions using the proposed method. This paper demonstrates the feasibility of a whole-heart coronary imaging approach that allows interactive selection of any subset of the enlarged acquisition window for a tailored reconstruction for each branch

  20. Whole heart coronary imaging with flexible acquisition window and trigger delay.

    PubMed

    Kawaji, Keigo; Foppa, Murilo; Roujol, Sébastien; Akçakaya, Mehmet; Nezafat, Reza

    2015-01-01

    Coronary magnetic resonance imaging (MRI) requires a correctly timed trigger delay derived from a scout cine scan to synchronize k-space acquisition with the quiescent period of the cardiac cycle. However, heart rate changes between breath-held cine and free-breathing coronary imaging may result in inaccurate timing errors. Additionally, the determined trigger delay may not reflect the period of minimal motion for both left and right coronary arteries or different segments. In this work, we present a whole-heart coronary imaging approach that allows flexible selection of the trigger delay timings by performing k-space sampling over an enlarged acquisition window. Our approach addresses coronary motion in an interactive manner by allowing the operator to determine the temporal window with minimal cardiac motion for each artery region. An electrocardiogram-gated, k-space segmented 3D radial stack-of-stars sequence that employs a custom rotation angle is developed. An interactive reconstruction and visualization platform is then employed to determine the subset of the enlarged acquisition window for minimal coronary motion. Coronary MRI was acquired on eight healthy subjects (5 male, mean age = 37 ± 18 years), where an enlarged acquisition window of 166-220 ms was set 50 ms prior to the scout-derived trigger delay. Coronary visualization and sharpness scores were compared between the standard 120 ms window set at the trigger delay, and those reconstructed using a manually adjusted window. The proposed method using manual adjustment was able to recover delineation of five mid and distal right coronary artery regions that were otherwise not visible from the standard window, and the sharpness scores improved in all coronary regions using the proposed method. This paper demonstrates the feasibility of a whole-heart coronary imaging approach that allows interactive selection of any subset of the enlarged acquisition window for a tailored reconstruction for each branch

  1. Segmentation of the heart and great vessels in CT images using a model-based adaptation framework.

    PubMed

    Ecabert, Olivier; Peters, Jochen; Walker, Matthew J; Ivanc, Thomas; Lorenz, Cristian; von Berg, Jens; Lessick, Jonathan; Vembar, Mani; Weese, Jürgen

    2011-12-01

    Recently, model-based methods for the automatic segmentation of the heart chambers have been proposed. An important application of these methods is the characterization of the heart function. Heart models are, however, increasingly used for interventional guidance making it necessary to also extract the attached great vessels. It is, for instance, important to extract the left atrium and the proximal part of the pulmonary veins to support guidance of ablation procedures for atrial fibrillation treatment. For cardiac resynchronization therapy, a heart model including the coronary sinus is needed. We present a heart model comprising the four heart chambers and the attached great vessels. By assigning individual linear transformations to the heart chambers and to short tubular segments building the great vessels, variable sizes of the heart chambers and bending of the vessels can be described in a consistent way. A configurable algorithmic framework that we call adaptation engine matches the heart model automatically to cardiac CT angiography images in a multi-stage process. First, the heart is detected using a Generalized Hough Transformation. Subsequently, the heart chambers are adapted. This stage uses parametric as well as deformable mesh adaptation techniques. In the final stage, segments of the large vascular structures are successively activated and adapted. To optimize the computational performance, the adaptation engine can vary the mesh resolution and freeze already adapted mesh parts. The data used for validation were independent from the data used for model-building. Ground truth segmentations were generated for 37 CT data sets reconstructed at several cardiac phases from 17 patients. Segmentation errors were assessed for anatomical sub-structures resulting in a mean surface-to-surface error ranging 0.50-0.82mm for the heart chambers and 0.60-1.32mm for the parts of the great vessels visible in the images.

  2. Mechanisms of Chinese Medicine Xinmailong’s protection against heart failure in pressure-overloaded mice and cultured cardiomyocytes

    PubMed Central

    Qi, Jianyong; Yu, Juan; Tan, Yafang; Chen, Renshan; Xu, Wen; Chen, Yanfen; Lu, Jun; Liu, Qin; Wu, Jiashin; Gu, Weiwang; Zhang, Minzhou

    2017-01-01

    Patients with heart failure (HF) have high mortality and mobility. Xinmailong (XML) injection, a Chinese Medicine, is clinically effective in treating HF. However, the mechanism of XML’s effectiveness on HF was unclear, and thus, was the target of the present study. We created a mouse model of pressure-overload-induced HF with transverse aortic constriction (TAC) surgery and compared among 4 study groups: SHAM (n = 10), TAC (n = 12), MET (metoprolol, positive drug treatment, n = 7) and XML (XML treatment, n = 14). Dynamic changes in cardiac structure and function were evaluated with echocardiography in vivo. In addition, H9C2 rat cardiomyocytes were cultured in vitro and the phosphorylation of ERK1/2, AKT, GSK3β and protein expression of GATA4 in nucleus were detected with Western blot experiment. The results showed that XML reduced diastolic thickness of left ventricular posterior wall, increased ejection fraction and fraction shortening, so as to inhibit HF at 2 weeks after TAC. Moreover, XML inhibited the phosphorylation of ERK1/2, AKT and GSK3β, subsequently inhibiting protein expression of GATA4 in nucleus (P < 0.001). Together, our data demonstrated that XML inhibited the TAC-induced HF via inactivating the ERK1/2, AKT/GSK3β, and GATA4 signaling pathway. PMID:28205629

  3. Anisotropic Elastography for Local Passive Properties and Active Contractility of Myocardium from Dynamic Heart Imaging Sequence

    PubMed Central

    Wang, Ge; Sun, L. Z.

    2006-01-01

    Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters. PMID:23165032

  4. Anisotropic elastography for local passive properties and active contractility of myocardium from dynamic heart imaging sequence.

    PubMed

    Liu, Yi; Wang, Ge; Sun, L Z

    2006-01-01

    Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters.

  5. Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems.

    PubMed

    Zanzonico, Pat

    2012-04-01

    The underlying principles of nuclear medicine imaging involve the use of unsealed sources of radioactivity in the form of radiopharmaceuticals. The ionizing radiations that accompany the decay of the administered radioactivity can be quantitatively detected, measured, and imaged in vivo with instruments such as gamma cameras. This paper reviews the design and operating principles, as well as the capabilities and limitations, of instruments used clinically and preclinically for in vivo radionuclide imaging. These include gamma cameras, single-photon emission computed tomography (SPECT) scanners, and positron emission tomography (PET) scanners. The technical basis of autoradiography is reviewed as well.

  6. Functional MR Imaging Techniques in Oncology in the Era of Personalized Medicine.

    PubMed

    Benz, Matthias R; Vargas, Hebert Alberto; Sala, Evis

    2016-02-01

    DW and DCE MR imaging contribute significantly to diagnosis, treatment planning, response assessment, and prognosis in personalized cancer medicine. Nevertheless, the need for further standardization of these techniques needs to be addressed. Whole-body DW MR imaging is an exciting field; however, future studies need to investigate in more depth the biologic significance of the findings depicted, their prognostic relevance, and cost-effectiveness in comparison with MDCT and PET/CT. New MR imaging probes, such as targeted or activatable contrast agents and dynamic nuclear hyperpolarization, show great promise to further improve the care of patients with cancer in the near future.

  7. Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models

    NASA Astrophysics Data System (ADS)

    Lee, Peter; Calvo, Conrado J.; Alfonso-Almazán, José M.; Quintanilla, Jorge G.; Chorro, Francisco J.; Yan, Ping; Loew, Leslie M.; Filgueiras-Rama, David; Millet, José

    2017-02-01

    Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.

  8. Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models

    PubMed Central

    Lee, Peter; Calvo, Conrado J.; Alfonso-Almazán, José M.; Quintanilla, Jorge G.; Chorro, Francisco J.; Yan, Ping; Loew, Leslie M.; Filgueiras-Rama, David; Millet, José

    2017-01-01

    Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model. PMID:28240274

  9. Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models.

    PubMed

    Lee, Peter; Calvo, Conrado J; Alfonso-Almazán, José M; Quintanilla, Jorge G; Chorro, Francisco J; Yan, Ping; Loew, Leslie M; Filgueiras-Rama, David; Millet, José

    2017-02-27

    Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.

  10. Bioluminescent Imaging of Genetically Selected Induced Pluripotent Stem Cell-Derived Cardiomyocytes after Transplantation into Infarcted Heart of Syngeneic Recipients

    PubMed Central

    Lepperhof, Vera; Polchynski, Olga; Kruttwig, Klaus; Brüggemann, Chantal; Neef, Klaus; Drey, Florian; Zheng, Yunjie; Ackermann, Justus P.; Choi, Yeong-Hoon; Wunderlich, Thomas F.; Hoehn, Mathias; Hescheler, Jürgen; Šarić, Tomo

    2014-01-01

    Cell loss after transplantation is a major limitation for cell replacement approaches in regenerative medicine. To assess the survival kinetics of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) we generated transgenic murine iPSC lines which, in addition to CM-specific expression of puromycin N-acetyl-transferase and enhanced green fluorescent protein (EGFP), also constitutively express firefly luciferase (FLuc) for bioluminescence (BL) in vivo imaging. While undifferentiated iPSC lines generated by random integration of the transgene into the genome retained stable FLuc activity over many passages, the BL signal intensity was strongly decreased in purified iPS-CM compared to undifferentiated iPSC. Targeted integration of FLuc-expression cassette into the ROSA26 genomic locus using zinc finger nuclease (ZFN) technology strongly reduced transgene silencing in iPS-CM, leading to a several-fold higher BL compared to iPS-CM expressing FLuc from random genomic loci. To investigate the survival kinetics of iPS-CM in vivo, purified CM obtained from iPSC lines expressing FLuc from a random or the ROSA26 locus were transplanted into cryoinfarcted hearts of syngeneic mice. Engraftment of viable cells was monitored by BL imaging over 4 weeks. Transplanted iPS-CM were poorly retained in the myocardium independently of the cell line used. However, up to 8% of cells survived for 28 days at the site of injection, which was confirmed by immunohistological detection of EGFP-positive iPS-CM in the host tissue. Transplantation of iPS-CM did not affect the scar formation or capillary density in the periinfarct region of host myocardium. This report is the first to determine the survival kinetics of drug-selected iPS-CM in the infarcted heart using BL imaging and demonstrates that transgene silencing in the course of iPSC differentiation can be greatly reduced by employing genome editing technology. FLuc-expressing iPS-CM generated in this study will enable further

  11. Micron-scale voltage and [Ca2+]i imaging in the intact heart

    PubMed Central

    Lu, Xiao-long; Rubart, Michael

    2014-01-01

    Studies in isolated cardiomyocytes have provided tremendous information at the cellular and molecular level concerning regulation of transmembrane voltage (Vm) and intracellular calcium ([Ca2+]i). The ability to use the information gleaned to gain insight into the function of ion channels and Ca2+ handling proteins in a more complex system, e.g., the intact heart, has remained a challenge. We have developed laser scanning fluorescence microscopy-based approaches to monitor, at the sub-cellular to multi-cellular level in the immobilized, Langendorff-perfused mouse heart, dynamic changes in [Ca2+]i and Vm. This article will review the use of single- or dual-photon laser scanning microscopy [Ca2+]i imaging in conjunction with transgenic reporter technology to (a) interrogate the extent to which transplanted, donor-derived myocytes or cardiac stem cell-derived de novo myocytes are capable of forming a functional syncytium with the pre-existing myocardium, using entrainment of [Ca2+]i transients by the electrical activity of the recipient heart as a surrogate for electrical coupling, and (b) characterize the Ca2+ handling phenotypes of cellular implants. Further, we will review the ability of laser scanning fluorescence microscopy in conjunction with a fast-response voltage-sensitive to resolve, on a subcellular level in Langendorff-perfused mouse hearts, Vm dynamics that typically occur during the course of a cardiac action potential. Specifically, the utility of this technique to measure microscopic-scale voltage gradients in the normal and diseased heart is discussed. PMID:25520663

  12. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography

    SciTech Connect

    Umetani, K.; Fukushima, K.

    2013-03-15

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 {mu}m, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 {mu}m diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 {mu}m was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct

  13. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Fukushima, K.

    2013-03-01

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 μm, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 μm diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 μm was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct

  14. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography.

    PubMed

    Umetani, K; Fukushima, K

    2013-03-01

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 μm, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 μm diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 μm was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct

  15. Nuclear medicine and imaging research: Quantitative studies in radiopharmaceutical science

    SciTech Connect

    Copper, M.; Beck, R.N.

    1991-06-01

    During the past three years the program has undergone a substantial revitalization. There has been no significant change in the scientific direction of this grant, in which emphasis continues to be placed on developing new or improved methods of obtaining quantitative data from radiotracer imaging studies. However, considerable scientific progress has been made in the three areas of interest: Radiochemistry, Quantitative Methodologies, and Experimental Methods and Feasibility Studies, resulting in a sharper focus of perspective and improved integration of the overall scientific effort. Changes in Faculty and staff, including development of new collaborations, have contributed to this, as has acquisition of additional and new equipment and renovations and expansion of the core facilities. 121 refs., 30 figs., 2 tabs.

  16. The application of digital image plane holography technology to identify Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2012-03-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  17. The application of digital image plane holography technology to identify Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2011-11-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  18. Particle image velocimetry study of pulsatile flow in bi-leaflet mechanical heart valves with image compensation method.

    PubMed

    Shi, Yubing; Yeo, Tony Joon Hock; Zhao, Yong; Hwang, Ned H C

    2006-12-01

    Particle Image Velocimetry (PIV) is an important technique in studying blood flow in heart valves. Previous PIV studies of flow around prosthetic heart valves had different research concentrations, and thus never provided the physical flow field pictures in a complete heart cycle, which compromised their pertinence for a better understanding of the valvular mechanism. In this study, a digital PIV (DPIV) investigation was carried out with improved accuracy, to analyse the pulsatile flow field around the bi-leaflet mechanical heart valve (MHV) in a complete heart cycle. For this purpose a pulsatile flow test rig was constructed to provide the necessary in vitro test environment, and the flow field around a St. Jude size 29 bi-leaflet MHV and a similar MHV model were studied under a simulated physiological pressure waveform with flow rate of 5.2 l/min and pulse rate at 72 beats/min. A phase-locking method was applied to gate the dynamic process of valve leaflet motions. A special image-processing program was applied to eliminate optical distortion caused by the difference in refractive indexes between the blood analogue fluid and the test section. Results clearly showed that, due to the presence of the two leaflets, the valvular flow conduit was partitioned into three flow channels. In the opening process, flow in the two side channels was first to develop under the presence of the forward pressure gradient. The flow in the central channel was developed much later at about the mid-stage of the opening process. Forward flows in all three channels were observed at the late stage of the opening process. At the early closing process, a backward flow developed first in the central channel. Under the influence of the reverse pressure gradient, the flow in the central channel first appeared to be disturbed, which was then transformed into backward flow. The backward flow in the central channel was found to be the main driving factor for the leaflet rotation in the valve

  19. Consensus Document of the Spanish Society of Cardiology and the Spanish Society of Internal Medicine on the diagnosis and treatment of iron deficiency in heart failure.

    PubMed

    Manito, N; Cerqueiro, J M; Comín-Colet, J; García-Pinilla, J M; González-Franco, A; Grau-Amorós, J; Peraira, J R; Manzano, L

    Iron deficiency in patients with heart failure is a medical problem of recent particular interest. This interest has resulted from the publication of several clinical trials that demonstrated that the administration of intravenous iron to such patients improved their functional capacity and even reduced the number of hospitalisations for heart failure decompensation. However, applying the evidence from these studies in clinical practice is still controversial, both in terms of the diagnostic criteria for iron deficiency (absolute and functional) and the optimal method for iron replenishment. This article is a consensus document that integrates the recommendations of the Spanish Society of Internal Medicine and the Spanish Society of Cardiology. The article reviews the scientific evidence and proposes a diagnostic and therapeutic performance protocol for iron deficiency in heart failure.

  20. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    SciTech Connect

    Cooper, M.D.; Beck, R.N.

    1990-09-01

    This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.

  1. Blood Pressure Medicines

    MedlinePlus

    ... reducing sodium in your diet, you may need medicines. Blood pressure medicines work in different ways to lower blood pressure. ... and widen blood vessels. Often, two or more medicines work better than one. NIH: National Heart, Lung, ...

  2. Radionuclide imaging of cardiac sympathetic innervation in heart failure: unlocking untapped potential.

    PubMed

    Gupta, Shuchita; Amanullah, Aman

    2015-03-01

    Heart failure (HF) is associated with sympathetic overactivity, which contributes to disease progression and arrhythmia development. Cardiac sympathetic innervation imaging can be performed using radiotracers that are taken up in the presynaptic nerve terminal of sympathetic nerves. The commonly used radiotracers are (123)I-metaiodobenzylguanidine ((123)I-mIBG) for planar and single-photon emission computed tomography imaging, and (11)C-hydroxyephedrine for positron emission tomography imaging. Sympathetic innervation imaging has been used in assessing prognosis, response to treatment, risk of ventricular arrhythmias and sudden death and prediction of response to cardiac resynchronization therapy in patients with HF. Other potential applications of these techniques are in patients with chemotherapy-induced cardiomyopathy, predicting myocardial recovery in patients with left ventricular assist devices, and assessing reinnervation following cardiac transplantation. There is a lack of standardization with respect to technique of (123)I-mIBG imaging that needs to be overcome for the imaging modality to gain popularity in clinical practice.

  3. Magnetic resonance imaging of the transplanted pediatric heart as a potential predictor of rejection

    PubMed Central

    Greenway, Steven C; Dallaire, Frederic; Kantor, Paul F; Dipchand, Anne I; Chaturvedi, Rajiv R; Warade, Monali; Riesenkampff, Eugenie; Yoo, Shi-Joon; Grosse-Wortmann, Lars

    2016-01-01

    AIM To evaluate cardiac magnetic resonance imaging (CMR) as a non-invasive tool to detect acute cellular rejection (ACR) in children after heart transplant (HT). METHODS Thirty pediatric HT recipients underwent CMR at the time of surveillance endomyocardial biopsy (EMB) and results were compared to 14 non-transplant controls. Biventricular volumes, ejection fractions (EFs), T2-weighted signal intensities, native T1 times, extracellular volumes (ECVs) and presence of late gadolinium enhancement (LGE) were compared between patients and controls and between patients with International Society of Heart and Lung Transplantation (ISHLT) grade ≥ 2R rejection and those with grade 0/1R. Heart rate (HR) and brain natriuretic peptide (BNP) were assessed as potential biomarkers. RESULTS Significant ACR (ISHLT grade ≥ 2R) was an infrequent event in our population (5/30, 17%). Ventricular volumes, EFs, LGE prevalence, ECVs, native T1 times, T2 signal intensity ratios, HR and BNP were not associated with the presence of ≥ 2R ACR. CONCLUSION In this pilot study CMR did not reliably identify ACR-related changes in pediatric HT patients. PMID:28058227

  4. Pulsatile flow in the aorta of the LVAD supported heart studied using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Moyedi, Zahra

    Currently many patients die because of the end-stage heart failure, mainly due to the reduced number of donor heart transplant organs. Studies show that a permanent left ventricular assist device (LVAD), a battery driven pump which is surgically implanted, increased the survival rate of patients with end-stage heart failure and improved considerably their quality of life. The inlet conduit of the LVAD is attached to the left ventricle and the outflow conduit anastomosed to the ascending aorta. The purpose of LVAD support is to help a weakened heart to pump blood to the rest of the body. However LVAD can cause some alterations of the natural blood flow. When your blood comes in contact with something that isn't a natural part of your body blood clots can occur and disrupt blood flow. Aortic valve integrity is vital for optimal support of left ventricular assist LVAD. Due to the existence of high continuous transvalvular pressure on the aortic valve, the opening frequency of the valve is reduced. To prevent the development of aortic insufficiency, aortic valve closure during LVAD implantation has been performed. However, the closed aortic valve reduces wash out of the aortic root, which causes blood stagnation and potential thrombus formation. So for this reason, there is a need to minimize the risks of occurring blood clot, by having more knowledge about the flow structure in the aorta during LVAD use. The current study focuses on measuring the flow field in the aorta of the LVAD assisted heart with two different types of aortic valve (Flat and Finned) using the SDSU cardiac simulator. The pulsatile pump that mimics the natural pulsing action of the heart also added to the system. The flow field is visualized using Particle Image Velocimetry (PIV). Furthermore, The fluid mechanics of aorta has been studied when LVAD conduit attached to two different locations (proximal and distal to the aortic valve) with pump speeds of 8,000 to 10,000 revolutions per minute (RPM

  5. Ultrasound Current Source Density Imaging in live rabbit hearts using clinical intracardiac catheter

    NASA Astrophysics Data System (ADS)

    Li, Qian

    Ultrasound Current Source Density Imaging (UCSDI) is a noninvasive modality for mapping electrical activities in the body (brain and heart) in 4-dimensions (space + time). Conventional cardiac mapping technologies for guiding the radiofrequency ablation procedure for treatment of cardiac arrhythmias have certain limitations. UCSDI can potentially overcome these limitations and enhance the electrophysiology mapping of the heart. UCSDI exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity. When an ultrasound beam intersects a current path in a material, the local resistivity of the material is modulated by the ultrasonic pressure, and a change in voltage signal can be detected based on Ohm's Law. The degree of modulation is determined by the AE interaction constant K. K is a fundamental property of any type of material, and directly affects the amplitude of the AE signal detected in UCSDI. UCSDI requires detecting a small AE signal associated with electrocardiogram. So sensitivity becomes a major challenge for transferring UCSDI to the clinic. This dissertation will determine the limits of sensitivity and resolution for UCSDI, balancing the tradeoff between them by finding the optimal parameters for electrical cardiac mapping, and finally test the optimized system in a realistic setting. This work begins by describing a technique for measuring K, the AE interaction constant, in ionic solution and biological tissue, and reporting the value of K in excised rabbit cardiac tissue for the first time. K was found to be strongly dependent on concentration for the divalent salt CuSO4, but not for the monovalent salt NaCl, consistent with their different chemical properties. In the rabbit heart tissue, K was determined to be 0.041 +/- 0.012 %/MPa, similar to the measurement of K in physiologic saline: 0.034 +/- 0.003 %/MPa. Next, this dissertation investigates the sensitivity limit of UCSDI by quantifying the relation

  6. Gender-specific research for emergency diagnosis and management of ischemic heart disease: proceedings from the 2014 Academic Emergency Medicine Consensus Conference Cardiovascular Research Workgroup.

    PubMed

    Safdar, Basmah; Nagurney, John T; Anise, Ayodola; DeVon, Holli A; D'Onofrio, Gail; Hess, Erik P; Hollander, Judd E; Legato, Mariane J; McGregor, Alyson J; Scott, Jane; Tewelde, Semhar; Diercks, Deborah B

    2014-12-01

    Coronary artery disease (CAD) is the most common cause of death for both men and women. However, over the years, emergency physicians, cardiologists, and other health care practitioners have observed varying outcomes in men and women with symptomatic CAD. Women in general are 10 to 15 years older than men when they develop CAD, but suffer worse postinfarction outcomes compared to age-matched men. This article was developed by the cardiovascular workgroup at the 2014 Academic Emergency Medicine (AEM) consensus conference to identify sex- and gender-specific gaps in the key themes and research questions related to emergency cardiac ischemia care. The workgroup had diverse stakeholder representation from emergency medicine, cardiology, critical care, nursing, emergency medical services, patients, and major policy-makers in government, academia, and patient care. We implemented the nominal group technique to identify and prioritize themes and research questions using electronic mail, monthly conference calls, in-person meetings, and Web-based surveys between June 2013 and May 2014. Through three rounds of nomination and refinement, followed by an in-person meeting on May 13, 2014, we achieved consensus on five priority themes and 30 research questions. The overarching themes were as follows: 1) the full spectrum of sex-specific risk as well as presentation of cardiac ischemia may not be captured by our standard definition of CAD and needs to incorporate other forms of ischemic heart disease (IHD); 2) diagnosis is further challenged by sex/gender differences in presentation and variable sensitivity of cardiac biomarkers, imaging, and risk scores; 3) sex-specific pathophysiology of cardiac ischemia extends beyond conventional obstructive CAD to include other causes such as microvascular dysfunction, takotsubo, and coronary artery dissection, better recognized as IHD; 4) treatment and prognosis are influenced by sex-specific variations in biology, as well as patient

  7. Image Quality of Coronary Computed Tomography Angiography with 320-Row Area Detector Computed Tomography in Children with Congenital Heart Disease.

    PubMed

    Tada, Akihiro; Sato, Shuhei; Kanie, Yuichiro; Tanaka, Takashi; Inai, Ryota; Akagi, Noriaki; Morimitsu, Yusuke; Kanazawa, Susumu

    2016-03-01

    The objective of this study was to assess factors affecting image quality of 320-row computed tomography angiography (CTA) of coronary arteries in children with congenital heart disease (CHD). We retrospectively reviewed 28 children up to 3 years of age with CHD who underwent prospective electrocardiography (ECG)-gated 320-row CTA with iterative reconstruction. We assessed image quality of proximal coronary artery segments using a five-point scale. Age, body weight, average heart rate, and heart rate variability were recorded and compared between two groups: patients with good diagnostic image quality in all four coronary artery segments and patients with at least one coronary artery segment with nondiagnostic image quality. Altogether, 96 of 112 segments (85.7 %) had diagnostic-quality images. Patients with nondiagnostic segments were significantly younger (10.0 ± 11.6 months) and had lower body weight (5.9 ± 2.9 kg) (each p < 0.05) than patients with diagnostic image quality of all four segments (20.6 ± 13.8 months and 8.4 ± 2.5 kg, respectively; each p < 0.05). Differences in heart rate and heart rate variability between the two imaging groups were not significant. Receiver operating characteristic analyses for predicting patients with nondiagnostic image quality revealed an optimal body weight cutoff of ≤5.6 kg and an optimal age cutoff of ≤12.5 months. Prospective ECG-gated 320-row CTA with iterative reconstruction provided feasible image quality of coronary arteries in children with CHD. Younger age and lower body weight were factors that led to poorer image quality of coronary arteries.

  8. Role of MR imaging in sports medicine research. Basic science and clinical research studies.

    PubMed

    Rodkey, W G; Steadman, J R; Ho, C P

    1999-02-01

    The advent and advancement of MR imaging have provided an entire new dimension for medical imaging. MR imaging has been especially useful because of its capacity to image nonmineralized tissues with a very high degree of resolution. Although modalities such as ultrasound and scintigraphy have proven useful for specific purposes, it is MR imaging that has the most utility and capabilities, especially in the area of sports-induced injuries. The technology associated with MR imaging has expanded greatly, and it continues to evolve at a rapid pace. The result has been an ever-increasing diagnostic capability that has become more economic with time. As described previously, MR imaging is gaining importance in the area of comparative medicine for animal athletes as well. It is also interesting to note that MR imaging now has a greater potential for monitoring physiological and biochemical changes as well as anatomic ones. Some newer MR units actually include physiologic data acquisition components. Consequently, new bioassays and nondestructive tissue tests can be performed to further understand the molecular biology and ongoing cellular processes in any given condition. Coupled with MR spectroscopy, the enhanced MR techniques should continue to contribute to the overall information that will be integrated into the training and rehabilitation of patients with sports-induced inflammation and injuries. The authors support and encourage ongoing efforts in the area of MR imaging research, both basic science and clinical studies.

  9. MicroRNAs in myocardial ischemia: identifying new targets and tools for treating heart disease. New frontiers for miR-medicine.

    PubMed

    Sala, V; Bergerone, S; Gatti, S; Gallo, S; Ponzetto, A; Ponzetto, C; Crepaldi, T

    2014-04-01

    MicroRNAs (miRNAs) are natural, single-stranded, small RNA molecules which subtly control gene expression. Several studies indicate that specific miRNAs can regulate heart function both in development and disease. Despite prevention programs and new therapeutic agents, cardiovascular disease remains the main cause of death in developed countries. The elevated number of heart failure episodes is mostly due to myocardial infarction (MI). An increasing number of studies have been carried out reporting changes in miRNAs gene expression and exploring their role in MI and heart failure. In this review, we furnish a critical analysis of where the frontier of knowledge has arrived in the fields of basic and translational research on miRNAs in cardiac ischemia. We first summarize the basal information on miRNA biology and regulation, especially concentrating on the feedback loops which control cardiac-enriched miRNAs. A focus on the role of miRNAs in the pathogenesis of myocardial ischemia and in the attenuation of injury is presented. Particular attention is given to cardiomyocyte death (apoptosis and necrosis), fibrosis, neovascularization, and heart failure. Then, we address the potential of miR-diagnosis (miRNAs as disease biomarkers) and miR-drugs (miRNAs as therapeutic targets) for cardiac ischemia and heart failure. Finally, we evaluate the use of miRNAs in the emerging field of regenerative medicine.

  10. Hyperspectral imaging in medicine: image pre-processing problems and solutions in Matlab.

    PubMed

    Koprowski, Robert

    2015-11-01

    The paper presents problems and solutions related to hyperspectral image pre-processing. New methods of preliminary image analysis are proposed. The paper shows problems occurring in Matlab when trying to analyse this type of images. Moreover, new methods are discussed which provide the source code in Matlab that can be used in practice without any licensing restrictions. The proposed application and sample result of hyperspectral image analysis.

  11. Recommendations on pre-hospital & early hospital management of acute heart failure: a consensus paper from the Heart Failure Association of the European Society of Cardiology, the European Society of Emergency Medicine and the Society of Academic Emergency Medicine.

    PubMed

    Mebazaa, Alexandre; Yilmaz, M Birhan; Levy, Phillip; Ponikowski, Piotr; Peacock, W Frank; Laribi, Said; Ristic, Arsen D; Lambrinou, Ekaterini; Masip, Josep; Riley, Jillian P; McDonagh, Theresa; Mueller, Christian; deFilippi, Christopher; Harjola, Veli-Pekka; Thiele, Holger; Piepoli, Massimo F; Metra, Marco; Maggioni, Aldo; McMurray, John; Dickstein, Kenneth; Damman, Kevin; Seferovic, Petar M; Ruschitzka, Frank; Leite-Moreira, Adelino F; Bellou, Abdelouahab; Anker, Stefan D; Filippatos, Gerasimos

    2015-06-01

    Acute heart failure is a fatal syndrome. Emergency physicians, cardiologists, intensivists, nurses and other health care providers have to cooperate to provide optimal benefit. However, many treatment decisions are opinion-based and few are evidenced-based. This consensus paper provides guidance to practicing physicians and nurses to manage acute heart failure in the pre-hospital and hospital setting. Criteria of hospitalization and of discharge are described. Gaps in knowledge and perspectives in the management of acute heart failure are also detailed. This consensus paper on acute heart failure might help enable contiguous practice.

  12. From clinical imaging and computational models to personalised medicine and image guided interventions.

    PubMed

    Hawkes, David J

    2016-10-01

    This short paper describes the development of the UCL Centre for Medical Image Computing (CMIC) from 2006 to 2016, together with reference to historical developments of the Computational Imaging sciences Group (CISG) at Guy's Hospital. Key early work in automated image registration led to developments in image guided surgery and improved cancer diagnosis and therapy. The work is illustrated with examples from neurosurgery, laparoscopic liver and gastric surgery, diagnosis and treatment of prostate cancer and breast cancer, and image guided radiotherapy for lung cancer.

  13. Single camera system for multi-wavelength fluorescent imaging in the heart.

    PubMed

    Yamanaka, Takeshi; Arafune, Tatsuhiko; Shibata, Nitaro; Honjo, Haruo; Kamiya, Kaichiro; Kodama, Itsuo; Sakuma, Ichiro

    2012-01-01

    Optical mapping has been a powerful method to measure the cardiac electrophysiological phenomenon such as membrane potential(V(m)), intracellular calcium(Ca(2+)), and the other electrophysiological parameters. To measure two parameters simultaneously, the dual mapping system using two cameras is often used. However, the method to measure more than three parameters does not exist. To exploit the full potential of fluorescence imaging, an innovative method to measure multiple, more than three parameters is needed. In this study, we present a new optical mapping system which records multiple parameters using a single camera. Our system consists of one camera, custom-made optical lens units, and a custom-made filter wheel. The optical lens units is designed to focus the fluorescence light at filter position, and form an image on camera's sensor. To obtain optical signals with high quality, efficiency of light collection was carefully discussed in designing the optical system. The developed optical system has object space numerical aperture(NA) 0.1, and image space NA 0.23. The filter wheel was rotated by a motor, which allows filter switching corresponding with needed fluorescence wavelength. The camera exposure and filter switching were synchronized by phase locked loop, which allow this system to record multiple fluorescent signals frame by frame alternately. To validate the performance of this system, we performed experiments to observe V(m) and Ca(2+) dynamics simultaneously (frame rate: 125fps) with Langendorff perfused rabbit heart. Firstly, we applied basic stimuli to the heart base (cycle length: 500ms), and observed planer wave. The waveforms of V(m) and Ca(2+) show the same upstroke synchronized with cycle length of pacing. In addition, we recorded V(m) and Ca(2+) signals during ventricular fibrillation induced by burst pacing. According to these experiments, we showed the efficacy and availability of our method for cardiac electrophysiological research.

  14. Magnetic Resonance Imaging of Cardiac Strain Pattern Following Transplantation of Human Tissue Engineered Heart Muscles

    PubMed Central

    Qin, Xulei; Riegler, Johannes; Tiburcy, Malte; Zhao, Xin; Chour, Tony; Ndoye, Babacar; Nguyen, Michael; Adams, Jackson; Ameen, Mohamed; Denney, Thomas S.; Yang, Phillip C.; Nguyen, Patricia; Zimmermann, Wolfram H.; Wu, Joseph C.

    2017-01-01

    Background The use of tissue engineering approaches in combination with exogenously produced cardiomyocytes offers the potential to restore contractile function after myocardial injury. However, current techniques assessing changes in global cardiac performance following such treatments are plagued by relatively low detection ability. As the treatment is locally performed, this detection could be improved by myocardial strain imaging that measures regional contractility. Methods and Results Tissue engineered heart muscles (EHMs) were generated by casting human embryonic stem cell-derived cardiomyocytes with collagen in preformed molds. EHMs were transplanted (n=12) to cover infarct and border zones of recipient rat hearts one month after ischemia reperfusion injury. A control group (n=10) received only sham placement of sutures without EHMs. To assess the efficacy of EHMs, MRI and ultrasound-based strain imaging were performed prior to and four weeks after transplantation. In addition to strain imaging, global cardiac performance was estimated from cardiac MRI. Although no significant differences were found with global changes in left ventricular ejection fraction (EF) (Control −9.6±1.3% vs. EHM −6.2±1.9%, P=0.17), regional myocardial strain from tagged MRI was able to detect preserved systolic function in EHM-treated animals compared to control (Control 4.4±1.0% vs. EHM 1.0±0.6%, P=0.04). However, ultrasound-based strain failed to detect any significant change (Control 2.1±3.0% vs. EHM 6.3±2.9%, P=0.46). Conclusions This study highlights the feasibility of using cardiac strain from tagged MRI to assess functional changes in rat models due to localized regenerative therapies, which may not be detected by conventional measures of global systolic performance. PMID:27903535

  15. Settling the 'Score' with Heart Disease

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Technology and medicine forged a bond in 1986 when a group of dedicated NASA scientists, University of Southern California (USC) medical professors, and a Dutch cardiologist joined forces to prevent heart attacks, using ultrasound images of astronauts blood-flow patterns and the supercomputer depended upon to orchestrate the "Star Wars" Strategic Defense Initiative.

  16. A reappraisal of the use of infrared thermal image analysis in medicine.

    PubMed

    Jones, B F

    1998-12-01

    Infrared thermal imaging of the skin has been used for several decades to monitor the temperature distribution of human skin. Abnormalities such as malignancies, inflammation, and infection cause localized increases in temperature which show as hot spots or as asymmetrical patterns in an infrared thermogram. Even though it is nonspecific, infrared thermology is a powerful detector of problems that affect a patient's physiology. While the use of infrared imaging is increasing in many industrial and security applications, it has declined in medicine probably because of the continued reliance on first generation cameras. The transfer of military technology for medical use has prompted this reappraisal of infrared thermology in medicine. Digital infrared cameras have much improved spatial and thermal resolutions, and libraries of image processing routines are available to analyze images captured both statically and dynamically. If thermographs are captured under controlled conditions, they may be interpreted readily to diagnose certain conditions and to monitor the reaction of a patient's physiology to thermal and other stresses. Some of the major areas where infrared thermography is being used successfully are neurology, vascular disorders, rheumatic diseases, tissue viability, oncology (especially breast cancer), dermatological disorders, neonatal, ophthalmology, and surgery.

  17. Congenital Heart Defects

    MedlinePlus

    ... Treatment can include medicines, catheter procedures, surgery, and heart transplants. The treatment depends on the type of the defect, how severe it is, and a child's age, size, and general health. NIH: National Heart, Lung, and Blood Institute

  18. World Wide Web interface to digital imaging and communication in medicine-capable image servers.

    PubMed

    Browning, G C; Liang, Y; Buckwalter, K A; Kruger, R A; Aisen, A

    1996-11-01

    As a trial project, the Indiana University Department of Radiology has develop[ed a low-cost manner of distributing radiological images throughout a medical environment using the World Wide Web (WWW). The interface requires the user to have a WWW-browser client, such as Netscape, running on UNIX, PC, or Macintosh platforms. A forms-based interface allows the user to query several DICOM-capable machines at the machine, patient, study, series, and image levels. Once an image transfer is initiated, images are prewindowed from 16- to 8-bits, compressed using public domain Joint Photographic Expert Group (JPEG) compression routines, transferred to the WWW client program, and decompressed and displayed using a locally selected image viewing program. At the currently implemented level of compression (75% quality), the entire fetch-transform-JPEG-display process takes 2 to 5 seconds over Ethernet, depending on the platform used.

  19. Cardiovascular genomics, personalized medicine, and the National Heart, Lung, and Blood Institute: part I: the beginning of an era.

    PubMed

    O'Donnell, Christopher J; Nabel, Elizabeth G

    2008-10-01

    The inaugural issue of Circulation: Cardiovascular Genetics arrives at a remarkable time in the history of genetic research and cardiovascular medicine. Despite tremendous progress in knowledge gained, cardiovascular disease(CVD) remains the leading cause of death in the United States,1 and it has overcome infectious diseases as the leading cause of death worldwide.2 In addition, rates of CVD remain higher in black and Hispanic populations in the United States.1 The recent Strategic Plan of the National Heart, Lung,and Blood Institute (NHLBI) emphasizes research areas to fill the significant knowledge gaps needed to improve the diagnosis,treatment, and control of known risk factors and clinically apparent disease. Simultaneously, the NHLBI Strategic Plan recognizes a tremendous opportunity that is available for use of genetic and genomic research to generate new knowledge that might reduce the morbidity and mortality from CVD in US populations.3 Public availability of vast amounts of detailed sequence information about the human genome, completed sequence data on dozens of other animal genomes, and private sector development of high-throughput genetic technologies has transformed in a few short years the conduct of cardiovascular genetics and genomics research from a primary focus on mendelian disorders to a current emphasis on genome-wide association studies (GWAS; Figure1). In this review, we describe the rationale for the current emphasis on large-scale genomic studies, summarize the evolving approaches and progress to date, and identify immediate-term research needs. The National Institutes of Health (NIH) and the NHLBI are supporting a portfolio of large-scale genetic and genomic programs in diverse US populations with the longer-term objective of translating knowledge into the prediction, prevention, and preemption of CVD, as well as lung, sleep, and blood disorders. Underlying this portfolio is a strong commitment to make available participant-level data and

  20. Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes

    PubMed Central

    Poutiainen, Pekka; Jaronen, Merja; Quintana, Francisco J.; Brownell, Anna-Liisa

    2016-01-01

    Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both monitoring of neuronal network and therapeutic outcome as well as the tools to discover novel therapeutic targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms to better achieve precision medicine. Traditionally, magnetic resonance imaging (MRI) has been considered the golden standard in MS research and diagnosis. However, positron emission tomography (PET) imaging can provide functional information of molecular biology in detail even prior to anatomic changes, allowing close follow up of disease progression and treatment response. The recent findings support three major neuroinflammation components in MS: astrogliosis, cytokine elevation, and significant changes in specific proteins, which offer a great variety of specific targets for imaging purposes. Regardless of the fact that imaging of astrocyte function is still a young field and in need for development of suitable imaging ligands, recent studies have shown that inflammation and astrocyte activation are related to progression of MS. MS is a complex disease, which requires understanding of disease mechanisms for successful treatment. PET is a precise non-invasive imaging method for biochemical functions and has potential to enhance early and accurate diagnosis for precision therapy of MS. In this review we focus on modulation of different receptor systems and inflammatory aspect of MS, especially on activation of glial cells, and summarize the recent findings of PET imaging in MS and present the most potent targets for new biomarkers with the main focus on experimental MS research. PMID:27695400

  1. How Is a Heart Attack Treated?

    MedlinePlus

    ... from the NHLBI on Twitter. How Is a Heart Attack Treated? Early treatment for a heart attack can ... or years after the procedure. Other Treatments for Heart Attack Other treatments for heart attack include: Medicines Medical ...

  2. PREFACE: International Conference on Image Optimisation in Nuclear Medicine (OptiNM)

    NASA Astrophysics Data System (ADS)

    Christofides, Stelios; Parpottas, Yiannis

    2011-09-01

    Conference logo The International Conference on Image Optimisation in Nuclear Medicine was held at the Atlantica Aeneas Resort in Ayia Napa, Cyprus between 23-26 March 2011. It was organised in the framework of the research project "Optimising Diagnostic Value in SPECT Myocardial Perfusion Imaging" (YΓΕΙΑ/ΔYΓΕΙΑ/0308/11), funded by the Cyprus Research Promotion Foundation and the European Regional Development Fund, to present the highlights of the project, discuss the progress and results, and define future related goals. The aim of this International Conference was to concentrate on image optimization approaches in Nuclear Medicine. Experts in the field of nuclear medicine presented their latest research results, exchanged experiences and set future goals for image optimisation while balancing patient dose and diagnostic value. The conference was jointly organized by the Frederick Research Centre in Cyprus, the Department of Medical and Public Health Services of the Cyprus Ministry of Health, the Biomedical Research Foundation in Cyprus and the AGH University of Science and Technology in Poland. It was supported by the Cyprus Association of Medical Physics and Biomedical Engineering, and the Cyprus Society of Nuclear Medicine. The conference was held under the auspices of the European Federation of Organisations for Medical Physics and the European Association of Nuclear Medicine. The conference scientific programme covered several important topics such as functional imaging; image optimization; quantification for diagnosis; justification; simulations; patient dosimetry, staff exposures and radiation risks; quality assurance and clinical audit; education, training and radiation protection culture; hybrid systems and image registration; and new and competing technologies. The programme consisted of 13 invited and keynote presentations as well as workshops, round table discussions and a number of scientific sessions. A total of 51 speakers presented their

  3. Big Heart Data: Advancing Health Informatics through Data Sharing in Cardiovascular Imaging

    PubMed Central

    Suinesiaputra, Avan; Medrano-Gracia, Pau; Cowan, Brett R.; Young, Alistair A.

    2015-01-01

    The burden of heart disease is rapidly worsening due to increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be re-used beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data re-use, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases. PMID:25415993

  4. Big heart data: advancing health informatics through data sharing in cardiovascular imaging.

    PubMed

    Suinesiaputra, Avan; Medrano-Gracia, Pau; Cowan, Brett R; Young, Alistair A

    2015-07-01

    The burden of heart disease is rapidly worsening due to the increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be reused beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data reuse, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases.

  5. The evaluation of clinical therapy effects of oral western medicine combined with magnetic pulse acupoint stimulation in treating elderly patients with coronary heart disease

    PubMed Central

    Fu, Xin; Guo, Li; Jiang, Zheng-Ming; Xu, Ai-Guo

    2015-01-01

    Objective: Treat the patients suffered from coronary heart disease with oral western medicine, combining with magnetic pulse acupoint stimulation, and observe the therapeutic effects of such combination therapy method. Methods: 56 old people with coronary heart disease are randomly divided into a treatment group and a control group. Both groups of patients are treated by the routine drugs, in addition, the patients of the treatment group are treated by magnetic pulse therapy additionally. Compare clinical symptoms, blood lipid and blood rheological indexes of the patients in the two groups when they are selected and after 30 days’ treatment. Results: after 30 days’ treatment, it is found that clinical symptoms, blood lipid and blood rheological indexes of the patients in the treatment group are significantly improved compared with those when they are selected and those of the control group (P<0.05). Conclusion: patients with coronary heart disease, treated by pulsed magnetic therapy and the conventional drug intervention, had relieved synptom, improve blood lipid and heart blood supply function. PMID:26309664

  6. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    PubMed

    Mahajan, A; Goh, V; Basu, S; Vaish, R; Weeks, A J; Thakur, M H; Cook, G J

    2015-10-01

    Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research.

  7. Hypertensive heart disease

    MedlinePlus

    ... DL, Zipes DP, Libby P, Bonow RO, Braunwald E, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, PA: Elsevier ... Updated by: Michael A. Chen, MD, PhD, Associate Professor of Medicine, ...

  8. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI.

    PubMed

    Motaal, Abdallah G; Noorman, Nils; de Graaf, Wolter L; Hoerr, Verena; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously with the heartbeat, resulting in a randomly undersampled kt-space that facilitates compressed sensing reconstruction. The sequence was tested in 4 healthy rats and 4 rats with chronic myocardial infarction, approximately 2 months after surgery. As a control, a non-accelerated self-gated multi-slice FLASH sequence with an echo time (TE) of 2.76 ms, 4.5 signal averages, a matrix of 192 × 192, and an acquisition time of 2 min 34 s per slice was used to obtain Cine MRI with 15 frames per heartbeat. Non-accelerated UTE MRI was performed with TE = 0.29 ms, a reconstruction matrix of 192 × 192, and an acquisition time of 3 min 47 s per slice for 3.5 averages. Accelerated imaging with 2×, 4× and 5× undersampled kt-space data was performed with 1 min, 30 and 15 s acquisitions, respectively. UTE Cine images up to 5× undersampled kt-space data could be successfully reconstructed using a compressed sensing algorithm. In contrast to the FLASH Cine images, flow artifacts in the UTE images were nearly absent due to the short echo time, simplifying segmentation of the left ventricular (LV) lumen. LV functional parameters derived from the control and the accelerated Cine movies were statistically identical.

  9. Magnetic Resonance Imaging of Coronary Arteries and Heart Valves in a Living Mouse: Techniques and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Ruff, Jan; Wiesmann, Frank; Lanz, Titus; Haase, Axel

    2000-10-01

    New investigations in MRI of a mouse heart showed high-contrast cardiac images and thereby the possibility of doing functional cardiac studies of in vivo mice. But is MRI, in addition, capable of visualizing microstructures such as the coronary arteries and the heart valves of a living mouse? To answer this question, 2D and 3D gradient echo sequences with and without flow compensation were used to image the coronary arteries. To increase signal-to-noise ratio, a birdcage resonator was optimized for mouse heart imaging. Contrast between blood and myocardium was achieved through the inflow effect. A segmented three-dimensional FLASH sequence acquired with a multiple overlap thin slab technique showed the best results. With this technique an isotropic resolution of 100 μm was achieved. The left coronary artery could be visualized up to the apex of the heart. This is demonstrated with short axis views and 3D surface reconstructions of the mouse heart. The four cardiac valves were also visible with the 3D method.

  10. Magnetic resonance imaging of coronary arteries and heart valves in a living mouse: techniques and preliminary results.

    PubMed

    Ruff, J; Wiesmann, F; Lanz, T; Haase, A

    2000-10-01

    New investigations in MRI of a mouse heart showed high-contrast cardiac images and thereby the possibility of doing functional cardiac studies of in vivo mice. But is MRI, in addition, capable of visualizing microstructures such as the coronary arteries and the heart valves of a living mouse? To answer this question, 2D and 3D gradient echo sequences with and without flow compensation were used to image the coronary arteries. To increase signal-to-noise ratio, a birdcage resonator was optimized for mouse heart imaging. Contrast between blood and myocardium was achieved through the inflow effect. A segmented three-dimensional FLASH sequence acquired with a multiple overlap thin slab technique showed the best results. With this technique an isotropic resolution of 100 microm was achieved. The left coronary artery could be visualized up to the apex of the heart. This is demonstrated with short axis views and 3D surface reconstructions of the mouse heart. The four cardiac valves were also visible with the 3D method.

  11. CT imaging in congenital heart disease: an approach to imaging and interpreting complex lesions after surgical intervention for tetralogy of Fallot, transposition of the great arteries, and single ventricle heart disease.

    PubMed

    Han, B Kelly; Lesser, John R

    2013-01-01

    Echocardiography and cardiac magnetic resonance imaging are the most commonly performed diagnostic studies in patients with congenital heart disease. A small percentage of patients with congenital heart disease will be referred to cardiac CT subsequent to echocardiography when magnetic resonance imaging is insufficient, contraindicated, or considered high risk. The most common complex lesions referred for CT at our institution are tetralogy of Fallot, transposition complexes, and single ventricle heart disease. This review discusses the most common surgical procedures performed in these patients and the technical considerations for optimal image acquisition on the basis of the prior procedure and the individual patient history. Cardiac CT can provide the functional and anatomic information required for decision making in complex congenital heart disease. Image interpretation is aided by knowledge of the common approaches to operative repair and the residual hemodynamic abnormalities. Acquisition and interpretation that is both individualized to the patient's underlying disease and the specific clinical question is likely to maintain diagnostic accuracy while decreasing the potential risk of cardiac CT.

  12. Pulmonary nuclear medicine: Techniques in diagnosis of lung disease

    SciTech Connect

    Atkins, H.L.

    1984-01-01

    This book presents papers on the application of nuclear medicine to the diagnosis of lung diseases. Topics considered include lung physiology and anatomy, radiopharmaceuticals in pulmonary medicine, pulmonary embolism, obstructive pulmonary disease, diffuse infiltrative lung disease, pneumoconioses, tumor localization scans in primary lung tumors, the interactions of heart diseases and lung diseases on radionuclide tests of lung anatomy and function, radionuclide imaging in pediatric lung diseases, and future possibilities in pulmonary nuclear medicine.

  13. Fetal and neonatal imaging and strategy of primary neonatal heart transplantation in hypoplastic left heart with Ebstein's anomaly.

    PubMed

    Hammel, James M; Danford, David A; Spicer, Robert L; Kutty, Shelby

    2015-03-01

    We present the anatomic constellation of mitral stenosis/aortic atresia variant of hypoplastic left heart syndrome, Ebstein's anomaly, and partial anomalous pulmonary venous return, an exceeding rare congenital heart defect. Prenatal echocardiography led to concern about the capacity of the right ventricle to increase cardiac output with lung expansion and pulmonary arterial runoff at birth, prompting the precaution of extracorporeal membrane oxygenator standby at delivery. Stage I palliation was not attempted, and control of pulmonary arterial blood flow was achieved with pulmonary artery banding, allowing sufficient ongoing hemodynamic stability. Orthotopic cardiac transplantation, repair of hypoplastic aortic arch, and primary sutureless repair of left pulmonary veins was performed, using dual-site arterial cannulation and continuous mild hypothermic cardiopulmonary bypass. We discuss how this unique echocardiographic anatomy influenced the surgical decision and point out how it guided therapy toward a strategy of primary transplantation rather than standard staged surgical palliation.

  14. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part II: Acyanotic Congenital Heart Disease and Extracardiac Abnormalities

    PubMed Central

    Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-01-01

    Acyanotic heart disease constitutes a significant majority of patient who may present with non-cardiac symptoms. Either they are detected incidentally or present with respiratory complaints. Equipped with knowledge of anatomy by echocardiography and radiographic methods described in previous part of this presentation, diagnosis may be confidently attempted. On plain radiography acyanotic congenital heart diseases have variable appearance depending upon severity of disease. Cardiac size, chamber enlargement and pulmonary vascular pattern are key elements. Typically left to right shunts with large volume flow are associated with pulmonary plethora. Plain radiography has an important role in detecting manifestation of pulmonary arterial hypertension. Severe stenosis of pulmonary valve is associated with pulmonary oligemia. Small intra-cardiac shunts and anomalies of coronary arteries generally present with normal cardiac size and pulmonary arterial pattern. Disease spectrum presented in this illustration demands thorough scrutiny of pulmonary, osseous and abdominal abnormalities. This section illustrates some commonly encountered spectrum of acyanotic cardiac disease. PMID:27504381

  15. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part II: Acyanotic Congenital Heart Disease and Extracardiac Abnormalities.

    PubMed

    Bhat, Venkatraman; Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-06-01

    Acyanotic heart disease constitutes a significant majority of patient who may present with non-cardiac symptoms. Either they are detected incidentally or present with respiratory complaints. Equipped with knowledge of anatomy by echocardiography and radiographic methods described in previous part of this presentation, diagnosis may be confidently attempted. On plain radiography acyanotic congenital heart diseases have variable appearance depending upon severity of disease. Cardiac size, chamber enlargement and pulmonary vascular pattern are key elements. Typically left to right shunts with large volume flow are associated with pulmonary plethora. Plain radiography has an important role in detecting manifestation of pulmonary arterial hypertension. Severe stenosis of pulmonary valve is associated with pulmonary oligemia. Small intra-cardiac shunts and anomalies of coronary arteries generally present with normal cardiac size and pulmonary arterial pattern. Disease spectrum presented in this illustration demands thorough scrutiny of pulmonary, osseous and abdominal abnormalities. This section illustrates some commonly encountered spectrum of acyanotic cardiac disease.

  16. Imaging Mass Spectrometry: Enabling a New Age of Discovery in Biology and Medicine Through Molecular Microscopy

    PubMed Central

    Caprioli, Richard M.

    2015-01-01

    Imaging mass spectrometry (IMS) has become a valuable tool for the production of molecular maps in samples ranging from solid inorganic materials to biologicals such as cells and tissues. The unique features of IMS are its ability to map a wide variety of different types of molecules, its superb molecular specificity, and its potential for discovery since no target specific reagents are needed. IMS has made significant contributions in biology and medicine and promises to be a next generation tool in anatomic pathology. PMID:25801587

  17. Imaging Mass Spectrometry: Enabling a New Age of Discovery in Biology and Medicine Through Molecular Microscopy

    NASA Astrophysics Data System (ADS)

    Caprioli, Richard M.

    2015-06-01

    Imaging mass spectrometry (IMS) has become a valuable tool for the production of molecular maps in samples ranging from solid inorganic materials to biologicals such as cells and tissues. The unique features of IMS are its ability to map a wide variety of different types of molecules, its superb molecular specificity, and its potential for discovery since no target-specific reagents are needed. IMS has made significant contributions in biology and medicine and promises to be a next generation tool in anatomic pathology.

  18. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation). Progress report, January 15, 1992--January 14, 1993

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled ``Instrumentation and Quantitative Methods of Evaluation.`` Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  19. Shadowed by light, knowing by heart: Preservice teachers' images of knowing (in) math and science

    NASA Astrophysics Data System (ADS)

    Nolan, Kathleen T.

    Elementary preservice teachers' school experiences of math and science have shaped their images of knowing, including what counts as knowledge and what it means to know (in) math and science. In this dissertation, preservice teachers' voices challenge the hegemony of official everyday narratives relating to these images. The presentation of this research text as a physical science textbook (entitled: postMODERN conSCIENCEness: Reflections on Light) presents a kaleidoscope of elementary preservice teachers' narratives of knowing (in) math and science. These narratives are tied together by the metaphorical thread of the properties of light, but also held apart by the tensions and contradictions with/in such a critical epistemological exploration. The only grand narrative that could be imag(in)ed is one in which the personal lived experience narratives of the participants mingle and interweave to create a sort of kaleidoscope of narratives. With each turn of a kaleidoscope, light's reflection engenders new patterns and emergent designs. The narratives of this research text highlight patterns of exclusion, gendered messages, binary oppositions, and the particle nature and shadowy texture of knowing (in) math and science. Emphasized in the (re)presentation format is the reflexive and polyphonic nature of the research design, illustrated through layers of voiced re-presentation text with/in performing text with/in metaphorical text. The metaphor of a kaleidoscope is an empowering possibility for a critical narrative written to both engage and provoke the reader into imag(in)ing a critical journey toward possibilities for a different "knowing by heart" in math and science and for appreciating lived experience narratives with/in teacher education.

  20. Dual adaptive statistical approach for quantitative noise reduction in photon-counting medical imaging: application to nuclear medicine images.

    PubMed

    Hannequin, Pascal Paul

    2015-06-07

    medicine images but can also be used for any other kind of photon-counting images, such as x-ray and fluorescence images.

  1. Dual adaptive statistical approach for quantitative noise reduction in photon-counting medical imaging: application to nuclear medicine images

    NASA Astrophysics Data System (ADS)

    Hannequin, Pascal Paul

    2015-06-01

    medicine images but can also be used for any other kind of photon-counting images, such as x-ray and fluorescence images.

  2. Development of the hyperspectral cellular imaging system to apply to regenerative medicine

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Sato, Masato; Matsumura, Kouji; Mochida, Joji; Kikuchi, Makoto

    2010-02-01

    Regenerative medicine by the transplantation of differentiated cells or tissue stem cells has been clinically performed, particularly in the form of cell sheets. To ensure the safety and effectiveness of cell therapy, the efficient selection of desired cells with high quality is a critical issue, which requires the development of a new evaluation method to discriminate cells non-invasively with high throughput. There were many ways to characterize cells and their components, among which the optical spectral analysis has a powerful potential for this purpose. We developed a cellular hyperspectral imaging system, which captured both spatial and spectral information in a single pixel. Hyperspectral data are composed of continual spectral bands, whereas multispectral data are usually composed of about 5 to 10 discrete bands of large bandwidths. The hyperspectral imaging system which we developed was set up by a commonly-used inverted light microscope for cell culture experiments, and the time-lapse imaging system with automatic focus correction. Spectral line imaging device with EMCCD was employed for spectral imaging. The system finally enabled to acquire 5 dimensional (x, y, z, time, wavelength) data sets and cell-by-cell evaluation. In this study, we optimized the protocol for the creation of cellular spectral database under biological understanding. We enabled to confirm spectrum of autofluorescence of collagen, absorption of specific molecules in the cultural sample and increase of scattering signal due to cell components although detail spectral analyses have not been performed.

  3. Distributing digital imaging and communications in medicine data and optimizing access over satellite networks.

    PubMed

    Ernst, R D; Kawashima, A; Shepherd, W; Tamm, E P; Sandler, C M

    1999-05-01

    To improve radiology access to full uncompressed Digital Imaging and Communications in Medicine (DICOM) data sets, we evaluated satellite access to a DICOM server. Radiologists' home computers were connected by satellite to a Medweb DICOM server (Medweb, San Francisco, CA). A 10.2-kb data set containing a 19-image head computed tomography (CT) scan was transferred using DirecPC (Hughes Electronics Corp, Arlington, VA) at three different times of the day; 6 AM, 3 PM, and 8 PM. The average transfer time for all 19 images from the DICOM server was 4 minutes and 17 seconds (257 seconds). The slowest transfer rate of 670 seconds (121 kbps) was obtained at 8 PM. The best transfer rate of 2 minutes, 54 seconds (467 kbps) was obtained at 6 AM. The full 16-bit DICOM images were viewed with bone, brain, and soft tissue windows. The Medweb plug-in viewer loaded the first image within 30 seconds of selecting the case for satellite transfer. In conclusion, satellite internet transfer of radiology studies is suitable for timely review of full DICOM data sets and can expand the range of teleradiology consultation.

  4. Rationale for the combination of nuclear medicine with magnetic resonance for pre-clinical imaging.

    PubMed

    Wagenaar, Douglas J; Kapusta, Maciej; Li, Junqiang; Patt, Bradley E

    2006-08-01

    Multi-modality combinations of SPECT/CT and PET/CT have proven to be highly successful in the clinic and small animal SPECT/CT and PET/CT are becoming the norm in the research and drug development setting. However, the use of ionizing radiation from a high-resolution CT scanner is undesirable in any setting and particularly in small animal imaging (SAI), in laboratory experiments where it can result in radiation doses of sufficient magnitude that the experimental results can be influenced by the organism's response to radiation. The alternative use of magnetic resonance (MR) would offer a high-resolution, non-ionizing method for anatomical imaging of laboratory animals. MR brings considerably more than its 3D anatomical capability, especially regarding the imaging of laboratory animals. Dynamic MR imaging techniques can facilitate studies of perfusion, oxygenation, and diffusion amongst others. Further, MR spectroscopy can provide images that can be related to the concentration of endogenous molecules in vivo. MR imaging of injected contrast agents extends MR into the domain of molecular imaging. In combination with nuclear medicine (NM) SPECT and PET modalities in small animal imaging, MR would facilitate studies of dynamic processes such as biodistribution, pharmacokinetics, and pharmacodynamics. However, the detectors for nearly all PET and SPECT systems are still based on vacuum tube technology, namely: photomultiplier tubes (PMT's) in which the signal is generated by transporting electrons over a substantial distance within an evacuated glass tube, making them inoperable in even small magnetic fields. Thus the combination of SPECT or PET with MR has not been practical until the recent availability of semiconductor detectors such as silicon avalanche photodiodes (APD's) for PET and CdZnTe (CZT) detectors for SPECT coupled with the availability of high-density low noise ASIC electronics to read out the semiconductor detectors. The strong advantage of these

  5. Enterprise-class Digital Imaging and Communications in Medicine (DICOM) image infrastructure.

    PubMed

    York, G; Wortmann, J; Atanasiu, R

    2001-06-01

    Most current picture archiving and communication systems (PACS) are designed for a single department or a single modality. Few PACS installations have been deployed that support the needs of the hospital or the entire Integrated Delivery Network (IDN). The authors propose a new image management architecture that can support a large, distributed enterprise.

  6. Heart Tests Before Surgery: When You Need an Imaging Test - and When You Don't

    MedlinePlus

    ... Resources Heart Tests Before Chest Surgery Heart Stress Tests Before Chest Surgery When you need them—and ... If you’re having chest surgery, a stress test can sometimes be helpful. It might find problems ...

  7. Validation of heart rate extraction using video imaging on a built-in camera system of a smartphone.

    PubMed

    Kwon, Sungjun; Kim, Hyunseok; Park, Kwang Suk

    2012-01-01

    As a smartphone is becoming very popular and its performance is being improved fast, a smartphone shows its potential as a low-cost physiological measurement solution which is accurate and can be used beyond the clinical environment. Because cardiac pulse leads the subtle color change of a skin, a pulsatile signal which can be described as photoplethysmographic (PPG) signal can be measured through recording facial video using a digital camera. In this paper, we explore the potential that the reliable heart rate can be measured remotely by the facial video recorded using smartphone camera. First, using the front facing-camera of a smartphone, facial video was recorded. We detected facial region on the image of each frame using face detection, and yielded the raw trace signal from the green channel of the image. To extract more accurate cardiac pulse signal, we applied independent component analysis (ICA) to the raw trace signal. The heart rate was extracted using frequency analysis of the raw trace signal and the analyzed signal from ICA. The accuracy of the estimated heart rate was evaluated by comparing with the heart rate from reference electrocardiogram (ECG) signal. Finally, we developed FaceBEAT, an iPhone application for remote heart rate measurement, based on this study.

  8. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods.

    PubMed

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-04-07

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  9. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Caffo, Brian; Frey, Eric C.

    2016-04-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  10. Quo vadis pediatric nuclear medicine.

    PubMed

    Conway, James J

    2007-07-01

    What has happened to the nuclear medicine subspecialty since those earlier issues of the Seminars in Nuclear Medicine? The earliest issues in 1972 presented topics in vogue at the time that included brain "scanning," cisternography, whole body counting, and abdominal imaging with (99m)Tc pertechnetate. The second pediatric subspecialty issues in 1993 reflected a 21-year evolution of the subspecialty and included the topics of renal scintigraphy, labeled cells for abdominal imaging, metaiodobenzylguanidine imaging, single photon emission computed tomography, and bone scintigraphy for benign disorders. The current issues will address diverse topics that cover the spectrum of the current practice of pediatric nuclear medicine. They include radiation exposure and absorbed dose reduction, positron emission tomography/computed tomography in children, neuroblastoma and other neuroendocrine tumors, thyroid cancer and therapy, bone density studies and, of course, the most prevalent studies in children, renal and bone. Brain, heart, and lung studies complete the spectrum.

  11. Application of Multimodality Imaging Fusion Technology in Diagnosis and Treatment of Malignant Tumors under the Precision Medicine Plan

    PubMed Central

    Wang, Shun-Yi; Chen, Xian-Xia; Li, Yi; Zhang, Yu-Ying

    2016-01-01

    Objective: The arrival of precision medicine plan brings new opportunities and challenges for patients undergoing precision diagnosis and treatment of malignant tumors. With the development of medical imaging, information on different modality imaging can be integrated and comprehensively analyzed by imaging fusion system. This review aimed to update the application of multimodality imaging fusion technology in the precise diagnosis and treatment of malignant tumors under the precision medicine plan. We introduced several multimodality imaging fusion technologies and their application to the diagnosis and treatment of malignant tumors in clinical practice. Date Sources: The data cited in this review were obtained mainly from the PubMed database from 1996 to 2016, using the keywords of “precision medicine”, “fusion imaging”, “multimodality”, and “tumor diagnosis and treatment”. Study Selection: Original articles, clinical practice, reviews, and other relevant literatures published in English were reviewed. Papers focusing on precision medicine, fusion imaging, multimodality, and tumor diagnosis and treatment were selected. Duplicated papers were excluded. Results: Multimodality imaging fusion technology plays an important role in tumor diagnosis and treatment under the precision medicine plan, such as accurate location, qualitative diagnosis, tumor staging, treatment plan design, and real-time intraoperative monitoring. Multimodality imaging fusion systems could provide more imaging information of tumors from different dimensions and angles, thereby offing strong technical support for the implementation of precision oncology. Conclusion: Under the precision medicine plan, personalized treatment of tumors is a distinct possibility. We believe that multimodality imaging fusion technology will find an increasingly wide application in clinical practice. PMID:27958232

  12. An image-based model of the whole human heart with detailed anatomical structure and fiber orientation.

    PubMed

    Deng, Dongdong; Jiao, Peifeng; Ye, Xuesong; Xia, Ling

    2012-01-01

    Many heart anatomy models have been developed to study the electrophysiological properties of the human heart. However, none of them includes the geometry of the whole human heart. In this study, an anatomically detailed mathematical model of the human heart was firstly reconstructed from the computed tomography images. In the reconstructed model, the atria consisted of atrial muscles, sinoatrial node, crista terminalis, pectinate muscles, Bachmann's bundle, intercaval bundles, and limbus of the fossa ovalis. The atrioventricular junction included the atrioventricular node and atrioventricular ring, and the ventricles had ventricular muscles, His bundle, bundle branches, and Purkinje network. The epicardial and endocardial myofiber orientations of the ventricles and one layer of atrial myofiber orientation were then measured. They were calculated using linear interpolation technique and minimum distance algorithm, respectively. To the best of our knowledge, this is the first anatomically-detailed human heart model with corresponding experimentally measured fibers orientation. In addition, the whole heart excitation propagation was simulated using a monodomain model. The simulated normal activation sequence agreed well with the published experimental findings.

  13. Small flexible structure for targeted delivery of therapeutic and imaging moieties in precision medicine

    PubMed Central

    Li, Bingjie; Qiu, Xiuchun; Zou, Chaoxia; Ran, Henry; Zhang, Fujun; Ke, Shi

    2016-01-01

    The goals of precision medicine are to link diagnostic and therapeutic agents, improve clinical outcomes, and minimize side effects. We present a simple, small, flexible three-armed core structure that can be conjugated to targeting, imaging, and therapeutic moieties. The targeting molecule can be a peptide, protein, or chemical compound. The diagnostic reporter can be optical and/or nuclear in nature, and can be replaced by chemo- and/or radiotherapeutic compounds for treatment using a single targeting molecule. Imaging components can be used to detect disease biomarkers, monitor treatment response, and guide surgery in real-time to create a tumor-free margin. Isotope impurity can be exploited to visualize whole-body distribution of therapeutic agents. The one-to-one ratio of targeting component to therapeutic agents facilitates dose calculation. The simple synthesis and flexible, modular nature of the agent facilitate high-purity, large-scale production. The core capacity to “seek, treat, and see” may advance precision medicine in the future. PMID:27027441

  14. The network and its role in digital imaging and communications in medicine imaging.

    PubMed

    Ballance, Dennis

    2008-01-01

    The elements of a digital imaging system are bound together by the network, so careful attention must be paid to this essential component. Networking hardware and cable choice will affect the speed of image transmission between devices within a network. Wireless networking offers convenience at the expense of speed and potentially, security. If a facility allows its network to connect to the Internet, security precautions are essential. Firewalls prevent unauthorized and destructive access to the network; virtual private networks allow encrypted communication with the network; and email and web browser encryption allow data transmitted from the network to other users on the Internet safely. This article presents an overview of this broad array of technologies. Readers are encouraged to seek additional depth as needed to address individual networking needs.

  15. Tachycardia in post-infarction hearts: insights from 3D image-based ventricular models.

    PubMed

    Arevalo, Hermenegild; Plank, Gernot; Helm, Patrick; Halperin, Henry; Trayanova, Natalia

    2013-01-01

    Ventricular tachycardia, a life-threatening regular and repetitive fast heart rhythm, frequently occurs in the setting of myocardial infarction. Recently, the peri-infarct zones surrounding the necrotic scar (termed gray zones) have been shown to correlate with ventricular tachycardia inducibility. However, it remains unknown how the latter is determined by gray zone distribution and size. The goal of this study is to examine how tachycardia circuits are maintained in the infarcted heart and to explore the relationship between the tachycardia organizing centers and the infarct gray zone size and degree of heterogeneity. To achieve the goals of the study, we employ a sophisticated high-resolution electrophysiological model of the infarcted canine ventricles reconstructed from imaging data, representing both scar and gray zone. The baseline canine ventricular model was also used to generate additional ventricular models with different gray zone sizes, as well as models in which the gray zone was represented as different heterogeneous combinations of viable tissue and necrotic scar. The results of the tachycardia induction simulations with a number of high-resolution canine ventricular models (22 altogether) demonstrated that the gray zone was the critical factor resulting in arrhythmia induction and maintenance. In all models with inducible arrhythmia, the scroll-wave filaments were contained entirely within the gray zone, regardless of its size or the level of heterogeneity of its composition. The gray zone was thus found to be the arrhythmogenic substrate that promoted wavebreak and reentry formation. We found that the scroll-wave filament locations were insensitive to the structural composition of the gray zone and were determined predominantly by the gray zone morphology and size. The findings of this study have important implications for the advancement of improved criteria for stratifying arrhythmia risk in post-infarction patients and for the development of

  16. Heart wall velocimetry and exogenous contrast-based cardiac flow imaging in Drosophila melanogaster using Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choma, Michael A.; Suter, Melissa J.; Vakoc, Benjamin J.; Bouma, Brett E.; Tearney, Guillermo J.

    2010-09-01

    Drosophila melanogaster (fruit fly) is a central organism in biology and is becoming increasingly important in the cardiovascular sciences. Prior work in optical imaging of the D. melanogaster heart has focused on static and dynamic structural anatomy. In the study, it is demonstrated that Doppler optical coherence tomography can quantify dynamic heart wall velocity and hemolymph flow in adult D. melanogaster. Since hemolymph is optically transparent, a novel exogenous contrast technique is demonstrated to increase the backscatter-based intracardiac Doppler flow signal. The results presented here open up new possibilities for functional cardiovascular phenotyping of normal and mutant D. melanogaster.

  17. Effectiveness of Using Dual-source CT and the Upshot it creates on Both Heart Rate and Image Quality

    PubMed Central

    Selçuk, Tuba; Otçu, Hafize; Yüceler, Zeyneb; Bilgili, Çiğdem; Bulakçı, Mesut; Savaş, Yıldıray; Çelik, Ömer

    2016-01-01

    Background: Early detection of coronary artery disease (CAD) is important because of the high morbidity and mortality rates. As invasive coronary angiography (ICA) is an invasive procedure, an alternative diagnostic method; coronary computed tomography angiography (CTA), has become more widely used by the improvements in detector technology. Aims: In this study, we aimed to examine the accuracy and image quality of high-pitch 128-slice dual-source CTA taking the ICA as reference technique. We also aimed to compare the accuracy and image quality between different heart rate groups of >70 beates per minute (bpm) and ≤70 bpm. Study Design: Retrospective cross-sectional study. Methods: Among 450 patients who underwent coronary CTA with the FLASH spiral technique, performed with a second generation dual-source computed tomography device with a pitch value of 3.2, 102 patients without stent and/or bypass surgery history and clinically suspected coronary artery disease who underwent ICA within 15 days were enrolled. Image quality was assessed by two independent radiologists using a 4-point scale (1=absence of any artifacts- 4=non-evaluable). A stenosis >50% was considered significant on a per-segment, per-vessel, and per-patient basis and ICA was considered the reference method. Radiation doses were determined using dose length product (DLP) values detected by the computed tomography (CT) device. In addition, patients were classified into two groups according to their heart rates as ≤70 bpm (73 patients) and >70 bpm (29 patients). The relation between the diagnostic accuracy and heart rate groups were evaluated. Results: Overall, 1495 (98%) coronary segments were diagnostic in 102 patients (32 male, 70 female, mean heart rate: 65 bpm). There was a significant correlation between image quality and mean heart rate in the right coronary artery (RCA) segments. The effective radiation dose was 0.98±0.09 mili Sievert (mSv). On a per-patient basis, sensitivity, specificity

  18. Multi-beam two-photon imaging of fast Ca2+ signals in the Langendorff mouse heart.

    PubMed

    Hammer, Karin; Lipp, Peter; Kaestner, Lars

    2014-11-03

    Although the role of calcium (Ca(2+)) in excitation-contraction coupling in the heart can be comprehensively studied at the cellular level, propagation of Ca(2+) signals intercellularly requires tissue-based investigations. To access cells below the epicardium, an optical-sectioning technique is necessary. Multi-photon microscopy allows reliable imaging for penetration to depths of up to 0.5 mm. Here, we provide a protocol that uses multibeam two-photon microscopy for measuring Ca(2+) signals in a Langendorff-perfused mouse heart.

  19. Dawn of Advanced Molecular Medicine: Nanotechnological Advancements in Cancer Imaging and Therapy

    PubMed Central

    Kaittanis, Charalambos; Shaffer, Travis M.; Thorek, Daniel L. J.; Grimm, Jan

    2014-01-01

    Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy. PMID:25271430

  20. Augmented reality intravenous injection simulator based 3D medical imaging for veterinary medicine.

    PubMed

    Lee, S; Lee, J; Lee, A; Park, N; Lee, S; Song, S; Seo, A; Lee, H; Kim, J-I; Eom, K

    2013-05-01

    Augmented reality (AR) is a technology which enables users to see the real world, with virtual objects superimposed upon or composited with it. AR simulators have been developed and used in human medicine, but not in veterinary medicine. The aim of this study was to develop an AR intravenous (IV) injection simulator to train veterinary and pre-veterinary students to perform canine venipuncture. Computed tomographic (CT) images of a beagle dog were scanned using a 64-channel multidetector. The CT images were transformed into volumetric data sets using an image segmentation method and were converted into a stereolithography format for creating 3D models. An AR-based interface was developed for an AR simulator for IV injection. Veterinary and pre-veterinary student volunteers were randomly assigned to an AR-trained group or a control group trained using more traditional methods (n = 20/group; n = 8 pre-veterinary students and n = 12 veterinary students in each group) and their proficiency at IV injection technique in live dogs was assessed after training was completed. Students were also asked to complete a questionnaire which was administered after using the simulator. The group that was trained using an AR simulator were more proficient at IV injection technique using real dogs than the control group (P ≤ 0.01). The students agreed that they learned the IV injection technique through the AR simulator. Although the system used in this study needs to be modified before it can be adopted for veterinary educational use, AR simulation has been shown to be a very effective tool for training medical personnel. Using the technology reported here, veterinary AR simulators could be developed for future use in veterinary education.

  1. Hearts Wish.

    ERIC Educational Resources Information Center

    Jones, Lethonee A.

    1989-01-01

    Investigates characteristics and themes in 102 drawings by sexually abused children. Themes of the drawings included genitalia, the absence of specific body parts, phallic symbols, inappropriate smiles, distorted body images, kinetic activity, prominent hands and fingers, and hearts. (RJC)

  2. Imaging in the aging eye

    SciTech Connect

    Elsner, Ann E.; Remky, Andreas; Walker, Joseph P.; Wing, Glenn L.; Kelley, Linda M.; Kiesel, Cheryl

    2000-07-01

    Retinal imaging may seem a simple endeavor, given that the eye is far more transparent and accessible than internal organs such as the heart. Optical imaging techniques allow high resolution, with measurements of living tissues reported in microns, in comparison to magnetic resonance imaging. Most retinal imaging techniques are less invasive than endoscopy. There is a long-standing acceptance of retinal imaging as an important set of techniques in research and medicine.(c) 2000 Optical Society of America.

  3. Quantification of myocardial iron deficiency in nonischemic heart failure by cardiac T2* magnetic resonance imaging.

    PubMed

    Nagao, Michinobu; Matsuo, Yoshio; Kamitani, Takeshi; Yonezawa, Masato; Yamasaki, Yuzo; Kawanami, Satoshi; Abe, Kohtaro; Mukai, Yasushi; Higo, Taiki; Yabuuchi, Hidetake; Takemura, Atsushi; Yoshiura, Takashi; Sunagawa, Kenji; Honda, Hiroshi

    2014-03-15

    The aim of this study was to use T2* cardiac magnetic resonance (CMR) imaging to quantify myocardial iron content in patients with heart failure (HF) and to investigate the relation between iron content, cardiac function, and the cause of HF. CMR data were analyzed from 167 patients with nonischemic and 31 with ischemic HF and 50 patients with normal ventricular function. Short-axis T2* imaging was accomplished using 3-T scanner and multiecho gradient-echo sequence. Myocardial T2* value (M-T2*) was calculated by fitting the signal intensity data for the mid-left ventricular (LV) septum to a decay curve. Patients with nonischemic HF were categorized into patients with LV ejection fraction (LVEF) <35% or ≥35%. The relation between nonischemic HF with LVEF <35% and the risk for major adverse cardiac events was analyzed by multivariate logistic regression analysis using M-T2* and HF biomarkers. M-T2* was significantly greater for patients with nonischemic HF (LVEF <35%: 29 ± 7 ms, LVEF ≥35%: 26 ± 5 ms) than for patients with normal LV function (22 ± 3 ms, p <0.0001) or ischemic HF (22 ± 4 ms, p <0.001). The odds ratio was 1.21 for M-T2* (p <0.0001) and 1.0015 for brain natriuretic peptide (p <0.0001) in relation to nonischemic HF with LVEF <35%. Furthermore, this value was 0.96 for systolic blood pressure (p = 0.012) and 1.02 for M-T2* (p = 0.03) in relation to the risk for major adverse cardiac events in patients with nonischemic HF. In conclusion, T2* CMR demonstrated the robust relation between myocardial iron deficiency and nonischemic HF. M-T2* is a biomarker that can predict adverse cardiac function in patients with nonischemic HF.

  4. Atherosclerotic Biomarkers and Aortic Atherosclerosis by Cardiovascular Magnetic Resonance Imaging in the Framingham Heart Study

    PubMed Central

    Hong, Susie N.; Gona, Philimon; Fontes, Joao D.; Oyama, Noriko; Chan, Raymond H.; Kenchaiah, Satish; Tsao, Connie W.; Yeon, Susan B.; Schnabel, Renate B.; Keaney, John F.; O'Donnell, Christopher J.; Benjamin, Emelia J.; Manning, Warren J.

    2013-01-01

    Background The relations between subclinical atherosclerosis and inflammatory biomarkers have generated intense interest but their significance remains unclear. We sought to determine the association between a panel of biomarkers and subclinical aortic atherosclerosis in a community‐based cohort. Methods and Results We evaluated 1547 participants of the Framingham Heart Study Offspring cohort who attended the 7th examination cycle and underwent both cardiovascular magnetic resonance imaging (CMR) and assays for 10 biomarkers associated with atherosclerosis: high‐sensitivity C‐reactive protein, fibrinogen, intercellular adhesion molecule‐1, interleukin‐6, interleukin‐18, lipoprotein‐associated phospholipase‐A2 activity and mass, monocyte chemoattractant protein‐1, P‐selectin, and tumor necrosis factor receptor‐2. In logistic regression analysis, we found no significant association between the biomarker panel and the presence of aortic plaque (global P=0.53). Using Tobit regression with aortic plaque as a continuous variable, we noted a modest association between biomarker panel and aortic plaque volume in age‐ and sex‐adjusted analyses (P=0.003). However, this association was attenuated after further adjustment for clinical covariates (P=0.09). Conclusions In our community‐based cohort, we found no significant association between our multibiomarker panel and aortic plaque. Our results underscore the strengths and limitations of the use of biomarkers for the identification of subclinical atherosclerosis and the importance of traditional risk factors. PMID:24242683

  5. Feasibility of long-distance heart rate monitoring using transmittance photoplethysmographic imaging (PPGI)

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Scharfenberger, Christian; Kazemzadeh, Farnoud; Pfisterer, Kaylen J.; Lin, Bill S.; Clausi, David A.; Wong, Alexander

    2015-10-01

    Photoplethysmography (PPG) devices are widely used for monitoring cardiovascular function. However, these devices require skin contact, which restricts their use to at-rest short-term monitoring. Photoplethysmographic imaging (PPGI) has been recently proposed as a non-contact monitoring alternative by measuring blood pulse signals across a spatial region of interest. Existing systems operate in reflectance mode, many of which are limited to short-distance monitoring and are prone to temporal changes in ambient illumination. This paper is the first study to investigate the feasibility of long-distance non-contact cardiovascular monitoring at the supermeter level using transmittance PPGI. For this purpose, a novel PPGI system was designed at the hardware and software level. Temporally coded illumination (TCI) is proposed for ambient correction, and a signal processing pipeline is proposed for PPGI signal extraction. Experimental results show that the processing steps yielded a substantially more pulsatile PPGI signal than the raw acquired signal, resulting in statistically significant increases in correlation to ground-truth PPG in both short- and long-distance monitoring. The results support the hypothesis that long-distance heart rate monitoring is feasible using transmittance PPGI, allowing for new possibilities of monitoring cardiovascular function in a non-contact manner.

  6. Feasibility of long-distance heart rate monitoring using transmittance photoplethysmographic imaging (PPGI)

    PubMed Central

    Amelard, Robert; Scharfenberger, Christian; Kazemzadeh, Farnoud; Pfisterer, Kaylen J.; Lin, Bill S.; Clausi, David A.; Wong, Alexander

    2015-01-01

    Photoplethysmography (PPG) devices are widely used for monitoring cardiovascular function. However, these devices require skin contact, which restricts their use to at-rest short-term monitoring. Photoplethysmographic imaging (PPGI) has been recently proposed as a non-contact monitoring alternative by measuring blood pulse signals across a spatial region of interest. Existing systems operate in reflectance mode, many of which are limited to short-distance monitoring and are prone to temporal changes in ambient illumination. This paper is the first study to investigate the feasibility of long-distance non-contact cardiovascular monitoring at the supermeter level using transmittance PPGI. For this purpose, a novel PPGI system was designed at the hardware and software level. Temporally coded illumination (TCI) is proposed for ambient correction, and a signal processing pipeline is proposed for PPGI signal extraction. Experimental results show that the processing steps yielded a substantially more pulsatile PPGI signal than the raw acquired signal, resulting in statistically significant increases in correlation to ground-truth PPG in both short- and long-distance monitoring. The results support the hypothesis that long-distance heart rate monitoring is feasible using transmittance PPGI, allowing for new possibilities of monitoring cardiovascular function in a non-contact manner. PMID:26440644

  7. Bioluminescence imaging for assessment of immune responses following implantation of engineered heart tissue (EHT).

    PubMed

    Conradi, Lenard; Pahrmann, Christiane; Schmidt, Stephanie; Deuse, Tobias; Hansen, Arne; Eder, Alexandra; Reichenspurner, Hermann; Robbins, Robert C; Eschenhagen, Thomas; Schrepfer, Sonja

    2011-06-01

    Various techniques of cardiac tissue engineering have been pursued in the past decades including scaffolding strategies using either native or bioartificial scaffold materials, entrapment of cardiac myocytes in hydrogels such as fibrin or collagen and stacking of myocyte monolayers. These concepts aim at restoration of compromised cardiac function (e.g. after myocardial infarction) or as experimental models (e.g. predictive toxicology and substance screening or disease modelling). Precise monitoring of cell survival after implantation of engineered heart tissue (EHT) has now become possible using in-vivo bioluminescence imaging (BLI) techniques. Here we describe the generation of fibrin-based EHT from a transgenic rat strain with ubiquitous expression of firefly luciferase (ROSA/luciferase-LEW Tg; ). Implantation is performed into the greater omentum of different rat strains to assess immune responses of the recipient organism following EHT implantation. Comparison of results generated by BLI and the Enzyme Linked Immuno Spot Technique (ELISPOT) confirm the usability of BLI for the assessment of immune responses.

  8. Bone imaging in prostate cancer: the evolving roles of nuclear medicine and radiology.

    PubMed

    Cook, Gary J R; Azad, Gurdip; Padhani, Anwar R

    2016-01-01

    The bone scan continues to be recommended for both the staging and therapy response assessment of skeletal metastases from prostate cancer. However, it is widely recognised that bone scans have limited sensitivity for disease detection and is both insensitive and non-specific for determining treatment response, at an early enough time point to be clinically useful. We, therefore, review the evolving roles of nuclear medicine and radiology for this application. We have reviewed the published literature reporting recent developments in imaging bone metastases in prostate cancer, and provide a balanced synopsis of the state of the art. The development of single-photon emission computed tomography combined with computed tomography has improved detection sensitivity and specificity but has not yet been shown to lead to improvements in monitoring therapy. A number of bone-specific and tumour-specific tracers for positron emission tomography/computed tomography (PET/CT) are now available for advanced prostate cancer that show promise in both clinical settings. At the same time, the development of whole-body magnetic resonance imaging (WB-MRI) that incorporates diffusion-weighted imaging also offers significant improvements for detection and therapy response assessment. There are emerging data showing comparative SPECT/CT, PET/CT, and WB-MRI test performance for disease detection, but no compelling data on the usefulness of these technologies in response assessment have yet emerged.

  9. A high-speed, pressurised multi-wire gamma camera for dynamic imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Barr, A.; Bonaldi, L.; Carugno, G.; Charpak, G.; Iannuzzi, D.; Nicoletto, M.; Pepato, A.; Ventura, S.

    2002-01-01

    High count rate detectors are of particular interest in nuclear medicine as they permit lower radiation doses to be received by the patient and allow dynamic images of high statistical quality to be obtained. We have developed a high-speed gamma camera based on a multi-wire proportional chamber. The chamber is filled with a xenon gas mixture and has been operated at pressures ranging from 5 to 10 bar. With an active imaging area of 25 cm×25 cm, the chamber has been equipped with an advanced, high rate, digital, electronic read-out system which carries out pulse shaping, energy discrimination, XY coincidence and cluster selection at speeds of up to a few megahertz. In order to ensure stable, long-term operation of the camera without degradation in performance, a gas purification system was designed and integrated into the camera. Measurements have been carried out to determine the properties and applicability of the camera using photon sources in the 20-120 keV energy range. We present some design features of the camera and selected results obtained from preliminary measurements carried out to measure its performance characteristics. Initial images obtained from the camera will also be presented.

  10. Medical Image Processing Server applied to Quality Control of Nuclear Medicine.

    NASA Astrophysics Data System (ADS)

    Vergara, C.; Graffigna, J. P.; Marino, E.; Omati, S.; Holleywell, P.

    2016-04-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work.

  11. Application methods of infrared thermal images in the health care field of traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Li, Ziru; Zhang, Xusheng

    2008-12-01

    Infrared thermal imaging (ITI) is the potential imaging technique for the health care field of traditional Chinese medicine (TCM). Successful application demands obeying the characteristics and regularity of the ITI of human body and designing rigorous trials. First, the influence of time must be taken into account as the ITI of human body varies with time markedly. Second, relative magnitude is preferred to be the index of the image features. Third, scatter diagrams and the method of least square could present important information for evaluating the health care effect. A double-blind placebo-controlled randomized trial was undertaken to study the influences of Shengsheng capsule, one of the TCM health food with immunity adjustment function, on the ITI of human body. The results showed that the effect of Shengsheng capsule to people with weak constitution or in the period of being weak could be reflected objectively by ITI. The relative efficacy rate was 81.3% for the trial group and 30.0% for the control group, there was significant difference between the two groups (P=0.003). So the sensitivity and objectivity of ITI are of great importance to the health care field of TCM.

  12. Sports medicine ultrasound (US) beyond the musculoskeletal system: use in the abdomen, solid organs, lung, heart and eye.

    PubMed

    Berkoff, David J; English, Joy; Theodoro, Daniel

    2015-02-01

    The use of point-of-care ultrasound (US) by non-radiologists is not new and the expansion into sports medicine practice is relatively young. US has been used extensively to evaluate the musculoskeletal system including the diagnosis of muscle, tendon and bone injuries. However, as sports medicine practitioners we are responsible for the care of the entire athlete. There are many other non-musculoskeletal applications of US in the evaluation and treatment of the athlete. This paper highlights the use of US in the athlete to diagnose pulmonary, cardiac, solid organ, intra-abdominal and eye injuries.

  13. Advanced imaging approaches for regenerative medicine: Emerging technologies for monitoring stem cell fate in vitro and in vivo.

    PubMed

    Kupfer, Molly E; Ogle, Brenda M

    2015-10-01

    The future of regenerative medicine relies on our ability to control stem cell fate in order to produce functional tissues. Stem cells are the preferred cell source for tissue engineering endeavors and regenerative medicine therapies due to their high potency and capacity for expansion. However, their potency also makes them very difficult to control, as they are in a constant state of flux. Therefore, in order to advance research in regenerative medicine, it is necessary to be able to monitor cell state and phenotype both in vitro and in vivo. This review will detail the imaging technologies currently in use to monitor stem cell phenotype, migration, and differentiation. In addition to providing examples of the most recent work in this area, we will also discuss the future of imaging technologies for regenerative medicine, and how current imaging modalities might be utilized to image specific cell functionality in order to track stem cell fate. The research area of imaging stem cells is progressing toward identifying mature and differentiating cells not only by phenotypic markers, but also by visualizing cell function. Many of the cutting-edge modalities detailed in this review have the potential to be harnessed toward this goal.

  14. Cardiac muscle organization revealed in 3-D by imaging whole-mount mouse hearts using two-photon fluorescence and confocal microscopy.

    PubMed

    Sivaguru, Mayandi; Fried, Glenn; Sivaguru, Barghav S; Sivaguru, Vignesh A; Lu, Xiaochen; Choi, Kyung Hwa; Saif, M Taher A; Lin, Brian; Sadayappan, Sakthivel

    2015-11-01

    The ability to image the entire adult mouse heart at high resolution in 3-D would provide enormous advantages in the study of heart disease. However, a technique for imaging nuclear/cellular detail as well as the overall structure of the entire heart in 3-D with minimal effort is lacking. To solve this problem, we modified the benzyl alcohol:benzyl benzoate (BABB) clearing technique by labeling mouse hearts with periodic acid Schiff (PAS) stain. We then imaged the hearts with a combination of two-photon fluorescence microscopy and automated tile-scan imaging/stitching. Utilizing the differential spectral properties of PAS, we could identify muscle and nuclear compartments in the heart. We were also able to visualize the differences between a 3-month-old normal mouse heart and a mouse heart that had undergone heart failure due to the expression of cardiac myosin binding protein-C (cMyBP-C) gene mutation (t/t). Using 2-D and 3-D morphometric analysis, we found that the t/t heart had anomalous ventricular shape, volume, and wall thickness, as well as a disrupted sarcomere pattern. We further validated our approach using decellularized hearts that had been cultured with 3T3 fibroblasts, which were tracked using a nuclear label. We were able to detect the 3T3 cells inside the decellularized intact heart tissue, achieving nuclear/cellular resolution in 3-D. The combination of labeling, clearing, and two-photon microscopy together with tiling eliminates laborious and time-consuming physical sectioning, alignment, and 3-D reconstruction.

  15. Mount Etna, heart of the Mediterranean, in science, narrative, and images

    NASA Astrophysics Data System (ADS)

    Behncke, Boris; Patanè, Domenico; Mirella, Turco; Turi, Caggegi; Marco, Aliotta; Alfio, Amantia; Massimo, Cantarero; Francesco, Ciancitto

    2015-04-01

    A keen urge, enticing and potent at the same time, as only real passion can be, had taken hold of our hearts. It was thanks to Etna that we met. It had helped bring together communication, photography and volcanology into one single project, namely to share our emotions and those of the volcano and pass them on to whoever might believe in similar values. Two men and one woman, two Sicilians and one German, on the slopes of the mountain. Chance is the grand master of science, events, coincidences, facts and illusions which come to a crossroads where the spirit may feel at liberty. So here we are then, to tell you of the pulsating heart of a body in constant evolution, about half a million years old, to tell of the red "blood" feeding it, its destructive power, its growth and its dimensions changing in time: all evidence that our planet is very much alive. Because Etna volcano, locally called "Mungibeddu" or "a Muntagna", embodies the vital force of the Earth, to which we owe our existence. We have sought to combine science, narrative and images to meet the tastes of our cultured compatriots, those living beyond the Alps as well as those from overseas. Rightly so, because Etna belongs to humanity, and we have the privilege of dwelling in its arms. We also have the duty and the pleasure to share its existence with the few who may not know it, with the many who would like to understand its unusual aspects in greater depth and with those who walk its paths and explore its precipices perhaps to find their inner selves. The volcano shares the fears of the farm workers and of the inhabitants; it diffuses the intoxicating scent of the earth, air, water and wind. It feeds on the melancholic lullabies of those who have lost a loved one, those who have challenged the laws of nature. And always, at each moment, it is close to us, even as far as the sea of salty air and tears that mothers sometimes weep.

  16. A system for rapid prototyping of hearts with congenital malformations based on the medical imaging interaction toolkit (MITK)

    NASA Astrophysics Data System (ADS)

    Wolf, Ivo; Böttger, Thomas; Rietdorf, Urte; Maleike, Daniel; Greil, Gerald; Sieverding, Ludger; Miller, Stephan; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2006-03-01

    Precise knowledge of the individual cardiac anatomy is essential for diagnosis and treatment of congenital heart disease. Complex malformations of the heart can best be comprehended not from images but from anatomic specimens. Physical models can be created from data using rapid prototyping techniques, e.g., lasersintering or 3D-printing. We have developed a system for obtaining data that show the relevant cardiac anatomy from high-resolution CT/MR images and are suitable for rapid prototyping. The challenge is to preserve all relevant details unaltered in the produced models. The main anatomical structures of interest are the four heart cavities (atria, ventricles), the valves and the septum separating the cavities, and the great vessels. These can be shown either by reproducing the morphology itself or by producing a model of the blood-pool, thus creating a negative of the morphology. Algorithmically the key issue is segmentation. Practically, possibilities allowing the cardiologist or cardiac surgeon to interactively check and correct the segmentation are even more important due to the complex, irregular anatomy and imaging artefacts. The paper presents the algorithmic and interactive processing steps implemented in the system, which is based on the open-source Medical Imaging Interaction Toolkit (MITK, www.mitk.org). It is shown how the principles used in MITK enable to assemble the system from modules (functionalities) developed independently from each other. The system allows to produce models of the heart (and other anatomic structures) of individual patients as well as to reproduce unique specimens from pathology collections for teaching purposes.

  17. Neuromolecular imaging, a nanobiotechnology for Parkinson's disease: advancing pharmacotherapy for personalized medicine.

    PubMed

    Broderick, P A; Wenning, L; Li, Y-S

    2017-01-01

    Evaluating each patient and animal as its own control achieves personalized medicine, which honors the hippocratic philosophy, explaining that "it is far more important to know what person has the disease than what disease the person has." Similarly, individualizing molecular signaling directly from the patient's brain in real time is essential for providing prompt, patient-based treatment as dictated by the point of care. Fortunately, nanotechnology effectively treats many neurodegenerative diseases. In particular, the new medicinal frontier for the discovery of therapy for Parkinson's disease is nanotechnology and nanobiotechnology. Indeed, the unique nanotechnology of neuromolecular imaging combined with the series of nanobiosensors enables continuous videotracking of molecular neurotransmitters in both the normal physiologic and disease states with long-term electrochemical operational stability. This nanobiotechnology is able to track a signal in real time with excellent temporal and spatial resolution directly from each patient's brain to a computer as subjects are behaving during movement, normal and/or dysfunctional including prion-like Parkinson's behavioral biometrics. Moreover, the molecular signaling performed by these nanobiosensors live streams directly online and originates from precise neuroanatomic brain sites such as, in this case, the dorsal striatum in basal ganglia. Thus, the nanobiotechnology studies discussed herein imaged neuromolecules with and without L-3,4-dihydroxyphenylalanine (L-DOPA) in dorsal striatal basal ganglia neurons. Parkinsonian and non-Parkinsonian animals were video-tracked, and images were readily seen on a laptop via a potentiostat using a semiderivative electrical circuit. Administered L-DOPA doses were 50 and 100 mg/kg intraperitoneally (ip); the same experimental paradigm was used to image and then contrast data. Results showed that the baseline release of biogenic amine molecules was significantly above detection

  18. Chemistry, Pharmacology, and Medicinal Property of Sage (Salvia) to Prevent and Cure Illnesses such as Obesity, Diabetes, Depression, Dementia, Lupus, Autism, Heart Disease, and Cancer

    PubMed Central

    Hamidpour, Mohsen; Hamidpour, Rafie; Hamidpour, Soheila; Shahlari, Mina

    2014-01-01

    For a long time, sage (Salvia) species have been used in traditional medicine for the relief of pain, protecting the body against oxidative stress, free radical damages, angiogenesis, inflammation, bacterial and virus infection, etc., Several studies suggest that sage species can be considered for drug development because of their reported pharmacology and therapeutic activities in many countries of Asia and Middle East, especially China and India. These studies suggest that Salvia species, in addition to treating minor common illnesses, might potentially provide novel natural treatments for the relief or cure of many serious and life-threatening diseases such as depression, dementia, obesity, diabetes, lupus, heart disease, and cancer. This article presents a comprehensive analysis of the botanical, chemical, and pharmacological aspects of sage (Saliva). PMID:24860730

  19. Chemistry, Pharmacology, and Medicinal Property of Sage (Salvia) to Prevent and Cure Illnesses such as Obesity, Diabetes, Depression, Dementia, Lupus, Autism, Heart Disease, and Cancer.

    PubMed

    Hamidpour, Mohsen; Hamidpour, Rafie; Hamidpour, Soheila; Shahlari, Mina

    2014-04-01

    For a long time, sage (Salvia) species have been used in traditional medicine for the relief of pain, protecting the body against oxidative stress, free radical damages, angiogenesis, inflammation, bacterial and virus infection, etc., Several studies suggest that sage species can be considered for drug development because of their reported pharmacology and therapeutic activities in many countries of Asia and Middle East, especially China and India. These studies suggest that Salvia species, in addition to treating minor common illnesses, might potentially provide novel natural treatments for the relief or cure of many serious and life-threatening diseases such as depression, dementia, obesity, diabetes, lupus, heart disease, and cancer. This article presents a comprehensive analysis of the botanical, chemical, and pharmacological aspects of sage (Saliva).

  20. Compressed sensing reconstruction for whole-heart imaging with 3D radial trajectories: a graphics processing unit implementation.

    PubMed

    Nam, Seunghoon; Akçakaya, Mehmet; Basha, Tamer; Stehning, Christian; Manning, Warren J; Tarokh, Vahid; Nezafat, Reza

    2013-01-01

    A disadvantage of three-dimensional (3D) isotropic acquisition in whole-heart coronary MRI is the prolonged data acquisition time. Isotropic 3D radial trajectories allow undersampling of k-space data in all three spatial dimensions, enabling accelerated acquisition of the volumetric data. Compressed sensing (CS) reconstruction can provide further acceleration in the acquisition by removing the incoherent artifacts due to undersampling and improving the image quality. However, the heavy computational overhead of the CS reconstruction has been a limiting factor for its application. In this article, a parallelized implementation of an iterative CS reconstruction method for 3D radial acquisitions using a commercial graphics processing unit is presented. The execution time of the graphics processing unit-implemented CS reconstruction was compared with that of the C++ implementation, and the efficacy of the undersampled 3D radial acquisition with CS reconstruction was investigated in both phantom and whole-heart coronary data sets. Subsequently, the efficacy of CS in suppressing streaking artifacts in 3D whole-heart coronary MRI with 3D radial imaging and its convergence properties were studied. The CS reconstruction provides improved image quality (in terms of vessel sharpness and suppression of noise-like artifacts) compared with the conventional 3D gridding algorithm, and the graphics processing unit implementation greatly reduces the execution time of CS reconstruction yielding 34-54 times speed-up compared with C++ implementation.

  1. Fast Gated EPR Imaging of the Beating Heart: Spatiotemporally-Resolved 3D Imaging of Free Radical Distribution during the Cardiac Cycle

    PubMed Central

    Chen, Zhiyu; Reyes, Levy A.; Johnson, David H.; Velayutham, Murugesan; Yang, Changjun; Samouilov, Alexandre; Zweier, Jay L.

    2012-01-01

    In vivo or ex vivo electron paramagnetic resonance imaging (EPRI) is a powerful technique for determining the spatial distribution of free radicals and other paramagnetic species in living organs and tissues. However, applications of EPRI have been limited by long projection acquisition times and the consequent fact that rapid gated EPRI was not possible. Hence in vivo EPRI typically provided only time-averaged information. In order to achieve direct gated EPRI, a fast EPR acquisition scheme was developed to decrease EPR projection acquisition time down to 10 – 20 ms, along with corresponding software and instrumentation to achieve fast gated EPRI of the isolated beating heart with submillimeter spatial resolution in as little as 2 to 3 minutes. Reconstructed images display temporal and spatial variations of the free radical distribution, anatomical structure, and contractile function within the rat heart during the cardiac cycle. PMID:22473660

  2. Denial and Self-Image in Stroke, Lung Cancer, and Heart Disease Patients

    ERIC Educational Resources Information Center

    Levine, Jacob; Zigler, Edward

    1975-01-01

    Stroke, lung cancer, and heart disease patients were found to employ denial, as indicated by the relatively small difference between their real and ideal selves before and after the onset of illness. The greatest amount of denial was found for stroke patients. Cancer patients displayed more denial than did heart patients. (Author)

  3. Image-Guided Radiotherapy for Left-Sided Breast Cancer Patients: Geometrical Uncertainty of the Heart

    SciTech Connect

    Topolnjak, Rajko; Borst, Gerben R.; Nijkamp, Jasper

    2012-03-15

    Purpose: To quantify the geometrical uncertainties for the heart during radiotherapy treatment of left-sided breast cancer patients and to determine and validate planning organ at risk volume (PRV) margins. Methods and Materials: Twenty-two patients treated in supine position in 28 fractions with regularly acquired cone-beam computed tomography (CBCT) scans for offline setup correction were included. Retrospectively, the CBCT scans were reconstructed into 10-phase respiration correlated four-dimensional scans. The heart was registered in each breathing phase to the planning CT scan to establish the respiratory heart motion during the CBCT scan ({sigma}{sub resp}). The average of the respiratory motion was calculated as the heart displacement error for a fraction. Subsequently, the systematic ({Sigma}), random ({sigma}), and total random ({sigma}{sub tot}={radical}({sigma}{sup 2}+{sigma}{sub resp}{sup 2})) errors of the heart position were calculated. Based on the errors a PRV margin for the heart was calculated to ensure that the maximum heart dose (D{sub max}) is not underestimated in at least 90% of the cases (M{sub heart} = 1.3{Sigma}-0.5{sigma}{sub tot}). All analysis were performed in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions with respect to both online and offline bony anatomy setup corrections. The PRV margin was validated by accumulating the dose to the heart based on the heart registrations and comparing the planned PRV D{sub max} to the accumulated heart D{sub max}. Results: For online setup correction, the cardiac geometrical uncertainties and PRV margins were N-Ary-Summation = 2.2/3.2/2.1 mm, {sigma} = 2.1/2.9/1.4 mm, and M{sub heart} = 1.6/2.3/1.3 mm for LR/CC/AP, respectively. For offline setup correction these were N-Ary-Summation = 2.4/3.7/2.2 mm, {sigma} = 2.9/4.1/2.7 mm, and M{sub heart} = 1.6/2.1/1.4 mm. Cardiac motion induced by breathing was {sigma}{sub resp} = 1.4/2.9/1.4 mm for LR/CC/AP. The PRV D{sub max

  4. Detection of coronary artery disease by vasodilator thallium imaging of the heart with amyl nitrite inhalation: a pilot study

    SciTech Connect

    Rifkin, R.D.; Sharma, S.C.; Spraragen, S.; Claunch, B.; Shackford, H.; Patton, R. )

    1991-01-01

    Thallium imaging of the heart using dipyridamole-induced coronary arteriolar vasodilation has proven to be an effective means of detecting significant coronary stenosis. However, intravenous dipyridamole has not yet been made available for general use. We therefore examined the feasibility of substituting amyl nitrite inhalation as an arteriolar vasodilator prior to thallium imaging. Seventeen patients, all of whom had catheterization-proven coronary stenosis, inhaled amyl nitrite for 2-5 min. Thallium was injected after 45-60 s of inhalation. Completion of inhalation was followed immediately by planar imaging. Of 6 patients who inhaled amyl nitrite for at least 4 min, 5 had moderate or severe image defects on immediate scans which completely resolved on delayed scans. Only 3 of 11 who inhaled amyl nitrite for 2 min or less prior to scanning had similarly positive tests. Overall sensitivity for significant stenosis was 8 of 17 (47%). Inhalation was well tolerated with only one episode of angina and hypotension. We conclude that amyl nitrite inhalation for at least 4 min may offer an effective and readily available alternative to intravenous dipyridamole for vasodilator imaging of the heart.

  5. Characteristic X-ray imaging for palliative therapy using strontium-89 chloride: understanding the mechanism of nuclear medicine imaging of strontium-89 chloride.

    PubMed

    Owaki, Yoshiki; Inoue, Kazumasa; Narita, Hiroto; Tsuda, Keisuke; Fukushi, Masahiro

    2017-01-04

    Strontium-89 (Sr-89) chloride is a targeted palliative therapy used for painful bone metastasis in which repeated doses can be administered, and its usefulness has been reported in the case of bone metastasis of various primary tumors. However, the effectiveness of the pain relief treatment is only described using a subjective index such as the visual analog scale, which lacks objectivity. Although various attempts at quantifying the effectiveness of Sr-89 chloride therapy have been reported using nuclear medicine imaging for energy peaks around 70-80 keV, the principle of Sr-89 chloride imaging has not been explained. In this study, the principle of nuclear medicine imaging for Sr-89 chloride was evaluated using a fundamental study. Additionally, the optimal collimator for acquiring Sr-89 chloride image data was evaluated. Based on the results, the principle of nuclear medicine imaging for Sr-89 chloride could be explained: the energy peaks were characteristic X-rays produced by interactions between gamma rays (514 keV) emitted from Sr-85, which is included during the manufacturing process of the Sr-89 chloride solution, and the lead collimator used in the imaging. The optimal collimator for generating characteristic X-rays efficiently was identified as a middle-to-high energy collimator.

  6. A Spartan 6 FPGA-based data acquisition system for dedicated imagers in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Fysikopoulos, E.; Loudos, G.; Georgiou, M.; David, S.; Matsopoulos, G.

    2012-12-01

    We present the development of a four-channel low-cost hardware system for data acquisition, with application in dedicated nuclear medicine imagers. A 12 bit octal channel high-speed analogue to digital converter, with up to 65 Msps sampling rate, was used for the digitization of analogue signals. The digitized data are fed into a field programmable gate array (FPGA), which contains an interface to a bank of double data rate 2 (DDR2)-type memory. The FPGA processes the digitized data and stores the results into the DDR2. An ethernet link was used for data transmission to a personal computer. The embedded system was designed using Xilinx's embedded development kit (EDK) and was based on Xilinx's Microblaze soft-core processor. The system has been evaluated using two different discrete optical detector arrays (a position-sensitive photomultiplier tube and a silicon photomultiplier) with two different pixelated scintillator arrays (BGO, LSO:Ce). The energy resolution for both detectors was approximately 25%. A clear identification of all crystal elements was achieved in all cases. The data rate of the system with this implementation can reach 60 Mbits s-1. The results have shown that this FPGA data acquisition system is a compact and flexible solution for single-photon-detection applications. This paper was originally submitted for inclusion in the special feature on Imaging Systems and Techniques 2011.

  7. Imaging of EGFR and EGFR Tyrosine Kinase Overexpression in Tumors by Nuclear Medicine Modalities

    PubMed Central

    Mishani, Eyal; Abourbeh, Galith; Eiblmaier, Martin; Anderson, Carolyn J

    2008-01-01

    Protein tyrosine kinases (PTKs) play a pivotal role in signal transduction pathways and in the development and maintenance of various cancers. They are involved in multiple processes such as transcription, cell cycle progression, proliferation, angiogenesis and inhibition of apoptosis. Among the PTKs, the EGFR is one of the most widely studied and has emerged as a promising key target for the treatment of cancer. Indeed, several drugs directed at this receptor are FDA-approved and many others are at various stages of development. However, thus far, the therapeutic outcome of EGFR-targeted therapy is suboptimal and needs to be refined. Quantitative PET molecular imaging coupled with selective labelled biomarkers may facilitate in vivo EGFR-targeted drug efficacy by noninvasively assessing the expression of EGFR in tumor, guiding dose and regime by measuring target drug binding and receptor occupancy as well as potentially detecting the existence of a primary or secondary mutation leading to either drug interaction or failure of EGFR recognition by the drug. This review describes the attempts to develop labelled EGFR molecular imaging agents that are based either on low molecular weight tyrosine kinase inhibitors or monoclonal antibodies directed to the extracellular binding domain of the receptor to be used in nuclear medicine modalities. PMID:18991714

  8. [Non-destructive detection research for hollow heart of potato based on semi-transmission hyperspectral imaging and SVM].

    PubMed

    Huang, Tao; Li, Xiao-yu; Xu, Meng-ling; Jin, Rui; Ku, Jing; Xu, Sen-miao; Wu, Zhen-zhong

    2015-01-01

    The quality of potato is directly related to their edible value and industrial value. Hollow heart of potato, as a physiological disease occurred inside the tuber, is difficult to be detected. This paper put forward a non-destructive detection method by using semi-transmission hyperspectral imaging with support vector machine (SVM) to detect hollow heart of potato. Compared to reflection and transmission hyperspectral image, semi-transmission hyperspectral image can get clearer image which contains the internal quality information of agricultural products. In this study, 224 potato samples (149 normal samples and 75 hollow samples) were selected as the research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images (390-1 040 nn) of the potato samples, and then the average spectrum of region of interest were extracted for spectral characteristics analysis. Normalize was used to preprocess the original spectrum, and prediction model were developed based on SVM using all wave bands, the accurate recognition rate of test set is only 87. 5%. In order to simplify the model competitive.adaptive reweighed sampling algorithm (CARS) and successive projection algorithm (SPA) were utilized to select important variables from the all 520 spectral variables and 8 variables were selected (454, 601, 639, 664, 748, 827, 874 and 936 nm). 94. 64% of the accurate recognition rate of test set was obtained by using the 8 variables to develop SVM model. Parameter optimization algorithms, including artificial fish swarm algorithm (AFSA), genetic algorithm (GA) and grid search algorithm, were used to optimize the SVM model parameters: penalty parameter c and kernel parameter g. After comparative analysis, AFSA, a new bionic optimization algorithm based on the foraging behavior of fish swarm, was proved to get the optimal model parameter (c=10. 659 1, g=0. 349 7), and the recognition accuracy of 10% were obtained for the AFSA

  9. Clinical trial opportunities in Transfusion Medicine: proceedings of a National Heart, Lung, and Blood Institute State-of-the-Science Symposium.

    PubMed

    Blajchman, Morris A; Glynn, Simone A; Josephson, Cassandra D; Kleinman, Steve H

    2010-10-01

    The use of blood products to support patients undergoing the large variety of medical and surgical interventions requiring such support has continued to escalate very significantly over time. Relevantly, significant practice variation in the use of blood products exists among practitioners and institutions, largely because of the lack of robust clinical trial data, in many instances, which are critical for providing practitioners with evidence-based guidelines for appropriate blood product utilization. Recognizing this gap, the National Heart, Lung, and Blood Institute recently established a State-of-the-Science Symposium to help define areas of clinical trial research that would enhance the opportunity for developing appropriate practice guidelines for both Transfusion Medicine and Hemostasis/Thrombosis. Such a Symposium was held in September 2009 to identify important clinical trial research issues in these 2 subject areas of endeavor. The aims of this Symposium were to specifically identify phase 2 and 3 clinical trials that, if conducted over the next 5 to 10 years, could impact the treatment of patients with hemostatic and other disorders as well as to optimize the use of blood products in patients who need such interventions. This article reports on the deliberations that were held relating to the various clinical trial concepts developed by 7 Transfusion Medicine subcommittees. This Symposium generated a rich assortment of clinical trial proposals that will undergo further refinement before final implementation into pilot or full randomized clinical trials. The various proposals identified many opportunities for clinical trial research and most importantly underscored the ongoing need for well-developed evidence-based clinical trial research in the field of Transfusion Medicine.

  10. Accelerated Fast Spin-Echo Magnetic Resonance Imaging of the Heart Using a Self-Calibrated Split-Echo Approach

    PubMed Central

    Klix, Sabrina; Hezel, Fabian; Fuchs, Katharina; Ruff, Jan; Dieringer, Matthias A.; Niendorf, Thoralf

    2014-01-01

    Purpose Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging. Methods For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed. Results The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging. Conclusion SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging. PMID:24728341

  11. Collection of DICOM RDSR (Digital Imaging and Communication in Medicine, Radiation Dose Structured Report) Information Aimed at Reducing Patient Exposure Dose.

    PubMed

    Morota, Koichi; Moritake, Takashi; Sun, Lue; Ishihara, Takahiro; Kuma, Natsuyo; Murata, Satomi; Yamada, Takahiro; Okazaki, Ryuji

    2016-01-01

    The recent progress in angiography technology bestows benefits on patients for minimally invasive than surgery, while there has been an increase in the number of cases involving stochastic effects, such as radiation dermatitis, resulting from upgrading of the procedure because of an extension of the time for fluoroscopy and the number of shots. Recent CT equipment saves the dose data along with image data about the information management for patient exposure dose, which is used for management of individual cumulative dose and the presumed effective dose, using digital imaging and communication in medicine (DICOM). We extracted detailed information about shooting conditions and dose from the DICOM radiation dose structured report (DICOM RDSR) in the angiography area, and evaluated the trend of patient exposure dose in each procedure. As a result, we found that cases exceeding 3 Gy which needed observation in the head region were 16.7% and in the heart region were 27.3%. We also found that angiography had a higher dose of shooting than did fluoroscopy, and that the diagnosis and treatment with tumor involvement required a exposure dose than did vascular lesion. In this paper, we review the shooting conditions as a root of DICOM RDSR information and consider the possibility of planning for further reduction of the exposure dose.

  12. Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review

    PubMed Central

    Isidori, Andrea M.; Sbardella, Emilia; Zatelli, Maria Chiara; Boschetti, Mara; Vitale, Giovanni; Colao, Annamaria

    2015-01-01

    Context: Ectopic Cushing's Syndrome (ECS) can be a diagnostic challenge with the hormonal source difficult to find. This study analyzes the accuracy of imaging studies in ECS localization. Evidence Acquisition: Systematic review of medical literature for ECS case series providing individual patient data on at least one conventional imaging technique (computed tomography [CT]/magnetic resonance imaging) and one of the following: 111In-pentetreotide (OCT), 131I/123I-metaiodobenzylguanidine, 18F-fluoro-2-deoxyglucose-positron emission tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga-DOTATATE-PET/CT or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT). Evidence Summary: The analysis comprised 231 patients (females, 50.2%; age, 42.6 ± 17 y). Overall, 52.4% (121/231) had “overt” ECS, 18.6% had “occult” ECS, and 29% had “covert” ECS. Tumors were located in the lung (55.3%), mediastinum-thymus (7.9%), pancreas (8.5%), adrenal glands (6.4%), gastrointestinal tract (5.4%), thyroid (3.7%), and other sites (12.8%), and primary tumors were mostly bronchial neuroendocrine tumors (NETs) (54.8%), pancreatic NETs (8%), mediastinum-thymus NETs (6.9%), gastrointestinal NETs (5.3%), pheochromocytoma (6.4%), neuroblastoma (3.2%), and medullary thyroid carcinoma (3.2%). Tumors were localized by CT in 66.2% (137/207), magnetic resonance imaging in 51.5% (53/103), OCT in 48.9% (84/172), FDG-PET in 51.7% (46/89), F-DOPA-PET in 57.1% (12/21), 131/123I-metaiodobenzylguanidine in 30.8% (4/13), and 68Gallium-SSTR-PET/CT in 81.8% (18/22) of cases. Molecular imaging discovered 79.1% (53/67) of tumors unidentified by conventional radiology, with OCT the most commonly used, revealing the tumor in 64%, followed by FDG-PET in 59.4%. F-DOPA-PET was used in only seven covert cases (sensitivity, 85.7%). Notably, 68Gallium-SSTR-PET/CT had 100% sensitivity among covert cases. Conclusions: Nuclear medicine improves the sensitivity of conventional radiology when tumor site

  13. Endocardial Remodeling in Heart Failure Patients with Impaired and Preserved Left Ventricular Systolic Function--A Magnetic Resonance Image Study.

    PubMed

    Lin, Lian-Yu; Su, Mao-Yuan M; Pham, Van-Truong; Tran, Thi-Thao; Wang, Yung-Hung; Tseng, Wen-Yih I; Lo, Men-Tzung; Lin, Jiunn-Lee

    2016-02-15

    Left ventricular (LV) trabeculation has been studied in certain forms of cardiomyopathy. However, the changes of LV endocardial trabeculation during the remodeling process leading to heart failure (HF) are unclear. Seventy-four patients with systolic heart failure (SHF), 65 with heart failure with preserved ejection fraction (HFpEF) and 61 without HF were prospectively enrolled. All subjects received magnetic resonance imaging (MRI) study including cine, T1 and late gadolinium enhancement (LGE) images. Trabecular-papillary muscle (TPM) mass, fractal dimension (FD) and extracellular volume (ECV) were derived. The results showed that TPM mass index was higher in patients with SHF than that in patients with HFpEF and non-HF. The TPM mass-LV mass ratio (TPMm/LVM) was higher in SHF group than that in HFpEF and non-HF. FD was not different among groups. The presence of LGE was inversely associated with TPM mass index and TPMm/LVM while the ECV were positively associated with TPMm/LVM. The FD was positively associated with LV chamber size. In conclusion, TPM increases in patients with SHF and are probably related to myocardial cell hypertrophy and fibrotic repair during remodeling. The FD increases with the dilatation of LV chamber but remain unchanged with the deterioration of LV function.

  14. Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations.

    PubMed

    Dziuda, Łukasz; Skibniewski, Franciszek W; Krej, Mariusz; Baran, Paulina M

    2013-05-01

    We present a fiber-optic sensor for monitoring respiration and heart activity designed to operate in the magnetic resonance imaging (MRI) environment. The sensor employs a Plexiglas springboard, which converts movements of the patient's body lying on the board (i.e., lung- and heart-induced vibrations) to strain, where a fiber Bragg grating attached to the board is used to measure this strain. Experimental studies are carried out during thoracic spine MRI examinations. The presence of the metal-free sensor construction in the MRI environment does not pose a threat to the patient and has no influence over the quality of imaging, and the signal is identical to that obtained without any electromagnetic interference. The results show that the sensor is able to accurately reflect the ballistocardiographic signal, enabling determinations of the respiration rate (RR) and heart rate (HR). The data delivered by the sensor are normally distributed on the Bland-Altman plot for the characteristic point determination and exhibit clear dependence on the RR and HR values for the RR and HR determinations, respectively. Measurement accuracies are better than 7% of the average values, and thus, with further development, the sensor will be implemented in routine MRI examinations.

  15. Advances in MR imaging assessment of adults with congenital heart disease.

    PubMed

    Kathiria, Nazima N; Higgins, Charles B; Ordovas, Karen G

    2015-02-01

    Many novel cardiac MR sequences can be used for assessment of adult patients with congenital heart disease. Although most of these techniques are still primarily used in the research arena, there are many potential applications in clinical practice. Advanced cardiac MR assessment of myocardial tissue characterization, flow hemodynamics, and myocardial strain are promising tools for diagnostic and prognostic assessment late after repair of congenital heart diseases.

  16. Fully automatic segmentation of complex organ systems: example of trachea, esophagus and heart segmentation in CT images

    NASA Astrophysics Data System (ADS)

    Meyer, Carsten; Peters, Jochen; Weese, Jürgen

    2011-03-01

    Automatic segmentation is a prerequisite to efficiently analyze the large amount of image data produced by modern imaging modalities. Many algorithms exist to segment individual organs or organ systems. However, new clinical applications and the progress in imaging technology will require the segmentation of more and more complex organ systems composed of a number of substructures, e.g., the heart, the trachea, and the esophagus. The goal of this work is to demonstrate that such complex organ systems can be successfully segmented by integrating the individual organs into a general model-based segmentation framework, without tailoring the core adaptation engine to the individual organs. As an example, we address the fully automatic segmentation of the trachea (around its main bifurcation, including the proximal part of the two main bronchi) and the esophagus in addition to the heart with all chambers and attached major vessels. To this end, we integrate the trachea and the esophagus into a model-based cardiac segmentation framework. Specifically, in a first parametric adaptation step of the segmentation workflow, the trachea and the esophagus share global model transformations with adjacent heart structures. This allows to obtain a robust, approximate segmentation for the trachea even if it is only partly inside the field-of-view, and for the esophagus in spite of limited contrast. The segmentation is then refined in a subsequent deformable adaptation step. We obtained a mean segmentation error of about 0.6mm for the trachea and 2.3mm for the esophagus on a database of 23 volumetric cardiovascular CT images. Furthermore, we show by quantitative evaluation that our integrated framework outperforms individual esophagus segmentation, and individual trachea segmentation if the trachea is only partly inside the field-of-view.

  17. Risk of coronary heart disease--risk analysis in the clinical practice of aerospace medicine using a programmable calculator.

    PubMed

    Everett, W D

    1981-09-01

    A simple program for the Hewlett-Packard HP-41C calculator is presented which allows the practicing flight surgeon to screen asymptomatic aviators for risk of aeromedically significant coronary artery disease. The risk equation used in the program is under ongoing investigation at the USAF School of Aerospace Medicine and will be refined. The program allows the flight surgeon to use risk analysis to select candidates for exercise stress testing and educate aviators on possible benefits to be derived from changes in lifestyle.

  18. Introduction to cardiac imaging in infants and children: techniques, potential, and role in the imaging work-up of various cardiac malformations and other pediatric heart conditions.

    PubMed

    Bailliard, Frederique; Hughes, Marina L; Taylor, Andrew M

    2008-11-01

    The increasing prevalence of congenital heart disease (CHD) can be attributed to major improvements in diagnosis and treatment. Although echocardiography is the most commonly used imaging modality for diagnosis and follow-up of subjects with CHD, the evolution of cardiovascular magnetic resonance (MR) imaging and increasingly computed tomography (CT) does offer new ways to visualize the heart and the great vessels. The development of cardiovascular MR techniques allows for a comprehensive assessment of cardiac anatomy and function. This provides information about the long-term sequlae of the underlying complex anatomy, hemodynamic assessment of residual post-operative lesions and complications of surgery. As much of the functional data in CHD patients is usually acquired with invasive X-ray angiography, non-invasive alternatives such as cardiovascular MR (and CT) are desirable. This review evaluates the role of MR imaging in the management of subjects with CHD, particularly detailing recent developments in imaging techniques as they relate to the various CHD diagnoses we commonly encounter in our practice.

  19. Nuclear medicine

    SciTech Connect

    Wagner, H.N. Jr.

    1986-10-17

    In 1985 and 1986 nuclear medicine became more and more oriented toward in vov chemistry, chiefly as a result of advances in positron emission tomography (PET). The most important trend was the extension of PET technology into the care of patients with brain tumors, epilepsy, and heart disease. A second trend was the increasing use of single-photon emission computed tomography (SPECT).

  20. Failed heart rate control with oral metoprolol prior to coronary CT angiography: effect of additional intravenous metoprolol on heart rate, image quality and radiation dose.

    PubMed

    Jiménez-Juan, Laura; Nguyen, Elsie T; Wintersperger, Bernd J; Moshonov, Hadas; Crean, Andrew M; Deva, Djeven P; Paul, Narinder S; Torres, Felipe S

    2013-01-01

    The purpose of this study was to evaluate the effect of intravenous (i.v.) metoprolol after a suboptimal heart rate (HR) response to oral metoprolol (75-150 mg) on HR control, image quality (IQ) and radiation dose during coronary CTA using 320-MDCT. Fifty-three consecutive patients who failed to achieve a target HR of < 60 bpm after an oral dose of metoprolol and required supplementary i.v. metoprolol (5-20 mg) prior to coronary CTA were evaluated. Patients with HR < 60 bpm during image acquisition were defined as responders (R) and those with HR ≥ 60 bpm as non-responders (NR). Two observers assessed IQ using a 3-point scale (1-2, diagnostic and 3, non-diagnostic). Effective dose (ED) was estimated using dose-length product and a 0.014 mSV/mGy.cm conversion factor. Baseline characteristics and HR on arrival were similar in the two groups. 58% of patients didn't achieve the target HR after receiving i.v. metoprolol (NR). R had a significantly higher HR reduction after oral (mean HR 63.9 ± 4.5 bpm vs. 69.6 ± 5.6 bpm) (p < 0.005) and i.v. (mean HR 55.4 ± 3.9 bpm vs. 67.4 ± 5.3 bpm) (p < 0.005) doses of metoprolol. Studies from NR showed a significantly higher ED in comparison to R (8.0 ± 2.9 vs. 6.1 ± 2.2 mSv) (p = 0.016) and a significantly higher proportion of non-diagnostic coronary segments (9.2 vs. 2.5%) (p < 0.001). 58% of patients who do not achieve a HR of <60 bpm prior to coronary CTA with oral fail to respond to additional i.v. metoprolol and have studies with higher radiation dose and worse image quality.

  1. Acquisition Of Organ Slice Images In Nuclear Medicine By The Multiple-Incidence Technique

    NASA Astrophysics Data System (ADS)

    Danet, B.; Hatzigiannaki, A.; Percheron, M.; Morucci, J. P.; Guiraud, R.

    1983-08-01

    In the development of devices to represent the three-dimensional structure of radio-activated organs, Nuclear Medicine has been following the progress in Radiology. That parallelism could be observed with all principles used to get three-dimensional data : - analogical systems working by simultaneous displacement of the detector and the object, - coded-aperture imaging devices which consist of special collimators designed to obtain a dependance between the object-to-code distance and the detector response, - multiple-incidence techniques, the 3D reconstruction being extracted from the whole set of projections of the object at different orientations. That last principle was chosen in the studies that we are working on now. It is close to the principle used in Radio-Tomo-densitometry : a detector gets a set of projections as it turns around the object. From these projections, the classical reconstruction algorithms can be used : ART, SIRT, Convolution algorithms... But we have to take into account here some more specific properties : the statistic noise, the self attenuation of the radiation, the distance-dependant resolution. In this paper some correction process will be considered which can be more or less easily implemented depending of the algorithm used. Different compromises can be proposed : they depend strongly not only of the algorithm and the data-processing but also of the detector performances. In this field, this method will greatly take profit of the powerful calculators designed for the Radiographic tomodensitometry.

  2. Fast processing of digital imaging and communications in medicine (DICOM) metadata using multiseries DICOM format

    PubMed Central

    Ismail, Mahmoud; Philbin, James

    2015-01-01

    Abstract. The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies’ metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata. PMID:26158117

  3. Fast processing of digital imaging and communications in medicine (DICOM) metadata using multiseries DICOM format.

    PubMed

    Ismail, Mahmoud; Philbin, James

    2015-04-01

    The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies' metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata.

  4. Longitudinal Evaluation of Fatty Acid Metabolism in Normal and Spontaneously Hypertensive Rat Hearts with Dynamic MicroSPECT Imaging

    DOE PAGES

    Reutter, Bryan W.; Huesman, Ronald H.; Brennan, Kathleen M.; ...

    2011-01-01

    The goal of this project is to develop radionuclide molecular imaging technologies using a clinical pinhole SPECT/CT scanner to quantify changes in cardiac metabolism using the spontaneously hypertensive rat (SHR) as a model of hypertensive-related pathophysiology. This paper quantitatively compares fatty acid metabolism in hearts of SHR and Wistar-Kyoto normal rats as a function of age and thereby tracks physiological changes associated with the onset and progression of heart failure in the SHR model. The fatty acid analog, 123 I-labeled BMIPP, was used in longitudinal metabolic pinhole SPECT imaging studies performed every seven months for 21 months. The uniquenessmore » of this project is the development of techniques for estimating the blood input function from projection data acquired by a slowly rotating camera that is imaging fast circulation and the quantification of the kinetics of 123 I-BMIPP by fitting compartmental models to the blood and tissue time-activity curves.« less

  5. Self-Navigated Low-Rank MRI for MPIO-Labeled Immune Cell Imaging of the Heart

    PubMed Central

    Christodoulou, Anthony G.; Wu, Yijen L.; Hitchens, T. Kevin; Ho, Chien; Liang, Zhi-Pei

    2017-01-01

    Super-paramagnetic iron oxide (SPIO) particles can magnetically label immune cells in circulation; the accumulation of labeled cells can then be detected by magnetic resonance imaging (MRI). This has enormous potential for imaging inflammatory responses in the heart, but it has been difficult to do in vivo using conventional free-breathing, ungated cardiac imaging. Subspace imaging with temporal navigation and sparse sampling of (k, t)-space has previously been used to accelerate several cardiac imaging applications, conventionally alternating between acquiring navigator data and sparse data every other TR. Here we describe a more efficient self-navigated pulse sequence to acquire both navigator and sparse (k, t)-space data in the space of a single TR, doubling imaging speed to approach 100 frames per second (fps). We show the feasibility of using the resulting method to assess myocardial inflammation in a pre-clinical rodent ischemic reperfusion injury (IRI) model using micron-sized paramagnetic iron oxide (MPIO) particles to label immune cells in situ. PMID:25570261

  6. Cardiac imaging of congenital heart diseases during interventional procedures continues to evolve: Pros and cons of the main techniques.

    PubMed

    Hascoët, Sebastien; Warin-Fresse, Karine; Baruteau, Alban-Elouen; Hadeed, Khaled; Karsenty, Clement; Petit, Jérôme; Guérin, Patrice; Fraisse, Alain; Acar, Philippe

    2016-02-01

    Cardiac catheterization has contributed to the progress made in the management of patients with congenital heart disease (CHD). First, it allowed clarification of the diagnostic assessment of CHD, by offering a better understanding of normal cardiac physiology and the pathophysiology and anatomy of complex malformations. Then, it became an alternative to surgery and a major component of the therapeutic approach for some CHD lesions. Nowadays, techniques have evolved and cardiac catheterization is widely used to percutaneously close intracardiac shunts, to relieve obstructive valvar or vessel lesions, and for transcatheter valve replacement. Accurate imaging is mandatory to guide these procedures. Cardiac imaging during catheterization of CHD must provide accurate images of lesions, surrounding cardiac structures, medical devices and tools used to deliver them. Cardiac imaging has to be 'real-time' with an excellent temporal resolution to ensure 'eyes-hands' synchronization and 'device-target area' accurate positioning. In this comprehensive review, we provide an overview of conventional cardiac imaging tools used in the catheterization laboratory in daily practice, as well as the effect of recent evolution and future imaging modalities.

  7. Early management of patients with acute heart failure: state of the art and future directions. A consensus document from the society for academic emergency medicine/heart failure society of America acute heart failure working group.

    PubMed

    Collins, Sean; Storrow, Alan B; Albert, Nancy M; Butler, Javed; Ezekowitz, Justin; Felker, G Michael; Fermann, Gregory J; Fonarow, Gregg C; Givertz, Michael M; Hiestand, Brian; Hollander, Judd E; Lanfear, David E; Levy, Phillip D; Pang, Peter S; Peacock, W Frank; Sawyer, Douglas B; Teerlink, John R; Lenihan, Daniel J

    2015-01-01

    Heart failure (HF) afflicts nearly 6 million Americans, resulting in one million emergency department (ED) visits and over one million annual hospital discharges. An aging population and improved survival from cardiovascular diseases is expected to further increase HF prevalence. Emergency providers play a significant role in the management of patients with acute heart failure (AHF). It is crucial that emergency physicians and other providers involved in early management understand the latest developments in diagnostic testing, therapeutics and alternatives to hospitalization. Further, clinical trials must be conducted in the ED in order to improve the evidence base and drive optimal initial therapy for AHF. Should ongoing and future studies suggest early phenotype-driven therapy improves in-hospital and post-discharge outcomes, ED treatment decisions will need to evolve accordingly. The potential impact of future studies which incorporate risk-stratification into ED disposition decisions cannot be underestimated. Predictive instruments that identify a cohort of patients safe for ED discharge, while simultaneously addressing barriers to successful outpatient management, have the potential to significantly impact quality of life and resource expenditures.

  8. An anthropomorphic beating heart phantom for cardiac x-ray CT imaging evaluation.

    PubMed

    Boltz, Thomas; Pavlicek, William; Paden, Robert; Renno, Markus; Jensen, Angela; Akay, Metin

    2010-01-28

    The current work describes an anthropomorphic beating heart phantom constructed as a tool for the assessment of technological advances in cardiac x-ray computed tomography (CT). The phantom is comprised of a thorax, a compressor system, an ECG system, a beating heart with tortuous coronary arteries, and the option to add or remove pathologies such as aberrant beats, stents, and plaques. Initial trials with the phantom have shown its utility to assess temporal resolution, spatial resolution, radiation dose, iodine contrast, stents, and plaques.

  9. Assessment of the Reporting Quality of Randomized Controlled Trials on Treatment of Coronary Heart Disease with Traditional Chinese Medicine from the Chinese Journal of Integrated Traditional and Western Medicine: A Systematic Review

    PubMed Central

    Fan, Fang-fang; Xu, Qin; Sun, Qi; Zhao, Sheng-jun; Wang, Ping; Guo, Xue-rui

    2014-01-01

    Background Due to language limitations, little is known about the reporting quality of randomized clinical trials (RCTs) on the treatment of coronary heart disease (CHD) with traditional Chinese medicine (TCM) in Chinese Journal of Integrated Traditional and Western Medicine (CJITWM). Objective In this study, we utilized the CONSORT 2010 statement to understand the reporting quality of RCTs on CHD with TCM from the CJITWM. Methods The China National Knowledge Infrastructure (CNKI) electronic database was searched for CJITWM RCTs on the treatment of CHD with TCM, published between Janurary 1, 2006 and December 31, 2011. We excluded articles reported as “animal studies,” “topic review,” “diagnostic test,” “editorials,” or “others.” The CONSORT checklist was applied to evaluate the reporting quality of all eligible articles by two independent authors after extensive discussion. Each item was graded as either “yes” or “no” depending on whether the authors had reported it or not. Results We identified 21 articles meeting our inclusion criteria. The percentage of 11 of the 37 items was 4.8∼95.2%, 14 of the 37 items were reported in all included articles, while 12 items were not mentioned at all. The average reporting percentage for the “title and abstract” section was 52.4%, for the “introduction” section 100.0%, for the “methods” section 45.4%, for the “results” section 57.1%, for the “discussion” section 79.4%, and for the “other information” section 17.5%. Conclusion In general, the reviewed RCTs were not consistent with the CONSORT 2010 statement. Authors should adhere to the CONSORT statement in reporting RCTs; editorial departments may consider the CONSORT statement as a guideline and should instruct authors to write manuscripts, and reviewers to judge them according to CONSORT statutes. PMID:24489719

  10. Cine viability magnetic resonance imaging of the heart without increased scan time.

    PubMed

    Hassanein, Azza S; Khalifa, Ayman M; Ibrahim, El-Sayed H

    2016-02-01

    Cardiac magnetic resonance imaging (MRI) provides information about myocardial morphology, function, and viability from cine, tagged, and late gadolinium enhancement (LGE) images, respectively. While the cine and tagged images are acquired in a time-resolved fashion, the LGE images are acquired at a single timeframe. The purpose of this work is to develop a method for generating cine LGE images without additional scan time. The motion field is extracted from the tagged images, and is then used to guide the deformation of the infarcted region from the acquired LGE image at the acquired timeframe to any other timeframe. Major techniques for motion estimation, including harmonic phase (HARP) and optical flow analysis, are tested in this work for motion estimation. The proposed method is tested on numerical phantom and images from four human subjects. The generated cine LGE images showed both viability and wall motion information in the same set of images without additional scan time or image misregistration problems. The band-pass optical flow analysis resulted in the most accurate motion estimation compared to other methods, especially HARP, which fails to track points at the myocardial boundary. Infarct transmurality from the generated images showed good agreement with myocardial strain, and wall thickening showed good agreement with that measured from conventional cine images. In conclusion, the developed technique allows for generating cine LGE images that enable simultaneous display of wall motion and viability information. The generated images could be useful for estimating myocardial contractility reserve and for treatment prognosis.

  11. Up-to-date review of nuclear medicine applications in pediatric thoracic imaging.

    PubMed

    Kwatra, Neha S; Grant, Frederick D; Lim, Ruth; Lee, Edward Y

    2016-04-16

    Nuclear medicine has an important role in the evaluation of various congenital and acquired pediatric chest diseases. Although the radiopharmaceuticals and nuclear medicine examinations used in children are broadly the same as in adults, there are some key differences in clinical indications and underlying disorders. This article provides the reader with an up-to-date review of practice of nuclear medicine as it relates to the pediatric chest, including its current role and future applications.

  12. Optimization of a Model Corrected Blood Input Function from Dynamic FDG-PET Images of Small Animal Heart In Vivo

    PubMed Central

    Zhong, Min; Kundu, Bijoy K.

    2013-01-01

    Quantitative evaluation of dynamic Positron Emission Tomography (PET) of mouse heart in vivo is challenging due to the small size of the heart and limited intrinsic spatial resolution of the PET scanner. Here, we optimized a compartment model which can simultaneously correct for spill over and partial volume effects for both blood pool and the myocardium, compute kinetic rate parameters and generate model corrected blood input function (MCBIF) from ordered subset expectation maximization – maximum a posteriori (OSEM-MAP) cardiac and respiratory gated 18F-FDG PET images of mouse heart with attenuation correction in vivo, without any invasive blood sampling. Arterial blood samples were collected from a single mouse to indicate the feasibility of the proposed method. In order to establish statistical significance, venous blood samples from n=6 mice were obtained at 2 late time points, when SP contamination from the tissue to the blood is maximum. We observed that correct bounds and initial guesses for the PV and SP coefficients accurately model the wash-in and wash-out dynamics of the tracer from mouse blood. The residual plot indicated an average difference of about 1.7% between the blood samples and MCBIF. The downstream rate of myocardial FDG influx constant, Ki (0.15±0.03 min−1), compared well with Ki obtained from arterial blood samples (P=0.716). In conclusion, the proposed methodology is not only quantitative but also reproducible. PMID:24741130

  13. Experimental investigations on the fluid-mechanics of an electrospun heart valve by means of particle image velocimetry.

    PubMed

    Del Gaudio, Costantino; Gasbarroni, Pier Luca; Romano, Giovanni Paolo

    2016-12-01

    End-stage failing heart valves are currently replaced by mechanical or biological prostheses. Both types positively contribute to restore the physiological function of native valves, but a number of drawbacks limits the expected performances. In order to improve the outcome, tissue engineering can offer an alternative approach to design and fabricate innovative heart valves capable to support the requested function and to promote the formation of a novel, viable and correctly operating physiological structure. This potential result is particularly critical if referred to the aortic valve, being the one mainly exposed to structural and functional degeneration. In this regard, the here proposed study presents the fabrication and in vitro characterization of a bioresorbable electrospun heart valve prosthesis using the particle image velocimetry technique either in physiological and pathological fluid dynamic conditions. The scaffold was designed to reproduce the aortic valve geometry, also mimicking the fibrous structure of the natural extracellular matrix. To evaluate its performances for possible implantation, the flow fields downstream the valve were accurately investigated and compared. The experimental results showed a correct functionality of the device, supported by the formation of vortex structures at the edge of the three cusps, with Reynolds stress values below the threshold for the risk of hemolysis (which can be comprised in the range 400-4000N/m(2) depending on the exposure period), and a good structural resistance to the mechanical loads generated by the driving pressure difference.

  14. Free-breathing diffusion tensor imaging and tractography of the human heart in healthy volunteers using wavelet-based image fusion.

    PubMed

    Wei, Hongjiang; Viallon, Magalie; Delattre, Benedicte M A; Moulin, Kevin; Yang, Feng; Croisille, Pierre; Zhu, Yuemin

    2015-01-01

    Free-breathing cardiac diffusion tensor imaging (DTI) is a promising but challenging technique for the study of fiber structures of the human heart in vivo. This work proposes a clinically compatible and robust technique to provide three-dimensional (3-D) fiber architecture properties of the human heart. To this end, 10 short-axis slices were acquired across the entire heart using a multiple shifted trigger delay (TD) strategy under free breathing conditions. Interscan motion was first corrected automatically using a nonrigid registration method. Then, two post-processing schemes were optimized and compared: an algorithm based on principal component analysis (PCA) filtering and temporal maximum intensity projection (TMIP), and an algorithm that uses the wavelet-based image fusion (WIF) method. The two methods were applied to the registered diffusion-weighted (DW) images to cope with intrascan motion-induced signal loss. The tensor fields were finally calculated, from which fractional anisotropy (FA), mean diffusivity (MD), and 3-D fiber tracts were derived and compared. The results show that the comparison of the FA values (FA(PCATMIP) = 0.45 ±0.10, FA(WIF) = 0.42 ±0.05, P=0.06) showed no significant difference, while the MD values ( MD(PCATMIP)=0.83 ±0.12×10(-3) mm (2)/s, MD(WIF)=0.74±0.05×10(-3) mm (2)/s, P=0.028) were significantly different. Improved helix angle variations through the myocardium wall reflecting the rotation characteristic of cardiac fibers were observed with WIF. This study demonstrates that the combination of multiple shifted TD acquisitions and dedicated post-processing makes it feasible to retrieve in vivo cardiac tractographies from free-breathing DTI acquisitions. The substantial improvements were observed using the WIF method instead of the previously published PCATMIP technique.

  15. Approaches to enhancing radiation safety in cardiovascular imaging: a scientific statement from the American Heart Association.

    PubMed

    Fazel, Reza; Gerber, Thomas C; Balter, Stephen; Brenner, David J; Carr, J Jeffrey; Cerqueira, Manuel D; Chen, Jersey; Einstein, Andrew J; Krumholz, Harlan M; Mahesh, Mahadevappa; McCollough, Cynthia H; Min, James K; Morin, Richard L; Nallamothu, Brahmajee K; Nasir, Khurram; Redberg, Rita F; Shaw, Leslee J

    2014-11-04

    Education, justification, and optimization are the cornerstones to enhancing the radiation safety of medical imaging. Education regarding the benefits and risks of imaging and the principles of radiation safety is required for all clinicians in order for them to be able to use imaging optimally. Empowering patients with knowledge of the benefits and risks of imaging will facilitate their meaningful participation in decisions related to their health care, which is necessary to achieve patient-centered care. Limiting the use of imaging to appropriate clinical indications can ensure that the benefits of imaging outweigh any potential risks. Finally, the continually expanding repertoire of techniques that allow high-quality imaging with lower radiation exposure should be used when available to achieve safer imaging. The implementation of these strategies in practice is necessary to achieve high-quality, patient-centered imaging and will require a shared effort and investment by all stakeholders, including physicians, patients, national scientific and educational organizations, politicians, and industry.

  16. Left heart ventricular angiography

    MedlinePlus

    ... pressure when the catheter is inserted. Occasionally, a flushing sensation or a feeling that you need to ... E, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, PA: Elsevier Saunders; 2015: ...

  17. Usefulness of Cardiac Sympathetic Nerve Imaging Using (123)Iodine-Metaiodobenzylguanidine Scintigraphy for Predicting Sudden Cardiac Death in Patients With Heart Failure.

    PubMed

    Kasama, Shu; Toyama, Takuji; Kurabayashi, Masahiko

    2016-01-01

    The autonomic nervous system plays an important role in the human heart. Activation of the cardiac sympathetic nervous system is a cardinal pathophysiological abnormality associated with the failing human heart. Myocardial imaging using (123)I-metaiodobenzylguanidine (MIBG), an analog of norepinephrine, can be used to investigate the activity of norepinephrine, the predominant neurotransmitter of the sympathetic nervous system. Many clinical trials have demonstrated that (123)I-MIBG scintigraphic parameters predict cardiac adverse events, especially sudden cardiac death, in patients with heart failure. In this review, we summarize results from published studies that have focused on the use of cardiac sympathetic nerve imaging using (123)I-MIBG scintigraphy for risk stratification of sudden cardiac death in patients with heart failure.

  18. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  19. Mirror-image duplication of the primary axis and heart in Xenopus embryos by the overexpression of Msx-1 gene.

    PubMed

    Chen, Y; Solursh, M

    1995-10-01

    The Msx-1 gene (formerly known as Hox-7) is a member of a discrete subclass of homeobox-containing genes. Examination of the expression pattern of Msx-1 in murine and avian embryos suggests that this gene may be involved in the regionalization of the medio-lateral axis during earlier development. We have examined the possible functions of Xenopus Msx-1 during early Xenopus embryonic development by overexpression of the Msx-1 gene. Overexpression of Msx-1 causes a left-right mirror-image duplication of primary axial structures, including notochord, neural tube, somites, suckers, and foregut. The embryonic developing heart is also mirror-image duplicated, including looping directions and polarity. These results indicate that Msx-1 may be involved in the mesoderm formation as well as left-right patterning in the early Xenopus embryonic development.

  20. Prospectively versus retrospectively ECG-gated 256-slice coronary CT angiography: image quality and radiation dose over expanded heart rates.

    PubMed

    Hou, Yang; Yue, Yong; Guo, Wenli; Feng, Guoqiang; Yu, Tao; Li, Guangwei; Vembar, Mani; Olszewski, Mark E; Guo, Qiyong

    2012-01-01

    To compare image quality and radiation dose estimates for coronary computed tomography angiography (CCTA) obtained with a prospectively gated transaxial (PGT) CT technique and a retrospectively gated helical (RGH) CT technique using a 256-slice multidetector CT (MDCT) scanner and establish an upper limit of heart rate to achieve reliable diagnostic image quality using PGT. 200 patients (135 males, 65 females) with suspected coronary artery disease (CAD) underwent CCTA on a 256-slice MDCT scanner. The PGT patients were enrolled prospectively from January to June, 2009. For each PGT patient, we found the paired ones in retrospective-gating patients database and randomly selected one patient in these match cases and built up the RGH group. Image quality for all coronary segments was assessed and compared between the two groups using a 4-point scale (1: non-diagnostic; 4: excellent). Effective radiation doses were also compared. The average heart rate ± standard deviation (HR ± SD) between the two groups was not significantly different (PGT: 64.6 ± 12.9 bpm, range 45-97 bpm; RGH: 66.7 ± 10.9 bpm, range 48-97 bpm, P = 0.22). A receiver-operating characteristic (ROC) analysis determined a cutoff HR of 75 bpm up to which diagnostic image quality could be achieved using the PGT technique (P < 0.001). There were no significant differences in assessable coronary segments between the two groups for HR ≤ 75 bpm (PGT: 99.9% [961 of 962 segments]; RGH: 99.8% [1038 of 1040 segments]; P = 1.0). At HR > 75 bpm, the performance of the PGT technique was affected, resulting in a moderate reduction of percentage assessable coronary segments using this approach (PGT: 95.5% [323 of 338 segments]; RGH: 98.5% [261 of 265 segments]; P = 0.04). The mean estimated effective radiation dose for the PGT group was 3.0 ± 0.7 mSv, representing reduction of 73% compared to that of the RGH group (11.1 ± 1.6 mSv) (P < 0.001). Prospectively-gated axial coronary computed tomography using a 256

  1. The role of comparative effectiveness research in transfusion medicine clinical trials: proceedings of a National Heart, Lung, and Blood Institute workshop.

    PubMed

    Blajchman, Morris A; Carson, Jeffrey L; Eikelboom, John W; Heddle, Nancy M; Lacroix, Jacques; Lauer, Michael S; Platt, Richard; Tilley, Barbara; Triulzi, Darrell; Vickers, Andrew J; Yusuf, Salim; Glynn, Simone; Mondoro, Traci Heath; Wagner, Elizabeth

    2012-06-01

    Comparative effectiveness research (CER) is the study of existing treatments or ways to deliver health care to determine what intervention works best under specific circumstances. CER evaluates evidence from existing studies or generates new evidence, in different populations and under specific conditions in which the treatments are actually used. CER does not embrace one research design over another but compares treatments and variations in practice using methods that are most likely to yield widely generalizable results that are directly relevant to clinical practice. Treatments used in transfusion medicine (TM) are among the most widely used in clinical practice, but are among the least well studied. High-quality evidence is lacking for most transfusion practices, with research efforts hampered by regulatory restrictions and ethical barriers. To begin addressing these issues, the National Heart, Lung, and Blood Institute convened a workshop in June 2011 to address the potential role of CER in the generation of high-quality evidence for TM decision making. Workshop goals were to: 1) evaluate the current landscape of clinical research, 2) review the potential application of CER methods to clinical research, 3) assess potential barriers to the use of CER methodology, 4) determine whether pilot or vanguard studies can be used to facilitate planning of future CER research, and 5) consider the need for and delivery of training in CER methods for researchers.

  2. An automated multi-modal object analysis approach to coronary calcium scoring of adaptive heart isolated MSCT images

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2012-02-01

    Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. This can be challenging for a human observer as it is difficult to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. The inclusion or exclusion of false positive or true positive calcified plaques respectively will alter the patient calcium score incorrectly, thus leading to the possibility of incorrect treatment prescription. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the Volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the requirement and

  3. The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart

    PubMed Central

    Fonseca, Carissa G.; Backhaus, Michael; Bluemke, David A.; Britten, Randall D.; Chung, Jae Do; Cowan, Brett R.; Dinov, Ivo D.; Finn, J. Paul; Hunter, Peter J.; Kadish, Alan H.; Lee, Daniel C.; Lima, Joao A. C.; Medrano−Gracia, Pau; Shivkumar, Kalyanam; Suinesiaputra, Avan; Tao, Wenchao; Young, Alistair A.

    2011-01-01

    Motivation: Integrative mathematical and statistical models of cardiac anatomy and physiology can play a vital role in understanding cardiac disease phenotype and planning therapeutic strategies. However, the accuracy and predictive power of such models is dependent upon the breadth and depth of noninvasive imaging datasets. The Cardiac Atlas Project (CAP) has established a large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable, web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and educational purposes. A goal of CAP is to facilitate collaborative statistical analysis of regional heart shape and wall motion and characterize cardiac function among and within population groups. Results: Three main open-source software components were developed: (i) a database with web-interface; (ii) a modeling client for 3D + time visualization and parametric description of shape and motion; and (iii) open data formats for semantic characterization of models and annotations. The database was implemented using a three-tier architecture utilizing MySQL, JBoss and Dcm4chee, in compliance with the DICOM standard to provide compatibility with existing clinical networks and devices. Parts of Dcm4chee were extended to access image specific attributes as search parameters. To date, approximately 3000 de-identified cardiac imaging examinations are available in the database. All software components developed by the CAP are open source and are freely available under the Mozilla Public License Version 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt). Availability: http://www.cardiacatlas.org Contact: a.young@auckland.ac.nz Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21737439

  4. Heart Health - Brave Heart

    MedlinePlus

    ... Bar Home Current Issue Past Issues Cover Story Heart Health Brave Heart Past Issues / Winter 2009 Table of Contents For ... you can have a good life after a heart attack." Lifestyle Changes Surviving—and thriving—after such ...

  5. Development of more efficacious [Tc]-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceuticals

    SciTech Connect

    Heineman, W.R.

    1993-05-03

    This research program is detailed at development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents to provide diagnostic information concerning a given pathological condition. Analytical techniques are being developed to enable complete analysis of radiopharmaceutical preparations so that individual complexes can be characterized with respect to imaging efficacy and to enable a radiopharmaceutical to be monitored after injection into a test animal to determine the species that actually accumulates in an organ to provide the image. Administration of the isolated, single most effective imaging complex, rather than a mixture of technetium-containing complexes, wi-11 minimize radiation exposure to the patient and maximize diagnostic information available to the clinician. This report specifically describes the development of capillary electrophoresis (CE) for characterizating diphosphonate skeletal imaging agents. Advances in the development of electrochemical and fiber optic sensors for Tc and Re imaging agents are described. These sensors will ultimately be capable of monitoring a specific chemical state of an imaging agent in vivo after injection into a test animal by implantation in the organ of interest.

  6. [The effectiveness of romifidine on myocardial function in horses with and without heart disease, evaluated with M-mode echocardiography and PW-tissue Doppler imaging].

    PubMed

    Nagel, Deborah; Gehlen, Heidrun

    2013-01-01

    The aim of this study was to evaluate to what extent the myocardial function in horses (measured by PW-tissue Doppler = PW-TDI) is affected during a sedation with romifidine (0.04 mg/kg, i. v.), particularly in case of an accompanying heart disease. Based on an echo- and electrocardiographic examination, a total of 45 horses was subdivided into group 1 (no heart disease), group 2 (heart disease without increased heart dimensions) and group 3 (heart disease with increased heart dimensions). Heart rate (HF), M-mode- (FS%) and TDI-measurements were performed before and after the application of romifidine. The velocities of the radial myocardial movement in the left and right ventricular wall were evaluated using PW-TDI. The TDI parameters included the isovolumic contraction (IVC), the systolic (S) as well as the early (E) and late diastolic maximal velocity (A). After the application of romifidine HF and FS were significantly decreased in all groups. IVC, S and E, determined by PW-TDI were also significantly decreased in both ventricular walls. A significant difference between groups was shown for the isovolumic contraction in the left ventricular wall. This was observed distinctly more in horses with heart disease and increased heart dimensions compared to horses with heart disease but no increased heart dimensions. The results of the study indicate that PW-TDI is a suitable imaging technique to analyse the effects of romifidine on equine myocardial function. The major percentage change after application of romifidine for TDI measurements compared to the M-mode parameters indicate that the parameter myocardial velocity measured with TDI appeared to be the most sensitive parameter to document romifidine--induced changes on the myocardium.

  7. Acute myocardial infarction in a patient with anomalous origin of the right coronary artery: depiction at whole-heart coronary magnetic resonance angiography and delayed-enhanced imaging.

    PubMed

    Ishii, Mitsuru; Sato, Yuichi; Matsumoto, Naoya; Kunimasa, Taeko; Tani, Shigemasa; Tachibana, Eizo; Kikushima, Kimio; Nagao, Ken; Saito, Satoshi; Hirayama, Atsushi

    2008-12-17

    A 71-year-old man was admitted to our hospital because of anterior chest pain. His electrocardiogram showed ST-segment depression and cardiac enzymes were normal. Non-ST-elevation acute myocardial infarction was suspected and whole-heart magnetic resonance imaging was performed. Whole-heart coronary magnetic resonance angiography (MRA) showed an anomalous origin of the right coronary artery from the left sinus of Valsalva and delayed-enhanced imaging showed transmural hyperenhancement of the inferior wall. Coronary angiography revealed the anomalous origin of the right coronary artery (RCA) from the left sinus of Valsalva and occlusion in the proximal portion of the RCA. Coronary revascularization was achieved by intracoronary thrombolysis followed by stent implantation. Whole-heart coronary MRA and delayed-enhanced imaging allows simultaneous assessment of coronary artery anomaly and extent of myocardial infarction.

  8. Congenital complete heart block.

    PubMed Central

    Agarwala, B.; Sheikh, Z.; Cibils, L. A.

    1996-01-01

    Congenital complete heart block in utero has become diagnosed more frequently with the clinical use of fetal echocardiography. The fetus with complete heart block may remain asymptomatic or may develop congestive heart failure. Congenital complete heart block is more frequently seen in infants of mothers with systemic lupus erythematosus, both clinically manifested and subclinical systemic lupus erythematosus with positive antibodies (SS-A and SS-B antibodies). At birth, the neonate with complete heart block may remain asymptomatic and may not require a pacemaker to increase the heart rate. The indications for a pacemaker in neonates with complete heart block have been discussed. Both in-utero and neonatal management of congenital complete heart block are discussed to manage congestive heart failure in a fetus. Four patients with congenital complete heart block are presented covering a broad spectrum of clinical presentation, diagnosis, and management both in the fetal and neonatal period. Images Figure 1 PMID:8961692

  9. Facilitating and securing offline e-medicine service through image steganography.

    PubMed

    Kamal, A H M; Islam, M Mahfuzul

    2014-06-01

    E-medicine is a process to provide health care services to people using the Internet or any networking technology. In this Letter, a new idea is proposed to model the physical structure of the e-medicine system to better provide offline health care services. Smart cards are used to authenticate the user singly. A very unique technique is also suggested to verify the card owner's identity and to embed secret data to the card while providing patients' reports either at booths or at the e-medicine server system. The simulation results of card authentication and embedding procedure justify the proposed implementation.

  10. Facilitating and securing offline e-medicine service through image steganography

    PubMed Central

    Islam, M. Mahfuzul

    2014-01-01

    E-medicine is a process to provide health care services to people using the Internet or any networking technology. In this Letter, a new idea is proposed to model the physical structure of the e-medicine system to better provide offline health care services. Smart cards are used to authenticate the user singly. A very unique technique is also suggested to verify the card owner's identity and to embed secret data to the card while providing patients' reports either at booths or at the e-medicine server system. The simulation results of card authentication and embedding procedure justify the proposed implementation. PMID:26609382

  11. Factors impacting echocardiographic imaging after the Fontan procedure: a report from the pediatric heart network fontan cross-sectional study.

    PubMed

    Williams, Richard V; Margossian, Renee; Lu, Minmin; Atz, Andrew M; Bradley, Timothy J; Jay Campbell, Michael; Colan, Steven D; Gallagher, Dianne; Lai, Wyman W; Pearson, Gail D; Prakash, Ashwin; Shirali, Girish; Cohen, Meryl S

    2013-10-01

    Echocardiographic image quality in Fontan survivors may be limited by a variety of factors. We sought to describe echocardiographic quality and factors associated with study quality in subjects participating in the Pediatric Heart Network Fontan Cross-Sectional Study. Echocardiograms were obtained at 7 clinical sites using a standard protocol. Quality grading and analysis were performed by a core laboratory. Univariate and multivariable modeling were performed to assess factors associated with quality and ability to obtain images sufficient for prespecified quantitative analysis. A total of 543 echocardiograms were obtained. The quality of echocardiograms improved over the duration of the study. The great arteries, systemic veins, and pulmonary veins were less likely to be adequately imaged than other cardiac structures. Quantitative analysis of ventricular volume was possible in 76% overall, but only 41% of those with mixed ventricular morphology. Factors independently associated with better quality included younger age, levocardia, acquisition of the echocardiogram at a longer time since the beginning of enrollment, absence of a pulmonary artery stent, and clinical site. Patient and center-specific factors are associated with echocardiographic quality after the Fontan procedure. Increased familiarity and experience with a standard imaging protocol is likely to result in improved quality.

  12. Heart Failure

    MedlinePlus

    ... version of this page please turn Javascript on. Heart Failure What is Heart Failure? In heart failure, the heart cannot pump enough ... failure often experience tiredness and shortness of breath. Heart Failure is Serious Heart failure is a serious and ...

  13. [Situation of supply and boom of PET imaging: what is the future for technetium-99m in nuclear medicine?].

    PubMed

    Maia, S; Ayachi Hatit, N; Paycha, F

    2011-05-01

    Molecular imaging has shown its interest in the diagnosis, staging and therapy monitoring of many diseases, especially in the field of cancer. This imaging modality can detect non-invasively early molecular changes specific to these diseases. Its expansion includes two aspects linked firstly with the advanced techniques of imaging modalities and secondly with the development of tracers as radio pharmaceuticals for imaging new molecular targets. Technetium-99m ((99m)Tc), because of its physical characteristics, its widespread availability and low cost, is the most used radionuclide in molecular imaging with the technique of single photon emission computed tomography (SPECT). Nevertheless, the current difficulty concerning the supply and the great interest of Positron Emission Tomography (PET), the "competitor" imaging modality-using molecules labelled with fluorine-18 ((18)F), legitimates the question about the future of (99m)Tc, its supremacy and the emergence of new tracer labelled with (99m)Tc. Focusing on the actual and future supply situation, the place of SPECT imaging in nuclear medicine, as well as the development of new molecules labelled with (99m)Tc is necessary to show that this radionuclide will remain essential for the speciality in the next years.

  14. Imaging the heart of astrophysical objects with optical long-baseline interferometry

    NASA Astrophysics Data System (ADS)

    Berger, J.-P.; Malbet, F.; Baron, F.; Chiavassa, A.; Duvert, G.; Elitzur, M.; Freytag, B.; Gueth, F.; Hönig, S.; Hron, J.; Jang-Condell, H.; Le Bouquin, J.-B.; Monin, J.-L.; Monnier, J. D.; Perrin, G.; Plez, B.; Ratzka, T.; Renard, S.; Stefl, S.; Thiébaut, E.; Tristram, K. R. W.; Verhoelst, T.; Wolf, S.; Young, J.

    2012-06-01

    The number of publications of aperture-synthesis images based on optical long-baseline interferometry measurements has recently increased due to easier access to visible and infrared interferometers. The interferometry technique has now reached a technical maturity level that opens new avenues for numerous astrophysical topics requiring milli-arcsecond model-independent imaging. In writing this paper our motivation was twofold: (1) review and publicize emblematic excerpts of the impressive corpus accumulated in the field of optical interferometry image reconstruction; (2) discuss future prospects for this technique by selecting four representative astrophysical science cases in order to review the potential benefits of using optical long-baseline interferometers. For this second goal we have simulated interferometric data from those selected astrophysical environments and used state-of-the-art codes to provide the reconstructed images that are reachable with current or soon-to-be facilities. The image-reconstruction process was "blind" in the sense that reconstructors had no knowledge of the input brightness distributions. We discuss the impact of optical interferometry in those four astrophysical fields. We show that image-reconstruction software successfully provides accurate morphological information on a variety of astrophysical topics and review the current strengths and weaknesses of such reconstructions. We investigate how to improve image reconstruction and the quality of the image possibly by upgrading the current facilities. We finally argue that optical interferometers and their corresponding instrumentation, existing or to come, with six to ten telescopes, should be well suited to provide images of complex sceneries.

  15. Postinfarct Left Ventricular Remodelling: A Prevailing Cause of Heart Failure

    PubMed Central

    Galli, Alessio; Lombardi, Federico

    2016-01-01

    Heart failure is a chronic disease with high morbidity and mortality, which represents a growing challenge in medicine. A major risk factor for heart failure with reduced ejection fraction is a history of myocardial infarction. The expansion of a large infarct scar and subsequent regional ventricular dilatation can cause postinfarct remodelling, leading to significant enlargement of the left ventricular chamber. It has a negative prognostic value, because it precedes the clinical manifestations of heart failure. The characteristics of the infarcted myocardium predicting postinfarct remodelling can be studied with cardiac magnetic resonance and experimental imaging modalities such as diffusion tensor imaging can identify the changes in the architecture of myocardial fibers. This review discusses all the aspects related to postinfarct left ventricular remodelling: definition, pathogenesis, diagnosis, consequences, and available therapies, together with experimental interventions that show promising results against postinfarct remodelling and heart failure. PMID:26989555

  16. Heart failure

    PubMed Central

    2011-01-01

    Introduction Heart failure occurs in 3% to 4% of adults aged over 65 years, usually as a consequence of coronary artery disease or hypertension, and causes breathlessness, effort intolerance, fluid retention, and increased mortality. The 5-year mortality in people with systolic heart failure ranges from 25% to 75%, often owing to sudden death following ventricular arrhythmia. Risks of cardiovascular events are increased in people with left ventricular systolic dysfunction (LVSD) or heart failure. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of multidisciplinary interventions for heart failure? What are the effects of exercise in people with heart failure? What are the effects of drug treatments for heart failure? What are the effects of devices for treatment of heart failure? What are the effects of coronary revascularisation for treatment of heart failure? What are the effects of drug treatments in people at high risk of heart failure? What are the effects of treatments for diastolic heart failure? We searched: Medline, Embase, The Cochrane Library, and other important databases up to August 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 80 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: aldosterone receptor antagonists, amiodarone, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, anticoagulation, antiplatelet agents, beta-blockers, calcium

  17. Registration of dynamic multiview 2D ultrasound and late gadolinium enhanced images of the heart: Application to hypertrophic cardiomyopathy characterization.

    PubMed

    Betancur, Julián; Simon, Antoine; Halbert, Edgar; Tavard, François; Carré, François; Hernández, Alfredo; Donal, Erwan; Schnell, Frédéric; Garreau, Mireille

    2016-02-01

    Describing and analyzing heart multiphysics requires the acquisition and fusion of multisensor cardiac images. Multisensor image fusion enables a combined analysis of these heterogeneous modalities. We propose to register intra-patient multiview 2D+t ultrasound (US) images with multiview late gadolinium-enhanced (LGE) images acquired during cardiac magnetic resonance imaging (MRI), in order to fuse mechanical and tissue state information. The proposed procedure registers both US and LGE to cine MRI. The correction of slice misalignment and the rigid registration of multiview LGE and cine MRI are studied, to select the most appropriate similarity measure. It showed that mutual information performs the best for LGE slice misalignment correction and for LGE and cine registration. Concerning US registration, dynamic endocardial contours resulting from speckle tracking echocardiography were exploited in a geometry-based dynamic registration. We propose the use of an adapted dynamic time warping procedure to synchronize cardiac dynamics in multiview US and cine MRI. The registration of US and LGE MRI was evaluated on a dataset of patients with hypertrophic cardiomyopathy. A visual assessment of 330 left ventricular regions from US images of 28 patients resulted in 92.7% of regions successfully aligned with cardiac structures in LGE. Successfully-aligned regions were then used to evaluate the abilities of strain indicators to predict the presence of fibrosis. Longitudinal peak-strain and peak-delay of aligned left ventricular regions were computed from corresponding regional strain curves from US. The Mann-Withney test proved that the expected values of these indicators change between the populations of regions with and without fibrosis (p < 0.01). ROC curves otherwise proved that the presence of fibrosis is one factor amongst others which modifies longitudinal peak-strain and peak-delay.

  18. Toward time resolved 4D cardiac CT imaging with patient dose reduction: estimating the global heart motion

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuyuki; Segars, W. Paul; Fung, George S. K.; Tsui, Benjamin M. W.

    2006-03-01

    Coronary artery imaging with multi-slice helical computed tomography is a promising noninvasive imaging technique. The current major issues include the insufficient temporal resolution and large patient dose. We propose an image reconstruction method which provides a solution to both of the problems. The method uses an iterative approach repeating the following four steps until the difference between the two projection data sets falls below a certain criteria in step-4: 1) estimating or updating the cardiac motion vectors, 2) reconstructing the time-resolved 4D dynamic volume images using the motion vectors, 3) calculating the projection data from the current 4D images, 4) comparing them with the measured ones. In this study, we obtain the first estimate of the motion vector. We use the 4D NCAT phantom, a realistic computer model for the human anatomy and cardiac motions, to generate the dynamic fan-beam projection data sets as well to provide a known truth for the motion. Then, the halfscan reconstruction with the sliding time-window technique is used to generate cine images: f(t, r r). Here, we use one heart beat for each position r so that the time information is retained. Next, the magnitude of the first derivative of f(t, r r) with respect to time, i.e., |df/dt|, is calculated and summed over a region-of-interest (ROI), which is called the mean-absolute difference (MAD). The initial estimation of the vector field are obtained using MAD for each ROI. Results of the preliminary study are presented.

  19. Comparison of I-123 MIBG planar imaging and SPECT for the detection of decreased heart uptake in Parkinson disease.

    PubMed

    Oh, Jin-Kyoung; Choi, Eun-Kyoung; Song, In-Uk; Kim, Joong-Seok; Chung, Yong-An

    2015-10-01

    Decreased myocardial uptake of I-123 metaiodobenzylguanidine (MIBG) is an important finding for diagnosis of Parkinson's disease (PD). This study compared I-123 MIBG SPECT and planar imaging with regard to their diagnostic yield for PD. 52 clinically diagnosed PD patients who also had decreased striatal uptake on FP-CIT PET/CT were enrolled. 16 normal controls were also included. All underwent cardiac MIBG planar scintigraphy and SPECT separately. Myocardial I-123 MIBG uptake was interpreted on planar and SPECT/CT images separately by visual and quantitative analysis. The final diagnosis was made by consensus between two readers. Kappa analyses were performed to determine inter-observer agreement for both methods. Sensitivity, specificity, and accuracy were compared with McNemar's test. The sensitivity, specificity, and accuracy were 84.6, 100, and 88.2% for planar images and 96.2, 100 and 97.1% for SPECT, respectively, with a significant difference between the two imaging methods (p < 0.031). All inter-observer agreements were almost perfect (planar scintigraphy: κ = 0.82; SPECT: κ = 0.93). Heart-to-mediastinum ratios from PD patients with negative planar and positive SPECT scans (group A) and patients with positive planar and positive SPECT scans (group B) were 1.69 ± 0.16 (1.59-1.85) and 1.41 ± 0.15 (1.20-1.53), respectively, and showed significant difference (p = 0.023). Lung-to-mediastinum ratios for groups A and B were 2.16 ± 0.20 (1.96-2.37) and 1.6 ± 0.19 (1.3-1.78), respectively, and were significantly higher in the former (p = 0.001). I-123 MIBG SPECT has a significantly higher diagnostic performance for PD than planar images. Increased lung uptake may cause false-negative results on planar imaging.

  20. About Heart Failure

    MedlinePlus

    ... prescribe an ACE inhibitor  Last, they prescribe a beta-blocker This is what these medicines do to help ... ARBs. This medicine works similar to ACE inhibitors. Beta-blockers:  Protect the heart by slowing down the heartbeat  ...

  1. Interoperative fundus image and report sharing in compliance with integrating the healthcare enterprise conformance and web access to digital imaging and communication in medicine persistent object protocol

    PubMed Central

    Wu, Hui-Qun; Lv, Zheng-Min; Geng, Xing-Yun; Jiang, Kui; Tang, Le-Min; Zhou, Guo-Min; Dong, Jian-Cheng

    2013-01-01

    AIM To address issues in interoperability between different fundus image systems, we proposed a web eye-picture archiving and communication system (PACS) framework in conformance with digital imaging and communication in medicine (DICOM) and health level 7 (HL7) protocol to realize fundus images and reports sharing and communication through internet. METHODS Firstly, a telemedicine-based eye care work flow was established based on integrating the healthcare enterprise (IHE) Eye Care technical framework. Then, a browser/server architecture eye-PACS system was established in conformance with the web access to DICOM persistent object (WADO) protocol, which contains three tiers. RESULTS In any client system installed with web browser, clinicians could log in the eye-PACS to observe fundus images and reports. Multipurpose internet mail extensions (MIME) type of a structured report is saved as pdf/html with reference link to relevant fundus image using the WADO syntax could provide enough information for clinicians. Some functions provided by open-source Oviyam could be used to query, zoom, move, measure, view DICOM fundus images. CONCLUSION Such web eye-PACS in compliance to WADO protocol could be used to store and communicate fundus images and reports, therefore is of great significance for teleophthalmology. PMID:24392341

  2. Automatic atherosclerotic heart disease detection in intracoronary optical coherence tomography images.

    PubMed

    Xu, Mengdi; Cheng, Jun; Wong, Damon Wing Kee; Taruya, Akira; Tanaka, Atsushi; Liu, Jiang

    2014-01-01

    Intracoronary optical coherence tomography (OCT) is a new invasive imaging system which produces high-resolution images of coronary arteries. Preliminary data suggests that the atherosclerotic disease can be detected from the intracoronary OCT images. However, manual assessment of the intracoronary OCT images is time-consuming and subjective. In this work, we present an automatic atherosclerotic disease detection system on intracoronary OCT images. In the system, a preprocessing scheme is first applied to remove speckle noise and artifacts caused by catheter. Intensity, Histograms of Oriented Gradients (HOG), and Local Binary Patterns (LBP) are then extracted to represent the OCT image. Finally a linear SVM classifier is employed to detect the unhealthy subject. Four-fold cross-validation process is conducted to evaluate the proposed system; and a dataset with 200 images from healthy subjects and 200 images from unhealthy subjects is built to evaluate the system. The mean accuracy is 0.90 and standard deviation is 0.0427, which indicates that the proposed system is accurate and stable.

  3. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment.

    PubMed

    Dilsizian, Steven E; Siegel, Eliot L

    2014-01-01

    Although advances in information technology in the past decade have come in quantum leaps in nearly every aspect of our lives, they seem to be coming at a slower pace in the field of medicine. However, the implementation of electronic health records (EHR) in hospitals is increasing rapidly, accelerated by the meaningful use initiatives associated with the Center for Medicare & Medicaid Services EHR Incentive Programs. The transition to electronic medical records and availability of patient data has been associated with increases in the volume and complexity of patient information, as well as an increase in medical alerts, with resulting "alert fatigue" and increased expectations for rapid and accurate diagnosis and treatment. Unfortunately, these increased demands on health care providers create greater risk for diagnostic and therapeutic errors. In the near future, artificial intelligence (AI)/machine learning will likely assist physicians with differential diagnosis of disease, treatment options suggestions, and recommendations, and, in the case of medical imaging, with cues in image interpretation. Mining and advanced analysis of "big data" in health care provide the potential not only to perform "in silico" research but also to provide "real time" diagnostic and (potentially) therapeutic recommendations based on empirical data. "On demand" access to high-performance computing and large health care databases will support and sustain our ability to achieve personalized medicine. The IBM Jeopardy! Challenge, which pitted the best all-time human players against the Watson computer, captured the imagination of millions of people across the world and demonstrated the potential to apply AI approaches to a wide variety of subject matter, including medicine. The combination of AI, big data, and massively parallel computing offers the potential to create a revolutionary way of practicing evidence-based, personalized medicine.

  4. A Model for Measured Traveling Waves at End-Diastole in Human Heart Wall by Ultrasonic Imaging Method

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Shintani, Seine A.; Ishiwata, Shin'ichi; Kanai, Hiroshi

    2016-04-01

    We observe traveling waves, measured by the ultrasonic noninvasive imaging method, in a longitudinal beam direction from the apex to the base side on the interventricular septum (IVS) during the period from the end-diastole to the beginning of systole for a healthy human heart wall. We present a possible phenomenological model to explain part of one-dimensional cardiac behaviors for the observed traveling waves around the time of R-wave of echocardiography (ECG) in the human heart. Although the observed two-dimensional patterns of traveling waves are extremely complex and no one knows yet the exact solutions for the traveling homoclinic plane wave in the one-dimensional complex Ginzburg-Landau equation (CGLE), we numerically find that part of the one-dimensional homoclinic dynamics of the phase and amplitude patterns in the observed traveling waves is similar to that of the numerical homoclinic plane-wave solutions in the CGLE with periodic boundary condition in a certain parameter space. It is suggested that part of the cardiac dynamics of the traveling waves on the IVS can be qualitatively described by the CGLE model as a paradigm for understanding biophysical nonlinear phenomena.

  5. Cancer Therapy-Related Cardiac Dysfunction and Heart Failure Part 1: Definitions, Pathophysiology, Risk Factors, and Imaging

    PubMed Central

    Bloom, Michelle W.; Hamo, Carine E.; Cardinale, Daniela; Ky, Bonnie; Nohria, Anju; Baer, Lea; Skopicki, Hal; Lenihan, Daniel J.; Gheorghiade, Mihai; Lyon, Alexander R.; Butler, Javed

    2015-01-01

    Advances in cancer therapy have resulted in significant improvement in long-term survival for many types of cancer, but have also resulted in untoward side effects associated with treatment. One such complication that has become increasingly recognized is the development of cardiomyopathy and heart failure. Whether a previously healthy person from a cardiovascular perspective develops cancer therapy related cardiac dysfunction or a high-risk cardiovascular patient requires cancer therapy, the team of oncologists and cardiologists must be better equipped with an evidence-based approach to care for these patients across the spectrum. Although the toxicities associated with various cancer therapies are well recognized, limitations to our understanding of the appropriate course of action remain. In this first of a 2-part review, we discuss the epidemiologic, pathophysiologic, risk factors, and imaging aspects of cancer therapy related cardiac dysfunction and heart failure. In a subsequent second part, we discuss the prevention and treatment aspects, concluding with a section on evidence gap and future directions. We focus on adult patients in all stages of cancer therapy from pre-treatment surveillance, to ongoing therapy, and long-term follow up. PMID:26747861

  6. Dynamic 3D reconstructions of the heart wall from tomographic imaging

    NASA Astrophysics Data System (ADS)

    Lange, Joerg; von Smekal, Alexander

    1994-05-01

    We present a dynamic reconstruction of the left ventricle (LV) of the human heart. LV surface is represented by a set of points. The coordinates of these points are iterated by an artificial neural network while optimizing the match between the reconstruction based on these coordinates and the signal data. The input for the network are the segment's positions which represent the surface within the original data. The output is a set of real-valued coordinates quantifying the location of the LV surface points. The reconstruction is simultaneously developed in 3-D space and temporal domain. A topological constraint during training of the network gives corresponding vertices in space and time with global correctness. At any phase of the heart beat the network develops a map among the surface points which is highly ordered. This results in very regular wire-frames, that can be displayed rapidly on even small graphic workstations. Without time and third dimension this is very similar to Durbin's algorithm for solving the traveling salesman problem (TSP). To achieve a smooth representation we keep our network from developing the full TSP optimal solution.

  7. Assessing the performance of ultrafast vector flow imaging in the neonatal heart via multiphysics modeling and in-vitro experiments.

    PubMed

    Van Cauwenberge, Joris; Lovstakken, Lasse; Fadnes, Solveig; Rodriguez-Molares, Alfonso; Vierendeels, Jan; Segers, Patrick; Swillens, Abigail

    2016-08-01

    Ultrafast vector flow imaging would benefit newborn patients with congenital heart disorders, but still requires thorough validation before translation to clinical practice. This study investigates 2D speckle tracking of intraventricular blood flow in neonates when transmitting diverging waves at ultrafast frame rate. Computational and in-vitro studies enabled us to quantify the performance and identify artefacts related to the flow and the imaging sequence. First, synthetic ultrasound images of a neonate's left ventricular flow pattern were obtained with the ultrasound simulator Field II by propagating point scatterers according to 3D intraventricular flow fields obtained with computational fluid dynamics (CFD). Non-compounded diverging waves (opening angle of 60°) were transmitted at a pulse repetition frequency of 9 kHz. Speckle tracking of the B-mode data provided 2D flow estimates at 180 Hz, which were compared to the CFD flow field. We demonstrated that the diastolic inflow jet showed a strong bias in the lateral velocity estimates at the edges of the jet, as confirmed by additional in-vitro tests on a jet flow phantom. Further, speckle tracking performance was highly dependent on the cardiac phase with low flows (< 5 cm/s), high spatial flow gradients and out-of-plane flow as deteriorating factors. Despite the observed artefacts, a good overall performance of 2D speckle tracking was obtained with a median magnitude underestimation and angular deviation of respectively 28% and 13.5° during systole, and 16% and 10.5° during diastole.

  8. Assessing the Performance of Ultrafast Vector Flow Imaging in the Neonatal Heart via Multiphysics Modeling and In Vitro Experiments.

    PubMed

    Van Cauwenberge, Joris; Lovstakken, Lasse; Fadnes, Solveig; Rodriguez-Morales, Alfonso; Vierendeels, Jan; Segers, Patrick; Swillens, Abigail

    2016-11-01

    Ultrafast vector flow imaging would benefit newborn patients with congenital heart disorders, but still requires thorough validation before translation to clinical practice. This paper investigates 2-D speckle tracking (ST) of intraventricular blood flow in neonates when transmitting diverging waves at ultrafast frame rate. Computational and in vitro studies enabled us to quantify the performance and identify artifacts related to the flow and the imaging sequence. First, synthetic ultrasound images of a neonate's left ventricular flow pattern were obtained with the ultrasound simulator Field II by propagating point scatterers according to 3-D intraventricular flow fields obtained with computational fluid dynamics (CFD). Noncompounded diverging waves (opening angle of 60°) were transmitted at a pulse repetition frequency of 9 kHz. ST of the B-mode data provided 2-D flow estimates at 180 Hz, which were compared with the CFD flow field. We demonstrated that the diastolic inflow jet showed a strong bias in the lateral velocity estimates at the edges of the jet, as confirmed by additional in vitro tests on a jet flow phantom. Furthermore, ST performance was highly dependent on the cardiac phase with low flows (<5 cm/s), high spatial flow gradients, and out-of-plane flow as deteriorating factors. Despite the observed artifacts, a good overall performance of 2-D ST was obtained with a median magnitude underestimation and angular deviation of, respectively, 28% and 13.5° during systole and 16% and 10.5° during diastole.

  9. Heart failure

    PubMed Central

    2010-01-01

    Introduction Heart failure occurs in 3% to 4% of adults aged over 65 years, usually as a consequence of coronary artery disease or hypertension, and causes breathlessness, effort intolerance, fluid retention, and increased mortality. The 5-year mortality in people with systolic heart failure ranges from 25% to 75%, often owing to sudden death following ventricular arrhythmia. Risks of cardiovascular events are increased in people with left ventricular systolic dysfunction (LVSD) or heart failure. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of non-drug treatments, and of drug and invasive treatments, for heart failure? What are the effects of angiotensin-converting enzyme inhibitors in people at high risk of heart failure? What are the effects of treatments for diastolic heart failure? We searched: Medline, Embase, The Cochrane Library, and other important databases up to May 2009 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 85 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: aldosterone receptor antagonists, amiodarone, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, anticoagulation, antiplatelet agents, beta-blockers, calcium channel blockers, cardiac resynchronisation therapy, digoxin (in people already receiving diuretics and angiotensin-converting enzyme inhibitors), exercise, hydralazine plus isosorbide dinitrate, implantable cardiac

  10. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    DOEpatents

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  11. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  12. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    NASA Astrophysics Data System (ADS)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  13. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine.

    PubMed

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W; Cai, Jiye

    2014-11-07

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  14. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    SciTech Connect

    Vinogradskiy, Yevgeniy; Koo, Phillip J.; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Gaspar, Laurie E.; Miften, Moyed; Kavanagh, Brian D.

    2014-05-01

    Purpose: Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials: Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based model were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results: Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions: The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist's assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were analyzed

  15. Histopathology Image Analysis in Two Long-Term Animal Experiments with Helical Flow Total Artificial Heart.

    PubMed

    Wotke, Jiri; Homolka, Pavel; Vasku, Jaromír; Dobsak, Petr; Palanova, Petra; Mrkvicova, Veronika; Konecny, Petr; Soska, Vladimir; Pohanka, Michal; Novakova, Marie; Yurimoto, Terumi; Saito, Itsuro; Inoue, Yusuke; Isoyama, Takashi; Abe, Yusuke

    2016-12-01

    Histopathological analysis can provide important information in long-term experiments with total artificial heart (TAH). Recently, a new type of blood pump, the helical flow total artificial heart (HF-TAH) was developed. This study aimed to investigate the changes in selected vital organs in animal experiments with implanted HF-TAH. Samples from lung, liver, and kidneys from two female goats (No. 1301 and No. 1304) with implanted HF-TAH were analyzed. Tissue samples were fixed in 10% formaldehyde and 4 µm thick transverse sections were stained with hematoxylin-eosin (HE). Additional staining was done for detection of connective tissue (Masson-Goldner stain) and for detection of iron (hemosiderin) deposits (Perls stain). Sections were scanned at 100× and 500× magnification with a light microscope. Experiment no. 1301 survived 100 days (cause of termination was heavy damage of the right pump); experimental goat no.1304 survived 68 days and was sacrificed due to severe right hydrodynamic bearing malfunction. Histopathological analysis of liver samples proved signs of chronic venostasis with limited focal necrotic zones. Dilated tubules, proteinaceous material in tubular lumen, and hemosiderin deposits were detected in kidney samples. Contamination of the organs by embolized micro-particles was suspected at the autopsy after discovery of visible damage (scratches) of the pump impeller surface (made from titanium alloy) in both experiments. Sporadic deposits of foreign micro-particles (presumably titanium) were observed in most of the analyzed parenchymal organs. However, the described deposits were not in direct connection with inflammatory reactions in the analyzed tissues. Histopathological analysis showed the presence of minimal contamination of the lung, kidney, and liver tissue samples by foreign material (titanium very likely). The analysis showed only limited pathological changes, especially in liver and kidneys, which might be attributed to the influence of

  16. How Is Heart Failure Treated?

    MedlinePlus

    ... your blood vessels so your heart doesn’t work as hard to pump blood. Studies have shown that this medicine can reduce the risk of death in blacks. More studies are needed to find out whether this medicine will benefit other racial groups. Take all medicines regularly, as ...

  17. Tetralogy of fallot with left heart hypoplasia, total anomalous pulmonary venous return, and right lung hypoplasia: role of magnetic resonance imaging.

    PubMed

    Festa, P; Lamia, A-A; Murzi, B; Bini, M R

    2005-01-01

    We report a rare case of tetralogy of Fallot with total anomalous pulmonary venous return, left heart hypoplasia, right lung hypoplasia, and left ocular-mandibular synchinesia (Marcus-Gunn phenomenon), correctly diagnosed by cardiovascular magnetic resonance imaging and successfully operated by modified Glenn anastomosis.

  18. Software development for ACR-approved phantom-based nuclear medicine tomographic image quality control with cross-platform compatibility

    NASA Astrophysics Data System (ADS)

    Oh, Jungsu S.; Choi, Jae Min; Nam, Ki Pyo; Chae, Sun Young; Ryu, Jin-Sook; Moon, Dae Hyuk; Kim, Jae Seung

    2015-07-01

    Quality control and quality assurance (QC/QA) have been two of the most important issues in modern nuclear medicine (NM) imaging for both clinical practices and academic research. Whereas quantitative QC analysis software is common to modern positron emission tomography (PET) scanners, the QC of gamma cameras and/or single-photon-emission computed tomography (SPECT) scanners has not been sufficiently addressed. Although a thorough standard operating process (SOP) for mechanical and software maintenance may help the QC/QA of a gamma camera and SPECT-computed tomography (CT), no previous study has addressed a unified platform or process to decipher or analyze SPECT phantom images acquired from various scanners thus far. In addition, a few approaches have established cross-platform software to enable the technologists and physicists to assess the variety of SPECT scanners from different manufacturers. To resolve these issues, we have developed Interactive Data Language (IDL)-based in-house software for crossplatform (in terms of not only operating systems (OS) but also manufacturers) analyses of the QC data on an ACR SPECT phantom, which is essential for assessing and assuring the tomographical image quality of SPECT. We applied our devised software to our routine quarterly QC of ACR SPECT phantom images acquired from a number of platforms (OS/manufacturers). Based on our experience, we suggest that our devised software can offer a unified platform that allows images acquired from various types of scanners to be analyzed with great precision and accuracy.

  19. [Diagnostic detection performance of a simulated nodule in chest computed tomography images and gray and color nuclear medicine images: comparison between a medical liquid crystal display monitor and an ordinary liquid crystal display monitor].

    PubMed

    Okumura, Eiichiro; Kamimae, Riyou; Miyashita, Kenta; Ueda, Rina; Kanmae, Yusuke; Kubo, Mikayo; Shirasaka, Natsumi; Takeda, Taiki; Hashimoto, Noriyuki

    2014-08-01

    The purpose of this study was to evaluate the detection performance of simulated nodules in chest computed tomography (CT) images and nuclear medicine images with an ordinary liquid crystal display (LCD) and a medical LCD (grayscale standard display function: GSDF) and gamma 2.2. We collected 72 chest CT image slices obtained from an LSCT phantom with simulated signals composed of various sizes and CT values and 78 slices of monochrome and color nuclear medicine images obtained from a digital phantom with a simulated signal composed of various sizes and radiation levels. Six observers performed receiver operating characteristic (ROC) analysis using a continuous scale. The area under the ROC curve (AUC) was calculated for each monitor. The average AUC values for detection of chest CT images on a medical LCD (GSDF), medical LCD (gamma 2.2), and ordinary LCD were 0.71, 0.67, and 0.73, respectively. The average AUC values for detection of monochrome nuclear medicine images using a medical LCD (GSDF), medical LCD (gamma 2.2), and ordinary LCD were 0.81, 0.75, and 0.72, respectively. The average AUC values for detection of color nuclear medicine images on a medical LCD (GSDF), medical LCD (gamma 2.2), and ordinary LCD were 0.88, 0.86, and 0.90, respectively. Observer performance for detection of simulated nodules in chest CT images and nuclear medicine images was not significantly different between the three LCD monitors. We therefore conclude that an ordinary LCD monitor can be used to detect simulated nodules in chest CT images and nuclear medicine images.

  20. Paraganglioma of the heart. The value of magnetic resonance imaging in the preoperative evaluation.

    PubMed

    Conti, V R; Saydjari, R; Amparo, E G

    1986-10-01

    Although the 131I-metaiodobenzylguanidine scan has proven reliable in identifying mediastinal paragangliomas, further localization has usually required dynamic computerized tomographic scanning which requires rapid bolus injection of contrast material. In the case presented herein, magnetic resonance imaging provided accurate preoperative localization and added important anatomic detail that was not appreciated with dynamic computerized tomograms or with other studies. Magnetic resonance imaging can accurately localize cardiac paragangliomas without injection of contrast material and may provide more detailed information for better guidance for surgical excision.

  1. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation

    PubMed Central

    Sansoni, Giovanna; Trebeschi, Marco; Docchio, Franco

    2009-01-01

    3D imaging sensors for the acquisition of three dimensional (3D) shapes have created, in recent years, a considerable degree of interest for a number of applications. The miniaturization and integration of the optical and electronic components used to build them have played a crucial role in the achievement of compactness, robustness and flexibility of the sensors. Today, several 3D sensors are available on the market, even in combination with other sensors in a “sensor fusion” approach. An importance equal to that of physical miniaturization has the portability of the measurements, via suitable interfaces, into software environments designed for their elaboration, e.g., CAD-CAM systems, virtual renders, and rapid prototyping tools. In this paper, following an overview of the state-of-art of 3D imaging sensors, a number of significant examples of their use are presented, with particular reference to industry, heritage, medicine, and criminal investigation applications. PMID:22389618

  2. Heart murmurs

    MedlinePlus

    Chest sounds - murmurs; Heart sounds - abnormal; Murmur - innocent; Innocent murmur; Systolic heart murmur; Diastolic heart murmur ... The heart has 4 chambers: Two upper chambers (atria) Two lower chambers (ventricles) The heart has valves that close ...

  3. Differentiation between two "fang ji" herbal medicines, Stephania tetrandra and the nephrotoxic Aristolochia fangchi, using hyperspectral imaging.

    PubMed

    Tankeu, Sidonie; Vermaak, Ilze; Chen, Weiyang; Sandasi, Maxleene; Viljoen, Alvaro

    2016-02-01

    Stephania tetrandra ("hang fang ji") and Aristolochia fangchi ("guang fang ji") are two different plant species used in Traditional Chinese Medicine (TCM). Both are commonly referred to as "fang ji" and S. tetrandra is mistakenly substituted and adulterated with the nephrotoxic A. fangchi as they have several morphological similarities. A. fangchi contains aristolochic acid, a carcinogen that causes urothelial carcinoma as well as aristolochic acid nephropathy (AAN). In Belgium, 128 cases of AAN was reported while in China, a further 116 cases with end-stage renal disease were noted. Toxicity issues associated with species substitution and adulteration necessitate the development of reliable methods for the quality assessment of herbal medicines. Hyperspectral imaging in combination with partial least squares discriminant analysis (PLS-DA) is suggested as an effective method to distinguish between S. tetrandra and A. fangchi root powder. Hyperspectral images were obtained in the wavelength region of 920-2514nm. Reduction of the dimensionality of the data was done by selecting the discrimination information range (964-1774nm). A discrimination model with a coefficient of determination (R(2)) of 0.9 and a root mean square error of prediction (RMSEP) of 0.23 was created. The constructed model successfully identified A. fangchi and S. tetrandra samples inserted into the model as an external validation set. In addition, adulteration detection was investigated by preparing incremental adulteration mixtures of S. tetrandra with A. fangchi (10-90%). Hyperspectral imaging showed the ability to accurately predict adulteration as low as 10%. It is evident that hyperspectral imaging has tremendous potential in the development of visual quality control methods which may prevent cases of aristolochic acid nephropathy in the future.

  4. Evaluation of congenital heart disease by cine magnetic resonance imaging (MRI)

    SciTech Connect

    Feiglin, D.H.I.; Moodie, D.S.; O'Donnell, J.K.; Go, R.T.; Sterba, R.; MacIntyre, W.J.

    1985-05-01

    The authors studied 11 adult patients (pts) with atrial septal defect (ASD) and 4 adult pts with ventricular septal defect (VSD) using cine magnetic resonance. All studies were performed using a .6T superconducting magnet with ECG gating and electronic axial rotation when appropriate. Repeated multislice image with no change in physiologic delay of the spin echo pulse sequence, but varying the time by offsetting one slice at each imaging stage allowed for an N x N collection of data where N is the number of slices in one collection set and is equal to the number of sets collected. Algebraic manipulation of the T1 weighted images (TE=30mSec TRimaging of the atrial septum than does conventional MRI. Using this technique, the authors have identified both atrial and ventricular septal defects in all pts preoperatively and have noted an intact atrial septum following surgery. Standard MRI produced 4 false positive studies postoperatively because only 1 phase of the cardiac cycle was reviewed. Cine MRI allows better identification of septal defects than standard static acquisitions. The cine technique also provides better definition and delineation of right sided abnormalities which are maximized when viewed in a cardiac major axis obtained by electronic axial rotation.

  5. A chemical profiling solution for Chinese medicine formulas using comprehensive and loop-based multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Qiao, Xue; Wang, Qi; Song, Wei; Qian, Yi; Xiao, Yao; An, Rong; Guo, De-an; Ye, Min

    2016-03-18

    Chinese medicine formulas represent an excellent illustration for "complex matrix". The complexity lies in a big array of small molecules with high chemical diversity. The present paper describes a novel chemical profiling solution for complex matrix by combining comprehensive and multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (2DLC/qTOF-MS). This solution includes method optimization, combinational separation, and structural characterization. It was exemplified by fully profiling the chemical constituents of a four-herb traditional Chinese medicine formula, Gegen-Qinlian Decoction (GQD). GQD was separated by a RP × RP (C18 × Phenyl-Hexyl) 2DLC system, and eluted with acidic × alkaline mobile phases with an optimized shift gradient elution program. In the comprehensive 2DLC mode, 280 peaks were detected, and 125 compounds were characterized within 42 minutes. The multiple heart-cutting (MHC) mode extended the (2)D modulation time to 3.0 min to effectively separate the minor compounds. The (1)D eluate within 4.4 min was loaded into eleven 40-μL loops. These fractions were successively separated by (2)D to resolve 13 additional compounds. The combination of comprehensive and MHC 2DLC/qTOF-MS provides a powerful technique for global chemical profiling of Chinese medicine formulas and other complex systems.

  6. Validity of Fusion Imaging of Hamster Heart obtained by Fluorescent and Phase-Contrast X-Ray CT with Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Wu, J.; Takeda, T.; Lwin, Thet Thet; Huo, Q.; Sunaguchi, N.; Murakami, T.; Mouri, S.; Nasukawa, S.; Fukami, T.; Yuasa, T.; Hyodo, K.; Hontani, H.; Minami, M.; Akatsuka, T.

    2007-01-01

    Fluorescent X-ray CT (FXCT) to depict functional information and phase-contrast X-ray CT (PCCT) to demonstrate morphological information are being developed to analyze the disease model of small animal. To understand the detailed pathological state, integration of both functional and morphological image is very useful. The feasibility of image fusion between FXCT and PCCT were examined by using ex-vivo hearts injected fatty acid metabolic agent (127I-BMIPP) in normal and cardiomyopathic hamsters. Fusion images were reconstructed from each 3D image of FXCT and PCCT. 127I-BMIPP distribution within the heart was clearly demonstrated by FXCT with 0.25 mm spatial resolution. The detailed morphological image was obtained by PCCT at about 0.03 mm spatial resolution. Using image integration technique, metabolic abnormality of fatty acid in cardiomyopathic myocardium was easily recognized corresponding to anatomical structures. Our study suggests that image fusion provides important biomedical information even in FXCT and PCCT imaging.

  7. Validity of Fusion Imaging of Hamster Heart obtained by Fluorescent and Phase-Contrast X-Ray CT with Synchrotron Radiation

    SciTech Connect

    Wu, J.; Takeda, T.; Lwin, Thet Thet; Huo, Q.; Minami, M.; Sunaguchi, N.; Murakami, T.; Mouri, S.; Nasukawa, S.; Fukami, T.; Yuasa, T.; Akatsuka, T.; Hyodo, K.; Hontani, H.

    2007-01-19

    Fluorescent X-ray CT (FXCT) to depict functional information and phase-contrast X-ray CT (PCCT) to demonstrate morphological information are being developed to analyze the disease model of small animal. To understand the detailed pathological state, integration of both functional and morphological image is very useful. The feasibility of image fusion between FXCT and PCCT were examined by using ex-vivo hearts injected fatty acid metabolic agent (127I-BMIPP) in normal and cardiomyopathic hamsters. Fusion images were reconstructed from each 3D image of FXCT and PCCT. 127I-BMIPP distribution within the heart was clearly demonstrated by FXCT with 0.25 mm spatial resolution. The detailed morphological image was obtained by PCCT at about 0.03 mm spatial resolution. Using image integration technique, metabolic abnormality of fatty acid in cardiomyopathic myocardium was easily recognized corresponding to anatomical structures. Our study suggests that image fusion provides important biomedical information even in FXCT and PCCT imaging.

  8. Efficiency in the transmission of information through digital imaging and communications in medicine using security mechanisms: tests with DISCUS.

    PubMed

    Pérez, Juan L; Servia, Francisco; Mato, Virginia; Vázquez, José Manuel; Pereira, Javier; Dorado, Julian; Díaz, Juan; Novoa, Francisco J; Pazos, Alejandro

    2010-06-01

    This article describes our experience in using a Picture Archiving and Communications System, known as Secure Medical Image Information System, based on the Digital Imaging and Communications in Medicine standard that supports the use of secure transmissions, from the point of view of how the use of secure sending methods has an effect on the efficiency in the transmission according to the network employed, to quantify productivity loss due to the encryption, the secure transmission, and the subsequent decryption. To test the Secure Medical Image Information System, a series of medical data transmission were conducted from A Coruña (Spain) to the Virgen de las Nieves Hospital, situated 1,000 km away, in Granada (Spain). Once we studied the networking infrastructure of the hospital and its available image generation devices, we subsequently carried out a series of measurements during the transmissions, which allowed us to analyze the behavior of the system with different network schemes and connection speeds. The results obtained from these investigations demonstrate that the impact of secure data-sending methods on the productivity of the system is higher in networks whose capacities are higher and it is not affected by sending data during different periods in the day. In this regard, the presented approach may serve as a model for other small, and possibly mid-sized, medical centers.

  9. Your Radiologist Explains Nuclear Medicine

    MedlinePlus

    ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  10. Your Radiologist Explains Nuclear Medicine

    MedlinePlus Videos and Cool Tools

    ... by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  11. European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation.

    PubMed

    Badano, Luigi P; Miglioranza, Marcelo H; Edvardsen, Thor; Colafranceschi, Alexandre Siciliano; Muraru, Denisa; Bacal, Fernando; Nieman, Koen; Zoppellaro, Giacomo; Marcondes Braga, Fabiana G; Binder, Thomas; Habib, Gilbert; Lancellotti, Patrizio

    2015-09-01

    The cohort of long-term survivors of heart transplant is expanding, and the assessment of these patients requires specific knowledge of the surgical techniques employed to implant the donor heart, the physiology of the transplanted heart, complications of invasive tests routinely performed to detect graft rejection (GR), and the specific pathologies that may affect the transplanted heart. A joint EACVI/Brazilian cardiovascular imaging writing group committee has prepared these recommendations to provide a practical guide to echocardiographers involved in the follow-up of heart transplant patients and a framework for standardized and efficient use of cardiovascular imaging after heart transplant. Since the transplanted heart is smaller than the recipient's dilated heart, the former is usually located more medially in the mediastinum and tends to be rotated clockwise. Therefore, standard views with conventional two-dimensional (2D) echocardiography are often difficult to obtain generating a large variability from patient to patient. Therefore, in echocardiography laboratories equipped with three-dimensional echocardiography (3DE) scanners and specific expertise with the technique, 3DE may be a suitable alternative to conventional 2D echocardiography to assess the size and the function of cardiac chambers. 3DE measurement of left (LV) and right ventricular (RV) size and function are more accurate and reproducible than conventional 2D calculations. However, clinicians should be aware that cardiac chamber volumes obtained with 3DE cannot be compared with those obtained with 2D echocardiography. To assess cardiac chamber morphology and function during follow-up studies, it is recommended to obtain a comprehensive echocardiographic study at 6 months from the cardiac transplantation as a baseline and make a careful quantitation of cardiac chamber size, RV systolic function, both systolic and diastolic parameters of LV function, and pulmonary artery pressure. Subsequent

  12. Yield of cardiac magnetic resonance imaging as an adjunct to echocardiography in young infants with congenital heart disease.

    PubMed

    Johnson, Joyce T; Molina, Kimberly M; McFadden, Molly; Minich, L LuAnn; Menon, Shaji C

    2014-08-01

    Echocardiography provides adequate preoperative imaging for most young infants with congenital heart disease (CHD). When anatomic details require further clarification, cardiac magnetic resonance imaging (CMRI) may be useful but adds the risks of sedation or general anesthesia for a vulnerable population. This study aimed to determine the safety of CMRI and its yield of additional significant information for this population. The study identified all infants age 90 days or younger with preoperative echocardiography and a CMRI from the period 2002-2012. Indications, complications, and imaging results were collected. The additional CMRI information was defined as "significant" if it altered surgical management or "not significant" if it did not. Associations between indications for CMRI and the likelihood of new significant findings were sought. For 137 infants (58% male), CMRI was performed at a median age of 5 days (range, 0-89 days). The CMRI yielded additional information for 76% (104/137) of the patients. The additional findings were significant for 69% (72/104) of these patients. The incidence of significant new findings was similar among indication categories. All the infants were intubated. Complications occurred for 5% of the patients, including one subject with a bradycardic event that prevented completion of the exam and six patients with transient vital sign changes that allowed exam completion. More than 50% of young infants with CHD who underwent preoperative CMRI had new findings affecting surgical management. Among these patients, CMRI-associated complications were few and predominantly minor for intubated infants. Further studies to determine standard preoperative criteria for the use of CMRI for infants with CHD may help to define appropriate cost-effective use of this diagnostic method.

  13. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging

    NASA Astrophysics Data System (ADS)

    Tichauer, Kenneth M.; Wang, Yu; Pogue, Brian W.; Liu, Jonathan T. C.

    2015-07-01

    The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche.

  14. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling & paired-agent principles from nuclear medicine and optical imaging

    PubMed Central

    Tichauer, Kenneth M.; Wang, Yu; Pogue, Brian W.; Liu, Jonathan T. C.

    2015-01-01

    The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche. PMID:26134619

  15. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis.

    PubMed

    Bucerius, Jan; Hyafil, Fabien; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Sciagra, Roberto; Agostini, Denis; Übleis, Christopher; Gimelli, Alessia; Hacker, Marcus

    2016-04-01

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as "strict guidelines" but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards "official" guidelines on

  16. Mild traumatic brain injury: is diffusion imaging ready for primetime in forensic medicine?

    PubMed

    Grossman, Elan J; Inglese, Matilde; Bammer, Roland

    2010-12-01

    Mild traumatic brain injury (MTBI) is difficult to accurately assess with conventional imaging because such approaches usually fail to detect any evidence of brain damage. Recent studies of MTBI patients using diffusion-weighted imaging and diffusion tensor imaging suggest that these techniques have the potential to help grade tissue damage severity, track its development, and provide prognostic markers for clinical outcome. Although these results are promising and indicate that the forensic diagnosis of MTBI might eventually benefit from the use of diffusion-weighted imaging and diffusion tensor imaging, healthy skepticism and caution should be exercised with regard to interpreting their meaning because there is no consensus about which methods of data analysis to use and very few investigations have been conducted, of which most have been small in sample size and examined patients at only one time point after injury.

  17. National Heart, Lung, and Blood Institute

    MedlinePlus

    ... how our TOPMed program is designed to enable precision medicine for heart, lung, blood and sleep disorders? ... programs, initiatives and research resources . Featured programs: NHLBI Precision Medicine Activities NHLBI AIDS Program Funding Opportunities NOT- ...

  18. Voltage-Sensitive Dyes And Imaging Techniques Reveal New Patterns Of Electrical Activity In Heart Cortex

    NASA Astrophysics Data System (ADS)

    Salama, Guy

    1988-04-01

    Voltage-sensitive dyes bind to the plasms membrane of excitable cells (ie., muscle or nerve cells) and exhibit fluorescence and/or absorption changes that vary linearly with changes in transmembrane electrical potential. These potentiometric optical probes can be used to measure local changes in transmembrane potential by monitoring optical signals from dye molecules bound to the surface membrane. Consequently, when excitable cells are stained with such a dye and are stimulated to fire an electrical impulse (ie., an action potential (AP)), the changes in dye fluorescence have the characteristic shape and time course of APs recorded with an intracellular micro-electrode. Potentiometric dyes in conjuction with imaging techniques can now be used to visualize complex patterns and propagation of electrical activity. With photodiode arrays on video imaging techniques, patterns of biological electrical activity can be obtained with high temporal and spatial resolution which could not be obtained by conventional micro-electrodes. These methods reveal new details and offer powerful approaches to study fundamental problem in cardiac electrophysiology, communication in nerve networks, and the organization of cortical neurons.

  19. When Your Child Needs a Heart Transplant

    MedlinePlus

    ... to produce an image of the heart an electrocardiogram (also known as an ECG or EKG), a ... Support for Caregivers Heart and Circulatory System ECG (Electrocardiogram) Anesthesia Basics Congenital Heart Defects Cardiac Catheterization I ...

  20. Critical care medicine in the United States: addressing the intensivist shortage and image of the specialty.

    PubMed

    Halpern, Neil A; Pastores, Stephen M; Oropello, John M; Kvetan, Vladimir

    2013-12-01

    Intensivists are increasingly needed to care for the critically ill and manage ICUs as ICU beds, utilization, acuity of illness, complexity of care and costs continue to rise. However, there is a nationwide shortage of intensivists that has occurred despite years of well publicized warnings of an impending workforce crisis from specialty societies and the federal government. The magnitude of the intensivist shortfall, however, is difficult to determine because there are many perspectives of optimal ICU administration, patient coverage and intensivist availability and a lack of national data on intensivist practices. Nevertheless, the intensivist shortfall is quite real as evidenced by the alternative solutions that hospitals are deploying to provide care for their critically ill patients. In the midst of these manpower struggles, the critical care environment is dynamically changing and becoming more stressful. Severe hospital bed availability and fiscal constraints are forcing ICUs to alter their approaches to triage, throughput and unit staffing. National and local organizations are mandating that hospitals comply with resource intensive and arguably unproven initiatives to monitor and improve patient safety and quality, and informatics systems. Lastly, there is an ongoing sense of professional dissatisfaction among intensivists and a lack of public awareness that critical care medicine is even a distinct specialty. This article offers proposals to increase the adult intensivist workforce through expansion and enhancements of internal medicine based critical care training programs, incentives for recent graduates to enter the critical care medicine field, suggestions for improvements in the critical care profession and workplace to encourage senior intensivists to remain in the field, proactive marketing of critical care, and expanded engagement by the critical care societies in the challenges facing intensivists.

  1. Morphological and Functional Measurements of the Heart Obtained by Magnetic Resonance Imaging in Brazilians

    PubMed Central

    Macedo, Robson; Fernandes, Juliano Lara; Andrade, Solange Souza; Rochitte, Carlos Eduardo; Lima, Kênio Costa; Maciel, Álvaro Campos Cavalcanti; Maciel, Fernanda Cunha; Alves, Geraldo Souza Pinho; Coelho, Otávio Rizzi; Diniz, Rosiane Viana Zuza

    2013-01-01

    Background Still today, measurements used as a reference in the cardiac magnetic resonance imaging have been obtained mainly from studies carried out in North-American and European populations. Objective To obtain measurements of the diastolic diameter, systolic diameter, end diastolic volume, end systolic volume, ejection fraction, and myocardial mass of the left and right ventricles in Brazilians. Methods 54 men and 53 women, with mean age of 43.4 ± 13.1 years, asymptomatic, with no cardiomyopathies, have been subjected to the cardiac magnetic resonance imaging, using a balanced steady state free precession technique. Results The averages and the standard deviations of the parameters for the left ventricle have been: diastolic diameter =4.8 ± 0.5 cm; systolic diameter = 3.0 ± 0.6 cm; end diastolic volume = 128.4 ± 29.6 mL; end systolic volume = 45.2 ± 16.6 mL; ejection fraction = 65.5 ± 6.3%; mass = 95.2 ± 30.8 g. For the right ventricle, they have been: diastolic diameter = 3.9 ± 1.3 cm; systolic diameter = 2.5 ± 0.5 cm; end diastolic volume = 126.5 ± 30.7 mL; end systolic volume = 53.6 ± 18.4 mL; ejection fraction = 58.3 ± 8.0%, and mass = 26.1 ± 6.1 g. The masses and the volumes were significantly greater in the men, except for the end systolic volume of the left ventricle. The ejection fraction of the right ventricle has been significantly greater in the women. There has been a significant and inverted correlation of the systolic volume of the right volume with the progression of the age. Conclusion This study has described, for the first time, cardiac measurements obtained through the cardiac magnetic resonance imaging in Brazilians, asymptomatic, with no cardiomyopathies, showing differences in accordance with gender and age. PMID:23752338

  2. Quantitative and Qualitative Imaging in Single Photon Emission Tomography for Nuclear Medicine Applications.

    NASA Astrophysics Data System (ADS)

    Masoomi, Mojtaba (Arash).

    Available from UMI in association with The British Library. An important goal of single photon emission tomography (SPECT) is the determination of absolute regional radionuclide concentration as a function of time. Quantitative and qualitative studies of SPECT with regard to clinical application is the object of this work. Three basic approaches for image reconstruction and factors which affect the choice of a reconstruction algorithm have been reviewed, discussed and the reconstruction techniques, GRADY and CBP evaluated, based on computer modelling. A sophisticated package of computational subroutines, RECLBL, for image reconstruction and for generation of phantoms, which was fully implemented on PRIME was used throughout this study. Two different systems, a rotating gamma-camera and a prototype scanning-rig have been used to carry out tomography experiments with different phantoms in emission and transmission mode. Performance assessment and reproducibility of the gamma-camera was tested prior to the experimental work. SPECT studies are generally hampered for a number of reasons, the most severe being attenuation and scattering. The effect of scattered photons on image quality was discussed, three distinct techniques were utilised to correct the images and results were compared. Determination of the depth of the source, Am-241 and Tc-99m in the attenuating media, water and TEMEX by analysing the spectroscopic data base on the SPR and spatial resolution was studied, results revealed that both techniques had the same range of depth sensitivity. A method of simultaneous emission and transmission tomography was developed to correct the images for attenuation. The reproducibility of the technique was examined. Results showed that the technique is able to present a promising and a practical approach to more accurate quantitative SPECT imaging. A procedure to evaluate images, under certain conditions has been defined, its properties were evaluated using computer

  3. General consumer communication tools for improved image management and communication in medicine.

    PubMed

    Rosset, Chantal; Rosset, Antoine; Ratib, Osman

    2005-12-01

    We elected to explore new technologies emerging on the general consumer market that can improve and facilitate image and data communication in medical and clinical environment. These new technologies developed for communication and storage of data can improve the user convenience and facilitate the communication and transport of images and related data beyond the usual limits and restrictions of a traditional picture archiving and communication systems (PACS) network. We specifically tested and implemented three new technologies provided on Apple computer platforms. (1) We adopted the iPod, a MP3 portable player with a hard disk storage, to easily and quickly move large number of DICOM images. (2) We adopted iChat, a videoconference and instant-messaging software, to transmit DICOM images in real time to a distant computer for conferencing teleradiology. (3) Finally, we developed a direct secure interface to use the iDisk service, a file-sharing service based on the WebDAV technology, to send and share DICOM files between distant computers. These three technologies were integrated in a new open-source image navigation and display software called OsiriX allowing for manipulation and communication of multimodality and multidimensional DICOM image data sets. This software is freely available as an open-source project at http://homepage.mac.com/rossetantoine/OsiriX. Our experience showed that the implementation of these technologies allowed us to significantly enhance the existing PACS with valuable new features without any additional investment or the need for complex extensions of our infrastructure. The added features such as teleradiology, secure and convenient image and data communication, and the use of external data storage services open the gate to a much broader extension of our imaging infrastructure to the outside world.

  4. A report on the Academic Emergency Medicine 2015 consensus conference "Diagnostic imaging in the emergency department: a research agenda to optimize utilization".

    PubMed

    Gunn, Martin L; Marin, Jennifer R; Mills, Angela M; Chong, Suzanne T; Froemming, Adam T; Johnson, Jamlik O; Kumaravel, Manickam; Sodickson, Aaron D

    2016-08-01

    In May 2015, the Academic Emergency Medicine consensus conference "Diagnostic imaging in the emergency department: a research agenda to optimize utilization" was held. The goal of the conference was to develop a high-priority research agenda regarding emergency diagnostic imaging on which to base future research. In addition to representatives from the Society of Academic Emergency Medicine, the multidisciplinary conference included members of several radiology organizations: American Society for Emergency Radiology, Radiological Society of North America, the American College of Radiology, and the American Association of Physicists in Medicine. The specific aims of the conference were to (1) understand the current state of evidence regarding emergency department (ED) diagnostic imaging utilization and identify key opportunities, limitations, and gaps in knowledge; (2) develop a consensus-driven research agenda emphasizing priorities and opportunities for research in ED diagnostic imaging; and (3) explore specific funding mechanisms available to facilitate research in ED diagnostic imaging. Through a multistep consensus process, participants developed targeted research questions for future research in six content areas within emergency diagnostic imaging: clinical decision rules; use of administrative data; patient-centered outcomes research; training, education, and competency; knowledge translation and barriers to imaging optimization; and comparative effectiveness research in alternatives to traditional computed tomography use.

  5. Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'.

    PubMed

    de Nijs, Robin

    2015-07-21

    In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics for counts below 100. Only Poisson resampling was not affected by this, while Gaussian redrawing was less affected by it than Poisson redrawing. Poisson resampling is the method of choice, when simulating half-count (or less) images from full-count images. It simulates correctly the statistical properties, also in the case of rounding off of the images.

  6. Early Cardiac Dysfunction in the Type 1 Diabetic Heart Using Speckle-Tracking Based Strain Imaging

    PubMed Central

    Shepherd, Danielle L.; Nichols, Cody E.; Croston, Tara L.; McLaughlin, Sarah L.; Petrone, Ashley B.; Lewis, Sara E.; Thapa, Dharendra; Long, Dustin M.; Dick, Gregory M.; Hollander, John M.

    2016-01-01

    Enhanced sensitivity in echocardiographic analyses may allow for early detection of changes in cardiac function beyond the detection limits of conventional echocardiographic analyses, particularly in a small animal model. The goal of this study was to compare conventional echocardiographic measurements and speckle-tracking based strain imaging analyses in a small animal model of type 1 diabetes mellitus. Conventional analyses revealed differences in ejection fraction, fractional shortening, cardiac output, and stroke volume in diabetic animals relative to controls at 6-weeks post-diabetic onset. In contrast, when assessing short- and long-axis speckle-tracking based strain analyses, diabetic mice showed changes in average systolic radial strain, radial strain rate, radial displacement, and radial velocity, as well as decreased circumferential and longitudinal strain rate, as early as 1-week post-diabetic onset and persisting throughout the diabetic study. Further, we performed regional analyses for the LV and found that the free wall region was affected in both the short- and long-axis when assessing radial dimension parameters. These changes began 1-week post-diabetic onset and remained throughout the progression of the disease. These findings demonstrate the use of speckle-tracking based strain as an approach to elucidate cardiac dysfunction from a global perspective, identifying left ventricular cardiac regions affected during the progression of type 1 diabetes mellitus earlier than contractile changes detected by conventional echocardiographic measurements. PMID:26654913

  7. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H.

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  8. Update on intravenous dipyridamole cardiac imaging in the assessment of ischemic heart disease

    SciTech Connect

    Younis, L.T.; Chaitman, B.R. )

    1990-01-01

    Intravenous dipyridamole is a relative selective coronary vasodilator which, when combined with thallium-201, provides a useful technique to assess myocardial perfusion. The intravenous dipyridamole is administered as an infusion at a rate of 0.14 mg/kg/min for 4 minutes. In the presence of significant coronary artery disease the increase of coronary blood flow is disproportionate between vessels with and without significant coronary lesions, providing the basis for detecting regional differences in flow using thallium-201. The test can be used alone or combined with low level exercise to increase test sensitivity. The test is safe when performed under medical supervision and when patient selection is done appropriately. Most of the side effects induced by dipyridamole infusion are well tolerated by patients and readily reversed with intravenous aminophylline and sublingual nitroglycerin. The average sensitivity and specificity of the dipyridamole thallium scintigraphy test from the major studies are 76% and 70%, respectively. The test is very useful in providing prognostic information in patients who are unable to exercise. A reversible thallium defect after dipyridamole infusion has been shown to be associated with significant mortality and morbidity in patients with documented or suspected coronary artery disease. The use of intravenous dipyridamole has been extended into other modalities of imaging, including 2-dimensional and Doppler echocardiography, to study functional changes in the left ventricular induced by the infusion of intravenous dipyridamole. 52 references.

  9. Imaging agent and method of use

    DOEpatents

    Wieland, Donald M.; Brown, Lawrence E.; Beierwaltes, William H.; Wu, Jiann-long

    1986-04-22

    A new radiopharmaceutical composition for use in nuclear medicine comprises a radioiodinated meta-iodobenzylguanidine. The composition is used as an imaging agent for the heart, adrenal medulla, and tumors of the adrenal medulla and can be used for treatment of tumors of the adrenal medulla.

  10. Imaging agent and method of use

    DOEpatents

    Wieland, D.M.; Brown, L.E.; Beierwaltes, W.H.; Wu, J.L.

    1986-04-22

    A new radiopharmaceutical composition for use in nuclear medicine comprises a radioiodinated meta-iodobenzylguanidine. The composition is used as an imaging agent for the heart, adrenal medulla, and tumors of the adrenal medulla and can be used for treatment of tumors of the adrenal medulla. No Drawings

  11. Heart Transplant

    MedlinePlus

    ... including how to maximize your recovery at home. Congenital Heart Defects • Home • About Congenital Heart Defects • The ... Physical Activity Recommendations for Heart Health • Tools & Resources Congenital Heart Defect Publications If Your Child Has a ...

  12. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    NASA Technical Reports Server (NTRS)

    Gat, N.; Subramanian, S.; Barhen, J.; Toomarian, N.

    1996-01-01

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  13. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    SciTech Connect

    Gat, N.; Subramanian, S.; Barhen, J.; Toomarian, N.

    1996-12-31

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  14. Hyperspectral imaging in the quality control of herbal medicines - the case of neurotoxic Japanese star anise.

    PubMed

    Vermaak, Ilze; Viljoen, Alvaro; Lindström, Susanne Wiklund

    2013-03-05

    Illicium verum (Chinese star anise) dried fruit is popularly used as a remedy to treat infant colic. However, instances of life-threatening adverse events in infants have been recorded after use, in some cases due to substitution and/or adulteration of I. verum with Illicium anisatum (Japanese star anise), which is toxic. It is evident that rapid and efficient quality control methods are of utmost importance to prevent re-occurrence of such dire consequences. The potential of short wave infrared (SWIR) hyperspectral imaging and image analysis as a rapid quality control method to distinguish between I. anisatum and I. verum whole dried fruit was investigated. Images were acquired using a sisuChema SWIR hyperspectral pushbroom imaging system with a spectral range of 920-2514 nm. Principal component analysis (PCA) was applied to the images to reduce the high dimensionality of the data, remove unwanted background and to visualise the data. A classification model with 4 principal components and an R²X_cum of 0.84 and R²Y_cum of 0.81 was developed for the 2 species using partial least squares discriminant analysis (PLS-DA). The model was subsequently used to accurately predict the identity of I. anisatum (98.42%) and I. verum (97.85%) introduced into the model as an external dataset. The results show that SWIR hyperspectral imaging is an objective and non-destructive quality control method that can be successfully used to identify whole dried fruit of I. anisatum and I. verum. In addition, this method has the potential to detect I. anisatum whole dried fruits within large batches of I. verum through upscaling to a conveyor belt system.

  15. Application of infrared thermal imaging in the study of preventing cardiovascular and cerebrovascular diseases with Chinese medicine health food

    NASA Astrophysics Data System (ADS)

    Li, Ziru; Zhang, Xusheng

    2009-08-01

    To explore the assessing technique which could objectively reflect the characteristics of Chinese medicine in the prevention of cardiovascular and cerebrovascular diseases, four balance features of infrared thermal images (ITI) corresponding to the up and down, left and right, proximal and distal balance of blood circulation of human body were studied. First, the ITI features of the middle-aged and elderly people with lipid abnormality history were compared with those of the healthy youth. It was found that the balance state of the youth was significantly better than that of the middle-aged and elderly, P<=0.01 for all the balance features. For the youth, the balance state of females was better than that of the males. But this sexual difference disappeared for the middle-aged and elderly group. Second, a double-blind randomized trial was carried out to study the influences of Shengyi capsule, a Chinese medicine health food with the function of helping to decrease serum lipid, on the balance features. The subjects were middle-aged and elderly people with lipid abnormality history. Shengyi capsule was taken by the trial group while Xuezhikang capsule (with lovastatin as the main effective component) by the control group for 108 days. The balance features of ITI showed that Shengyi was significantly better than Xuezhikang in improving the whole body balance of blood circulation (including the up and down, left and right, proximal and distal balance). The relative efficacy rate was 81.0% for the trial group and 33.3% for the control group, there was significant difference between the two groups (P=0.002). Shengyi could effectively decrease the low density lipoprotein cholesterol (LDL-C) but the effect of Xuezhikang in decreasing total cholesterol (TC) and LDL-C was better than Shengyi. Though the lipid-lowering effect of Shengyi was not as good as Xuezhikang, ITI reflected the obvious advantage of Shengyi in improving the whole body balance of blood circulation which

  16. Three-dimensional imaging of the mouse heart and vasculature using micro-CT and whole-body perfusion of iodine or phosphotungstic acid.

    PubMed

    Dunmore-Buyze, P Joy; Tate, Elsbeth; Xiang, Fu-li; Detombe, Sarah A; Nong, Zengxuan; Pickering, J Geoffrey; Drangova, Maria

    2014-01-01

    Recent studies have investigated histological staining compounds as micro-computed tomography (micro-CT) contrast agents, delivered by soaking tissue specimens in stain and relying on passive diffusion for agent uptake. This study describes a perfusion approach using iodine or phosphotungstic acid (PTA) stains, delivered to an intact mouse, to capitalize on the microvasculature as a delivery conduit for parenchymal staining and direct contact for staining artery walls. Twelve C57BL/6 mice, arterially perfused with either 25% Lugol's solution or 5% PTA solution were scanned intact and reconstructed with 26 µm isotropic voxels. The animals were fixed and the heart and surrounding vessels were excised, embedded and scanned; isolated heart images were reconstructed with 13 µm isotropic voxels. Myocardial enhancement and artery diameters were measured. Both stains successfully enhanced the myocardium and vessel walls. Interestingly, Lugol's solution provided a significantly higher enhancement of the myocardium than PTA [2502 ± 437 vs 656 ± 178 Hounsfield units (HU); p < 0.0001], delineating myofiber architecture and orientation. There was no significant difference in vessel wall enhancement (Lugol's, 1036 ± 635 HU; PTA, 738 ± 124 HU; p = 0.29), but coronary arteries were more effectively segmented from the PTA-stained hearts, enabling segmented imaging of fifth- order coronary artery branches. The combination of whole mouse perfusion delivery and use of heavy metal-containing stains affords high-resolution imaging of the mouse heart and vasculature by micro-CT. The differential imaging patterns of Lugol's- and PTA-stained tissues reveals new opportunities for micro-analyses of cardiac and vascular tissues.

  17. Nuclear medicine imaging of multiple myeloma, particularly in the relapsed setting.

    PubMed

    de Waal, Esther G M; Glaudemans, Andor W J M; Schröder, Carolien P; Vellenga, Edo; Slart, Riemer H J A

    2017-02-01

    Multiple myeloma (MM) is characterized by a monoclonal plasma cell population in the bone marrow. Lytic lesions occur in up to 90 % of patients. For many years, whole-body X-ray (WBX) was the method of choice for detecting skeleton abnormalities. However, the value of WBX in relapsing disease is limited because lesions persist post-treatment, which restricts the capacity to distinguish between old, inactive skeletal lesions and new, active ones. Therefore, alternative techniques are necessary to visualize disease activity. Modern imaging techniques such as magnetic resonance imaging, positron emission tomography and computed tomography offer superior detection of myeloma bone disease and extramedullary manifestations. In particular, the properties of nuclear imaging enable the identification of disease activity by directly targeting the specific cellular properties of malignant plasma cells. In this review, an overview is provided of the effectiveness of radiopharmaceuticals that target metabolism, surface receptors and angiogenesis. The available literature data for commonly used nuclear imaging tracers, the promising first results of new tracers, and our pilot work indicate that a number of these radiopharmaceutical applications can be used effectively for staging and response monitoring of relapsing MM patients. Moreover, some tracers can potentially be used for radio immunotherapy.

  18. X-ray scatter imaging in medicine: Model and experimental validation

    NASA Astrophysics Data System (ADS)

    Leclair, Robert J.

    The images produced in all radiological exams today are formed by capturing the undeviated (primary) x-ray photons. The scattered field, however, can offer different and often more useful information. I have devised a simple but useful model that considers the imaging via scattered x-rays of a target object against a background material of the same dimensions when both are situated within a water phantom. The model predicts that there exist specific medical regimes where x-ray scatter imaging could offer higher contrast ( C) and signal-to-noise ratio (SNR) than primary imaging. For example, the imaging of blood vessels versus white brain matter in a 15-cm-thick water phantom with the forward- scattered photons (2° to 12°) results in a maximum SNR, over all energies, greater than primary for essentially all vessel sizes <=23 mm. Using an 80 kV beam would require dose increases of about 47% (scatter) and 205% (primary) relative to using a monoenergetic beam. The model was validated experimentally with plastics placed at the centre of a 15-cm-diameter spherical water phantom. For example, to image a 2-cm-thick poly-methyl methacrylate/polycarbonate combination using an 80 kV beam with the primary photons we obtain Cexpt = 0.01 +/- 0.02, Cpred = 0.008 +/- 0.002, SNRexpt / Kairc = 0.86 +/- 1.6 (mJ/kg)-1/2 and SNR pred/ Kairc = 0.51 +/- 0.14 (mJ/kg)-1/2, where Kairc = air collision kerma [subscripts ``expt'' = experiment and ``pred'' = prediction]. The values obtained with the θ = 4° scattered field were Cexpt = 0.26 +/- 0.06, Cpred = 0.19 +/- 0.01, SNR,expt / Kairc = 3.8 +/- 0.8 (mJ/kg)-1/2 and SNRpred / Kairc = 3.2 +/- 0.3 (mJ/kg)-1/2. The significant variation of C and SNR with different form factor data emphasizes the need for more accurate x- ray diffraction measurements. This work confirms the usefulness of scattered x-rays and provides a model that can be used as a tool

  19. Review of the International Society for Heart and Lung Transplantation Practice guidelines for management of heart failure in children.

    PubMed

    Colan, Steven D

    2015-08-01

    In 2004, practice guidelines for the management of heart failure in children by Rosenthal and colleagues were published in conjunction with the International Society for Heart and Lung Transplantation. These guidelines have not been updated or reviewed since that time. In general, there has been considerable controversy as to the utility and purpose of clinical practice guidelines, but there is general recognition that the relentless progress of medicine leads to the progressive irrelevance of clinical practice guidelines that do not undergo periodic review and updating. Paediatrics and paediatric cardiology, in particular, have had comparatively minimal participation in the clinical practice guidelines realm. As a result, most clinical practice guidelines either specifically exclude paediatrics from consideration, as has been the case for the guidelines related to cardiac failure in adults, or else involve clinical practice guidelines committees that include one or two paediatric cardiologists and produce guidelines that cannot reasonably be considered a consensus paediatric opinion. These circumstances raise a legitimate question as to whether the International Society for Heart and Lung Transplantation paediatric heart failure guidelines should be re-reviewed. The time, effort, and expense involved in producing clinical practice guidelines should be considered before recommending an update to the International Society for Heart and Lung Transplantation Paediatric Heart Failure guidelines. There are specific areas of rapid change in the evaluation and management of heart failure in children that are undoubtedly worthy of updating. These domains include areas such as use of serum and imaging biomarkers, wearable and implantable monitoring devices, and acute heart failure management and mechanical circulatory support. At the time the International Society for Heart and Lung Transplantation guidelines were published, echocardiographic tissue Doppler, 3 dimensional

  20. Developing a Research Agenda to Optimize Diagnostic Imaging in the Emergency Department: An Executive Summary of the 2015 Academic Emergency Medicine Consensus Conference.

    PubMed

    Marin, Jennifer R; Mills, Angela M

    2015-12-01

    The 2015 Academic Emergency Medicine consensus conference, "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization" was held on May 12, 2015, with the goal of developing a high-priority research agenda on which to base future research. The specific aims of the conference were to (1) understand the current state of evidence regarding emergency department (ED) diagnostic imaging use and identify key opportunities, limitations, and gaps in knowledge; (2) develop a consensus-driven research agenda emphasizing priorities and opportunities for research in ED diagnostic imaging; and (3) explore specific funding mechanisms available to facilitate research in ED diagnostic imaging. Over a 2-year period, the executive committee and other experts in the field convened regularly to identify specific areas in need of future research. Six content areas within emergency diagnostic imaging were identified before the conference and served as the breakout groups on which consensus was achieved: clinical decision rules; use of administrative data; patient-centered outcomes research; training, education, and competency; knowledge translation and barriers to imaging optimization; and comparative effectiveness research in alternatives to traditional computed tomography use. The executive committee invited key stakeholders to assist with the planning and to participate in the consensus conference to generate a multidisciplinary agenda. There were a total of 164 individuals involved in the conference and spanned various specialties, including general emergency medicine, pediatric emergency medicine, radiology, surgery, medical physics, and the decision sciences.

  1. Image quality of CT angiography with model-based iterative reconstruction in young children with congenital heart disease: comparison with filtered back projection and adaptive statistical iterative reconstruction.

    PubMed

    Son, Sung Sil; Choo, Ki Seok; Jeon, Ung Bae; Jeon, Gye Rok; Nam, Kyung Jin; Kim, Tae Un; Yeom, Jeong A; Hwang, Jae Yeon; Jeong, Dong Wook; Lim, Soo Jin

    2015-06-01

    To retrospectively evaluate the image quality of CT angiography (CTA) reconstructed by model-based iterative reconstruction (MBIR) and to compare this with images obtained by filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR) in newborns and infants with congenital heart disease (CHD). Thirty-seven children (age 4.8 ± 3.7 months; weight 4.79 ± 0.47 kg) with suspected CHD underwent CTA on a 64detector MDCT without ECG gating (80 kVp, 40 mA using tube current modulation). Total dose length product was recorded in all patients. Images were reconstructed using FBP, ASIR, and MBIR. Objective image qualities (density, noise) were measured in the great vessels and heart chambers. The contrast-to-noise ratio (CNR) was calculated by measuring the density and noise of myocardial walls. Two radiologists evaluated images for subjective noise, diagnostic confidence, and sharpness at the level prior to the first branch of the main pulmonary artery. Images were compared with respect to reconstruction method, and reconstruction times were measured. Images from all patients were diagnostic, and the effective dose was 0.22 mSv. The objective image noise of MBIR was significantly lower than those of FBP and ASIR in the great vessels and heart chambers (P < 0.05); however, with respect to attenuations in the four chambers, ascending aorta, descending aorta, and pulmonary trunk, no statistically significant difference was observed among the three methods (P > 0.05). Mean CNR values were 8.73 for FBP, 14.54 for ASIR, and 22.95 for MBIR. In addition, the subjective image noise of MBIR was significantly lower than those of the others (P < 0.01). Furthermore, while FBP had the highest score for image sharpness, ASIR had the highest score for diagnostic confidence (P < 0.05), and mean reconstruction times were 5.1 ± 2.3 s for FBP and ASIR and 15.1 ± 2.4 min for MBIR. While CTA with MBIR in newborns and infants with CHD can reduce image noise and

  2. Biventricular Badness: Rare Images of Ebstein Anomaly of the Tricuspid Valve in a Patient with Hypoplastic Left Heart Syndrome.

    PubMed

    Werho, David K; Thorsson, Thor; Owens, Sonal T; Fifer, Carlen

    2015-08-01

    We report a rare case of hypoplastic left heart syndrome coexisting in a patient with Ebstein anomaly of the tricuspid valve, which has previously been described only in pathological studies. A fetal echocardiogram at 27-weeks gestation showed severe aortic stenosis with evolving hypoplastic left heart syndrome, significant endocardial fibroelastosis, a dysplastic tricuspid valve with moderate regurgitation, right atrial and ventricular dilation, and signs of fetal congestive heart failure. Due to inadequate left heart size, the patient was not a candidate for fetal intervention for critical aortic stenosis, and repeat studies showed progression of the lesion through the pregnancy. The infant was delivered at 36-weeks gestation with signs of hydrops, and a postnatal echocardiogram confirmed hypoplastic left heart syndrome as well as severe Ebstein anomaly of the tricuspid valve. The infant did not survive to intervention.

  3. Ultrasound Contrast Materials in Cardiovascular Medicine: from Perfusion Assessment to Molecular Imaging

    PubMed Central

    Klibanov, Alexander L

    2013-01-01

    Ultrasound imaging is widely used in cardiovascular diagnostics. Contrast agents expand the range of tasks that ultrasound can perform. In the clinic in US, endocardial border delineation and left ventricle opacification have been an approved indication for more than a decade. However, myocardial perfusion contrast ultrasound studies are still at the clinical trials stage. Blood pool contrast and perfusion in other tissues might be an easier indication to achieve: general blood pool ultrasound contrast is in wider use in Europe, Canada, Japan, and China. Targeted (molecular) contrast microbubbles will be the next generation of ultrasound imaging probes, capable of specific delineation of the areas of disease by adherence to molecular targets. The shell of targeted microbubbles (currently in the preclinical research and early stage clinical trials) is decorated with the ligands (antibodies, peptides or mimetics, hormones, carbohydrates) that ensure firm binding to the molecular markers of disease. PMID:23913363

  4. Feasibility Study of Compton Scattering Enhanced Multiple Pinhole Imager for Nuclear Medicine

    PubMed Central

    Meng, L. J.; Rogers, W. L.; Clinthorne, N. H.

    2016-01-01

    This paper presents a feasibility study of a Compton scattering enhanced (CSE) multiple pinhole imaging system for gamma rays with energy of 140keV or higher. This system consists of a multiple-pinhole collimator, a position sensitive scintillation detector as used in standard Gamma camera, and a Silicon pad detector array, inserted between the collimator and the scintillation detector. The problem of multiplexing, normally associated with multiple pinhole system, is reduced by using the extra information from the detected Compton scattering events. In order to compensate for the sensitivity loss, due to the low probability of detecting Compton scattered events, the proposed detector is designed to collect both Compton scattering and Non-Compton events. It has been shown that with properly selected pinhole spacing, the proposed detector design leads to an improved image quality.

  5. Distribution Analysis via Mass Spectrometry Imaging of Ephedrine in the Lungs of Rats Orally Administered the Japanese Kampo Medicine Maoto

    PubMed Central

    Matsumoto, Takashi; Kushida, Hirotaka; Matsushita, Shoko; Oyama, Yoshiyuki; Suda, Takafumi; Watanabe, Junko; Kase, Yoshio; Setou, Mitsutoshi

    2017-01-01

    Maoto, a traditional Japanese Kampo medicine, has been used to treat various respiratory diseases, including respiratory infections and influenza. Ephedrine (EPD), the main ingredient in maoto, is also clinically used to treat respiratory diseases. However, the pharmacokinetics and distribution of EPD in the lungs after the administration of maoto have not been demonstrated. This study aimed to determine the concentrations, distribution, and pharmacokinetics of EPD and its precursor methylephedrine (MEPD) in the lungs of rats orally administered maoto (1 and 4 g/kg). We used liquid chromatography–electrospray ionization-tandem mass spectrometry to measure the ingredient concentrations. Both ingredients were detected in maoto-treated lung homogenates. Next, we examined the distribution of both ingredients in lung sections by using matrix-assisted laser desorption/ionization-mass spectrometry imaging, a powerful tool for the visualization of the distribution of biological molecules. The mass spectrometry imaging analysis detected only EPD and provided the first visual demonstration that EPD is distributed in the alveoli, bronchi, and bronchioles in the lungs of rats orally administered maoto (4 g/kg, three times at 2-h intervals). These results suggest that the pharmacological efficacy of maoto for the amelioration of respiratory symptoms is related to the distribution of EPD in the lung. PMID:28272490

  6. Distribution Analysis via Mass Spectrometry Imaging of Ephedrine in the Lungs of Rats Orally Administered the Japanese Kampo Medicine Maoto.

    PubMed

    Matsumoto, Takashi; Kushida, Hirotaka; Matsushita, Shoko; Oyama, Yoshiyuki; Suda, Takafumi; Watanabe, Junko; Kase, Yoshio; Setou, Mitsutoshi

    2017-03-08

    Maoto, a traditional Japanese Kampo medicine, has been used to treat various respiratory diseases, including respiratory infections and influenza. Ephedrine (EPD), the main ingredient in maoto, is also clinically used to treat respiratory diseases. However, the pharmacokinetics and distribution of EPD in the lungs after the administration of maoto have not been demonstrated. This study aimed to determine the concentrations, distribution, and pharmacokinetics of EPD and its precursor methylephedrine (MEPD) in the lungs of rats orally administered maoto (1 and 4 g/kg). We used liquid chromatography-electrospray ionization-tandem mass spectrometry to measure the ingredient concentrations. Both ingredients were detected in maoto-treated lung homogenates. Next, we examined the distribution of both ingredients in lung sections by using matrix-assisted laser desorption/ionization-mass spectrometry imaging, a powerful tool for the visualization of the distribution of biological molecules. The mass spectrometry imaging analysis detected only EPD and provided the first visual demonstration that EPD is distributed in the alveoli, bronchi, and bronchioles in the lungs of rats orally administered maoto (4 g/kg, three times at 2-h intervals). These results suggest that the pharmacological efficacy of maoto for the amelioration of respiratory symptoms is related to the distribution of EPD in the lung.

  7. [Image guided and robotic treatment--the advance of cybernetics in clinical medicine].

    PubMed

    Fosse, E; Elle, O J; Samset, E; Johansen, M; Røtnes, J S; Tønnessen, T I; Edwin, B

    2000-01-10

    The introduction of advanced technology in hospitals has changed the treatment practice towards more image guided and minimal invasive procedures. Modern computer and communication technology opens up for robot aided and pre-programmed intervention. Several robotic systems are in clinical use today both in microsurgery and in major cardiac and orthopedic operations. As this trend develops, professions which are new in this context such as physicists, mathematicians and cybernetic engineers will be increasingly important in the treatment of patients.

  8. General consumer communication tools for improved image management and communication in medicine

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Rosset, Antoine; McCoy, J. Michael

    2005-04-01

    We elected to explore emerging consumer technologies that can be adopted to improve and facilitate image and data communication in medical and clinical environment. The wide adoption of new communication paradigm such as instant messaging, chatting and direct emailing can be integrated in specific applications. The increasing capacity of portable and hand held devices such as iPod music players offer an attractive alternative for data storage that exceeds the capabilities of traditional offline storage media such as CD or even DVD. We adapted medical image display and manipulation software called OSIRIX to integrate different innovative technologies facilitating the communication and data transfer between remote users. We integrated email and instant messaging features to the program allowing users to instantaneously email an image or a set of images that are displayed on the screen. Using iChat instant messaging application from Apple a user can share the content of his screen with a remote correspondent and communicate in real time using voice and video. To provide convenient mechanism for exchange of large data sets the program can store the data in DICOM format on CD or DVD, but was also extended to use the large storage capacity of iPod hard disks as well as Apple"s online storage service "dot Mac" that users can subscribe to benefit from scalable secure storage that accessible from anywhere on the internet. The adoption of these innovative technologies is likely to change the architecture of traditional picture archiving and communication systems and provide more flexible and efficient means of communication.

  9. Gate simulation of Compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Dubov, L. Yu; Belyaev, V. N.; Berdnikova, A. K.; Bolozdynia, A. I.; Akmalova, Yu A.; Shtotsky, Yu V.

    2017-01-01

    Computer simulations of cylindrical Compton Ar-Xe gamma camera are described in the current report. Detection efficiency of cylindrical Ar-Xe Compton camera with internal diameter of 40 cm is estimated as1-3%that is 10-100 times higher than collimated Anger’s camera. It is shown that cylindrical Compton camera can image Tc-99m radiotracer distribution with uniform spatial resolution of 20 mm through the whole field of view.

  10. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    SciTech Connect

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  11. Superior CT coronary angiography image quality at lower radiation exposure with second generation 320-detector row CT in patients with elevated heart rate: a comparison with first generation 320-detector row CT

    PubMed Central

    Soh, Siang Y.; Ko, Brian S. H.; Cameron, James D.; Crossett, Marcus; Nasis, Arthur; Troupis, John; Meredith, Ian T.; Seneviratne, Sujith K.

    2014-01-01

    Background This study aims to compare the image quality of second generation versus first generation 320-computed tomography coronary angiography (CTCA) in patients with heart rate ≥65 bpm as it has not been specifically reported. Methods Consecutive patients who underwent CTCA using second-generation-320-detector-row-CT were prospectively enrolled. A total of 50 patients with elevated (≥65 bpm) heart rate and 50 patients with controlled (<65 bpm) heart rate were included. Age and gender matched patients who were scanned with the first-generation-320-detector-row-CT were retrospectively identified. Image quality in each coronary artery segment was assessed by two blinded CT angiographers using the five-point Likert scale. Results In the elevated heart rate cohorts, while there was no significant difference in heart rate during scan-acquisition (66 vs. 69 bpm, P=0.308), or body mass index (28.5 vs. 29.6, P=0.464), the second generation scanner was associated with better image quality (3.94±0.6 vs. 3.45±0.8, P=0.001), and with lower radiation (2.8 vs. 4.3 mSv, P=0.009). There was no difference in scan image quality for the controlled heart rate cohorts. Conclusions The second generation CT scanner provides better image quality at lower radiation dose in patients with elevated heart rate (≥65 bpm) compared to first generation CT scanner. PMID:25276615

  12. Update on cardiac imaging techniques 2014.

    PubMed

    Mahía-Casado, Patricia; García-Orta, Rocío; Gómez de Diego, José J; Barba-Cosials, Joaquín; Rodríguez-Palomares, José F; Aguadé-Bruix, Santiago

    2015-02-01

    In this article, we review the contributions of the most important imaging techniques used in cardiology, reported in 2014. Echocardiography remains the cornerstone for diagnosing and monitoring valvular heart disease, and there has been a continuing effort to improve quantification of this condition and obtain prognostic parameters for follow-up. The study of regional myocardial function is anchored in the diagnosis of subclinical ventricular dysfunction, and 3-dimensional transesophageal echocardiography has become the perfect ally in interventional procedures for structural heart disease. Cardiac magnetic resonance imaging and cardiac computed tomography are the focus of most publications on cardiac imaging in ischemic heart disease, reflecting their consolidated use in clinical practice. Nuclear medicine excels in the study of myocardial viability after interventional treatment of acute coronary syndromes and its performance is validated in the diagnosis of ischemic heart disease.

  13. Micro modules for mobile shape, color and spectral imaging with smartpads in industry, biology and medicine

    NASA Astrophysics Data System (ADS)

    Hofmann, Dietrich; Dittrich, Paul-Gerald; Düntsch, Eric; Kraus, Daniel

    2014-02-01

    Aim of the paper is the demonstration of a paradigm shift in shape, color and spectral measurements in industry, biology and medicine as well as in measurement education and training. Innovative hardware apps (hwapps) and software apps (swapps) with smartpads are fundamental enablers for the transformation from conventional stationary working places towards innovative mobile working places with in-field measurements and point-of-care (POC) diagnostics. Mobile open online courses (MOOCs) are transforming the study habits. Practical examples for the application of innovative photonic micro shapemeters, colormeters and spectrometers will be given. The innovative approach opens so far untapped enormous markets for measurement science, engineering and training. These innovative working conditions will be fast accepted due to their convenience, reliability and affordability. A highly visible advantage of smartpads is the huge number of their distribution, their worldwide connectivity via Internet and cloud services, the standardized interfaces like USB and HDMI and the experienced capabilities of their users for practical operations, learned with their private smartpads.

  14. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association.

    PubMed

    Johnson, Keith A; Minoshima, Satoshi; Bohnen, Nicolaas I; Donohoe, Kevin J; Foster, Norman L; Herscovitch, Peter; Karlawish, Jason H; Rowe, Christopher C; Carrillo, Maria C; Hartley, Dean M; Hedrick, Saima; Pappas, Virginia; Thies, William H

    2013-01-01

    Positron emission tomography (PET) of brain amyloid b is a technology that is becoming more available, but its clinical utility in medical practice requires careful definition. To provide guidance to dementia care practitioners, patients, and caregivers, the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging convened the Amyloid Imaging Taskforce (AIT). The AIT considered a broad range of specific clinical scenarios in which amyloid PET could potentially be used appropriately. Peer-reviewed, published literature was searched to ascertain available evidence relevant to these scenarios, and the AIT developed a consensus of expert opinion. Although empirical evidence of impact on clinical outcomes is not yet available, a set of specific appropriate use criteria (AUC) were agreed on that define the types of patients and clinical circumstances in which amyloid PET could be used. Both appropriate and inappropriate uses were considered and formulated,and are reported and discussed here. Because both dementia care and amyloid PET technology are in active development, these AUC will require periodic reassessment. Future research directions are also outlined, including diagnostic utility and patient-centered outcomes.

  15. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association.

    PubMed

    Johnson, Keith A; Minoshima, Satoshi; Bohnen, Nicolaas I; Donohoe, Kevin J; Foster, Norman L; Herscovitch, Peter; Karlawish, Jason H; Rowe, Christopher C; Carrillo, Maria C; Hartley, Dean M; Hedrick, Saima; Pappas, Virginia; Thies, William H

    2013-03-01

    Positron emission tomography (PET) of brain amyloid β is a technology that is becoming more available, but its clinical utility in medical practice requires careful definition. To provide guidance to dementia care practitioners, patients, and caregivers, the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging convened the Amyloid Imaging Taskforce (AIT). The AIT considered a broad range of specific clinical scenarios in which amyloid PET could potentially be used appropriately. Peer-reviewed, published literature was searched to ascertain available evidence relevant to these scenarios, and the AIT developed a consensus of expert opinion. Although empirical evidence of impact on clinical outcomes is not yet available, a set of specific appropriate use criteria (AUC) were agreed on that define the types of patients and clinical circumstances in which amyloid PET could be used. Both appropriate and inappropriate uses were considered and formulated, and are reported and discussed here. Because both dementia care and amyloid PET technology are in active development, these AUC will require periodic reassessment. Future research directions are also outlined, including diagnostic utility and patient-centered outcomes.

  16. The Adult Göttingen Minipig as a Model for Chronic Heart Failure After Myocardial Infarction: Focus on Cardiovascular Imaging and Regenerative Therapies

    PubMed Central

    Schuleri, Karl H; Boyle, Andrew J; Centola, Marco; Amado, Luciano C; Evers, Robert; Zimmet, Jeffrey M; Evers, Kristine S; Ostbye, Katherine M; Scorpio, Diana G; Hare, Joshua M; Lardo, Albert C

    2008-01-01

    Porcine models have become increasingly popular in cardiovascular research. The standard farm pig rapidly increases in body weight and size, potentially confounding serial measurements of cardiac function and morphology. We developed an adult porcine model that does not show physiologic increases in heart mass during the study period and is suitable for long-term study. We compared adult minipigs with the commonly used adolescent Yorkshire swine. Myocardial infarction was induced in adult Göttingen minipigs and adolescent Yorkshire swine by occlusion of the left anterior descending coronary artery followed by reperfusion. At 8 wk after infarction, the left ventricular ejection fraction was 34.1 ± 2.3% in minipigs and 30.7 ± 2.0% in Yorkshire swine. The left ventricular end-diastolic mass in Yorkshire pigs assessed by magnetic resonance imaging increased 17 ± 5 g, from 42.6 ± 4.3 g at week 1 after infarction to 52.8 ± 6.6 g at week 8, whereas it remained unchanged in minipigs. Cardiac anatomy and physiology in adult minipigs were evaluated invasively by angiography and noninvasively by Multidetector Computed Tomography and by Magnetic Resonance Imaging at 1.5 T and 3 T prior to myocardial infarction and during folow-up. This porcine heart failure model is reproducible, mimics the pathophysiology in patients who have experienced myocardial infarction, and is suitable for imaging studies. New heart failure therapies and devices can be tested preclinically in this adult animal model of chronic heart failure. PMID:19149414

  17. Microscopic identification of Chinese medicinal materials based on X-ray phase contrast imaging: from qualitative to quantitative

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Liang, Z.; Tan, H.; Ni, L.; Zhao, Z.; Xiao, T.; Xu, H.

    2016-07-01

    Although a variety of methods, ranging from simple morphological examination to physical and chemical analysis, and DNA molecular biology, exist for authenticating Chinese medicinal materials(CMMs), no methods can achieve both the source species identification and quality evaluation of CMMs simultaneously. Furthermore, the methods that are currently available for the identification of CMMs, including both optical and electronic microscopy, usually entail strict requirements for sample preparation or testing environment, such as the slicing of super-thin sections, or processing with specific chemical reagents. These treatments not only damage the CMMs but may also cause some of the original microstructures to be missed. Additionally, they may even yield false results. Owing to the unique penetrating character of X-rays, X-ray phase contrast imaging(XPCI) can be used to realize the inner microstructures of CMMs through nondestructive imaging. With the higher flux and luminance of the third generation of synchrotron radiation facility, XPCI can provides clearer and finer microstructures of CMMs, which are mainly composed of C, H, O, and N elements, with better spatial and density resolutions. For more than ten years, the X-ray imaging group at the Shanghai Institute of Applied Physics has investigated the microstructures of CMMs by XPCI and they have established and developed a quantitative X-ray phase contrast micro-CT for investigating the characteristic microstructures of CMMs. During this period, a variety of typical CMMs have been investigated, from two-dimensional (2D) radiography to three-dimensional (3D) micro-CT, from qualitative to quantitative. Taken together, these results verify that quantitative X-ray phase contrast micro-CT is a practical tool for the microscopic investigation of CMMs. Additionally, further efforts are being made to find the relationship between the microstructures' quantitative factors and active chemical components. At present

  18. The scope and potentials of functional radionuclide imaging towards advancing personalized medicine in oncology: emphasis on PET-CT.

    PubMed

    Basu, Sandip

    2012-01-01

    Behavioral heterogeneity within a given patient cohort has been a major challenge in clinical practice and is probably most prominently observed in the field of oncology. This has been the prime impetus of the cutting-edge preclinical and clinical research studies over recent times, many of which seek to further stratify patients based on patients' genetic, proteomic, and metabolic profile (the three key components of "-omics" research), in order to select the appropriate therapy according to an individual's best-fit. Data from functional radionuclide imaging particularly that obtained from PET-CT, with regard to characterization of an individual's tumor phenotype, can play a very important role in answering some of the critical decision-making questions on an individual basis. The role of molecular imaging with PET, SPECT, and planar radionuclide technologies is not confined to early response assessment of administered therapeutics (which is its major benefit compared to conventional methods), rather it has a much broader perspective and encompasses multiple steps in decision making steps of patient management. The immense impact of the radionuclide-based molecular imaging techniques on the selection of an appropriate treatment (at initial diagnosis, during therapy, or after therapy) or in defining the tumor biology has been documented and increasingly recognized through both large and small-scale studies. However, there has been relatively less systematic effort towards the development of a successful and definitive clinical model of "personalized cancer medicine" (based on accurate disease triaging on an individual basis) by the medical community that would be suitable for routine adoption. In this paper, an endeavor has been made to explore the potential of this approach and underscore the areas that would require further critical evaluation to make this a reality.

  19. Three-dimensional magnetic resonance cardiac imaging shows initial promise

    SciTech Connect

    Not Available

    1988-04-15

    Three-dimensional magnetic resonance imaging (3-D MRI) of the heart is already receiving encouraging reviews from heart surgeons, says Michael Vannier, MD, an associate professor of radiology at Washington University School of Medicine, St. Louis. In fact, the demand for his group's 3-D images is becoming overwhelming, Vannier says. So far, the group has used 3-D MRI to evaluate congenital heart disease. The advantage of the 3-D system is that, even to an untrained eye, anomalies are apparent and the images can even be animated. Many of the patients are infants, who are sedated while the images are acquired. When the information is combined, the averaged image produced represents a slice about 5 mm thick. The computer then stacks a number of those images together to make the 3-D image. Total scanning takes about one hour.

  20. Imaging of spatially extended hot spots with coded apertures for intra-operative nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Kaissas, I.; Papadimitropoulos, C.; Potiriadis, C.; Karafasoulis, K.; Loukas, D.; Lambropoulos, C. P.

    2017-01-01

    Coded aperture imaging transcends planar imaging with conventional collimators in efficiency and Field of View (FOV). We present experimental results for the detection of 141 keV and 122 keV γ-photons emitted by uniformly extended 99mTc and 57Co hot-spots along with simulations of uniformly and normally extended 99mTc hot-spots. These results prove that the method can be used for intra-operative imaging of radio-traced sentinel nodes and thyroid remnants. The study is performed using a setup of two gamma cameras, each consisting of a coded-aperture (or mask) of Modified Uniformly Redundant Array (MURA) of rank 19 positioned on top of a CdTe detector. The detector pixel pitch is 350 μm and its active area is 4.4 × 4.4 cm2, while the mask element size is 1.7 mm. The detectable photon energy ranges from 15 keV up to 200 keV with an energy resolution of 3–4 keV FWHM. Triangulation is exploited to estimate the 3D spatial coordinates of the radioactive spots within the system FOV. Two extended sources, with uniform distributed activity (11 and 24 mm in diameter, respectively), positioned at 16 cm from the system and with 3 cm distance between their centers, can be resolved and localized with accuracy better than 5%. The results indicate that the estimated positions of spatially extended sources lay within their volume size and that neighboring sources, even with a low level of radioactivity, such as 30 MBq, can be clearly distinguished with an acquisition time about 3 seconds.

  1. Advanced devices for photoacoustic imaging to improve cancer and cerebrovascular medicine

    NASA Astrophysics Data System (ADS)

    Montilla Marien, Leonardo Gabriel

    Recent clinical studies have demonstrated that photoacoustic imaging (PAI) provides important diagnostic information for breast cancer staging. Despite these promising studies, PAI remains an unfeasible option for clinics due to the cost to implement, the required large modification in user conduct and the inflexibility of the hardware to accommodate other applications for the incremental enhancement in diagnostic information. The research described in this dissertation addresses these issues by designing attachments to clinical ultrasound probes and incorporating custom detectors into commercial ultrasound scanners. The ultimate benefit of these handheld devices is to expand the capability of current ultrasound systems and facilitate the translation of PAI to enhance cancer diagnostics and neurosurgical outcomes. Photoacoustic enabling devices (PEDs) were designed as attachments to two clinical ultrasound probes optimized for breast cancer diagnostics. PAI uses pulsed laser excitation to create transient heating (<1°C) and thermoelastic expansion that is detected as an ultrasonic emission. These ultrasonic emissions are remotely sensed to construct noninvasive images with optical contrast at depths much greater than other optical modalities. The PEDs are feasible in terms of cost, user familiarity and flexibility for various applications. Another possible application for PAI is in assisting neurosurgeons treating aneurysms. Aneurysms are often treated by placing a clip to prevent blood flow into the aneurysm. However, this procedure has risks associated with damaging nearby vessels. One of the developed PEDs demonstrated the feasibility to three-dimensionally image tiny microvasculature (<0.3mm) beyond large blood occlusions (>2.4mm) in a phantom model. The capability to use this during surgery would suggest decreasing the risks associated with these treatments. However, clinical ultrasound arrays are not clinically feasible for microsurgical applications due to

  2. Molecular Imaging and Precision Medicine: PET/Computed Tomography and Therapy Response Assessment in Oncology.

    PubMed

    Sheikhbahaei, Sara; Mena, Esther; Pattanayak, Puskar; Taghipour, Mehdi; Solnes, Lilja B; Subramaniam, Rathan M

    2017-01-01

    A variety of methods have been developed to assess tumor response to therapy. Standardized qualitative criteria based on 18F-fluoro-deoxyglucose PET/computed tomography have been proposed to evaluate the treatment effectiveness in specific cancers and these allow more accurate therapy response assessment and survival prognostication. Multiple studies have addressed the utility of the volumetric PET biomarkers as prognostic indicators but there is no consensus about the preferred segmentation methodology for these metrics. Heterogeneous intratumoral uptake was proposed as a novel PET metric for therapy response assessment. PET imaging techniques will be used to study the biological behavior of cancers during therapy.

  3. The American College of Radiology white paper on radiation dose in medicine:deep impact on the practice of cardiovascular imaging.

    PubMed

    Picano, Eugenio; Vano, Eliseo; Semelka, Richard; Regulla, Dieter

    2007-10-31

    In April 2007, the American College of Radiology released the "White Paper on Radiation Dose in Medicine". The Blue Ribbon panel members included private practice and academic diagnostic radiologists, medical physicists, representatives of industry and regulatory groups, and a patient advocate. The panel concluded that the expanding use of imaging modalities using ionizing radiations such as CT and nuclear medicine may result in an increased incidence of radiation-related cancer in the exposed population in the not-too-distant future, and this problem can likely be minimized by preventing the inappropriate use of such imaging and by optimizing studies that are performed to obtain the best image quality with the lowest radiation dose. The White Paper set forth practical suggestions to minimize radiation risk, including education for all stakeholders in the principles of radiation safety and preferential use of alternative (non-ionizing) imaging techniques, such as MRI and ultrasound. These recommendations are especially relevant for cardiologists, who prescribe and/or practice medical imaging examinations accounting for at least 50% of the total effective dose by radiation medicine, which amounts to an equivalent of about 160 chest x-rays per head per year in US. Were they be enacted, these simple recommendations would determine a revolution in the contemporary way of teaching, learning and practising cardiology.

  4. New imaging systems in nuclear medicine. Final report, January 1, 1993--December 31, 1995

    SciTech Connect

    1995-12-31

    The aim of this program has been to improve the performance of positron emission tomography (PET) to achieve high resolution with high sensitivity. Towards this aim, the authors have carried out the following studies: (1) explored new techniques for detection of annihilation radiation including new detector materials and system geometries, specific areas that they have studied include--exploration of factors related to resolution and sensitivity of PET instrumentation including geometry, detection materials and coding, and the exploration of technique to improve the image quality by use of depth of interaction and increased sampling; (2) complete much of the final testing of PCR-II, an analog-coded cylindrical positron tomograph, developed and constructed during the current funding period; (3) developed the design of a positron microtomograph with mm resolution for quantitative studies in small animals, a single slice version of this device has been designed and studied by use of computer simulation; (4) continued and expanded the program of biological studies in animal models. Current studies have included imaging of animal models of Parkinson`s and Huntington`s disease and cancer. These studies have included new radiopharmaceuticals and techniques involving molecular biology.

  5. Heart disease and intimacy

    MedlinePlus

    ... hard to talk to your heart doctor about these topics, talk to your primary care provider. If you are depressed, anxious, or afraid, medicine or talk therapy may help. Classes in lifestyle change, stress management, or therapy may help you, family members, and ...

  6. Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images

    PubMed Central

    Mihalef, Viorel; Ionasec, Razvan Ioan; Sharma, Puneet; Georgescu, Bogdan; Voigt, Ingmar; Suehling, Michael; Comaniciu, Dorin

    2011-01-01

    There is a growing need for patient-specific and holistic modelling of the heart to support comprehensive disease assessment and intervention planning as well as prediction of therapeutic outcomes. We propose a patient-specific model of the whole human heart, which integrates morphology, dynamics and haemodynamic parameters at the organ level. The modelled cardiac structures are robustly estimated from four-dimensional cardiac computed tomography (CT), including all four chambers and valves as well as the ascending aorta and pulmonary artery. The patient-specific geometry serves as an input to a three-dimensional Navier–Stokes solver that derives realistic haemodynamics, constrained by the local anatomy, along the entire heart cycle. We evaluated our framework with various heart pathologies and the results correlate with relevant literature reports. PMID:22670200

  7. Bioelectrical impedance techniques in medicine. Part III: Impedance imaging. First section: general concepts and hardware.

    PubMed

    Rigaud, B; Morucci, J P

    1996-01-01

    Measurement accuracy is a key point in impedance imaging and is mainly limited by factors that take place in the acquisition system. This part is a review of hardware solutions developed in acquisition systems for electrical impedance tomography (EIT). The general principles of EIT along with the changes that have taken place in the last decade, in terms of measurement strategy, and a certain number of definitions are introduced. The major hardware error sources that occur in the front end of EIT systems are presented. A review of the various alternatives published in the literature that are used to drive current, including current and voltage approaches, and the main solutions recommended in the literature to overcome the key point drawbacks of voltage measurement systems, including voltage buffers, instrumentation amplifiers, and demodulators, are provided. Some calibration procedures and approaches for the evaluation of the performance of EIT systems are also presented.

  8. Heart Failure

    MedlinePlus

    Heart failure is a condition in which the heart can't pump enough blood to meet the body's needs. Heart failure does not mean that your heart has stopped ... Tiredness and shortness of breath Common causes of heart failure are coronary artery disease, high blood pressure and ...

  9. Nano-imaging of the beating mouse heart in vivo: Importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function.

    PubMed

    Kobirumaki-Shimozawa, Fuyu; Oyama, Kotaro; Shimozawa, Togo; Mizuno, Akari; Ohki, Takashi; Terui, Takako; Minamisawa, Susumu; Ishiwata, Shin'ichi; Fukuda, Norio

    2016-01-01

    Sarcomeric contraction in cardiomyocytes serves as the basis for the heart's pump functions in mammals. Although it plays a critical role in the circulatory system, myocardial sarcomere length (SL) change has not been directly measured in vivo under physiological conditions because of technical difficulties. In this study, we developed a high speed (100-frames per second), high resolution (20-nm) imaging system for myocardial sarcomeres in living mice. Using this system, we conducted three-dimensional analysis of sarcomere dynamics in left ventricular myocytes during the cardiac cycle, simultaneously with electrocardiogram and left ventricular pressure measurements. We found that (a) the working range of SL was on the shorter end of the resting distribution, and (b) the left ventricular-developed pressure was positively correlated with the SL change between diastole and systole. The present findings provide the first direct evidence for the tight coupling of sarcomere dynamics and ventricular pump functions in the physiology of the heart.

  10. Human heart by art.

    PubMed

    Tamir, Abraham

    2012-11-01

    Heart is of great importance in maintaining the life of the body. Enough to stop working for a few minutes to cause death, and hence the great importance in physiology, medicine, and research. This fact was already emphasized in the Bible in the Book of Proverbs, chapter 4 verse 23: "Keep your heart with all diligence, for out of it is the wellspring of life." Art was able to demonstrate the heart from various aspects; realistically, as done by Leonardo de Vinci who demonstrated the halves of the heart and its blood vessels. Symbolically, as a source of life, the heart was demonstrated by the artist Mrs. Erlondeiel, as a caricature by Salvador Dali, as an open heart by Sawaya, etc. Finally, it should be emphasized that different demonstrations of the human heart by many artworks make this most important organ of our body (that cannot be seen from outside) more familiar and clearer to us. And this is the purpose of this article-to demonstrate the heart through a large number of artworks of different kinds.

  11. Physical Activity and Public Health in Older Adults: Recommendation from the American College of Sports Medicine and the American Heart Association

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To issue a recommendation on the types and amounts of physical activity needed to improve and maintain health in older adults. Participants: A panel of scientists with expertise in public health, behavioral science, epidemiology, exercise science, medicine, and gerontology. Evidence: The ...

  12. Nuclear Medicine in Pediatric Cardiology.

    PubMed

    Milanesi, Ornella; Stellin, Giovanni; Zucchetta, Pietro

    2017-03-01

    Accurate cardiovascular imaging is essential for the successful management of patients with congenital heart disease (CHD). Echocardiography and angiography have been for long time the most important imaging modalities in pediatric cardiology, but nuclear medicine has contributed in many situations to the comprehension of physiological consequences of CHD, quantifying pulmonary blood flow symmetry or right-to-left shunting. In recent times, remarkable improvements in imaging equipments, particularly in multidetector computed tomography and magnetic resonance imaging, have led to the progressive integration of high resolution modalities in the clinical workup of children affected by CHD, reducing the role of diagnostic angiography. Technology has seen a parallel evolution in the field of nuclear medicine, with the advent of hybrid machines, as SPECT/CT and PET/CT scanners. Improved detectors, hugely increased computing power, and new reconstruction algorithms allow for a significant reduction of the injected dose, with a parallel relevant decrease in radiation exposure. Nuclear medicine retains its distinctive capability of exploring at the tissue level many functional aspects of CHD in a safe and reproducible way. The lack of invasiveness, the limited need for sedation, the low radiation burden, and the insensitivity to body habitus variations make nuclear medicine an ideal complement of echocardiography. This is particularly true during the follow-up of patients with CHD, whose increasing survival represent a great medical success and a challenge for the health system in the next decades. Metabolic imaging using (18)FDG PET/CT has expanded its role in the management of infection and inflammation in adult patients, particularly in cardiology. The same expansion is observed in pediatric cardiology, with an increasing rate of studies on the use of FDG PET for the evaluation of children with vasculitis, suspected valvular infection or infected prosthetic devices. The

  13. The Construction of Unsmooth Pulse Images in Traditional Chinese Medicine Based on Wave Intensity Technology

    PubMed Central

    Guo, Si-wei; Cao, Shuang-shuang; Lin, Ning; Ye, Zhen-sheng; Wei, Shi-chao; Zheng, Xing-yu; Guo, Miao-miao; Meng, Xiao-rong; Huang, Fang-meng

    2016-01-01

    Unsmooth pulse is one of the most important pulses in TCM diagnostics. We constructed the wave intensity (WI) images of unsmooth pulse based on the pressure wave (P), flow velocity wave (U), and WI [(dP/dt)(dU/dt)] by ALOKA Prosound α 10 Color Doppler. The characteristic of Cunkou normal pulse could be summarized as follows: compared to Renying pulse, its W1 amplitude is smaller and NA wave is more obvious, while the W2 wave is indistinct or even invisible, and the R-1st is longer than that of Renying pulse. The principal U wave of Renying pulse looks like “Λ” shape, while it looks like an arched blunt “∩” shape in Cunkou pulse, and the amplitude of U wave in Cunkou pulse is smaller. The direction of the principal U wave in Cunkou unsmooth pulse is up, which shows hoof boots “h” shape with high amplitude and a significant notch on declined branch; the amplitude of predicrotic wave in unsmooth pulse P wave is significantly higher, which could be even higher than that of h1, resulting in early appearance of h3 or integrating with h1, which forms a wide and blunt peak. Unsmooth pulse shows poorer vascular elasticity and greater vascular stiffness. PMID:27999604

  14. Lasers As Particle Accelerators In Medicine: From Laser-Driven Protons To Imaging With Thomson Sources

    SciTech Connect

    Pogorelsky, I. V.; Babzien, M.; Polyanskiy, M. N.; Yakimenko, V.; Dover, N. P.; Palmer, C. A. J.; Najmudin, Z.; Shkolnikov, P.; Williams, O.; Rosenzweig, J.; Oliva, P.; Carpinelli, M.; Golosio, B.; Delogu, P.; Stefanini, A.; Endrizzi, M.

    2011-06-01

    We report our recent progress using a high-power, picosecond CO{sub 2} laser for Thomson scattering and ion acceleration experiments. These experiments capitalize on certain advantages of long-wavelength CO{sub 2} lasers, such as their high number of photons per energy unit and beneficial wavelength- scaling of the electrons' ponderomotive energy and critical plasma frequency. High X-ray fluxes produced in the interactions of the counter-propagating laser- and electron-beams for obtaining single-shot, high-contrast images of biological objects. The laser, focused on a hydrogen jet, generated a monoenergetic proton beam via the radiation-pressure mechanism. The energy of protons produced by this method scales linearly with the laser's intensity. We present a plan for scaling the process into the range of 100-MeV proton energy via upgrading the CO{sub 2} laser. This development will enable an advance to the laser-driven proton cancer therapy.

  15. Capabilities of dual-energy x-ray imaging in medicine and security

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Volodymyr D.; Grinyov, Borys V.; Opolonin, Oleksandr D.; Galkin, Serhiy M.; Lysetska, Olena K.; Voronkin, Yevheniy F.; Kostioukevitch, Serhiy A.

    2012-10-01

    The dual-energy computer tomography compared with its traditional single-energy variant ensures substantially higher contrast sensitivity. The evaluation of the signal ratio from high-energy and low-energy detectors has been carried out using a simplified model of the dual-energy detector array and accounting for the X-ray tube spectrum. We proposed to use of a dual-energy receiving-detecting circuit with a detector pair ZnSe/CsI or ZnSe/CdWO that allows efficient distinction between muscular and bone tissues, which supports our earlier theoretical assumptions that this method could be successfully used for separate detection of materials differing in their effective atomic number Zeff and local density (e.g., calcium contents in bone densitometry), so as can be turn to account for new generation instruments. A possibility of dual energy tomography use for osteoporosis diagnostics was considered. Direct image reconstruction of biological objects has been carried out, demonstrating details of bones with different density. The density of the bone depends on the calcium content, which is not more than 20 % for the narrow part and about 18,5 % in the broad part. This results obtained were in good agreement with the results of the independent chemical analysis.