Science.gov

Sample records for medicine heart imaging

  1. Heart failure - medicines

    MedlinePlus

    CHF - medicines; Congestive heart failure - medicines; Cardiomyopathy - medicines; HF - medicines ... You will need to take most of your heart failure medicines every day. Some medicines are taken ...

  2. Heart imaging method

    SciTech Connect

    Collins, H. Dale; Gribble, R. Parks; Busse, Lawrence J.

    1991-01-01

    A method for providing an image of the human heart's electrical system derives time-of-flight data from an array of EKG electrodes and this data is transformed into phase information. The phase information, treated as a hologram, is reconstructed to provide an image in one or two dimensions of the electrical system of the functioning heart.

  3. Heart Imaging System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Johnson Space Flight Center's device to test astronauts' heart function in microgravity has led to the MultiWire Gamma Camera, which images heart conditions six times faster than conventional devices. Dr. Jeffrey Lacy, who developed the technology as a NASA researcher, later formed Proportional Technologies, Inc. to develop a commercially viable process that would enable use of Tantalum-178 (Ta-178), a radio-pharmaceutical. His company supplies the generator for the radioactive Ta-178 to Xenos Medical Systems, which markets the camera. Ta-178 can only be optimally imaged with the camera. Because the body is subjected to it for only nine minutes, the radiation dose is significantly reduced and the technique can be used more frequently. Ta-178 also enables the camera to be used on pediatric patients who are rarely studied with conventional isotopes because of the high radiation dosage.

  4. Diagnostic imaging in internal medicine

    SciTech Connect

    Eisenberg, R.L.

    1985-01-01

    This book examines medical diagnostic techniques. Topics considered include biological considerations in the approach to clinical medicines; infectious diseases; disorders of the heart; disorders of the vascular system; disorders of the respiratory system; diseases of the kidneys and urinary tract; disorders of the alimentary tract; disorders of the hepatobiliary system and pancreas; disorders of the hematopoietic system; disorders of bone and bone mineralization; disorders of the joints, connective tissues, and striated muscles; disorders of the nervous system; miscellaneous disorders; and procedures in diagnostic imaging.

  5. Nuclear medicine hepatobiliary imaging.

    PubMed

    Ziessman, Harvey A

    2010-02-01

    Nuclear medicine hepatobilary imaging (HIDA) is a time proven imaging methodology that uses radioactive drugs and specialized cameras to make imaging diagnoses based on physiology. HIDA radiopharmaceuticals are extracted by hepatocytes in the liver and cleared through the biliary system similar to bilirubin. The most common indication for HIDA imaging is acute cholecystitis, diagnosed by nonfilling of the gallbladder due to cystic duct obstruction. HIDA can detect high grade biliary obstruction prior to ductal dilatation; images reveal a persistent hepatogram without biliary clearance due to the high backpressure. HIDA also aids in the diagnosis of partial biliary obstruction due to stones, biliary stricture, and sphincter of Oddi obstruction. It can confirm biliary leakage postcholecystectomy and hepatic transplantation. Calculation of a gallbladder ejection fraction after cholecystokinin infusion is commonly used to diagnose chronic acalculous gallbladder disease. Diseased gallbladders do not contract. There are many other less common but valuable diagnostic indications for HIDA imaging. PMID:19879969

  6. [Anthropology at the heart of medicine].

    PubMed

    Vidal, Laurent

    2008-10-01

    Anthropology and medicine share many concerns, but have had trouble collaborating in the past. The anthropologist has had to plead both with his colleagues and physicians to move beyond a < culturalist > vision that would confine him to the study of traditional or alternative medicines and representations of populations and the sick. The anthropologist's approach perceived as intrusive has also raised fears in the medical world. These reciprocal misunderstandings and stereotypes need to be overcome by an anthropology that studies the practices and knowledge of modern medicine as they are elaborated daily. Anthropology will dialogue with medicine without judging it. In its turn, medicine will open its sites of healing and teaching to the anthropologist. Anthropology at the heart of medicine is organized around the idea that the paths and expectations of health professionals reflect the specicifities of the local system of health. The individual dimensions of practices cannot be divorced from the functioning of structures of health and decision. Finally, like any other kind of anthropology, medical anthropology must scrutinize its own methods and ethics in a critical way.

  7. Heart, front view (image)

    MedlinePlus

    ... the heart. The vessels colored blue indicate the transport of blood with relatively low content of oxygen ... carbon dioxide. The vessels colored red indicate the transport of blood with relatively high content of oxygen ...

  8. Radiopharmaceuticals for imaging the heart

    DOEpatents

    Green, M.A.; Tsang, B.W.

    1994-06-28

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography. 6 figures.

  9. Radiopharmaceuticals for imaging the heart

    DOEpatents

    Green, Mark A.; Tsang, Brenda W.

    1994-01-01

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography.

  10. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George

    1986-01-07

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  11. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  12. Heart Sonar Images

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Stanford University cardiologists, with the help of Ames engineers, have validated the operation of the echo-cardioscope to monitor cardiac functions of astronauts in flight. This device forms images of internal structures using high-frequency sound. The instrument is compact, lightweight, portable, and DC powered for safety. The battery powered ultrasonic device, being isolated from its electrical environment, has an inherent safety advantage especially with infants.

  13. Hypoplastic left heart syndrome (image)

    MedlinePlus

    Hypoplastic left heart syndrome is a congenital heart condition that occurs during the development of the heart in the ... womb. During the heart's development, parts of the left side of the heart (mitral valve, left ventricle ...

  14. Image processing in medicine

    NASA Astrophysics Data System (ADS)

    Dallas, William J.; Roehrig, Hans

    2001-12-01

    This article is divided into two parts: the first is an opinion, the second is a description. The opinion is that diagnostic medical imaging is not a detection problem. The description is of a specific medical image-processing program. Why the opinion? If medical imaging were a detection problem, then image processing would unimportant. However, image processing is crucial. We illustrate this fact using three examples ultrasound, magnetic resonance imaging and, most poignantly, computed radiography. Although the examples are anecdotal they are illustrative. The description is of the image-processing program ImprocRAD written by one of the authors (Dallas). First we will discuss the motivation for creating yet another image processing program including system characterization which is an area of expertise of one of the authors (Roehrig). We will then look at the structure of the program and finally, to the point, the specific application: mammographic diagnostic reading. We will mention rapid display of mammogram image sets and then discuss processing. In that context, we describe a real-time image-processing tool we term the MammoGlass.

  15. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  16. Magnetic resonance imaging of congenital heart disease

    SciTech Connect

    Fletcher, B.D.; Jacobstein, M.D.

    1988-01-01

    Focusing primarily on MR imaging of the heart, this book covers other diagnostic imaging modalities as well. The authors review new technologies and diagnostic procedures pertinent to congenital heat disease and present each congenital heat abnormality as a separate entity.

  17. Medicinal Chemistry Approaches to Heart Regeneration.

    PubMed

    Schade, Dennis; Plowright, Alleyn T

    2015-12-24

    Because of the minimal and clearly insufficient ability of the adult heart to regenerate after ischemic injury, there is a great opportunity to identify biological mechanisms, substances, and factors that enhance this process. Hence, innovative therapeutic management of heart failure following infarction requires a paradigm shift in pharmacotherapy. Spurred by tremendous progress in the field of stem cell and cardiac biology, several attractive approaches for regeneration of lost cardiomyocytes and supporting vasculature have emerged. Research in this area focuses on restoring the hearts' original function via proliferation and differentiation of cardiac progenitor cells, proliferation of pre-existing cardiomyocytes, and reprogramming of cardiac fibroblasts. In this review, we outline these principal strategies, putative biological targets or signaling pathways and chemical agents, with a focus on small molecules, to achieve therapeutic heart regeneration. We also point out the many remaining questions and challenges, particularly for translating in vitro discoveries to in vivo application.

  18. Infant open heart surgery (image)

    MedlinePlus

    During open-heart surgery an incision is made through the breastbone (sternum) while the child is under general anesthesia. ... During open-heart surgery an incision is made through the breastbone (sternum) while the child is under general anesthesia.

  19. Bone imaging in sports medicine.

    PubMed

    Shikare, S; Samsi, A B; Tilve, G H

    1997-01-01

    Increased participation in sports by the general public leads to increase in sports induced injuries including stress fractures, shin splints, arthritis and host of musculotendenous maladies. We have studied twenty patients referred from sports clinic for bone scanning to evaluate clinically difficult problems. It showed stress fracture in twelve patients, bilateral shin splint in five patients and normal bone scan in three patients. Present study highlights the utility of bone imaging for the diagnosis of various sports injuries in sports medicine.

  20. Heart Palpitation From Traditional and Modern Medicine Perspectives

    PubMed Central

    Ershadifar, Tabassom; Minaiee, Bagher; Gharooni, Manouchehr; Isfahani, Mohammad Mahdi; Nikbakht Nasrabadi, Alireza; Nazem, Esmaiel; Gousheguir, Ashraf Aldin; Kazemi Saleh, Davod

    2014-01-01

    Background: Palpitation is a sign of a disease and is very common in general population. For this purpose we decided to explain it in this study. Objectives: The purpose of this study was to describe the palpitation in both modern and traditional medicine aspect. It may help us to diagnose and cure better because the traditional medicine view is holistic and different from modern medicine. Materials and Methods: We addressed some descriptions to the articles of traditional medicine subjects which have published recently. Palpitation in modern medicine was extracted from medical books such as Braunwald, Harrison and Guyton physiology and some related articles obtained from authentic journals in PubMed and Ovid and Google scholar between1990 to 2013. Results: According to modern medicine, there are many causes for palpitation and in some cases it is cured symptomatically. In traditional medicine view, palpitation has been explained completely and many causes have been described. Its aspect is holistic and it cures causatively. The traditional medicine scientists evaluated the body based on Humors and temperament. Temperament can be changed to dis-temperament in diseases. Humors are divided in 4 items: sanguine, humid or phlegm, melancholy and bile. Palpitation is a disease, it is heart vibration and is caused by an abnormal substance in the heart itself or its membrane or other adjacent organs that would result in the heart suffering. Conclusions: Our data of this article suggests that causes of palpitation in the aspect of traditional medicine are completely different from modern medicine. It can help us to approach and treat this symptom better and with lower side effects than chemical drugs. According to this article we are able to detect a new approach in palpitation. PMID:24719741

  1. Cardiac imaging in valvular heart disease

    PubMed Central

    Choo, W S; Steeds, R P

    2011-01-01

    The aim of this article is to provide a perspective on the relative importance and contribution of different imaging modalities in patients with valvular heart disease. Valvular heart disease is increasing in prevalence across Europe, at a time when the clinical ability of physicians to diagnose and assess severity is declining. Increasing reliance is placed on echocardiography, which is the mainstay of cardiac imaging in valvular heart disease. This article outlines the techniques used in this context and their limitations, identifying areas in which dynamic imaging with cardiovascular magnetic resonance and multislice CT are expanding. PMID:22723532

  2. Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine

    PubMed Central

    Lui, Kathy O.; Tandon, Nina

    2012-01-01

    The idea of extending the lifetime of our organs is as old as humankind, fueled by major advances in organ transplantation, novel drugs, and medical devices. However, true regeneration of human tissue has becoming increasingly plausible only in recent years. The human heart has always been a focus of such efforts, given its notorious inability to repair itself following injury or disease. We discuss here the emerging bioengineering approaches to regeneration of heart muscle as a paradigm for regenerative medicine. Our focus is on biologically inspired strategies for heart regeneration, knowledge gained thus far about how to make a “perfect” heart graft, and the challenges that remain to be addressed for tissue-engineered heart regeneration to become a clinical reality. We emphasize the need for interdisciplinary research and training, as recent progress in the field is largely being made at the interfaces between cardiology, stem cell science, and bioengineering. PMID:21568715

  3. Heart-Lung Interactions in Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Guy, Harold J. B.; Prisk, Gordon Kim

    1991-01-01

    Few of the heart-lung interactions that are discussed have been studied in any detail in the aerospace environment, but is seems that many such interactions must occur in the setting of altered accelerative loadings and pressure breathing. That few investigations are in progress suggests that clinical and academic laboratory investigators and aerospace organizations are further apart than during the pioneering work on pressure breathing and acceleration tolerance in the 1940s. The purpose is to reintroduce some of the perennial problems of aviation physiology as well as some newer aerospace concerns that may be of interest. Many possible heart-lung interactions are pondered, by necessity often drawing on data from within the aviation field, collected before the modern understanding of these interactions developed, or on recent laboratory data that may not be strictly applicable. In the field of zero-gravity effects, speculation inevitably outruns the sparse available data.

  4. Functional imaging for regenerative medicine.

    PubMed

    Leahy, Martin; Thompson, Kerry; Zafar, Haroon; Alexandrov, Sergey; Foley, Mark; O'Flatharta, Cathal; Dockery, Peter

    2016-01-01

    In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can be divided according to whether labels are used and as to whether the imaging can be done in vivo. In vivo human imaging places additional restrictions on the imaging tools that can be used. Microscopies and nanoscopies, especially those requiring fluorescent markers, have made an extraordinary impact on discovery at the molecular and cellular level, but due to their very limited ability to focus in the scattering tissues encountered for in vivo applications they are largely confined to superficial imaging applications in research laboratories. Nanoscopy, which has tremendous benefits in resolution, is limited to the near-field (e.g. near-field scanning optical microscope (NSNOM)) or to very high light intensity (e.g. stimulated emission depletion (STED)) or to slow stochastic events (photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)). In all cases, nanoscopy is limited to very superficial applications. Imaging depth may be increased using multiphoton or coherence gating tricks. Scattering dominates the limitation on imaging depth in most tissues and this can be mitigated by the application of optical clearing techniques that can impose mild (e.g. topical application of glycerol) or severe (e.g. CLARITY) changes to the tissue to be imaged. Progression of therapies through to clinical trials requires some thought as to the imaging and sensing modalities that should be used. Smoother progression is facilitated by the use of

  5. Heart valve surgery - series (image)

    MedlinePlus

    ... and is normal. The first 2 or 3 days following the operation are spent in an intensive care unit where heart functions can be monitored constantly. The average hospital stay is 1 - 2 weeks. A few weeks ...

  6. Imaging Techniques in Acute Heart Failure.

    PubMed

    Pérez del Villar, Candelas; Yotti, Raquel; Bermejo, Javier

    2015-07-01

    In recent years, imaging techniques have revolutionized the diagnosis of heart failure. In patients with a clinical picture of acute decompensation, prognosis is largely determined by early implementation of general measures and treatment of the underlying cause. Given its diagnostic yield and portability, ultrasound has become an essential tool in the setting of acute heart failure, and is currently found in all medical departments involved in the care of the critically ill patient. Cardiac magnetic resonance and computed tomography allow detailed characterization of multiple aspects of cardiac structure and function that were previously unavailable. This helps guide and monitor many of the treatment decisions in the acute heart failure population in an entirely noninvasive way. This article aims to review the usefulness of the imaging techniques that are clinically relevant in the context of an episode of acute heart failure. We discuss the indications and limitations of these techniques in detail and describe the general principles for the appropriate interpretation of results.

  7. (New imaging systems in nuclear medicine)

    SciTech Connect

    Not Available

    1990-01-01

    Further progress has been made on improving the uniformity and stability of PCR-I, the single ring analog coded tomograph. This camera has been employed in a wide range of animal studies described below. Data from PCR-I have been used in various image processing procedures. These include motion pictures of dog heart, comparison of PET and MRI image in dog heart and rat brain and quantitation of tumor metabolism in the nude mouse using blood data from heart images. A SUN workstation with TAAC board has been used to produce gated three-dimensional images of the dog heart. The ANALYZE program from the Mayo Clinic has also been mounted on a SUN workstation for comparison of images and image processing. 15 refs., 6 figs.

  8. Clinical practice of traditional Chinese medicines for chronic heart failure

    PubMed Central

    Fu, Shufei; Zhang, Junhua; Gao, Xiumei; Xia, Ye; Ferrelli, Rita; Fauci, Alice; Guerra, Ranieri; Hu, Limin

    2010-01-01

    Background Chinese medicines have been used for chronic heart failure (CHF) for thousands of years; however, the status of traditional Chinese medicines (TCMs) used for CHF has not been reported. This review was carried out in the framework of a joint Sino-Italian Laboratory. Objective To investigate the baseline of clinical practice of TCMs for CHF, and to provide valuable information for research and clinical practice. Methods The authors included articles about the use of TCMs for the treatment of CHF by searching the Chinese Journal Full-text Database (1994 to November 2007). Results In all, 1029 papers were included, with 239 herbs retrieved from these. The most commonly used herbs included Huangqi (Radix Astragali), Fuling (Poria), Danshen (Radix Salviae Miltiorrhiae), Fuzi (Radix Aconiti Lateralis Preparata) and Tinglizi (Semen Lepidii). Modern Chinese patent medicines (produced by pharmaceutical companies) and traditional prescriptions (comprising several herbs) are the application forms of these drugs. Shenmai, Shengmai and Astragalus injections were the most commonly used Chinese patent medicines. Some classic prescriptions (including Zhenwu decoction, Shengmai powder and Lingguizhugan decoction) were also frequently used. The effectiveness and safety of the TCMs were both satisfactory, and the traditional Chinese medicine and western medicine therapy could significantly improve the clinical effectiveness and reduce some of the adverse reactions from western medicines used alone. Conclusion The authors have acquired overall information about the clinical application of TCMs for CHF. Modern pharmacology has provided limited evidence for the rationality of this clinical use. Further research is needed to provide more evidence. PMID:27325938

  9. Nutritional aspects to prevent heart diseases in traditional Persian medicine.

    PubMed

    Kordafshari, Gholamreza; Kenari, Hoorieh Mohammadi; Esfahani, Mohammad Mehdi; Ardakani, Mohammad Reza Shams; Keshavarz, Mansoor; Nazem, Esmaeil; Moghimi, Maryam; Zargaran, Arman

    2015-01-01

    Cardiovascular diseases are major health complications currently in various societies. Management of heart diseases as a prevention step or as treatment with low-cost procedures like lifestyle modifications including nutrition are important current trends. Although the term nutrition dates back to 2 past centuries, Persian physicians contributed to this term at least from 1000 years ago. Rhazes (865-925 AD) was one of the pioneers in this field. He preferred using foods in treating illnesses. "Foods and drinks" were 1 subject from 6 principles (Setteh Zarorieh) that Persian physicians believed can affect human health. In this review, we described some medieval Persian views on the role of nutrition in heart diseases and compare their prescriptions with current findings. Interestingly, current investigations mostly support Persian medicine principles. Historically, this work shows that the concept of nutrition in heart diseases has had a successful background at least from 1000 years ago in Persia.

  10. Nuclear Medicine Imaging in Pediatric Neurology

    PubMed Central

    Akdemir, Ümit Özgür; Atay Kapucu, Lütfiye Özlem

    2016-01-01

    Nuclear medicine imaging can provide important complementary information in the management of pediatric patients with neurological diseases. Pre-surgical localization of the epileptogenic focus in medically refractory epilepsy patients is the most common indication for nuclear medicine imaging in pediatric neurology. In patients with temporal lobe epilepsy, nuclear medicine imaging is particularly useful when magnetic resonance imaging findings are normal or its findings are discordant with electroencephalogram findings. In pediatric patients with brain tumors, nuclear medicine imaging can be clinically helpful in the diagnosis, directing biopsy, planning therapy, differentiating tumor recurrence from post-treatment sequelae, and assessment of response to therapy. Among other neurological diseases in which nuclear medicine has proved to be useful are patients with head trauma, inflammatory-infectious diseases and hypoxic-ischemic encephalopathy. PMID:27299282

  11. Nuclear Medicine Imaging in Pediatric Neurology.

    PubMed

    Akdemir, Ümit Özgür; Atay Kapucu, Lütfiye Özlem

    2016-02-01

    Nuclear medicine imaging can provide important complementary information in the management of pediatric patients with neurological diseases. Pre-surgical localization of the epileptogenic focus in medically refractory epilepsy patients is the most common indication for nuclear medicine imaging in pediatric neurology. In patients with temporal lobe epilepsy, nuclear medicine imaging is particularly useful when magnetic resonance imaging findings are normal or its findings are discordant with electroencephalogram findings. In pediatric patients with brain tumors, nuclear medicine imaging can be clinically helpful in the diagnosis, directing biopsy, planning therapy, differentiating tumor recurrence from post-treatment sequelae, and assessment of response to therapy. Among other neurological diseases in which nuclear medicine has proved to be useful are patients with head trauma, inflammatory-infectious diseases and hypoxic-ischemic encephalopathy.

  12. Multimodality imaging in heart valve disease

    PubMed Central

    Chambers, John B; Myerson, Saul G; Rajani, Ronak; Morgan-Hughes, Gareth J; Dweck, Marc R

    2016-01-01

    In patients with heart valve disease, echocardiography is the mainstay for diagnosis, assessment and serial surveillance. However, other modalities, notably cardiac MRI and CT, are used if echocardiographic imaging is suboptimal but can also give complementary information to improve assessment of the valve lesion and cardiac compensation to aid the timing of surgery and determine risk. This statement discusses the way these imaging techniques are currently integrated to improve care beyond what is possible with echocardiography alone. PMID:26977308

  13. High Performance Organ-Specific Nuclear Medicine Imagers.

    NASA Astrophysics Data System (ADS)

    Majewski, Stan

    2006-04-01

    One of the exciting applications of nuclear science is nuclear medicine. Well-known diagnostic imaging tools such as PET and SPECT (as well as MRI) were developed as spin-offs of basic scientific research in atomic and nuclear physics. Development of modern instrumentation for applications in particle physics experiments offers an opportunity to contribute to development of improved nuclear medicine (gamma and positron) imagers, complementing the present set of standard imaging tools (PET, SPECT, MRI, ultrasound, fMRI, MEG, etc). Several examples of new high performance imagers developed in national laboratories in collaboration with academia will be given to demonstrate this spin-off activity. These imagers are designed to specifically image organs such as breast, heart, head (brain), or prostate. The remaining and potentially most important challenging application field for dedicated nuclear medicine imagers is to assist with cancer radiation treatments. Better control of radiation dose delivery requires development of new compact in-situ imagers becoming integral parts of the radiation delivery systems using either external beams or based on radiation delivery by inserting or injecting radioactive sources (gamma, beta or alpha emitters) into tumors.

  14. Insomnia in Chinese Medicine: The Heart of the Matter.

    PubMed

    O'Brien, Kylie; Weber, Daniel

    2016-09-01

    Chronic insomnia affects a significant proportion of the general population worldwide, and is associated with several serious medical conditions. From the Western scientific literature, hyper-arousal (on the cognitive-emotional, behavioral, autonomic, or central nervous system level) is a final common pathway involved in its pathogenesis. However, from a Chinese medicine (CM) perspective, it is the Heart, capitalized to denote the functional system as described in CM theory, that is the key organ involved in insomnia due to its role as the "seat of consciousness." This article explores how insomnia is understood from the CM perspective, in particular the role of the Heart, and some of the neurophysiological evidence that supports these ancient theoretical understandings. The potential role of the vagus nerve and its relationship with the (biomedical) heart and CM Heart is also examined. Finally, some of the evidence in association with mechanisms of action of acupuncture in insomnia, in particular its impact on cardiovascular variables associated with insomnia, is presented, along with findings of systematic reviews. PMID:27526331

  15. Echocardiographic image of an active human heart

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Echocardiographic images provide quick, safe images of the heart as it beats. While a state-of-the art echocardiograph unit is part of the Human Research Facility on International Space Station, quick transmission of images and data to Earth is a challenge. NASA is developing techniques to improve the echocardiography available to diagnose sick astronauts as well as study the long-term effects of space travel on their health. Echocardiography uses ultrasound, generated in a sensor head placed against the patient's chest, to produce images of the structure of the heart walls and valves. However, ultrasonic imaging creates an enormous volume of data, up to 220 million bits per second. This can challenge ISS communications as well as Earth-based providers. Compressing data for rapid transmission back to Earth can degrade the quality of the images. Researchers at the Cleveland Clinic Foundation are working with NASA to develop compression techniques that meet imaging standards now used on the Internet and by the medical community, and that ensure that physicians receive quality diagnostic images.

  16. Physical activity - preventive medicine (image)

    MedlinePlus

    Physical activity contributes to health by reducing the heart rate, decreasing the risk for cardiovascular disease, and reducing ... loss that is associated with age and osteoporosis. Physical activity also helps the body use calories more efficiently, ...

  17. An overview of nuclear medicine imaging procedures.

    PubMed

    Hogg, Peter; Lawson, Richard

    2015-11-25

    Nuclear medicine imaging is not generally well understood by nurses who work outside this area. Consequently, nurses can find themselves unable to answer patients' questions about nuclear medicine imaging procedures or give them proper information before they attend for a test. This article aims to explain what is involved in some common diagnostic nuclear medicine imaging procedures so that nurses are able to discuss this with patients. It also addresses some common issues about radiation protection that nurses might encounter in their usual working routine. The article includes links to videos showing some typical nuclear medicine imaging procedures from a patient's point of view and links to an e-Learning for Healthcare online resource that provides detailed information for nurses.

  18. Electronic Image Management For Medicine

    NASA Astrophysics Data System (ADS)

    Arink, G. J.

    1982-01-01

    Management of film files has problems of slow access, large space requirements, loss, and manual administration. Digital imaging modalities such as CT and DVI are posing new image management requirements. The contrast resolution of these systems is larger than can be represented on CRT monitors and multi-format films. Therefore, it is necessary to use digital media to store the full image data.

  19. ``THE UNVEILED HEART'' a teaching program in cardiovascular nuclear medicine

    NASA Astrophysics Data System (ADS)

    Itti, Roland; Merabet, Yasmina; Roca, Ramona; Bontemps, Laurence; Itti, Emmanuel

    2004-07-01

    The functional investigation of cardiac diseases using nuclear techniques involves several variables, such as myocardial perfusion, cellular viability or mechanical contraction. The combined, topographical and quantitative assessment of these variables can characterize the functional state of the heart in terms of normal myocardium, ischemia, hibernation or necrosis. The teaching program, "The Unveiled Heart", has been designed in order to help nuclear physicians or cardiologists approaching these concepts and their implications for diagnosis of coronary artery disease, optimization of therapeutic strategies and prognosis evaluation. Anatomical correlations with coronary angiographic results obtained during balloon occlusion at the time of coronary angioplasty demonstrate the complementary role of imaging techniques and highlight the patient to patient variability of risk areas. A sectorial model derived from a polar projection of the myocardium presents for each sector the probability of involvement of a given coronary artery.

  20. Magnetic resonance imaging of the heart.

    PubMed

    Tscholakoff, D; Higgins, C B

    1985-01-01

    Magnetic resonance imaging (MRI) is a completely noninvasive technique for the evaluation of the cardiovascular system. With a multi-section technique and the spin echo pulse sequence the entire heart can be examined within six to ten minutes. All our cardiac MR studies were performed with electrocardiographic (ECG) gating, to obtain adequate resolution of the cardiac structures. With this technique, patients and animals with a variety of cardiac abnormalities were studied. The examined pathologic conditions included acute and chronic myocardial infarctions and their complications, hypertrophic and congestive cardiomyopathies, congenital heart diseases and pericardial diseases. MRI offers an enormous potential for cardiovascular diagnosis, even beyond the demonstration of pathoanatomy, because of the capability for direct tissue characterization and blood flow measurements.

  1. Fluorescent Cell Imaging in Regenerative Medicine

    PubMed Central

    Sapoznik, Etai; Niu, Guoguang; Zhou, Yu; Murphy, Sean V.; Soker, Shay

    2016-01-01

    Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as intra-vital microscopy and Förster resonance energy transfer, are providing new insights into cellular behavior, including cell migration, morphology, and phenotypic changes in a dynamic environment. Such applications, combined with multimodal imaging, significantly expand the utility of fluorescent protein imaging in research and clinical applications of regenerative medicine. PMID:27158228

  2. HEAVY-ION IMAGING APPLIED TO MEDICINE

    SciTech Connect

    Fabrikant, J.I.; Tobias, C.A.; Capp, M.P.; Benton, E.V.; Holley, W.R.

    1980-02-01

    Heavy particle radiography is a newly developed noninvasive low dose imaging procedure with increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high energy ions, primarily carbon and neon, at the BEVALAC accelerator at the Lawrence Berkeley Laboratory. The research program applied to medicine utilizes heavy-ion radiography for low dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures and brain and spinal neoplasms. The presentation will be illustrated with clinical cases under study. Discussion will include the potential of heavy-ion imaging, and particularly reconstruction tomography, as an adjunct to existing diagnostic imaging procedures in medicine, both for the applications to the diagnosis, management and treatment of clinical cancer in man, but also for the early detection of small soft tissue tumors at low radiation dose.

  3. Imaging of the heart with computed tomography.

    PubMed

    Flohr, Thomas G; Ohnesorge, Bernd M

    2008-03-01

    Imaging of the heart with computed tomography (CT) was already introduced in the 1980Is and has meanwhile entered clinical routine as a consequence of the rapid evolution of CT technology during the last decade. In this review article, we give an overview on the technology and clinical performance of different CT-scanner generations used for cardiac imaging, such as Electron Beam CT (EBCT), single-slice CT und multi-detector row CT (MDCT) with 4, 16 and 64 simultaneously acquired slices. We identify the limitations of current CT-scanners, indicate potential of improvement and discuss alternative system concepts such as CT with area detectors and dual source CT (DSCT). PMID:18324372

  4. General comparison of functional imaging in nuclear medicine with other modalities

    SciTech Connect

    Adam, W.E.

    1987-01-01

    New (noninvasive) diagnostic procedures in medicine (ultrasound (US), digital subtraction angiography (DSA), computed tomography (CT), nuclear magnetic resonance (NMR)) create a need for a review of the clinical utility of functional imaging in nuclear medicine. A general approach that is valid for all imaging procedures is not possible. For this reason, an individual assessment for each class of functional imaging is necessary, taking into account the complexity and sophistication of the various imaging procedures. This leads to a hierarchical order: first order functional imaging: imaging of organ motion (heart, lungs, blood); second order functional imaging: imaging of excretory function (kidneys, liver); and third and fourth order functional imaging: imaging of metabolism (except excretory function). First order functional imaging is possible fundamentally, although with limitations in detail, by all modalities. Second order functional imaging is not possible with US. Third and fourth order functional imaging is a privilege of nuclear medicine alone. Up to now, NMR has not proven clinically useful to produce metabolic images in its true sense. First and second order functional imaging of nonradioactive procedures face severe disadvantages, including difficulties in performing stress investigations, which are essential for coronary heart disease, limited capability for true quantitative information (eg, kidney clearance in mL/min), side effects of contrast media and paramagnetic substances, and high costs. 58 references.

  5. Digital Imaging and Communications in Medicine

    NASA Astrophysics Data System (ADS)

    Onken, Michael; Eichelberg, Marco; Riesmeier, Jörg; Jensch, Peter

    Over the past 15 years Digital Imaging and Communications in Medicine (DICOM) has established itself as the international standard for medical image communication. Most medical imaging equipment uses DICOM network and media services to export image data, thus making this standard highly relevant for medical image processing. The first section of this chapter provides a basic introduction into DICOM with its more than 3,600 pages of technical documentation, followed by a section covering selected advanced topics of special interest for medical image processing. The introductory text familiarizes the reader with the standard's main concepts such as information objects and DICOM media and network services. The rendering pipeline for image display and the concept of DICOM conformance are also discussed. Specialized DICOM services such as advanced image display services that provide means for storing how an image was viewed ("Softcopy Presentation States") and how multiple images should be aligned on an output device ("Structured Display" and "Hanging Protocols") are described. We further describe DICOM's sophisticated approach ("Structured Reporting") for storing structured documents such as CAD information, which is then covered in more detail. Finally, the last section provides an insight into a newly developed DICOM service called "Application Hosting", which introduces a standardized plug-in architecture for image processing, thus permitting users to utilize cross-vendor image processing plug-ins in DICOM applications.

  6. Coded-aperture imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-11-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  7. Coded-aperture imaging in nuclear medicine

    NASA Technical Reports Server (NTRS)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  8. Image Viewer using Digital Imaging and Communications in Medicine (DICOM)

    NASA Astrophysics Data System (ADS)

    Baraskar, Trupti N.

    2010-11-01

    Digital Imaging and Communications in Medicine is a standard for handling, storing, printing, and transmitting information in medical imaging. The National Electrical Manufacturers Association holds the copyright to this standard. It was developed by the DICOM Standards committee. The other image viewers cannot collectively store the image details as well as the patient's information. So the image may get separated from the details, but DICOM file format stores the patient's information and the image details. Main objective is to develop a DICOM image viewer. The image viewer will open .dcm i.e. DICOM image file and also will have additional features such as zoom in, zoom out, black and white inverter, magnifier, blur, B/W inverter, horizontal and vertical flipping, sharpening, contrast, brightness and .gif converter are incorporated.

  9. Imaging the Heart of Our Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    New radio images of the center of the Milky Way are providing an unprecedented view of the structure and processes occurring in the Galactic center.JVLA images of Sgr A at 5.5 GHz. The large-scale, bright ring structure is Sgr A East, a supernova remnant. The mini-spiral structure along the lower-right edge of the ring is Sgr A West, and Sgr A* is located near the center of the mini-spiral structure. Click for a closer look! [Zhao et al. 2016]Improved Radio ViewA recent study led by Jun-Hui Zhao (Harvard-Smithsonian Center for Astrophysics) presents new images of the Galactic center using the Jansky Very Large Array (JVLA) at 5.5 GHz. The images center on the radio-bright zone at the core of our galaxy, with the field of view covering the central 13 of the Milky Way equivalent to a physical size of ~100 light-years.Due to recent hardware and software improvements in the VLA, these images are much deeper than any previously obtained of the Galactic center, reaching an unprecedented 100,000:1 dynamic range. Not only do these observations provide a detailed view of previously known structures within the Sagittarius A radio complex in the Milky Ways heart, but they also reveal new features that can help us understand the processes that formed this bright complex.Features in Sagittarius ASgr A consists of three main components nested within each other: the supernova remnant Sgr A East, the mini-spiral structure Sgr A West (located off-center within the Sgr A East structure), and the compact radio source Sgr A* (located near the center of the mini-spiral). Sgr A* is the supermassive black hole that resides at the very center of the Milky Way.The newest JVLA images reveal numerous filamentary sources that trace out two radio lobes, oriented nearly perpendicular to the Galactic plane and ~50 light-years in size. These are smaller radio counterparts to the enormous (on the scale of 30,000 light-years!) gamma-ray Fermi bubbles that have been observed to extend from the

  10. Image Reconstruction for Prostate Specific Nuclear Medicine imagers

    SciTech Connect

    Mark Smith

    2007-01-11

    There is increasing interest in the design and construction of nuclear medicine detectors for dedicated prostate imaging. These include detectors designed for imaging the biodistribution of radiopharmaceuticals labeled with single gamma as well as positron-emitting radionuclides. New detectors and acquisition geometries present challenges and opportunities for image reconstruction. In this contribution various strategies for image reconstruction for these special purpose imagers are reviewed. Iterative statistical algorithms provide a framework for reconstructing prostate images from a wide variety of detectors and acquisition geometries for PET and SPECT. The key to their success is modeling the physics of photon transport and data acquisition and the Poisson statistics of nuclear decay. Analytic image reconstruction methods can be fast and are useful for favorable acquisition geometries. Future perspectives on algorithm development and data analysis for prostate imaging are presented.

  11. Longitudinal Imaging of Heart Development With Optical Coherence Tomography

    PubMed Central

    Jenkins, Michael W.; Watanabe, Michiko; Rollins, Andrew M.

    2015-01-01

    Optical coherence tomography (OCT) has great potential for deciphering the role of mechanics in normal and abnormal heart development. OCT images tissue microstructure and blood flow deep into the tissue (1–2mm) at high spatiotemporal resolutions allowing unprecedented images of the developing heart. Here, we review the advancement of OCT technology to image heart development and report some of our recent findings utilizing OCT imaging under environmental control for longitudinal imaging. Precise control of the environment is absolutely required in longitudinal studies that follow the growth of the embryo or studies comparing normal versus perturbed heart development to obtain meaningful in vivo results. These types of studies are essential to tease out the influence of cardiac dynamics on molecular expression and their role in the progression of congenital heart defects. PMID:26236147

  12. Being active after a heart attack (image)

    MedlinePlus

    ... best activity when you start exercising after a heart attack. Start slowly, and increase the amount of time ... best activity when you start exercising after a heart attack. Start slowly, and increase the amount of time ...

  13. Generation to Generation: The Heart of Family Medicine

    ERIC Educational Resources Information Center

    Winter, Robin O.

    2012-01-01

    According to the American Board of Family Medicine, "The scope of family medicine encompasses all ages, both sexes, each organ system and every disease entity." What makes the seemingly daunting task of practicing family medicine possible is that family physicians learn to utilize similar clinical reasoning for all of their patients regardless of…

  14. Regenerative medicine for the treatment of heart disease.

    PubMed

    Hansson, E M; Lendahl, U

    2013-03-01

    Heart failure is a major cause of mortality worldwide with a steady increase in prevalence. There is currently no available cure beyond orthotopic heart transplantation, which for a number of reasons is an option only for a small fraction of all patients. Considerable hope has therefore been placed on the possibility of treating a failing heart by replacing lost cardiomyocytes, either through transplantation of various types of stem cells or by boosting endogenous regenerative mechanisms in the heart. Here, we review the current status of stem and progenitor cell-based therapies for heart disease. We discuss the pros and cons of different stem and progenitor cell types that can be considered for transplantation and describe recent advances in the understanding of how cardiomyocytes normally differentiate and how these cells can be generated from more immature cells ex vivo. Finally, we consider the possibility of activation of endogenous stem and progenitor cells to treat heart failure.

  15. Nuclear Medicine Imaging of Neuroendocrine Tumors.

    PubMed

    Brabander, Tessa; Kwekkeboom, Dik J; Feelders, Richard A; Brouwers, Adrienne H; Teunissen, Jaap J M

    2015-01-01

    An important role is reserved for nuclear imaging techniques in the imaging of neuroendocrine tumors (NETs). Somatostatin receptor scintigraphy (SRS) with (111)In-DTPA-octreotide is currently the most important tracer in the diagnosis, staging and selection for peptide receptor radionuclide therapy (PRRT). In the past decade, different positron-emitting tomography (PET) tracers have been developed. The largest group is the (68)Gallium-labeled somatostatin analogs ((68)Ga-SSA). Several studies have demonstrated their superiority compared to SRS in sensitivity and specificity. Furthermore, patient comfort and effective dose are favorable for (68)Ga-SSA. Other PET targets like β-[(11)C]-5-hydroxy-L-tryptophan ((11)C-5-HTP) and 6-(18)F-L-3,4-dihydroxyphenylalanine ((18)F-DOPA) were developed recently. For insulinomas, glucagon-like peptide-1 receptor imaging is a promising new technique. The evaluation of response after PRRT and other therapies is a challenge. Currently, the official follow-up is performed with radiological imaging techniques. The role of nuclear medicine may increase with the newest tracers for PET. In this review, the different nuclear imaging techniques and tracers for the imaging of NETs will be discussed.

  16. Integrative Western and chinese medicine on coronary heart disease: where is the orientation?

    PubMed

    Li, Siming; Xu, Hao

    2013-01-01

    Coronary heart disease (CHD) is the leading cause of death. As the main treatment of CHD, modern medicine has improved dramatically in recent years. Although researches of TCM and integrative medicine on CHD are witnessed encouraging progress in many respects, the role TCM playing in the prevention and treatment of CHD has been unprecedentedly challenged under such circumstance of the very fast development of modern medicine. In order to share mutual complementary advantages of TCM and western medicine, this review summarizes the relatively prominent researches of TCM and integrative medicine on CHD in recent years, and illuminates the issue of the orientation of the further research of integrative medicine on CHD, including (1) original innovation of TCM etiology and pathogenesis, (2) combination of disease and TCM syndrome, (3) biological basis of TCM syndrome of CHD, (4) clinical design and quality control of integrative medicine research, (5) herb-drug interaction, (6) difficulties and hot issues of modern medicine.

  17. Anatomic and functional imaging of congenital heart disease with digital subtraction angiography

    SciTech Connect

    Buonocore, E.; Pavlicek, W.; Modic, M.T.; Meaney, T.F.; O'Donovan, P.B.; Grossman, L.B.; Moodie, D.S.; Yiannikas, J.

    1983-06-01

    Digital subtraction angiography (DSA) of the heart was performed in 54 patients for the evaluation of congenital heart diagnostic images and accurate physiologic shunt data that compared favorably with catheter angiography and nuclear medicine studies. Retrospective analysis of this series of patients indicated that DSA studies contributed sufficient informantion to shorten significantly or modify cardiac catheterization in 85% (79/93) of the defects that were identified. Interatrial septal defects were particularly well diagnosed, with identification occurring in 10 of 10 cases, wheseas intraventricular septal defects were identified in only 6 of 9 patients. Evaluation of postsurgical patients was accurate in 19 of 20 cases.

  18. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  19. PET and SPECT imaging in veterinary medicine.

    PubMed

    LeBlanc, Amy K; Peremans, Kathelijne

    2014-01-01

    Veterinarians have gained increasing access to positron emission tomography (PET and PET/CT) imaging facilities, allowing them to use this powerful molecular imaging technique for clinical and research applications. SPECT is currently being used more in Europe than in the United States and has been shown to be useful in veterinary oncology and in the evaluation of orthopedic diseases. SPECT brain perfusion and receptor imaging is used to investigate behavioral disorders in animals that have interesting similarities to human psychiatric disorders. This article provides an overview of the potential applications of PET and SPECT. The use of commercially available and investigational PET radiopharmaceuticals in the management of veterinary disease has been discussed. To date, most of the work in this field has utilized the commercially available PET tracer, (18)F-fluorodeoxyglucose for oncologic imaging. Normal biodistribution studies in several companion animal species (cats, dogs, and birds) have been published to assist in lesion detection and interpretation for veterinary radiologists and clinicians. Studies evaluating other (18)F-labeled tracers for research applications are underway at several institutions and companion animal models of human diseases are being increasingly recognized for their value in biomarker and therapy development. Although PET and SPECT technologies are in their infancy for clinical veterinary medicine, increasing access to and interest in these applications and other molecular imaging techniques has led to a greater knowledge and collective body of expertise for veterinarians worldwide. Initiation and fostering of physician-veterinarian collaborations are key components to the forward movement of this field.

  20. Basic imaging in congenital heart disease. 3rd Ed

    SciTech Connect

    Swischuk, L.E.; Sapire, D.W.

    1986-01-01

    The book retains its previous format with chapters on embryology, plain film interpretation, classification of pulmonary vascular patterns, cardiac malpositions and vascular anomalies, and illustrative cases. The book is organized with an abundance of illustrative figures, diagrams, and image reproductions. These include plain chest radiographs, angiograms, echocardiograms, and MR images. The authors present the pathophysiology and imaging of congenital heart lesions.

  1. Eigenimage filtering of nuclear medicine image sequences

    SciTech Connect

    Windham, J.P.; Froelich, J.W.; Abd-Allah, M.

    1985-05-01

    In many nuclear medicine imaging sequences the localization of radioactivity in organs other than the target organ interferes with imaging of the desired anatomical structure or physiological process. A filtering technique has been developed which suppresses the interfering process while enhancing the desired process. This technique requires the identification of temporal sequential signatures for both the interfering and desired processes. These signatures are placed in the form of signature vectors. Signature matrices, M/sub D/ and M/sub U/, are formed by taking the outer product expansion of the temporal signature vectors for the desired and interfering processes respectively. By using the transformation from the simultaneous diagonalization of these two signature matrices a weighting vector is obtained. The technique is shown to maximize the projection of the desired process while minimizing the interfering process based upon an extension of Rayleigh's Principle. The technique is demonstrated for first pass renal and cardiac flow studies. This filter offers a potential for simplifying and extending the accuracy of diagnostic nuclear medicine procedures.

  2. Advantages, Disadvantages, and Trend of Integrative Medicine in the Treatment of Heart Failure.

    PubMed

    Zhang, PeiYing

    2015-06-01

    Integrative medicine therapy using traditional Chinese medicine (TCM) combined with western medicine has shown some advantages in treating heart failure (HF), such as holistic concept; multi-target treatment; dialectical logic; personalized therapy; formulae compatibility; and reduction of side effects of western medicine. However, problems still exist in TCM treatment of HF, including non-uniformed categorization of TCM, lack of standardized syndrome differentiation and lack of an evidence base. The future of treatment of HF seems to be focused on reversing ventricular remodeling, improving cardiac rehabilitation, and accelerating experimental research and drug discovery in TCM.

  3. PET/MR Imaging in Heart Disease.

    PubMed

    Rischpler, Christoph; Nekolla, Stephan G

    2016-10-01

    Hybrid PET/MR imaging is a complex imaging modality that has raised high expectations not only for oncological and neurologic imaging applications, but also for cardiac imaging applications. Initially, physicians and physicists had to become accustomed to technical challenges including attenuation correction, gating, and more complex workflow and more elaborate image analysis as compared with PET/CT or standalone MR imaging. PET/MR imaging seems to be particularly valuable to assess inflammatory myocardial diseases (such as sarcoidosis), to cross-validate PET versus MR imaging data (eg, myocardial perfusion imaging), and to help validate novel biomarkers of various disease states (eg, postinfarction inflammation). PMID:27593250

  4. PET/MR Imaging in Heart Disease.

    PubMed

    Rischpler, Christoph; Nekolla, Stephan G

    2016-10-01

    Hybrid PET/MR imaging is a complex imaging modality that has raised high expectations not only for oncological and neurologic imaging applications, but also for cardiac imaging applications. Initially, physicians and physicists had to become accustomed to technical challenges including attenuation correction, gating, and more complex workflow and more elaborate image analysis as compared with PET/CT or standalone MR imaging. PET/MR imaging seems to be particularly valuable to assess inflammatory myocardial diseases (such as sarcoidosis), to cross-validate PET versus MR imaging data (eg, myocardial perfusion imaging), and to help validate novel biomarkers of various disease states (eg, postinfarction inflammation).

  5. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  6. Seismic imaging of the Medicine Lake Caldera

    SciTech Connect

    Zucca, J.J.; Evans, J.R.; Kasameyer, P.W.

    1987-04-01

    Medicine Lake Volcano, a broad shield volcano about 50 km east of Mount Shasta in northern California, produced rhylotic eruptions as recently as 400 years ago. Because of this recent activity it is of considerable interest to producers of geothermal energy. The USGS and LLNL conducted an active seismic experiment designed to explore the area beneath and around the caldera. This experiment had two purposes: To produce high-quality velocity and attenuation images of the young magma body presumed to be the source for the young volcanic features, and to collect a dataset that can be used to develop and test seismic imaging methods that may be useful for understanding other geothermal systems. Eight large explosions were detonated in a 50 km radius circle around the volcano, a distance chosen to produce strong upward traveling signals through the area of interest. The data were inverted using Aki's method to produce three-dimensional velocity and attenuation images of the sub-surface. Preliminary interpretation shows low velocity and attenuation on the flanks of the volcano, and coincident high attenuation values and low velocities (-20%) from 3 to 5 km beneath the center of the caldera. This zone may be a region of partial melt which fed the youngest eruptions.

  7. Hearts and Flowers: Learning To Enlarge Images.

    ERIC Educational Resources Information Center

    Kalil, Judy

    2003-01-01

    Describes a lesson that teaches kindergarten students how to enlarge a smaller drawing onto a bigger piece of paper. Explains that the students create their heart-shape designs using tempera paint and pastels in the larger picture. Includes a list of materials. (CMK)

  8. Heart failure: a complex clinical process interpreted by systems biology approach and network medicine.

    PubMed

    Louridas, George E; Lourida, Katerina G

    2014-03-01

    Systems biology is founded on the principles of integrative computational analysis and on the data from genetic and molecular components. The integration of biological components produces interacting networks, modules and phenotypes with remarkable applications in the field of clinical medicine. The evolving concept of network medicine gives a more precise picture of the intrinsic complexity of failing myocardium and its clinical consequences. The present review is focused on the impact of network cardiology in explaining the progressive nature of the clinical syndrome of heart failure. The failing myocardium and the subsequent clinical syndrome of heart failure disclose a dynamical and non-linear system with a progressive picture of clinical deterioration. The classical description of heart failure is based on tissue pathology and clinical presentation, and lately on specific genetic and molecular modifications. This characterization of heart failure has significant limitations to recognize preclinical disease features and to explain the progressive nature of the syndrome. Systems biology detects and evaluates specific networks from molecular, cellular and tissue elements, and assesses their influence on the appearance of clinical phenotypes. The classical reductive concept of heart failure is inadequate to provide data for molecular dysfunctions or defective coordination of the interconnected network components that are central to the genesis and clinical deterioration of heart failure. In heart failure, the recognition of molecular targets within the complex networks will increase the conceptual basis of pharmacology and the identification of novel biomarkers and at the same time will accelerate the discovery of new drugs.

  9. Nuclear medicine imaging of bone infections.

    PubMed

    Love, C; Palestro, C J

    2016-07-01

    Osteomyelitis is a broad group of infectious diseases that involve the bone and/or bone marrow. It can arise haematogenously, via extension from a contiguous infection, or by direct inoculation during surgery or trauma. The diagnosis is not always obvious and imaging tests are frequently performed as part of the diagnostic work-up. Commonly performed radionuclide tests include technetium-99m ((99m)Tc)-diphosphonate bone scintigraphy (bone), and gallium-67 ((67)Ga) and in vitro labelled leukocyte (white blood cell; WBC) imaging. Although they are useful, each of these tests has limitations. Bone scintigraphy is sensitive but not specific, especially when underlying osseous abnormalities are present. (67)Ga accumulates in tumour, trauma, and in aseptic inflammation; furthermore, there is typically an interval of 1-3 days between radiopharmaceutical injection of and imaging. Currently, this agent is used primarily for spinal infections. Except for the spine, WBC imaging is the nuclear medicine test of choice for diagnosing complicating osteomyelitis. The in vitro leukocyte labelling process requires skilled personnel, is laborious, and is not always available. Complementary marrow imaging is usually required to maximise accuracy. Not surprisingly, alternative radiopharmaceuticals are continuously being investigated. Radiolabelled anti-granulocyte antibodies and antibody fragments, investigated as in vivo leukocyte labelling agents, have their own limitations and are not widely available. (111)In-biotin is useful for diagnosing spinal infections. Radiolabelled synthetic fragments of ubiquicidin, a naturally occurring human antimicrobial peptide that targets bacteria, have shown promise as infection specific radiopharmaceuticals. 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET) with or without computed tomography (CT) is very useful in musculoskeletal infection. Sensitivities of more than 95% and specificities ranging from 75-99% have been

  10. Role of cardiovascular imaging in selection of donor hearts

    PubMed Central

    Nair, Nandini; Gongora, Enrique

    2015-01-01

    AIM:To perform a systematic review of literature on use of cardiovascular imaging in assessment of donor hearts. METHODS: A systematic search of current literature from January 1965 to August 2015 was performed using PubMed and Google Scholar to investigate the different imaging modalities used to assess donor hearts. RESULTS: Recent literature still estimates only a 32% utilization of available donor hearts in the United States. Most common imaging modality used is transthoracic echocardiography. Use of advanced imaging modalities such as 3D echocardiography, cardiac computer tomography and cardiac magnetic resonance to evaluate donor hearts is not reported in literature. This review attempts to highlight the relevant imaging modalities that can be used to assess cardiac function in a time-efficient manner. The algorithm suggested in this review would hopefully pave the way to standardized protocols that can be adopted by organ procuring organizations to increase the donor pool. CONCLUSION: Use of advanced imaging techniques for a thorough assessment of organs will likely increase the donor pool. PMID:26722663

  11. Confocal Imaging of the Embryonic Heart: How Deep?

    NASA Astrophysics Data System (ADS)

    Miller, Christine E.; Thompson, Robert P.; Bigelow, Michael R.; Gittinger, George; Trusk, Thomas C.; Sedmera, David

    2005-06-01

    Confocal microscopy allows for optical sectioning of tissues, thus obviating the need for physical sectioning and subsequent registration to obtain a three-dimensional representation of tissue architecture. However, practicalities such as tissue opacity, light penetration, and detector sensitivity have usually limited the available depth of imaging to 200 [mu]m. With the emergence of newer, more powerful systems, we attempted to push these limits to those dictated by the working distance of the objective. We used whole-mount immunohistochemical staining followed by clearing with benzyl alcohol-benzyl benzoate (BABB) to visualize three-dimensional myocardial architecture. Confocal imaging of entire chick embryonic hearts up to a depth of 1.5 mm with voxel dimensions of 3 [mu]m was achieved with a 10× dry objective. For the purpose of screening for congenital heart defects, we used endocardial painting with fluorescently labeled poly-L-lysine and imaged BABB-cleared hearts with a 5× objective up to a depth of 2 mm. Two-photon imaging of whole-mount specimens stained with Hoechst nuclear dye produced clear images all the way through stage 29 hearts without significant signal attenuation. Thus, currently available systems allow confocal imaging of fixed samples to previously unattainable depths, the current limiting factors being objective working distance, antibody penetration, specimen autofluorescence, and incomplete clearing.

  12. Cardiac image modelling: Breadth and depth in heart disease.

    PubMed

    Suinesiaputra, Avan; McCulloch, Andrew D; Nash, Martyn P; Pontre, Beau; Young, Alistair A

    2016-10-01

    With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are computational analysis of cardiac remodelling (shape and motion changes due to disease) and computational analysis of physiology and mechanics to estimate biophysical properties from non-invasive imaging. Many large cohort studies now underway around the world have been specifically designed based on non-invasive imaging technologies in order to gain new information about the development of heart disease from asymptomatic to clinical manifestations. These give an unprecedented breadth to the quantification of population variation and disease development. Also, for the individual patient, it is now possible to determine biophysical properties of myocardial tissue in health and disease by interpreting detailed imaging data using computational modelling. For these population and patient-specific computational modelling methods to develop further, we need open benchmarks for algorithm comparison and validation, open sharing of data and algorithms, and demonstration of clinical efficacy in patient management and care. The combination of population and patient-specific modelling will give new insights into the mechanisms of cardiac disease, in particular the development of heart failure, congenital heart disease, myocardial infarction, contractile dysfunction and diastolic dysfunction.

  13. Radionuclide Imaging of Neurohormonal System of the Heart

    PubMed Central

    Chen, Xinyu; Werner, Rudolf A.; Javadi, Mehrbod S.; Maya, Yoshifumi; Decker, Michael; Lapa, Constantin; Herrmann, Ken; Higuchi, Takahiro

    2015-01-01

    Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included. PMID:25825596

  14. [30 years heart transplantation program in Institute for Clinical and Experimental Medicine in Prague].

    PubMed

    Hošková, Lenka; Málek, Ivan; Melenovský, Vojtěch; Podzimková, Marianna; Hegarová, Markéta; Dorazilová, Zora; Kautzner, Josef; Netuka, Ivan; Pirk, Jan

    2014-04-01

    Heart transplantation has become in recent decades an established method for the treatment of advanced heart failure. Precisely, it was in January 2014 when 30 years have passed since the start of clinical heart transplantation program at the Institute for Clinical and Experimental Medicine. 936 heart transplants were performed by the end of 2013. The transplant program has reached considerable development since its beginnings. The knowledge of whole issue has deepened, indication criteria have been extended, new immunosuppressives are available and many of them are still in research. Life expectancy of patients has been prolonged and quality of life has improved. Nevertheless, the care of transplant patient is very complicated task for medical professionals and brings a lot of problems to solve.

  15. Polarized spatial frequency domain imaging of heart valve fiber structure

    NASA Astrophysics Data System (ADS)

    Goth, Will; Yang, Bin; Lesicko, John; Allen, Alicia; Sacks, Michael S.; Tunnell, James W.

    2016-03-01

    Our group previously introduced Polarized Spatial Frequency Domain Imaging (PSFDI), a wide-field, reflectance imaging technique which we used to empirically map fiber direction in porcine pulmonary heart valve leaflets (PHVL) without optical clearing or physical sectioning of the sample. Presented is an extended analysis of our PSFDI results using an inverse Mueller matrix model of polarized light scattering that allows additional maps of fiber orientation distribution, along with instrumentation permitting increased imaging speed for dynamic PHVL fiber measurements. We imaged electrospun fiber phantoms with PSFDI, and then compared these measurements to SEM data collected for the same phantoms. PHVL was then imaged and compared to results of the same leaflets optically cleared and imaged with small angle light scattering (SALS). The static PHVL images showed distinct regional variance of fiber orientation distribution, matching our SALS results. We used our improved imaging speed to observe bovine tendon subjected to dynamic loading using a biaxial stretching device. Our dynamic imaging experiment showed trackable changes in the fiber microstructure of biological tissue under loading. Our new PSFDI analysis model and instrumentation allows characterization of fiber structure within heart valve tissues (as validated with SALS measurements), along with imaging of dynamic fiber remodeling. The experimental data will be used as inputs to our constitutive models of PHVL tissue to fully characterize these tissues' elastic behavior, and has immediate application in determining the mechanisms of structural and functional failure in PHVLs used as bio-prosthetic implants.

  16. Regenerative Medicine for the Heart: Perspectives on Stem-Cell Therapy

    PubMed Central

    Cho, Gun-Sik; Fernandez, Laviel

    2014-01-01

    Abstract Significance: Despite decades of progress in cardiovascular biology and medicine, heart disease remains the leading cause of death, and there is no cure for the failing heart. Since heart failure is mostly caused by loss or dysfunction of cardiomyocytes (CMs), replacing dead or damaged CMs with new CMs might be an ideal way to reverse the disease. However, the adult heart is composed mainly of terminally differentiated CMs that have no significant self-regeneration capacity. Recent Advances: Stem cells have tremendous regenerative potential and, thus, current cardiac regenerative research has focused on developing stem cell sources to repair damaged myocardium. Critical Issues: In this review, we examine the potential sources of cells that could be used for heart therapies, including embryonic stem cells and induced pluripotent stem cells, as well as alternative methods for activating the endogenous regenerative mechanisms of the heart via transdifferentiation and cell reprogramming. We also discuss the current state of knowledge of cell purification, delivery, and retention. Future Directions: Efforts are underway to improve the current stem cell strategies and methodologies, which will accelerate the development of innovative stem-cell therapies for heart regeneration. Antioxid. Redox Signal. 21, 2018–2031. PMID:25133793

  17. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  18. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  19. Electrocardiographic imaging of heart rhythm disorders: from bench to bedside.

    PubMed

    Rudy, Yoram; Lindsay, Bruce D

    2015-03-01

    Noninvasive electrocardiographic imaging (ECGI; also called ECG mapping) can reconstruct potentials, electrograms, activation sequences, and repolarization patterns on the epicardial surface of the heart with high resolution. ECGI can possibly be used to quantify synchrony, identify potential responders/nonresponders to cardiac resynchronization therapy, and guide electrode placement for effective resynchronization therapy. This article provides a brief description of the ECGI procedure and selected previously published examples of its application in important clinical conditions, including heart failure, cardiac resynchronization therapy, atrial arrhythmias, and ventricular tachycardia. PMID:25722753

  20. Radionuclide Imaging Applications in Cardiomyopathies and Heart Failure.

    PubMed

    Harinstein, Matthew E; Soman, Prem

    2016-03-01

    Multiple epidemiological factors including population aging and improved survival after acute coronary syndromes have contributed to a heart failure (HF) prevalence in the USA in epidemic proportions. In the absence of transplantation, HF remains a progressive disease with poor prognosis. The structural and functional abnormalities of the myocardium in HF can be assessed by various radionuclide imaging techniques. Radionuclide imaging may be uniquely suited to address several important clinical questions in HF such as identifying etiology and guiding the selection of patients for coronary revascularization. Newer approaches such as autonomic innervation imaging, phase analysis for synchrony assessment, and other molecular imaging techniques continue to expand the applications of radionuclide imaging in HF. In this manuscript, we review established and evolving applications of radionuclide imaging for the diagnosis, risk stratification, and management of HF. PMID:26841785

  1. Perspectives in molecular imaging through translational research, human medicine, and veterinary medicine.

    PubMed

    Berry, Clifford R; Garg, Predeep

    2014-01-01

    The concept of molecular imaging has taken off over the past 15 years to the point of the renaming of the Society of Nuclear Medicine (Society of Nuclear Medicine and Molecular Imaging) and Journals (European Journal of Nuclear Medicine and Molecular Imaging) and offering of medical fellowships specific to this area of study. Molecular imaging has always been at the core of functional imaging related to nuclear medicine. Even before the phrase molecular imaging came into vogue, radionuclides and radiopharmaceuticals were developed that targeted select physiological processes, proteins, receptor analogs, antibody-antigen interactions, metabolites and specific metabolic pathways. In addition, with the advent of genomic imaging, targeted genomic therapy, and theranostics, a number of novel radiopharmaceuticals for the detection and therapy of specific tumor types based on unique biological and cellular properties of the tumor itself have been realized. However, molecular imaging and therapeutics as well as the concept of theranostics are yet to be fully realized. The purpose of this review article is to present an overview of the translational approaches to targeted molecular imaging with application to some naturally occurring animal models of human disease.

  2. Essentials of nuclear medicine imaging. 3rd edition

    SciTech Connect

    Mettler, F.A.; Guiberteau, M.J.

    1991-01-01

    This book covers topics ranging from basic physics and instrumentation to various aspects of clinical imaging and regulatory issues. It includes a section on single photon emission computed tomography (SPECT). The clinical sections include newer aspects of nuclear medicine, such as antibody imaging, pharmacologic stress, bone mineral analysis, evaluation of renovascular hypertension, and the role of gallium in patients with acquired immunodeficiency syndrome.

  3. Dynamic holographic imaging of the beating human heart

    PubMed

    Hunziker; Smith; Scherrer-Crosbie; Liel-Cohen; Levine; Nesbitt; Benton; Picard

    1999-02-01

    Background--Currently, the reporting and archiving of echocardiographic data suffer from the difficulty of representing heart motion on printable 2-dimensional (2D) media. Methods and Results--We studied the capability of holography to integrate motion into 2D echocardiographic prints. Images of normal human hearts and of a variety of mitral valve function abnormalities (mitral valve prolapse, systolic anterior motion of the mitral leaflets, and obstruction of the mitral valve by a myxoma) were acquired digitally on standard echocardiographic machines. Images were processed into a data format suitable for holographic printing. Angularly multiplexed holograms were then printed on a prototype holographic "laser" printer, with integration of time in vertical parallax, so that heart motion became visible when the hologram was tilted up and down. The resulting holograms displayed the anatomy with the same resolution as the original acquisition and allowed detailed study of valve motion with side-by-side comparison of normal and abnormal findings. Comparison of standard echocardiographic measurements in original echo frames and corresponding hologram views showed an excellent correlation of both methods (P<0.0001, r2=0.979, mean bias=2.76 mm). In this feasibility study, both 2D and 3D holographic images were produced. The equipment needed to view these holograms consists of only a simple point-light source. Conclusions--Holographic representation of myocardial and valve motion from echocardiographic data is feasible and allows the printing on a 2D medium of the complete heart cycle. Combined with the recent development of online holographic printing, this novel technique has the potential to improve reporting, visualization, and archiving of echocardiographic imaging.

  4. Image-Based Predictive Modeling of Heart Mechanics.

    PubMed

    Wang, V Y; Nielsen, P M F; Nash, M P

    2015-01-01

    Personalized biophysical modeling of the heart is a useful approach for noninvasively analyzing and predicting in vivo cardiac mechanics. Three main developments support this style of analysis: state-of-the-art cardiac imaging technologies, modern computational infrastructure, and advanced mathematical modeling techniques. In vivo measurements of cardiac structure and function can be integrated using sophisticated computational methods to investigate mechanisms of myocardial function and dysfunction, and can aid in clinical diagnosis and developing personalized treatment. In this article, we review the state-of-the-art in cardiac imaging modalities, model-based interpretation of 3D images of cardiac structure and function, and recent advances in modeling that allow personalized predictions of heart mechanics. We discuss how using such image-based modeling frameworks can increase the understanding of the fundamental biophysics behind cardiac mechanics, and assist with diagnosis, surgical guidance, and treatment planning. Addressing the challenges in this field will require a coordinated effort from both the clinical-imaging and modeling communities. We also discuss future directions that can be taken to bridge the gap between basic science and clinical translation.

  5. Ultrasound imaging in research and clinical medicine.

    PubMed

    Schellpfeffer, Michael A

    2013-06-01

    The use of ultrasound imaging in clinical obstetrics continues to grow at an almost exponential rate. Ultrasound imaging in developmental biology has only begun to be used to enhance the traditional methodologies to study the developing embryo/fetus. The various modalities of ultrasound imaging are reviewed as they apply to current uses in clinical obstetrics and developmental biologic research. New modalities are also discussed in both clinical obstetrics and developmental biologic research as well as the current limitations of ultrasound imaging faced in both of these fields. PMID:23897593

  6. Nuclear medicine annual, 1984

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1984-01-01

    The following topics are reviewed in this work: nuclear physicians role in planning for and handling radiation accidents; the role of nuclear medicine in evaluating the hypertensive patient; studies of the heart with radionuclides; role of radionuclide imaging in the patient undergoing chemotherapy; hematologic nuclear medicine; the role of nuclear medicine in sports related injuries; radionuclide evaluation of hepatic function with emphasis on cholestatis.

  7. Beating heart mitral valve repair with integrated ultrasound imaging

    NASA Astrophysics Data System (ADS)

    McLeod, A. Jonathan; Moore, John T.; Peters, Terry M.

    2015-03-01

    Beating heart valve therapies rely extensively on image guidance to treat patients who would be considered inoperable with conventional surgery. Mitral valve repair techniques including the MitrClip, NeoChord, and emerging transcatheter mitral valve replacement techniques rely on transesophageal echocardiography for guidance. These images are often difficult to interpret as the tool will cause shadowing artifacts that occlude tissue near the target site. Here, we integrate ultrasound imaging directly into the NeoChord device. This provides an unobstructed imaging plane that can visualize the valve lea ets as they are engaged by the device and can aid in achieving both a proper bite and spacing between the neochordae implants. A proof of concept user study in a phantom environment is performed to provide a proof of concept for this device.

  8. 3D imaging in CUBIC-cleared mouse heart tissue: going deeper

    PubMed Central

    Nehrhoff, Imke; Bocancea, Diana; Vaquero, Javier; Vaquero, Juan José; Ripoll, Jorge; Desco, Manuel; Gómez-Gaviro, María Victoria

    2016-01-01

    The ability to acquire high resolution 3D images of the heart enables to study heart diseases more in detail. In this work, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was optimized for thick mouse heart sections to enhance the penetration depth of the confocal microscope lasers into the tissue. In addition, the optimized CUBIC clearing of the heart enhances antibody penetration into the tissue by a factor of five. The present protocol enables deep 3D high-quality image acquisition in the heart allowing a much more accurate assessment of the cellular and structural changes that underlie heart diseases. PMID:27699132

  9. 3D imaging in CUBIC-cleared mouse heart tissue: going deeper

    PubMed Central

    Nehrhoff, Imke; Bocancea, Diana; Vaquero, Javier; Vaquero, Juan José; Ripoll, Jorge; Desco, Manuel; Gómez-Gaviro, María Victoria

    2016-01-01

    The ability to acquire high resolution 3D images of the heart enables to study heart diseases more in detail. In this work, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was optimized for thick mouse heart sections to enhance the penetration depth of the confocal microscope lasers into the tissue. In addition, the optimized CUBIC clearing of the heart enhances antibody penetration into the tissue by a factor of five. The present protocol enables deep 3D high-quality image acquisition in the heart allowing a much more accurate assessment of the cellular and structural changes that underlie heart diseases.

  10. [The application of X-ray imaging in forensic medicine].

    PubMed

    Kučerová, Stěpánka; Safr, Miroslav; Ublová, Michaela; Urbanová, Petra; Hejna, Petr

    2014-07-01

    X-ray is the most common, basic and essential imaging method used in forensic medicine. It serves to display and localize the foreign objects in the body and helps to detect various traumatic and pathological changes. X-ray imaging is valuable in anthropological assessment of an individual. X-ray allows non-invasive evaluation of important findings before the autopsy and thus selection of the optimal strategy for dissection. Basic indications for postmortem X-ray imaging in forensic medicine include gunshot and explosive fatalities (identification and localization of projectiles or other components of ammunition, visualization of secondary missiles), sharp force injuries (air embolism, identification of the weapon) and motor vehicle related deaths. The method is also helpful for complex injury evaluation in abused victims or in persons where abuse is suspected. Finally, X-ray imaging still remains the gold standard method for identification of unknown deceased. With time modern imaging methods, especially computed tomography and magnetic resonance imaging, are more and more applied in forensic medicine. Their application extends possibilities of the visualization the bony structures toward a more detailed imaging of soft tissues and internal organs. The application of modern imaging methods in postmortem body investigation is known as digital or virtual autopsy. At present digital postmortem imaging is considered as a bloodless alternative to the conventional autopsy.

  11. Advanced echocardiographic imaging of the congenitally malformed heart.

    PubMed

    Black, D; Vettukattil, J

    2013-08-01

    There have been significant advancements in the ability of echocardiography to provide both morphological and functional information in children with congenitally malformed hearts. This progress has come through the development of improved technology such as matrix array probes and software which allows for the off line analysis of images to a high standard. This article focuses on these developments and discusses some newer concepts in advanced echocardiography such is multi-planar reformatting [MPR] and tissue motion annular displacement [TMAD]. Our aim is to discuss important aspects related to the quality and reproducibility of data, to review the most recent published data regarding advanced echocardiography in the malformed heart and to guide the reader to appropriate text for overcoming the technical challenges of using these methods. Many of the technical aspects of image acquisition and post processing have been discussed in recent reviews by the authors and we would urge readers to study these texts to gain a greater understanding [1]. The quality of the two dimensional image is paramount in both strain analysis and three dimensional echocardiography. An awareness of how to improve image quality is vital to acquiring accurate and usable data. Three dimensional echocardiography (3DE) is an attempt to visualise the dynamic morphology of the heart. Although published media is the basis for theoretical knowledge of how to practically acquire images, electronic media [eg.www.3dechocardiography.com] is the only way of visualising the advantages of this technology in real time. It is important to be aware of the limitations of this technology and that much of the data gleaned from using these methods is at a research stage and not yet in regular clinical practice. PMID:23228075

  12. Nuclear Medicine Imaging in the Pediatric Patient

    PubMed Central

    Loveless, Vivian

    2006-01-01

    Pediatric nuclear medicine provides a wealth of information on a variety of disease states; however, precautions on dosing have to be taken into consideration. Also, expertise in conducting procedures and interpreting the results in pediatric patients is necessary. Emphasis is placed on diagnostic studies involving the central nervous system, musculoskeletal system, genitourinary system, gastrointestinal system, endocrine system, pulmonary system, and cardiovascular system along with a brief explanation of the mechanism of localization of the radiopharmaceuticals involved. Radiation safety issues are addressed when the expectant mother or nursing mother is administered radiopharmaceuticals. PMID:23115536

  13. Clinical holistic medicine: the Dean Ornish program ("opening the heart") in cardiovascular disease.

    PubMed

    Ventegodt, Søren; Merrick, Efrat; Merrick, Joav

    2006-02-02

    Dean Ornish of the Preventive Medicine Research Institute in Sausalito, California has created an intensive holistic treatment for coronary heart patients with improved diet (low fat, whole foods, plant based), exercise, stress management, and social support that has proven to be efficient. In this paper, we analyze the rationale behind his cure in relation to contemporary holistic medical theory. In spite of a complex treatment program, the principles seem to be simple and in accordance with holistic medical theories, like the Antonovsky concept of rehabilitating the sense of coherence and the life mission theory for holistic medicine. We believe there is a need for the allocation of resources for further research into the aspects of holistic health and its methods, where positive and significant results have been proven and reproduced at several sites.

  14. Imaging the heart in pulmonary hypertension: an update.

    PubMed

    Grünig, Ekkehard; Peacock, Andrew J

    2015-12-01

    Noninvasive imaging of the heart plays an important role in the diagnosis and management of pulmonary hypertension (PH), and several well-established techniques are available for assessing performance of the right ventricle, the key determinant of patient survival. While right heart catheterisation is mandatory for establishing a diagnosis of PH, echocardiography is the most important screening tool for early detection of PH. Cardiac magnetic resonance imaging (CMRI) is also a reliable and practical tool that can be used as part of the diagnostic work-up. Echocardiography can measure a range of haemodynamic and anatomical variables (e.g. pericardial effusion and pulmonary artery pressure), whereas CMRI provides complementary information to echocardiography via high-resolution, three-dimensional imaging. Together with echocardiography and CMRI, techniques such as high-resolution computed tomography and positron emission tomography may also be valuable for screening, monitoring and follow-up assessments of patients with PH, but their clinical relevance has yet to be established. Technological advances have produced new variants of echocardiography, CMRI and positron emission tomography, and these permit closer examination of myocardial architecture, motion and deformation. Integrating these new tools into clinical practice in the future may lead to more precise noninvasive determination of diagnosis, risk and prognosis for PH.

  15. Cardiac Magnetic Resonance Imaging in Ischemic Heart Disease

    PubMed Central

    Florian, A.; Jurcut, R.; Ginghina, C.; Bogaert, J.

    2011-01-01

    Cardiac magnetic resonance imaging (MRI) has emerged as a prime player in the clinical and preclinical detection of ischemic heart disease (IHD) as well in the prognosis assessment by offering a comprehensive approach for all spectrums of coronary artery disease (CAD) patients. The aim of this review is to provide the reader a state–of–the art on how the newest cardiac MRI techniques can be used to study IHD patients. In patients with suspected/stable CAD, functional and perfusion imaging both at rest and during vasodilatatory stress (adenosine, dypiridamole)/dobutamine stress can accurately depict ischemic myocardium secondary to significant coronary artery stenosis. In patients with acute MI, MRI is a robust tool for differentiating and sizing the jeopardized and the infarcted myocardium by using a combination of functional, edema, perfusion and Gd contrast imaging. Moreover, important prognostic factors like myocardial salvage, the presence of microvascular obstruction (MVO), post reperfusion myocardial hemorrhage, RV involvement and infarct related complications can be assessed in the same examination. In patients with chronic ischemic cardiomyopathy, the role of the MRI extends from diagnosis by means of Gadolinium contrast scar imaging to therapy and prognosis by functional assessment and viability testing with rest and dobutamine stress imaging. In all the circumstances mentioned, MRI derived information has been proven valuable in every day clinical decision making and prognosis assessment. Thus, MRI is becoming more and more an accepted alternative to other imaging modalities both in the acute and chronic setting. PMID:22514564

  16. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Fry, Charles G.

    2004-01-01

    Nobel Prize in Medicine awarded in December 2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of magnetic resonance imaging (MRI), a long overdue recognition of the huge impact MRI has had in medical diagnostics and research is mentioned. MRI was derived, and remains an extension of nuclear magnetic resonance…

  17. Content-Based Image Retrieval in Medicine

    PubMed Central

    Long, L. Rodney; Antani, Sameer; Deserno, Thomas M.; Thoma, George R.

    2009-01-01

    Content-based image retrieval (CBIR) technology has been proposed to benefit not only the management of increasingly large image collections, but also to aid clinical care, biomedical research, and education. Based on a literature review, we conclude that there is widespread enthusiasm for CBIR in the engineering research community, but the application of this technology to solve practical medical problems is a goal yet to be realized. Furthermore, we highlight “gaps” between desired CBIR system functionality and what has been achieved to date, present for illustration a comparative analysis of four state-of-the-art CBIR implementations using the gap approach, and suggest that high-priority gaps to be overcome lie in CBIR interfaces and functionality that better serve the clinical and biomedical research communities. PMID:20523757

  18. Hyperspectral imaging applied to forensic medicine

    NASA Astrophysics Data System (ADS)

    Malkoff, Donald B.; Oliver, William R.

    2000-03-01

    Remote sensing techniques now include the use of hyperspectral infrared imaging sensors covering the mid-and- long wave regions of the spectrum. They have found use in military surveillance applications due to their capability for detection and classification of a large variety of both naturally occurring and man-made substances. The images they produce reveal the spatial distributions of spectral patterns that reflect differences in material temperature, texture, and composition. A program is proposed for demonstrating proof-of-concept in using a portable sensor of this type for crime scene investigations. It is anticipated to be useful in discovering and documenting the affects of trauma and/or naturally occurring illnesses, as well as detecting blood spills, tire patterns, toxic chemicals, skin injection sites, blunt traumas to the body, fluid accumulations, congenital biochemical defects, and a host of other conditions and diseases. This approach can significantly enhance capabilities for determining the circumstances of death. Potential users include law enforcement organizations (police, FBI, CIA), medical examiners, hospitals/emergency rooms, and medical laboratories. Many of the image analysis algorithms already in place for hyperspectral remote sensing and crime scene investigations can be applied to the interpretation of data obtained in this program.

  19. Spectral photoplethysmographic imaging sensor fusion for enhanced heart rate detection

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Clausi, David A.; Wong, Alexander

    2016-03-01

    Continuous heart rate monitoring can provide important context for quantitative clinical assessment in scenarios such as long-term health monitoring and disability prevention. Photoplethysmographic imaging (PPGI) systems are particularly useful for such monitoring scenarios as contact-based devices pose problems related to comfort and mobility. Each pixel can be regarded as a virtual PPG sensor, thus enabling simultaneous measurements of multiple skin sites. Existing PPGI systems analyze temporal PPGI sensor uctuations related to hemodynamic pulsations across a region of interest to extract the blood pulse signal. However, due to spatially varying optical properties of the skin, the blood pulse signal may not be consistent across all PPGI sensors, leading to inaccurate heart rate monitoring. To increase the hemodynamic signal-to-noise ratio (SNR), we propose a novel spectral PPGI sensor fusion method for enhanced estimation of the true blood pulse signal. Motivated by the observation that PPGI sensors with high hemodynamic SNR exhibit a spectral energy peak at the heart rate frequency, an entropy-based fusion model was formulated to combine PPGI sensors based on the sensors' spectral energy distribution. The optical PPGI device comprised a near infrared (NIR) sensitive camera and an 850 nm LED. Spatially uniform irradiance was achieved by placing optical elements along the LED beam, providing consistent illumination across the skin area. Dual-mode temporally coded illumination was used to negate the temporal effect of ambient illumination. Experimental results show that the spectrally weighted PPGI method can accurately and consistently extract heart rate information where traditional region-based averaging fails.

  20. Image-Capture Devices Extend Medicine's Reach

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Johnson Space Center, Henry Ford Hospital in Detroit, and Houston-based Wyle Laboratories collaborated on NASA's Advanced Diagnostic Ultrasound in Microgravity (ADUM) experiment, which developed revolutionary medical ultrasound diagnostic techniques for long-distance use. Mediphan, a Canadian company with U.S. operations in Springfield, New Jersey drew on NASA expertise to create frame-grabber and data archiving technology that enables ultrasound users with minimal training to send diagnostic-quality ultrasound images and video to medical professionals via the Internet in near real time allowing patients as varied as professional athletes, Olympians, and mountain climbers to receive medical attention as soon as it is needed.

  1. Real-time optical gating for three-dimensional beating heart imaging

    NASA Astrophysics Data System (ADS)

    Taylor, Jonathan M.; Saunter, Christopher D.; Love, Gordon D.; Girkin, John M.; Henderson, Deborah J.; Chaudhry, Bill

    2011-11-01

    We demonstrate real-time microscope image gating to an arbitrary position in the cycle of the beating heart of a zebrafish embryo. We show how this can be used for high-precision prospective gating of fluorescence image slices of the moving heart. We also present initial results demonstrating the application of this technique to 3-D structural imaging of the beating embryonic heart.

  2. [Impact of sleep deprivation on coronary heart disease and progress in prevention and treatment with traditional Chinese medicines].

    PubMed

    Yuan, Rong; Wang, Jie; Guo, Li-li

    2015-05-01

    Sleep deprivation (SD) has been taken as an independent predictor for cardiovascular risks, which was closely related to the increased morbidity and mortality in coronary heart disease (CHD). In this article, after reviewing the impact of modern medical method sleep deprivation on CHD and studies on principle method recipe medicines for preventing and treating CHD, the authors observed the autonomic nerve dysfunction, hormonal metabolism dysfunction, endothelial dysfunction and inflammatory responses after sleep deprivation, which can cause or aggravate CHD. On the basis of the traditional Chinese medicine theories of "heart dominating the blood and vessels and the mind", the authors considered that traditional Chinese medicines can tonify heart and soothe the nerves, reducing all of the risk factors through multi-target and multi-pathway, and improve sleep and decrease the risk factors caused by sleep deprivation, which provides a new idea for the prevention and treatment of CHD. PMID:26323126

  3. [Analysis of traditional Chinese medicine syndrome, traditional Chinese medicine and western medicine in 84 697 patients with coronary heart disease based on big data].

    PubMed

    Li, Gui-hua; Jiang, Hong-yan; Xie, Yan-ming; Jiang, Jun-jie; Yang, Wei; Zhao, Wei; Zhuang, Yan; Wang, Yong-yan

    2014-09-01

    In order to understand the clinical characteristics of patients with coronary heart disease (CHD) in real world and provide reference for clinical prevention and treatment, this study analyzed informations of patient with CHD in hospital information system. Data from 17 national hospitals were collected. Select patients with coronaryheart disease in diagnosis of the first place in 17 hospitals, general informations and traditional Chinese medicine (TCM) syndrome, complications, medicine were analyzed using frequency method and association rules. This study included 84 697 patients with CHD, the majority of men and in the elderly. The average age of patients was 71 years. The proportion of men to women was about 1. 45: 1. Hospital stay time ranged from 8 to 14 d. The most common total hospitalization cost distribution was 5 000-20 000 RMB. Young patients have a rising trend year by year. The death of patients increased with increasing age. Common complications were hypertension, diabetes, cerebral infarction and hyperlipidemia, 57.24 percent of the CHD patient complicated with hypertension, 21.94 percent patients complicated with diabetes. Among TCM syndrome types, Qi-Yin deficiency and qi deficiency blood stasis were the most common syndromes. Blood stasis was the highest syndrome elements, accounted for 79.97%, followed by Qi deficiency, phlegm, Yin deficiency, and so on. The most common western medicine was aspirin, followed with isosorbide dinitrate, clopidogrel. The most common used traditional Chinese medicine was danhong injection, followed by shuxuetong injection. Combined with removing blood stasis drugs has been more common at present clinical treatment, there were 43.46 percent of patients combined with anti-platelet western drug and injection of removing blood stasis.

  4. The mobilization of autologous bone marrow stem cells in the treatment of heart failure with Chinese medicine.

    PubMed

    Yao, Kui-Wu; Zhang, Liang-Deng; Wang, Jie

    2011-11-01

    Heart failure (HF) is a severe heart disease. The use of autologous bone marrow stem cells (BMCs) mobilization in the treatment of HF has been a hot topic to research both in Western medicine and Chinese medicine (CM). There are many clinical trials and experiments on study of BMCs mobilization for HF therapy, including integrative medicine. The effect of BMCs mobilization is favorable for cardiac repair, while some advantages of CM support the advanced study of its application in BMCs mobilization to treat HF. In addition, with mechanisms of autologous BMCs mobilization for the treatment of HF that will be revealed in the future, especially stem cells niches, integrative medicine would play an important role in this clinical thought of therapy model gradually. Simultaneously, CM should adapt the new approaches of stem cells progresses on HF treatment as holding characteristics of itself.

  5. Innovative Interventional and Imaging Registries: Precision Medicine in Cerebrovascular Disorders

    PubMed Central

    Liebeskind, David S.

    2015-01-01

    Background Precision medicine in cerebrovascular disorders may be greatly advanced by the use of innovative interventional and imaging-intensive registries. Registries have remained subsidiary to randomized controlled trials, yet vast opportunities exist to leverage big data in stroke. Summary This overview builds upon the rationale for innovative, imaging-intensive interventional registries as a pivotal step in realizing precision medicine for several cerebrovascular disorders. Such enhanced registries may serve as a model for expansion of our translational research pipeline to fully leverage the role of phase IV investigations. The scope and role of registries in precision medicine are considered, followed by a review on the history of stroke and interventional registries, data considerations, critiques or barriers to such initiatives, and the potential modernization of registry methods into efficient, searchable, imaging-intensive resources that simultaneously offer clinical, research and educational added value. Key Messages Recent advances in technology, informatics and endovascular stroke therapies converge to provide an exceptional opportunity for registries to catapult further progress. There is now a tremendous opportunity to deploy registries in acute stroke, intracranial atherosclerotic disease and carotid disease where other clinical trials leave questions unanswered. Unlike prior registries, imaging-intensive and modernized methods may leverage current technological capabilities around the world to efficiently address key objectives and provide added clinical, research and educational value. PMID:26600792

  6. Rheumatoid arthritis: Nuclear Medicine state-of-the-art imaging

    PubMed Central

    Rosado-de-Castro, Paulo Henrique; Lopes de Souza, Sergio Augusto; Alexandre, Dângelo; Barbosa da Fonseca, Lea Mirian; Gutfilen, Bianca

    2014-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease, which is associated with systemic and chronic inflammation of the joints, resulting in synovitis and pannus formation. For several decades, the assessment of RA has been limited to conventional radiography, assisting in the diagnosis and monitoring of disease. Nevertheless, conventional radiography has poor sensitivity in the detection of the inflammatory process that happens in the initial stages of RA. In the past years, new drugs that significantly decrease the progression of RA have allowed a more efficient treatment. Nuclear Medicine provides functional assessment of physiological processes and therefore has significant potential for timely diagnosis and adequate follow-up of RA. Several single photon emission computed tomography (SPECT) and positron emission tomography (PET) radiopharmaceuticals have been developed and applied in this field. The use of hybrid imaging, which permits computed tomography (CT) and nuclear medicine data to be acquired and fused, has increased even more the diagnostic accuracy of Nuclear Medicine by providing anatomical localization in SPECT/CT and PET/CT studies. More recently, fusion of PET with magnetic resonance imaging (PET/MRI) was introduced in some centers and demonstrated great potential. In this article, we will review studies that have been published using Nuclear Medicine for RA and examine key topics in the area. PMID:25035834

  7. The sociological image of medicine and the patient.

    PubMed

    Gerhardt, U

    1989-01-01

    Jack Elinson raises somewhat rhetorical questions about the value of medical care and medical sociology. Behind them is a serious concern with the type and scope of medicalisation in modern society as well as its sociological criticism. This raises the issue of whether the various theoretical images of medicine and the patient which sociology provides are able to account for the effect of the social environment upon morbidity and mortality as shown, for instance, by the Alameda County Study. Three theoretically distinct approaches are discussed in detail, structural functionalism, symbolic interactionism and conflict theory. These characterise medical sociology over the last 30 years. They elucidate more clearly Elinson's own image of medicine and the patient. But none seems to match his standpoint vis-a-vis the medicalisation of care which refrains from citing psychological forces but emphasises the availability of good medical services.

  8. Nuclear medicine for imaging of epithelial ovarian cancer.

    PubMed

    Abedi, Seyed Mohammad; Mardanshahi, Alireza; Shahhosseini, Roza; Hosseinimehr, Seyed Jalal

    2016-05-01

    Cancer is one of the leading causes of mortality worldwide. Usually, the diagnosis of cancer at an early stage is important to facilitate proper treatment and survival. Nuclear medicine has been successfully used in the diagnosis, staging, therapy and monitoring of cancers. Single-photon emission computed tomography and PET-based companion imaging agents are in development for use as a companion diagnostic tool for patients with ovarian cancer. The present review discusses the basic and clinical studies related to the use of radiopharmaceuticals in the diagnosis and management of ovarian cancer, focusing on their utility and comparing them with other imaging techniques such as computed tomography and MRI.

  9. [Molecular hyperspectral imaging (MHSI) system and application in biochemical medicine].

    PubMed

    Liu, Hong-Ying; Li, Qing-Li; Wang, Yi-Ting; Liu, Jin-Gao; Xue, Yong-Qi

    2011-10-01

    A novel molecular hyperspectral imaging (MHSI) system based on AOTF (acousto-optic tunable filters) was presented. The system consists of microscope, AOTF-based spectrometer, matrix CCD, image collection card and computer. The spectral range of the MHSI is from 550 to 1 000 nm. The spectral resolution is less than 2 nm, and the spatial resolution is about 0.3 microm. This paper has also presented that spectral curves extracted from the corrected hyperspectral data of the sample, which have been preprocessed by the gray correction coefficient, can more truly represent biochemical characteristic of the sample. The system can supply not only single band images in the visible range, but also spectrum curve of random pixel of sample image. This system can be widely used in various fields of biomedicine, clinical medicine, material science and microelectronics. PMID:22250515

  10. [The particularity of female coronary heart disease and the thinking way of its diagnosis and treatment by integrative medicine].

    PubMed

    Liang, Dong-Hui

    2014-03-01

    Coronary heart disease (CHD) is a major disease greatly harmful to the health of human beings. The incidence and case fatality rate of female CHD show an increasing tendency due to lack of enough attention. Through analyzing the epidemiology, risk factors, and clinical characteristics of female CHD, we emphasized that it is necessary to pay enough attention to the particularity of female CHD, and put forward the thinking way of diagnosis and treatment of integrative medicine as "integrating Chinese medicine and Western medicine by mutual complement of advantages; combining syndrome typing and disease identification by grasping laws; treating physically and mentally by a wholism concept; spreading health education, preventing and treating comprehensively".

  11. Heart deformation analysis: measuring regional myocardial velocity with MR imaging.

    PubMed

    Lin, Kai; Collins, Jeremy D; Chowdhary, Varun; Markl, Michael; Carr, James C

    2016-07-01

    The aim of the present study was to test the hypothesis that heart deformation analysis (HDA) may serve as an alternative for the quantification of regional myocardial velocity. Nineteen healthy volunteers (14 male and 5 female) without documented cardiovascular diseases were recruited following the approval of the institutional review board (IRB). For each participant, cine images (at base, mid and apex levels of the left ventricle [LV]) and tissue phase mapping (TPM, at same short-axis slices of the LV) were acquired within a single magnetic resonance (MR) scan. Regional myocardial velocities in radial and circumferential directions acquired with HDA (Vrr and Vcc) and TPM (Vr and VФ) were measured during the cardiac cycle. HDA required shorter processing time compared to TPM (2.3 ± 1.1 min/case vs. 9.5 ± 3.7 min/case, p < 0.001). Moderate to good correlations between velocity components measured with HDA and TPM could be found on multiple myocardial segments (r = 0.460-0.774) and slices (r = 0.409-0.814) with statistical significance (p < 0.05). However, significant biases of velocity measures at regional myocardial areas between HDA and TPM were also noticed. By providing comparable velocity measures as TPM does, HDA may serve as an alternative for measuring regional myocardial velocity with a faster image processing procedure. PMID:27076222

  12. Heart deformation analysis: measuring regional myocardial velocity with MR imaging.

    PubMed

    Lin, Kai; Collins, Jeremy D; Chowdhary, Varun; Markl, Michael; Carr, James C

    2016-07-01

    The aim of the present study was to test the hypothesis that heart deformation analysis (HDA) may serve as an alternative for the quantification of regional myocardial velocity. Nineteen healthy volunteers (14 male and 5 female) without documented cardiovascular diseases were recruited following the approval of the institutional review board (IRB). For each participant, cine images (at base, mid and apex levels of the left ventricle [LV]) and tissue phase mapping (TPM, at same short-axis slices of the LV) were acquired within a single magnetic resonance (MR) scan. Regional myocardial velocities in radial and circumferential directions acquired with HDA (Vrr and Vcc) and TPM (Vr and VФ) were measured during the cardiac cycle. HDA required shorter processing time compared to TPM (2.3 ± 1.1 min/case vs. 9.5 ± 3.7 min/case, p < 0.001). Moderate to good correlations between velocity components measured with HDA and TPM could be found on multiple myocardial segments (r = 0.460-0.774) and slices (r = 0.409-0.814) with statistical significance (p < 0.05). However, significant biases of velocity measures at regional myocardial areas between HDA and TPM were also noticed. By providing comparable velocity measures as TPM does, HDA may serve as an alternative for measuring regional myocardial velocity with a faster image processing procedure.

  13. Entropy analysis for determining systolic and diastolic cycles in heart MR imaging

    NASA Astrophysics Data System (ADS)

    Vazquez, Fabian; Solis-Najera, Sergio; Marrufo, Oscar; Ley-Koo, Marcos; Martin, Rodrigo

    2014-11-01

    Magnetic resonance imaging is a non-invasive technique that allows the medical diagnostic via clinical images. MRI has been employed to study the cardiac function during the last 20 years. There are different techniques in clinical cardiac MR that allow studying the heart [1]. These techniques acquire several images in a short acquisition time and are repeated sequentially to display the heart functionally. The main objective of this research is to analyze the acquired images, which have been obtained with a standard heart acquisition sequence, with the computation of the entropy of the image to detect cardiac cycles. Images of the heart were segmented and processed to find the systolic and diastolic cycles.

  14. Unsupervised segmentation of cardiac PET transmission images for automatic heart volume extraction.

    PubMed

    Juslin, Anu; Tohka, Jussi

    2006-01-01

    In this study, we propose an automatic method to extract the heart volume from the cardiac positron emission tomography (PET) transmission images. The method combines the automatic 3D segmentation of the transmission image using Markov random fields (MRFs) to surface extraction using deformable models. Deformable models were automatically initialized using the MRFs segmentation result. The extraction of the heart region is needed e.g. in independent component analysis (ICA). The volume of the heart can be used to mask the emission image corresponding to the transmission image, so that only the cardiac region is used for the analysis. The masking restricts the number of independent components and reduces the computation time. In addition, the MRF segmentation result could be used for attenuation correction. The method was tested with 25 patient images. The MRF segmentation results were of good quality in all cases and we were able to extract the heart volume from all the images. PMID:17946020

  15. Fluoroscopic "heart chamber" anatomy - the case for imaging modality-independent terminology.

    PubMed

    Piazza, Nicolo; Mylotte, Darren; Theriault Lauzier, Pascal

    2016-09-18

    Interventional cardiologists have traditionally relied upon fluoro-scopic imaging for percutaneous coronary interventions. Transcatheter structural heart interventions, however, require additional imaging modalities such as echocardiography and multislice computed tomography (MSCT) for pre-, intra- and post-procedural assistance. MSCT has emerged as the critical imaging modality for patient and device selection prior to transcatheter structural heart interventions. MSCT is unique as it provides a complete 3-dimensional (3D) dataset of the heart and vasculature that is amenable to multiplanar reconstruction for 2-dimensional (2D) or volume-rendered interpretations. Herein, we present a modality-independent terminology for understanding volumetric images in the context of transcatheter heart valve therapies. The goal of this system is to allow physicians to readily interpret the orientation of fluoroscopic, MSCT, echocardiographic and MRI images, thus generalising their understanding of cardiac anatomy to all imaging modalities. PMID:27640046

  16. Imaging in the context of replacement heart valve development: use of the Visible Heart(®) methodologies.

    PubMed

    Bateman, Michael G; Iaizzo, Paul A

    2012-09-01

    In recent years huge strides have been made in the fields of interventional cardiology and cardiac surgery which now allow physicians and surgeons to repair or replace cardiac valves with greater success in a larger demographic of patients. Pivotal to these advances has been significant improvements in cardiac imaging and improved fundamental understanding of valvular anatomies and morphologies. We describe here a novel series of techniques utilized within the Visible Heart(®) laboratory by engineers, scientists, and/or anatomists to visualize and analyze the form and function of the four cardiac valves and to assess potential repair or replacement therapies. The study of reanimated large mammalian hearts (including human hearts) using various imaging modalities, as well as specially prepared anatomical specimens, has enhanced the design, development, and testing of novel cardiac therapies.

  17. Fluoroscopy-based method to determine heart geometry for functional imaging of cardiac electrical activity

    NASA Astrophysics Data System (ADS)

    Ghanem, Raja N.; Ramanathan, Charulatha; Jia, Ping; Rudy, Yoram

    2003-05-01

    A fluoroscopy based method for determining heart surface geometry has been developed and validated in phantom and human studies. Biplane fluoroscopic projections were calibrated independently. The heart contour was segmented in each projection and corresponding contour points were matched using epipolar geometry. Points in 3D were reconstructed from the corresponding contour points using point reconstruction. B-splines were approximated from the reconstructed points and meshed to form the heart surface. The fluoroscopy-reconstructed heart was validated in a phantom and human study by comparison to CT imaging. Mean, minimum, maximum and standard deviation of the absolute distance errors were computed for the fluoroscopy-reconstructed heart relative to the CT heart. The mean absolute distance error for the phantom was 4mm. The mean absolute distance error for the human subject was 10 mm. In addition to validating the geometry, we also evaluated in the human subject the feasibility of noninvasive imaging of normal cardiac electrical activity on the fluoroscopy-reconstructed heart by comparing the results to those obtained on the CT heart. Noninvasive images on the fluoroscopy-reconstructed heart by showed close correlation with those obtained on the CT heart (CC=0.70).

  18. Advances in material design for regenerative medicine, drug delivery and targeting/imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many of the major breakthroughs and paradigm shifts in medicine to date have occurred due to innovations and materials and/or application/implementation of materials in clinical medicine. Artificial heart valves, implantable cardiac devices, limb prosthesis, cardiovascular stents, orthopedic implan...

  19. Functional magnetic resonance imaging in medicine and physiology

    SciTech Connect

    Moonen, C.T.W.; van Zijl, P.C.M.; Frank, J.A.; Bihan, D.L.; Becker, E.D. )

    1990-10-05

    Magnetic resonance imaging (MRI) is a well-established diagnostic tool that provides detailed information about macroscopic structure and anatomy. Recent advances in MRI allow the noninvasive spatial evaluation of various biophysical and biochemical processes in living systems. Specifically, the motion of water can be measured in processes such as vascular flow, capillary flow, diffusion, and exchange. In addition, the concentrations of various metabolites can be determined for the assessment of regional regulation of metabolism. Examples are given that demonstrate the use of functional MRI for clinical and research purposes. This development adds a new dimension to the application of magnetic resonance to medicine and physiology.

  20. Japanese consensus guidelines for pediatric nuclear medicine. Part 1: Pediatric radiopharmaceutical administered doses (JSNM pediatric dosage card). Part 2: Technical considerations for pediatric nuclear medicine imaging procedures.

    PubMed

    Koizumi, Kiyoshi; Masaki, Hidekazu; Matsuda, Hiroshi; Uchiyama, Mayuki; Okuno, Mitsuo; Oguma, Eiji; Onuma, Hiroshi; Kanegawa, Kimio; Kanaya, Shinichi; Kamiyama, Hiroshi; Karasawa, Kensuke; Kitamura, Masayuki; Kida, Tetsuo; Kono, Tatsuo; Kondo, Chisato; Sasaki, Masayuki; Terada, Hitoshi; Nakanishi, Atsushi; Hashimoto, Teisuke; Hataya, Hiroshi; Hamano, Shin-ichiro; Hirono, Keishi; Fujita, Yukihiko; Hoshino, Ken; Yano, Masayuki; Watanabe, Seiichi

    2014-06-01

    The Japanese Society of Nuclear Medicine has recently published the consensus guidelines for pediatric nuclear medicine. This article is the English version of the guidelines. Part 1 proposes the dose optimization in pediatric nuclear medicine studies. Part 2 comprehensively discusses imaging techniques for the appropriate conduct of pediatric nuclear medicine procedures, considering the characteristics of imaging in children.

  1. Blood stasis syndrome of coronary heart disease: A perspective of modern medicine.

    PubMed

    Yu, Gui; Wang, Jie

    2014-04-01

    The medical community as a whole is attempting to start preventive therapy for coronary heart disease (CHD) patients earlier in life. However, the main limitations of such interventions are drug resistance and adverse reactions. Additionally, traditional biomarker discovery methods for CHD focus on the behavior of individual biomarkers regardless of their relevance. These limitations have led to attempting novel approaches to multi-dimensionally investigate CHD and identify safe and efficacious therapies for preventing CHD. Recently, the benefit of Chinese medicine (CM) in CHD has been proven by increasing clinical evidence. More importantly, linking CM theory with modern biomedicine may lead to new scientific discoveries. According to CM theory, all treatments for patients should be based on patients' syndromes. A recent epidemiological investigation has demonstrated that blood stasis syndrome (BSS) is the major syndrome type of CHD. BSS is a type of complex pathophysiological state characterized by decreased or impeded blood flow. Common clinical features of BSS include a darkish complexion, scaly dry skin, and cyanosis of the lips and nails, a purple or dark tongue with purple spots, a thready and hesitant pulse, and stabbing or pricking pain fixed in location accompanied by tenderness, mass formation and ecchymosis or petechiae. The severity of BSS is significantly correlated with the complexity of coronary lesions and the degree of stenosis, and is an important factor affecting the occurrence of restenosis after percutaneous coronary intervention. The mechanisms of BSS of CHD patients should be investigated from a modern medicine perspective. Although many studies have attempted to explore the biomedical mechanisms of BSS of CHD, from hemorheological disorders to inflammation and immune responses, the global picture of BSS of CHD is still unclear. In this article, the current status of studies investigating the biomedical mechanisms of BSS of CHD and future

  2. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Fry, Charles G.

    2004-07-01

    A review is given of the crucial work performed by Paul C. Lauterbur and Peter Mansfield that lead to their being awarded the Nobel Prize in Medicine in 2003. Lauterbur first expounded the idea of mapping spatial information from spectral data in nuclear magnetic resonance (NMR) through the application of magnetic field gradients (P. C. Lauterbur, Nature 1973 , 242, 190-191). One year later Mansfield and co-workers introduced the idea of selective excitation to NMR imaging (A. N. Garroway, P. K. Grannell, and P. Mansfield. J. Phys. C: Solid State Physics 1974 , 7, L457-L462). A major step in making the technique useful for clinical imaging came with Mansfield's publication of the method known as echo planar imaging (P. Mansfield, J. Phys. C: Solid State Physics 1977, 10 (3) , L55-L58). Lauterbur's and Mansfield's work captured the essence of scientific discovery, collaboration, and concerted effort to overcome significant technical issues, and were key to the development of the technique of magnetic resonance imaging (MRI). Examples of how MRI technology can be extended to chemical research are given, and limitations of the technique in this regard are discussed. Discussion of how to use commonly available NMR spectrometers for chemical imaging is also provided.

  3. [Present status and trend of heart fluid mechanics research based on medical image analysis].

    PubMed

    Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo

    2014-06-01

    With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields.

  4. Nuclear medicine imaging in tuberculosis using commercially available radiopharmaceuticals.

    PubMed

    Sathekge, Mike; Maes, Alex; D'Asseler, Yves; Vorster, Mariza; Van de Wiele, Christophe

    2012-06-01

    In this paper, data available on nuclear medicine imaging using commercially available radiopharmaceuticals for the differentiation, staging, and prediction or assessment of the response to treatment in tuberculosis (TB) are reviewed. Limited available studies suggest that single photon emission computed tomography (SPECT) using either 201Tl, 99mTc-sestamibi, or 99mTc-tetrofosmin is accurate (≥85%) and has a high negative predictive value (≥90%) for the differentiation of TB from carcinoma in patients presenting with a solitary pulmonary nodule (SPN). The criteria for detection of TB on 201Tl SPECT are nondepiction of the suspicious lesion in the delayed image or a negative retention index [washout on the delayed images (3–4 h postinjection) vs. the early image (5–15 min postinjection)] and a comparable-to-background uptake on 99mTc-sestamibi or 99mTc-tetrofosmin SPECT. Another SPECT tracer of potential interest for the differentiation of TB from malignant SPN that warrants further exploration, is N-isopropyl-p-[123I]iodoamphetamine (123I-IMP). In contrast, 18F-fluorodeoxyglucose (18F-FDG) PET is unable to differentiate malignancy from TB and thus cannot be used as a tool to reduce futile biopsy/thoracotomy in these patients. A limited number of studies have reported on the potential of nuclear medicine imaging in assessment of the extent of disease in patients with extrapulmonary TB using 67Ga-citrate SPECT and 18F-FDG PET, respectively. 67Ga-citrate SPECT was shown to be as sensitive as bone scintigraphy for the detection of bone infection and was found to be complementary to computed tomography (CT) imaging. 18F-FDG PET was found to be significantly more efficient when compared with CT, respectively, in over half of patients for the identification of sites of lymph node involvement that were missed by CT and often the only sites of extrapulmonary TB identified. Unfortunately, 18F-FDG PET findings did not lead to alterations in treatment planning in any

  5. Nuclear medicine imaging in tuberculosis using commercially available radiopharmaceuticals.

    PubMed

    Sathekge, Mike; Maes, Alex; D'Asseler, Yves; Vorster, Mariza; Van de Wiele, Christophe

    2012-06-01

    In this paper, data available on nuclear medicine imaging using commercially available radiopharmaceuticals for the differentiation, staging, and prediction or assessment of the response to treatment in tuberculosis (TB) are reviewed. Limited available studies suggest that single photon emission computed tomography (SPECT) using either 201Tl, 99mTc-sestamibi, or 99mTc-tetrofosmin is accurate (≥85%) and has a high negative predictive value (≥90%) for the differentiation of TB from carcinoma in patients presenting with a solitary pulmonary nodule (SPN). The criteria for detection of TB on 201Tl SPECT are nondepiction of the suspicious lesion in the delayed image or a negative retention index [washout on the delayed images (3–4 h postinjection) vs. the early image (5–15 min postinjection)] and a comparable-to-background uptake on 99mTc-sestamibi or 99mTc-tetrofosmin SPECT. Another SPECT tracer of potential interest for the differentiation of TB from malignant SPN that warrants further exploration, is N-isopropyl-p-[123I]iodoamphetamine (123I-IMP). In contrast, 18F-fluorodeoxyglucose (18F-FDG) PET is unable to differentiate malignancy from TB and thus cannot be used as a tool to reduce futile biopsy/thoracotomy in these patients. A limited number of studies have reported on the potential of nuclear medicine imaging in assessment of the extent of disease in patients with extrapulmonary TB using 67Ga-citrate SPECT and 18F-FDG PET, respectively. 67Ga-citrate SPECT was shown to be as sensitive as bone scintigraphy for the detection of bone infection and was found to be complementary to computed tomography (CT) imaging. 18F-FDG PET was found to be significantly more efficient when compared with CT, respectively, in over half of patients for the identification of sites of lymph node involvement that were missed by CT and often the only sites of extrapulmonary TB identified. Unfortunately, 18F-FDG PET findings did not lead to alterations in treatment planning in any

  6. Advances in imaging to allow personalized medicine in Crohn's disease.

    PubMed

    Neurath, Markus F

    2015-08-01

    Crohn's disease is a destructive inflammatory bowel disease of unknown origin that may lead to various complications such as strictures, stenosis, fistulas and colitis-associated neoplasias. However, the course of the disease varies substantially among patients and disease behaviour may also change with time. At diagnosis behaviour is inflammatory in the majority of patients, while penetrating or structuring behaviour become more prominent at later time points. Thus, medication in Crohn's disease needs frequent optimization over time. Therefore, new strategies for prediction of response to therapy are urgently needed. Here, recent advantages in imaging techniques for personalized medicine in Crohn's disease are reviewed. Such advantages include ultrasonography, computed tomography, magnetic resonance imaging and new endoscopic approaches such as molecular endoscopy. It is expected that these novel techniques will lead to marked improvements in the assessment of disease behaviour and the prediction of response to clinical therapy with biologicals. PMID:26002559

  7. Cardiovascular magnetic resonance imaging of isolated perfused pig hearts in a 3T clinical MR scanner

    PubMed Central

    Chiribiri, Amedeo; Ishida, Masaki; Morton, Geraint; Paul, Matthias; Hussain, Shazia T.; Bigalke, Boris; Perera, Divaka; Schaeffter, Tobias; Nagel, Eike

    2012-01-01

    Purpose An isolated perfused pig heart model has recently been proposed for the development of novel methods in standard clinical magnetic resonance (MR) scanners. The original set-up required the electrical system to be within the safe part of the MR-room, which introduced significant background noise. The purpose of the current work was to refine the system to overcome this limitation so that all electrical parts are completely outside the scanner room. Methods Four pig hearts were explanted under terminal anaesthesia from large white cross landrace pigs. All hearts underwent cardiovascular magnetic resonance (CMR) scanning in the MR part of a novel combined 3T MR and x-ray fluoroscopy (XMR) suite. CMR scanning included real-time k-t SENSE functional imaging, k-t SENSE accelerated perfusion imaging and late gadolinium enhancement imaging. Interference with image quality was assessed by spurious echo imaging and compared to noise levels acquired while operating the electrical parts within the scanner room. Results Imaging was performed successfully in all hearts. The system proved suitable for isolated heart perfusion in a novel 3T XMR suite. No significant additional noise was introduced into the scanner room by our set-up. Conclusions We have substantially improved a previous version of an isolated perfused pig heart model and made it applicable for MR imaging in a state of the art clinical 3T XMR imaging suite. The use of this system should aid novel CMR sequence development and translation into clinical practice. PMID:24265875

  8. [Using functional brain imaging technique to study central mechanism of acupuncture therapy for chronic stable angina pectoris in view of heart-brain correlation].

    PubMed

    Li, Zheng-Jie; Zeng, Fang; Lan, Lei; Yang, Jie; Zhang, Di; Liang, Fan-Rong

    2014-08-01

    Heart-brain correlation is an important component of Chinese medicine about the theory of zang-fu organs, which is still valuable for acupuncture clinical practice. Nowadays, increasing evidence supports the close association between the heart-brain axis, central autonomic nerve network and cardiovascular diseases, as well as the extensive regulative effects of acupuncture intervention on the heart-brain axis, functional connectivity of the brain, automatic nerve activities and cardiac functions. Therefore, the authors of the present paper hold that from the viewpoint of the heart-brain relationship, and by combining non-invasive functional brain imaging techniques with the patients' subjective and objective clinical indexes, our researchers will possibly and systematically reveal the underlying central mechanisms of acupuncture therapy in the treatment of chronic stable angina pectoris. However, the concrete biochemical mechanism should be proved via other advanced biological techniques.

  9. [New image of occupational medicine--current problems, future solutions].

    PubMed

    Andrzejak, Ryszard; Beck, Bogusław; Urban, Joanna

    2006-01-01

    Current problems in occupational medicine result mainly from the situation in which existing structures are not appropriately adapted to the changes in economy, work market structures and social and demographic trends, which rapidly appeared within the last decade. The Act of Occupational Medicine Service in force precisely defines the duties of occupational medicine services. However, although the legal powers seem clear and detailed, the possibility of real actions is not put in order and encounters many barriers. The changes in structures of economy, enterprises and work market result in the situation in which despite the obligatory preventive examination system, there is a large group of people that are not subject to them. Care of workers in bigger companies or institutions is also the source of problems concerning mainly the examination range, but also the identification of new threats connected with ergonomics, psychological or biological factors; their limiting, monitoring and prevention. A broad issue of provided service qualities is closely connected with the problems mentioned above. Another question is defining the quality control system, the execution of post-control suggestions and the possibility of applying possible sanctions. A significant task is also to modify the examining and specialisation acquirement system. In the creation of the new image of occupational medicine in Poland the most significant issue is to correct the current legal grounds by introducing new standards of health protection for working people, enable to provide high- quality services, create the conditions for functioning of multidiscipline teams preventively caring of working people, being a guarantee of health and economic benefits for the society.

  10. Molecular Imaging in Traditional Chinese Medicine Therapy for Neurological Diseases

    PubMed Central

    Wan, Haitong; Li, Jinhui; Zhang, Hong; Tian, Mei

    2013-01-01

    With the speeding tendency of aging society, human neurological disorders have posed an ever increasing threat to public health care. Human neurological diseases include ischemic brain injury, Alzheimer's disease, Parkinson's disease, and spinal cord injury, which are induced by impairment or specific degeneration of different types of neurons in central nervous system. Currently, there are no more effective treatments against these diseases. Traditional Chinese medicine (TCM) is focused on, which can provide new strategies for the therapy in neurological disorders. TCM, including Chinese herb medicine, acupuncture, and other nonmedication therapies, has its unique therapies in treating neurological diseases. In order to improve the treatment of these disorders by optimizing strategies using TCM and evaluate the therapeutic effects, we have summarized molecular imaging, a new promising technology, to assess noninvasively disease specific in cellular and molecular levels of living models in vivo, that was applied in TCM therapy for neurological diseases. In this review, we mainly focus on applying diverse molecular imaging methodologies in different TCM therapies and monitoring neurological disease, and unveiling the mysteries of TCM. PMID:24222911

  11. Time-lapse imaging of human heart motion with switched array UWB radar.

    PubMed

    Brovoll, Sverre; Berger, Tor; Paichard, Yoann; Aardal, Øyvind; Lande, Tor Sverre; Hamran, Svein-Erik

    2014-10-01

    Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart.

  12. Photons across medicine: relating optical and nuclear imaging

    PubMed Central

    Nordstrom, Robert; Cherry, Simon; Azhdarinia, Ali; Sevick-Muraca, Eva; VanBrocklin, Henry

    2013-01-01

    The Optics in the Life Sciences conference sponsored by the Optical Society of America was held in Waikoloa Beach, HI on April 14 – 18, 2013. Papers were presented in the areas of Bio-Optics: Design & Application, Novel Techniques in Microscopy, Optical Molecular Probes, Imaging & Drug Delivery, and Optical Trapping Applications. A focal point of the meeting was a special symposium entitled “Photons Across Medicine”, organized by Adam Wax, Duke University, highlighting activities of joint interest between the Optical Society of America (OSA) and the Society for Nuclear Medicine and Molecular Imaging (SNMMI). This paper is a synopsis of the presentations made at this joint symposium. Central to the special symposium presentations was the fact that the optical and nuclear imaging communities share common interests and challenges. These are highlighted in this article. Also discussed was the fact that the nuclear technologies in imaging have found their way into general clinical utility, a feat that has yet to be achieved by optical methods. Because of the common ground shared by the two technologies, coordination between the two societies should be planned. PMID:24409377

  13. Preliminary investigations of active pixel sensors in Nuclear Medicine imaging

    NASA Astrophysics Data System (ADS)

    Ott, Robert; Evans, Noel; Evans, Phil; Osmond, J.; Clark, A.; Turchetta, R.

    2009-06-01

    Three CMOS active pixel sensors have been investigated for their application to Nuclear Medicine imaging. Startracker with 525×525 25 μm square pixels has been coupled via a fibre optic stud to a 2 mm thick segmented CsI(Tl) crystal. Imaging tests were performed using 99mTc sources, which emit 140 keV gamma rays. The system was interfaced to a PC via FPGA-based DAQ and optical link enabling imaging rates of 10 f/s. System noise was measured to be >100e and it was shown that the majority of this noise was fixed pattern in nature. The intrinsic spatial resolution was measured to be ˜80 μm and the system spatial resolution measured with a slit was ˜450 μm. The second sensor, On Pixel Intelligent CMOS (OPIC), had 64×72 40 μm pixels and was used to evaluate noise characteristics and to develop a method of differentiation between fixed pattern and statistical noise. The third sensor, Vanilla, had 520×520 25 μm pixels and a measured system noise of ˜25e. This sensor was coupled directly to the segmented phosphor. Imaging results show that even at this lower level of noise the signal from 140 keV gamma rays is small as the light from the phosphor is spread over a large number of pixels. Suggestions for the 'ideal' sensor are made.

  14. Searching for Linear Dependencies between Heart Magnetic Resonance Images and Lipid Profiles

    NASA Astrophysics Data System (ADS)

    Sysi-Aho, Marko; Koikkalainen, Juha; Lötjönen, Jyrki; Seppänen-Laakso, Tuulikki; Söderlund, Hans; Heliö, Tiina; Orešič, Matej

    Information derived from "omics" data in life science research are frequently limited by specific spatial or temporal scales these data describe. As a case study of integrating physiological and molecular data in human, here we study associations between the heart magnetic resonance images and serum lipidomic profiles. In the best case, such associations could help infer the physiologic state of the heart from a blood serum sample without need to use expensive imaging techniques. Strong marginal and partial correlations are found between the lipid profiles and parameters derived from the heart images. Regression analyses are applied to study these dependencies in more detail. This study demonstrates the feasibility of mapping lipid profiles to heart images, and thus combining information from two very different scales, small molecules and macroscopic physiologic features. Such mappings could be generalized to other "omics" data as well to complete our picture of the holistic function of a living organism.

  15. Anatomical delineation of congenital heart disease using 3D magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Adams Bornemeier, Renee; Fellows, Kenneth E.; Fogel, Mark A.; Weinberg, Paul M.

    1994-05-01

    Anatomic delineation of the heart and great vessels is a necessity when managing children with congenital heart disease. Spatial orientation of the vessels and chambers in the heart and the heart itself may be quite abnormal. Though magnetic resonance imaging provides a noninvasive means for determining the anatomy, the intricate interrelationships between many structures are difficult to conceptualize from a 2-D format. Taking the 2-D images and using a volumetric analysis package allows for a 3-D replica of the heart to be created. This model can then be used to view the anatomy and spatial arrangement of the cardiac structures. This information may be utilized by the physicians to assist in the clinical management of these children.

  16. Historic images in nuclear medicine: 1976: the first issue of clinical nuclear medicine and the first human FDG study.

    PubMed

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-08-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone of this evolving and exciting discipline.

  17. Huangqi Injection (a Traditional Chinese Patent Medicine) for Chronic Heart Failure: A Systematic Review

    PubMed Central

    Fu, Shufei; Zhang, Junhua; Menniti-Ippolito, Francesca; Gao, Xiumei; Galeotti, Francesca; Massari, Marco; Hu, Limin; Zhang, Boli; Ferrelli, Rita; Fauci, Alice; Firenzuoli, Fabio; Shang, Hongcai; Guerra, Ranieri; Raschetti, Roberto

    2011-01-01

    Background Chronic heart failure (CHF) is a global public health problem. Therefore, novel and effective drugs that show few side-effects are needed. Early literature studies indicated that Huangqi injection is one of the most commonly used traditional Chinese patent medicines for CHF in China. As a large number of clinical studies has been carried out and published, it is essential to evaluate the effectiveness and safety of Huangqi injection. Therefore, we carried out this systematic review under the support of the framework of the Joint Sino-Italian Laboratory (JoSIL). Objectives To evaluate the efficacy and safety of Huangqi injection for CHF according to the available scientific knowledge. Methods An extensive search including PubMed, EMBASE, CBM, the Cochrane Library and Chinese literature databases was performed up to July 2008. Clinical trials regarding Huangqi injection for the treatment of CHF were searched for, irrespective of languages. The quality of each trial was assessed according to the Cochrane Reviewers' Handbook 5.0, and RevMan 5.0 provided by the Cochrane Collaboration and STATA 9.2 were used for data analysis. Results After selection of 1,205 articles, 62 RCTs and quasi-RCTs conducted in China and published in Chinese journals were included in the review. The methodological quality of the trials was low. In most trials inclusion and exclusion criteria were not specified. Furthermore, only one study evaluated the outcomes for drug efficacy after an adequate period of time. For these reasons and because of the different baseline characteristics we did not conduct a meta-analysis. Conclusions Although available studies are not adequate to draw a conclusion on the efficacy and safety of Huangqi injection (a traditional Chinese patent medicine), we hope that our work could provide useful experience on further studies on Huangqi injections. The overall level of TCM clinical research needs to be improved so that the efficacy of TCM can be evaluated

  18. Sequential en-face optical coherence tomography imaging and monitoring of Drosophila Melanogaster larval heart

    NASA Astrophysics Data System (ADS)

    Bradu, A.; Ma, Lisha; Bloor, J.; Podoleanu, A. GH.

    2009-02-01

    This article demonstrates two modalities to acquire information on cardiac function in larval Drosophila Melanogaster: in-vivo imaging and heartbeat monitoring. To achieve these goals a dedicated imaging instrument able to provide simultaneous en-face Optical Coherence Tomography (OCT) and Laser Scanning Confocal Microscopy (LSCM) images has been developed. With this dual imaging system, the heart can easily be located and visualised within the specimen and the change of the heart shape in a cardiac cycle monitored. The system can easily be switched to a stethoscopic regime, simply by interrupting the scanning of the light beam across the sample, after selecting the point of interest in the imaging regime. Here we have used targeted gene expression to knockdown the myospheroid (mys) gene in the larval heart using a specific RNAi construct. By knocking down a β integrin subunit encoded by mys we have recorded an enlarged heart chamber in both diastolic and systolic states. Also, the fraction of reduction of the chamber diameter was smaller in the knockdown heart. These phenotypic differences indicate that impaired cardiac contractility occurs in the heart where the integrin gene express level is reduced. As far as we are aware, this is for the first time when it is shown in Drosophila that integrins have a direct relationship to a dilated heart defect, and conseqThis article demonstrates two modalities to acquire information on cardiac function in larval Drosophila Melanogaster: in-vivo imaging and heartbeat monitoring. To achieve these goals a dedicated imaging instrument able to provide simultaneous en-face Optical Coherence Tomography (OCT) and Laser Scanning Confocal Microscopy (LSCM) images has been developed. With this dual imaging system, the heart can easily be located and visualised within the specimen and the change of the heart shape in a cardiac cycle monitored. The system can easily be switched to a stethoscopic regime, simply by interrupting the

  19. [The image of Byzantine medicine in the satire "Timarion"].

    PubMed

    Leven, K H

    1990-01-01

    Byzantine medicine is usually regarded as a static and non-creative descendant of classical Greek medicine, a point of view confirmed by the Byzantine medical texts. In this essay, the anonymous satire "Timarion" is analyzed in respect to its image of contemporary medical theory. Timarion, the fictive narrator, falls ill with a fever and is brought to Hades by two conductors of souls. They assert that he cannot survive, because he has secreted all his elementary bile. According to a decree by Asclepios and Hippocrates posted in Hades, any person that has lost one of his four elements may not live longer. In Hades Timarion sues to the court of judges of the dead. His lawyer, the sophist Theodore of Smyrna, persuades the judges that the bile excreted by Timarion has not been elementary in the sense of humoral pathology. So Timarion is allowed to return to life. The author of the satire ridicules the fundamental axiom of the four humours. Asclepios, Hippocrates and Erasistratos, who are attached to the infernal court as experts, cannot defend their theory against the convincing arguments of a sophist. The "divine" Galen, who probably would have been able to, is absent in order to complete a book of his. The "Timarion" with its harsh critique of medical theory is very amusing and a rare example of "actuality" in Byzantine literature.

  20. Optical imaging of irradiated and non-irradiated hearts (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bolin, Stephanie; Chen, Guanchu; Medhora, Meetha M.; Camara, Amadou K. S.; Ranji, Mahsa

    2016-03-01

    Objective: In this study, the metabolic state of the heart tissue is studied in a rodent model of ischemia and reperfusion (IR) in rats exposed to irradiation injury using a cryofluorescence imaging technique. Mitochondrial metabolic state is evaluated by autofluorescence of mitochondrial metabolic coenzymes NADH and FAD. The redox ratio (NADH/FAD) is used as a biochemical/metabolic marker of oxidative stress, before, during and after IR. Materials and methods: Hearts were extracted from non-irradiated (control) and irradiated rats (Irr) given 15 Gy whole thorax irradiation rats (WTI). After 35 days, before the onset of radiation pneumonitis, these two groups of hearts were subjected to one of three treatments; Time control (TC; hearts perfused for the duration of the protocol without ischemia or IR), 25 minutes ischemia with no reperfusion and 25 minutes ischemia followed by 60 minutes reperfusion (IR). Hearts were removed from the Langendorff perfusion system and immediately snap frozen in liquid N2 to preserve the metabolic state after injury; 3-dimensional (3D) cryo-fluorescent imager was used to obtain in fixed time NADH and FAD fluorescence images and their distribution across the entire ventricles. In this study, a 30-μm axial resolution was used resulting in 550 cross-section images per heart. The 3D images of the redox ratio and their respective histograms were calculated in the six groups of hearts. Results: We compared the mean values of the redox ratio in each group, which demonstrate a reduced mitochondrial redox state in both irradiated and non-irradiated ischemic hearts and an oxidized mitochondrial redox state for both irradiated and non-irradiated ischemia-reperfusion hearts compared to control hearts. For non-irradiated hearts, ischemia and IR injuries resulted respectively in 61% increase and 54% decrease in redox ratio when compared with TC. For irradiated hearts, ischemia and IR injuries resulted respectively in 90% increase and 50% decrease

  1. Robust and high resolution hyperpolarized metabolic imaging of the rat heart at 7 t with 3d spectral‐spatial EPI

    PubMed Central

    Miller, Jack J.; Lau, Angus Z.; Teh, Irvin; Schneider, Jürgen E.; Kinchesh, Paul; Smart, Sean; Ball, Vicky; Sibson, Nicola R.

    2015-01-01

    Purpose Hyperpolarized metabolic imaging has the potential to revolutionize the diagnosis and management of diseases where metabolism is dysregulated, such as heart disease. We investigated the feasibility of imaging rodent myocardial metabolism at high resolution at 7 T. Methods We present here a fly‐back spectral‐spatial radiofrequency pulse that sidestepped maximum gradient strength requirements and enabled high resolution metabolic imaging of the rodent myocardium. A 3D echo‐planar imaging readout followed, with centric ordered z‐phase encoding. The cardiac gated sequence was used to image metabolism in rodents whose metabolic state had been manipulated by being fasted, fed, or fed and given the pyruvate dehydrogenase kinase inhibitor dichloroacetate. Results We imaged hyperpolarized metabolites with a spatial resolution of 2×2×3.8 mm3 and a temporal resolution of 1.8 s in the rat heart at 7 T. Significant differences in myocardial pyruvate dehydrogenase flux were observed between the three groups of animals, concomitant with the known biochemistry. Conclusion The proposed sequence was able to image in vivo metabolism with excellent spatial resolution in the rat heart. The field of view enabled the simultaneous multi‐organ acquisition of metabolic information from the rat, which is of great utility for preclinical research in cardiovascular disease. Magn Reson Med 000:000–000, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1515–1524, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. PMID:25991606

  2. Spin echo versus stimulated echo diffusion tensor imaging of the in vivo human heart

    PubMed Central

    von Deuster, Constantin; Stoeck, Christian T.; Genet, Martin; Atkinson, David

    2015-01-01

    Purpose To compare signal‐to‐noise ratio (SNR) efficiency and diffusion tensor metrics of cardiac diffusion tensor mapping using acceleration‐compensated spin‐echo (SE) and stimulated echo acquisition mode (STEAM) imaging. Methods Diffusion weighted SE and STEAM sequences were implemented on a clinical 1.5 Tesla MR system. The SNR efficiency of SE and STEAM was measured (b = 50–450 s/mm2) in isotropic agar, anisotropic diffusion phantoms and the in vivo human heart. Diffusion tensor analysis was performed on mean diffusivity, fractional anisotropy, helix and transverse angles. Results In the isotropic phantom, the ratio of SNR efficiency for SE versus STEAM, SNRt(SE/STEAM), was 2.84 ± 0.08 for all tested b‐values. In the anisotropic diffusion phantom the ratio decreased from 2.75 ± 0.05 to 2.20 ± 0.13 with increasing b‐value, similar to the in vivo decrease from 2.91 ± 0.43 to 2.30 ± 0.30. Diffusion tensor analysis revealed reduced deviation of helix angles from a linear transmural model and reduced transverse angle standard deviation for SE compared with STEAM. Mean diffusivity and fractional anisotropy were measured to be statistically different (P < 0.001) between SE and STEAM. Conclusion Cardiac DTI using motion‐compensated SE yields a 2.3–2.9× increase in SNR efficiency relative to STEAM and improved accuracy of tensor metrics. The SE method hence presents an attractive alternative to STEAM based approaches. Magn Reson Med 76:862–872, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26445426

  3. Advances in Echocardiographic Imaging in Heart Failure With Reduced and Preserved Ejection Fraction.

    PubMed

    Omar, Alaa Mabrouk Salem; Bansal, Manish; Sengupta, Partho P

    2016-07-01

    Echocardiography, given its safety, easy availability, and the ability to permit a comprehensive assessment of cardiac structure and function, is an indispensable tool in the evaluation and management of patients with heart failure (HF). From initial phenotyping and risk stratification to providing vital data for guiding therapeutic decision-making and monitoring, echocardiography plays a pivotal role in the care of HF patients. The recent advent of multiparametric approaches for myocardial deformation imaging has provided valuable insights in the pathogenesis of HF, elucidating distinct patterns of myocardial dysfunction and events that are associated with progression from subclinical stage to overt HF. At the same time, miniaturization of echocardiography has further expanded clinical application of echocardiography, with the use of pocket cardiac ultrasound as an adjunct to physical examination demonstrated to improve diagnostic accuracy and risk stratification. Furthermore, ongoing advances in the field of big data analytics promise to create an exciting opportunity to operationalize precision medicine as the new approach to healthcare delivery that aims to individualize patient care by integrating data extracted from clinical, laboratory, echocardiographic, and genetic assessments. The present review summarizes the recent advances in the field of echocardiography, with emphasis on their role in HF phenotyping, risk stratification, and optimizing clinical outcomes. PMID:27390337

  4. Advances in Echocardiographic Imaging in Heart Failure With Reduced and Preserved Ejection Fraction.

    PubMed

    Omar, Alaa Mabrouk Salem; Bansal, Manish; Sengupta, Partho P

    2016-07-01

    Echocardiography, given its safety, easy availability, and the ability to permit a comprehensive assessment of cardiac structure and function, is an indispensable tool in the evaluation and management of patients with heart failure (HF). From initial phenotyping and risk stratification to providing vital data for guiding therapeutic decision-making and monitoring, echocardiography plays a pivotal role in the care of HF patients. The recent advent of multiparametric approaches for myocardial deformation imaging has provided valuable insights in the pathogenesis of HF, elucidating distinct patterns of myocardial dysfunction and events that are associated with progression from subclinical stage to overt HF. At the same time, miniaturization of echocardiography has further expanded clinical application of echocardiography, with the use of pocket cardiac ultrasound as an adjunct to physical examination demonstrated to improve diagnostic accuracy and risk stratification. Furthermore, ongoing advances in the field of big data analytics promise to create an exciting opportunity to operationalize precision medicine as the new approach to healthcare delivery that aims to individualize patient care by integrating data extracted from clinical, laboratory, echocardiographic, and genetic assessments. The present review summarizes the recent advances in the field of echocardiography, with emphasis on their role in HF phenotyping, risk stratification, and optimizing clinical outcomes.

  5. 4D optical coherence tomography of the embryonic heart using gated imaging

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rothenberg, Florence; Roy, Debashish; Nikolski, Vladimir P.; Wilson, David L.; Efimov, Igor R.; Rollins, Andrew M.

    2005-04-01

    Computed tomography (CT), ultrasound, and magnetic resonance imaging have been used to image and diagnose diseases of the human heart. By gating the acquisition of the images to the heart cycle (gated imaging), these modalities enable one to produce 3D images of the heart without significant motion artifact and to more accurately calculate various parameters such as ejection fractions [1-3]. Unfortunately, these imaging modalities give inadequate resolution when investigating embryonic development in animal models. Defects in developmental mechanisms during embryogenesis have long been thought to result in congenital cardiac anomalies. Our understanding of normal mechanisms of heart development and how abnormalities can lead to defects has been hampered by our inability to detect anatomic and physiologic changes in these small (<2mm) organs. Optical coherence tomography (OCT) has made it possible to visualize internal structures of the living embryonic heart with high-resolution in two- and threedimensions. OCT offers higher resolution than ultrasound (30 um axial, 90 um lateral) and magnetic resonance microscopy (25 um axial, 31 um lateral) [4, 5], with greater depth penetration over confocal microscopy (200 um). Optical coherence tomography (OCT) uses back reflected light from a sample to create an image with axial resolutions ranging from 2-15 um, while penetrating 1-2 mm in depth [6]. In the past, OCT groups estimated ejection fractions using 2D images in a Xenopus laevis [7], created 3D renderings of chick embryo hearts [8], and used a gated reconstruction technique to produce 2D Doppler OCT image of an in vivo Xenopus laevis heart [9]. In this paper we present a gated imaging system that allowed us to produce a 16-frame 3D movie of a beating chick embryo heart. The heart was excised from a day two (stage 13) chicken embryo and electrically paced at 1 Hz. We acquired 2D images (B-scans) in 62.5 ms, which provides enough temporal resolution to distinguish end

  6. Impact of heart magnetic resonance imaging on chelation choices, compliance with treatment and risk of heart disease in patients with thalassaemia major.

    PubMed

    Origa, Raffaella; Danjou, Fabrice; Cossa, Stefano; Matta, Gildo; Bina, Patrizio; Dessì, Carlo; Defraia, Elisabetta; Foschini, Maria L; Leoni, Giovanbattista; Morittu, Maddalena; Galanello, Renzo

    2013-11-01

    This study aimed to verify the impact of heart magnetic resonance imaging on chelation choices and patient compliance in a single-institution cohort as well as its predictive value for heart failure and arrhythmias. Abnormal cardiac T2* values determined changes in treatment in most subjects. Heart T2* was confirmed to be highly predictive over 1 year for heart failure and arrhythmias. The choice of chelation regimens known to remove heart iron efficiently was not sufficient by itself to influence the risk. Compliance with treatment had a more remarkable role.

  7. The heart and brain imaging in lone atrial fibrillation - are we surprised?

    PubMed

    Shantsila, Eduard; Haeusler, Karl Georg; Fiebach, Jochen B; Breithardt, Gunter; Kirchhof, Paulus

    2015-01-01

    "Lone" atrial fibrillation (AF) is generally used to refer to patients with AF in the absence of structural heart disease. When the decision for oral anticoagulation is discussed, "lone" AF refers to patients who do not have established stroke risk factors. Imaging is often used to rule out structural heart disease, e.g. coronary artery disease, peripheral vascular disease, mitral stenosis or left ventricular (LV) dysfunction. Imaging of the heart has a central role in establishing the "lone" aspect in patients with "lone"AF, similar to the measurement of blood glucose and blood pressure: Patients with structural heart disease, defined as e.g. reduced LV ejection fraction, clinical evidence for heart failure, or evidence for coronary artery disease, will not be considered as patients with "lone" AF. The search for these conditions requires some cardiac imaging, often done by echocardiography and non-invasive tests for coronary artery disease or ischemia. Increasingly, brain imaging is used to define the clinical diagnosis of a stroke, thus also contributing to the detection of stroke risk factors. Cerebral imaging in AF patients without competing causes for silent strokes or microbleeds ("lone" AF, rather used in the context of anticoagulation, i.e. clinical absence of structural heart disease) would allow to better understand the contribution of AF to these brain lesions. The assumption that silent strokes are likely drivers of cognitive dysfunction, and the fact that microbleeds put patients at risk for intracerebral hemorrhage, illustrates the need to collect information on brain imaging. In this review article, we summarize current data on heart and brain imaging in patients with "lone" AF and discuss their clinical implications for risk assessment and management of patients with "lone" AF.

  8. 3D imaging of the early embryonic chicken heart with focused ion beam scanning electron microscopy.

    PubMed

    Rennie, Monique Y; Gahan, Curran G; López, Claudia S; Thornburg, Kent L; Rugonyi, Sandra

    2014-08-01

    Early embryonic heart development is a period of dynamic growth and remodeling, with rapid changes occurring at the tissue, cell, and subcellular levels. A detailed understanding of the events that establish the components of the heart wall has been hampered by a lack of methodologies for three-dimensional (3D), high-resolution imaging. Focused ion beam scanning electron microscopy (FIB-SEM) is a novel technology for imaging 3D tissue volumes at the subcellular level. FIB-SEM alternates between imaging the block face with a scanning electron beam and milling away thin sections of tissue with a FIB, allowing for collection and analysis of 3D data. FIB-SEM was used to image the three layers of the day 4 chicken embryo heart: myocardium, cardiac jelly, and endocardium. Individual images obtained with FIB-SEM were comparable in quality and resolution to those obtained with transmission electron microscopy. Up to 1,100 serial images were obtained in 4 nm increments at 4.88 nm resolution, and image stacks were aligned to create volumes 800-1,500 μm3 in size. Segmentation of organelles revealed their organization and distinct volume fractions between cardiac wall layers. We conclude that FIB-SEM is a powerful modality for 3D subcellular imaging of the embryonic heart wall.

  9. Multi-modality imaging: Bird's-eye view from the 2014 American Heart Association Scientific Sessions.

    PubMed

    AlJaroudi, Wael A; Einstein, Andrew J; Chaudhry, Farooq A; Lloyd, Steven G; Hage, Fadi G

    2015-04-01

    A large number of studies were presented at the 2014 American Heart Association Scientific Sessions. In this review, we will summarize key studies in nuclear cardiology, computed tomography, echocardiography, and cardiac magnetic resonance imaging. This brief review will be helpful for readers of the Journal who are interested in being updated on the latest research covering these imaging modalities.

  10. Spatio-temporal image correlation (STIC): new technology for evaluation of the fetal heart.

    PubMed

    DeVore, G R; Falkensammer, P; Sklansky, M S; Platt, L D

    2003-10-01

    Spatio-temporal image correlation (STIC) is a new approach for clinical assessment of the fetal heart. It offers an easy to use technique to acquire data from the fetal heart and to aid in visualization with both two-dimensional and three-dimensional (3D) cine sequences. The acquisition is performed in two steps: first, images are acquired by a single, automatic volume sweep. Second, the system analyzes the image data according to their spatial and temporal domain and processes an online dynamic 3D image sequence that is displayed in a multiplanar reformatted cross-sectional display and/or a surface rendered display. The examiner can navigate within the heart, re-slice, and produce all of the standard image planes necessary for a comprehensive diagnosis. The advantages of STIC for use in evaluation of the fetal heart are as follows: the technique delivers a temporal resolution which corresponds to a B-mode frame rate of approximately 80 frames/s; it provides the examiner with an unlimited number of images for review; it allows for correlation between image planes that are perpendicular to the main image acquisition plane; it may shorten the evaluation time when complex heart defects are suspected; it enables the reconstruction of a 3D rendered image that contains depth and volume which may provide additional information that is not available from the thin multiplanar image slices (e.g. for pulmonary veins, septal thickness); it lends itself to storage and review of volume data by the examiner or by experts at a remote site; it provides the examiner with the ability to review all images in a looped cine sequence. PMID:14528474

  11. Chinese Herbal Medicine Image Recognition and Retrieval by Convolutional Neural Network.

    PubMed

    Sun, Xin; Qian, Huinan

    2016-01-01

    Chinese herbal medicine image recognition and retrieval have great potential of practical applications. Several previous studies have focused on the recognition with hand-crafted image features, but there are two limitations in them. Firstly, most of these hand-crafted features are low-level image representation, which is easily affected by noise and background. Secondly, the medicine images are very clean without any backgrounds, which makes it difficult to use in practical applications. Therefore, designing high-level image representation for recognition and retrieval in real world medicine images is facing a great challenge. Inspired by the recent progress of deep learning in computer vision, we realize that deep learning methods may provide robust medicine image representation. In this paper, we propose to use the Convolutional Neural Network (CNN) for Chinese herbal medicine image recognition and retrieval. For the recognition problem, we use the softmax loss to optimize the recognition network; then for the retrieval problem, we fine-tune the recognition network by adding a triplet loss to search for the most similar medicine images. To evaluate our method, we construct a public database of herbal medicine images with cluttered backgrounds, which has in total 5523 images with 95 popular Chinese medicine categories. Experimental results show that our method can achieve the average recognition precision of 71% and the average retrieval precision of 53% over all the 95 medicine categories, which are quite promising given the fact that the real world images have multiple pieces of occluded herbal and cluttered backgrounds. Besides, our proposed method achieves the state-of-the-art performance by improving previous studies with a large margin. PMID:27258404

  12. Chinese Herbal Medicine Image Recognition and Retrieval by Convolutional Neural Network.

    PubMed

    Sun, Xin; Qian, Huinan

    2016-01-01

    Chinese herbal medicine image recognition and retrieval have great potential of practical applications. Several previous studies have focused on the recognition with hand-crafted image features, but there are two limitations in them. Firstly, most of these hand-crafted features are low-level image representation, which is easily affected by noise and background. Secondly, the medicine images are very clean without any backgrounds, which makes it difficult to use in practical applications. Therefore, designing high-level image representation for recognition and retrieval in real world medicine images is facing a great challenge. Inspired by the recent progress of deep learning in computer vision, we realize that deep learning methods may provide robust medicine image representation. In this paper, we propose to use the Convolutional Neural Network (CNN) for Chinese herbal medicine image recognition and retrieval. For the recognition problem, we use the softmax loss to optimize the recognition network; then for the retrieval problem, we fine-tune the recognition network by adding a triplet loss to search for the most similar medicine images. To evaluate our method, we construct a public database of herbal medicine images with cluttered backgrounds, which has in total 5523 images with 95 popular Chinese medicine categories. Experimental results show that our method can achieve the average recognition precision of 71% and the average retrieval precision of 53% over all the 95 medicine categories, which are quite promising given the fact that the real world images have multiple pieces of occluded herbal and cluttered backgrounds. Besides, our proposed method achieves the state-of-the-art performance by improving previous studies with a large margin.

  13. Chinese Herbal Medicine Image Recognition and Retrieval by Convolutional Neural Network

    PubMed Central

    Sun, Xin; Qian, Huinan

    2016-01-01

    Chinese herbal medicine image recognition and retrieval have great potential of practical applications. Several previous studies have focused on the recognition with hand-crafted image features, but there are two limitations in them. Firstly, most of these hand-crafted features are low-level image representation, which is easily affected by noise and background. Secondly, the medicine images are very clean without any backgrounds, which makes it difficult to use in practical applications. Therefore, designing high-level image representation for recognition and retrieval in real world medicine images is facing a great challenge. Inspired by the recent progress of deep learning in computer vision, we realize that deep learning methods may provide robust medicine image representation. In this paper, we propose to use the Convolutional Neural Network (CNN) for Chinese herbal medicine image recognition and retrieval. For the recognition problem, we use the softmax loss to optimize the recognition network; then for the retrieval problem, we fine-tune the recognition network by adding a triplet loss to search for the most similar medicine images. To evaluate our method, we construct a public database of herbal medicine images with cluttered backgrounds, which has in total 5523 images with 95 popular Chinese medicine categories. Experimental results show that our method can achieve the average recognition precision of 71% and the average retrieval precision of 53% over all the 95 medicine categories, which are quite promising given the fact that the real world images have multiple pieces of occluded herbal and cluttered backgrounds. Besides, our proposed method achieves the state-of-the-art performance by improving previous studies with a large margin. PMID:27258404

  14. TIMMI2 Images the Heart of the Orion Nebula

    NASA Astrophysics Data System (ADS)

    2001-03-01

    with ESO's new Thermal Infrared MultiMode Instrument (TIMMI2) , now mounted at the Cassegrain focus of the 3.6-m telescope on La Silla. The area is located close to the Trapezium cluster and is identified on a near-infrared image ( PR Photo 12a/01 ) obtained with the ISAAC instrument at the 8.2-m VLT ANTU telescope (cf. ESO PR Photos 03a-d/01 ). The complex itself is so heavily obscured by the dust cloud that it is not visible at this wavelength. However, the dust is more transparent at longer wavelengths and the complex is clearly seen on images obtained with TIMMI2 at wavelengths of 10.3 µm ( PR Photo 12b/01 ; with isophotes at the brightest object) and 20.0µm, ( PR Photo 12c/01 ). They show in some detail the structures around the compact sources and the extended thermal emission from the dust. The ratio of these two photos ( PR Photo 12d/01 ) illustrates how the temperature of the dust in this area varies. The brighter areas are the hotter ones. Technical information about these photos is available below. A group of astronomers [1] has recently imaged a star-forming region in the Orion Nebula with a new and powerful astronomical instrument, the Thermal Infrared MultiMode Instrument (TIMMI2) , now available at the La Silla Observatory. In addition to being scientifically very interesting, these observations also provide a demonstration of the impressive capabilities of this new facility. It has been known for some time that the "BN/KL Complex" is a site of recent, massive star formation. It is located deep inside the Orion Nebula ( PR Photo 12a/01 ) and is observed as a cluster of infrared-emitting objects and compact regions of ionized Hydrogen ("H II regions"), associated with intricate interstellar dust filaments and circumstellar dust clouds. There are also several hot and large stars in this heavily obscured area - together they shine as bright as 100,000 suns. It is a difficult task to identify the main sources of heating in this region - the "heart" of the

  15. Fusion of color Doppler and magnetic resonance images of the heart.

    PubMed

    Wang, Chao; Chen, Ming; Zhao, Jiang-Min; Liu, Yi

    2011-12-01

    This study was designed to establish and analyze color Doppler and magnetic resonance fusion images of the heart, an approach for simultaneous testing of cardiac pathological alterations, performance, and hemodynamics. Ten volunteers were tested in this study. The echocardiographic images were produced by Philips IE33 system and the magnetic resonance images were generated from Philips 3.0-T system. The fusion application was implemented on MATLAB platform utilizing image processing technology. The fusion image was generated from the following steps: (1) color Doppler blood flow segmentation, (2) image registration of color Doppler and magnetic resonance imaging, and (3) image fusion of different image types. The fusion images of color Doppler blood flow and magnetic resonance images were implemented by MATLAB programming in our laboratory. Images and videos were displayed and saved as AVI and JPG. The present study shows that the method we have developed can be used to fuse color flow Doppler and magnetic resonance images of the heart. We believe that the method has the potential to: fill in information missing from the ultrasound or MRI alone, show structures outside the field of view of the ultrasound through MR imaging, and obtain complementary information through the fusion of the two imaging methods (structure from MRI and function from ultrasound). PMID:21656081

  16. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part III: Cyanotic Heart Diseases and Complex Congenital Anomalies.

    PubMed

    Bhat, Venkatraman; Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-07-01

    From the stand point of radiographic analysis most of the complex cyanotic congenital heart diseases (CHD), can be divided into those associated with decreased or increased pulmonary vascularity. Combination of a specific cardiac configuration and status of lung vasculature in a clinical context allows plain film diagnosis to be predicted in some CHD. Correlation of the position of the cardiac apex in relation to the visceral situs is an important information that can be obtained from the plain film. This information helps in gathering information about the atrio-ventricular, ventricular arterial concordance or discordance. Categorization of the cyanotic heart disease based on vascularity is presented below. Thorough understanding of cardiac anatomy by different imaging methods is essential in understanding and interpreting complex cardiac disease. Basic anatomical details and background for interpretation are provided in the previous parts of this presentation.

  17. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part III: Cyanotic Heart Diseases and Complex Congenital Anomalies

    PubMed Central

    Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-01-01

    From the stand point of radiographic analysis most of the complex cyanotic congenital heart diseases (CHD), can be divided into those associated with decreased or increased pulmonary vascularity. Combination of a specific cardiac configuration and status of lung vasculature in a clinical context allows plain film diagnosis to be predicted in some CHD. Correlation of the position of the cardiac apex in relation to the visceral situs is an important information that can be obtained from the plain film. This information helps in gathering information about the atrio-ventricular, ventricular arterial concordance or discordance. Categorization of the cyanotic heart disease based on vascularity is presented below. Thorough understanding of cardiac anatomy by different imaging methods is essential in understanding and interpreting complex cardiac disease. Basic anatomical details and background for interpretation are provided in the previous parts of this presentation. PMID:27630924

  18. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part III: Cyanotic Heart Diseases and Complex Congenital Anomalies.

    PubMed

    Bhat, Venkatraman; Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-07-01

    From the stand point of radiographic analysis most of the complex cyanotic congenital heart diseases (CHD), can be divided into those associated with decreased or increased pulmonary vascularity. Combination of a specific cardiac configuration and status of lung vasculature in a clinical context allows plain film diagnosis to be predicted in some CHD. Correlation of the position of the cardiac apex in relation to the visceral situs is an important information that can be obtained from the plain film. This information helps in gathering information about the atrio-ventricular, ventricular arterial concordance or discordance. Categorization of the cyanotic heart disease based on vascularity is presented below. Thorough understanding of cardiac anatomy by different imaging methods is essential in understanding and interpreting complex cardiac disease. Basic anatomical details and background for interpretation are provided in the previous parts of this presentation. PMID:27630924

  19. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part III: Cyanotic Heart Diseases and Complex Congenital Anomalies

    PubMed Central

    Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-01-01

    From the stand point of radiographic analysis most of the complex cyanotic congenital heart diseases (CHD), can be divided into those associated with decreased or increased pulmonary vascularity. Combination of a specific cardiac configuration and status of lung vasculature in a clinical context allows plain film diagnosis to be predicted in some CHD. Correlation of the position of the cardiac apex in relation to the visceral situs is an important information that can be obtained from the plain film. This information helps in gathering information about the atrio-ventricular, ventricular arterial concordance or discordance. Categorization of the cyanotic heart disease based on vascularity is presented below. Thorough understanding of cardiac anatomy by different imaging methods is essential in understanding and interpreting complex cardiac disease. Basic anatomical details and background for interpretation are provided in the previous parts of this presentation.

  20. A Novel Technique for Image-Guided Local Heart Irradiation in the Rat

    PubMed Central

    Sharma, Sunil; Moros, Eduardo G.; Boerma, Marjan; Sridharan, Vijayalakshmi; Han, Eun Young; Clarkson, Richard; Hauer-Jensen, Martin; Corry, Peter M.

    2014-01-01

    In radiotherapy treatment of thoracic, breast and chest wall tumors, the heart may be included (partially or fully) in the radiation field. As a result, patients may develop radiation-induced heart disease (RIHD) several years after exposure to radiation. There are few methods available to prevent or reverse RIHD and the biological mechanisms remain poorly understood. In order to further study the effects of radiation on the heart, we developed a model of local heart irradiation in rats using an image-guided small animal conformal radiation therapy device (SACRTD) developed at our institution. First, Monte Carlo based simulations were used to design an appropriate collimator. EBT-2 films were used to measure relative dosimetry, and the absolute dose rate at the isocenter was measured using the AAPM protocol TG-61. The hearts of adult male Sprague-Dawley rats were irradiated with a total dose of 21 Gy. For this purpose, rats were anesthetized with isoflurane and placed in a custom-made vertical rat holder. Each heart was irradiated with a 3-beam technique (one AP field and 2 lateral fields), with each beam delivering 7 Gy. For each field, the heart was visualized with a digital flat panel X-ray imager and placed at the isocenter of the 1.8 cm diameter beam. In biological analysis of radiation exposure, immunohistochemistry showed γH2Ax foci and nitrotyrosine throughout the irradiated hearts but not in the lungs. Long-term follow-up of animals revealed histopathological manifestations of RIHD, including myocardial degeneration and fibrosis. The results demonstrate that the rat heart irradiation technique using the SACRTD was successful and that surrounding untargeted tissues were spared, making this approach a powerful tool for in vivo radiobiological studies of RIHD. Functional and structural changes in the rat heart after local irradiation are ongoing. PMID:24000983

  1. High-resolution tissue Doppler imaging of the zebrafish heart during its regeneration.

    PubMed

    Huang, Chih-Chung; Su, Ta-Han; Shih, Cho-Chiang

    2015-02-01

    The human heart cannot regenerate after injury, whereas the adult zebrafish can fully regenerate its heart even after 20% of the ventricle is amputated. Many studies have begun to reveal the cellular and molecular mechanisms underlying this regenerative process, which have exciting implications for human cardiac diseases. However, the dynamic functions of the zebrafish heart during regeneration are not yet understood. This study established a high-resolution echocardiography for tissue Doppler imaging (TDI) of the zebrafish heart to explore the cardiac functions during different regeneration phases. Experiments were performed on AB-line adult zebrafish (n=40) in which 15% of the ventricle was surgically removed. An 80-MHz ultrasound TDI based on color M-mode imaging technology was employed. The cardiac flow velocities and patterns from both the ventricular chamber and myocardium were measured at different regeneration phases relative to the day of amputation. The peak velocities of early diastolic inflow, early diastolic myocardial motion, late diastolic myocardial motion, early diastolic deceleration slope, and heart rate were increased at 3 days after the myocardium amputation, but these parameters gradually returned to close to their baseline values for the normal heart at 7 days after amputation. The peak velocities of late diastolic inflow, ventricular systolic outflow, and systolic myocardial motion did not significantly differ during the heart regeneration.

  2. CdZnTe arrays for nuclear medicine imaging

    SciTech Connect

    Barber, H.B.

    1996-12-31

    In nuclear medicine, a gamma-ray-emitting radiotracer is injected into the body, and the resulting biodistribution is imaged using a gamma camera. Current gamma cameras use a design developed by Anger. An Anger camera makes use of a slab of scintillation detector that is viewed by an array of photomultiplier tubes and uses an analog position estimation technique to determine the position of the gamma ray`s interaction. The image-forming optics is usually a multi-bore collimator made of lead. Such cameras are characterized by poor, system spatial resolution ({approximately}1 cm) due to poor detector resolution ({approximately}0.4 cm) and poor collimator performance. Arrays of semiconductor detectors are an attractive alternative to scintillators for use in gamma cameras. Semiconductor detectors have excellent energy resolution. High spatial resolution is also possible because large semiconductor detector arrays with small pixel sizes can be produced using photolithography techniques. A new crystal growth technique (high-pressure vertical Bridgman) allows production of detector grade CdTe and CdZnTe in multikilogram ingots. Although the cost of CdZnTe detectors has come down substantially in the last few years, in part because of economies of scale, costs are still more than an order of magnitude higher than those required for a commercial camera ($20--$50/gram). High detector costs are perhaps the major stumbling block to developing a semiconductor gamma camera. The photolithography techniques required to make large CdZnTe arrays have already been demonstrated. This paper discusses the recent developments made in CdZnTe detectors.

  3. Heart wall motion analysis by dynamic 3D strain rate imaging from tissue Doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Hastenteufel, Mark; Wolf, Ivo; de Simone, Raffaele; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2002-04-01

    The knowledge about the complex three-dimensional (3D) heart wall motion pattern, particular in the left ventricle, provides valuable information about potential malfunctions, e.g., myocardial ischemia. Nowadays, echocardiography (cardiac ultrasound) is the predominant technique for evaluation of cardiac function. Beside morphology, tissue velocities can be obtained by Doppler techniques (tissue Doppler imaging, TDI). Strain rate imaging (SRI) is a new technique to diagnose heart vitality. It provides information about the contraction ability of the myocardium. Two-dimensional color Doppler echocardiography is still the most important clinical method for estimation of morphology and function. Two-dimensional methods leads to a lack of information due to the three-dimensional overall nature of the heart movement. Due to this complex three-dimensional motion pattern of the heart, the knowledge about velocity and strain rate distribution over the whole ventricle can provide more valuable diagnostic information about motion disorders. For the assessment of intracardiac blood flow three-dimensional color Doppler has already shown its clinical utility. We have developed methods to produce strain rate images by means of 3D tissue Doppler echocardiography. The tissue Doppler and strain rate images can be visualized and quantified by different methods. The methods are integrated into an interactively usable software environment, making them available in clinical everyday life. Our software provides the physician with a valuable tool for diagnosis of heart wall motion.

  4. Four-dimensional modeling of the heart for image guidance of minimally invasive cardiac surgeries

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Marcin; Drangova, Maria; Guiraudon, Gerard; Peters, Terry

    2004-05-01

    Minimally invasive surgery of the beating heart can be associated with two major limitations: selecting port locations for optimal target coverage from x-rays and angiograms, and navigating instruments in a dynamic and confined 3D environment using only an endoscope. To supplement the current surgery planning and guidance strategies, we continue developing VCSP - a virtual reality, patient-specific, thoracic cavity model derived from 3D pre-procedural images. In this work, we apply elastic image registration to 4D cardiac images to model the dynamic heart. Our method is validated on two image modalities, and for different parts of the cardiac anatomy. In a helical CT dataset of an excised heart phantom, we found that the artificial motion of the epicardial surface can be extracted to within 0.93 +/- 0.33 mm. For an MR dataset of a human volunteer, the error for different heart structures such as the myocardium, right and left atria, right ventricle, aorta, vena cava, and pulmonary artery, ranged from 1.08 +/- 0.18 mm to 1.14 +/- 0.22 mm. These results indicate that our method of modeling the motion of the heart is not only easily adaptable but also sufficiently accurate to meet the requirements for reliable cardiac surgery training, planning, and guidance.

  5. Gated magnetic resonance imaging of the normal and diseased heart

    SciTech Connect

    Lieberman, J.M.; Alfidi, R.J.; Nelson, A.D.; Botti, R.E.; Moir, T.W.; Haaga, J.R.; Kopiwoda, S.; Miraldi, F.D.; Cohen, A.M.; Butler, H.E.

    1984-08-01

    Gated cardiac magnetic resonance (MR) images were obtained in two normal volunteers and 21 adults with a variety of cardiovascular abnormalities. The images were correlated with data from clinical examination, electrocardiograms, and cardiac catheterization. Gated cardiac images were superior to nongated images. Combined cardiac and respiratory gated images were superior to images obtained with cardiac gating only, but acquisition time was longer. Portions of the coronary arteries were visualized in seven of 23 examinations (30%), and subacute and old myocardial infarcts were seen in five of nine patients (55%) as areas of thinned myocardium. Normal cardiac anatomy (chambers, valves, and papillary muscles) was well visualized. Examples of aortic stenosis and atherosclerosis of the abdominal aorta are shown.

  6. Arrangements of multiple images of human myocardium for information for the surgeon during open heart surgery

    NASA Astrophysics Data System (ADS)

    Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias

    2002-06-01

    The feasibility to obtain visualized information of myocardium by imaging is a new dimension. However, during heart surgery the surgeon does not need all data of images continuously. Therefore, development of strategies able to reduce flux of information transiently in between images might become important. Arrangements of images in 3-dimensional structures can produce better outlines. Images often contain information of several parameters. Therefore, a selection of important parts of the pictures might be helpful. Optical sensors will have the ability to detect dangerous situations in tissues which can release optical or acoustic signals.

  7. New principles in nuclear medicine imaging: a full aperture stereoscopic imaging technique.

    PubMed

    Strocovsky, Sergio G; Otero, Dino

    2010-01-01

    In nuclear medicine, images of planar scintigraphy and single photon emission computerized tomography (SPECT) obtained through gamma camera (GC) appear to be blurred. Alternatively, coded aperture imaging (CAI) can surpass the quality of GC images, but still it is not extensively used due to the decoding complexity of some images and the difficulty in controlling the noise. Summing up, the images obtained through GC are low quality and it is still difficult to implement CAI technique. Here we present a full aperture imaging (FAI) technique which overcomes the problems of CAI ordinary systems. The gamma radiation transmitted through a large single aperture is edge-encoded, taking advantage of the fact that nuclear radiation is spatially incoherent. The novel technique is tested by means of Monte Carlo method with simple and complex sources. Spatial resolution tests and parallax tests of GC versus FAI were made, and three-dimensional capacities of GC versus FAI were analyzed. Simulations have allowed comparison of both techniques under ideal, identical conditions. The results show that FAI technique has greater sensitivity (approximately 100 times) and greater spatial resolution (>2.6 times at 40 cm source-detector distance) than that of GC. FAI technique allows to obtain images with typical resolution of GC short source-detector distance but at longer source-detector distance. The FAI decoding algorithm simultaneously reconstructs four different projections, while GC produces only one projection per acquisition. Our results show it is possible to apply an extremely simple encoded imaging technique, and get three-dimensional radioactivity information. Thus GC-based systems could be substituted, given that FAI technique is simple and it produces four images which may feed stereoscopic systems, substituting in some cases, tomographic reconstructions.

  8. Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity

    NASA Astrophysics Data System (ADS)

    Masson, Jean-Baptiste; Sauviat, Martin-Pierre; Gallot, Guilhem

    2006-10-01

    The authors demonstrate the direct, noninvasive and time resolved imaging of functional frog auricular fibers by ionic contrast terahertz (ICT) near field microscopy. This technique provides quantitative, time-dependent measurement of ionic flow during auricular muscle electrical activity, and opens the way of direct noninvasive imaging of cardiac activity under stimulation. ICT microscopy technique was associated with full three-dimensional simulation enabling to measure precisely the fiber sizes. This technique coupled to waveguide technology should provide the grounds to development of advanced in vivo ion flux measurement in mammalian hearts, allowing the prediction of heart attack from change in K+ fluxes.

  9. Managing Your Medicines

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More Managing Your Medicines Updated:Sep 2,2016 If you have heart ... Weight • Tools & Resources Heart Insight Supplement: Know Your Medicines Keeping track of your medicines can be overwhelming. ...

  10. Point-of-Care Technologies for the Advancement of Precision Medicine in Heart, Lung, Blood, and Sleep Disorders

    PubMed Central

    Jamieson, Brian G.; Chui, Chi On; Mao, Yufei; Shin, Kyeong-Sik; Huang, Tony Jun; Huang, Po-Hsun; Ren, Liqiang; Adhikari, Bishow; Chen, Jue; Iturriaga, Erin

    2016-01-01

    The commercialization of new point of care technologies holds great potential in facilitating and advancing precision medicine in heart, lung, blood, and sleep (HLBS) disorders. The delivery of individually tailored health care to a patient depends on how well that patient’s health condition can be interrogated and monitored. Point of care technologies may enable access to rapid and cost-effective interrogation of a patient’s health condition in near real time. Currently, physiological data are largely limited to single-time-point collection at the hospital or clinic, whereas critical information on some conditions must be collected in the home, when symptoms occur, or at regular intervals over time. A variety of HLBS disorders are highly dependent on transient variables, such as patient activity level, environment, time of day, and so on. Consequently, the National Heart Lung and Blood Institute sponsored a request for applications to support the development and commercialization of novel point-of-care technologies through small businesses (RFA-HL-14-011 and RFA-HL-14-017). Three of the supported research projects are described to highlight particular point-of-care needs for HLBS disorders and the breadth of emerging technologies. While significant obstacles remain to the commercialization of such technologies, these advancements will be required to achieve precision medicine.

  11. Point-of-Care Technologies for the Advancement of Precision Medicine in Heart, Lung, Blood, and Sleep Disorders

    PubMed Central

    Jamieson, Brian G.; Chui, Chi On; Mao, Yufei; Shin, Kyeong-Sik; Huang, Tony Jun; Huang, Po-Hsun; Ren, Liqiang; Adhikari, Bishow; Chen, Jue; Iturriaga, Erin

    2016-01-01

    The commercialization of new point of care technologies holds great potential in facilitating and advancing precision medicine in heart, lung, blood, and sleep (HLBS) disorders. The delivery of individually tailored health care to a patient depends on how well that patient’s health condition can be interrogated and monitored. Point of care technologies may enable access to rapid and cost-effective interrogation of a patient’s health condition in near real time. Currently, physiological data are largely limited to single-time-point collection at the hospital or clinic, whereas critical information on some conditions must be collected in the home, when symptoms occur, or at regular intervals over time. A variety of HLBS disorders are highly dependent on transient variables, such as patient activity level, environment, time of day, and so on. Consequently, the National Heart Lung and Blood Institute sponsored a request for applications to support the development and commercialization of novel point-of-care technologies through small businesses (RFA-HL-14-011 and RFA-HL-14-017). Three of the supported research projects are described to highlight particular point-of-care needs for HLBS disorders and the breadth of emerging technologies. While significant obstacles remain to the commercialization of such technologies, these advancements will be required to achieve precision medicine. PMID:27602308

  12. Point-of-Care Technologies for the Advancement of Precision Medicine in Heart, Lung, Blood, and Sleep Disorders.

    PubMed

    Bigelow, Mary Emma Gorham; Jamieson, Brian G; Chui, Chi On; Mao, Yufei; Shin, Kyeong-Sik; Huang, Tony Jun; Huang, Po-Hsun; Ren, Liqiang; Adhikari, Bishow; Chen, Jue; Iturriaga, Erin

    2016-01-01

    The commercialization of new point of care technologies holds great potential in facilitating and advancing precision medicine in heart, lung, blood, and sleep (HLBS) disorders. The delivery of individually tailored health care to a patient depends on how well that patient's health condition can be interrogated and monitored. Point of care technologies may enable access to rapid and cost-effective interrogation of a patient's health condition in near real time. Currently, physiological data are largely limited to single-time-point collection at the hospital or clinic, whereas critical information on some conditions must be collected in the home, when symptoms occur, or at regular intervals over time. A variety of HLBS disorders are highly dependent on transient variables, such as patient activity level, environment, time of day, and so on. Consequently, the National Heart Lung and Blood Institute sponsored a request for applications to support the development and commercialization of novel point-of-care technologies through small businesses (RFA-HL-14-011 and RFA-HL-14-017). Three of the supported research projects are described to highlight particular point-of-care needs for HLBS disorders and the breadth of emerging technologies. While significant obstacles remain to the commercialization of such technologies, these advancements will be required to achieve precision medicine. PMID:27602308

  13. Dual-source computed tomographic coronary angiography: image quality and stenosis diagnosis in patients with high heart rates.

    PubMed

    Zheng, Minwen; Li, Jiayi; Xu, Jian; Chen, Kang; Zhao, Hongliang; Huan, Yi

    2009-01-01

    We sought to evaluate prospectively the effects of heart rate and heart-rate variability on dual-source computed tomographic coronary image quality in patients whose heart rates were high, and to determine retrospectively the accuracy of dual-source computed tomographic diagnosis of coronary artery stenosis in the same patients.We compared image quality and diagnostic accuracy in 40 patients whose heart rates exceeded 70 beats/min with the same data in 40 patients whose heart rates were 70 beats/min or slower. In both groups, we analyzed 1,133 coronary arterial segments. Five hundred forty-five segments (97.7%) in low-heart-rate patients and 539 segments (93.7%) in high-heart-rate patients were of diagnostic image quality. We considered P < 0.05 to be statistically significant. No statistically significant differences between the groups were found in diagnostic-image quality scores of total segments or of any coronary artery, nor were any significant differences found between the groups in the accurate diagnosis of angiographically significant stenosis.Calcification was the chief factor that affected diagnostic accuracy. In high-heart-rate patients, heart-rate variability was significantly related to the diagnostic image quality of all segments (P = 0.001) and of the left circumflex coronary artery (P = 0.016). Heart-rate variability of more than 5 beats/min most strongly contributed to an inability to evaluate segments in both groups. When heart rates rose, the optimal reconstruction window shifted from diastole to systole.The image quality of dual-source computed tomographic coronary angiography at high heart rates enables sufficient diagnosis of stenosis, although variability of heart rates significantly deteriorates image quality. PMID:19436804

  14. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part I: Clinical Perspective, Anatomy and Imaging Techniques

    PubMed Central

    Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-01-01

    Rapid evolution in technology in the recent years has lead to availability of multiple options for cardiac imaging. Availability of multiple options of varying capability, poses a challenge for optimal imaging choice. While new imaging choices are added, some of the established methods find their role re-defined. State of the art imaging practices are limited to few specialist cardiac centres, depriving many radiologists and radiologist in-training of optimal exposure to the field. This presentation is aimed at providing a broad idea about complexity of clinical problem, imaging options and a large library of images of congenital heart disease. Some emphasis is made as to the need of proper balance between performing examination with technical excellence in an ideal situation against the need of the majority of patients who are investigated with less optimal resources. Cases of congenital cardiac disease are presented in an illustrative way, showing imaging appearances in multiple modalities, highlighting specific observations in given instance. PMID:27376034

  15. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part I: Clinical Perspective, Anatomy and Imaging Techniques.

    PubMed

    Bhat, Venkatraman; Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-05-01

    Rapid evolution in technology in the recent years has lead to availability of multiple options for cardiac imaging. Availability of multiple options of varying capability, poses a challenge for optimal imaging choice. While new imaging choices are added, some of the established methods find their role re-defined. State of the art imaging practices are limited to few specialist cardiac centres, depriving many radiologists and radiologist in-training of optimal exposure to the field. This presentation is aimed at providing a broad idea about complexity of clinical problem, imaging options and a large library of images of congenital heart disease. Some emphasis is made as to the need of proper balance between performing examination with technical excellence in an ideal situation against the need of the majority of patients who are investigated with less optimal resources. Cases of congenital cardiac disease are presented in an illustrative way, showing imaging appearances in multiple modalities, highlighting specific observations in given instance. PMID:27376034

  16. Doppler tissue imaging for assessing left ventricular diastolic dysfunction in heart transplant rejection

    PubMed Central

    Stengel, S; Allemann, Y; Zimmerli, M; Lipp, E; Kucher, N; Mohacsi, P; Seiler, C

    2001-01-01

    OBJECTIVE—To test the hypothesis that diastolic mitral annular motion velocity, as determined by Doppler tissue imaging and left ventricular diastolic flow propagation velocity, is related to the histological degree of heart transplant rejection according to the International Society of Heart and Lung Transplantation (ISHLT).
METHODS—In 41 heart transplant recipients undergoing 151 myocardial biopsies, the following Doppler echocardiographic measurements were performed within one hour of biopsy: transmitral and pulmonary vein flow indices; mitral annular motion velocity indices; left ventricular diastolic flow propagation velocity.
RESULTS—Late diastolic mitral annular motion velocity (ADTI) and mitral annular systolic contraction velocity (SCDTI) were higher in patients with ISHLT < IIIA than in those with ISHLT ⩾ IIIA (ADTI, 8.8 cm/s v 7.7 cm/s (p = 0.03); SCDTI, 19.3 cm/s v 9.3 cm/s (p < 0.05)). Sensitivity and specificity of ADTI < 8.7 cm/s (the best cut off value) in predicting significant heart transplant rejection were 82% and 53%, respectively. Early diastolic mitral annular motion velocity (EDTI) and flow propagation velocity were not related to the histological degree of heart transplant rejection.
CONCLUSIONS—Doppler tissue imaging of the mitral annulus is useful in diagnosing heart transplant rejection because a high late diastolic mitral annular motion velocity can reliably exclude severe rejection. However, a reduced late diastolic mitral annular motion velocity cannot predict severe rejection reliably because it is not specific enough.


Keywords: heart transplant rejection; diastolic function; Doppler tissue imaging; echocardiography PMID:11559685

  17. Uncovering brain–heart information through advanced signal and image processing

    PubMed Central

    Toschi, Nicola; Barbieri, Riccardo

    2016-01-01

    Through their dynamical interplay, the brain and the heart ensure fundamental homeostasis and mediate a number of physiological functions as well as their disease-related aberrations. Although a vast number of ad hoc analytical and computational tools have been recently applied to the non-invasive characterization of brain and heart dynamic functioning, little attention has been devoted to combining information to unveil the interactions between these two physiological systems. This theme issue collects contributions from leading experts dealing with the development of advanced analytical and computational tools in the field of biomedical signal and image processing. It includes perspectives on recent advances in 7 T magnetic resonance imaging as well as electroencephalogram, electrocardiogram and cerebrovascular flow processing, with the specific aim of elucidating methods to uncover novel biological and physiological correlates of brain–heart physiology and physiopathology. PMID:27044995

  18. 2015 proceedings of the National Heart, Lung, and Blood Institute's State of the Science in Transfusion Medicine symposium.

    PubMed

    Spitalnik, Steven L; Triulzi, Darrell; Devine, Dana V; Dzik, Walter H; Eder, Anne F; Gernsheimer, Terry; Josephson, Cassandra D; Kor, Daryl J; Luban, Naomi L C; Roubinian, Nareg H; Mondoro, Traci; Welniak, Lisbeth A; Zou, Shimian; Glynn, Simone

    2015-09-01

    On March 25 and 26, 2015, the National Heart, Lung, and Blood Institute sponsored a meeting on the State of the Science in Transfusion Medicine on the National Institutes of Health (NIH) campus in Bethesda, Maryland, which was attended by a diverse group of 330 registrants. The meeting's goal was to identify important research questions that could be answered in the next 5 to 10 years and which would have the potential to transform the clinical practice of transfusion medicine. These questions could be addressed by basic, translational, and/or clinical research studies and were focused on four areas: the three "classical" transfusion products (i.e., red blood cells, platelets, and plasma) and blood donor issues. Before the meeting, four working groups, one for each area, prepared five major questions for discussion along with a list of five to 10 additional questions for consideration. At the meeting itself, all of these questions, and others, were discussed in keynote lectures, small-group breakout sessions, and large-group sessions with open discourse involving all meeting attendees. In addition to the final lists of questions, provided herein, the meeting attendees identified multiple overarching, cross-cutting themes that addressed issues common to all four areas; the latter are also provided. It is anticipated that addressing these scientific priorities, with careful attention to the overarching themes, will inform funding priorities developed by the NIH and provide a solid research platform for transforming the future practice of transfusion medicine.

  19. 2015 Proceedings of the National Heart, Lung, and Blood Institute's State of the Science in Transfusion Medicine Symposium

    PubMed Central

    Spitalnik, Steven L.; Triulzi, Darrell; Devine, Dana V.; Dzik, Walter H.; Eder, Anne F.; Gernsheimer, Terry; Josephson, Cassandra D.; Kor, Daryl J.; Luban, Naomi L. C.; Roubinian, Nareg H.; Mondoro, Traci; Welniak, Lisbeth A.; Zou, Shimian; Glynn, Simone

    2015-01-01

    On March 25-26, 2015, the National Heart, Lung, and Blood Institute sponsored a meeting on the State of the Science in Transfusion Medicine on the NIH campus in Bethesda, MD, which was attended by a diverse group of 330 registrants. The meeting's goal was to identify important research questions that could be answered in the next 5-10 years, and which would have the potential to transform the clinical practice of transfusion medicine. These questions could be addressed by basic, translational, and/or clinical research studies and were focused on four areas: the three “classical” transfusion products (i.e., red blood cells, platelets, and plasma) and blood donor issues. Prior to the meeting, four Working Groups, one for each area, prepared five major questions for discussion along with a list of 5-10 additional questions for consideration. At the meeting itself, all of these questions, and others, were discussed in Keynote lectures, small group breakout sessions, and large group sessions with open discourse involving all meeting attendees. In addition to the final lists of questions, provided herein, the meeting attendees identified multiple overarching, cross-cutting themes that addressed issues common to all four areas; the latter are also provided. It is anticipated that addressing these scientific priorities, with careful attention to the overarching themes, will inform funding priorities developed by the NIH and provide a solid research platform for transforming the future practice of transfusion medicine. PMID:26260861

  20. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    NASA Astrophysics Data System (ADS)

    Gu, Songxiang; Gupta, Rajiv; Kyprianou, Iacovos

    2011-09-01

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  1. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine.

    PubMed

    Chen, Ian Y; Matsa, Elena; Wu, Joseph C

    2016-06-01

    The advent of human induced pluripotent stem cell (hiPSC) technology has revitalized the efforts in the past decade to realize more fully the potential of human embryonic stem cells for scientific research. Adding to the possibility of generating an unlimited amount of any cell type of interest, hiPSC technology now enables the derivation of cells with patient-specific phenotypes. Given the introduction and implementation of the large-scale Precision Medicine Initiative, hiPSC technology will undoubtedly have a vital role in the advancement of cardiovascular research and medicine. In this Review, we summarize the progress that has been made in the field of hiPSC technology, with particular emphasis on cardiovascular disease modelling and drug development. The growing roles of hiPSC technology in the practice of precision medicine will also be discussed. PMID:27009425

  2. Stability of membrane potential in heart mitochondria: Single mitochondrion imaging

    SciTech Connect

    Uechi, Yukiko; Yoshioka, Hisashi; Morikawa, Daisuke; Ohta, Yoshihiro . E-mail: ohta@cc.tuat.ac.jp

    2006-06-16

    Mitochondrial membrane potential ({delta}{psi} {sub m}) plays an important role in cellular activity. Although {delta}{psi} {sub m} of intracellular mitochondria are relatively stable, the recent experiments with isolated mitochondria demonstrate that individual mitochondria show frequent fluctuations of {delta}{psi} {sub m}. The current study is performed to investigate the factors that stabilize {delta}{psi} {sub m} in cells by observing {delta}{psi} {sub m} of individual isolated mitochondria with fluorescence microscopy. Here, we report that (1) the transient depolarizations are also induced for mitochondria in plasma membrane permeabilized cells, (2) almost all mitochondria isolated from porcine hearts show the transient depolarizations that is enhanced with the net efflux of protons from the matrix to the intermembrane space, and (3) ATP and ADP significantly inhibit the transient depolarizations by plural mechanisms. These results suggest that the suppression of acute alkalinization of the matrix together with the presence of ATP and ADP contributes to the stabilization of {delta}{psi} {sub m} in cells.

  3. Semi-automated measurements of heart-to-mediastinum ratio on 123I-MIBG myocardial scintigrams by using image fusion method with chest X-ray images

    NASA Astrophysics Data System (ADS)

    Kawai, Ryosuke; Hara, Takeshi; Katafuchi, Tetsuro; Ishihara, Tadahiko; Zhou, Xiangrong; Muramatsu, Chisako; Abe, Yoshiteru; Fujita, Hiroshi

    2015-03-01

    MIBG (iodine-123-meta-iodobenzylguanidine) is a radioactive medicine that is used to help diagnose not only myocardial diseases but also Parkinson's diseases (PD) and dementia with Lewy Bodies (DLB). The difficulty of the segmentation around the myocardium often reduces the consistency of measurement results. One of the most common measurement methods is the ratio of the uptake values of the heart to mediastinum (H/M). This ratio will be a stable independent of the operators when the uptake value in the myocardium region is clearly higher than that in background, however, it will be unreliable indices when the myocardium region is unclear because of the low uptake values. This study aims to develop a new measurement method by using the image fusion of three modalities of MIBG scintigrams, 201-Tl scintigrams, and chest radiograms, to increase the reliability of the H/M measurement results. Our automated method consists of the following steps: (1) construct left ventricular (LV) map from 201-Tl myocardium image database, (2) determine heart region in chest radiograms, (3) determine mediastinum region in chest radiograms, (4) perform image fusion of chest radiograms and MIBG scintigrams, and 5) perform H/M measurements on MIBG scintigrams by using the locations of heart and mediastinum determined on the chest radiograms. We collected 165 cases with 201-Tl scintigrams and chest radiograms to construct the LV map. Another 65 cases with MIBG scintigrams and chest radiograms were also collected for the measurements. Four radiological technologists (RTs) manually measured the H/M in the MIBG images. We compared the four RTs' results with our computer outputs by using Pearson's correlation, the Bland-Altman method, and the equivalency test method. As a result, the correlations of the H/M between four the RTs and the computer were 0.85 to 0.88. We confirmed systematic errors between the four RTs and the computer as well as among the four RTs. The variation range of the H

  4. Multispot two-photon imaging of mice heart tissue detecting calcium waves

    NASA Astrophysics Data System (ADS)

    de Mauro, C.; Cecchetti, C. A.; Alfieri, D.; Borile, G.; Mongillo, M.; Pavone, F. S.

    2012-06-01

    High rate, full field image acquisition in multiphoton imaging is achievable by parallelization of the excitation and of the detection paths. Via a Diffractive Optical Elements (DOEs) which splits a pulsed laser, and a spatial resolved descanned detection path, a new approach to microscopy has been developed. By exploiting the three operating mode, single beam, 16 beamlets or 64 beamlets, the best experimental conditions can be found by adapting the power per beamlet. This Multiphoton Multispot system (MCube) has been characterized in thick tissue samples, and subsequently used for the first time for Ca2+ imaging of acute heart slices. A test sample with fixed mice heart slices with embedded sub-resolution fluorescent beads has been used to test the capability of optical axial resolution up to ~200 microns in depth. Radial and axial resolutions of 0.6 microns and 3 microns have been respectively obtained with a 40X water immersion objective, getting close to the theoretical limit. Then images of heart slices cardiomyocites, loaded with Fluo4-AM have been acquired. The formation of Ca2+ waves during electrostimulated beating has been observed, and the possibility of easily acquire full frame images at 15 Hz (16 beamlets) has been demonstrated, towards the in vivo study of time resolved cellular dynamics and arrhythmia trigger mechanisms in particular. A very high speed two-photon Random Access system for in vivo electrophysiological studies, towards the correlation of voltage and calcium signals in arrhythmia phenomena, is now under developing at Light4tech.

  5. In vivo imaging of the Drosophila Melanogaster heart using a novel optical coherence tomography microscope

    NASA Astrophysics Data System (ADS)

    Izatt, Susan D.; Choma, Michael A.; Israel, Steven; Wessells, Robert J.; Bodmer, Rolf; Izatt, Joseph A.

    2005-03-01

    Real time in vivo optical coherence tomography (OCT) imaging of the adult fruit fly Drosophila melanogaster heart using a newly designed OCT microscope allows accurate assessment of cardiac anatomy and function. D. melanogaster has been used extensively in genetic research for over a century, but in vivo evaluation of the heart has been limited by available imaging technology. The ability to assess phenotypic changes with micrometer-scale resolution noninvasively in genetic models such as D. melanogaster is needed in the advancing fields of developmental biology and genetics. We have developed a dedicated small animal OCT imaging system incorporating a state-of-the-art, real time OCT scanner integrated into a standard stereo zoom microscope which allows for simultaneous OCT and video imaging. System capabilities include A-scan, B-scan, and M-scan imaging as well as automated 3D volumetric acquisition and visualization. Transverse and sagittal B-mode scans of the four chambered D. melanogaster heart have been obtained with the OCT microscope and are consistent with detailed anatomical studies from the literature. Further analysis by M-mode scanning is currently under way to assess cardiac function as a function of age and sex by determination of shortening fraction and ejection fraction. These studies create control cardiac data on the wild type D. melanogaster, allowing subsequent evaluation of phenotypic cardiac changes in this model after regulated genetic mutation.

  6. Medicine Wheel Imag(in)ings: Exploring Holistic Curriculum Perspectives

    ERIC Educational Resources Information Center

    Kind, Sylvia; Irwin, Rita L.; Grauer, Kit; de Cosson, Alex

    2005-01-01

    Education is longing for a deeper more connected, more inclusive, and more aware way of knowing. One that connects heart and hand and head and does not split knowledge into dualities of thought and being, mind and body, emotion and intellect, but resonates with a wholeness and fullness that engages every part of one's being. Engagement with the…

  7. Heart Research

    NASA Technical Reports Server (NTRS)

    1991-01-01

    James Antaki and a group of researchers from the University of Pittsburgh School of Medicine used many elements of the Technology Utilization Program while looking for a way to visualize and track material points within the heart muscle. What they needed were tiny artificial "eggs" containing copper sulfate solution, small enough (about 2 mm in diameter) that they would not injure the heart, and large enough to be seen in Magnetic Resonance Imaging (MRI) images; they also had to be biocompatible and tough enough to withstand the beating of the muscle. The group could not make nor buy sufficient containers. After reading an article on microspheres in NASA Tech Briefs, and a complete set of reports on microencapsulation from the Jet Propulsion Laboratory (JPL), JPL put Antaki in touch with Dr.Taylor Wang of Vanderbilt University who helped construct the myocardial markers. The research is expected to lead to improved understanding of how the heart works and what takes place when it fails.

  8. [Analysis Methods of Short-term Non-linear Heart Rate Variability and Their Application in Clinical Medicine].

    PubMed

    Chi, Xianglin; Zhou, Jianhua; Shi, Ping; Liu, Chengyu

    2016-02-01

    The linear analysis for heart rate variability (HRV), including time domain method, frequency domain method and time-frequency analysis, has reached a lot of consensus. The non-linear analysis has also been widely applied in biomedical and clinical researches. However, for non-linear HRV analysis, especially for short-term non-linear HRV analysis, controversy still exists, and a unified standard and conclusion has not been formed. This paper reviews and discusses three short-term non-linear HRV analysis methods (fractal dimension, entropy and complexity) and their principles, progresses and problems in clinical application in detail, in order to provide a reference for accurate application in clinical medicine.

  9. A Multiscale Computational Model of the Heart: Exploring Space Medicine and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Gladding, Patrick; Orr, Martin; Kazuaki, Negishi; Borowski, Alan; Hussan, Jagir R.; Hunter, Peter; Kassemi, Mohammed; Martin, David; Levine, Benjamin; Schlegel, Todd T.; Thomas, James D.

    2016-01-01

    The impact of long-term spaceflight on cardiac electromechanical function is unknown. Integrating heterogeneous biophysical data from sources such as echocardiography (Echo), electrocardiography (ECG), and genomics into a mathematical model could be used to predict cardiac dysfunction in space. We have developed a multiscale heart model, onto which astronaut-specific ultrasound data can be imposed, with the aim of integrating advanced ECG (A-ECG) and genomic data.

  10. Neuronal dysfunction and medical therapy in heart failure: can an imaging biomarker help to "personalize" therapy?

    PubMed

    Wessler, Benjamin S; Udelson, James E

    2015-06-01

    (123)I-metaiodobenzylguanidine ((123)I-MIBG) imaging is a tool for evaluating one of the fundamental pathophysiologic abnormalities seen in heart failure (HF), that of an upregulated sympathetic nervous system and its effect on the myocardium. Although this imaging technique offers information about prognosis for patients treated with contemporary guideline-based HF therapies and improves risk stratification, there are neither rigorous nor sufficient outcome data to suggest that this imaging tool can guide therapeutic decision making or better target subsets of patients with HF for particular therapies.

  11. Neuronal dysfunction and medical therapy in heart failure: can an imaging biomarker help to "personalize" therapy?

    PubMed

    Wessler, Benjamin S; Udelson, James E

    2015-06-01

    (123)I-metaiodobenzylguanidine ((123)I-MIBG) imaging is a tool for evaluating one of the fundamental pathophysiologic abnormalities seen in heart failure (HF), that of an upregulated sympathetic nervous system and its effect on the myocardium. Although this imaging technique offers information about prognosis for patients treated with contemporary guideline-based HF therapies and improves risk stratification, there are neither rigorous nor sufficient outcome data to suggest that this imaging tool can guide therapeutic decision making or better target subsets of patients with HF for particular therapies. PMID:26033899

  12. Nuclear medicine in the management of patients with heart failure: guidance from an expert panel of the International Atomic Energy Agency (IAEA).

    PubMed

    Peix, Amalia; Mesquita, Claudio Tinoco; Paez, Diana; Pereira, Carlos Cunha; Felix, Renata; Gutierrez, Claudia; Jaimovich, Rodrigo; Ianni, Barbara Maria; Soares, Jose; Olaya, Pastor; Rodriguez, Ma Victoria; Flotats, Albert; Giubbini, Raffaele; Travin, Mark; Garcia, Ernest V

    2014-08-01

    Heart failure is increasing worldwide at epidemic proportions, resulting in considerable disability, mortality, and increase in healthcare costs. Gated myocardial perfusion single photon emission computed tomography or PET imaging is the most prominent imaging modality capable of providing information on global and regional ventricular function, the presence of intraventricular synchronism, myocardial perfusion, and viability on the same test. In addition, I-mIBG scintigraphy is the only imaging technique approved by various regulatory agencies able to provide information regarding the adrenergic function of the heart. Therefore, both myocardial perfusion and adrenergic imaging are useful tools in the workup and management of heart failure patients. This guide is intended to reinforce the information on the use of nuclear cardiology techniques for the assessment of heart failure and associated myocardial disease.

  13. Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit

    2015-01-01

    Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821

  14. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled 'Instrumentation and Quantitative Methods of Evaluation.' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  15. Transmembrane current imaging in the heart during pacing and fibrillation.

    PubMed

    Gray, Richard A; Mashburn, David N; Sidorov, Veniamin Y; Roth, Bradley J; Pathmanathan, Pras; Wikswo, John P

    2013-10-01

    Recently, we described a method to quantify the time course of total transmembrane current (Im) and the relative role of its two components, a capacitive current (Ic) and a resistive current (Iion), corresponding to the cardiac action potential during stable propagation. That approach involved recording high-fidelity (200 kHz) transmembrane potential (Vm) signals with glass microelectrodes at one site using a spatiotemporal coordinate transformation via measured conduction velocity. Here we extend our method to compute these transmembrane currents during stable and unstable propagation from fluorescence signals of Vm at thousands of sites (3 kHz), thereby introducing transmembrane current imaging. In contrast to commonly used linear Laplacians of extracellular potential (Ve) to compute Im, we utilized nonlinear image processing to compute the required second spatial derivatives of Vm. We quantified the dynamic spatial patterns of current density of Im and Iion for both depolarization and repolarization during pacing (including nonplanar patterns) by calibrating data with the microelectrode signals. Compared to planar propagation, we found that the magnitude of Iion was significantly reduced at sites of wave collision during depolarization but not repolarization. Finally, we present uncalibrated dynamic patterns of Im during ventricular fibrillation and show that Im at singularity sites was monophasic and positive with a significant nonzero charge (Im integrated over 10 ms) in contrast with nonsingularity sites. Our approach should greatly enhance the understanding of the relative roles of functional (e.g., rate-dependent membrane dynamics and propagation patterns) and static spatial heterogeneities (e.g., spatial differences in tissue resistance) via recordings during normal and compromised propagation, including arrhythmias. PMID:24094412

  16. Transmembrane Current Imaging in the Heart during Pacing and Fibrillation

    PubMed Central

    Gray, Richard A.; Mashburn, David N.; Sidorov, Veniamin Y.; Roth, Bradley J.; Pathmanathan, Pras; Wikswo, John P.

    2013-01-01

    Recently, we described a method to quantify the time course of total transmembrane current (Im) and the relative role of its two components, a capacitive current (Ic) and a resistive current (Iion), corresponding to the cardiac action potential during stable propagation. That approach involved recording high-fidelity (200 kHz) transmembrane potential (Vm) signals with glass microelectrodes at one site using a spatiotemporal coordinate transformation via measured conduction velocity. Here we extend our method to compute these transmembrane currents during stable and unstable propagation from fluorescence signals of Vm at thousands of sites (3 kHz), thereby introducing transmembrane current imaging. In contrast to commonly used linear Laplacians of extracellular potential (Ve) to compute Im, we utilized nonlinear image processing to compute the required second spatial derivatives of Vm. We quantified the dynamic spatial patterns of current density of Im and Iion for both depolarization and repolarization during pacing (including nonplanar patterns) by calibrating data with the microelectrode signals. Compared to planar propagation, we found that the magnitude of Iion was significantly reduced at sites of wave collision during depolarization but not repolarization. Finally, we present uncalibrated dynamic patterns of Im during ventricular fibrillation and show that Im at singularity sites was monophasic and positive with a significant nonzero charge (Im integrated over 10 ms) in contrast with nonsingularity sites. Our approach should greatly enhance the understanding of the relative roles of functional (e.g., rate-dependent membrane dynamics and propagation patterns) and static spatial heterogeneities (e.g., spatial differences in tissue resistance) via recordings during normal and compromised propagation, including arrhythmias. PMID:24094412

  17. Metabolic imaging of acute and chronic infarction in the perfused rat heart using hyperpolarised [1-13C]pyruvate.

    PubMed

    Ball, Daniel R; Cruickshank, Rachel; Carr, Carolyn A; Stuckey, Daniel J; Lee, Philip; Clarke, Kieran; Tyler, Damian J

    2013-11-01

    Hyperpolarised (13)C MRI can be used to generate metabolic images of the heart in vivo. However, there have been no similar studies performed in the isolated perfused heart. Therefore, the aim of this study was to develop a method for the creation of (13)C metabolite maps of the perfused rat heart and to demonstrate the technique in a study of acute and chronic myocardial infarction. Male Wistar rat hearts were isolated, perfused and imaged before and after occlusion of the left anterior descending (LAD) coronary artery, creating an acute infarct group. In addition, a chronic infarct group was generated from hearts which had their LAD coronary artery occluded in vivo. Four weeks later, hearts were excised, perfused and imaged to generate metabolic maps of infused pyruvate and its metabolites lactate and bicarbonate. Myocardial perfusion and energetics were assessed by first-pass perfusion imaging and (31)P MRS, respectively. In both acute and chronically infarcted hearts, perfusion was reduced to the infarct region, as revealed by reduced gadolinium influx and lower signal intensity in the hyperpolarised pyruvate images. In the acute infarct region, there were significant alterations in the lactate (increased) and bicarbonate (decreased) signal ratios. In the chronically infarcted region, there was a significant reduction in both bicarbonate and lactate signals. (31)P-derived energetics revealed a significant decrease between control and chronic infarcted hearts. Significant decreases in contractile function between control and both acute and chronic infracted hearts were also seen. In conclusion, we have demonstrated that hyperpolarised pyruvate can detect reduced perfusion in the rat heart following both acute and chronic infarction. Changes in lactate and bicarbonate ratios indicate increased anaerobic metabolism in the acute infarct, which is not observed in the chronic infarct. Thus, this study has successfully demonstrated a novel imaging approach to assess

  18. Bodies, Hearts and Minds: Why Emotions Matter to Historians of Science and Medicine

    PubMed Central

    Bound Alberti, Fay

    2015-01-01

    The history of emotion addresses many fundamental themes of science and medicine. These include the ways the body and its workings have been historically observed and measured; the rise of the mind sciences; and the anthropological analyses by which “ways of knowing” are culturally situated. Yet studying emotions brings its own challenges, not least in how historians of science and medicine view the relationship between bodies, minds and emotions. This paper explores some of the methodological challenges of emotion history, using the surgeon John Hunter’s sudden death from cardiac disease as a case study. It argues that we need to let go of many of our modern assumptions about the origin of emotions, and “brainhood” that dominate discussions of identity, in order to explore the historical meanings of emotions as products of the body as well as the mind. PMID:20380348

  19. A framework of whole heart extracellular volume fraction estimation for low dose cardiac CT images

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian; Summers, Ronald M.; Nacif, Marcelo Souto; Liu, Songtao; Bluemke, David A.; Yao, Jianhua

    2012-02-01

    Cardiac magnetic resonance imaging (CMRI) has been well validated and allows quantification of myocardial fibrosis in comparison to overall mass of the myocardium. Unfortunately, CMRI is relatively expensive and is contraindicated in patients with intracardiac devices. Cardiac CT (CCT) is widely available and has been validated for detection of scar and myocardial stress/rest perfusion. In this paper, we sought to evaluate the potential of low dose CCT for the measurement of myocardial whole heart extracellular volume (ECV) fraction. A novel framework was proposed for CCT whole heart ECV estimation, which consists of three main steps. First, a shape constrained graph cut (GC) method was proposed for myocardium and blood pool segmentation for post-contrast image. Second, the symmetric Demons deformable registrations method was applied to register pre-contrast to post-contrast images. Finally, the whole heart ECV value was computed. The proposed method was tested on 7 clinical low dose CCT datasets with pre-contrast and post-contrast images. The preliminary results demonstrated the feasibility and efficiency of the proposed method.

  20. Dictionary/handbook of nuclear medicine and clinical imaging

    SciTech Connect

    Iturralde, M.P. )

    1989-01-01

    This book covers the following topics: Fundamentals of English medical etymology, Abbreviations, acronyms, symbols, denotations, and signs commonly used or defined in the dictionary, Characteristics of the elements, Characteristics of practicable radioisotopes and of selected radionuclides commonly used in nuclear medicine, Properties and production of radionuclides, Radioactive decay, Radiopharmaceuticals, and Radiation dosimetry.

  1. A Poisson resampling method for simulating reduced counts in nuclear medicine images.

    PubMed

    White, Duncan; Lawson, Richard S

    2015-05-01

    Nuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times. However, because acquisition and processing parameters vary, each user should ideally evaluate the use of images with reduced counts within their own department, and this is best done by simulating reduced-count images from the original data. Reducing the counts in an image by division and rounding off to the nearest integer value, even if additional Poisson noise is added, is inadequate because it gives incorrect counting statistics. This technical note describes how, by applying Poisson resampling to the original raw data, simulated reduced-count images can be obtained while maintaining appropriate counting statistics. The authors have developed manufacturer independent software that can retrospectively generate simulated data with reduced counts from any acquired nuclear medicine image. PMID:25880881

  2. A Poisson resampling method for simulating reduced counts in nuclear medicine images.

    PubMed

    White, Duncan; Lawson, Richard S

    2015-05-01

    Nuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times. However, because acquisition and processing parameters vary, each user should ideally evaluate the use of images with reduced counts within their own department, and this is best done by simulating reduced-count images from the original data. Reducing the counts in an image by division and rounding off to the nearest integer value, even if additional Poisson noise is added, is inadequate because it gives incorrect counting statistics. This technical note describes how, by applying Poisson resampling to the original raw data, simulated reduced-count images can be obtained while maintaining appropriate counting statistics. The authors have developed manufacturer independent software that can retrospectively generate simulated data with reduced counts from any acquired nuclear medicine image.

  3. Photoplethysmographic imaging via spectrally demultiplexed erythema fluctuation analysis for remote heart rate monitoring

    NASA Astrophysics Data System (ADS)

    Deglint, Jason; Chung, Audrey G.; Chwyl, Brendan; Amelard, Robert; Kazemzadeh, Farnoud; Wang, Xiao Yu; Clausi, David A.; Wong, Alexander

    2016-03-01

    Traditional photoplethysmographic imaging (PPGI) systems use the red, green, and blue (RGB) broadband measurements of a consumer digital camera to remotely estimate a patients heart rate; however, these broadband RGB signals are often corrupted by ambient noise, making the extraction of subtle fluctuations indicative of heart rate difficult. Therefore, the use of narrow-band spectral measurements can significantly improve the accuracy. We propose a novel digital spectral demultiplexing (DSD) method to infer narrow-band spectral information from acquired broadband RGB measurements in order to estimate heart rate via the computation of motion- compensated skin erythema fluctuation. Using high-resolution video recordings of human participants, multiple measurement locations are automatically identified on the cheeks of an individual, and motion-compensated broadband reflectance measurements are acquired at each measurement location over time via measurement location tracking. The motion-compensated broadband reflectance measurements are spectrally demultiplexed using a non-linear inverse model based on the spectral sensitivity of the camera's detector. A PPG signal is then computed from the demultiplexed narrow-band spectral information via skin erythema fluctuation analysis, with improved signal-to-noise ratio allowing for reliable remote heart rate measurements. To assess the effectiveness of the proposed system, a set of experiments involving human motion in a front-facing position were performed under ambient lighting conditions. Experimental results indicate that the proposed system achieves robust and accurate heart rate measurements and can provide additional information about the participant beyond the capabilities of traditional PPGI methods.

  4. Digital image correlation of coated and uncoated Religa Heart_Ext ventricular assist device.

    PubMed

    Kopernik, Magdalena; Gawlikowski, Maciej; Milenin, Andrij; Altyntsev, Ievgenii; Kustosz, Roman; Kąc, Sławomir

    2015-01-01

    The digital image correlation is used to estimate influence of deposited heamocompatible coatings (gold and titanium nitride) on mechanical response of ventricular assist device Religa Heart_Ext made of Bionate II (thermoplastic polycarbonate urethane) under working conditions by comparison of the coated Religa Heart_Ext with uncoated Religa Heart_Ext. The DIC is applied for experimental investigation of the strains and displacements distribution on external surface of the blood chamber of ventricular assist device during loading. The experiment was conducted in a hydraulic system with water at operating temperatures of 25 and 37 °C, as well as under static pressures: 80, 120, 180, 220 and 280 mmHg, and static underpressures: -25, -45, -75 mmHg. The subsequent images were taken after stabilization of pressure on a set level. The applied research method shows that the nano-coating of 30 nm in thickness significantly affects deformation of the blood chamber of Religa Heart_Ext in macro scale. The proposed composition of coatings increases strain on external surface of the ventricular assist device. PMID:26899910

  5. Nuclear magnetic resonance zeugmatographic imaging of the heart: application to the study of ventricular septal defect. [Lambs

    SciTech Connect

    Heneghan, M.A.; Biancaniello, T.M.; Heidel, E.; Peterson, S.B.; Marsh, M.J.; Lauterbur, P.C.

    1982-04-01

    The present work was undertaken to determine the applicability of nuclear magnetic resonance (NMR) imaging to the study of congenital heart disease. Three-dimensional proton density images of preserved lamb hearts with and without an artificially created ventricular septal defect were reconstructed and displayed in multiple planes. Sections obtained in the sagittal plane through the ventricular septum clearly showed the size, shape, and location of the defect. Results of these experiments suggest that NMR zeugmatography will become a valuable addition to existing imaging techniques for the study of congenital heart disease.

  6. Mid-level image representations for real-time heart view plane classification of echocardiograms.

    PubMed

    Penatti, Otávio A B; Werneck, Rafael de O; de Almeida, Waldir R; Stein, Bernardo V; Pazinato, Daniel V; Mendes Júnior, Pedro R; Torres, Ricardo da S; Rocha, Anderson

    2015-11-01

    In this paper, we explore mid-level image representations for real-time heart view plane classification of 2D echocardiogram ultrasound images. The proposed representations rely on bags of visual words, successfully used by the computer vision community in visual recognition problems. An important element of the proposed representations is the image sampling with large regions, drastically reducing the execution time of the image characterization procedure. Throughout an extensive set of experiments, we evaluate the proposed approach against different image descriptors for classifying four heart view planes. The results show that our approach is effective and efficient for the target problem, making it suitable for use in real-time setups. The proposed representations are also robust to different image transformations, e.g., downsampling, noise filtering, and different machine learning classifiers, keeping classification accuracy above 90%. Feature extraction can be performed in 30 fps or 60 fps in some cases. This paper also includes an in-depth review of the literature in the area of automatic echocardiogram view classification giving the reader a through comprehension of this field of study.

  7. Mid-level image representations for real-time heart view plane classification of echocardiograms.

    PubMed

    Penatti, Otávio A B; Werneck, Rafael de O; de Almeida, Waldir R; Stein, Bernardo V; Pazinato, Daniel V; Mendes Júnior, Pedro R; Torres, Ricardo da S; Rocha, Anderson

    2015-11-01

    In this paper, we explore mid-level image representations for real-time heart view plane classification of 2D echocardiogram ultrasound images. The proposed representations rely on bags of visual words, successfully used by the computer vision community in visual recognition problems. An important element of the proposed representations is the image sampling with large regions, drastically reducing the execution time of the image characterization procedure. Throughout an extensive set of experiments, we evaluate the proposed approach against different image descriptors for classifying four heart view planes. The results show that our approach is effective and efficient for the target problem, making it suitable for use in real-time setups. The proposed representations are also robust to different image transformations, e.g., downsampling, noise filtering, and different machine learning classifiers, keeping classification accuracy above 90%. Feature extraction can be performed in 30 fps or 60 fps in some cases. This paper also includes an in-depth review of the literature in the area of automatic echocardiogram view classification giving the reader a through comprehension of this field of study. PMID:26386547

  8. NCRP report 160 and what it means for medical imaging and nuclear medicine.

    PubMed

    Bolus, Norman E

    2013-12-01

    The purpose of this paper is to briefly explain report 160 of the National Council on Radiation Protection and Measurement and the significance of the report to medical imaging as a whole and nuclear medicine specifically. The implications of the findings of report 160 have had repercussions and will continue to affect all of ionizing radiation medical imaging. The nuclear medicine community should have an understanding of why and how report 160 is important. After reading this article, the nuclear medicine technologist will be familiar with the main focus of report 160, the significant change that has occurred since the 1980s in the ionizing radiation exposure of people in the United States, the primary background source of ionizing radiation in the United States, the primary medical exposure to ionizing radiation in the United States, trends in nuclear medicine procedures and patient exposure, and a comparison of population doses between 2006 and the early 1980s as outlined in report 160.

  9. Depth-resolved optical imaging of transmural electrical propagation in perfused heart

    PubMed Central

    Hillman, Elizabeth M. C.; Bernus, Olivier; Pease, Emily; Bouchard, Matthew B.; Pertsov, Arkady

    2008-01-01

    We present a study of the 3-dimensional (3D) propagation of electrical waves in the heart wall using Laminar Optical Tomography (LOT). Optical imaging contrast is provided by a voltage sensitive dye whose fluorescence reports changes in membrane potential. We examined the transmural propagation dynamics of electrical waves in the right ventricle of Langendorf perfused rat hearts, initiated either by endo-cardial or epi-cardial pacing. 3D images were acquired at an effective frame rate of 667Hz. We compare our experimental results to a mathematical model of electrical transmural propagation. We demonstrate that LOT can clearly resolve the direction of propagation of electrical waves within the cardiac wall, and that the dynamics observed agree well with the model of electrical propagation in rat ventricular tissue. PMID:18592044

  10. Eponymous cardiovascular surgeries for congenital heart diseases--imaging review and historical perspectives.

    PubMed

    Buethe, Ji; Ashwath, Ravi C; Rajiah, Prabhakar

    2015-01-01

    Advances in pediatric cardiology and cardiac surgical techniques over the past few decades have revolutionized the management of the patients with congenital heart disease, and many now survive into adulthood. Several eponymous surgical procedures performed for congenital heart disease have been named after eminent surgeons. In this article, we provide a short biography of the surgeons associated with these eponymous surgical procedures along with their other important scientific contributions. This is followed by a review of these surgical procedures and their most common complications. Imaging appearances of these surgical procedures along with common complications are described and illustrated, with particular emphasis on magnetic resonance imaging. The surgical procedures described in this review include Blalock-Taussig, Potts, Waterston, Glenn, Fontan, Kawashima, Norwood, Sano, Damus-Kaye-Stansel, Mustard, Senning, Jatene, LeCompte, Rastelli, Rashkind, Ross, and Waldenhausen.

  11. Dynamic 2D ultrasound and 3D CT image registration of the beating heart.

    PubMed

    Huang, Xishi; Moore, John; Guiraudon, Gerard; Jones, Douglas L; Bainbridge, Daniel; Ren, Jing; Peters, Terry M

    2009-08-01

    Two-dimensional ultrasound (US) is widely used in minimally invasive cardiac procedures due to its convenience of use and noninvasive nature. However, the low quality of US images often limits their utility as a means for guiding procedures, since it is often difficult to relate the images to their anatomical context. To improve the interpretability of the US images while maintaining US as a flexible anatomical and functional real-time imaging modality, we describe a multimodality image navigation system that integrates 2D US images with their 3D context by registering them to high quality preoperative models based on magnetic resonance imaging (MRI) or computed tomography (CT) images. The mapping from such a model to the patient is completed using spatial and temporal registrations. Spatial registration is performed by a two-step rapid registration method that first approximately aligns the two images as a starting point to an automatic registration procedure. Temporal alignment is performed with the aid of electrocardiograph (ECG) signals and a latency compensation method. Registration accuracy is measured by calculating the TRE. Results show that the error between the US and preoperative images of a beating heart phantom is 1.7 +/-0.4 mm, with a similar performance being observed in in vivo animal experiments.

  12. Exploratory multivariate analysis of the effect of fatty fish consumption and medicinal use on heart rate and heart rate variability data

    PubMed Central

    Grung, Bjørn; Hansen, Anita L.; Berg, Mari; Møen-Knudseth, Maria P.; Olson, Gina; Thornton, David; Dahl, Lisbeth; Thayer, Julian F.

    2015-01-01

    The overall aim of the present study was to explore the relationship between medicinal use and fatty fish consumption on heart rate variability (HRV) and heart rate (HR) in a group of forensic inpatients on a variety of medications. A total of 49 forensic inpatients, randomly assigned to a fish group (n = 27) or a control group (n = 22) were included in the present study. Before and by the end of the food intervention period HR and HRV were measured during an experimental test procedure. An additional aim of this paper is to show how multivariate data analysis can highlight differences and similarities between the groups, thus being a valuable addition to traditional statistical hypothesis testing. The results indicate that fish consumption may have a positive effect on both HR and HRV regardless of medication, but that the influence of medication is strong enough to mask the true effect of fish consumption. Without correcting for medication, the fish group and control group become indistinguishable (p = 0.0794, Cohen’s d = 0.60). The effect of medication is demonstrated by establishing a multivariate regression model that estimates HR and HRV in a recovery phase based on HR and HRV data recorded during psychological tests. The model performance is excellent for HR data, but yields poor results for HRV when employed on participants undergoing the more severe medical treatments. This indicates that the HRV behavior of this group is very different from that of the participants on no or lower level of medication. When focusing on the participants on a constant medication regime, a substantial improvement in HRV and HR for the fish group compared to the control group is indicated by a principal component analysis and t-tests (p = 0.00029, Cohen’s d = 2.72). In a group of psychiatric inpatients characterized by severe mental health problems consuming different kinds of medication, the fish diet improved HR and HRV, indices of both emotional regulation and physical

  13. Multi-modality Imaging: Bird's eye view from the 2015 American Heart Association Scientific Sessions.

    PubMed

    Einstein, Andrew J; Lloyd, Steven G; Chaudhry, Farooq A; AlJaroudi, Wael A; Hage, Fadi G

    2016-04-01

    Multiple novel studies were presented at the 2015 American Heart Association Scientific Sessions which was considered a successful conference at many levels. In this review, we will summarize key studies in nuclear cardiology, cardiac magnetic resonance, echocardiography, and cardiac computed tomography that were presented at the Sessions. We hope that this bird's eye view will keep readers updated on the newest imaging studies presented at the meeting whether or not they were able to attend the meeting.

  14. Cardiac imaging in adults

    SciTech Connect

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  15. Shaping the future through innovations: From medical imaging to precision medicine.

    PubMed

    Comaniciu, Dorin; Engel, Klaus; Georgescu, Bogdan; Mansi, Tommaso

    2016-10-01

    Medical images constitute a source of information essential for disease diagnosis, treatment and follow-up. In addition, due to its patient-specific nature, imaging information represents a critical component required for advancing precision medicine into clinical practice. This manuscript describes recently developed technologies for better handling of image information: photorealistic visualization of medical images with Cinematic Rendering, artificial agents for in-depth image understanding, support for minimally invasive procedures, and patient-specific computational models with enhanced predictive power. Throughout the manuscript we will analyze the capabilities of such technologies and extrapolate on their potential impact to advance the quality of medical care, while reducing its cost. PMID:27349829

  16. Shaping the future through innovations: From medical imaging to precision medicine.

    PubMed

    Comaniciu, Dorin; Engel, Klaus; Georgescu, Bogdan; Mansi, Tommaso

    2016-10-01

    Medical images constitute a source of information essential for disease diagnosis, treatment and follow-up. In addition, due to its patient-specific nature, imaging information represents a critical component required for advancing precision medicine into clinical practice. This manuscript describes recently developed technologies for better handling of image information: photorealistic visualization of medical images with Cinematic Rendering, artificial agents for in-depth image understanding, support for minimally invasive procedures, and patient-specific computational models with enhanced predictive power. Throughout the manuscript we will analyze the capabilities of such technologies and extrapolate on their potential impact to advance the quality of medical care, while reducing its cost.

  17. Medicines

    MedlinePlus

    ... better. In the United States, the Food and Drug Administration is in charge of assuring the safety ... prescription and over-the-counter medicines. Even safe drugs can cause unwanted side effects or interactions with ...

  18. Primary prevention of coronary heart disease: a challenge for behavioral medicine.

    PubMed

    Carleton, R A; Lasater, T M

    1987-07-01

    Arteriosclerosis is importantly influenced by blood cholesterol level, blood pressure, and cigarette smoking. Each of these major risk factors is influenced by behavioral choices made by individuals and supported by societies. Behavioral medicine has a rich tradition of dealing with individuals and small groups. The public health perspective of disease challenges behavioral medicine to develop new strategies and tactics for behavioral modification for health promotion on a population-wide basis. Additional research is needed to test effective methods for influencing population behavior, population risk factors, and ultimately population morbid and mortal event rates. Several major community projects are now investigating the health promotion process targeting individuals, small groups, organizations, and the entire community. School, worksites, and churches are particularly conducive to health promotion programming. Each has unique advantages and disadvantages; each deserves careful experimentation to determine its efficacy for population-wide health promotion efforts. A public health dimension to behavioral change promises widespread impact, generalization to other health promotive behaviors, maintenance of new cultural behavioral norms, and significant reductions in the incidence of many chronic diseases. PMID:3297395

  19. Diffraction enhanced imaging contrast mechanisms and applications to medicine

    NASA Astrophysics Data System (ADS)

    Hasnah, Moumen Omar

    X-rays are one of the most commonly used forms of radiation in medical diagnostic imaging because of their ability to penetrate the body and give morphological information. Although several interactions may occur, as the x-ray photons traverse the object being radiographed, all of the common x-ray imaging techniques are based on absorption contrast. The fact that the density variations of these tissues are small makes soft tissue imaging difficult with x-rays. A number of imaging modalities have been developed to address the problem of soft tissue imaging that are of clinical relevance. These modalities typically use alternate methods of visualization based on sound propagation (ultrasound), proton density (Magnetic Resonance Imaging-MRI), and others. In addition, enhancements to the x-ray technique include computed tomography (Computed Axial Tomography---CAT) that has more sensitivity to tissue density, phase contrast methods relying on the phase of the traversing x-rays, and refraction methods such as Diffraction Enhanced Imaging (DEI). Of these techniques, ultrasound, MRI and CAT scans are presently common clinical techniques that are used to assist in the diagnosis and isolation of lesions in tissue. DEI is experimental technique that may someday be clinical used due to the high soft tissue contrast.

  20. Applicability of three-dimensional imaging techniques in fetal medicine*

    PubMed Central

    Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson

    2016-01-01

    Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models.

  1. Acoustic imaging with time reversal methods: From medicine to NDT

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2015-03-01

    This talk will present an overview of the research conducted on ultrasonic time-reversal methods applied to biomedical imaging and to non-destructive testing. We will first describe iterative time-reversal techniques that allow both focusing ultrasonic waves on reflectors in tissues (kidney stones, micro-calcifications, contrast agents) or on flaws in solid materials. We will also show that time-reversal focusing does not need the presence of bright reflectors but it can be achieved only from the speckle noise generated by random distributions of non-resolved scatterers. We will describe the applications of this concept to correct distortions and aberrations in ultrasonic imaging and in NDT. In the second part of the talk we will describe the concept of time-reversal processors to get ultrafast ultrasonic images with typical frame rates of order of 10.000 F/s. It is the field of ultrafast ultrasonic imaging that has plenty medical applications and can be of great interest in NDT. We will describe some applications in the biomedical domain: Quantitative Elasticity imaging of tissues by following shear wave propagation to improve cancer detection and Ultrafast Doppler imaging that allows ultrasonic functional imaging.

  2. Single photon emission computed tomography of the heart: a functional image

    SciTech Connect

    Itti, R.; Casset, D.; Philippe, L.; Brochier, M.

    1987-01-01

    Images of radioactive tracer uptake are mainly functional images since the tracer distribution may directly be related to the regional variations in function, such as myocardial perfusion in the case of thallium-201 single photon tomography. Combination of pictures obtained in different physiological conditions (stress-rest, for instance) enhance the functional aspects of these studies. For gated cardiac blood pool images, on the contrary, labelling of the circulating blood pool using technetium-99m provides morphological pictures of the heart chambers and function can only be derived from the dynamic analysis of the image sequence recorded at the successive phases of the cardiac cycle. The technique of thick slice tomography preserves the relationship between count rates and local volumes of radioactive blood. Parametric imaging therefore applies to tomography as well as to plane projections. In the simplest case reconstruction of the extreme phases of the heart beat, end-diastole and end-systole may be sufficient. But to achieve more sophisticated functional analysis such as Fourier phase mapping, reconstruction of the whole cardiac cycle is necessary.

  3. Three-dimensional finite element models from magnetic resonance images as a structural framework for continuum analysis of the heart

    NASA Astrophysics Data System (ADS)

    McCulloch, Andrew D.; Costa, Kevin D.

    1995-05-01

    Magnetic resonance imaging (MRI) is an extremely versatile technique for noninvasive imaging of the anatomy, structure, and physiological function of the heart and other soft tissues and organs. Although mathematical models have often been used to enhance the information content of medical images, these models are most often based on the physics of the imaging system rather that the properties of the target organ or tissue. We use finite element (FE) models of regional mechanical and electrical function in the intact heart to compute 3D distributions of important physiological field variables, such as myocardial stress, that cannot be imaged directly. A parametric model of the heart based on the physical properties of the organ as a material continuum provides a general and convenient way to synthesize clinical data, such as multidimensional images, with experimental tests, such as biomechanical and histological studies.

  4. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  5. A study of technetium-99m wastage in selected private sector nuclear medicine imaging departments

    PubMed Central

    Bresser, Philippa; Teixeira, Nadia

    2013-01-01

    Background South African nuclear medicine imaging departments have been fortunate in being able to receive an uninterrupted supply of molybdenum-99 (99Mo)/technetium-99m (99mTc) generators. Nuclear medicine radiographers practising in private sector services in the northern Gauteng region indicated a possible problem with the quantities of wasted and unused 99mTc radiopharmaceuticals returned to the radiopharmaceutical supply laboratory. Daily radiopharmaceutical deliveries are a combination of ordered packages and standard packages. The purpose of the standard package is to accommodate emergency and after-hours nuclear medicine services. The purpose of the study was to interrogate the unconfirmed reports of 99mTc radiopharmaceutical wastage. Methods A descriptive quantitative research design was conducted in six private sector nuclear medicine imaging practices in the northern Gauteng region. Overt observations of the quantities of radiopharmaceutical supply, usage and wastage were conducted over 2 days in each of these practices. Results Ordered packages comprised 14% of the total 99mTc radiopharmaceutical deliveries to these six nuclear medicine imaging departments. It was identified that: (1) a total of 83.2% of ordered packages and 35.1% of standard packages of preprepared syringes were utilized; (2) a total of 36% of ordered packages and 22.6% of standard packages of bulk 99mTc were utilized; and (3) a total of 70.6% of the total quantity of radiopharmaceuticals was returned to the radiopharmaceutical laboratory. The total wastage represented 45.5% of the ordered packages and 75.8% of the standard packages. Conclusion Wastage of 74 GBq of 99mTc from six sites over 12 days should raise concerns for the nuclear medicine industry. A review of the system framework that supports communication between the radiopharmaceutical supplier/s and the nuclear medicine imaging practices is recommended. PMID:24089081

  6. Computer-aided 3D-shape construction of hearts from CT images for rapid prototyping

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Masayuki; Kato, Yutaro; Nakamori, Nobuyuki; Ozawa, Seiichiro; Shiraishi, Isao

    2012-03-01

    By developing a computer-aided modeling system, the 3D shapes of infant's heart have been constructed interactively from quality-limited CT images for rapid prototyping of biomodels. The 3D model was obtained by following interactive steps: (1) rough region cropping, (2) outline extraction in each slice with locally-optimized threshold, (3) verification and correction of outline overlap, (4) 3D surface generation of inside wall, (5) connection of inside walls, (6) 3D surface generation of outside wall, (7) synthesis of self-consistent 3D surface. The manufactured biomodels revealed characteristic 3D shapes of heart such as left atrium and ventricle, aortic arch and right auricle. Their real shape of cavity and vessel is suitable for surgery planning and simulation. It is a clear advantage over so-called "blood-pool" model which is massive and often found in 3D visualization of CT images as volume rendering perspective. The developed system contributed both to quality improvement and to modeling-time reduction, which may suggest a practical approach to establish a routine process for manufacturing heart biomodels. Further study on the system performance is now still in progress.

  7. First in vivo traveling wave magnetic particle imaging of a beating mouse heart

    NASA Astrophysics Data System (ADS)

    Vogel, P.; Rückert, M. A.; Klauer, P.; Kullmann, W. H.; Jakob, P. M.; Behr, V. C.

    2016-09-01

    Magnetic particle imaging (MPI) is a non-invasive imaging modality for direct detection of superparamagnetic iron-oxide nanoparticles based on the nonlinear magnetization response of magnetic materials to alternating magnetic fields. This highly sensitive and rapid method allows both a quantitative and a qualitative analysis of the measured signal. Since the first publication of MPI in 2005 several different scanner concepts have been presented and in 2009 the first in vivo imaging results of a beating mouse heart were shown. However, since the field of view (FOV) of the first MPI-scanner only covers a small region several approaches and hardware enhancements were presented to overcome this issue and could increase the FOV on cost of acquisition speed. In 2014 an alternative scanner concept, the traveling wave MPI (TWMPI), was presented, which allows scanning an entire mouse-sized volume at once. In this paper the first in vivo imaging results using the TWMPI system are presented. By optimizing the trajectory the temporal resolution is sufficiently high to resolve the dynamic of a beating mouse heart.

  8. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  9. A Java viewer to publish Digital Imaging and Communications in Medicine (DICOM) radiologic images on the World Wide Web.

    PubMed

    Setti, E; Musumeci, R

    2001-06-01

    The world wide web is an exciting service that allows one to publish electronic documents made of text and images on the internet. Client software called a web browser can access these documents, and display and print them. The most popular browsers are currently Microsoft Internet Explorer (Microsoft, Redmond, WA) and Netscape Communicator (Netscape Communications, Mountain View, CA). These browsers can display text in hypertext markup language (HTML) format and images in Joint Photographic Expert Group (JPEG) and Graphic Interchange Format (GIF). Currently, neither browser can display radiologic images in native Digital Imaging and Communications in Medicine (DICOM) format. With the aim to publish radiologic images on the internet, we wrote a dedicated Java applet. Our software can display radiologic and histologic images in DICOM, JPEG, and GIF formats, and provides a a number of functions like windowing and magnification lens. The applet is compatible with some web browsers, even the older versions. The software is free and available from the author.

  10. Chronic Chagas' heart disease: a disease on its way to becoming a worldwide health problem: epidemiology, etiopathology, treatment, pathogenesis and laboratory medicine.

    PubMed

    Muñoz-Saravia, Silvia Gilka; Haberland, Annekathrin; Wallukat, Gerd; Schimke, Ingolf

    2012-01-01

    Chagas' disease, caused by Trypanosoma cruzi infection, is ranked as the most serious parasitic disease in Latin America. Nearly 30% of infected patients develop life-threatening complications, and with a latency of 10-30 years, mostly Chagas' heart disease which is currently the major cause of morbidity and mortality in Latin America, enormously burdening economic resources and dramatically affecting patients' social and labor situations. Because of increasing migration, international tourism and parasite transfer by blood contact, intrauterine transfer and organ transplantation, Chagas' heart disease could potentially become a worldwide problem. To raise awareness of this problem, we reflect on the epidemiology and etiopathology of Chagas' disease, particularly Chagas' heart disease. To counteract Chagas' heart disease, in addition to the general interruption of the infection cycle and chemotherapeutic elimination of the infection agent, early and effective causal or symptomatic therapies would be indispensable. Prerequisites for this are improved knowledge of the pathogenesis and optimized patient management. From economic and logistics viewpoints, this last prerequisite should be performed using laboratory medicine tools. Consequently, we first summarize the mechanisms that have been suggested as driving Chagas' heart disease, mainly those associated with the presence of autoantibodies against G-protein-coupled receptors; secondly, we indicate new treatment strategies involving autoantibody apheresis and in vivo autoantibody neutralization; thirdly, we present laboratory medicine tools such as autoantibody estimation and heart marker measurement, proposed for diagnosis, risk assessment and patient guidance and lastly, we critically reflect upon the increase in inflammation and oxidative stress markers in Chagas' heart disease.

  11. Whole Heart Coronary Imaging with Flexible Acquisition Window and Trigger Delay

    PubMed Central

    Kawaji, Keigo; Foppa, Murilo; Roujol, Sébastien; Akçakaya, Mehmet; Nezafat, Reza

    2015-01-01

    Coronary magnetic resonance imaging (MRI) requires a correctly timed trigger delay derived from a scout cine scan to synchronize k-space acquisition with the quiescent period of the cardiac cycle. However, heart rate changes between breath-held cine and free-breathing coronary imaging may result in inaccurate timing errors. Additionally, the determined trigger delay may not reflect the period of minimal motion for both left and right coronary arteries or different segments. In this work, we present a whole-heart coronary imaging approach that allows flexible selection of the trigger delay timings by performing k-space sampling over an enlarged acquisition window. Our approach addresses coronary motion in an interactive manner by allowing the operator to determine the temporal window with minimal cardiac motion for each artery region. An electrocardiogram-gated, k-space segmented 3D radial stack-of-stars sequence that employs a custom rotation angle is developed. An interactive reconstruction and visualization platform is then employed to determine the subset of the enlarged acquisition window for minimal coronary motion. Coronary MRI was acquired on eight healthy subjects (5 male, mean age = 37 ± 18 years), where an enlarged acquisition window of 166–220 ms was set 50 ms prior to the scout-derived trigger delay. Coronary visualization and sharpness scores were compared between the standard 120 ms window set at the trigger delay, and those reconstructed using a manually adjusted window. The proposed method using manual adjustment was able to recover delineation of five mid and distal right coronary artery regions that were otherwise not visible from the standard window, and the sharpness scores improved in all coronary regions using the proposed method. This paper demonstrates the feasibility of a whole-heart coronary imaging approach that allows interactive selection of any subset of the enlarged acquisition window for a tailored reconstruction for each branch

  12. [Imaging findings of muscle traumas in sports medicine].

    PubMed

    Carrillon, Y; Cohen, M

    2007-01-01

    Traumatic muscular pathology is frequent in the athlete. Usually, these lesions heal spontaneously leaving no sequelae. One must be able to predict how long the healing process will last in order to avoid a long period of inactivity and to protect the patient from a recurrent tear. Medical imaging can define the precise location and severity of muscle traumas and detect critical elements that will delay complete repair. Sonography is the most useful and the least expensive imaging technique for analyzing muscular trauma. It provides a good study of muscle fibers, tendons, and aponeurosis but is limited in its poor visualization of the deep structures such as hamstring tendons and the difficulty in detecting muscular scar. MRI is the most sensitive imaging technique for analyzing muscular trauma. However, muscular fibers themselves are not visualized with MRI. It remains a secondary technique, adapted to the insufficiencies of sonography. Nevertheless, the exact place of medical imaging in traumatic muscular pathology remains and leaves the door open to many later studies.

  13. Anisotropic Elastography for Local Passive Properties and Active Contractility of Myocardium from Dynamic Heart Imaging Sequence

    PubMed Central

    Wang, Ge; Sun, L. Z.

    2006-01-01

    Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters. PMID:23165032

  14. Laser Doppler imaging: usefulness in chronic pain medicine.

    PubMed

    Grothusen, John R; Schwartzman, Robert J

    2011-01-01

    Sympathetic nervous system dysfunction is thought to be a factor in neuropathic pain conditions such as Complex Regional Pain Syndrome and in vascular conditions such as Raynaud's phenomenon. Laser Doppler fluxmetry has been used as a fast non-invasive method to quantify changes in skin capillary blood flow which reflect activation of sympathetically mediated vasoconstriction of the arterioles that supply the capillaries. Studies of dynamic change of skin capillary blood flow with sympathetic activation such as cold or inspiratory gasp have generally used single point laser Doppler systems where the probe is in contact with the skin. The results are a single line tracing representing the capillary flow at a single point on the skin a few millimeters in diameter. Laser Doppler imaging (moorLDI laser Doppler imager, Moor Instruments Ltd.) allows for non-contact recording of skin blood flow of an area as large as 50 centimeters square with a resolution of 256 by 256 pixels and 4 milliseconds per pixel. Most work with laser Doppler imaging has studied changes that occur between successive scans. We have found it useful to look at changes that occur during a scan. In this way we obtain data that is comparable to the time resolution of single point laser Doppler methods, but with the larger spatial information that is available with laser Doppler imaging. We present a small series of case reports in which inspiratory gasp during laser Doppler imaging was able to provide quick, useful and unequivocal clinical information regarding the status of regional bilateral skin capillary response to sympathetic activation. This may be useful for distinguishing sympathetically mediated from sympathetically independent pain. We believe the methods described may provide the basis for future quantitative studies similar to those that use single point laser Doppler methods.

  15. "Beauty is a light in the heart": the transformative potential of optogenetics for clinical applications in cardiovascular medicine.

    PubMed

    Boyle, Patrick M; Karathanos, Thomas V; Trayanova, Natalia A

    2015-02-01

    Optogenetics is an exciting new technology in which viral gene or cell delivery is used to inscribe light sensitivity in excitable tissue to enable optical control of bioelectric behavior. Initial progress in the fledgling domain of cardiac optogenetics has included in vitro expression of various light-sensitive proteins in cell monolayers and transgenic animals to demonstrate an array of potentially useful applications, including light-based pacing, silencing of spontaneous activity, and spiral wave termination. In parallel to these developments, the cardiac modeling community has developed a versatile computational framework capable of realistically simulating optogenetics in biophysically detailed, patient-specific representations of the human heart, enabling the exploration of potential clinical applications in a predictive virtual platform. Toward the ultimate goal of assessing the feasibility and potential impact of optogenetics-based therapies in cardiovascular medicine, this review provides (1) a detailed synopsis of in vivo, in vitro, and in silico developments in the field and (2) a critical assessment of how existing clinical technology for gene/cell delivery and intra-cardiac illumination could be harnessed to achieve such lofty goals as light-based arrhythmia termination.

  16. Phase II trials in heart failure: The role of cardiovascular imaging

    PubMed Central

    Shah, Sanjiv J.; Fonarow, Gregg C.; Gheorghiade, Mihai; Lang, Roberto M.

    2013-01-01

    The development of new therapies for heart failure (HF), especially acute HF, has proven to be quite challenging; and therapies evaluated in HF have greatly outnumbered treatments that are eventually successful in obtaining regulatory approval. Thus, the development of therapies for HF remains a vexing problem for pharmaceutical and device companies, clinical trialists, and health care professionals. Nowhere is this more apparent than in the phase II HF clinical trial, in which the goal is to determine whether an investigational agent should move forward to a phase III trial. Recent advancements in noninvasive cardiovascular imaging have allowed a new era of comprehensive phenotyping of cardiac structure and function in phase II HF trials. Besides using imaging parameters to predict success of subsequent phase III outcome studies, it is essential to also use imaging in phase II HF trials in a way that increases understanding of drug or device mechanism. Determination of the patients who would benefit most from a particular drug or device could decrease heterogeneity of phase III trial participants and lead to more successful HF clinical trials. In this review, we outline advantages and disadvantages of imaging various aspects of cardiac structure and function that are potential targets for therapy in HF, compare and contrast imaging modalities, provide practical advice for the use of cardiovascular imaging in drug development, and conclude with some novel uses of cardiac imaging in phase II HF trials. PMID:21742085

  17. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography

    SciTech Connect

    Umetani, K.; Fukushima, K.

    2013-03-15

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 {mu}m, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 {mu}m diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 {mu}m was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct

  18. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Fukushima, K.

    2013-03-01

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 μm, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 μm diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 μm was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct

  19. Stress cardiac MR imaging: the role of stress functional assessment and perfusion imaging in the evaluation of ischemic heart disease.

    PubMed

    Al Sayari, Saeed; Kopp, Sebastien; Bremerich, Jens

    2015-03-01

    Stress cardiac magnetic resonance imaging can provide valuable information for the diagnosis and management of ischemic heart disease (IHD). It plays an important role in the initial diagnosis in patients with acute chest pain, in the diagnosis of complications post myocardial infarction (MI), in the assessment of the right ventricle after an acute MI, to detect complications due to or after interventions, in prediction of myocardial recovery, to detect inducible ischemia in patients with known IHD, in differentiating ischemic from non-ischemic dilated cardiomyopathy, and in risk stratification.

  20. Stress cardiac MR imaging: the role of stress functional assessment and perfusion imaging in the evaluation of ischemic heart disease.

    PubMed

    Al Sayari, Saeed; Kopp, Sebastien; Bremerich, Jens

    2015-03-01

    Stress cardiac magnetic resonance imaging can provide valuable information for the diagnosis and management of ischemic heart disease (IHD). It plays an important role in the initial diagnosis in patients with acute chest pain, in the diagnosis of complications post myocardial infarction (MI), in the assessment of the right ventricle after an acute MI, to detect complications due to or after interventions, in prediction of myocardial recovery, to detect inducible ischemia in patients with known IHD, in differentiating ischemic from non-ischemic dilated cardiomyopathy, and in risk stratification. PMID:25727000

  1. Three-phase radionuclide bone imaging in sports medicine

    SciTech Connect

    Rupani, H.D.; Holder, L.E.; Espinola, D.A.; Engin, S.I.

    1985-07-01

    Three-phase radionuclide bone (TPB) imaging was performed on 238 patients with sports-related injuries. A wide variety of lesions was encountered, but the most frequent lesions seen were stress fractures of the lower part of the leg at the junction of the middle and distal thirds of the posterior tibial cortex (42 of 79 lesions). There were no differences in the type, location, or distribution of lesions between males and females or between competitive and noncompetitive athletes. In 110 cases, bone stress lesions were often diagnosed when radiographs were normal, whereas subacute or chronic soft-tissue abnormalities had few specific scintigraphic features. TPB imaging provides significant early diagnostic information about bone stress lesions. Normal examination results (53 cases) exclude underlying osseous pathologic conditions.

  2. Genetic imaging consortium for addiction medicine: From neuroimaging to genes.

    PubMed

    Mackey, Scott; Kan, Kees-Jan; Chaarani, Bader; Alia-Klein, Nelly; Batalla, Albert; Brooks, Samantha; Cousijn, Janna; Dagher, Alain; de Ruiter, Michiel; Desrivieres, Sylvane; Feldstein Ewing, Sarah W; Goldstein, Rita Z; Goudriaan, Anna E; Heitzeg, Mary M; Hutchison, Kent; Li, Chiang-Shan R; London, Edythe D; Lorenzetti, Valentina; Luijten, Maartje; Martin-Santos, Rocio; Morales, Angelica M; Paulus, Martin P; Paus, Tomas; Pearlson, Godfrey; Schluter, Renée; Momenan, Reza; Schmaal, Lianne; Schumann, Gunter; Sinha, Rajita; Sjoerds, Zsuzsika; Stein, Dan J; Stein, Elliot A; Solowij, Nadia; Tapert, Susan; Uhlmann, Anne; Veltman, Dick; van Holst, Ruth; Walter, Henrik; Wright, Margaret J; Yucel, Murat; Yurgelun-Todd, Deborah; Hibar, Derrek P; Jahanshad, Neda; Thompson, Paul M; Glahn, David C; Garavan, Hugh; Conrod, Patricia

    2016-01-01

    Since the sample size of a typical neuroimaging study lacks sufficient statistical power to explore unknown genomic associations with brain phenotypes, several international genetic imaging consortia have been organized in recent years to pool data across sites. The challenges and achievements of these consortia are considered here with the goal of leveraging these resources to study addiction. The authors of this review have joined together to form an Addiction working group within the framework of the ENIGMA project, a meta-analytic approach to multisite genetic imaging data. Collectively, the Addiction working group possesses neuroimaging and genomic data obtained from over 10,000 subjects. The deadline for contributing data to the first round of analyses occurred at the beginning of May 2015. The studies performed on this data should significantly impact our understanding of the genetic and neurobiological basis of addiction.

  3. Semiconductor detectors for Compton imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Harkness, LJ; Judson, D. S.; Kennedy, H.; Sweeney, A.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Nolan, P. J.; Sampson, J. A.; Burrows, I.; Groves, J.; Headspith, J.; Lazarus, I. H.; Simpson, J.; Bimson, W. E.; Kemp, G. J.

    2012-01-01

    An investigation is underway at the University of Liverpool to assess the suitability of two position sensitive semiconductor detectors as components of a Compton camera for nuclear medical imaging. The ProSPECTus project aims to improve image quality, provide shorter data acquisition times and lower patient doses by replacing conventional Single Photon Emission Computed Tomography (SPECT) systems. These mechanically collimated systems are employed to locate a radioactive tracer that has been administered to a patient to study specifically targeted physiological processes. The ProSPECTus system will be composed of a Si(Li) detector and a High Purity Germanium (HPGe) detector, a configuration deemed optimum using a validated Geant4 simulation package. Characterising the response of the detectors to gamma irradiation is essential in maximising the sensitivity and image resolution of the system. To this end, the performance of the HPGe ProSPECTus detector and a suitable Si(Li) detector has been assessed at the University of Liverpool. The energy resolution of the detectors has been measured and a surface scan of the Si(Li) detector has been performed using a finely collimated 241Am gamma ray source. Results from the investigation will be presented.

  4. Mechanistic molecular imaging of cardiac cell therapy for ischemic heart disease.

    PubMed

    Yu, Qiujun; Fan, Weiwei; Cao, Feng

    2013-10-01

    Cell-based myocardial regeneration has emerged as a promising therapeutic option for ischemic heart disease, though not yet at the level of routine clinical utility. Despite the encouraging results from initial preclinical studies that have demonstrated improved function and reduced infarct size of the ischemic myocardium following several candidate cell transplantation, the beneficial effects and molecular mechanisms of cardiac cell therapy are still unclear in clinical applications to date, and much remains to be optimized. To improve engraftment, accurate methods are required for tracking cell fate and quantifying functional outcome. In the present review, we summarized the current status and challenges of cardiac cell therapy for ischemic heart disease and discussed the strengths and limitations of currently available in vivo imaging techniques with special focus on the newly developed multimodality approaches for assessing the efficacy of engrafted donor cells. We also addressed the hurdles these imaging modalities are facing, including issues regarding immunogenicity and tumorigenicity of transplanted stem cells, and provided some the future perspectives on stem cell imaging.

  5. Advanced Imaging and Diagnostic Methods in the Assessment of Suspected Ischemic Heart Disease in Women.

    PubMed

    Joly, Joanna M; Bittner, Vera

    2016-09-01

    Although differences diminish with age, outcomes are overall worse for women compared to men who present with suspected acute coronary syndrome. The reasons for this discrepancy are multifactorial, including sex-related differences in atherosclerosis biology and fluid dynamics, as well as a premature conclusion by providers that chest pain must be noncardiac in the absence of obstructive coronary artery disease. In this review of existing literature, we explore the diverse differential diagnosis in this unique set of patients. Especially in women with persistent symptoms, absence of occlusive disease should prompt consideration for subangiographic plaque disruption, epicardial or microvascular endothelial dysfunction, transient neurohormonal imbalance predisposing to Takotsubo cardiomyopathy or spontaneous coronary artery dissection, underlying systemic inflammatory conditions, thromboembolic disease, myocarditis, and sequelae of congenital heart disease. As always, a thorough history and attentive physical exam will help guide further work-up, which in many cases may warrant noninvasive imaging, such as contrast-enhanced echocardiography, cardiac magnetic resonance imaging, or positron emission tomography, with their respective means of measuring myocardial perfusion and myocardial tissue pathology. Lastly, intracoronary imaging such as intravascular ultrasound and optical coherence tomography and invasive diagnostic methods such as coronary reactivity testing continue to add to our understanding that what appear to be atypical presentations of ischemic heart disease in women may in fact be typical presentations of pathologic cousin entities that remain incompletely defined. PMID:27443380

  6. Radionuclide imaging of cardiac sympathetic innervation in heart failure: unlocking untapped potential.

    PubMed

    Gupta, Shuchita; Amanullah, Aman

    2015-03-01

    Heart failure (HF) is associated with sympathetic overactivity, which contributes to disease progression and arrhythmia development. Cardiac sympathetic innervation imaging can be performed using radiotracers that are taken up in the presynaptic nerve terminal of sympathetic nerves. The commonly used radiotracers are (123)I-metaiodobenzylguanidine ((123)I-mIBG) for planar and single-photon emission computed tomography imaging, and (11)C-hydroxyephedrine for positron emission tomography imaging. Sympathetic innervation imaging has been used in assessing prognosis, response to treatment, risk of ventricular arrhythmias and sudden death and prediction of response to cardiac resynchronization therapy in patients with HF. Other potential applications of these techniques are in patients with chemotherapy-induced cardiomyopathy, predicting myocardial recovery in patients with left ventricular assist devices, and assessing reinnervation following cardiac transplantation. There is a lack of standardization with respect to technique of (123)I-mIBG imaging that needs to be overcome for the imaging modality to gain popularity in clinical practice.

  7. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    SciTech Connect

    Cooper, M.; Beck, R.N.

    1992-06-01

    This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of (F18)fluorinated benzamides (dopamine D-2 receptor tracers), (F18)fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of (F18)-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks.

  8. Role of Heart and its Diseases in the Etiology of Depression According to Avicenna's Point of View and its Comparison with Views of Classic Medicine

    PubMed Central

    Yousofpour, Mohammad; Kamalinejad, Mohammad; Esfahani, Mohammad Mahdi; Shams, Jamal; Tehrani, Hassan Hoshdar; Bahrami, Mohsen

    2015-01-01

    Background: Depression is one of the most important medical problems in today's world; despite its high prevalence, its causes unfortunately remain not fully known. Among important issues regarding this is its relation with heart diseases. Based on studies this comorbidity increase morbidity and mortality and leads to worst prognosis. However the cause of such high rate of comorbidity is unclear and instead of efforts to understand this correlation has prompted the medical world to consult other medicinal disciplines, not only to find the answer but also to increase the effectiveness of treatment and decrease its cost. Methods: We first reviewed the most important ancient causes for depression mentioned by Avicenna and considered those as the key words for our next step. Then, we made a literature search (PubMed and Scopus) with those key words to find out new scientific findings in modern medicine about the Avicenna's suggestions. Results: Avicenna does not regard depression as only a mental ailment, but as a disorder resulted by the involvement of brain, heart and blood. He believed that the main causes of depressive events are rooted in heart diseases; in most cases brain is only affected secondary to the heart. Thus he declared that for the treatment of depressive disorders, the underlying cardiovascular diseases should be considered. Conclusions: It is worthwhile to consider the Avicenna's recommended causes of depression and to design future scientific studies based on his suggestions. PMID:26124946

  9. Ethics and images of suffering bodies in humanitarian medicine.

    PubMed

    Calain, Philippe

    2013-12-01

    Media representations of suffering bodies from medical humanitarian organisations raise ethical questions, which deserve critical attention for at least three reasons. Firstly, there is a normative vacuum at the intersection of medical ethics, humanitarian ethics and the ethics of photojournalism. Secondly, the perpetuation of stereotypes of illness, famine or disasters, and their political derivations are a source of moral criticism, to which humanitarian medicine is not immune. Thirdly, accidental encounters between members of the health professions and members of the press in the humanitarian arena can result in misunderstandings and moral tension. From an ethics perspective the problem can be specified and better understood through two successive stages of reasoning. Firstly, by applying criteria of medical ethics to the concrete example of an advertising poster from a medical humanitarian organisation, I observe that media representations of suffering bodies would generally not meet ethical standards commonly applied in medical practice. Secondly, I try to identify what overriding humanitarian imperatives could outweigh such reservations. The possibility of action and the expression of moral outrage are two relevant humanitarian values which can further be spelt out through a semantic analysis of 'témoignage' (testimony). While the exact balance between the opposing sets of considerations (medical ethics and humanitarian perspectives) is difficult to appraise, awareness of all values at stake is an important initial standpoint for ethical deliberations of media representations of suffering bodies. Future pragmatic approaches to the issue should include: exploring ethical values endorsed by photojournalism, questioning current social norms about the display of suffering, collecting empirical data from past or potential victims of disasters in diverse cultural settings, and developing new canons with more creative or less problematic representations of

  10. [Advance in diagnosis and treatment of psycho-cardiological abnormality of patients with coronary heart disease with traditional Chinese medicines].

    PubMed

    Yuan, Rong; Wang, Jiel; Liu, Wei

    2015-02-01

    To discuss the etiology, pathogenesis, therapies and prescriptions of psycho-cardiological abnormality of patients with coronary heart disease. According to the advance in modern diagnosis and treatment, the authors believed that psycho-cardiological abnormality of patients with coronary heart disease is closely related with mental stresses, like anxiety, depression and insomnia. It is mostly caused by emotional injury and expressed in heart, liver, spleen and kidney. The pathogenesis is heart-liver hyperactivity, yin deficiency in heart and kidney, and insufficiency in heart and spleen. The full recognition of etiology and pathogenesis of psycho-cardiological abnormality of patients with coronary heart disease and the combined treatment of disease and syndromes are of great significance to reduce mental stress and other risk factors, prevent and treat coronary heart disease and improve prognosis.

  11. Cancer Imaging at the Crossroads of Precision Medicine: Perspective From an Academic Imaging Department in a Comprehensive Cancer Center.

    PubMed

    Van den Abbeele, Annick D; Krajewski, Katherine M; Tirumani, Sree Harsha; Fennessy, Fiona M; DiPiro, Pamela J; Nguyen, Quang-Dé; Harris, Gordon J; Jacene, Heather A; Lefever, Greg; Ramaiya, Nikhil H

    2016-04-01

    The authors propose one possible vision for the transformative role that cancer imaging in an academic setting can play in the current era of personalized and precision medicine by sharing a conceptual model that is based on experience and lessons learned designing a multidisciplinary, integrated clinical and research practice at their institution. The authors' practice and focus are disease-centric rather than imaging-centric. A "wall-less" infrastructure has been developed, with bidirectional integration of preclinical and clinical cancer imaging research platforms, enabling rapid translation of novel cancer drugs from discovery to clinical trial evaluation. The talents and expertise of medical professionals, scientists, and staff members have been coordinated in a horizontal and vertical fashion through the creation of Cancer Imaging Consultation Services and the "Adopt-a-Radiologist" campaign. Subspecialized imaging consultation services at the hub of an outpatient cancer center facilitate patient decision support and management at the point of care. The Adopt-a-Radiologist campaign has led to the creation of a novel generation of imaging clinician-scientists, fostered new collaborations, increased clinical and academic productivity, and improved employee satisfaction. Translational cancer research is supported, with a focus on early in vivo testing of novel cancer drugs, co-clinical trials, and longitudinal tumor imaging metrics through the imaging research core laboratory. Finally, a dedicated cancer imaging fellowship has been developed, promoting the future generation of cancer imaging specialists as multidisciplinary, multitalented professionals who are trained to effectively communicate with clinical colleagues and positively influence patient care.

  12. Hands-on molecular imaging: real-time visualization tools bridge gaps in translational medicine.

    PubMed

    Vanderheyden, Jean-Luc

    2008-08-01

    Molecular imaging tools such as CT, MRI, PET and SPECT, as well as various combinations of these instrument systems, continue to improve and evolve, offering increasingly sensitive and high-resolution images of biological processes in real time. The optimal use of these tools across the continuum of biomedical research and clinical medicine can generate the information that is needed to bridge the gaps that currently exist in drug discovery and development. These gaps negatively affect the promise and potential of translational medicine, in which the knowledge gained from multidisciplinary efforts encompassing genomics, proteomics, biomarker discovery, systems biology and bioinformatics are used to drive R&D, design experiments, predict outcomes, guide patient selection for clinical trials, and define pharmacogenomic parameters for optimizing the safety and efficacy of drug compounds. Thus, molecular imaging tools serve an important role in optimizing the drug discovery and development process.

  13. Pulsatile flow in the aorta of the LVAD supported heart studied using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Moyedi, Zahra

    Currently many patients die because of the end-stage heart failure, mainly due to the reduced number of donor heart transplant organs. Studies show that a permanent left ventricular assist device (LVAD), a battery driven pump which is surgically implanted, increased the survival rate of patients with end-stage heart failure and improved considerably their quality of life. The inlet conduit of the LVAD is attached to the left ventricle and the outflow conduit anastomosed to the ascending aorta. The purpose of LVAD support is to help a weakened heart to pump blood to the rest of the body. However LVAD can cause some alterations of the natural blood flow. When your blood comes in contact with something that isn't a natural part of your body blood clots can occur and disrupt blood flow. Aortic valve integrity is vital for optimal support of left ventricular assist LVAD. Due to the existence of high continuous transvalvular pressure on the aortic valve, the opening frequency of the valve is reduced. To prevent the development of aortic insufficiency, aortic valve closure during LVAD implantation has been performed. However, the closed aortic valve reduces wash out of the aortic root, which causes blood stagnation and potential thrombus formation. So for this reason, there is a need to minimize the risks of occurring blood clot, by having more knowledge about the flow structure in the aorta during LVAD use. The current study focuses on measuring the flow field in the aorta of the LVAD assisted heart with two different types of aortic valve (Flat and Finned) using the SDSU cardiac simulator. The pulsatile pump that mimics the natural pulsing action of the heart also added to the system. The flow field is visualized using Particle Image Velocimetry (PIV). Furthermore, The fluid mechanics of aorta has been studied when LVAD conduit attached to two different locations (proximal and distal to the aortic valve) with pump speeds of 8,000 to 10,000 revolutions per minute (RPM

  14. Nuclear medicine and imaging research: Quantitative studies in radiopharmaceutical science

    SciTech Connect

    Copper, M.; Beck, R.N.

    1991-06-01

    During the past three years the program has undergone a substantial revitalization. There has been no significant change in the scientific direction of this grant, in which emphasis continues to be placed on developing new or improved methods of obtaining quantitative data from radiotracer imaging studies. However, considerable scientific progress has been made in the three areas of interest: Radiochemistry, Quantitative Methodologies, and Experimental Methods and Feasibility Studies, resulting in a sharper focus of perspective and improved integration of the overall scientific effort. Changes in Faculty and staff, including development of new collaborations, have contributed to this, as has acquisition of additional and new equipment and renovations and expansion of the core facilities. 121 refs., 30 figs., 2 tabs.

  15. Ultrasound Current Source Density Imaging in live rabbit hearts using clinical intracardiac catheter

    NASA Astrophysics Data System (ADS)

    Li, Qian

    Ultrasound Current Source Density Imaging (UCSDI) is a noninvasive modality for mapping electrical activities in the body (brain and heart) in 4-dimensions (space + time). Conventional cardiac mapping technologies for guiding the radiofrequency ablation procedure for treatment of cardiac arrhythmias have certain limitations. UCSDI can potentially overcome these limitations and enhance the electrophysiology mapping of the heart. UCSDI exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity. When an ultrasound beam intersects a current path in a material, the local resistivity of the material is modulated by the ultrasonic pressure, and a change in voltage signal can be detected based on Ohm's Law. The degree of modulation is determined by the AE interaction constant K. K is a fundamental property of any type of material, and directly affects the amplitude of the AE signal detected in UCSDI. UCSDI requires detecting a small AE signal associated with electrocardiogram. So sensitivity becomes a major challenge for transferring UCSDI to the clinic. This dissertation will determine the limits of sensitivity and resolution for UCSDI, balancing the tradeoff between them by finding the optimal parameters for electrical cardiac mapping, and finally test the optimized system in a realistic setting. This work begins by describing a technique for measuring K, the AE interaction constant, in ionic solution and biological tissue, and reporting the value of K in excised rabbit cardiac tissue for the first time. K was found to be strongly dependent on concentration for the divalent salt CuSO4, but not for the monovalent salt NaCl, consistent with their different chemical properties. In the rabbit heart tissue, K was determined to be 0.041 +/- 0.012 %/MPa, similar to the measurement of K in physiologic saline: 0.034 +/- 0.003 %/MPa. Next, this dissertation investigates the sensitivity limit of UCSDI by quantifying the relation

  16. The application of digital image plane holography technology to identify Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2012-03-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  17. The application of digital image plane holography technology to identify Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2011-11-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  18. OPTICAL COHERENCE TOMOGRAPHY HEART TUBE IMAGE DENOISING BASED ON CONTOURLET TRANSFORM.

    PubMed

    Guo, Qing; Sun, Shuifa; Dong, Fangmin; Gao, Bruce Z; Wang, Rui

    2012-01-01

    Optical Coherence Tomography(OCT) gradually becomes a very important imaging technology in the Biomedical field for its noninvasive, nondestructive and real-time properties. However, the interpretation and application of the OCT images are limited by the ubiquitous noise. In this paper, a denoising algorithm based on contourlet transform for the OCT heart tube image is proposed. A bivariate function is constructed to model the joint probability density function (pdf) of the coefficient and its cousin in contourlet domain. A bivariate shrinkage function is deduced to denoise the image by the maximum a posteriori (MAP) estimation. Three metrics, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and equivalent number of look (ENL), are used to evaluate the denoised image using the proposed algorithm. The results show that the signal-to-noise ratio is improved while the edges of object are preserved by the proposed algorithm. Systemic comparisons with other conventional algorithms, such as mean filter, median filter, RKT filter, Lee filter, as well as bivariate shrinkage function for wavelet-based algorithm are conducted. The advantage of the proposed algorithm over these methods is illustrated. PMID:25364626

  19. Image Quality of Coronary Computed Tomography Angiography with 320-Row Area Detector Computed Tomography in Children with Congenital Heart Disease.

    PubMed

    Tada, Akihiro; Sato, Shuhei; Kanie, Yuichiro; Tanaka, Takashi; Inai, Ryota; Akagi, Noriaki; Morimitsu, Yusuke; Kanazawa, Susumu

    2016-03-01

    The objective of this study was to assess factors affecting image quality of 320-row computed tomography angiography (CTA) of coronary arteries in children with congenital heart disease (CHD). We retrospectively reviewed 28 children up to 3 years of age with CHD who underwent prospective electrocardiography (ECG)-gated 320-row CTA with iterative reconstruction. We assessed image quality of proximal coronary artery segments using a five-point scale. Age, body weight, average heart rate, and heart rate variability were recorded and compared between two groups: patients with good diagnostic image quality in all four coronary artery segments and patients with at least one coronary artery segment with nondiagnostic image quality. Altogether, 96 of 112 segments (85.7 %) had diagnostic-quality images. Patients with nondiagnostic segments were significantly younger (10.0 ± 11.6 months) and had lower body weight (5.9 ± 2.9 kg) (each p < 0.05) than patients with diagnostic image quality of all four segments (20.6 ± 13.8 months and 8.4 ± 2.5 kg, respectively; each p < 0.05). Differences in heart rate and heart rate variability between the two imaging groups were not significant. Receiver operating characteristic analyses for predicting patients with nondiagnostic image quality revealed an optimal body weight cutoff of ≤5.6 kg and an optimal age cutoff of ≤12.5 months. Prospective ECG-gated 320-row CTA with iterative reconstruction provided feasible image quality of coronary arteries in children with CHD. Younger age and lower body weight were factors that led to poorer image quality of coronary arteries.

  20. Gender-specific research for emergency diagnosis and management of ischemic heart disease: proceedings from the 2014 Academic Emergency Medicine Consensus Conference Cardiovascular Research Workgroup.

    PubMed

    Safdar, Basmah; Nagurney, John T; Anise, Ayodola; DeVon, Holli A; D'Onofrio, Gail; Hess, Erik P; Hollander, Judd E; Legato, Mariane J; McGregor, Alyson J; Scott, Jane; Tewelde, Semhar; Diercks, Deborah B

    2014-12-01

    Coronary artery disease (CAD) is the most common cause of death for both men and women. However, over the years, emergency physicians, cardiologists, and other health care practitioners have observed varying outcomes in men and women with symptomatic CAD. Women in general are 10 to 15 years older than men when they develop CAD, but suffer worse postinfarction outcomes compared to age-matched men. This article was developed by the cardiovascular workgroup at the 2014 Academic Emergency Medicine (AEM) consensus conference to identify sex- and gender-specific gaps in the key themes and research questions related to emergency cardiac ischemia care. The workgroup had diverse stakeholder representation from emergency medicine, cardiology, critical care, nursing, emergency medical services, patients, and major policy-makers in government, academia, and patient care. We implemented the nominal group technique to identify and prioritize themes and research questions using electronic mail, monthly conference calls, in-person meetings, and Web-based surveys between June 2013 and May 2014. Through three rounds of nomination and refinement, followed by an in-person meeting on May 13, 2014, we achieved consensus on five priority themes and 30 research questions. The overarching themes were as follows: 1) the full spectrum of sex-specific risk as well as presentation of cardiac ischemia may not be captured by our standard definition of CAD and needs to incorporate other forms of ischemic heart disease (IHD); 2) diagnosis is further challenged by sex/gender differences in presentation and variable sensitivity of cardiac biomarkers, imaging, and risk scores; 3) sex-specific pathophysiology of cardiac ischemia extends beyond conventional obstructive CAD to include other causes such as microvascular dysfunction, takotsubo, and coronary artery dissection, better recognized as IHD; 4) treatment and prognosis are influenced by sex-specific variations in biology, as well as patient

  1. Gender-specific research for emergency diagnosis and management of ischemic heart disease: proceedings from the 2014 Academic Emergency Medicine Consensus Conference Cardiovascular Research Workgroup.

    PubMed

    Safdar, Basmah; Nagurney, John T; Anise, Ayodola; DeVon, Holli A; D'Onofrio, Gail; Hess, Erik P; Hollander, Judd E; Legato, Mariane J; McGregor, Alyson J; Scott, Jane; Tewelde, Semhar; Diercks, Deborah B

    2014-12-01

    Coronary artery disease (CAD) is the most common cause of death for both men and women. However, over the years, emergency physicians, cardiologists, and other health care practitioners have observed varying outcomes in men and women with symptomatic CAD. Women in general are 10 to 15 years older than men when they develop CAD, but suffer worse postinfarction outcomes compared to age-matched men. This article was developed by the cardiovascular workgroup at the 2014 Academic Emergency Medicine (AEM) consensus conference to identify sex- and gender-specific gaps in the key themes and research questions related to emergency cardiac ischemia care. The workgroup had diverse stakeholder representation from emergency medicine, cardiology, critical care, nursing, emergency medical services, patients, and major policy-makers in government, academia, and patient care. We implemented the nominal group technique to identify and prioritize themes and research questions using electronic mail, monthly conference calls, in-person meetings, and Web-based surveys between June 2013 and May 2014. Through three rounds of nomination and refinement, followed by an in-person meeting on May 13, 2014, we achieved consensus on five priority themes and 30 research questions. The overarching themes were as follows: 1) the full spectrum of sex-specific risk as well as presentation of cardiac ischemia may not be captured by our standard definition of CAD and needs to incorporate other forms of ischemic heart disease (IHD); 2) diagnosis is further challenged by sex/gender differences in presentation and variable sensitivity of cardiac biomarkers, imaging, and risk scores; 3) sex-specific pathophysiology of cardiac ischemia extends beyond conventional obstructive CAD to include other causes such as microvascular dysfunction, takotsubo, and coronary artery dissection, better recognized as IHD; 4) treatment and prognosis are influenced by sex-specific variations in biology, as well as patient

  2. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    SciTech Connect

    Cooper, M.D.; Beck, R.N.

    1990-09-01

    This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.

  3. Application of TlBr to nuclear medicine imaging

    NASA Astrophysics Data System (ADS)

    Cirignano, Leonard; Kim, Hadong; Kargar, Alireza; Churilov, Alexei V.; Ciampi, Guido; Higgins, William; Kim, Suyoung; Barber, Bradford; Haston, Kyle; Shah, Kanai

    2012-10-01

    Thallium bromide (TlBr) has been under development for room temperature gamma ray spectroscopy due to high density, high Z and wide bandgap of the material. Furthermore, its low melting point (460 °C), cubic crystal structure and congruent melting with no solid-solid phase transitions between the melting point and room temperature, TlBr can be grown by relatively simple melt based methods. As a result of improvements in material processing and detector fabrication over the last several years, TlBr with electron mobility-lifetime products (μeτe) in the mid 10-3 cm2/V range has been obtained. In this paper we are going to report on our unipolar charging TlBr results for the application as a small animal imaging. For SPECT application, about 5 mm thick pixellated detectors were fabricated and tested. About 1 % FWHM at 662 keV energy resolution was estimated at room temperature. By applying the depth correction technique, less than 1 % energy resolution was estimated. We are going to report the results from orthogonal strip TlBr detector for PET application. In this paper we also present our latest detector highlights and recent progress made in long term stability of TlBr detectors at or near room temperature. This work is being supported by the Domestic Nuclear Detection Office (DNDO) and the Department of Energy (DOE).

  4. Semiautomatic segmentation of the heart from CT images based on intensity and morphological features

    NASA Astrophysics Data System (ADS)

    Redwood, Abena B.; Camp, Jon J.; Robb, Richard A.

    2005-04-01

    The incidence of certain types of cardiac arrhythmias is increasing. Effective, minimally invasive treatment has remained elusive. Pharmacologic treatment has been limited by drug intolerance and recurrence of disease. Catheter based ablation has been moderately successful in treating certain types of cardiac arrhythmias, including typical atrial flutter and fibrillation, but there remains a relatively high rate of recurrence. Additional side effects associated with cardiac ablation procedures include stroke, perivascular lung damage, and skin burns caused by x-ray fluoroscopy. Access to patient specific 3-D cardiac images has potential to significantly improve the process of cardiac ablation by providing the physician with a volume visualization of the heart. This would facilitate more effective guidance of the catheter, increase the accuracy of the ablative process, and eliminate or minimize the damage to surrounding tissue. In this study, a semiautomatic method for faithful cardiac segmentation was investigated using Analyze - a comprehensive processing software package developed at the Biomedical Imaging Resource, Mayo Clinic. This method included use of interactive segmentation based on math morphology and separation of the chambers based on morphological connections. The external surfaces of the hearts were readily segmented, while accurate separation of individual chambers was a challenge. Nonetheless, a skilled operator could manage the task in a few minutes. Useful improvements suggested in this paper would give this method a promising future.

  5. Use of Complementary and Alternative Medicine in Women With Heart Disease, Hypertension and Diabetes (from the Australian Longitudinal Study on Women's Health).

    PubMed

    Sibbritt, David; Davidson, Patricia; DiGiacomo, Michelle; Newton, Phillip; Adams, Jon

    2015-06-15

    The uptake of complementary and alternative medicine (CAM) is common, especially among patients with chronic illness. However, the use of CAM by women with cardiovascular disease and how this influences the interface with conventional medicine is poorly understood. To examine the relation between heart disease, hypertension, and diabetes and the use of CAM and conventional medicine in a cohort of women, data were taken from the 2010 survey (n = 9,748) of the 1946 to 1951 cohort of the Australian Longitudinal Study on Women's Health (ALSWH). Analyses focused on women who had been diagnosed or treated for heart disease, diabetes, and/or hypertension. The outcome measures were the use of conventional or CAM treatments in the previous year. Most women had hypertension only (n = 2,335), and few (n = 78) reported having heart disease, hypertension, and diabetes. Women with hypertension were less likely (odds ratio [OR] 0.82, 95% confidence interval [CI] 0.74 to 0.91) to consult with a CAM practitioner and less likely (OR 0.86, 95% CI 0.77 to 0.97) to use self-prescribed CAM, while women with diabetes were also less likely (OR 0.66, 95% CI 0.54 to 0.81) to consult with a CAM practitioner and less likely (OR 0.68, 95% CI 0.55 to 0.83) to use self-prescribed CAM. In conclusion, compared with studies conducted on CAM use and other chronic illness groups, the use of CAM by women with heart disease, hypertension, and/or diabetes in this study was lower, and future research is needed to explore patients' perceptions of cardiovascular risk and the role of CAM in their self-management in the community, among other issues.

  6. Bayesian multi-scale smoothing of photon-limited images with applications to astronomy and medicine

    NASA Astrophysics Data System (ADS)

    White, John

    Multi-scale models for smoothing Poisson signals or images have gained much attention over the past decade. A new Bayesian model is developed using the concept of the Chinese restaurant process to find structures in two-dimensional images when performing image reconstruction or smoothing. This new model performs very well when compared to other leading methodologies for the same problem. It is developed and evaluated theoretically and empirically throughout Chapter 2. The newly developed Bayesian model is extended to three-dimensional images in Chapter 3. The third dimension has numerous different applications, such as different energy spectra, another spatial index, or possibly a temporal dimension. Empirically, this method shows promise in reducing error with the use of simulation studies. A further development removes background noise in the image. This removal can further reduce the error and is done using a modeling adjustment and post-processing techniques. These details are given in Chapter 4. Applications to real world problems are given throughout. Photon-based images are common in astronomical imaging due to the collection of different types of energy such as X-Rays. Applications to real astronomical images are given, and these consist of X-ray images from the Chandra X-ray observatory satellite. Diagnostic medicine uses many types of imaging such as magnetic resonance imaging and computed tomography that can also benefit from smoothing techniques such as the one developed here. Reducing the amount of radiation a patient takes will make images more noisy, but this can be mitigated through the use of image smoothing techniques. Both types of images represent the potential real world use for these methods.

  7. Who Needs Heart Surgery?

    MedlinePlus

    ... disease (CHD) Fix heart valves that don't work well Control abnormal heart rhythms Place medical devices Replace a damaged heart with a healthy one If other treatments—such as lifestyle changes, medicines, and medical ... surgeon will work with you to decide whether you need heart ...

  8. Congenital Heart Defects

    MedlinePlus

    ... Treatment can include medicines, catheter procedures, surgery, and heart transplants. The treatment depends on the type of the defect, how severe it is, and a child's age, size, and general health. NIH: National Heart, Lung, and Blood Institute

  9. Congenital heart disease

    MedlinePlus

    ... about genetic counseling and screening if you have a family history of cogenital heart disease. ... Fraser CD, Carberry KE. Congenital heart disease. In: Townsend CM ... Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, PA: ...

  10. Assessment of cardiovascular apoptosis in the isolated rat heart by magnetic resonance molecular imaging.

    PubMed

    Hiller, Karl-Heinz; Waller, Christiane; Nahrendorf, Matthias; Bauer, Wolfgang R; Jakob, Peter M

    2006-01-01

    Apoptosis, an active process of cell self-destruction, is associated with myocardial ischemia. The redistribution of phosphatidylserine (PS) from the inner to the outer leaflet of the cell membrane is an early event in apoptosis. Annexin V, a protein with high specificity and tight binding to PS, was used to identify and localize apoptosis in the ischemic heart.Fluorescein-labeled annexin V has been used routinely for the assessment of apoptosis in vitro. For the detection of apoptosis in vivo, positron emission tomography and single-photon emission computed tomography have been shown to be suitable tools. In view of the relatively low spatial resolution of nuclear imaging techniques, we developed a high-resolution contrast-enhanced magnetic resonance imaging (MRI) method that allows rapid and noninvasive monitoring of apoptosis in intact organs. Instead of employing superparamagnetic iron oxide particles linked to annexin V, a new T1 contrast agent was used. To this effect, annexin V was linked to gadolinium diethylenetriamine pentaacetate (Gd-DTPA)-coated liposomes. The left coronary artery of perfused isolated rat hearts was ligated for 30 min followed by reperfusion. T(1) and T(2)* images were acquired by using an 11.7-T magnet before and after intracoronary injection of Gd-DTP-labeled annexin V to visualize apoptotic cells. A significant increase in signal intensity was visible in those regions containing cardiomyocytes in the early stage of apoptosis. Because labeling of early apoptotic cell death in intact organs by histological and immunohistochemical methods remains challenging, the use of Gd-DTPA-labeled annexin V in MRI is clearly an improvement in rapid targeting of apoptotic cells in the ischemic and reperfused myocardium.

  11. Imaging mass spectrometry: Molecular microscopy for the new age of biology and medicine.

    PubMed

    Caprioli, Richard M

    2016-06-01

    Imaging mass spectrometry provides a powerful tool for monitoring and discovery of molecular processes in the spatial domain in tissues for research and practical applications in both biology and medicine. This technology directly measures molecular compounds in tissues without the use of target-specific reagents such as antibodies, is applicable to a wide variety of analytes, and can provide spatial resolutions below the single cell level. Importantly, it has paradigm shifting capabilities in clinical applications, especially for anatomic pathology.

  12. Hyperspectral imaging in medicine: image pre-processing problems and solutions in Matlab.

    PubMed

    Koprowski, Robert

    2015-11-01

    The paper presents problems and solutions related to hyperspectral image pre-processing. New methods of preliminary image analysis are proposed. The paper shows problems occurring in Matlab when trying to analyse this type of images. Moreover, new methods are discussed which provide the source code in Matlab that can be used in practice without any licensing restrictions. The proposed application and sample result of hyperspectral image analysis.

  13. Hyperspectral imaging in medicine: image pre-processing problems and solutions in Matlab.

    PubMed

    Koprowski, Robert

    2015-11-01

    The paper presents problems and solutions related to hyperspectral image pre-processing. New methods of preliminary image analysis are proposed. The paper shows problems occurring in Matlab when trying to analyse this type of images. Moreover, new methods are discussed which provide the source code in Matlab that can be used in practice without any licensing restrictions. The proposed application and sample result of hyperspectral image analysis. PMID:25676816

  14. Settling the 'Score' with Heart Disease

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Technology and medicine forged a bond in 1986 when a group of dedicated NASA scientists, University of Southern California (USC) medical professors, and a Dutch cardiologist joined forces to prevent heart attacks, using ultrasound images of astronauts blood-flow patterns and the supercomputer depended upon to orchestrate the "Star Wars" Strategic Defense Initiative.

  15. Application of x-ray phase contrast imaging to microscopic identification of Chinese medicines

    NASA Astrophysics Data System (ADS)

    Wei, Xun; Xiao, Ti-Qiao; Liu, Li-Xiang; Du, Guo-Hao; Chen, Min; Luo, Yu-Yu; Xu, Hong-Jie

    2005-09-01

    In the last decade, x-ray phase contrast imaging (XPCI) has received considerable attention as a novel imaging technique, which has proved to be suitable for weakly absorbing materials such as biomedical samples and polymers. In this paper, the microstructures of traditional Chinese medicines (TCMs), which are used as judging criteria in the identification of TCMs, were investigated by XPCI based on a nano-focus x-ray tube. The results demonstrated that XPCI is a promising new method for the identification of TCMs, with advantages such as nondestructivity, no special sample preparation and suitability for thick samples.

  16. Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer

    PubMed Central

    2016-01-01

    Molecular imaging based personalized therapy has been a fascinating concept for individualized therapeutic strategy, which is able to attain the highest efficacy and reduce adverse effects in certain patients. Theranostics, which integrates diagnostic testing to detect molecular targets for particular therapeutic modalities, is one of the key technologies that contribute to the success of personalized medicine. Although the term “theranostics” was used after the second millennium, its basic principle was applied more than 70 years ago in the field of thyroidology with radioiodine molecular imaging. Differentiated thyroid cancer, which arises from follicular cells in the thyroid, is the most common endocrine malignancy, and theranostic radioiodine has been successfully applied to diagnose and treat differentiated thyroid cancer, the applications of which were included in the guidelines published by various thyroid or nuclear medicine societies. Through better pathophysiologic understanding of thyroid cancer and advancements in nuclear technologies, theranostic radioiodine contributes more to modern tailored personalized management by providing high therapeutic effect and by avoiding significant adverse effects in differentiated thyroid cancer. This review details the inception of theranostic radioiodine and recent radioiodine applications for differentiated thyroid cancer management as a prototype of personalized medicine based on molecular imaging. PMID:27239470

  17. TOPICAL REVIEW: Time-resolved fluorescence imaging in biology and medicine

    NASA Astrophysics Data System (ADS)

    Cubeddu, R.; Comelli, D.; D'Andrea, C.; Taroni, P.; Valentini, G.

    2002-05-01

    Fluorescence lifetime imaging is a rather new and effective tool that can be used to study complex biological samples, either at microscopic or macroscopic levels. The map of the fluorescence lifetime allows one to discriminate amongst different fluorophores and to achieve valuable insights into the behaviour of emitting molecules, leading to information like local pH, oxygen concentration in cells, etc. Moreover, the distribution in space of any fluorescent marker achievable with this technique can be exploited for diagnostic purposes in medicine. After a brief introduction on the motivations for applying fluorescence lifetime imaging in biology and medicine, the basic principles of this technique will be addressed. Then, the two possible implementations of fluorescence lifetime imaging (i.e. the frequency domain and the time domain methods) will be presented. For this purpose, special attention will be devoted to practical aspects of image acquisition and processing, especially for what concerns the time domain method. Then, the analysis of the state-of-the-art systems will include a brief discussion on new concepts that have recently been introduced in this research field. Finally, two interesting applications of fluorescence lifetime imaging will be presented. The former refers to skin tumour detection and has been successfully applied in a preliminary clinical trial, the latter regards DNA chips reading and has been tested only at laboratory level, yet it has produced promising results for its future implementation in commercial systems.

  18. In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart.

    PubMed

    Vennemann, Peter; Kiger, Kenneth T; Lindken, Ralph; Groenendijk, Bianca C W; Stekelenburg-de Vos, Sandra; ten Hagen, Timo L M; Ursem, Nicolette T C; Poelmann, Rob E; Westerweel, Jerry; Hierck, Beerend P

    2006-01-01

    The measurement of blood-plasma velocity distributions with spatial and temporal resolution in vivo is inevitable for the determination of shear stress distributions in complex geometries at unsteady flow conditions like in the beating heart. A non-intrusive, whole-field velocity measurement technique is required that is capable of measuring instantaneous flow fields at sub-millimeter scales in highly unsteady flows. Micro particle image velocimetry (muPIV) meets these demands, but requires special consideration and methodologies in order to be utilized for in vivo studies in medical and biological research. We adapt muPIV to measure the blood-plasma velocity in the beating heart of a chicken embryo. In the current work, bio-inert, fluorescent liposomes with a nominal diameter of 400 nm are added to the flow as a tracer. Because of their small dimension and neutral buoyancy the liposomes closely follow the movement of the blood-plasma and allow the determination of the velocity gradient close to the wall. The measurements quantitatively resolve the velocity distribution in the developing ventricle and atrium of the embryo at nine different stages within the cardiac cycle. Up to 400 velocity vectors per measurement give detailed insight into the fluid dynamics of the primitive beating heart. A rapid peristaltic contraction accelerates the flow to peak velocities of 26 mm/s, with the velocity distribution showing a distinct asymmetrical profile in the highly curved section of the outflow tract. In relation to earlier published gene-expression experiments, the results underline the significance of fluid forces for embryonic cardiogenesis. In general, the measurements demonstrate that muPIV has the potential to develop into a general tool for instationary flow conditions in complex flow geometries encountered in cardiovascular research.

  19. From clinical imaging and computational models to personalised medicine and image guided interventions.

    PubMed

    Hawkes, David J

    2016-10-01

    This short paper describes the development of the UCL Centre for Medical Image Computing (CMIC) from 2006 to 2016, together with reference to historical developments of the Computational Imaging sciences Group (CISG) at Guy's Hospital. Key early work in automated image registration led to developments in image guided surgery and improved cancer diagnosis and therapy. The work is illustrated with examples from neurosurgery, laparoscopic liver and gastric surgery, diagnosis and treatment of prostate cancer and breast cancer, and image guided radiotherapy for lung cancer.

  20. Cancer Imaging at the Crossroads of Precision Medicine: Perspective From an Academic Imaging Department in a Comprehensive Cancer Center.

    PubMed

    Van den Abbeele, Annick D; Krajewski, Katherine M; Tirumani, Sree Harsha; Fennessy, Fiona M; DiPiro, Pamela J; Nguyen, Quang-Dé; Harris, Gordon J; Jacene, Heather A; Lefever, Greg; Ramaiya, Nikhil H

    2016-04-01

    The authors propose one possible vision for the transformative role that cancer imaging in an academic setting can play in the current era of personalized and precision medicine by sharing a conceptual model that is based on experience and lessons learned designing a multidisciplinary, integrated clinical and research practice at their institution. The authors' practice and focus are disease-centric rather than imaging-centric. A "wall-less" infrastructure has been developed, with bidirectional integration of preclinical and clinical cancer imaging research platforms, enabling rapid translation of novel cancer drugs from discovery to clinical trial evaluation. The talents and expertise of medical professionals, scientists, and staff members have been coordinated in a horizontal and vertical fashion through the creation of Cancer Imaging Consultation Services and the "Adopt-a-Radiologist" campaign. Subspecialized imaging consultation services at the hub of an outpatient cancer center facilitate patient decision support and management at the point of care. The Adopt-a-Radiologist campaign has led to the creation of a novel generation of imaging clinician-scientists, fostered new collaborations, increased clinical and academic productivity, and improved employee satisfaction. Translational cancer research is supported, with a focus on early in vivo testing of novel cancer drugs, co-clinical trials, and longitudinal tumor imaging metrics through the imaging research core laboratory. Finally, a dedicated cancer imaging fellowship has been developed, promoting the future generation of cancer imaging specialists as multidisciplinary, multitalented professionals who are trained to effectively communicate with clinical colleagues and positively influence patient care. PMID:26774886

  1. Big Heart Data: Advancing Health Informatics through Data Sharing in Cardiovascular Imaging

    PubMed Central

    Suinesiaputra, Avan; Medrano-Gracia, Pau; Cowan, Brett R.; Young, Alistair A.

    2015-01-01

    The burden of heart disease is rapidly worsening due to increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be re-used beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data re-use, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases. PMID:25415993

  2. Big heart data: advancing health informatics through data sharing in cardiovascular imaging.

    PubMed

    Suinesiaputra, Avan; Medrano-Gracia, Pau; Cowan, Brett R; Young, Alistair A

    2015-07-01

    The burden of heart disease is rapidly worsening due to the increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be reused beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data reuse, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases. PMID:25415993

  3. The evaluation of clinical therapy effects of oral western medicine combined with magnetic pulse acupoint stimulation in treating elderly patients with coronary heart disease

    PubMed Central

    Fu, Xin; Guo, Li; Jiang, Zheng-Ming; Xu, Ai-Guo

    2015-01-01

    Objective: Treat the patients suffered from coronary heart disease with oral western medicine, combining with magnetic pulse acupoint stimulation, and observe the therapeutic effects of such combination therapy method. Methods: 56 old people with coronary heart disease are randomly divided into a treatment group and a control group. Both groups of patients are treated by the routine drugs, in addition, the patients of the treatment group are treated by magnetic pulse therapy additionally. Compare clinical symptoms, blood lipid and blood rheological indexes of the patients in the two groups when they are selected and after 30 days’ treatment. Results: after 30 days’ treatment, it is found that clinical symptoms, blood lipid and blood rheological indexes of the patients in the treatment group are significantly improved compared with those when they are selected and those of the control group (P<0.05). Conclusion: patients with coronary heart disease, treated by pulsed magnetic therapy and the conventional drug intervention, had relieved synptom, improve blood lipid and heart blood supply function. PMID:26309664

  4. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI.

    PubMed

    Motaal, Abdallah G; Noorman, Nils; de Graaf, Wolter L; Hoerr, Verena; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously with the heartbeat, resulting in a randomly undersampled kt-space that facilitates compressed sensing reconstruction. The sequence was tested in 4 healthy rats and 4 rats with chronic myocardial infarction, approximately 2 months after surgery. As a control, a non-accelerated self-gated multi-slice FLASH sequence with an echo time (TE) of 2.76 ms, 4.5 signal averages, a matrix of 192 × 192, and an acquisition time of 2 min 34 s per slice was used to obtain Cine MRI with 15 frames per heartbeat. Non-accelerated UTE MRI was performed with TE = 0.29 ms, a reconstruction matrix of 192 × 192, and an acquisition time of 3 min 47 s per slice for 3.5 averages. Accelerated imaging with 2×, 4× and 5× undersampled kt-space data was performed with 1 min, 30 and 15 s acquisitions, respectively. UTE Cine images up to 5× undersampled kt-space data could be successfully reconstructed using a compressed sensing algorithm. In contrast to the FLASH Cine images, flow artifacts in the UTE images were nearly absent due to the short echo time, simplifying segmentation of the left ventricular (LV) lumen. LV functional parameters derived from the control and the accelerated Cine movies were statistically identical.

  5. Ultrasonic Imaging of Propagation of Contraction and Relaxation in the Heart Walls at High Temporal Resolution

    NASA Astrophysics Data System (ADS)

    Yoshiara, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi; Tanaka, Motonao

    2007-07-01

    Strain and strain rate imaging have been shown to be useful for the assessment of regional myocardial function. However, some of the mechanisms of transition in myocardial contraction/relaxation remain unclear. In this study, the RF echoes from the left ventricular (LV) wall were acquired in both the longitudinal-axis view and the apical view by scanning ultrasonic beams sparsely to improve the temporal resolution, and a frame rate of about 600 Hz was realized. The phased tracking method was applied to multiple points in the heart wall to estimate the strain rate. The spatial distribution of the strain rate measured about every 2 ms showed the continuous transition in the myocardium. In the apical view, the propagation speed of contraction from the apex to the base side in the interventricular septum was found to be about 0.8 m/s. These results indicate the potential of this method in the estimation of the physiological function of the myocardium.

  6. CT imaging in congenital heart disease: an approach to imaging and interpreting complex lesions after surgical intervention for tetralogy of Fallot, transposition of the great arteries, and single ventricle heart disease.

    PubMed

    Han, B Kelly; Lesser, John R

    2013-01-01

    Echocardiography and cardiac magnetic resonance imaging are the most commonly performed diagnostic studies in patients with congenital heart disease. A small percentage of patients with congenital heart disease will be referred to cardiac CT subsequent to echocardiography when magnetic resonance imaging is insufficient, contraindicated, or considered high risk. The most common complex lesions referred for CT at our institution are tetralogy of Fallot, transposition complexes, and single ventricle heart disease. This review discusses the most common surgical procedures performed in these patients and the technical considerations for optimal image acquisition on the basis of the prior procedure and the individual patient history. Cardiac CT can provide the functional and anatomic information required for decision making in complex congenital heart disease. Image interpretation is aided by knowledge of the common approaches to operative repair and the residual hemodynamic abnormalities. Acquisition and interpretation that is both individualized to the patient's underlying disease and the specific clinical question is likely to maintain diagnostic accuracy while decreasing the potential risk of cardiac CT.

  7. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part II: Acyanotic Congenital Heart Disease and Extracardiac Abnormalities.

    PubMed

    Bhat, Venkatraman; Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-06-01

    Acyanotic heart disease constitutes a significant majority of patient who may present with non-cardiac symptoms. Either they are detected incidentally or present with respiratory complaints. Equipped with knowledge of anatomy by echocardiography and radiographic methods described in previous part of this presentation, diagnosis may be confidently attempted. On plain radiography acyanotic congenital heart diseases have variable appearance depending upon severity of disease. Cardiac size, chamber enlargement and pulmonary vascular pattern are key elements. Typically left to right shunts with large volume flow are associated with pulmonary plethora. Plain radiography has an important role in detecting manifestation of pulmonary arterial hypertension. Severe stenosis of pulmonary valve is associated with pulmonary oligemia. Small intra-cardiac shunts and anomalies of coronary arteries generally present with normal cardiac size and pulmonary arterial pattern. Disease spectrum presented in this illustration demands thorough scrutiny of pulmonary, osseous and abdominal abnormalities. This section illustrates some commonly encountered spectrum of acyanotic cardiac disease.

  8. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part II: Acyanotic Congenital Heart Disease and Extracardiac Abnormalities

    PubMed Central

    Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-01-01

    Acyanotic heart disease constitutes a significant majority of patient who may present with non-cardiac symptoms. Either they are detected incidentally or present with respiratory complaints. Equipped with knowledge of anatomy by echocardiography and radiographic methods described in previous part of this presentation, diagnosis may be confidently attempted. On plain radiography acyanotic congenital heart diseases have variable appearance depending upon severity of disease. Cardiac size, chamber enlargement and pulmonary vascular pattern are key elements. Typically left to right shunts with large volume flow are associated with pulmonary plethora. Plain radiography has an important role in detecting manifestation of pulmonary arterial hypertension. Severe stenosis of pulmonary valve is associated with pulmonary oligemia. Small intra-cardiac shunts and anomalies of coronary arteries generally present with normal cardiac size and pulmonary arterial pattern. Disease spectrum presented in this illustration demands thorough scrutiny of pulmonary, osseous and abdominal abnormalities. This section illustrates some commonly encountered spectrum of acyanotic cardiac disease. PMID:27504381

  9. A reappraisal of the use of infrared thermal image analysis in medicine.

    PubMed

    Jones, B F

    1998-12-01

    Infrared thermal imaging of the skin has been used for several decades to monitor the temperature distribution of human skin. Abnormalities such as malignancies, inflammation, and infection cause localized increases in temperature which show as hot spots or as asymmetrical patterns in an infrared thermogram. Even though it is nonspecific, infrared thermology is a powerful detector of problems that affect a patient's physiology. While the use of infrared imaging is increasing in many industrial and security applications, it has declined in medicine probably because of the continued reliance on first generation cameras. The transfer of military technology for medical use has prompted this reappraisal of infrared thermology in medicine. Digital infrared cameras have much improved spatial and thermal resolutions, and libraries of image processing routines are available to analyze images captured both statically and dynamically. If thermographs are captured under controlled conditions, they may be interpreted readily to diagnose certain conditions and to monitor the reaction of a patient's physiology to thermal and other stresses. Some of the major areas where infrared thermography is being used successfully are neurology, vascular disorders, rheumatic diseases, tissue viability, oncology (especially breast cancer), dermatological disorders, neonatal, ophthalmology, and surgery.

  10. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images*

    PubMed Central

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and Methods A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. Results With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. PMID:25741101

  11. 3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping

    PubMed Central

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-01-01

    Cardiac ultrasound plays an important role in the imaging of hearts in basic cardiovascular research and clinical examinations. 3D ultrasound imaging can provide the geometry or motion information of the heart. Especially, the wrapping of cardiac fiber orientations to the ultrasound volume could supply useful information on the stress distributions and electric action spreading. However, how to acquire 3D ultrasound volumes of the heart of small animals in vivo for cardiac fiber wrapping is still a challenging problem. In this study, we provide an approach to acquire 3D ultrasound volumes of the rat hearts in vivo. The comparison between both in vivo and ex vivo geometries indicated 90.1% Dice similarity. In this preliminary study, the evaluations of the cardiac fiber orientation wrapping errors were 24.7° for the acute angle error and were 22.4° for the inclination angle error. This 3D ultrasound imaging and fiber orientation estimation technique have potential applications in cardiac imaging. PMID:26412926

  12. 3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Cardiac ultrasound plays an important role in the imaging of hearts in basic cardiovascular research and clinical examinations. 3D ultrasound imaging can provide the geometry or motion information of the heart. Especially, the wrapping of cardiac fiber orientations to the ultrasound volume could supply useful information on the stress distributions and electric action spreading. However, how to acquire 3D ultrasound volumes of the heart of small animals in vivo for cardiac fiber wrapping is still a challenging problem. In this study, we provide an approach to acquire 3D ultrasound volumes of the rat hearts in vivo. The comparison between both in vivo and ex vivo geometries indicated 90.1% Dice similarity. In this preliminary study, the evaluations of the cardiac fiber orientation wrapping errors were 24.7° for the acute angle error and were 22.4° for the inclination angle error. This 3D ultrasound imaging and fiber orientation estimation technique have potential applications in cardiac imaging.

  13. World Wide Web interface to digital imaging and communication in medicine-capable image servers.

    PubMed

    Browning, G C; Liang, Y; Buckwalter, K A; Kruger, R A; Aisen, A

    1996-11-01

    As a trial project, the Indiana University Department of Radiology has develop[ed a low-cost manner of distributing radiological images throughout a medical environment using the World Wide Web (WWW). The interface requires the user to have a WWW-browser client, such as Netscape, running on UNIX, PC, or Macintosh platforms. A forms-based interface allows the user to query several DICOM-capable machines at the machine, patient, study, series, and image levels. Once an image transfer is initiated, images are prewindowed from 16- to 8-bits, compressed using public domain Joint Photographic Expert Group (JPEG) compression routines, transferred to the WWW client program, and decompressed and displayed using a locally selected image viewing program. At the currently implemented level of compression (75% quality), the entire fetch-transform-JPEG-display process takes 2 to 5 seconds over Ethernet, depending on the platform used.

  14. Imaging cardiac activation sequence during ventricular tachycardia in a canine model of nonischemic heart failure.

    PubMed

    Han, Chengzong; Pogwizd, Steven M; Yu, Long; Zhou, Zhaoye; Killingsworth, Cheryl R; He, Bin

    2015-01-15

    Noninvasive cardiac activation imaging of ventricular tachycardia (VT) is important in the clinical diagnosis and treatment of arrhythmias in heart failure (HF) patients. This study investigated the ability of the three-dimensional cardiac electrical imaging (3DCEI) technique for characterizing the activation patterns of spontaneously occurring and norepinephrine (NE)-induced VTs in a newly developed arrhythmogenic canine model of nonischemic HF. HF was induced by aortic insufficiency followed by aortic constriction in three canines. Up to 128 body-surface ECGs were measured simultaneously with bipolar recordings from up to 232 intramural sites in a closed-chest condition. Data analysis was performed on the spontaneously occurring VTs (n=4) and the NE-induced nonsustained VTs (n=8) in HF canines. Both spontaneously occurring and NE-induced nonsustained VTs initiated by a focal mechanism primarily from the subendocardium, but occasionally from the subepicardium of left ventricle. Most focal initiation sites were located at apex, right ventricular outflow tract, and left lateral wall. The NE-induced VTs were longer, more rapid, and had more focal sites than the spontaneously occurring VTs. Good correlation was obtained between imaged activation sequence and direct measurements (averaged correlation coefficient of ∼0.70 over 135 VT beats). The reconstructed initiation sites were ∼10 mm from measured initiation sites, suggesting good localization in such a large animal model with cardiac size similar to a human. Both spontaneously occurring and NE-induced nonsustained VTs had focal initiation in this canine model of nonischemic HF. 3DCEI is feasible to image the activation sequence and help define arrhythmia mechanism of nonischemic HF-associated VTs. PMID:25416188

  15. Shadowed by light, knowing by heart: Preservice teachers' images of knowing (in) math and science

    NASA Astrophysics Data System (ADS)

    Nolan, Kathleen T.

    Elementary preservice teachers' school experiences of math and science have shaped their images of knowing, including what counts as knowledge and what it means to know (in) math and science. In this dissertation, preservice teachers' voices challenge the hegemony of official everyday narratives relating to these images. The presentation of this research text as a physical science textbook (entitled: postMODERN conSCIENCEness: Reflections on Light) presents a kaleidoscope of elementary preservice teachers' narratives of knowing (in) math and science. These narratives are tied together by the metaphorical thread of the properties of light, but also held apart by the tensions and contradictions with/in such a critical epistemological exploration. The only grand narrative that could be imag(in)ed is one in which the personal lived experience narratives of the participants mingle and interweave to create a sort of kaleidoscope of narratives. With each turn of a kaleidoscope, light's reflection engenders new patterns and emergent designs. The narratives of this research text highlight patterns of exclusion, gendered messages, binary oppositions, and the particle nature and shadowy texture of knowing (in) math and science. Emphasized in the (re)presentation format is the reflexive and polyphonic nature of the research design, illustrated through layers of voiced re-presentation text with/in performing text with/in metaphorical text. The metaphor of a kaleidoscope is an empowering possibility for a critical narrative written to both engage and provoke the reader into imag(in)ing a critical journey toward possibilities for a different "knowing by heart" in math and science and for appreciating lived experience narratives with/in teacher education.

  16. Adult congenital heart disease imaging with second-generation dual-source computed tomography: initial experiences and findings.

    PubMed

    Ghoshhajra, Brian B; Sidhu, Manavjot S; El-Sherief, Ahmed; Rojas, Carlos; Yeh, Doreen Defaria; Engel, Leif-Christopher; Liberthson, Richard; Abbara, Suhny; Bhatt, Ami

    2012-01-01

    Adult congenital heart disease patients present a unique challenge to the cardiac imager. Patients may present with both acute and chronic manifestations of their complex congenital heart disease and also require surveillance for sequelae of their medical and surgical interventions. Multimodality imaging is often required to clarify their anatomy and physiology. Radiation dose is of particular concern in these patients with lifelong imaging needs for their chronic disease. The second-generation dual-source scanner is a recently available advanced clinical cardiac computed tomography (CT) scanner. It offers a combination of the high-spatial resolution of modern CT, the high-temporal resolution of dual-source technology, and the wide z-axis coverage of modern cone-beam geometry CT scanners. These advances in technology allow novel protocols that markedly reduce scan time, significantly reduce radiation exposure, and expand the physiologic imaging capabilities of cardiac CT. We present a case series of complicated adult congenital heart disease patients imaged by the second-generation dual-source CT scanner with extremely low-radiation doses and excellent image quality.

  17. Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes

    PubMed Central

    Poutiainen, Pekka; Jaronen, Merja; Quintana, Francisco J.; Brownell, Anna-Liisa

    2016-01-01

    Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both monitoring of neuronal network and therapeutic outcome as well as the tools to discover novel therapeutic targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms to better achieve precision medicine. Traditionally, magnetic resonance imaging (MRI) has been considered the golden standard in MS research and diagnosis. However, positron emission tomography (PET) imaging can provide functional information of molecular biology in detail even prior to anatomic changes, allowing close follow up of disease progression and treatment response. The recent findings support three major neuroinflammation components in MS: astrogliosis, cytokine elevation, and significant changes in specific proteins, which offer a great variety of specific targets for imaging purposes. Regardless of the fact that imaging of astrocyte function is still a young field and in need for development of suitable imaging ligands, recent studies have shown that inflammation and astrocyte activation are related to progression of MS. MS is a complex disease, which requires understanding of disease mechanisms for successful treatment. PET is a precise non-invasive imaging method for biochemical functions and has potential to enhance early and accurate diagnosis for precision therapy of MS. In this review we focus on modulation of different receptor systems and inflammatory aspect of MS, especially on activation of glial cells, and summarize the recent findings of PET imaging in MS and present the most potent targets for new biomarkers with the main focus on experimental MS research.

  18. Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes

    PubMed Central

    Poutiainen, Pekka; Jaronen, Merja; Quintana, Francisco J.; Brownell, Anna-Liisa

    2016-01-01

    Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both monitoring of neuronal network and therapeutic outcome as well as the tools to discover novel therapeutic targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms to better achieve precision medicine. Traditionally, magnetic resonance imaging (MRI) has been considered the golden standard in MS research and diagnosis. However, positron emission tomography (PET) imaging can provide functional information of molecular biology in detail even prior to anatomic changes, allowing close follow up of disease progression and treatment response. The recent findings support three major neuroinflammation components in MS: astrogliosis, cytokine elevation, and significant changes in specific proteins, which offer a great variety of specific targets for imaging purposes. Regardless of the fact that imaging of astrocyte function is still a young field and in need for development of suitable imaging ligands, recent studies have shown that inflammation and astrocyte activation are related to progression of MS. MS is a complex disease, which requires understanding of disease mechanisms for successful treatment. PET is a precise non-invasive imaging method for biochemical functions and has potential to enhance early and accurate diagnosis for precision therapy of MS. In this review we focus on modulation of different receptor systems and inflammatory aspect of MS, especially on activation of glial cells, and summarize the recent findings of PET imaging in MS and present the most potent targets for new biomarkers with the main focus on experimental MS research. PMID:27695400

  19. PREFACE: International Conference on Image Optimisation in Nuclear Medicine (OptiNM)

    NASA Astrophysics Data System (ADS)

    Christofides, Stelios; Parpottas, Yiannis

    2011-09-01

    Conference logo The International Conference on Image Optimisation in Nuclear Medicine was held at the Atlantica Aeneas Resort in Ayia Napa, Cyprus between 23-26 March 2011. It was organised in the framework of the research project "Optimising Diagnostic Value in SPECT Myocardial Perfusion Imaging" (YΓΕΙΑ/ΔYΓΕΙΑ/0308/11), funded by the Cyprus Research Promotion Foundation and the European Regional Development Fund, to present the highlights of the project, discuss the progress and results, and define future related goals. The aim of this International Conference was to concentrate on image optimization approaches in Nuclear Medicine. Experts in the field of nuclear medicine presented their latest research results, exchanged experiences and set future goals for image optimisation while balancing patient dose and diagnostic value. The conference was jointly organized by the Frederick Research Centre in Cyprus, the Department of Medical and Public Health Services of the Cyprus Ministry of Health, the Biomedical Research Foundation in Cyprus and the AGH University of Science and Technology in Poland. It was supported by the Cyprus Association of Medical Physics and Biomedical Engineering, and the Cyprus Society of Nuclear Medicine. The conference was held under the auspices of the European Federation of Organisations for Medical Physics and the European Association of Nuclear Medicine. The conference scientific programme covered several important topics such as functional imaging; image optimization; quantification for diagnosis; justification; simulations; patient dosimetry, staff exposures and radiation risks; quality assurance and clinical audit; education, training and radiation protection culture; hybrid systems and image registration; and new and competing technologies. The programme consisted of 13 invited and keynote presentations as well as workshops, round table discussions and a number of scientific sessions. A total of 51 speakers presented their

  20. Heart Tests Before Surgery: When You Need an Imaging Test - and When You Don't

    MedlinePlus

    ... Resources Heart Tests Before Chest Surgery Heart Stress Tests Before Chest Surgery When you need them—and ... If you’re having chest surgery, a stress test can sometimes be helpful. It might find problems ...

  1. Pulmonary nuclear medicine: Techniques in diagnosis of lung disease

    SciTech Connect

    Atkins, H.L.

    1984-01-01

    This book presents papers on the application of nuclear medicine to the diagnosis of lung diseases. Topics considered include lung physiology and anatomy, radiopharmaceuticals in pulmonary medicine, pulmonary embolism, obstructive pulmonary disease, diffuse infiltrative lung disease, pneumoconioses, tumor localization scans in primary lung tumors, the interactions of heart diseases and lung diseases on radionuclide tests of lung anatomy and function, radionuclide imaging in pediatric lung diseases, and future possibilities in pulmonary nuclear medicine.

  2. Segmentation of the heart and major vascular structures in cardiovascular CT images

    NASA Astrophysics Data System (ADS)

    Peters, J.; Ecabert, O.; Lorenz, C.; von Berg, J.; Walker, M. J.; Ivanc, T. B.; Vembar, M.; Olszewski, M. E.; Weese, J.

    2008-03-01

    Segmentation of organs in medical images can be successfully performed with shape-constrained deformable models. A surface mesh is attracted to detected image boundaries by an external energy, while an internal energy keeps the mesh similar to expected shapes. Complex organs like the heart with its four chambers can be automatically segmented using a suitable shape variablility model based on piecewise affine degrees of freedom. In this paper, we extend the approach to also segment highly variable vascular structures. We introduce a dedicated framework to adapt an extended mesh model to freely bending vessels. This is achieved by subdividing each vessel into (short) tube-shaped segments ("tubelets"). These are assigned to individual similarity transformations for local orientation and scaling. Proper adaptation is achieved by progressively adapting distal vessel parts to the image only after proximal neighbor tubelets have already converged. In addition, each newly activated tubelet inherits the local orientation and scale of the preceeding one. To arrive at a joint segmentation of chambers and vasculature, we extended a previous model comprising endocardial surfaces of the four chambers, the left ventricular epicardium, and a pulmonary artery trunk. Newly added are the aorta (ascending and descending plus arch), superior and inferior vena cava, coronary sinus, and four pulmonary veins. These vessels are organized as stacks of triangulated rings. This mesh configuration is most suitable to define tubelet segments. On 36 CT data sets reconstructed at several cardiac phases from 17 patients, segmentation accuracies of 0.61-0.80mm are obtained for the cardiac chambers. For the visible parts of the newly added great vessels, surface accuracies of 0.47-1.17mm are obtained (larger errors are asscociated with faintly contrasted venous structures).

  3. Multiphoton light-sheet microscopy using wavelength mixing: fast multicolor imaging of the beating Zebrafish heart with low photobleaching

    NASA Astrophysics Data System (ADS)

    Mahou, Pierre; Vermot, Julien; Beaurepaire, Emmanuel; Supatto, Willy

    2015-03-01

    Two-photon laser scanning microscopy has become a standard to map thick and live tissues. However, its application for fast and multicolor imaging remains challenging. To address this issue, we report on the implementation of mixed wavelength excitation in a two-photon light-sheet microscope. We illustrate the potential of the technique by recording sustained multicolor two-photon movies of the beating heart in zebrafish embryos with negligible photobleaching at 28 million pixels/second. In particular, 3D reconstructions of the heart periodic motion are obtained with sufficient spatiotemporal resolution to track the fast movements of individual cells during a cardiac cycle.

  4. Heart wall velocimetry and exogenous contrast-based cardiac flow imaging in Drosophila melanogaster using Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choma, Michael A.; Suter, Melissa J.; Vakoc, Benjamin J.; Bouma, Brett E.; Tearney, Guillermo J.

    2010-09-01

    Drosophila melanogaster (fruit fly) is a central organism in biology and is becoming increasingly important in the cardiovascular sciences. Prior work in optical imaging of the D. melanogaster heart has focused on static and dynamic structural anatomy. In the study, it is demonstrated that Doppler optical coherence tomography can quantify dynamic heart wall velocity and hemolymph flow in adult D. melanogaster. Since hemolymph is optically transparent, a novel exogenous contrast technique is demonstrated to increase the backscatter-based intracardiac Doppler flow signal. The results presented here open up new possibilities for functional cardiovascular phenotyping of normal and mutant D. melanogaster.

  5. Effectiveness of Using Dual-source CT and the Upshot it creates on Both Heart Rate and Image Quality

    PubMed Central

    Selçuk, Tuba; Otçu, Hafize; Yüceler, Zeyneb; Bilgili, Çiğdem; Bulakçı, Mesut; Savaş, Yıldıray; Çelik, Ömer

    2016-01-01

    Background: Early detection of coronary artery disease (CAD) is important because of the high morbidity and mortality rates. As invasive coronary angiography (ICA) is an invasive procedure, an alternative diagnostic method; coronary computed tomography angiography (CTA), has become more widely used by the improvements in detector technology. Aims: In this study, we aimed to examine the accuracy and image quality of high-pitch 128-slice dual-source CTA taking the ICA as reference technique. We also aimed to compare the accuracy and image quality between different heart rate groups of >70 beates per minute (bpm) and ≤70 bpm. Study Design: Retrospective cross-sectional study. Methods: Among 450 patients who underwent coronary CTA with the FLASH spiral technique, performed with a second generation dual-source computed tomography device with a pitch value of 3.2, 102 patients without stent and/or bypass surgery history and clinically suspected coronary artery disease who underwent ICA within 15 days were enrolled. Image quality was assessed by two independent radiologists using a 4-point scale (1=absence of any artifacts- 4=non-evaluable). A stenosis >50% was considered significant on a per-segment, per-vessel, and per-patient basis and ICA was considered the reference method. Radiation doses were determined using dose length product (DLP) values detected by the computed tomography (CT) device. In addition, patients were classified into two groups according to their heart rates as ≤70 bpm (73 patients) and >70 bpm (29 patients). The relation between the diagnostic accuracy and heart rate groups were evaluated. Results: Overall, 1495 (98%) coronary segments were diagnostic in 102 patients (32 male, 70 female, mean heart rate: 65 bpm). There was a significant correlation between image quality and mean heart rate in the right coronary artery (RCA) segments. The effective radiation dose was 0.98±0.09 mili Sievert (mSv). On a per-patient basis, sensitivity, specificity

  6. Heart wall velocimetry and exogenous contrast-based cardiac flow imaging in Drosophila melanogaster using Doppler optical coherence tomography

    PubMed Central

    Choma, Michael A.; Suter, Melissa J.; Vakoc, Benjamin J.; Bouma, Brett E.; Tearney, Guillermo J.

    2010-01-01

    Drosophila melanogaster (fruit fly) is a central organism in biology and is becoming increasingly important in the cardiovascular sciences. Prior work in optical imaging of the D. melanogaster heart has focused on static and dynamic structural anatomy. In the study, it is demonstrated that Doppler optical coherence tomography can quantify dynamic heart wall velocity and hemolymph flow in adult D. melanogaster. Since hemolymph is optically transparent, a novel exogenous contrast technique is demonstrated to increase the backscatter-based intracardiac Doppler flow signal. The results presented here open up new possibilities for functional cardiovascular phenotyping of normal and mutant D. melanogaster. PMID:21054114

  7. Imaging Mass Spectrometry: Enabling a New Age of Discovery in Biology and Medicine Through Molecular Microscopy

    PubMed Central

    Caprioli, Richard M.

    2015-01-01

    Imaging mass spectrometry (IMS) has become a valuable tool for the production of molecular maps in samples ranging from solid inorganic materials to biologicals such as cells and tissues. The unique features of IMS are its ability to map a wide variety of different types of molecules, its superb molecular specificity, and its potential for discovery since no target specific reagents are needed. IMS has made significant contributions in biology and medicine and promises to be a next generation tool in anatomic pathology. PMID:25801587

  8. Hearts Wish.

    ERIC Educational Resources Information Center

    Jones, Lethonee A.

    1989-01-01

    Investigates characteristics and themes in 102 drawings by sexually abused children. Themes of the drawings included genitalia, the absence of specific body parts, phallic symbols, inappropriate smiles, distorted body images, kinetic activity, prominent hands and fingers, and hearts. (RJC)

  9. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation). Progress report, January 15, 1992--January 14, 1993

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled ``Instrumentation and Quantitative Methods of Evaluation.`` Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  10. Dual adaptive statistical approach for quantitative noise reduction in photon-counting medical imaging: application to nuclear medicine images

    NASA Astrophysics Data System (ADS)

    Hannequin, Pascal Paul

    2015-06-01

    medicine images but can also be used for any other kind of photon-counting images, such as x-ray and fluorescence images.

  11. The multi-modality cardiac imaging approach to the Athlete's heart: an expert consensus of the European Association of Cardiovascular Imaging.

    PubMed

    Galderisi, Maurizio; Cardim, Nuno; D'Andrea, Antonello; Bruder, Oliver; Cosyns, Bernard; Davin, Laurent; Donal, Erwan; Edvardsen, Thor; Freitas, Antonio; Habib, Gilbert; Kitsiou, Anastasia; Plein, Sven; Petersen, Steffen E; Popescu, Bogdan A; Schroeder, Stephen; Burgstahler, Christof; Lancellotti, Patrizio

    2015-04-01

    The term 'athlete's heart' refers to a clinical picture characterized by a slow heart rate and enlargement of the heart. A multi-modality imaging approach to the athlete's heart aims to differentiate physiological changes due to intensive training in the athlete's heart from serious cardiac diseases with similar morphological features. Imaging assessment of the athlete's heart should begin with a thorough echocardiographic examination.Left ventricular (LV) wall thickness by echocardiography can contribute to the distinction between athlete's LV hypertrophy and hypertrophic cardiomyopathy (HCM). LV end-diastolic diameter becomes larger (>55 mm) than the normal limits only in end-stage HCM patients when the LV ejection fraction is <50%. Patients with HCM also show early impairment of LV diastolic function, whereas athletes have normal diastolic function.When echocardiography cannot provide a clear differential diagnosis, cardiac magnetic resonance (CMR) imaging should be performed.With CMR, accurate morphological and functional assessment can be made. Tissue characterization by late gadolinium enhancement may show a distinctive, non-ischaemic pattern in HCM and a variety of other myocardial conditions such as idiopathic dilated cardiomyopathy or myocarditis. The work-up of athletes with suspected coronary artery disease should start with an exercise ECG. In athletes with inconclusive exercise ECG results, exercise stress echocardiography should be considered. Nuclear cardiology techniques, coronary cardiac tomography (CCT) and/or CMR may be performed in selected cases. Owing to radiation exposure and the young age of most athletes, the use of CCT and nuclear cardiology techniques should be restricted to athletes with unclear stress echocardiography or CMR. PMID:25681828

  12. Distributing digital imaging and communications in medicine data and optimizing access over satellite networks.

    PubMed

    Ernst, R D; Kawashima, A; Shepherd, W; Tamm, E P; Sandler, C M

    1999-05-01

    To improve radiology access to full uncompressed Digital Imaging and Communications in Medicine (DICOM) data sets, we evaluated satellite access to a DICOM server. Radiologists' home computers were connected by satellite to a Medweb DICOM server (Medweb, San Francisco, CA). A 10.2-kb data set containing a 19-image head computed tomography (CT) scan was transferred using DirecPC (Hughes Electronics Corp, Arlington, VA) at three different times of the day; 6 AM, 3 PM, and 8 PM. The average transfer time for all 19 images from the DICOM server was 4 minutes and 17 seconds (257 seconds). The slowest transfer rate of 670 seconds (121 kbps) was obtained at 8 PM. The best transfer rate of 2 minutes, 54 seconds (467 kbps) was obtained at 6 AM. The full 16-bit DICOM images were viewed with bone, brain, and soft tissue windows. The Medweb plug-in viewer loaded the first image within 30 seconds of selecting the case for satellite transfer. In conclusion, satellite internet transfer of radiology studies is suitable for timely review of full DICOM data sets and can expand the range of teleradiology consultation.

  13. Imaging in sport and exercise medicine: "a sports physician's outlook and needs".

    PubMed

    McCurdie, I

    2012-08-01

    Sport and exercise medicine (SEM) is an exciting new medical specialty that thrives on interdisciplinary practice. The SEM physician will usually be found managing a wider, multidisciplinary team of specialists, orchestrating their various inputs to ensure that the most effective management plan is delivered to the patient. One key member of this team is the radiologist, with whom the SEM physician usually has a very close working relationship. Areas of SEM practice that commonly involve significant input from radiologists include the use of appropriate imaging to confirm an accurate diagnosis and to inform management planning (such as decisions on return to play in the elite athlete), various screening and pre-participation assessments and also technical assistance with certain procedures. This article discusses the relationship between the SEM physician and the radiologist across each of these areas, illustrating the important contribution made by imaging services to the specialty of SEM.

  14. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Caffo, Brian; Frey, Eric C.

    2016-04-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  15. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods.

    PubMed

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-04-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  16. Interventional treatment of congenital heart disease patients.

    PubMed

    Marini, D; Agnoletti, G

    2010-02-01

    During the last 10 years the interventional treatment of congenital and structural heart diseases has known enormous changes in techniques, methods and patients management. Lesions previously treated surgically are now approached in the catheterization laboratory. The advent of multidisciplinary approach of congenital heart disease has made possible the development of hybrid techniques, of fetal medicine and of magnetic resonance imaging (MRI)- guided cardiac catheterization. Technological innovation has introduced new concepts in treatment of congenital heart disease patients and has allowed to adapt different techniques to single patients. The knowledge of the evolution of structural heart disease has allowed to chose the best percutaneous and/ or surgical technique and the best materials to optimize long term results. Improvement in non invasive imaging modality has allowed to diminish the radiation exposure and to provide useful information to interventional cardiologists and cardiac surgeons. Absorbable, drug eluting tools will change the treatment and probably the natural history of congenital and structural cardiac and vascular diseases.

  17. Characterization of Diffuse Fibrosis in the Failing Human Heart via Diffusion Tensor Imaging and Quantitative Histological Validation

    PubMed Central

    Abdullah, Osama M.; Drakos, Stavros G.; Diakos, Nikolaos A.; Wever-Pinzon, Omar; Kfoury, Abdallah G.; Stehlik, Josef; Selzman, Craig H.; Reid, Bruce B.; Brunisholz, Kim; Verma, Divya Ratan; Myrick, Craig; Sachse, Frank B.; Li, Dean Y.; Hsu, Edward W.

    2014-01-01

    Non-invasive imaging techniques are highly desirable as an alternative to conventional biopsy for characterizing remodeling of tissues associated with disease progression, including end-stage heart failure. Cardiac diffusion tensor imaging (DTI) has become an established method for characterizing myocardial microstructure. However, the relationships between diffuse myocardial fibrosis, which is a key biomarker for staging and treatment planning of the failing heart, and measured DTI parameters have yet to be systematically investigated. In this study, DTI was performed on left ventricular specimens collected from patients with chronic end-stage heart failure due to idiopathic dilated cardiomyopathy (n=14) and from normal donors (n=5). Scalar DTI parameters, including fractional anisotropy (FA), mean (MD), primary (D1), secondary (D2), and tertiary (D3) diffusivities, were correlated to collagen content measured by digital microscopy. Compared to hearts from normal subjects, the FA in failing hearts decreased by 22%, whereas the MD, D2 and D3 increased by 12%, 14%, and 24% respectively (P < 0.01). No significant change was detected for D1 between the two groups. Furthermore, significant correlation was observed between the DTI scalar indices and quantitative histological measurements of collagen (i.e., fibrosis). Pearson's correlation coefficient (r) between collagen content and either FA, MD, D2, and D3 was -0.51, 0.59, 0.56 and 0.62 (P < 0.05), respectively. The correlation between D1 and collagen content was not significant (r = 0.46, P = 0.05). Computational modeling analysis indicated that the behaviors of the DTI parameters as a function of the degree of fibrosis were well explained by compartmental exchange between myocardial and collagenous tissues. Combined, these findings suggest that scalar DTI parameters can be used as metrics for noninvasive assessment of diffuse fibrosis in failing hearts. PMID:25200106

  18. Small flexible structure for targeted delivery of therapeutic and imaging moieties in precision medicine

    PubMed Central

    Li, Bingjie; Qiu, Xiuchun; Zou, Chaoxia; Ran, Henry; Zhang, Fujun; Ke, Shi

    2016-01-01

    The goals of precision medicine are to link diagnostic and therapeutic agents, improve clinical outcomes, and minimize side effects. We present a simple, small, flexible three-armed core structure that can be conjugated to targeting, imaging, and therapeutic moieties. The targeting molecule can be a peptide, protein, or chemical compound. The diagnostic reporter can be optical and/or nuclear in nature, and can be replaced by chemo- and/or radiotherapeutic compounds for treatment using a single targeting molecule. Imaging components can be used to detect disease biomarkers, monitor treatment response, and guide surgery in real-time to create a tumor-free margin. Isotope impurity can be exploited to visualize whole-body distribution of therapeutic agents. The one-to-one ratio of targeting component to therapeutic agents facilitates dose calculation. The simple synthesis and flexible, modular nature of the agent facilitate high-purity, large-scale production. The core capacity to “seek, treat, and see” may advance precision medicine in the future. PMID:27027441

  19. Novel Card Games for Learning Radiographic Image Quality and Urologic Imaging in Veterinary Medicine.

    PubMed

    Ober, Christopher P

    2016-01-01

    Second-year veterinary students are often challenged by concepts in veterinary radiology, including the fundamentals of image quality and generation of differential lists. Four card games were developed to provide veterinary students with a supplemental means of learning about radiographic image quality and differential diagnoses in urogenital imaging. Students played these games and completed assessments of their subject knowledge before and after playing. The hypothesis was that playing each game would improve students' understanding of the topic area. For each game, students who played the game performed better on the post-test than students who did not play that game (all p<.01). For three of the four games, students who played each respective game demonstrated significant improvement in scores between the pre-test and the post-test (p<.002). The majority of students expressed that the games were both helpful and enjoyable. Educationally focused games can help students learn classroom and laboratory material. However, game design is important, as the game using the most passive learning process also demonstrated the weakest results. In addition, based on participants' comments, the games were very useful in improving student engagement in the learning process. Thus, use of games in the classroom and laboratory setting seems to benefit the learning process. PMID:26966984

  20. Novel Card Games for Learning Radiographic Image Quality and Urologic Imaging in Veterinary Medicine.

    PubMed

    Ober, Christopher P

    2016-01-01

    Second-year veterinary students are often challenged by concepts in veterinary radiology, including the fundamentals of image quality and generation of differential lists. Four card games were developed to provide veterinary students with a supplemental means of learning about radiographic image quality and differential diagnoses in urogenital imaging. Students played these games and completed assessments of their subject knowledge before and after playing. The hypothesis was that playing each game would improve students' understanding of the topic area. For each game, students who played the game performed better on the post-test than students who did not play that game (all p<.01). For three of the four games, students who played each respective game demonstrated significant improvement in scores between the pre-test and the post-test (p<.002). The majority of students expressed that the games were both helpful and enjoyable. Educationally focused games can help students learn classroom and laboratory material. However, game design is important, as the game using the most passive learning process also demonstrated the weakest results. In addition, based on participants' comments, the games were very useful in improving student engagement in the learning process. Thus, use of games in the classroom and laboratory setting seems to benefit the learning process.

  1. Feasibility of long-distance heart rate monitoring using transmittance photoplethysmographic imaging (PPGI)

    PubMed Central

    Amelard, Robert; Scharfenberger, Christian; Kazemzadeh, Farnoud; Pfisterer, Kaylen J.; Lin, Bill S.; Clausi, David A.; Wong, Alexander

    2015-01-01

    Photoplethysmography (PPG) devices are widely used for monitoring cardiovascular function. However, these devices require skin contact, which restricts their use to at-rest short-term monitoring. Photoplethysmographic imaging (PPGI) has been recently proposed as a non-contact monitoring alternative by measuring blood pulse signals across a spatial region of interest. Existing systems operate in reflectance mode, many of which are limited to short-distance monitoring and are prone to temporal changes in ambient illumination. This paper is the first study to investigate the feasibility of long-distance non-contact cardiovascular monitoring at the supermeter level using transmittance PPGI. For this purpose, a novel PPGI system was designed at the hardware and software level. Temporally coded illumination (TCI) is proposed for ambient correction, and a signal processing pipeline is proposed for PPGI signal extraction. Experimental results show that the processing steps yielded a substantially more pulsatile PPGI signal than the raw acquired signal, resulting in statistically significant increases in correlation to ground-truth PPG in both short- and long-distance monitoring. The results support the hypothesis that long-distance heart rate monitoring is feasible using transmittance PPGI, allowing for new possibilities of monitoring cardiovascular function in a non-contact manner. PMID:26440644

  2. Feasibility of long-distance heart rate monitoring using transmittance photoplethysmographic imaging (PPGI)

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Scharfenberger, Christian; Kazemzadeh, Farnoud; Pfisterer, Kaylen J.; Lin, Bill S.; Clausi, David A.; Wong, Alexander

    2015-10-01

    Photoplethysmography (PPG) devices are widely used for monitoring cardiovascular function. However, these devices require skin contact, which restricts their use to at-rest short-term monitoring. Photoplethysmographic imaging (PPGI) has been recently proposed as a non-contact monitoring alternative by measuring blood pulse signals across a spatial region of interest. Existing systems operate in reflectance mode, many of which are limited to short-distance monitoring and are prone to temporal changes in ambient illumination. This paper is the first study to investigate the feasibility of long-distance non-contact cardiovascular monitoring at the supermeter level using transmittance PPGI. For this purpose, a novel PPGI system was designed at the hardware and software level. Temporally coded illumination (TCI) is proposed for ambient correction, and a signal processing pipeline is proposed for PPGI signal extraction. Experimental results show that the processing steps yielded a substantially more pulsatile PPGI signal than the raw acquired signal, resulting in statistically significant increases in correlation to ground-truth PPG in both short- and long-distance monitoring. The results support the hypothesis that long-distance heart rate monitoring is feasible using transmittance PPGI, allowing for new possibilities of monitoring cardiovascular function in a non-contact manner.

  3. In-vivo motion analysis of bi-ventricular hearts from tagged MR images

    NASA Astrophysics Data System (ADS)

    Park, Kyoungju; Axel, Leon; Metaxas, Dimitris N.

    2005-04-01

    We conduct experiments to look at the in-vivo cardiac motion during systole, to visualize heart contraction, and to examine the clinical usefulness. Our model-based technique incorporates subject-specific modeling, motion analysis and the extraction of clinically relevant parameters within one framework. Previous bi-ventricular model based method could only handle up to the mid-ventricles and have a few test-subjects. Our parameterized model includes the LV, RV and up to the basal area for full ventricular motion study. Finite element methods capture cardiac motion by tracking the material points from tagged Magnetic Resonance (MR) images. A number of experiments from ten subjects are evaluated and analyzed. We tested subject several times and compared the resulting parameters to ensure the reproducibility and deviations. The resulting parameters can be used to describe the cardiac motion of normal subjects. The patterns of normal subjects were derived from experiments. While significant shape and motion variations were apparent in normal subjects, the quantitative analysis show typical patterns. Generally, the basal area moves downwards and the apical area contracts towards the cavity. The principal strain analysis describes the directions and magnitudes of maximum shortening, and maximum thickening.

  4. Smartphone-based heart-rate measurement using facial images and a spatiotemporal alpha-trimmed mean filter.

    PubMed

    Lee, J-S; Lin, K-W; Syue, J-L

    2016-04-29

    Currently, cardiovascular disease affects a relatively high proportion of the world's population. Thus, developing simple and effective methods for monitoring patients with cardiovascular disease is critical for research. Monitoring the heart rate of patients is a relatively simple and effective method for managing patients with this condition. For patients, the desired heart rate monitoring equipment should be portable, instantaneous, and accurate. Because smartphones have become the most prevalent mobile device, we utilized this technology as a platform for developing a novel heart-rate measurement system. Catering to the phenomenon of people using the front camera of their smartphones as a mirror, the proposed system was designed to analyze facial-image sequences captured using the front camera. A spatiotemporal alpha-trimmed mean filter was developed to estimate a user's heart rate quickly and accurately. The experimental results show that in addition to achieving these objectives, the developed system outperforms a similar personal computer-based system. In addition, the system performs effectively even when users are wearing glasses. Hence, the proposed system demonstrates practical value for people who must monitor their heart rate daily. PMID:27177107

  5. Dawn of advanced molecular medicine: nanotechnological advancements in cancer imaging and therapy.

    PubMed

    Kaittanis, Charalambos; Shaffer, Travis M; Thorek, Daniel L J; Grimm, Jan

    2014-01-01

    Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy. PMID:25271430

  6. Dawn of Advanced Molecular Medicine: Nanotechnological Advancements in Cancer Imaging and Therapy

    PubMed Central

    Kaittanis, Charalambos; Shaffer, Travis M.; Thorek, Daniel L. J.; Grimm, Jan

    2014-01-01

    Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy. PMID:25271430

  7. [Evaluation of high-resolution images application for wild medicinal plants macro monitoring: a case of Apocynum].

    PubMed

    Na, Ren-Hua; Zheng, Jiang-Hua; Guo, Bao-Lin; Shi, Min-Hui; Sen, Ba-Ti; Sun, Zhi-Qun; Sun, Cheng-Zhong; Li, Xiao-Jin; Jia, Xiao-Guang

    2014-05-01

    To investigate the resources of medicinal plant, such as wild Apocynum, supervised classification based on Principal Component Analysis (PCA) and texture feature were used to monitor wild medicinal plants from image captured by ZY-3 and World-view-2 and compare which satellite Image are more appropriate to monitor the wild medicinal plants. The research results shows that: for more complex growth conditions wild medicinal plants Apocynum, high-resolution images Worldview-2 is more suitable for its remote identification, the low-resolution satellite ZY-3 can only recognizes the wild medicinal plants which distributed intensively. If the study target distribution is more intensive and larger scale, and cultivated type medicinal plants, the use of satellite ZY-3 in low resolution remote sensing data to identify the target can be a good choice, it is not necessary to buy high-resolution data, in order to avoid waste of expenditure, for the scattered distribution, the high-resolution satellite imagery data may be indispensable to identify targets.

  8. Role of Cardiac Magnetic Resonance Imaging in the Management and Treatment of Ventricular Tachycardia in Patients With Structural Heart Disease.

    PubMed

    Mehrotra, Amit K; Callans, David

    2015-01-01

    Treatment for ventricular tachycardia (VT) generally includes 1 or more of the following options: antiarrhythmic therapy, an implantable cardioverter-defibrillator and/or catheter ablation. Catheter ablation is performed with an electroanatomic mapping system to define the heart's 3D anatomy, as well as regions of scar. Radiofrequency energy is then applied to areas of abnormal substrate within which are located channels critical to the VT circuit. Cardiac magnetic resonance (CMR) imaging is a non-invasive modality that provides high-resolution images of cardiac structure and function. CMR has become a very useful tool for sudden cardiac death risk stratification and to facilitate successful radiofrequency ablation of VT in patients with abnormal cardiac substrate. The role of CMR in the management and treatment of VT in patients with structural heart disease is reviewed.

  9. Regional myocardial velocity imaged by magnetic resonance in patients with ischaemic heart disease.

    PubMed Central

    Karwatowski, S P; Mohiaddin, R H; Yang, G Z; Firmin, D N; St John Sutton, M; Underwood, S R

    1994-01-01

    mapping can be used to assess regional long axis myocardial velocity. Ischaemic heart disease causes alterations in the patterns of left ventricular long axis velocity during early diastole. Images PMID:7833190

  10. Mount Etna, heart of the Mediterranean, in science, narrative, and images

    NASA Astrophysics Data System (ADS)

    Behncke, Boris; Patanè, Domenico; Mirella, Turco; Turi, Caggegi; Marco, Aliotta; Alfio, Amantia; Massimo, Cantarero; Francesco, Ciancitto

    2015-04-01

    A keen urge, enticing and potent at the same time, as only real passion can be, had taken hold of our hearts. It was thanks to Etna that we met. It had helped bring together communication, photography and volcanology into one single project, namely to share our emotions and those of the volcano and pass them on to whoever might believe in similar values. Two men and one woman, two Sicilians and one German, on the slopes of the mountain. Chance is the grand master of science, events, coincidences, facts and illusions which come to a crossroads where the spirit may feel at liberty. So here we are then, to tell you of the pulsating heart of a body in constant evolution, about half a million years old, to tell of the red "blood" feeding it, its destructive power, its growth and its dimensions changing in time: all evidence that our planet is very much alive. Because Etna volcano, locally called "Mungibeddu" or "a Muntagna", embodies the vital force of the Earth, to which we owe our existence. We have sought to combine science, narrative and images to meet the tastes of our cultured compatriots, those living beyond the Alps as well as those from overseas. Rightly so, because Etna belongs to humanity, and we have the privilege of dwelling in its arms. We also have the duty and the pleasure to share its existence with the few who may not know it, with the many who would like to understand its unusual aspects in greater depth and with those who walk its paths and explore its precipices perhaps to find their inner selves. The volcano shares the fears of the farm workers and of the inhabitants; it diffuses the intoxicating scent of the earth, air, water and wind. It feeds on the melancholic lullabies of those who have lost a loved one, those who have challenged the laws of nature. And always, at each moment, it is close to us, even as far as the sea of salty air and tears that mothers sometimes weep.

  11. A system for rapid prototyping of hearts with congenital malformations based on the medical imaging interaction toolkit (MITK)

    NASA Astrophysics Data System (ADS)

    Wolf, Ivo; Böttger, Thomas; Rietdorf, Urte; Maleike, Daniel; Greil, Gerald; Sieverding, Ludger; Miller, Stephan; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2006-03-01

    Precise knowledge of the individual cardiac anatomy is essential for diagnosis and treatment of congenital heart disease. Complex malformations of the heart can best be comprehended not from images but from anatomic specimens. Physical models can be created from data using rapid prototyping techniques, e.g., lasersintering or 3D-printing. We have developed a system for obtaining data that show the relevant cardiac anatomy from high-resolution CT/MR images and are suitable for rapid prototyping. The challenge is to preserve all relevant details unaltered in the produced models. The main anatomical structures of interest are the four heart cavities (atria, ventricles), the valves and the septum separating the cavities, and the great vessels. These can be shown either by reproducing the morphology itself or by producing a model of the blood-pool, thus creating a negative of the morphology. Algorithmically the key issue is segmentation. Practically, possibilities allowing the cardiologist or cardiac surgeon to interactively check and correct the segmentation are even more important due to the complex, irregular anatomy and imaging artefacts. The paper presents the algorithmic and interactive processing steps implemented in the system, which is based on the open-source Medical Imaging Interaction Toolkit (MITK, www.mitk.org). It is shown how the principles used in MITK enable to assemble the system from modules (functionalities) developed independently from each other. The system allows to produce models of the heart (and other anatomic structures) of individual patients as well as to reproduce unique specimens from pathology collections for teaching purposes.

  12. Experimental radionuclide ventriculography and the baboon (Papio ursinus) model: imaging projection of the heart and blood pool labelling.

    PubMed

    Dormehl, I C; du Plessis, M; Maree, M; van Wyk, A

    1986-01-01

    The chacma baboon (Papio ursinus) presents a suitable animal model for the evaluation of interpretation problems of data from radionuclide ventriculography. However, the procedure has to be standardized: it is important to so view the heart as to ensure optimal ventricular separation and minimal ventricle-atrium overlap. Also necessary is efficient labelling of the blood pool for good cardiac images and prolonged experimentation. This report concerns an evaluation of different cardiac viewing projections and labelling procedures, and concludes with a preferred method.

  13. How Is Diabetic Heart Disease Treated?

    MedlinePlus

    ... Healthy Heart." Managing Stress Research shows that strong emotions, such as anger, can trigger a heart attack. Learning how to manage stress , relax, and cope with problems can improve your emotional and physical health. Medicines Medicines are ...

  14. Compressed sensing reconstruction for whole-heart imaging with 3D radial trajectories: a graphics processing unit implementation.

    PubMed

    Nam, Seunghoon; Akçakaya, Mehmet; Basha, Tamer; Stehning, Christian; Manning, Warren J; Tarokh, Vahid; Nezafat, Reza

    2013-01-01

    A disadvantage of three-dimensional (3D) isotropic acquisition in whole-heart coronary MRI is the prolonged data acquisition time. Isotropic 3D radial trajectories allow undersampling of k-space data in all three spatial dimensions, enabling accelerated acquisition of the volumetric data. Compressed sensing (CS) reconstruction can provide further acceleration in the acquisition by removing the incoherent artifacts due to undersampling and improving the image quality. However, the heavy computational overhead of the CS reconstruction has been a limiting factor for its application. In this article, a parallelized implementation of an iterative CS reconstruction method for 3D radial acquisitions using a commercial graphics processing unit is presented. The execution time of the graphics processing unit-implemented CS reconstruction was compared with that of the C++ implementation, and the efficacy of the undersampled 3D radial acquisition with CS reconstruction was investigated in both phantom and whole-heart coronary data sets. Subsequently, the efficacy of CS in suppressing streaking artifacts in 3D whole-heart coronary MRI with 3D radial imaging and its convergence properties were studied. The CS reconstruction provides improved image quality (in terms of vessel sharpness and suppression of noise-like artifacts) compared with the conventional 3D gridding algorithm, and the graphics processing unit implementation greatly reduces the execution time of CS reconstruction yielding 34-54 times speed-up compared with C++ implementation. PMID:22392604

  15. Denial and Self-Image in Stroke, Lung Cancer, and Heart Disease Patients

    ERIC Educational Resources Information Center

    Levine, Jacob; Zigler, Edward

    1975-01-01

    Stroke, lung cancer, and heart disease patients were found to employ denial, as indicated by the relatively small difference between their real and ideal selves before and after the onset of illness. The greatest amount of denial was found for stroke patients. Cancer patients displayed more denial than did heart patients. (Author)

  16. Image-Guided Radiotherapy for Left-Sided Breast Cancer Patients: Geometrical Uncertainty of the Heart

    SciTech Connect

    Topolnjak, Rajko; Borst, Gerben R.; Nijkamp, Jasper

    2012-03-15

    Purpose: To quantify the geometrical uncertainties for the heart during radiotherapy treatment of left-sided breast cancer patients and to determine and validate planning organ at risk volume (PRV) margins. Methods and Materials: Twenty-two patients treated in supine position in 28 fractions with regularly acquired cone-beam computed tomography (CBCT) scans for offline setup correction were included. Retrospectively, the CBCT scans were reconstructed into 10-phase respiration correlated four-dimensional scans. The heart was registered in each breathing phase to the planning CT scan to establish the respiratory heart motion during the CBCT scan ({sigma}{sub resp}). The average of the respiratory motion was calculated as the heart displacement error for a fraction. Subsequently, the systematic ({Sigma}), random ({sigma}), and total random ({sigma}{sub tot}={radical}({sigma}{sup 2}+{sigma}{sub resp}{sup 2})) errors of the heart position were calculated. Based on the errors a PRV margin for the heart was calculated to ensure that the maximum heart dose (D{sub max}) is not underestimated in at least 90% of the cases (M{sub heart} = 1.3{Sigma}-0.5{sigma}{sub tot}). All analysis were performed in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions with respect to both online and offline bony anatomy setup corrections. The PRV margin was validated by accumulating the dose to the heart based on the heart registrations and comparing the planned PRV D{sub max} to the accumulated heart D{sub max}. Results: For online setup correction, the cardiac geometrical uncertainties and PRV margins were N-Ary-Summation = 2.2/3.2/2.1 mm, {sigma} = 2.1/2.9/1.4 mm, and M{sub heart} = 1.6/2.3/1.3 mm for LR/CC/AP, respectively. For offline setup correction these were N-Ary-Summation = 2.4/3.7/2.2 mm, {sigma} = 2.9/4.1/2.7 mm, and M{sub heart} = 1.6/2.1/1.4 mm. Cardiac motion induced by breathing was {sigma}{sub resp} = 1.4/2.9/1.4 mm for LR/CC/AP. The PRV D{sub max

  17. Chemistry, Pharmacology, and Medicinal Property of Sage (Salvia) to Prevent and Cure Illnesses such as Obesity, Diabetes, Depression, Dementia, Lupus, Autism, Heart Disease, and Cancer.

    PubMed

    Hamidpour, Mohsen; Hamidpour, Rafie; Hamidpour, Soheila; Shahlari, Mina

    2014-04-01

    For a long time, sage (Salvia) species have been used in traditional medicine for the relief of pain, protecting the body against oxidative stress, free radical damages, angiogenesis, inflammation, bacterial and virus infection, etc., Several studies suggest that sage species can be considered for drug development because of their reported pharmacology and therapeutic activities in many countries of Asia and Middle East, especially China and India. These studies suggest that Salvia species, in addition to treating minor common illnesses, might potentially provide novel natural treatments for the relief or cure of many serious and life-threatening diseases such as depression, dementia, obesity, diabetes, lupus, heart disease, and cancer. This article presents a comprehensive analysis of the botanical, chemical, and pharmacological aspects of sage (Saliva).

  18. Medical imaging in personalised medicine: a white paper of the research committee of the European Society of Radiology (ESR).

    PubMed

    2015-04-01

    The future of medicine lies in early diagnosis and individually tailored treatments, a concept that has been designated 'personalised medicine' (PM), which aims to deliver the right treatment to the right patient at the right time. Medical imaging has always been personalised and is fundamental to almost all aspects of PM. It is instrumental in solving clinical differential diagnoses. Imaging procedures are tailored to the clinical problem and patient characteristics. Screening for preclinical disease is done with imaging. Stratification based on imaging biomarkers can help identify individuals suited for preventive intervention. Treatment decisions are based on the in vivo visualisation of the location and extent of an abnormality, as well as the loco-regional physiological, biochemical and biological processes using structural and molecular imaging. Image-guided biopsy provides relevant tissue specimens for genetic/molecular characterisation. In addition, radiogenomics relate imaging biomarkers to these genetic and molecular features. Furthermore, imaging is essential to patient-tailored therapy planning, therapy monitoring and follow-up of disease, as well as targeting non-invasive or minimally invasive treatments, especially with the rise of theranostics. Radiologists need to be prepared for this new paradigm as it will mean changes in training, clinical practice and in research. Key Points • Medical imaging is a key component in personalised medicine • Personalised prevention will rely on image-based screening programmes • Anatomical, functional and molecular imaging biomarkers affect decisions on the type and intensity of treatment • Treatment response assessment with imaging will improve personalised treatment • Image-based invasive intervention integrates personalised diagnosis and personalised treatment.

  19. Fast Gated EPR Imaging of the Beating Heart: Spatiotemporally-Resolved 3D Imaging of Free Radical Distribution during the Cardiac Cycle

    PubMed Central

    Chen, Zhiyu; Reyes, Levy A.; Johnson, David H.; Velayutham, Murugesan; Yang, Changjun; Samouilov, Alexandre; Zweier, Jay L.

    2012-01-01

    In vivo or ex vivo electron paramagnetic resonance imaging (EPRI) is a powerful technique for determining the spatial distribution of free radicals and other paramagnetic species in living organs and tissues. However, applications of EPRI have been limited by long projection acquisition times and the consequent fact that rapid gated EPRI was not possible. Hence in vivo EPRI typically provided only time-averaged information. In order to achieve direct gated EPRI, a fast EPR acquisition scheme was developed to decrease EPR projection acquisition time down to 10 – 20 ms, along with corresponding software and instrumentation to achieve fast gated EPRI of the isolated beating heart with submillimeter spatial resolution in as little as 2 to 3 minutes. Reconstructed images display temporal and spatial variations of the free radical distribution, anatomical structure, and contractile function within the rat heart during the cardiac cycle. PMID:22473660

  20. The role of compact PSPMTs for image quality enhancement in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Cinti, M. N.; Pani, R.; Pellegrini, R.; Garibaldi, F.; Cusanno, F.; Campanini, R.; Lanconelli, N.; Riccardi, A.; Zavattini, G.; Di Domenico, G.; Belcari, N.; Bencivelli, W.; Motta, Alfonso; Vaiano, Angela; Del Guerra, A.

    2003-06-01

    Compact gamma cameras based on arrays of compact Position Sensitive Photomultipliers (PSPMTs) (Hamamatsu R7600-C8/12) were recently developed by several research groups. The previous generation of dedicated gamma cameras (5 in. PSPMT) demonstrated the clinical benefit and general diagnostic value for functional breast imaging in comparison with conventional nuclear medicine technique (Anger Camera prone scintimammography and 99mTc Sestamibi administration). The aim of this paper is to investigate how scintillation material and pixel size of crystal arrays can improve image contrast and tumor SNR values. In this paper we compare tumor Signal-to-Noise Ratio (SNR) results obtained by imagers based on CsI(Tl) and NaI(Tl) array, respectively, by means of a liquid and solid breast phantom. The data collected by NaI(Tl) array show a improvement of SNR values for small tumor size (less than 8 mm). The improvement is also evident in small camera, even though for tumor size less than 6 mm the results are near visibility limit.

  1. Application methods of infrared thermal images in the health care field of traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Li, Ziru; Zhang, Xusheng

    2008-12-01

    Infrared thermal imaging (ITI) is the potential imaging technique for the health care field of traditional Chinese medicine (TCM). Successful application demands obeying the characteristics and regularity of the ITI of human body and designing rigorous trials. First, the influence of time must be taken into account as the ITI of human body varies with time markedly. Second, relative magnitude is preferred to be the index of the image features. Third, scatter diagrams and the method of least square could present important information for evaluating the health care effect. A double-blind placebo-controlled randomized trial was undertaken to study the influences of Shengsheng capsule, one of the TCM health food with immunity adjustment function, on the ITI of human body. The results showed that the effect of Shengsheng capsule to people with weak constitution or in the period of being weak could be reflected objectively by ITI. The relative efficacy rate was 81.3% for the trial group and 30.0% for the control group, there was significant difference between the two groups (P=0.003). So the sensitivity and objectivity of ITI are of great importance to the health care field of TCM.

  2. Medical Image Processing Server applied to Quality Control of Nuclear Medicine.

    NASA Astrophysics Data System (ADS)

    Vergara, C.; Graffigna, J. P.; Marino, E.; Omati, S.; Holleywell, P.

    2016-04-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work.

  3. Mouse Models of Breast Cancer: Platforms for Discovering Precision Imaging Diagnostics and Future Cancer Medicine.

    PubMed

    Manning, H Charles; Buck, Jason R; Cook, Rebecca S

    2016-02-01

    Representing an enormous health care and socioeconomic challenge, breast cancer is the second most common cancer in the world and the second most common cause of cancer-related death. Although many of the challenges associated with preventing, treating, and ultimately curing breast cancer are addressable in the laboratory, successful translation of groundbreaking research to clinical populations remains an important barrier. Particularly when compared with research on other types of solid tumors, breast cancer research is hampered by a lack of tractable in vivo model systems that accurately recapitulate the relevant clinical features of the disease. A primary objective of this article was to provide a generalizable overview of the types of in vivo model systems, with an emphasis primarily on murine models, that are widely deployed in preclinical breast cancer research. Major opportunities to advance precision cancer medicine facilitated by molecular imaging of preclinical breast cancer models are discussed. PMID:26834104

  4. Mouse Models of Breast Cancer: Platforms for Discovering Precision Imaging Diagnostics and Future Cancer Medicine.

    PubMed

    Manning, H Charles; Buck, Jason R; Cook, Rebecca S

    2016-02-01

    Representing an enormous health care and socioeconomic challenge, breast cancer is the second most common cancer in the world and the second most common cause of cancer-related death. Although many of the challenges associated with preventing, treating, and ultimately curing breast cancer are addressable in the laboratory, successful translation of groundbreaking research to clinical populations remains an important barrier. Particularly when compared with research on other types of solid tumors, breast cancer research is hampered by a lack of tractable in vivo model systems that accurately recapitulate the relevant clinical features of the disease. A primary objective of this article was to provide a generalizable overview of the types of in vivo model systems, with an emphasis primarily on murine models, that are widely deployed in preclinical breast cancer research. Major opportunities to advance precision cancer medicine facilitated by molecular imaging of preclinical breast cancer models are discussed.

  5. [Non-destructive detection research for hollow heart of potato based on semi-transmission hyperspectral imaging and SVM].

    PubMed

    Huang, Tao; Li, Xiao-yu; Xu, Meng-ling; Jin, Rui; Ku, Jing; Xu, Sen-miao; Wu, Zhen-zhong

    2015-01-01

    The quality of potato is directly related to their edible value and industrial value. Hollow heart of potato, as a physiological disease occurred inside the tuber, is difficult to be detected. This paper put forward a non-destructive detection method by using semi-transmission hyperspectral imaging with support vector machine (SVM) to detect hollow heart of potato. Compared to reflection and transmission hyperspectral image, semi-transmission hyperspectral image can get clearer image which contains the internal quality information of agricultural products. In this study, 224 potato samples (149 normal samples and 75 hollow samples) were selected as the research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images (390-1 040 nn) of the potato samples, and then the average spectrum of region of interest were extracted for spectral characteristics analysis. Normalize was used to preprocess the original spectrum, and prediction model were developed based on SVM using all wave bands, the accurate recognition rate of test set is only 87. 5%. In order to simplify the model competitive.adaptive reweighed sampling algorithm (CARS) and successive projection algorithm (SPA) were utilized to select important variables from the all 520 spectral variables and 8 variables were selected (454, 601, 639, 664, 748, 827, 874 and 936 nm). 94. 64% of the accurate recognition rate of test set was obtained by using the 8 variables to develop SVM model. Parameter optimization algorithms, including artificial fish swarm algorithm (AFSA), genetic algorithm (GA) and grid search algorithm, were used to optimize the SVM model parameters: penalty parameter c and kernel parameter g. After comparative analysis, AFSA, a new bionic optimization algorithm based on the foraging behavior of fish swarm, was proved to get the optimal model parameter (c=10. 659 1, g=0. 349 7), and the recognition accuracy of 10% were obtained for the AFSA

  6. [Non-destructive detection research for hollow heart of potato based on semi-transmission hyperspectral imaging and SVM].

    PubMed

    Huang, Tao; Li, Xiao-yu; Xu, Meng-ling; Jin, Rui; Ku, Jing; Xu, Sen-miao; Wu, Zhen-zhong

    2015-01-01

    The quality of potato is directly related to their edible value and industrial value. Hollow heart of potato, as a physiological disease occurred inside the tuber, is difficult to be detected. This paper put forward a non-destructive detection method by using semi-transmission hyperspectral imaging with support vector machine (SVM) to detect hollow heart of potato. Compared to reflection and transmission hyperspectral image, semi-transmission hyperspectral image can get clearer image which contains the internal quality information of agricultural products. In this study, 224 potato samples (149 normal samples and 75 hollow samples) were selected as the research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images (390-1 040 nn) of the potato samples, and then the average spectrum of region of interest were extracted for spectral characteristics analysis. Normalize was used to preprocess the original spectrum, and prediction model were developed based on SVM using all wave bands, the accurate recognition rate of test set is only 87. 5%. In order to simplify the model competitive.adaptive reweighed sampling algorithm (CARS) and successive projection algorithm (SPA) were utilized to select important variables from the all 520 spectral variables and 8 variables were selected (454, 601, 639, 664, 748, 827, 874 and 936 nm). 94. 64% of the accurate recognition rate of test set was obtained by using the 8 variables to develop SVM model. Parameter optimization algorithms, including artificial fish swarm algorithm (AFSA), genetic algorithm (GA) and grid search algorithm, were used to optimize the SVM model parameters: penalty parameter c and kernel parameter g. After comparative analysis, AFSA, a new bionic optimization algorithm based on the foraging behavior of fish swarm, was proved to get the optimal model parameter (c=10. 659 1, g=0. 349 7), and the recognition accuracy of 10% were obtained for the AFSA

  7. Application of imaging geodesy to assess kinematics of the Medicine Wheel Landslide, Big Horn Mountains, Wyoming

    NASA Astrophysics Data System (ADS)

    Held, B. M.; Gomez, F.; Corley, J.

    2012-12-01

    Radar interferometry provides a means of imaging spatially varying kinematics of slow mass movements, such as earthflows. These observations provide critical constraints for understanding earth flow mechanics when considered with topography and meteorological forcings. This study focuses the Medicine Wheel Landslide located on the western side of the Big Horn Mountains in Wyoming. The mass movement is 1km by 1km and is on a 7 degree slope and consists of multiple rotational slumps within the larger mass which is detaching along the Mowry and Thermopolis Shales. The slide regularly damages the highway that intersects it. Preliminary results of a combination of satellite-based and ground-based radar interferometry document variations in the rates of done-slope movement. Satellite interferometric synthetic aperture radar (InSAR) analysis utilized L-band data acquired by the ALOS PALSAR system. Resulting interferograms indicated that the Medicine Wheel Slide is active even during the summer months moving up to 7.5cm from July to October 2011. This movement corresponds with record amounts of snowfall during the 2010-2011 winter. Ground based interferometric radar (GBIR) was chosen for this application due to millimeter scale sensitivity to motion, and its ability to perform observations from the same point. GBIR observation point was chosen to maximize line-of-site sensitivity to motion and to provide a more complete view of the entire slide surface. In addition, ground truth measurements of displacement are provided by a network of 20 monuments measured using rapid static GPS, acquired during the same observation campaign as the GBIR imaging. Seasonal amounts of movement derived from radar interferometry and ground-truthed by GPS, can then be compared meteorological data to determine if the relationship shown for 2011 persists.

  8. The Role of I-123 Metaiodobenzylguanidine Imaging in Management of Patients With Heart Failure.

    PubMed

    Wolinsky, David; Hendel, Robert; Cerqueira, Manuel; Gold, Michael; Narula, Jagat; Singh, Jagmeet; Shaw, Leslee; Thomas, Gregory; Wazni, Oussama; Farnum, Carolyn

    2015-10-15

    Despite advances in evidence-based treatments, the morbidity and mortality of congestive heart failure remain exceedingly high. In addition, the costs associated with recurrent hospitalizations and advanced therapies, such as implantable cardiac defibrillators (ICDs), left ventricular assist devices, and heart transplantation, place a substantial financial burden on the health care system. The present criteria for risk stratification in patients with heart failure are inadequate and often prevent the allocation of appropriate treatment. Patients who have received ICDs as primary prevention for sudden cardiac death often receive no device therapy in their lifetime, whereas other patients with left ventricular dysfunction die suddenly without meeting criteria for ICD implantation.

  9. Volume of myocardium perfused by coronary artery branches as estimated from 3D micro-CT images of rat hearts

    NASA Astrophysics Data System (ADS)

    Lund, Patricia E.; Naessens, Lauren C.; Seaman, Catherine A.; Reyes, Denise A.; Ritman, Erik L.

    2000-04-01

    Average myocardial perfusion is remarkably consistent throughout the heart wall under resting conditions and the velocity of blood flow is fairly reproducible from artery to artery. Based on these observations, and the fact that flow through an artery is the product of arterial cross-sectional area and blood flow velocity, we would expect the volume of myocardium perfused to be proportional to the cross-sectional area of the coronary artery perfusing that volume of myocardium. This relationship has been confirmed by others in pigs, dogs and humans. To test the body size-dependence of this relationship we used the hearts from rats, 3 through 25 weeks of age. The coronary arteries were infused with radiopaque microfil polymer and the hearts scanned in a micro- CT scanner. Using these 3D images we measured the volume of myocardium and the arterial cross-sectional area of the artery that perfused that volume of myocardium. The average constant of proportionality was found to be 0.15 +/- 0.08 cm3/mm2. Our data showed no statistically different estimates of the constant of proportionality in the rat hearts of different ages nor between the left and right coronary arteries. This constant is smaller than that observed in large animals and humans, but this difference is consistent with the body mass-dependence on metabolic rate.

  10. Heart Disease and Stroke Statistics

    MedlinePlus

    ... Nutrition (PDF) Obesity (PDF) Peripheral Artery Disease (PDF) ... statistics, please contact the American Heart Association National Center, Office of Science & Medicine at statistics@heart.org . Please direct all ...

  11. A system for seismocardiography-based identification of quiescent heart phases: implications for cardiac imaging.

    PubMed

    Wick, Carson A; Su, Jin-Jyh; McClellan, James H; Brand, Oliver; Bhatti, Pamela T; Buice, Ashley L; Stillman, Arthur E; Tang, Xiangyang; Tridandapani, Srini

    2012-09-01

    Seismocardiography (SCG), a representation of mechanical heart motion, may more accurately determine periods of cardiac quiescence within a cardiac cycle than the electrically derived electrocardiogram (EKG) and, thus, may have implications for gating in cardiac computed tomography. We designed and implemented a system to synchronously acquire echocardiography, EKG, and SCG data. The device was used to study the variability between EKG and SCG and characterize the relationship between the mechanical and electrical activity of the heart. For each cardiac cycle, the feature of the SCG indicating Aortic Valve Closure was identified and its time position with respect to the EKG was observed. This position was found to vary for different heart rates and between two human subjects. A color map showing the magnitude of the SCG acceleration and computed velocity was derived, allowing for direct visualization of quiescent phases of the cardiac cycle with respect to heart rate. PMID:22581141

  12. A System for Seismocardiography-Based Identification of Quiescent Heart Phases: Implications for Cardiac Imaging

    PubMed Central

    Wick, Carson A.; Su, Jin-Jyh; McClellan, James H.; Brand, Oliver; Bhatti, Pamela T.; Buice, Ashley L.; Stillman, Arthur E.; Tang, Xiangyang; Tridandapani, Srini

    2013-01-01

    Seismocardiography (SCG), a representation of mechanical heart motion, may more accurately determine periods of cardiac quiescence within a cardiac cycle than the electrically derived electrocardiogram (EKG) and, thus, may have implications for gating in cardiac computed tomography. We designed and implemented a system to synchronously acquire echocardiography, EKG, and SCG data. The device was used to study the variability between EKG and SCG and characterize the relationship between the mechanical and electrical activity of the heart. For each cardiac cycle, the feature of the SCG indicating Aortic Valve Closure was identified and its time position with respect to the EKG was observed. This position was found to vary for different heart rates and between two human subjects. A color map showing the magnitude of the SCG acceleration and computed velocity was derived, allowing for direct visualization of quiescent phases of the cardiac cycle with respect to heart rate. PMID:22581141

  13. Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations.

    PubMed

    Dziuda, Łukasz; Skibniewski, Franciszek W; Krej, Mariusz; Baran, Paulina M

    2013-05-01

    We present a fiber-optic sensor for monitoring respiration and heart activity designed to operate in the magnetic resonance imaging (MRI) environment. The sensor employs a Plexiglas springboard, which converts movements of the patient's body lying on the board (i.e., lung- and heart-induced vibrations) to strain, where a fiber Bragg grating attached to the board is used to measure this strain. Experimental studies are carried out during thoracic spine MRI examinations. The presence of the metal-free sensor construction in the MRI environment does not pose a threat to the patient and has no influence over the quality of imaging, and the signal is identical to that obtained without any electromagnetic interference. The results show that the sensor is able to accurately reflect the ballistocardiographic signal, enabling determinations of the respiration rate (RR) and heart rate (HR). The data delivered by the sensor are normally distributed on the Bland-Altman plot for the characteristic point determination and exhibit clear dependence on the RR and HR values for the RR and HR determinations, respectively. Measurement accuracies are better than 7% of the average values, and thus, with further development, the sensor will be implemented in routine MRI examinations.

  14. Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations

    NASA Astrophysics Data System (ADS)

    Dziuda, Łukasz; Skibniewski, Franciszek W.; Krej, Mariusz; Baran, Paulina M.

    2013-05-01

    We present a fiber-optic sensor for monitoring respiration and heart activity designed to operate in the magnetic resonance imaging (MRI) environment. The sensor employs a Plexiglas springboard, which converts movements of the patient's body lying on the board (i.e., lung- and heart-induced vibrations) to strain, where a fiber Bragg grating attached to the board is used to measure this strain. Experimental studies are carried out during thoracic spine MRI examinations. The presence of the metal-free sensor construction in the MRI environment does not pose a threat to the patient and has no influence over the quality of imaging, and the signal is identical to that obtained without any electromagnetic interference. The results show that the sensor is able to accurately reflect the ballistocardiographic signal, enabling determinations of the respiration rate (RR) and heart rate (HR). The data delivered by the sensor are normally distributed on the Bland-Altman plot for the characteristic point determination and exhibit clear dependence on the RR and HR values for the RR and HR determinations, respectively. Measurement accuracies are better than 7% of the average values, and thus, with further development, the sensor will be implemented in routine MRI examinations.

  15. Endocardial Remodeling in Heart Failure Patients with Impaired and Preserved Left Ventricular Systolic Function--A Magnetic Resonance Image Study.

    PubMed

    Lin, Lian-Yu; Su, Mao-Yuan M; Pham, Van-Truong; Tran, Thi-Thao; Wang, Yung-Hung; Tseng, Wen-Yih I; Lo, Men-Tzung; Lin, Jiunn-Lee

    2016-01-01

    Left ventricular (LV) trabeculation has been studied in certain forms of cardiomyopathy. However, the changes of LV endocardial trabeculation during the remodeling process leading to heart failure (HF) are unclear. Seventy-four patients with systolic heart failure (SHF), 65 with heart failure with preserved ejection fraction (HFpEF) and 61 without HF were prospectively enrolled. All subjects received magnetic resonance imaging (MRI) study including cine, T1 and late gadolinium enhancement (LGE) images. Trabecular-papillary muscle (TPM) mass, fractal dimension (FD) and extracellular volume (ECV) were derived. The results showed that TPM mass index was higher in patients with SHF than that in patients with HFpEF and non-HF. The TPM mass-LV mass ratio (TPMm/LVM) was higher in SHF group than that in HFpEF and non-HF. FD was not different among groups. The presence of LGE was inversely associated with TPM mass index and TPMm/LVM while the ECV were positively associated with TPMm/LVM. The FD was positively associated with LV chamber size. In conclusion, TPM increases in patients with SHF and are probably related to myocardial cell hypertrophy and fibrotic repair during remodeling. The FD increases with the dilatation of LV chamber but remain unchanged with the deterioration of LV function. PMID:26876005

  16. Endocardial Remodeling in Heart Failure Patients with Impaired and Preserved Left Ventricular Systolic Function-A Magnetic Resonance Image Study

    PubMed Central

    Lin, Lian-Yu; Su, Mao-Yuan M.; Pham, Van-Truong; Tran, Thi-Thao; Wang, Yung-Hung; Tseng, Wen-Yih I.; Lo, Men-Tzung; Lin, Jiunn-Lee

    2016-01-01

    Left ventricular (LV) trabeculation has been studied in certain forms of cardiomyopathy. However, the changes of LV endocardial trabeculation during the remodeling process leading to heart failure (HF) are unclear. Seventy-four patients with systolic heart failure (SHF), 65 with heart failure with preserved ejection fraction (HFpEF) and 61 without HF were prospectively enrolled. All subjects received magnetic resonance imaging (MRI) study including cine, T1 and late gadolinium enhancement (LGE) images. Trabecular-papillary muscle (TPM) mass, fractal dimension (FD) and extracellular volume (ECV) were derived. The results showed that TPM mass index was higher in patients with SHF than that in patients with HFpEF and non-HF. The TPM mass-LV mass ratio (TPMm/LVM) was higher in SHF group than that in HFpEF and non-HF. FD was not different among groups. The presence of LGE was inversely associated with TPM mass index and TPMm/LVM while the ECV were positively associated with TPMm/LVM. The FD was positively associated with LV chamber size. In conclusion, TPM increases in patients with SHF and are probably related to myocardial cell hypertrophy and fibrotic repair during remodeling. The FD increases with the dilatation of LV chamber but remain unchanged with the deterioration of LV function. PMID:26876005

  17. Image-Based Modeling and Precision Medicine: Patient-Specific Carotid and Coronary Plaque Assessment and Predictions

    PubMed Central

    Yang, Chun; Zheng, Jie; Canton, Gador; Bach, Richard; Hatsukami, Thomas S.; Wang, Liang; Yang, Deshan; Billiar, Kristen L.; Yuan, Chun

    2013-01-01

    Atherosclerotic plaques may rupture without warning and cause acute cardiovascular events such as heart attack and stroke. Current clinical screening tools are insufficient to identify those patients with risks early and prevent the adverse events from happening. Medical imaging and image-based modeling have made considerable progress in recent years in identifying plaque morphological and mechanical risk factors which may be used in developing improved patient screening strategies. The key steps and factors in image-based models for human carotid and coronary plaques were illustrated, as well as grand challenges facing the researchers in the field to develop more accurate screening tools. PMID:23362245

  18. Brain-heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field.

    PubMed

    Chang, Catie; Raven, Erika P; Duyn, Jeff H

    2016-05-13

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain-heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain-heart interactions.

  19. Brain-heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field.

    PubMed

    Chang, Catie; Raven, Erika P; Duyn, Jeff H

    2016-05-13

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain-heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain-heart interactions. PMID:27044994

  20. Fully automatic segmentation of complex organ systems: example of trachea, esophagus and heart segmentation in CT images

    NASA Astrophysics Data System (ADS)

    Meyer, Carsten; Peters, Jochen; Weese, Jürgen

    2011-03-01

    Automatic segmentation is a prerequisite to efficiently analyze the large amount of image data produced by modern imaging modalities. Many algorithms exist to segment individual organs or organ systems. However, new clinical applications and the progress in imaging technology will require the segmentation of more and more complex organ systems composed of a number of substructures, e.g., the heart, the trachea, and the esophagus. The goal of this work is to demonstrate that such complex organ systems can be successfully segmented by integrating the individual organs into a general model-based segmentation framework, without tailoring the core adaptation engine to the individual organs. As an example, we address the fully automatic segmentation of the trachea (around its main bifurcation, including the proximal part of the two main bronchi) and the esophagus in addition to the heart with all chambers and attached major vessels. To this end, we integrate the trachea and the esophagus into a model-based cardiac segmentation framework. Specifically, in a first parametric adaptation step of the segmentation workflow, the trachea and the esophagus share global model transformations with adjacent heart structures. This allows to obtain a robust, approximate segmentation for the trachea even if it is only partly inside the field-of-view, and for the esophagus in spite of limited contrast. The segmentation is then refined in a subsequent deformable adaptation step. We obtained a mean segmentation error of about 0.6mm for the trachea and 2.3mm for the esophagus on a database of 23 volumetric cardiovascular CT images. Furthermore, we show by quantitative evaluation that our integrated framework outperforms individual esophagus segmentation, and individual trachea segmentation if the trachea is only partly inside the field-of-view.

  1. Understanding the cause of an unreadable nuclear medicine image: a case of unexpected results with 123I whole-body scintigraphy.

    PubMed

    Skweres, Justin; Yang, Zhiyun; Gonzalez-Toledo, Eduardo

    2014-12-01

    When unexpected results are obtained with standard image collection, the nuclear medicine physician must consider many technical factors that may have contributed. When image quality is poor, prior radiotracer administration, among other things, should always be considered. Our case demonstrates how knowledge of patient history and basic principles of nuclear medicine physics allows recognition of the septal penetration artifact. This allows the nuclear medicine physician to tailor the exam to an individual patient and obtain the most useful diagnostic information for the clinician.

  2. The role and regulation of cardiac angiotensin-converting enzyme for noninvasive molecular imaging in heart failure.

    PubMed

    Aras, Omer; Messina, Steven A; Shirani, Jamshid; Eckelman, William C; Dilsizian, Vasken

    2007-04-01

    Congestive heart failure is a pathologic condition characterized by progressive decrease in left ventricular contractility and consequent decline of cardiac output. There is convincing clinical and experimental evidence that the renin-angiotensin system (RAS) and its primary effector peptide, angiotensin II, are linked to the pathophysiology of interstitial fibrosis, cardiac remodeling, and heart failure. In addition to the traditional endocrine or circulating RAS, an active tissue RAS has been characterized. Tissue angiotensin-converting enzyme and locally synthesized angiotensin II, for example, by chymase, exert local trophic effects that modulate gene expression, which regulates growth and proliferation in both myocytes and nonmyocytes. The existence of the tissue RAS offers an opportunity for targeted imaging, which may be of considerable value for guiding medical therapy. PMID:17430683

  3. Qualitative and Quantitative Assessment of Adenosine Triphosphate Stress Whole-Heart Dynamic Myocardial Perfusion Imaging Using 256-Slice Computed Tomography

    PubMed Central

    Kurata, Akira; Kawaguchi, Naoto; Kido, Teruhito; Inoue, Katsuji; Suzuki, Jun; Ogimoto, Akiyoshi; Funada, Jun-ichi; Higaki, Jitsuo; Miyagawa, Masao; Vembar, Mani; Mochizuki, Teruhito

    2013-01-01

    Background The aim of this study was to investigate the correlation of the qualitative transmural extent of hypoperfusion areas (HPA) using stress dynamic whole-heart computed tomography perfusion (CTP) imaging by 256-slice CT with CTP-derived myocardial blood flow (MBF) for the estimation of the severity of coronary artery stenosis. Methods and Results Eleven patients underwent adenosine triphosphate (0.16 mg/kg/min, 5 min) stress dynamic CTP by 256-slice CT (coverage: 8 cm, 0.27 s/rotation), and 9 of the 11 patients underwent coronary angiography (CAG). Stress dynamic CTP (whole–heart datasets over 30 consecutive heart beats in systole without spatial and temporal gaps) was acquired with prospective ECG gating (effective radiation dose: 10.4 mSv). The extent of HPAs was visually graded using a 3-point score (normal, subendocardial, transmural). MBF (ml/100g/min) was measured by deconvolution. Differences in MBF (mean ± standard error) according to HPA and CAG results were evaluated. In 27 regions (3 major coronary territories in 9 patients), 11 coronary stenoses (> 50% reduction in diameter) were observed. In 353 myocardial segments, HPA was significantly related to MBF (P < 0.05; normal 295 ± 94; subendocardial 186 ± 67; and transmural 80 ± 53). Coronary territory analysis revealed a significant relationship between coronary stenosis severity and MBF (P < 0.05; non-significant stenosis [< 50%], 284 ± 97; moderate stenosis [50–70%], 184 ± 74; and severe stenosis [> 70%], 119 ± 69). Conclusion The qualitative transmural extent of HPA using stress whole-heart dynamic CTP imaging by 256-slice CT exhibits a good correlation with quantitative CTP-derived MBF and may aid in assessing the hemodynamic significance of coronary artery disease. PMID:24376774

  4. Clinical and Research Considerations for Patients With Hypertensive Acute Heart Failure: A Consensus Statement from the Society of Academic Emergency Medicine and the Heart Failure Society of America Acute Heart Failure Working Group.

    PubMed

    Collins, Sean P; Levy, Phillip D; Martindale, Jennifer L; Dunlap, Mark E; Storrow, Alan B; Pang, Peter S; Albert, Nancy M; Felker, G Michael; Fermann, Gregory J; Fonarow, Gregg C; Givertz, Michael M; Hollander, Judd E; Lanfear, David J; Lenihan, Daniel J; Lindenfeld, JoAnn M; Peacock, W Frank; Sawyer, Douglas B; Teerlink, John R; Butler, Javed

    2016-08-01

    Management approaches for patients in the emergency department (ED) who present with acute heart failure (AHF) have largely focused on intravenous diuretics. Yet, the primary pathophysiologic derangement underlying AHF in many patients is not solely volume overload. Patients with hypertensive AHF (H-AHF) represent a clinical phenotype with distinct pathophysiologic mechanisms that result in elevated ventricular filling pressures. To optimize treatment response and minimize adverse events in this subgroup, we propose that clinical management be tailored to a conceptual model of disease based on these mechanisms. This consensus statement reviews the relevant pathophysiology, clinical characteristics, approach to therapy, and considerations for clinical trials in ED patients with H-AHF. PMID:27262665

  5. Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review

    PubMed Central

    Isidori, Andrea M.; Sbardella, Emilia; Zatelli, Maria Chiara; Boschetti, Mara; Vitale, Giovanni; Colao, Annamaria

    2015-01-01

    Context: Ectopic Cushing's Syndrome (ECS) can be a diagnostic challenge with the hormonal source difficult to find. This study analyzes the accuracy of imaging studies in ECS localization. Evidence Acquisition: Systematic review of medical literature for ECS case series providing individual patient data on at least one conventional imaging technique (computed tomography [CT]/magnetic resonance imaging) and one of the following: 111In-pentetreotide (OCT), 131I/123I-metaiodobenzylguanidine, 18F-fluoro-2-deoxyglucose-positron emission tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga-DOTATATE-PET/CT or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT). Evidence Summary: The analysis comprised 231 patients (females, 50.2%; age, 42.6 ± 17 y). Overall, 52.4% (121/231) had “overt” ECS, 18.6% had “occult” ECS, and 29% had “covert” ECS. Tumors were located in the lung (55.3%), mediastinum-thymus (7.9%), pancreas (8.5%), adrenal glands (6.4%), gastrointestinal tract (5.4%), thyroid (3.7%), and other sites (12.8%), and primary tumors were mostly bronchial neuroendocrine tumors (NETs) (54.8%), pancreatic NETs (8%), mediastinum-thymus NETs (6.9%), gastrointestinal NETs (5.3%), pheochromocytoma (6.4%), neuroblastoma (3.2%), and medullary thyroid carcinoma (3.2%). Tumors were localized by CT in 66.2% (137/207), magnetic resonance imaging in 51.5% (53/103), OCT in 48.9% (84/172), FDG-PET in 51.7% (46/89), F-DOPA-PET in 57.1% (12/21), 131/123I-metaiodobenzylguanidine in 30.8% (4/13), and 68Gallium-SSTR-PET/CT in 81.8% (18/22) of cases. Molecular imaging discovered 79.1% (53/67) of tumors unidentified by conventional radiology, with OCT the most commonly used, revealing the tumor in 64%, followed by FDG-PET in 59.4%. F-DOPA-PET was used in only seven covert cases (sensitivity, 85.7%). Notably, 68Gallium-SSTR-PET/CT had 100% sensitivity among covert cases. Conclusions: Nuclear medicine improves the sensitivity of conventional radiology when tumor site

  6. Longitudinal Evaluation of Fatty Acid Metabolism in Normal and Spontaneously Hypertensive Rat Hearts with Dynamic MicroSPECT Imaging

    DOE PAGESBeta

    Reutter, Bryan W.; Huesman, Ronald H.; Brennan, Kathleen M.; Boutchko, Rostyslav; Hanrahan, Stephen M.; Gullberg, Grant T.

    2011-01-01

    The goal of this project is to develop radionuclide molecular imaging technologies using a clinical pinhole SPECT/CT scanner to quantify changes in cardiac metabolism using the spontaneously hypertensive rat (SHR) as a model of hypertensive-related pathophysiology. This paper quantitatively compares fatty acid metabolism in hearts of SHR and Wistar-Kyoto normal rats as a function of age and thereby tracks physiological changes associated with the onset and progression of heart failure in the SHR model. The fatty acid analog, 123 I-labeled BMIPP, was used in longitudinal metabolic pinhole SPECT imaging studies performed every seven months for 21 months. The uniquenessmore » of this project is the development of techniques for estimating the blood input function from projection data acquired by a slowly rotating camera that is imaging fast circulation and the quantification of the kinetics of 123 I-BMIPP by fitting compartmental models to the blood and tissue time-activity curves.« less

  7. Endothelial dysfunction as assessed with magnetic resonance imaging - A major determinant in chronic heart failure.

    PubMed

    Kovačić, Slavica; Plazonić, Željko; Batinac, Tanja; Miletić, Damir; Ružić, Alen

    2016-05-01

    Chronic heart failure (CHF) is a clinical syndrome resulting from interaction of different structure and functional disturbances leading to decreased heart ability to ensure adequate supply of oxygenized blood to tissues and ensure adequate metabolic needs in the cases of normal or increased afterload. Endothelial dysfunction (ED) is a pathological condition characterized by general imbalance of all major endothelial mechanisms with key role in development and progression of atherosclerotic disease. ED has been associated with most cardiovascular risk factors. There is increasing interest in assessing endothelial function non-invasively, leading to development and evaluation of new diagnostic methods. We suggest that MRI is safe and reliable test that offers important advantages over ultrasound for the detection of ED and monitoring of the expected therapeutic effect. We believe that ED plays a pivotal role in chronic heart failure development and progression, regardless of its etiology, and that MRI should be introduced as a "gold standard" in diagnostic procedure and treatment.

  8. Early management of patients with acute heart failure: state of the art and future directions. A consensus document from the society for academic emergency medicine/heart failure society of America acute heart failure working group.

    PubMed

    Collins, Sean; Storrow, Alan B; Albert, Nancy M; Butler, Javed; Ezekowitz, Justin; Felker, G Michael; Fermann, Gregory J; Fonarow, Gregg C; Givertz, Michael M; Hiestand, Brian; Hollander, Judd E; Lanfear, David E; Levy, Phillip D; Pang, Peter S; Peacock, W Frank; Sawyer, Douglas B; Teerlink, John R; Lenihan, Daniel J

    2015-01-01

    Heart failure (HF) afflicts nearly 6 million Americans, resulting in one million emergency department (ED) visits and over one million annual hospital discharges. An aging population and improved survival from cardiovascular diseases is expected to further increase HF prevalence. Emergency providers play a significant role in the management of patients with acute heart failure (AHF). It is crucial that emergency physicians and other providers involved in early management understand the latest developments in diagnostic testing, therapeutics and alternatives to hospitalization. Further, clinical trials must be conducted in the ED in order to improve the evidence base and drive optimal initial therapy for AHF. Should ongoing and future studies suggest early phenotype-driven therapy improves in-hospital and post-discharge outcomes, ED treatment decisions will need to evolve accordingly. The potential impact of future studies which incorporate risk-stratification into ED disposition decisions cannot be underestimated. Predictive instruments that identify a cohort of patients safe for ED discharge, while simultaneously addressing barriers to successful outpatient management, have the potential to significantly impact quality of life and resource expenditures.

  9. Medicine and law as model professions: the heart of the matter (and how we have missed it).

    PubMed

    Atkinson, Rob

    2013-01-01

    This article has two coordinate goals: to undergird the functionalist understanding of professionalism with classical normative theory and to advance the classical theory of civic virtue with the insights of modern social science. More specifically, this article seeks to connect classical theories about the care of the body and the soul with modern theories of market and government failure. The first step is to distinguish two kinds of professions, caring professions like medicine and public professions like law, by identifying the distinctive virtue of each. The distinctive virtue of the caring professions is single-minded commitment to those in their care, their principals, to the virtual exclusion of all other concerns; the distinctive virtue of the public professions is commitment to the common good, sometimes even at the expense of their principals' self-defined interest. The next step is to show how these two distinctive professional virtues, the one principal-protecting, the other public-protecting, branch from the same root, the common function of all proper professions: guaranteeing the delivery of socially essential but necessarily esoteric knowledge when the usual protections of both private contracts and government regulation systematically fail. The third and final step is to map out the implications of this neo-classical understanding of professionalism, beginning at its core in the paradigmatic caring and public professions of medicine and law, through putative professions that take these as their models, to the kind of republican society that places care of individuals and concern for the public welfare at the center of its value system. The result of this analysis should be not only a fuller theoretical appreciation of professionalism's proper function, but also a practical guide to professionals themselves for better service to both the individuals in their care and the common good of all humankind.

  10. Cardiac imaging of congenital heart diseases during interventional procedures continues to evolve: Pros and cons of the main techniques.

    PubMed

    Hascoët, Sebastien; Warin-Fresse, Karine; Baruteau, Alban-Elouen; Hadeed, Khaled; Karsenty, Clement; Petit, Jérôme; Guérin, Patrice; Fraisse, Alain; Acar, Philippe

    2016-02-01

    Cardiac catheterization has contributed to the progress made in the management of patients with congenital heart disease (CHD). First, it allowed clarification of the diagnostic assessment of CHD, by offering a better understanding of normal cardiac physiology and the pathophysiology and anatomy of complex malformations. Then, it became an alternative to surgery and a major component of the therapeutic approach for some CHD lesions. Nowadays, techniques have evolved and cardiac catheterization is widely used to percutaneously close intracardiac shunts, to relieve obstructive valvar or vessel lesions, and for transcatheter valve replacement. Accurate imaging is mandatory to guide these procedures. Cardiac imaging during catheterization of CHD must provide accurate images of lesions, surrounding cardiac structures, medical devices and tools used to deliver them. Cardiac imaging has to be 'real-time' with an excellent temporal resolution to ensure 'eyes-hands' synchronization and 'device-target area' accurate positioning. In this comprehensive review, we provide an overview of conventional cardiac imaging tools used in the catheterization laboratory in daily practice, as well as the effect of recent evolution and future imaging modalities. PMID:26858142

  11. Nuclear medicine

    SciTech Connect

    Wagner, H.N. Jr.

    1986-10-17

    In 1985 and 1986 nuclear medicine became more and more oriented toward in vov chemistry, chiefly as a result of advances in positron emission tomography (PET). The most important trend was the extension of PET technology into the care of patients with brain tumors, epilepsy, and heart disease. A second trend was the increasing use of single-photon emission computed tomography (SPECT).

  12. Cine viability magnetic resonance imaging of the heart without increased scan time.

    PubMed

    Hassanein, Azza S; Khalifa, Ayman M; Ibrahim, El-Sayed H

    2016-02-01

    Cardiac magnetic resonance imaging (MRI) provides information about myocardial morphology, function, and viability from cine, tagged, and late gadolinium enhancement (LGE) images, respectively. While the cine and tagged images are acquired in a time-resolved fashion, the LGE images are acquired at a single timeframe. The purpose of this work is to develop a method for generating cine LGE images without additional scan time. The motion field is extracted from the tagged images, and is then used to guide the deformation of the infarcted region from the acquired LGE image at the acquired timeframe to any other timeframe. Major techniques for motion estimation, including harmonic phase (HARP) and optical flow analysis, are tested in this work for motion estimation. The proposed method is tested on numerical phantom and images from four human subjects. The generated cine LGE images showed both viability and wall motion information in the same set of images without additional scan time or image misregistration problems. The band-pass optical flow analysis resulted in the most accurate motion estimation compared to other methods, especially HARP, which fails to track points at the myocardial boundary. Infarct transmurality from the generated images showed good agreement with myocardial strain, and wall thickening showed good agreement with that measured from conventional cine images. In conclusion, the developed technique allows for generating cine LGE images that enable simultaneous display of wall motion and viability information. The generated images could be useful for estimating myocardial contractility reserve and for treatment prognosis.

  13. Cine viability magnetic resonance imaging of the heart without increased scan time.

    PubMed

    Hassanein, Azza S; Khalifa, Ayman M; Ibrahim, El-Sayed H

    2016-02-01

    Cardiac magnetic resonance imaging (MRI) provides information about myocardial morphology, function, and viability from cine, tagged, and late gadolinium enhancement (LGE) images, respectively. While the cine and tagged images are acquired in a time-resolved fashion, the LGE images are acquired at a single timeframe. The purpose of this work is to develop a method for generating cine LGE images without additional scan time. The motion field is extracted from the tagged images, and is then used to guide the deformation of the infarcted region from the acquired LGE image at the acquired timeframe to any other timeframe. Major techniques for motion estimation, including harmonic phase (HARP) and optical flow analysis, are tested in this work for motion estimation. The proposed method is tested on numerical phantom and images from four human subjects. The generated cine LGE images showed both viability and wall motion information in the same set of images without additional scan time or image misregistration problems. The band-pass optical flow analysis resulted in the most accurate motion estimation compared to other methods, especially HARP, which fails to track points at the myocardial boundary. Infarct transmurality from the generated images showed good agreement with myocardial strain, and wall thickening showed good agreement with that measured from conventional cine images. In conclusion, the developed technique allows for generating cine LGE images that enable simultaneous display of wall motion and viability information. The generated images could be useful for estimating myocardial contractility reserve and for treatment prognosis. PMID:26528793

  14. Experimental investigations on the fluid-mechanics of an electrospun heart valve by means of particle image velocimetry.

    PubMed

    Del Gaudio, Costantino; Gasbarroni, Pier Luca; Romano, Giovanni Paolo

    2016-12-01

    End-stage failing heart valves are currently replaced by mechanical or biological prostheses. Both types positively contribute to restore the physiological function of native valves, but a number of drawbacks limits the expected performances. In order to improve the outcome, tissue engineering can offer an alternative approach to design and fabricate innovative heart valves capable to support the requested function and to promote the formation of a novel, viable and correctly operating physiological structure. This potential result is particularly critical if referred to the aortic valve, being the one mainly exposed to structural and functional degeneration. In this regard, the here proposed study presents the fabrication and in vitro characterization of a bioresorbable electrospun heart valve prosthesis using the particle image velocimetry technique either in physiological and pathological fluid dynamic conditions. The scaffold was designed to reproduce the aortic valve geometry, also mimicking the fibrous structure of the natural extracellular matrix. To evaluate its performances for possible implantation, the flow fields downstream the valve were accurately investigated and compared. The experimental results showed a correct functionality of the device, supported by the formation of vortex structures at the edge of the three cusps, with Reynolds stress values below the threshold for the risk of hemolysis (which can be comprised in the range 400-4000N/m(2) depending on the exposure period), and a good structural resistance to the mechanical loads generated by the driving pressure difference. PMID:27521817

  15. Experimental investigations on the fluid-mechanics of an electrospun heart valve by means of particle image velocimetry.

    PubMed

    Del Gaudio, Costantino; Gasbarroni, Pier Luca; Romano, Giovanni Paolo

    2016-12-01

    End-stage failing heart valves are currently replaced by mechanical or biological prostheses. Both types positively contribute to restore the physiological function of native valves, but a number of drawbacks limits the expected performances. In order to improve the outcome, tissue engineering can offer an alternative approach to design and fabricate innovative heart valves capable to support the requested function and to promote the formation of a novel, viable and correctly operating physiological structure. This potential result is particularly critical if referred to the aortic valve, being the one mainly exposed to structural and functional degeneration. In this regard, the here proposed study presents the fabrication and in vitro characterization of a bioresorbable electrospun heart valve prosthesis using the particle image velocimetry technique either in physiological and pathological fluid dynamic conditions. The scaffold was designed to reproduce the aortic valve geometry, also mimicking the fibrous structure of the natural extracellular matrix. To evaluate its performances for possible implantation, the flow fields downstream the valve were accurately investigated and compared. The experimental results showed a correct functionality of the device, supported by the formation of vortex structures at the edge of the three cusps, with Reynolds stress values below the threshold for the risk of hemolysis (which can be comprised in the range 400-4000N/m(2) depending on the exposure period), and a good structural resistance to the mechanical loads generated by the driving pressure difference.

  16. Optimization of a Model Corrected Blood Input Function from Dynamic FDG-PET Images of Small Animal Heart In Vivo

    PubMed Central

    Zhong, Min; Kundu, Bijoy K.

    2013-01-01

    Quantitative evaluation of dynamic Positron Emission Tomography (PET) of mouse heart in vivo is challenging due to the small size of the heart and limited intrinsic spatial resolution of the PET scanner. Here, we optimized a compartment model which can simultaneously correct for spill over and partial volume effects for both blood pool and the myocardium, compute kinetic rate parameters and generate model corrected blood input function (MCBIF) from ordered subset expectation maximization – maximum a posteriori (OSEM-MAP) cardiac and respiratory gated 18F-FDG PET images of mouse heart with attenuation correction in vivo, without any invasive blood sampling. Arterial blood samples were collected from a single mouse to indicate the feasibility of the proposed method. In order to establish statistical significance, venous blood samples from n=6 mice were obtained at 2 late time points, when SP contamination from the tissue to the blood is maximum. We observed that correct bounds and initial guesses for the PV and SP coefficients accurately model the wash-in and wash-out dynamics of the tracer from mouse blood. The residual plot indicated an average difference of about 1.7% between the blood samples and MCBIF. The downstream rate of myocardial FDG influx constant, Ki (0.15±0.03 min−1), compared well with Ki obtained from arterial blood samples (P=0.716). In conclusion, the proposed methodology is not only quantitative but also reproducible. PMID:24741130

  17. Heart Health - Brave Heart

    MedlinePlus

    ... Bar Home Current Issue Past Issues Cover Story Heart Health Brave Heart Past Issues / Winter 2009 Table of Contents For ... you can have a good life after a heart attack." Lifestyle Changes Surviving—and thriving—after such ...

  18. Approaches to enhancing radiation safety in cardiovascular imaging: a scientific statement from the American Heart Association.

    PubMed

    Fazel, Reza; Gerber, Thomas C; Balter, Stephen; Brenner, David J; Carr, J Jeffrey; Cerqueira, Manuel D; Chen, Jersey; Einstein, Andrew J; Krumholz, Harlan M; Mahesh, Mahadevappa; McCollough, Cynthia H; Min, James K; Morin, Richard L; Nallamothu, Brahmajee K; Nasir, Khurram; Redberg, Rita F; Shaw, Leslee J

    2014-11-01

    Education, justification, and optimization are the cornerstones to enhancing the radiation safety of medical imaging. Education regarding the benefits and risks of imaging and the principles of radiation safety is required for all clinicians in order for them to be able to use imaging optimally. Empowering patients with knowledge of the benefits and risks of imaging will facilitate their meaningful participation in decisions related to their health care, which is necessary to achieve patient-centered care. Limiting the use of imaging to appropriate clinical indications can ensure that the benefits of imaging outweigh any potential risks. Finally, the continually expanding repertoire of techniques that allow high-quality imaging with lower radiation exposure should be used when available to achieve safer imaging. The implementation of these strategies in practice is necessary to achieve high-quality, patient-centered imaging and will require a shared effort and investment by all stakeholders, including physicians, patients, national scientific and educational organizations, politicians, and industry.

  19. Free-breathing diffusion tensor imaging and tractography of the human heart in healthy volunteers using wavelet-based image fusion.

    PubMed

    Wei, Hongjiang; Viallon, Magalie; Delattre, Benedicte M A; Moulin, Kevin; Yang, Feng; Croisille, Pierre; Zhu, Yuemin

    2015-01-01

    Free-breathing cardiac diffusion tensor imaging (DTI) is a promising but challenging technique for the study of fiber structures of the human heart in vivo. This work proposes a clinically compatible and robust technique to provide three-dimensional (3-D) fiber architecture properties of the human heart. To this end, 10 short-axis slices were acquired across the entire heart using a multiple shifted trigger delay (TD) strategy under free breathing conditions. Interscan motion was first corrected automatically using a nonrigid registration method. Then, two post-processing schemes were optimized and compared: an algorithm based on principal component analysis (PCA) filtering and temporal maximum intensity projection (TMIP), and an algorithm that uses the wavelet-based image fusion (WIF) method. The two methods were applied to the registered diffusion-weighted (DW) images to cope with intrascan motion-induced signal loss. The tensor fields were finally calculated, from which fractional anisotropy (FA), mean diffusivity (MD), and 3-D fiber tracts were derived and compared. The results show that the comparison of the FA values (FA(PCATMIP) = 0.45 ±0.10, FA(WIF) = 0.42 ±0.05, P=0.06) showed no significant difference, while the MD values ( MD(PCATMIP)=0.83 ±0.12×10(-3) mm (2)/s, MD(WIF)=0.74±0.05×10(-3) mm (2)/s, P=0.028) were significantly different. Improved helix angle variations through the myocardium wall reflecting the rotation characteristic of cardiac fibers were observed with WIF. This study demonstrates that the combination of multiple shifted TD acquisitions and dedicated post-processing makes it feasible to retrieve in vivo cardiac tractographies from free-breathing DTI acquisitions. The substantial improvements were observed using the WIF method instead of the previously published PCATMIP technique. PMID:25216480

  20. Free-breathing diffusion tensor imaging and tractography of the human heart in healthy volunteers using wavelet-based image fusion.

    PubMed

    Wei, Hongjiang; Viallon, Magalie; Delattre, Benedicte M A; Moulin, Kevin; Yang, Feng; Croisille, Pierre; Zhu, Yuemin

    2015-01-01

    Free-breathing cardiac diffusion tensor imaging (DTI) is a promising but challenging technique for the study of fiber structures of the human heart in vivo. This work proposes a clinically compatible and robust technique to provide three-dimensional (3-D) fiber architecture properties of the human heart. To this end, 10 short-axis slices were acquired across the entire heart using a multiple shifted trigger delay (TD) strategy under free breathing conditions. Interscan motion was first corrected automatically using a nonrigid registration method. Then, two post-processing schemes were optimized and compared: an algorithm based on principal component analysis (PCA) filtering and temporal maximum intensity projection (TMIP), and an algorithm that uses the wavelet-based image fusion (WIF) method. The two methods were applied to the registered diffusion-weighted (DW) images to cope with intrascan motion-induced signal loss. The tensor fields were finally calculated, from which fractional anisotropy (FA), mean diffusivity (MD), and 3-D fiber tracts were derived and compared. The results show that the comparison of the FA values (FA(PCATMIP) = 0.45 ±0.10, FA(WIF) = 0.42 ±0.05, P=0.06) showed no significant difference, while the MD values ( MD(PCATMIP)=0.83 ±0.12×10(-3) mm (2)/s, MD(WIF)=0.74±0.05×10(-3) mm (2)/s, P=0.028) were significantly different. Improved helix angle variations through the myocardium wall reflecting the rotation characteristic of cardiac fibers were observed with WIF. This study demonstrates that the combination of multiple shifted TD acquisitions and dedicated post-processing makes it feasible to retrieve in vivo cardiac tractographies from free-breathing DTI acquisitions. The substantial improvements were observed using the WIF method instead of the previously published PCATMIP technique.

  1. Clinical and Research Considerations for Patients With Hypertensive Acute Heart Failure: A Consensus Statement from the Society for Academic Emergency Medicine and the Heart Failure Society of America Acute Heart Failure Working Group.

    PubMed

    Collins, Sean P; Levy, Phillip D; Martindale, Jennifer L; Dunlap, Mark E; Storrow, Alan B; Pang, Peter S; Albert, Nancy M; Felker, G Michael; Fermann, Gregory J; Fonarow, Gregg C; Givertz, Michael M; Hollander, Judd E; Lanfear, David E; Lenihan, Daniel J; Lindenfeld, JoAnn M; Peacock, W Frank; Sawyer, Douglas B; Teerlink, John R; Butler, Javed

    2016-08-01

    Management approaches for patients in the emergency department (ED) who present with acute heart failure (AHF) have largely focused on intravenous diuretics. Yet, the primary pathophysiologic derangement underlying AHF in many patients is not solely volume overload. Patients with hypertensive AHF (H-AHF) represent a clinical phenotype with distinct pathophysiologic mechanisms that result in elevated ventricular filling pressures. To optimize treatment response and minimize adverse events in this subgroup, we propose that clinical management be tailored to a conceptual model of disease that is based on these mechanisms. This consensus statement reviews the relevant pathophysiology, clinical characteristics, approach to therapy, and considerations for clinical trials in ED patients with H-AHF. PMID:27286136

  2. Fast processing of digital imaging and communications in medicine (DICOM) metadata using multiseries DICOM format

    PubMed Central

    Ismail, Mahmoud; Philbin, James

    2015-01-01

    Abstract. The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies’ metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata. PMID:26158117

  3. Usefulness of Cardiac Sympathetic Nerve Imaging Using (123)Iodine-Metaiodobenzylguanidine Scintigraphy for Predicting Sudden Cardiac Death in Patients With Heart Failure.

    PubMed

    Kasama, Shu; Toyama, Takuji; Kurabayashi, Masahiko

    2016-01-01

    The autonomic nervous system plays an important role in the human heart. Activation of the cardiac sympathetic nervous system is a cardinal pathophysiological abnormality associated with the failing human heart. Myocardial imaging using (123)I-metaiodobenzylguanidine (MIBG), an analog of norepinephrine, can be used to investigate the activity of norepinephrine, the predominant neurotransmitter of the sympathetic nervous system. Many clinical trials have demonstrated that (123)I-MIBG scintigraphic parameters predict cardiac adverse events, especially sudden cardiac death, in patients with heart failure. In this review, we summarize results from published studies that have focused on the use of cardiac sympathetic nerve imaging using (123)I-MIBG scintigraphy for risk stratification of sudden cardiac death in patients with heart failure.

  4. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    PubMed Central

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-01-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases. PMID:26855466

  5. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  6. Development of more efficacious Tc-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceutical mixtures. Progress report, September 1, 1989--January 31, 1992

    SciTech Connect

    Heineman, W.R.

    1992-01-24

    The long-range objective of this research program is the development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents, each of which has properties optimized to provide diagnostic information concerning a given pathological condition. The specific objectives during the period (9/1/89 to 8/31/92) include: (1) Development of strategies for improving yields of specific Tc-diphosphonate complexes with optimum imaging properties; (2) Development of electrodes for rapid in situ electrochemical generation of skeletal imaging agents; (3) Development of electrochemical sensors for {Tc} and Re imaging agents; (4) Characterization of stable {Tc}- and Re-diphosphonate complexes obtainable in high yield by structural studies with techniques such as NMR, EXAFS, and Raman spectroscopy; (5) Development of improved separation techniques for the characterization of diphosphonate skeletal imaging agents; (6) Evaluation of the effect of the biological milieu on {Tc}-diphosphonate complexes; and (7) Electrochemical studies of technetium and rhenium complexes synthesized by Professor Deutsch`s research group for heart and brain imaging.

  7. An automated multi-modal object analysis approach to coronary calcium scoring of adaptive heart isolated MSCT images

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2012-02-01

    Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. This can be challenging for a human observer as it is difficult to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. The inclusion or exclusion of false positive or true positive calcified plaques respectively will alter the patient calcium score incorrectly, thus leading to the possibility of incorrect treatment prescription. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the Volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the requirement and

  8. The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart

    PubMed Central

    Fonseca, Carissa G.; Backhaus, Michael; Bluemke, David A.; Britten, Randall D.; Chung, Jae Do; Cowan, Brett R.; Dinov, Ivo D.; Finn, J. Paul; Hunter, Peter J.; Kadish, Alan H.; Lee, Daniel C.; Lima, Joao A. C.; Medrano−Gracia, Pau; Shivkumar, Kalyanam; Suinesiaputra, Avan; Tao, Wenchao; Young, Alistair A.

    2011-01-01

    Motivation: Integrative mathematical and statistical models of cardiac anatomy and physiology can play a vital role in understanding cardiac disease phenotype and planning therapeutic strategies. However, the accuracy and predictive power of such models is dependent upon the breadth and depth of noninvasive imaging datasets. The Cardiac Atlas Project (CAP) has established a large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable, web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and educational purposes. A goal of CAP is to facilitate collaborative statistical analysis of regional heart shape and wall motion and characterize cardiac function among and within population groups. Results: Three main open-source software components were developed: (i) a database with web-interface; (ii) a modeling client for 3D + time visualization and parametric description of shape and motion; and (iii) open data formats for semantic characterization of models and annotations. The database was implemented using a three-tier architecture utilizing MySQL, JBoss and Dcm4chee, in compliance with the DICOM standard to provide compatibility with existing clinical networks and devices. Parts of Dcm4chee were extended to access image specific attributes as search parameters. To date, approximately 3000 de-identified cardiac imaging examinations are available in the database. All software components developed by the CAP are open source and are freely available under the Mozilla Public License Version 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt). Availability: http://www.cardiacatlas.org Contact: a.young@auckland.ac.nz Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21737439

  9. Analysis and Recognition of Traditional Chinese Medicine Pulse Based on the Hilbert-Huang Transform and Random Forest in Patients with Coronary Heart Disease.

    PubMed

    Guo, Rui; Wang, Yiqin; Yan, Hanxia; Yan, Jianjun; Yuan, Fengyin; Xu, Zhaoxia; Liu, Guoping; Xu, Wenjie

    2015-01-01

    Objective. This research provides objective and quantitative parameters of the traditional Chinese medicine (TCM) pulse conditions for distinguishing between patients with the coronary heart disease (CHD) and normal people by using the proposed classification approach based on Hilbert-Huang transform (HHT) and random forest. Methods. The energy and the sample entropy features were extracted by applying the HHT to TCM pulse by treating these pulse signals as time series. By using the random forest classifier, the extracted two types of features and their combination were, respectively, used as input data to establish classification model. Results. Statistical results showed that there were significant differences in the pulse energy and sample entropy between the CHD group and the normal group. Moreover, the energy features, sample entropy features, and their combination were inputted as pulse feature vectors; the corresponding average recognition rates were 84%, 76.35%, and 90.21%, respectively. Conclusion. The proposed approach could be appropriately used to analyze pulses of patients with CHD, which can lay a foundation for research on objective and quantitative criteria on disease diagnosis or Zheng differentiation.

  10. A Compton camera for low energy gamma ray imaging in nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Leblanc, James Walter

    C-SPRINT is a prototype electronically-collimated imaging system that has been built using pixellated, low-noise, position-sensitive silicon as the first detector, and a sodium iodide scintillation detector ring as the second detector. The camera was intended to characterize potential performance gains of Compton cameras in nuclear medicine applications. The system consists of a single 4.5 x 1.5 x 0.03 cm3 silicon pad detector module with 2 keV energy resolution centered at the front face of a 50 cm diameter, 12 cm long NaI detector annulus. Calculations of the Uniform Cramer-Rao lower bound show that a "design Compton camera" based on our prototype can challenge existing mechanically-collimated systems at low to medium energies (˜140.5 - 400 keV) despite the deleterious effects of Doppler broadening. Measurements with our current system have yielded system sensitivity and spatial resolution estimates using 99mTc and 131I isotopes. Results showed an absolute efficiency of 1.8 x 10 -7 for 99mTc and 1.2 x 10-6 for 131I. The 99mTc value is an order of magnitude lower than predicted because of a combination of worse than expected silicon detector triggering performance, timing resolution issues, and system dead time effects. After correcting for these, efficiency predictions based on Monte Carlo analysis fall within 10% of the measured values. Spatial resolution estimates are also within 10% of analytical predictions. Measured resolution for the 99mTc point source was 15 min FWHM while in the 131I case, resolution improved to 8 mm FWHM. Extended source imaging was performed to characterize system performance under more challenging conditions. Images obtained were compared with measurements using a clinically-available mechanically collimated Anger camera. A resolution-variance study was also conducted for both isotopes. The results showed that the C-SPRINT camera performance on a per-detected photon basis was worse than the Anger camera for 99mTc but was similar for

  11. Heart Failure

    MedlinePlus

    ... version of this page please turn Javascript on. Heart Failure What is Heart Failure? In heart failure, the heart cannot pump enough ... failure often experience tiredness and shortness of breath. Heart Failure is Serious Heart failure is a serious and ...

  12. Value of magnetic resonance imaging in the depiction of intravenous leiomyomatosis extending to the heart.

    PubMed

    Kocaoglu, Murat; Bulakbasi, Nail; Ugurel, M Sahin; Ors, Fatih; Tayfun, Cem; Ucoz, Taner

    2003-01-01

    Intravenous leiomyomatosis is a seldom neoplasia characterized by invasion of venous channels by a benign smooth muscle tumor originating either from a uterine myoma or from vessel wall. Extension to the heart may cause mechanical obstruction and is frequently misdiagnosed as a right-atrial myxoma. We present a case of recurrent intravenous leiomyomatosis with previous hysterectomy because of uterine leiomyoma which have different magnetic resonance characteristics than that of the former reports. PMID:12886157

  13. Factors impacting echocardiographic imaging after the Fontan procedure: a report from the pediatric heart network fontan cross-sectional study.

    PubMed

    Williams, Richard V; Margossian, Renee; Lu, Minmin; Atz, Andrew M; Bradley, Timothy J; Jay Campbell, Michael; Colan, Steven D; Gallagher, Dianne; Lai, Wyman W; Pearson, Gail D; Prakash, Ashwin; Shirali, Girish; Cohen, Meryl S

    2013-10-01

    Echocardiographic image quality in Fontan survivors may be limited by a variety of factors. We sought to describe echocardiographic quality and factors associated with study quality in subjects participating in the Pediatric Heart Network Fontan Cross-Sectional Study. Echocardiograms were obtained at 7 clinical sites using a standard protocol. Quality grading and analysis were performed by a core laboratory. Univariate and multivariable modeling were performed to assess factors associated with quality and ability to obtain images sufficient for prespecified quantitative analysis. A total of 543 echocardiograms were obtained. The quality of echocardiograms improved over the duration of the study. The great arteries, systemic veins, and pulmonary veins were less likely to be adequately imaged than other cardiac structures. Quantitative analysis of ventricular volume was possible in 76% overall, but only 41% of those with mixed ventricular morphology. Factors independently associated with better quality included younger age, levocardia, acquisition of the echocardiogram at a longer time since the beginning of enrollment, absence of a pulmonary artery stent, and clinical site. Patient and center-specific factors are associated with echocardiographic quality after the Fontan procedure. Increased familiarity and experience with a standard imaging protocol is likely to result in improved quality.

  14. Magnetic Resonance Imaging Of Double Oblique Slices Through The Human Heart

    NASA Astrophysics Data System (ADS)

    Luypaert, Robert; Taeymans, Yve; van Cauteren, M.; Verhelle, Filip; Peeters, Frank; Osteaux, Michel

    1989-04-01

    Although in Magnetic Resonance Imaging (MRI) there is no fundamental restriction to axial sections, specifying an arbitrary orientation and introducing the relevant information in the pulse sequence generator are not trivial. We have developed a solution for cardiac imaging. It consists of a general double oblique pulse sequence and a specialized user interface. The basic problems of double oblique MRI, the specific questions of cardiac imaging and the requirements of the user interface are discussed.

  15. Sex- and gender-specific research priorities for the emergency management of heart failure and acute arrhythmia: proceedings from the 2014 Academic Emergency Medicine Consensus Conference Cardiovascular Research Workgroup.

    PubMed

    McGregor, Alyson J; Frank Peacock, W; Marie Chang, Anna; Safdar, Basmah; Diercks, Deborah

    2014-12-01

    The emergency department (ED) is the point of first contact for patients with acute heart failure and arrhythmias, with 1 million annual ED visits in the United States. Although the total numbers of men and women living with heart failure are similar, female patients are underrepresented in clinical studies, with current knowledge predominantly based on data from male patients. This has led to an underappreciation of the sex-specific differences in clinical characteristics and pathophysiology-based management of heart failure. Similar disparities have been found in management of acute arrhythmias, especially atrial arrhythmias that lead to an increased risk of stroke in women. Additionally, peripartum and postpartum cardiomyopathy represent a diagnostic and treatment dilemma. This article is the result of a breakout session in the cardiovascular and resuscitation work group of the 2014 Academic Emergency Medicine consensus conference "Gender-Specific Research in Emergency Medicine: Investigate, Understand, and Translate How Gender Affects Patient Outcomes." A nominal group technique was used to identify and prioritize themes and research questions using electronic mail, monthly conference calls, in-person meetings, and Web-based surveys between June 2013 and May 2014. Consensus was achieved through three rounds of nomination followed by the meeting on May 13, 2014, and resulted in seven priority themes that are essential to the common complex clinical syndrome of heart failure for both men and women and include the areas of pathophysiology; presentation and symptomatology; and diagnostic strategies using biomarkers, treatment, and mortality, with special consideration to arrhythmia management and pregnancy.

  16. Imaging of Wall Motion Coupled with Blood Flow Velocity in the Hearts and Vessels in vivo: A Feasibility Study

    PubMed Central

    Luo, Jianwen; Konofagou, Elisa E.

    2014-01-01

    The mechanical property and geometry changes as a result of disease affect both the wall motion and blood flow, while the latter two are also coupled and therefore continuously influence one another. Simultaneous and registered imaging of both cardiovascular wall motion and blood velocity may thus contribute to more complete computational models of cardiovascular mechanical and fluid dynamics as well as provide additional diagnostic information. The objective of this paper is to determine the feasibility of imaging cardiovascular wall motion coupled with blood flow in vivo. Normal (n=6) and infarcted (n=5) murine left ventricles, and normal (n=5) and aneurysmal (n=4) murine abdominal aortas, were imaged in longitudinal views with a 30-MHz ultrasound probe. Using electrocardiogram (ECG) gating, two-dimensional (2-D) radio-frequency (RF) data were acquired at a frame rate of 8 kHz. The axial wall velocity and blood velocity were estimated using a speckle tracking technique. Spatially and temporally registered imaging of both cardiovascular wall motion and blood flow was shown feasible. Reduced wall motion was detected in the infarcted region, while vortex flow patterns were imaged in diastolic phases of both normal and infarcted left ventricles. The myocardial wall motion and blood flow were found be to more synchronized in the normal heart, where the blood moves towards the anteroseptal wall after the mitral valve opens (i.e., rapid filling phase), and the anteroseptal wall simultaneously undergoes outward motion. In the infarcted heart, however, in the rapid filling phase the basal anteroseptal wall starts moving, about 20 ms before the mitral valve opens and the blood enters the left ventricle. In the normal aorta, the wall motion and blood velocity were uniform and synchronized. In the aneurysmal aorta, reduced and spatially varied wall motion and vortex flow patterns in the aneurysmal sac were found. The wall motion and blood velocity were thus less synchronized

  17. Postinfarct Left Ventricular Remodelling: A Prevailing Cause of Heart Failure

    PubMed Central

    Galli, Alessio; Lombardi, Federico

    2016-01-01

    Heart failure is a chronic disease with high morbidity and mortality, which represents a growing challenge in medicine. A major risk factor for heart failure with reduced ejection fraction is a history of myocardial infarction. The expansion of a large infarct scar and subsequent regional ventricular dilatation can cause postinfarct remodelling, leading to significant enlargement of the left ventricular chamber. It has a negative prognostic value, because it precedes the clinical manifestations of heart failure. The characteristics of the infarcted myocardium predicting postinfarct remodelling can be studied with cardiac magnetic resonance and experimental imaging modalities such as diffusion tensor imaging can identify the changes in the architecture of myocardial fibers. This review discusses all the aspects related to postinfarct left ventricular remodelling: definition, pathogenesis, diagnosis, consequences, and available therapies, together with experimental interventions that show promising results against postinfarct remodelling and heart failure. PMID:26989555

  18. Registration of dynamic multiview 2D ultrasound and late gadolinium enhanced images of the heart: Application to hypertrophic cardiomyopathy characterization.

    PubMed

    Betancur, Julián; Simon, Antoine; Halbert, Edgar; Tavard, François; Carré, François; Hernández, Alfredo; Donal, Erwan; Schnell, Frédéric; Garreau, Mireille

    2016-02-01

    Describing and analyzing heart multiphysics requires the acquisition and fusion of multisensor cardiac images. Multisensor image fusion enables a combined analysis of these heterogeneous modalities. We propose to register intra-patient multiview 2D+t ultrasound (US) images with multiview late gadolinium-enhanced (LGE) images acquired during cardiac magnetic resonance imaging (MRI), in order to fuse mechanical and tissue state information. The proposed procedure registers both US and LGE to cine MRI. The correction of slice misalignment and the rigid registration of multiview LGE and cine MRI are studied, to select the most appropriate similarity measure. It showed that mutual information performs the best for LGE slice misalignment correction and for LGE and cine registration. Concerning US registration, dynamic endocardial contours resulting from speckle tracking echocardiography were exploited in a geometry-based dynamic registration. We propose the use of an adapted dynamic time warping procedure to synchronize cardiac dynamics in multiview US and cine MRI. The registration of US and LGE MRI was evaluated on a dataset of patients with hypertrophic cardiomyopathy. A visual assessment of 330 left ventricular regions from US images of 28 patients resulted in 92.7% of regions successfully aligned with cardiac structures in LGE. Successfully-aligned regions were then used to evaluate the abilities of strain indicators to predict the presence of fibrosis. Longitudinal peak-strain and peak-delay of aligned left ventricular regions were computed from corresponding regional strain curves from US. The Mann-Withney test proved that the expected values of these indicators change between the populations of regions with and without fibrosis (p < 0.01). ROC curves otherwise proved that the presence of fibrosis is one factor amongst others which modifies longitudinal peak-strain and peak-delay. PMID:26619189

  19. Toward time resolved 4D cardiac CT imaging with patient dose reduction: estimating the global heart motion

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuyuki; Segars, W. Paul; Fung, George S. K.; Tsui, Benjamin M. W.

    2006-03-01

    Coronary artery imaging with multi-slice helical computed tomography is a promising noninvasive imaging technique. The current major issues include the insufficient temporal resolution and large patient dose. We propose an image reconstruction method which provides a solution to both of the problems. The method uses an iterative approach repeating the following four steps until the difference between the two projection data sets falls below a certain criteria in step-4: 1) estimating or updating the cardiac motion vectors, 2) reconstructing the time-resolved 4D dynamic volume images using the motion vectors, 3) calculating the projection data from the current 4D images, 4) comparing them with the measured ones. In this study, we obtain the first estimate of the motion vector. We use the 4D NCAT phantom, a realistic computer model for the human anatomy and cardiac motions, to generate the dynamic fan-beam projection data sets as well to provide a known truth for the motion. Then, the halfscan reconstruction with the sliding time-window technique is used to generate cine images: f(t, r r). Here, we use one heart beat for each position r so that the time information is retained. Next, the magnitude of the first derivative of f(t, r r) with respect to time, i.e., |df/dt|, is calculated and summed over a region-of-interest (ROI), which is called the mean-absolute difference (MAD). The initial estimation of the vector field are obtained using MAD for each ROI. Results of the preliminary study are presented.

  20. Development of more efficacious [Tc]-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceuticals

    SciTech Connect

    Heineman, W.R.

    1993-05-03

    This research program is detailed at development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents to provide diagnostic information concerning a given pathological condition. Analytical techniques are being developed to enable complete analysis of radiopharmaceutical preparations so that individual complexes can be characterized with respect to imaging efficacy and to enable a radiopharmaceutical to be monitored after injection into a test animal to determine the species that actually accumulates in an organ to provide the image. Administration of the isolated, single most effective imaging complex, rather than a mixture of technetium-containing complexes, wi-11 minimize radiation exposure to the patient and maximize diagnostic information available to the clinician. This report specifically describes the development of capillary electrophoresis (CE) for characterizating diphosphonate skeletal imaging agents. Advances in the development of electrochemical and fiber optic sensors for Tc and Re imaging agents are described. These sensors will ultimately be capable of monitoring a specific chemical state of an imaging agent in vivo after injection into a test animal by implantation in the organ of interest.

  1. A Shift From Cell Cultures to Creatures: In Vivo Imaging of Small Animals in Experimental Regenerative Medicine

    PubMed Central

    Studwell, Anna J; Kotton, Darrell N

    2011-01-01

    Although the use of small animals for in vivo experimentation has been widespread, only recently has there been easy availability of techniques that allow noninvasive in vivo imaging of small animals. Because these techniques allow the same individual subject to be followed longitudinally throughout the duration of an experiment, their use is rapidly changing the way small animals are employed in the laboratory. In this review, we focus on six imaging modalities that are increasingly employed for small animal in vivo imaging: optical imaging (OI), magnetic resonance imaging (MRI), computed tomography (CT), single-photon emission tomography (SPECT), ultrasound (US), and positron-emission tomography (PET). Each modality allows for the noninvasive tracking of cells and cell products in vivo. In addition, multimodality imaging, combining two or more of these techniques, has also been increasingly employed to overcome the limitations of each independent technique. After reviewing these available imaging modalities, we detail their experimental application, exemplified by the emerging field of regenerative medicine, referring to publications whose conclusions would otherwise be difficult to support without the availability of in vivo imaging. PMID:21952170

  2. Early detection of rejection and assessment of cyclosporine therapy by 111In antimyosin imaging in mouse heart allografts

    SciTech Connect

    Isobe, M.; Haber, E.; Khaw, B.A. )

    1991-09-01

    Mice (n = 58) with abdominal heterotopic heart transplants were studied to examine the effectiveness of 111In-labeled antimyosin scintigraphy in the detection of rejection and to determine the consequence of cyclosporine therapy on the results. Allografts from B10D2 donors were transplanted into B6AF1 recipients. Of the 49 allografted mice, 19 were treated with cyclosporine (15 mg/kg.day). Nine isografted mice served as controls. Scintigraphy was performed by injecting 100 muCi 111In antimyosin monoclonal antibody 2-15 days after transplantation. An increase in the ratio of percent dose of antimyosin injected per gram (% dose/g) of the grafted heart (G) to that of the autologous heart (A) (G/A) as well as the increasing percent dose per gram of antimyosin in the grafts reflected the severity of histopathological rejection regardless of the presence or absence of cyclosporine. Scintigraphic images demonstrated unequivocally intense accumulation of 111In in rejected allografts as confirmed by histologically demonstrable myocyte necrosis. The G/A ratio in allografted mice with mildly deteriorated mechanical activity (4.2 {plus minus} 1.0, mean {plus minus} SD) was greater than that in mice with normal contractility (1.8 {plus minus} 0.7) (p less than 0.001), and the necrosis correlated with this modest decline in mechanical function could be scintigraphically identified. Of mice with normally contracting allografts, the G/A ratio was greater in animals with demonstrated myocyte necrosis (2.6 {plus minus} 0.5) than in those without necrosis (1.5 {plus minus} 0.5) (p less than 0.001). In contrast, isografted mice or a subset of allografted mice treated with cyclosporine and not showing evidence of rejection did not manifest any significant change in G/A ratio, nor did they have scintigrams positive for rejection as late as 15 days after transplantation.

  3. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine.

    PubMed

    Hendel, Robert C; Berman, Daniel S; Di Carli, Marcelo F; Heidenreich, Paul A; Henkin, Robert E; Pellikka, Patricia A; Pohost, Gerald M; Williams, Kim A

    2009-06-01

    The American College of Cardiology Foundation (ACCF), along with key specialty and subspecialty societies, conducted an appropriate use review of common clinical scenarios where cardiac radionuclide imaging (RNI) is frequently considered. This document is a revision of the original Single-Photon Emission Computed Tomography Myocardial Perfusion Imaging (SPECT MPI) Appropriateness Criteria, published 4 years earlier, written to reflect changes in test utilization and new clinical data, and to clarify RNI use where omissions or lack of clarity existed in the original criteria. This is in keeping with the commitment to revise and refine appropriate use criteria (AUC) on a frequent basis. The indications for this review were drawn from common applications or anticipated uses, as well as from current clinical practice guidelines. Sixty-seven clinical scenarios were developed by a writing group and scored by a separate technical panel on a scale of 1 to 9 to designate appropriate use, inappropriate use, or uncertain use. In general, use of cardiac RNI for diagnosis and risk assessment in intermediate- and high-risk patients with coronary artery disease (CAD) was viewed favorably, while testing in low-risk patients, routine repeat testing, and general screening in certain clinical scenarios were viewed less favorably. Additionally, use for perioperative testing was found to be inappropriate except for high selected groups of patients. It is anticipated that these results will have a significant impact on physician decision making, test performance, and reimbursement policy, and will help guide future research. PMID:19451357

  4. A Model for Measured Traveling Waves at End-Diastole in Human Heart Wall by Ultrasonic Imaging Method

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Shintani, Seine A.; Ishiwata, Shin'ichi; Kanai, Hiroshi

    2016-04-01

    We observe traveling waves, measured by the ultrasonic noninvasive imaging method, in a longitudinal beam direction from the apex to the base side on the interventricular septum (IVS) during the period from the end-diastole to the beginning of systole for a healthy human heart wall. We present a possible phenomenological model to explain part of one-dimensional cardiac behaviors for the observed traveling waves around the time of R-wave of echocardiography (ECG) in the human heart. Although the observed two-dimensional patterns of traveling waves are extremely complex and no one knows yet the exact solutions for the traveling homoclinic plane wave in the one-dimensional complex Ginzburg-Landau equation (CGLE), we numerically find that part of the one-dimensional homoclinic dynamics of the phase and amplitude patterns in the observed traveling waves is similar to that of the numerical homoclinic plane-wave solutions in the CGLE with periodic boundary condition in a certain parameter space. It is suggested that part of the cardiac dynamics of the traveling waves on the IVS can be qualitatively described by the CGLE model as a paradigm for understanding biophysical nonlinear phenomena.

  5. Facilitating and securing offline e-medicine service through image steganography.

    PubMed

    Kamal, A H M; Islam, M Mahfuzul

    2014-06-01

    E-medicine is a process to provide health care services to people using the Internet or any networking technology. In this Letter, a new idea is proposed to model the physical structure of the e-medicine system to better provide offline health care services. Smart cards are used to authenticate the user singly. A very unique technique is also suggested to verify the card owner's identity and to embed secret data to the card while providing patients' reports either at booths or at the e-medicine server system. The simulation results of card authentication and embedding procedure justify the proposed implementation.

  6. Facilitating and securing offline e-medicine service through image steganography

    PubMed Central

    Islam, M. Mahfuzul

    2014-01-01

    E-medicine is a process to provide health care services to people using the Internet or any networking technology. In this Letter, a new idea is proposed to model the physical structure of the e-medicine system to better provide offline health care services. Smart cards are used to authenticate the user singly. A very unique technique is also suggested to verify the card owner's identity and to embed secret data to the card while providing patients' reports either at booths or at the e-medicine server system. The simulation results of card authentication and embedding procedure justify the proposed implementation. PMID:26609382

  7. Facilitating and securing offline e-medicine service through image steganography.

    PubMed

    Kamal, A H M; Islam, M Mahfuzul

    2014-06-01

    E-medicine is a process to provide health care services to people using the Internet or any networking technology. In this Letter, a new idea is proposed to model the physical structure of the e-medicine system to better provide offline health care services. Smart cards are used to authenticate the user singly. A very unique technique is also suggested to verify the card owner's identity and to embed secret data to the card while providing patients' reports either at booths or at the e-medicine server system. The simulation results of card authentication and embedding procedure justify the proposed implementation. PMID:26609382

  8. Guidelines for clinical use of cardiac radionuclide imaging, December 1986. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Cardiovascular Procedures (Subcommittee on Nuclear Imaging).

    PubMed

    1986-12-01

    This report describes the nuclear cardiology procedures available for use as diagnostic techniques in patients with definite or suspected cardiovascular disease. The usefulness of myocardial imaging, radionuclide angiocardiography, and other radionuclide cardiovascular imaging techniques is classified within specific disease states. The clinical utility of each technique is graded from I to IV, depending on the clinical importance of the technique (I equals most important; IV equals not indicated). A grade of V is given for methods now considered to be in their research phase. The usefulness of these methods is discussed in patients with acute ischemic heart disease, chronic ischemic heart disease, valvular heart disease, pulmonary vascular disease, and hypertensive heart disease. Selected references are provided.

  9. Thermographic imaging in the beating heart: a method for coronary flow estimation based on a heat transfer model.

    PubMed

    Gordon, N; Rispler, S; Sideman, S; Shofty, R; Beyar, R

    1998-09-01

    Intraoperative thermographic imaging in open-chest conditions can provide the surgeon with important qualitative information regarding coronary flow by utilizing heat transfer analysis following injection of cold saline into the aortic root. The heat transfer model is based on the assumption that the epicardial temperature changes are mainly due to convection of heat by the blood flow, which may, therefore, be estimated by measuring the temperature variations. Hearts of eight dogs were exposed and imaged by a thermographic camera. Flow in the left arterial descending (LAD) coronary branch was measured by a transit-time flowmeter. 20 ml of cold saline were injected into the aortic root (just after the aortic valve) and the epicardial temperature images were recorded at end-diastole, for 20-30 s. Different flow rates were achieved by 1 min occlusion of the LAD, which affected a reactive hyperemic response. The dynamics of the temperature in the arterial coronary tree was obtained by averaging the temperature over an edge-detected arterial segment for each frame. The heat transfer equation was curve-fitted, and the flow-dependent heat transfer index was correlated with the experimentally determined coronary flow (r = 0.69, p < 0.001). In summary: a method for quantitative estimation of coronary blood flow by thermography and heat transfer analysis was developed and tested in animal experiments. This method can provide important information regarding coronary blood flow during open-chest surgical procedures. PMID:9796950

  10. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    DOEpatents

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  11. ECG gating of thallium-201 myocardial images: effect on detection of ischemic heart disease

    SciTech Connect

    McKillop, J.H.; Fawcett, H.D.; Baumert, J.E.; McDougall, I.R.; DeBusk, R.F.; Harrison, D.C.; Goris, M.L.

    1981-03-01

    Using the angiographic findings as the standard, we have examined the sensitivity and specificity of ECG-gated static thallium-201 myocardial images in 54 patients undergoing selective coronary arteriography. Gated and nongated images, each in anterior, 45 LAO, and 65 LAO projections, were processed by interpolative background subtraction. They were then analyzed separately by four independent observers who were unaware of patient identity, the results of coronary arteriography, and which studies were gated or nonongated. No significant differences were observed between the gated and ngated images regarding sensitivity or specificity, the detection rate for reversible myocardial ischmia, the accuracy of prediction of arteriographic extent of disease, or the degree of inter-or intraobserver variability. We conclude that ECG-gated acquisition of Tl-201 images does not produce any significant advantages, at least when interpolative background subtraction is used.

  12. [Situation of supply and boom of PET imaging: what is the future for technetium-99m in nuclear medicine?].

    PubMed

    Maia, S; Ayachi Hatit, N; Paycha, F

    2011-05-01

    Molecular imaging has shown its interest in the diagnosis, staging and therapy monitoring of many diseases, especially in the field of cancer. This imaging modality can detect non-invasively early molecular changes specific to these diseases. Its expansion includes two aspects linked firstly with the advanced techniques of imaging modalities and secondly with the development of tracers as radio pharmaceuticals for imaging new molecular targets. Technetium-99m ((99m)Tc), because of its physical characteristics, its widespread availability and low cost, is the most used radionuclide in molecular imaging with the technique of single photon emission computed tomography (SPECT). Nevertheless, the current difficulty concerning the supply and the great interest of Positron Emission Tomography (PET), the "competitor" imaging modality-using molecules labelled with fluorine-18 ((18)F), legitimates the question about the future of (99m)Tc, its supremacy and the emergence of new tracer labelled with (99m)Tc. Focusing on the actual and future supply situation, the place of SPECT imaging in nuclear medicine, as well as the development of new molecules labelled with (99m)Tc is necessary to show that this radionuclide will remain essential for the speciality in the next years.

  13. Interoperative fundus image and report sharing in compliance with integrating the healthcare enterprise conformance and web access to digital imaging and communication in medicine persistent object protocol

    PubMed Central

    Wu, Hui-Qun; Lv, Zheng-Min; Geng, Xing-Yun; Jiang, Kui; Tang, Le-Min; Zhou, Guo-Min; Dong, Jian-Cheng

    2013-01-01

    AIM To address issues in interoperability between different fundus image systems, we proposed a web eye-picture archiving and communication system (PACS) framework in conformance with digital imaging and communication in medicine (DICOM) and health level 7 (HL7) protocol to realize fundus images and reports sharing and communication through internet. METHODS Firstly, a telemedicine-based eye care work flow was established based on integrating the healthcare enterprise (IHE) Eye Care technical framework. Then, a browser/server architecture eye-PACS system was established in conformance with the web access to DICOM persistent object (WADO) protocol, which contains three tiers. RESULTS In any client system installed with web browser, clinicians could log in the eye-PACS to observe fundus images and reports. Multipurpose internet mail extensions (MIME) type of a structured report is saved as pdf/html with reference link to relevant fundus image using the WADO syntax could provide enough information for clinicians. Some functions provided by open-source Oviyam could be used to query, zoom, move, measure, view DICOM fundus images. CONCLUSION Such web eye-PACS in compliance to WADO protocol could be used to store and communicate fundus images and reports, therefore is of great significance for teleophthalmology. PMID:24392341

  14. Coronary wall MR imaging in patients with rapid heart rates: a feasibility study of black-blood steady-state free precession (SSFP).

    PubMed

    Lin, Kai; Bi, Xiaoming; Taimen, Kirsi; Zuehlsdorff, Sven; Lu, Biao; Carr, James; Li, Debiao

    2012-03-01

    We assessed the hypothesis that black-blood steady-state free precession (SSFP) would provide coronary wall images comparable to images from TSE and have better performance than TSE under conditions of fast heart rate. With IRB approval, thirty participants without a history of coronary artery disease (19 men, 11 women, 26-83 y/o) were scanned with a 1.5 T MR scanner. Cross-sectional black-blood images of the proximal portions of coronary arteries were acquired with a two-dimensional (2D), double inversion recovery (DIR) prepared TSE sequence and a 2D DIR SSFP sequence on the same planes. Image quality (ranked with a 4-point system, scored from 0 to 3), vessel wall area and thickness, signal-to-noise ratio (SNR) of the wall and contrast-to-noise ratio (CNR, wall to lumen) were compared between SSFP and TSE with SPSS software (v 13.0). Totally 28 scans were completed. For SSFP and TSE, there was no difference in image quality. SSFP had a higher SNR (23.7 ± 10.1 vs. 14.4 ± 5.2, P < 0.001) and wall-lumen CNR (8.8 ± 4.5 vs. 6.7 ± 3.2, P = 0.001). Good agreements between measured wall area (r = 0.701, P < 0.001) and thickness (r = 0.560, P < 0.001) were found. For 10 participants with heart rate more than 80 beats/min, the image quality of SSFP was higher than TSE (P = 0.016). SSFP provided image quality and measurement accuracy that was comparable to TSE. With its higher performance under fast heart rate conditions, SSFP may break through the existing thresholds for heart rate and extend clinical applicability of coronary wall MR imaging to a larger population.

  15. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment.

    PubMed

    Dilsizian, Steven E; Siegel, Eliot L

    2014-01-01

    Although advances in information technology in the past decade have come in quantum leaps in nearly every aspect of our lives, they seem to be coming at a slower pace in the field of medicine. However, the implementation of electronic health records (EHR) in hospitals is increasing rapidly, accelerated by the meaningful use initiatives associated with the Center for Medicare & Medicaid Services EHR Incentive Programs. The transition to electronic medical records and availability of patient data has been associated with increases in the volume and complexity of patient information, as well as an increase in medical alerts, with resulting "alert fatigue" and increased expectations for rapid and accurate diagnosis and treatment. Unfortunately, these increased demands on health care providers create greater risk for diagnostic and therapeutic errors. In the near future, artificial intelligence (AI)/machine learning will likely assist physicians with differential diagnosis of disease, treatment options suggestions, and recommendations, and, in the case of medical imaging, with cues in image interpretation. Mining and advanced analysis of "big data" in health care provide the potential not only to perform "in silico" research but also to provide "real time" diagnostic and (potentially) therapeutic recommendations based on empirical data. "On demand" access to high-performance computing and large health care databases will support and sustain our ability to achieve personalized medicine. The IBM Jeopardy! Challenge, which pitted the best all-time human players against the Watson computer, captured the imagination of millions of people across the world and demonstrated the potential to apply AI approaches to a wide variety of subject matter, including medicine. The combination of AI, big data, and massively parallel computing offers the potential to create a revolutionary way of practicing evidence-based, personalized medicine.

  16. Systemic and inflammatory disorders involving the heart: the role of PET imaging.

    PubMed

    Juneau, Daniel; Erthal, Fernanda; Alzahrani, Atif; Alenazy, Ali; Nery, Pablo B; Beanlands, Rob S; Chow, Benjamin J

    2016-12-01

    Cardiac inflammatory disorders, either primarily cardiac or secondary to a systemic process, are associated with significant morbidity and/or mortality. Their diagnosis can be challenging, especially due to significant overlap in their clinical presentation with other cardiac diseases. Recent publications have investigated the potential diagnostic role of positron emission tomography (PET) imaging in these patients. Most of the available literature is focused on Fluorine-18 fluorodeoxyglucose (FDG), a tracer which has already demonstrated its use in other inflammatory and infectious processes. PET imaging can help in the diagnosis, prognosis and follow-up in a variety of cardiac inflammatory processes, including infective endocarditis, cardiac implantable electronic device infection, pericarditis, myocarditis, sarcoidosis and amyloidosis. PET's ability to depict metabolic changes and abnormalities, sometime even before the onset of any anatomical changes, can be a significant advantage over standard anatomical imaging. PET appears to be particularly useful in cases where standard investigation is non-diagnostic or equivocal. PMID:27611707

  17. Systemic and inflammatory disorders involving the heart: the role of PET imaging.

    PubMed

    Juneau, Daniel; Erthal, Fernanda; Alzahrani, Atif; Alenazy, Ali; Nery, Pablo B; Beanlands, Rob S; Chow, Benjamin J

    2016-12-01

    Cardiac inflammatory disorders, either primarily cardiac or secondary to a systemic process, are associated with significant morbidity and/or mortality. Their diagnosis can be challenging, especially due to significant overlap in their clinical presentation with other cardiac diseases. Recent publications have investigated the potential diagnostic role of positron emission tomography (PET) imaging in these patients. Most of the available literature is focused on Fluorine-18 fluorodeoxyglucose (FDG), a tracer which has already demonstrated its use in other inflammatory and infectious processes. PET imaging can help in the diagnosis, prognosis and follow-up in a variety of cardiac inflammatory processes, including infective endocarditis, cardiac implantable electronic device infection, pericarditis, myocarditis, sarcoidosis and amyloidosis. PET's ability to depict metabolic changes and abnormalities, sometime even before the onset of any anatomical changes, can be a significant advantage over standard anatomical imaging. PET appears to be particularly useful in cases where standard investigation is non-diagnostic or equivocal.

  18. Fast 3D coronary artery contrast-enhanced magnetic resonance angiography with magnetization transfer contrast, fat suppression and parallel imaging as applied on an anthropomorphic moving heart phantom.

    PubMed

    Irwan, Roy; Rüssel, Iris K; Sijens, Paul E

    2006-09-01

    A magnetic resonance sequence for high-resolution imaging of coronary arteries in a very short acquisition time is presented. The technique is based on fast low-angle shot and uses fat saturation and magnetization transfer contrast prepulses to improve image contrast. GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is implemented to shorten acquisition time. The sequence was tested on a moving anthropomorphic silicone heart phantom where the coronary arteries were filled with a gadolinium contrast agent solution, and imaging was performed at varying heart rates using GRAPPA. The clinical relevance of the phantom was validated by comparing the myocardial relaxation times of the phantom's homogeneous silicone cardiac wall to those of humans. Signal-to-noise ratio and contrast-to-noise ratio were higher when parallel imaging was used, possibly benefiting from the acquisition of one partition per heartbeat. Another advantage of parallel imaging for visualizing the coronary arteries is that the entire heart can be imaged within a few breath-holds.

  19. Evaluation of congenital heart disease by cine magnetic resonance imaging (MRI)

    SciTech Connect

    Feiglin, D.H.I.; Moodie, D.S.; O'Donnell, J.K.; Go, R.T.; Sterba, R.; MacIntyre, W.J.

    1985-05-01

    The authors studied 11 adult patients (pts) with atrial septal defect (ASD) and 4 adult pts with ventricular septal defect (VSD) using cine magnetic resonance. All studies were performed using a .6T superconducting magnet with ECG gating and electronic axial rotation when appropriate. Repeated multislice image with no change in physiologic delay of the spin echo pulse sequence, but varying the time by offsetting one slice at each imaging stage allowed for an N x N collection of data where N is the number of slices in one collection set and is equal to the number of sets collected. Algebraic manipulation of the T1 weighted images (TE=30mSec TRimaging of the atrial septum than does conventional MRI. Using this technique, the authors have identified both atrial and ventricular septal defects in all pts preoperatively and have noted an intact atrial septum following surgery. Standard MRI produced 4 false positive studies postoperatively because only 1 phase of the cardiac cycle was reviewed. Cine MRI allows better identification of septal defects than standard static acquisitions. The cine technique also provides better definition and delineation of right sided abnormalities which are maximized when viewed in a cardiac major axis obtained by electronic axial rotation.

  20. Electrocardiographic and Echocardiographic Imaging of the Heart of Athletes and Patients with Hypertension

    PubMed Central

    Kreso, Amir; Barakovic, Fahir; Medjedovic, Senad; Halilbasic, Amela; Klepic, Muhamed

    2015-01-01

    Introduction: “Athlete’s heart syndrome” is a condition characterized by structural, electrophysiologic and functional adaptation of the myocardium to physical activity (training), depending on the activity intensity, duration and type. In athletes left ventricular hypertrophy often resembles comorbid conditions (hypertension or hypertrophic cardiomyopathy) so the differential diagnosis of the disease is very important and crucial, especially in people who are in active training. In fact, if an athlete has finding which indicate thickening of the left ventricle walls, should be distinguished hypertrophy which occurred as a result of many years of training from accidental existence of hypertension or hypertrophic cardiomyopathy in the same person. Therefore, it is important to make a diagnostic difference between healthy and sick heart. Material and methods: The study involved male persons aged 20-45 which have increased muscle mass of the left ventricle due to different etiology. Definite sample included 80 respondents divided into two groups. All respondent underwent interview, clinical examination, ECG and echocardiography. Results: Average systolic blood pressure (SBP) for the athletes were 115.8±7.2 mmHg, and in patients, with hypertension 154.4±3.5 mmHg, average values of diastolic blood pressure (DBP) for the athletes were 74.2±8.1 mmHg in patients, hypertensive 96.2 ± 3.9 mmHg. Values of SBP and DBP were significantly lower in the group of athletes compared to patients with hypertension (p=0.001). The value of the SFO/min was significantly lower in the group of athletes compared to patients with hypertension (p <0.001). There was a statistically significant difference in the sum of SV2 RV5 and between groups of athletes and groups of patients with hypertension (p<0.05). There was no significant difference in the echocardiography parameters between two groups. There was a statistically significant difference in the sum of SV2 and RV5 between groups

  1. Medicines to Treat Heart Attack

    MedlinePlus

    ... lower “bad” cholesterol (also called LDL, or low-density lipoprotein) levels. Statins may also help increase “good” cholesterol (also called HDL, or high-density lipoprotein) levels. Most people who take statins will ...

  2. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  3. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine.

    PubMed

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W; Cai, Jiye

    2014-11-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  4. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    NASA Astrophysics Data System (ADS)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  5. A chemical profiling solution for Chinese medicine formulas using comprehensive and loop-based multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Qiao, Xue; Wang, Qi; Song, Wei; Qian, Yi; Xiao, Yao; An, Rong; Guo, De-an; Ye, Min

    2016-03-18

    Chinese medicine formulas represent an excellent illustration for "complex matrix". The complexity lies in a big array of small molecules with high chemical diversity. The present paper describes a novel chemical profiling solution for complex matrix by combining comprehensive and multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (2DLC/qTOF-MS). This solution includes method optimization, combinational separation, and structural characterization. It was exemplified by fully profiling the chemical constituents of a four-herb traditional Chinese medicine formula, Gegen-Qinlian Decoction (GQD). GQD was separated by a RP × RP (C18 × Phenyl-Hexyl) 2DLC system, and eluted with acidic × alkaline mobile phases with an optimized shift gradient elution program. In the comprehensive 2DLC mode, 280 peaks were detected, and 125 compounds were characterized within 42 minutes. The multiple heart-cutting (MHC) mode extended the (2)D modulation time to 3.0 min to effectively separate the minor compounds. The (1)D eluate within 4.4 min was loaded into eleven 40-μL loops. These fractions were successively separated by (2)D to resolve 13 additional compounds. The combination of comprehensive and MHC 2DLC/qTOF-MS provides a powerful technique for global chemical profiling of Chinese medicine formulas and other complex systems.

  6. Image-based flow modeling in a two-chamber model of the left heart

    NASA Astrophysics Data System (ADS)

    Vedula, Vijay; Seo, Jung-Hee; Shoele, Kourosh; George, Richard; Younes, Laurent; Mittal, Rajat

    2014-11-01

    Computational modeling of cardiac flows has been an active topic of discussion over the past decade. Modeling approaches have been consistently improved by inclusion of additional complexities and these continue to provide new insights into the dynamics of blood flow in health and disease. The vast majority of cardiac models have been single-chamber models, which have typically focused on the left or right ventricles, and in these models, the atria are modeled in highly simplistic ways. However, the left atrium acts as a mixing chamber and works with the left ventricle in a highly coordinated fashion to move the blood from the pulmonary veins to the aorta. The flow dynamics associated with this two-chamber interaction is not well understood. In addition, the flow in the left atrium has by itself significant clinical implications and our understanding of this is far less than that of the left ventricle. In the current study, we use 4D CT to create a physiological heart model that is functionally normal and use an experimentally validated sharp-interface immersed boundary flow solver to explore the atrio-ventricular interaction and develop insights into some of the questions addressed above. This research is supported by the U.S. National Science Foundation through NSF Grants IOS-1124804 and IIS-1344772. Computational resources are provided in part through the NSF XSEDE grants TG-CTS100002 and TG-CTS130064.

  7. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    SciTech Connect

    Vinogradskiy, Yevgeniy; Koo, Phillip J.; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Gaspar, Laurie E.; Miften, Moyed; Kavanagh, Brian D.

    2014-05-01

    Purpose: Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials: Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based model were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results: Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions: The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist's assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were analyzed

  8. Noninvasive image derived heart input function for CMRglc measurements in small animal slow infusion FDG PET studies

    NASA Astrophysics Data System (ADS)

    Xiong, Guoming; Cumming, Paul; Todica, Andrei; Hacker, Marcus; Bartenstein, Peter; Böning, Guido

    2012-12-01

    Absolute quantitation of the cerebral metabolic rate for glucose (CMRglc) can be obtained in positron emission tomography (PET) studies when serial measurements of the arterial [18F]-fluoro-deoxyglucose (FDG) input are available. Since this is not always practical in PET studies of rodents, there has been considerable interest in defining an image-derived input function (IDIF) by placing a volume of interest (VOI) within the left ventricle of the heart. However, spill-in arising from trapping of FDG in the myocardium often leads to progressive contamination of the IDIF, which propagates to underestimation of the magnitude of CMRglc. We therefore developed a novel, non-invasive method for correcting the IDIF without scaling to a blood sample. To this end, we first obtained serial arterial samples and dynamic FDG-PET data of the head and heart in a group of eight anaesthetized rats. We fitted a bi-exponential function to the serial measurements of the IDIF, and then used the linear graphical Gjedde-Patlak method to describe the accumulation in myocardium. We next estimated the magnitude of myocardial spill-in reaching the left ventricle VOI by assuming a Gaussian point-spread function, and corrected the measured IDIF for this estimated spill-in. Finally, we calculated parametric maps of CMRglc using the corrected IDIF, and for the sake of comparison, relative to serial blood sampling from the femoral artery. The uncorrected IDIF resulted in 20% underestimation of the magnitude of CMRglc relative to the gold standard arterial input method. However, there was no bias with the corrected IDIF, which was robust to the variable extent of myocardial tracer uptake, such that there was a very high correlation between individual CMRglc measurements using the corrected IDIF with gold-standard arterial input results. Based on simulation, we furthermore find that electrocardiogram-gating, i.e. ECG-gating is not necessary for IDIF quantitation using our approach.

  9. Noninvasive image derived heart input function for CMRglc measurements in small animal slow infusion FDG PET studies.

    PubMed

    Xiong, Guoming; Paul, Cumming; Todica, Andrei; Hacker, Marcus; Bartenstein, Peter; Böning, Guido

    2012-12-01

    Absolute quantitation of the cerebral metabolic rate for glucose (CMRglc) can be obtained in positron emission tomography (PET) studies when serial measurements of the arterial [(18)F]-fluoro-deoxyglucose (FDG) input are available. Since this is not always practical in PET studies of rodents, there has been considerable interest in defining an image-derived input function (IDIF) by placing a volume of interest (VOI) within the left ventricle of the heart. However, spill-in arising from trapping of FDG in the myocardium often leads to progressive contamination of the IDIF, which propagates to underestimation of the magnitude of CMRglc. We therefore developed a novel, non-invasive method for correcting the IDIF without scaling to a blood sample. To this end, we first obtained serial arterial samples and dynamic FDG-PET data of the head and heart in a group of eight anaesthetized rats. We fitted a bi-exponential function to the serial measurements of the IDIF, and then used the linear graphical Gjedde-Patlak method to describe the accumulation in myocardium. We next estimated the magnitude of myocardial spill-in reaching the left ventricle VOI by assuming a Gaussian point-spread function, and corrected the measured IDIF for this estimated spill-in. Finally, we calculated parametric maps of CMRglc using the corrected IDIF, and for the sake of comparison, relative to serial blood sampling from the femoral artery. The uncorrected IDIF resulted in 20% underestimation of the magnitude of CMRglc relative to the gold standard arterial input method. However, there was no bias with the corrected IDIF, which was robust to the variable extent of myocardial tracer uptake, such that there was a very high correlation between individual CMRglc measurements using the corrected IDIF with gold-standard arterial input results. Based on simulation, we furthermore find that electrocardiogram-gating, i.e. ECG-gating is not necessary for IDIF quantitation using our approach. PMID:23160517

  10. A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging.

    PubMed

    Peng, Peng; Lekadir, Karim; Gooya, Ali; Shao, Ling; Petersen, Steffen E; Frangi, Alejandro F

    2016-04-01

    Cardiovascular magnetic resonance (CMR) has become a key imaging modality in clinical cardiology practice due to its unique capabilities for non-invasive imaging of the cardiac chambers and great vessels. A wide range of CMR sequences have been developed to assess various aspects of cardiac structure and function, and significant advances have also been made in terms of imaging quality and acquisition times. A lot of research has been dedicated to the development of global and regional quantitative CMR indices that help the distinction between health and pathology. The goal of this review paper is to discuss the structural and functional CMR indices that have been proposed thus far for clinical assessment of the cardiac chambers. We include indices definitions, the requirements for the calculations, exemplar applications in cardiovascular diseases, and the corresponding normal ranges. Furthermore, we review the most recent state-of-the art techniques for the automatic segmentation of the cardiac boundaries, which are necessary for the calculation of the CMR indices. Finally, we provide a detailed discussion of the existing literature and of the future challenges that need to be addressed to enable a more robust and comprehensive assessment of the cardiac chambers in clinical practice.

  11. Prevalence and correlates of increased lung/heart ratio of thallium-201 during dipyridamole stress imaging for suspected coronary artery disease

    SciTech Connect

    Villanueva, F.S.; Kaul, S.; Smith, W.H.; Watson, D.D.; Varma, S.K.; Beller, G.A. )

    1990-12-01

    There is little information concerning the prevalence and clinical correlates of increased pulmonary thallium-201 uptake during dipyridamole thallium-201 stress imaging. Accordingly, the clinical characteristics and quantitative thallium-201 findings were correlated with quantitative lung/heart thallium-201 ratio in 87 patients undergoing dipyridamole thallium-201 stress testing. Nineteen patients (22%) had an elevated ratio (greater than 0.51). These patients were more likely to have had an infarction, to be taking beta blockers, and have a lower rate-pressure product after dipyridamole administration than those with a normal ratio (p less than 0.03). An elevated ratio was associated with a greater likelihood of initial, redistribution and persistent defects, as well as left ventricular cavity dilatation on thallium-201 imaging (p less than 0.05). In addition, the number of myocardial segments demonstrating initial, redistribution and persistent defects was also greater in patients with increased ratios (p less than 0.03). Multivariate analysis demonstrated that the presence of redistribution and left ventricular cavity dilatation were the most significant correlates of lung/heart thallium-201 ratio. It is concluded that the prevalence of increased lung/heart thallium-201 ratio with dipyridamole thallium-201 stress imaging is similar to that seen with exercise stress imaging. As with exercise thallium-201 imaging, increased pulmonary thallium-201 uptake may be a marker of functionally more significant coronary artery disease.

  12. Software development for ACR-approved phantom-based nuclear medicine tomographic image quality control with cross-platform compatibility

    NASA Astrophysics Data System (ADS)

    Oh, Jungsu S.; Choi, Jae Min; Nam, Ki Pyo; Chae, Sun Young; Ryu, Jin-Sook; Moon, Dae Hyuk; Kim, Jae Seung

    2015-07-01

    Quality control and quality assurance (QC/QA) have been two of the most important issues in modern nuclear medicine (NM) imaging for both clinical practices and academic research. Whereas quantitative QC analysis software is common to modern positron emission tomography (PET) scanners, the QC of gamma cameras and/or single-photon-emission computed tomography (SPECT) scanners has not been sufficiently addressed. Although a thorough standard operating process (SOP) for mechanical and software maintenance may help the QC/QA of a gamma camera and SPECT-computed tomography (CT), no previous study has addressed a unified platform or process to decipher or analyze SPECT phantom images acquired from various scanners thus far. In addition, a few approaches have established cross-platform software to enable the technologists and physicists to assess the variety of SPECT scanners from different manufacturers. To resolve these issues, we have developed Interactive Data Language (IDL)-based in-house software for crossplatform (in terms of not only operating systems (OS) but also manufacturers) analyses of the QC data on an ACR SPECT phantom, which is essential for assessing and assuring the tomographical image quality of SPECT. We applied our devised software to our routine quarterly QC of ACR SPECT phantom images acquired from a number of platforms (OS/manufacturers). Based on our experience, we suggest that our devised software can offer a unified platform that allows images acquired from various types of scanners to be analyzed with great precision and accuracy.

  13. Validity of Fusion Imaging of Hamster Heart obtained by Fluorescent and Phase-Contrast X-Ray CT with Synchrotron Radiation

    SciTech Connect

    Wu, J.; Takeda, T.; Lwin, Thet Thet; Huo, Q.; Minami, M.; Sunaguchi, N.; Murakami, T.; Mouri, S.; Nasukawa, S.; Fukami, T.; Yuasa, T.; Akatsuka, T.; Hyodo, K.; Hontani, H.

    2007-01-19

    Fluorescent X-ray CT (FXCT) to depict functional information and phase-contrast X-ray CT (PCCT) to demonstrate morphological information are being developed to analyze the disease model of small animal. To understand the detailed pathological state, integration of both functional and morphological image is very useful. The feasibility of image fusion between FXCT and PCCT were examined by using ex-vivo hearts injected fatty acid metabolic agent (127I-BMIPP) in normal and cardiomyopathic hamsters. Fusion images were reconstructed from each 3D image of FXCT and PCCT. 127I-BMIPP distribution within the heart was clearly demonstrated by FXCT with 0.25 mm spatial resolution. The detailed morphological image was obtained by PCCT at about 0.03 mm spatial resolution. Using image integration technique, metabolic abnormality of fatty acid in cardiomyopathic myocardium was easily recognized corresponding to anatomical structures. Our study suggests that image fusion provides important biomedical information even in FXCT and PCCT imaging.

  14. Validity of Fusion Imaging of Hamster Heart obtained by Fluorescent and Phase-Contrast X-Ray CT with Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Wu, J.; Takeda, T.; Lwin, Thet Thet; Huo, Q.; Sunaguchi, N.; Murakami, T.; Mouri, S.; Nasukawa, S.; Fukami, T.; Yuasa, T.; Hyodo, K.; Hontani, H.; Minami, M.; Akatsuka, T.

    2007-01-01

    Fluorescent X-ray CT (FXCT) to depict functional information and phase-contrast X-ray CT (PCCT) to demonstrate morphological information are being developed to analyze the disease model of small animal. To understand the detailed pathological state, integration of both functional and morphological image is very useful. The feasibility of image fusion between FXCT and PCCT were examined by using ex-vivo hearts injected fatty acid metabolic agent (127I-BMIPP) in normal and cardiomyopathic hamsters. Fusion images were reconstructed from each 3D image of FXCT and PCCT. 127I-BMIPP distribution within the heart was clearly demonstrated by FXCT with 0.25 mm spatial resolution. The detailed morphological image was obtained by PCCT at about 0.03 mm spatial resolution. Using image integration technique, metabolic abnormality of fatty acid in cardiomyopathic myocardium was easily recognized corresponding to anatomical structures. Our study suggests that image fusion provides important biomedical information even in FXCT and PCCT imaging.

  15. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging

    SciTech Connect

    Hutchins, G.D.; Schwaiger, M.; Rosenspire, K.C.; Krivokapich, J.; Schelbert, H.; Kuhl, D.E. )

    1990-04-01

    Evaluation of regional myocardial blood flow by conventional scintigraphic techniques is limited to the qualitative assessment of regional tracer distribution. Dynamic imaging with positron emission tomography allows the quantitative delineation of myocardial tracer kinetics and, hence, the measurement of physiologic processes such as myocardial blood flow. To test this hypothesis, positron emission tomographic imaging in combination with N-13 ammonia was performed at rest and after pharmacologically induced vasodilation in seven healthy volunteers. Myocardial and blood time-activity curves derived from regions of interest over the heart and ventricular chamber were fitted using a three compartment model for N-13 ammonia, yielding rate constants for tracer uptake and retention. Myocardial blood flow (K1) averaged 88 +/- 17 ml/min per 100 g at rest and increased to 417 +/- 112 ml/min per 100 g after dipyridamole infusion (0.56 mg/kg) and handgrip exercise. The coronary reserve averaged 4.8 +/- 1.3 and was not significantly different in the septal, anterior and lateral walls of the left ventricle. Blood flow values showed only a minor dependence on the correction for blood metabolites of N-13 ammonia. These data demonstrate that quantification of regional myocardial blood flow is feasible by dynamic positron emission tomographic imaging. The observed coronary flow reserve after dipyridamole is in close agreement with the results obtained by invasive techniques, indicating accurate flow estimates over a wide range. Thus, positron emission tomography may provide accurate and noninvasive definition of the functional significance of coronary artery disease and may allow the improved selection of patients for revascularization.

  16. Three-dimensional echocardiography in congenital heart disease: an expert consensus document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography.

    PubMed

    Simpson, John; Lopez, Leo; Acar, Philippe; Friedberg, Mark; Khoo, Nee; Ko, Helen; Marek, Jan; Marx, Gerald; McGhie, Jackie; Meijboom, Folkert; Roberson, David; Van den Bosch, Annemien; Miller, Owen; Shirali, Girish

    2016-10-01

    Three-dimensional echocardiography (3DE) has become important in the management of patients with congenital heart disease (CHD), particularly with pre-surgical planning, guidance of catheter intervention, and functional assessment of the heart. 3DE is increasingly used in children because of good acoustic windows and the non-invasive nature of the technique. The aim of this paper is to provide a review of the optimal application of 3DE in CHD including technical considerations, image orientation, application to different lesions, procedural guidance, and functional assessment. PMID:27655864

  17. European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation.

    PubMed

    Badano, Luigi P; Miglioranza, Marcelo H; Edvardsen, Thor; Colafranceschi, Alexandre Siciliano; Muraru, Denisa; Bacal, Fernando; Nieman, Koen; Zoppellaro, Giacomo; Marcondes Braga, Fabiana G; Binder, Thomas; Habib, Gilbert; Lancellotti, Patrizio

    2015-09-01

    The cohort of long-term survivors of heart transplant is expanding, and the assessment of these patients requires specific knowledge of the surgical techniques employed to implant the donor heart, the physiology of the transplanted heart, complications of invasive tests routinely performed to detect graft rejection (GR), and the specific pathologies that may affect the transplanted heart. A joint EACVI/Brazilian cardiovascular imaging writing group committee has prepared these recommendations to provide a practical guide to echocardiographers involved in the follow-up of heart transplant patients and a framework for standardized and efficient use of cardiovascular imaging after heart transplant. Since the transplanted heart is smaller than the recipient's dilated heart, the former is usually located more medially in the mediastinum and tends to be rotated clockwise. Therefore, standard views with conventional two-dimensional (2D) echocardiography are often difficult to obtain generating a large variability from patient to patient. Therefore, in echocardiography laboratories equipped with three-dimensional echocardiography (3DE) scanners and specific expertise with the technique, 3DE may be a suitable alternative to conventional 2D echocardiography to assess the size and the function of cardiac chambers. 3DE measurement of left (LV) and right ventricular (RV) size and function are more accurate and reproducible than conventional 2D calculations. However, clinicians should be aware that cardiac chamber volumes obtained with 3DE cannot be compared with those obtained with 2D echocardiography. To assess cardiac chamber morphology and function during follow-up studies, it is recommended to obtain a comprehensive echocardiographic study at 6 months from the cardiac transplantation as a baseline and make a careful quantitation of cardiac chamber size, RV systolic function, both systolic and diastolic parameters of LV function, and pulmonary artery pressure. Subsequent

  18. European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation.

    PubMed

    Badano, Luigi P; Miglioranza, Marcelo H; Edvardsen, Thor; Colafranceschi, Alexandre Siciliano; Muraru, Denisa; Bacal, Fernando; Nieman, Koen; Zoppellaro, Giacomo; Marcondes Braga, Fabiana G; Binder, Thomas; Habib, Gilbert; Lancellotti, Patrizio

    2015-09-01

    The cohort of long-term survivors of heart transplant is expanding, and the assessment of these patients requires specific knowledge of the surgical techniques employed to implant the donor heart, the physiology of the transplanted heart, complications of invasive tests routinely performed to detect graft rejection (GR), and the specific pathologies that may affect the transplanted heart. A joint EACVI/Brazilian cardiovascular imaging writing group committee has prepared these recommendations to provide a practical guide to echocardiographers involved in the follow-up of heart transplant patients and a framework for standardized and efficient use of cardiovascular imaging after heart transplant. Since the transplanted heart is smaller than the recipient's dilated heart, the former is usually located more medially in the mediastinum and tends to be rotated clockwise. Therefore, standard views with conventional two-dimensional (2D) echocardiography are often difficult to obtain generating a large variability from patient to patient. Therefore, in echocardiography laboratories equipped with three-dimensional echocardiography (3DE) scanners and specific expertise with the technique, 3DE may be a suitable alternative to conventional 2D echocardiography to assess the size and the function of cardiac chambers. 3DE measurement of left (LV) and right ventricular (RV) size and function are more accurate and reproducible than conventional 2D calculations. However, clinicians should be aware that cardiac chamber volumes obtained with 3DE cannot be compared with those obtained with 2D echocardiography. To assess cardiac chamber morphology and function during follow-up studies, it is recommended to obtain a comprehensive echocardiographic study at 6 months from the cardiac transplantation as a baseline and make a careful quantitation of cardiac chamber size, RV systolic function, both systolic and diastolic parameters of LV function, and pulmonary artery pressure. Subsequent

  19. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation

    PubMed Central

    Sansoni, Giovanna; Trebeschi, Marco; Docchio, Franco

    2009-01-01

    3D imaging sensors for the acquisition of three dimensional (3D) shapes have created, in recent years, a considerable degree of interest for a number of applications. The miniaturization and integration of the optical and electronic components used to build them have played a crucial role in the achievement of compactness, robustness and flexibility of the sensors. Today, several 3D sensors are available on the market, even in combination with other sensors in a “sensor fusion” approach. An importance equal to that of physical miniaturization has the portability of the measurements, via suitable interfaces, into software environments designed for their elaboration, e.g., CAD-CAM systems, virtual renders, and rapid prototyping tools. In this paper, following an overview of the state-of-art of 3D imaging sensors, a number of significant examples of their use are presented, with particular reference to industry, heritage, medicine, and criminal investigation applications. PMID:22389618

  20. Biomedical image processing

    SciTech Connect

    Huang, H.K.

    1981-01-01

    Biomedical image processing is a very broad field; it covers biomedical signal gathering, image forming, picture processing, and image display to medical diagnosis based on features extracted from images. This article reviews this topic in both its fundamentals and applications. In its fundamentals, some basic image processing techniques including outlining, deblurring, noise cleaning, filtering, search, classical analysis and texture analysis have been reviewed together with examples. The state-of-the-art image processing systems have been introduced and discussed in two categories: general purpose image processing systems and image analyzers. In order for these systems to be effective for biomedical applications, special biomedical image processing languages have to be developed. The combination of both hardware and software leads to clinical imaging devices. Two different types of clinical imaging devices have been discussed. There are radiological imagings which include radiography, thermography, ultrasound, nuclear medicine and CT. Among these, thermography is the most noninvasive but is limited in application due to the low energy of its source. X-ray CT is excellent for static anatomical images and is moving toward the measurement of dynamic function, whereas nuclear imaging is moving toward organ metabolism and ultrasound is toward tissue physical characteristics. Heart imaging is one of the most interesting and challenging research topics in biomedical image processing; current methods including the invasive-technique cineangiography, and noninvasive ultrasound, nuclear medicine, transmission, and emission CT methodologies have been reviewed.

  1. Can MR imaging be used to determine the efficacy of gene therapy in the heart?

    PubMed

    Edelman, Robert R

    2008-10-01

    In this issue of Radiology, Saeed et al (1) describe the intramyocardial administration of VM202, a newly constructed plasmid human hepatocyte growth factor, in a pig model of myocardial infarction. Histopathologic findings were used to characterize and quantify neovascularization, while magnetic resonance (MR) imaging findings were used to quantify left ventricular function, perfusion, and infarct size. Compared with control animals, VM202-treated animals demonstrated an increase in number of capillaries, improved perfusion and left ventricular ejection fraction, and reduced infarct size. PMID:18796661

  2. Differentiation between two "fang ji" herbal medicines, Stephania tetrandra and the nephrotoxic Aristolochia fangchi, using hyperspectral imaging.

    PubMed

    Tankeu, Sidonie; Vermaak, Ilze; Chen, Weiyang; Sandasi, Maxleene; Viljoen, Alvaro

    2016-02-01

    Stephania tetrandra ("hang fang ji") and Aristolochia fangchi ("guang fang ji") are two different plant species used in Traditional Chinese Medicine (TCM). Both are commonly referred to as "fang ji" and S. tetrandra is mistakenly substituted and adulterated with the nephrotoxic A. fangchi as they have several morphological similarities. A. fangchi contains aristolochic acid, a carcinogen that causes urothelial carcinoma as well as aristolochic acid nephropathy (AAN). In Belgium, 128 cases of AAN was reported while in China, a further 116 cases with end-stage renal disease were noted. Toxicity issues associated with species substitution and adulteration necessitate the development of reliable methods for the quality assessment of herbal medicines. Hyperspectral imaging in combination with partial least squares discriminant analysis (PLS-DA) is suggested as an effective method to distinguish between S. tetrandra and A. fangchi root powder. Hyperspectral images were obtained in the wavelength region of 920-2514nm. Reduction of the dimensionality of the data was done by selecting the discrimination information range (964-1774nm). A discrimination model with a coefficient of determination (R(2)) of 0.9 and a root mean square error of prediction (RMSEP) of 0.23 was created. The constructed model successfully identified A. fangchi and S. tetrandra samples inserted into the model as an external validation set. In addition, adulteration detection was investigated by preparing incremental adulteration mixtures of S. tetrandra with A. fangchi (10-90%). Hyperspectral imaging showed the ability to accurately predict adulteration as low as 10%. It is evident that hyperspectral imaging has tremendous potential in the development of visual quality control methods which may prevent cases of aristolochic acid nephropathy in the future. PMID:26632529

  3. Differentiation between two "fang ji" herbal medicines, Stephania tetrandra and the nephrotoxic Aristolochia fangchi, using hyperspectral imaging.

    PubMed

    Tankeu, Sidonie; Vermaak, Ilze; Chen, Weiyang; Sandasi, Maxleene; Viljoen, Alvaro

    2016-02-01

    Stephania tetrandra ("hang fang ji") and Aristolochia fangchi ("guang fang ji") are two different plant species used in Traditional Chinese Medicine (TCM). Both are commonly referred to as "fang ji" and S. tetrandra is mistakenly substituted and adulterated with the nephrotoxic A. fangchi as they have several morphological similarities. A. fangchi contains aristolochic acid, a carcinogen that causes urothelial carcinoma as well as aristolochic acid nephropathy (AAN). In Belgium, 128 cases of AAN was reported while in China, a further 116 cases with end-stage renal disease were noted. Toxicity issues associated with species substitution and adulteration necessitate the development of reliable methods for the quality assessment of herbal medicines. Hyperspectral imaging in combination with partial least squares discriminant analysis (PLS-DA) is suggested as an effective method to distinguish between S. tetrandra and A. fangchi root powder. Hyperspectral images were obtained in the wavelength region of 920-2514nm. Reduction of the dimensionality of the data was done by selecting the discrimination information range (964-1774nm). A discrimination model with a coefficient of determination (R(2)) of 0.9 and a root mean square error of prediction (RMSEP) of 0.23 was created. The constructed model successfully identified A. fangchi and S. tetrandra samples inserted into the model as an external validation set. In addition, adulteration detection was investigated by preparing incremental adulteration mixtures of S. tetrandra with A. fangchi (10-90%). Hyperspectral imaging showed the ability to accurately predict adulteration as low as 10%. It is evident that hyperspectral imaging has tremendous potential in the development of visual quality control methods which may prevent cases of aristolochic acid nephropathy in the future.

  4. Heart Group Advises Personalized Nutrition Counseling

    MedlinePlus

    ... news/fullstory_161721.html Heart Group Advises Personalized Nutrition Counseling Providers should take ethnic, cultural and individual ... chair. She is a professor of preventive medicine (nutrition) at Northwestern University Feinberg School of Medicine in ...

  5. Voltage-Sensitive Dyes And Imaging Techniques Reveal New Patterns Of Electrical Activity In Heart Cortex

    NASA Astrophysics Data System (ADS)

    Salama, Guy

    1988-04-01

    Voltage-sensitive dyes bind to the plasms membrane of excitable cells (ie., muscle or nerve cells) and exhibit fluorescence and/or absorption changes that vary linearly with changes in transmembrane electrical potential. These potentiometric optical probes can be used to measure local changes in transmembrane potential by monitoring optical signals from dye molecules bound to the surface membrane. Consequently, when excitable cells are stained with such a dye and are stimulated to fire an electrical impulse (ie., an action potential (AP)), the changes in dye fluorescence have the characteristic shape and time course of APs recorded with an intracellular micro-electrode. Potentiometric dyes in conjuction with imaging techniques can now be used to visualize complex patterns and propagation of electrical activity. With photodiode arrays on video imaging techniques, patterns of biological electrical activity can be obtained with high temporal and spatial resolution which could not be obtained by conventional micro-electrodes. These methods reveal new details and offer powerful approaches to study fundamental problem in cardiac electrophysiology, communication in nerve networks, and the organization of cortical neurons.

  6. Selecting a CT scanner for cardiac imaging: the heart of the matter.

    PubMed

    Lewis, Maria A; Pascoal, Ana; Keevil, Stephen F; Lewis, Cornelius A

    2016-09-01

    Coronary angiography to assess the presence and degree of arterial stenosis is an examination now routinely performed on CT scanners. Although developments in CT technology over recent years have made great strides in improving the diagnostic accuracy of this technique, patients with certain characteristics can still be "difficult to image". The various groups will benefit from different technological enhancements depending on the type of challenge they present. Good temporal and spatial resolution, wide longitudinal (z-axis) detector coverage and high X-ray output are the key requirements of a successful CT coronary angiography (CTCA) scan. The requirement for optimal patient dose is a given. The different scanner models recommended for CTCA all excel in different aspects. The specification data presented here for these scanners and the explanation of the impact of the different features should help in making a more informed decision when selecting a scanner for CTCA.

  7. Towards myocardial contraction force image reconstruction for heart disease assessment and intervention planning

    NASA Astrophysics Data System (ADS)

    Haddad, Seyyed M. H.; Drangova, Maria; White, James A.; Samani, Abbas

    2015-03-01

    It is clinically vital to devise a technique to evaluate regional functionality of the myocardium in order to determine the extent and intensity of local damage to the cardiac tissue caused by ischemic injuries. Such a technique can potentially enable cardiologists to discriminate between reversible and irreversible ischemic injuries and to devise appropriate revascularization therapy in case of reversible lesions. The technique is founded on the premise that sufficient contraction force generated by the cardiac tissue can be regarded as a direct and reliable criterion for regional analysis of tissue healthy functionality. To this end, a number of imaging techniques have been developed and, to our knowledge, none of them assess regional cardiac functionality based on a straightforward mechanical measure such as local cardiac contraction forces. . As such, a novel imaging technique is being developed on the basis of quantification and visualisation of local myocardial contraction forces. In this technique, cardiac contraction force distribution is attained through solving an inverse problem within an optimization framework which uses iterative forward mechanical modelling of the myocardium. Hence, a forward mechanical model of the myocardium which is computationally efficient, robust, and adaptable to diverse pathophysiological conditions is necessary for this development. As such, this paper is geared towards developing a novel mechanical model of the healthy and pathological myocardium which considers all aspects of the myocardial mechanics including hyperelasticity, anisotropy, and active contraction force. In this investigation, two major parts, including background tissue and reinforcement bars (fibers) have been considered for modelling the myocardium. The model was implemented using finite element (FE) approach and demonstrated very good performance in simulating normal and infarcted left ventricle (LV) contractile function.

  8. Framingham Coronary Heart Disease Risk Score Can be Predicted from Structural Brain Images in Elderly Subjects

    PubMed Central

    Rondina, Jane Maryam; Squarzoni, Paula; Souza-Duran, Fabio Luis; Tamashiro-Duran, Jaqueline Hatsuko; Scazufca, Marcia; Menezes, Paulo Rossi; Vallada, Homero; Lotufo, Paulo A.; de Toledo Ferraz Alves, Tania Correa; Busatto Filho, Geraldo

    2014-01-01

    Recent literature has presented evidence that cardiovascular risk factors (CVRF) play an important role on cognitive performance in elderly individuals, both those who are asymptomatic and those who suffer from symptoms of neurodegenerative disorders. Findings from studies applying neuroimaging methods have increasingly reinforced such notion. Studies addressing the impact of CVRF on brain anatomy changes have gained increasing importance, as recent papers have reported gray matter loss predominantly in regions traditionally affected in Alzheimer’s disease (AD) and vascular dementia in the presence of a high degree of cardiovascular risk. In the present paper, we explore the association between CVRF and brain changes using pattern recognition techniques applied to structural MRI and the Framingham score (a composite measure of cardiovascular risk largely used in epidemiological studies) in a sample of healthy elderly individuals. We aim to answer the following questions: is it possible to decode (i.e., to learn information regarding cardiovascular risk from structural brain images) enabling individual predictions? Among clinical measures comprising the Framingham score, are there particular risk factors that stand as more predictable from patterns of brain changes? Our main findings are threefold: (i) we verified that structural changes in spatially distributed patterns in the brain enable statistically significant prediction of Framingham scores. This result is still significant when controlling for the presence of the APOE 4 allele (an important genetic risk factor for both AD and cardiovascular disease). (ii) When considering each risk factor singly, we found different levels of correlation between real and predicted factors; however, single factors were not significantly predictable from brain images when considering APOE4 allele presence as covariate. (iii) We found important gender differences, and the possible causes of that finding are discussed. PMID

  9. NEED FOR INDIVIDUAL CANCER RISK ESTIMATES IN X-RAY AND NUCLEAR MEDICINE IMAGING.

    PubMed

    Mattsson, Sören

    2016-06-01

    To facilitate the justification of an X-ray or nuclear medicine investigation and for informing patients, it is desirable that the individual patient's radiation dose and potential cancer risk can be prospectively assessed and documented. The current dose-reporting is based on effective dose, which ignores body size and does not reflect the strong dependence of risk on the age at exposure. Risk estimations should better be done through individual organ dose assessments, which need careful exposure characterisation as well as anatomical description of the individual patient. In nuclear medicine, reference biokinetic models should also be replaced with models describing individual physiological states and biokinetics. There is a need to adjust population-based cancer risk estimates to the possible risk of leukaemia and solid tumours for the individual depending on age and gender. The article summarises reasons for individual cancer risk estimates and gives examples of methods and results of such estimates. PMID:26994092

  10. [Uniformity and diversity of the human image in scientifically oriented human medicine].

    PubMed

    Ulrich, G; Treder, H J

    2001-05-01

    Nowadays, hardly anyone would oppose the demand for more rationally based medicine--the catchword here being "evidence-based medicine" (EBM). Anyone trying to comply with this demand will be faced with the question of what is meant by "evidence". It would be false to think that rationality is guaranteed by applying the Galilean method of exact induction. Exact induction aims at objective propositions free of subjectivity. Such propositions are regarded as generally valid, or "true". They lead us toward the transcendent platonic "idea", which is by definition beyond our reach. Exact induction enables us to derive representations of a transcendent idea by means of experimental research. These representations may or may not be useful in actuality, for example in medical therapeutic strategies. Strictly speaking, reproducibility, which is generally taken as proof of a given hypothesis, is not equivalent to identity. Identity implies, among other things, simultaneity.

  11. Your Radiologist Explains Nuclear Medicine

    MedlinePlus

    ... produced by: Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  12. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging

    NASA Astrophysics Data System (ADS)

    Tichauer, Kenneth M.; Wang, Yu; Pogue, Brian W.; Liu, Jonathan T. C.

    2015-07-01

    The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche.

  13. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling & paired-agent principles from nuclear medicine and optical imaging

    PubMed Central

    Tichauer, Kenneth M.; Wang, Yu; Pogue, Brian W.; Liu, Jonathan T. C.

    2015-01-01

    The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche. PMID:26134619

  14. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis.

    PubMed

    Bucerius, Jan; Hyafil, Fabien; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Sciagra, Roberto; Agostini, Denis; Übleis, Christopher; Gimelli, Alessia; Hacker, Marcus

    2016-04-01

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as "strict guidelines" but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards "official" guidelines on

  15. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis.

    PubMed

    Bucerius, Jan; Hyafil, Fabien; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Sciagra, Roberto; Agostini, Denis; Übleis, Christopher; Gimelli, Alessia; Hacker, Marcus

    2016-04-01

    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as "strict guidelines" but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards "official" guidelines on

  16. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H.

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  17. [Digital archiving of imaged heart catheter studies on CD-R. Detection of irreversible CD damage].

    PubMed

    Erbel, R; Ge, J; Haude, M

    1998-12-01

    The digital archiving has great advantages compared to the standard 35-mm X-ray cinefilm documentation. The data are immediately available and quantitative coronary angiography possible. In addition the technical progress is enhancing the availability of data. The loss of films is nearly eliminated, as only copies of the digital archive data are delivered. In addition a big advantage concerning pollution is present, when CD Rs are used. We report about the damage of CD Rs after 89, 162, 181 and 252 days when they were stored in polypropylene material containing envelopes. The damaged CD Rs all belonged to the provider Verbatim, whereas CD Rs of the provider Rank Xerox or Kodak were never damaged. In contrary to the Verbatim company, Rank Xerox gave written confirmation for 10-year storage and a written confirmation, that the storage in the polypropylene envelopes is possible. Mechanical, thermal damage and damage by humidity have to be discussed as well as chemical interactions of the CD Rs surface with the polypropylene material. As the digital storage for X-ray images has to be provided for 10 years in Germany, it is concluded, that the storage in polypropylene envelopes has to be avoided, when a written confirmation by the company is not given. These observations should stimulate to better control and analyze the real storage availabilities of digital data and provide in the future other media than CD R for long-term archiving.

  18. Update on intravenous dipyridamole cardiac imaging in the assessment of ischemic heart disease

    SciTech Connect

    Younis, L.T.; Chaitman, B.R. )

    1990-01-01

    Intravenous dipyridamole is a relative selective coronary vasodilator which, when combined with thallium-201, provides a useful technique to assess myocardial perfusion. The intravenous dipyridamole is administered as an infusion at a rate of 0.14 mg/kg/min for 4 minutes. In the presence of significant coronary artery disease the increase of coronary blood flow is disproportionate between vessels with and without significant coronary lesions, providing the basis for detecting regional differences in flow using thallium-201. The test can be used alone or combined with low level exercise to increase test sensitivity. The test is safe when performed under medical supervision and when patient selection is done appropriately. Most of the side effects induced by dipyridamole infusion are well tolerated by patients and readily reversed with intravenous aminophylline and sublingual nitroglycerin. The average sensitivity and specificity of the dipyridamole thallium scintigraphy test from the major studies are 76% and 70%, respectively. The test is very useful in providing prognostic information in patients who are unable to exercise. A reversible thallium defect after dipyridamole infusion has been shown to be associated with significant mortality and morbidity in patients with documented or suspected coronary artery disease. The use of intravenous dipyridamole has been extended into other modalities of imaging, including 2-dimensional and Doppler echocardiography, to study functional changes in the left ventricular induced by the infusion of intravenous dipyridamole. 52 references.

  19. Mechanics of the normal heart.

    PubMed

    Tendulkar, Amod P; Harken, Alden H

    2006-01-01

    Even though studies on isolated papillary muscles and cardiomyocytes can be applied to the mechanics of a beating heart, it is not always easy for physicians to relate these findings to clinical medicine. Thus, it is important to extend the studies to intact heart either in simulations or in animal models and even better to validate the results with human subjects. Advances in engineering and computer technology have allowed us to bridge the gap between physiology and mechanics. Cardiomyocyte stress/strain relates to muscle energy expenditure, which dictates oxygen and substrate utilization. Appreciation of this sequential relationship by clinicians will facilitate the logical development and assessment of therapies. Theory of finite element analysis (FEA) can predict cardiac mechanics under normal and pathologic conditions. Imaging studies provide an avenue to relate these predictions indirectly to experimental studies. In this fashion, we can understand the mechanical basis for the micro- and macroanatomical twisting motion of the beating heart. The purposes of this manuscript are: (1) to examine the terms that are traditionally used to describe mechanical stresses and strain within the ventricle, (2) to explore the three-dimensional organization of cardiomyocytes that influences global ventricular function, (3) to apply mechanical measures to both single cardiomyofibrils and the intact ventricle (4) to evaluate mathematical and computer models used to characterize cardiac mechanics, and (5) to outline the clinical methods available to measure ventricular function and relate findings from FEA to pathologic conditions.

  20. Critical care medicine in the United States: addressing the intensivist shortage and image of the specialty.

    PubMed

    Halpern, Neil A; Pastores, Stephen M; Oropello, John M; Kvetan, Vladimir

    2013-12-01

    Intensivists are increasingly needed to care for the critically ill and manage ICUs as ICU beds, utilization, acuity of illness, complexity of care and costs continue to rise. However, there is a nationwide shortage of intensivists that has occurred despite years of well publicized warnings of an impending workforce crisis from specialty societies and the federal government. The magnitude of the intensivist shortfall, however, is difficult to determine because there are many perspectives of optimal ICU administration, patient coverage and intensivist availability and a lack of national data on intensivist practices. Nevertheless, the intensivist shortfall is quite real as evidenced by the alternative solutions that hospitals are deploying to provide care for their critically ill patients. In the midst of these manpower struggles, the critical care environment is dynamically changing and becoming more stressful. Severe hospital bed availability and fiscal constraints are forcing ICUs to alter their approaches to triage, throughput and unit staffing. National and local organizations are mandating that hospitals comply with resource intensive and arguably unproven initiatives to monitor and improve patient safety and quality, and informatics systems. Lastly, there is an ongoing sense of professional dissatisfaction among intensivists and a lack of public awareness that critical care medicine is even a distinct specialty. This article offers proposals to increase the adult intensivist workforce through expansion and enhancements of internal medicine based critical care training programs, incentives for recent graduates to enter the critical care medicine field, suggestions for improvements in the critical care profession and workplace to encourage senior intensivists to remain in the field, proactive marketing of critical care, and expanded engagement by the critical care societies in the challenges facing intensivists.

  1. Review of the International Society for Heart and Lung Transplantation Practice guidelines for management of heart failure in children.

    PubMed

    Colan, Steven D

    2015-08-01

    In 2004, practice guidelines for the management of heart failure in children by Rosenthal and colleagues were published in conjunction with the International Society for Heart and Lung Transplantation. These guidelines have not been updated or reviewed since that time. In general, there has been considerable controversy as to the utility and purpose of clinical practice guidelines, but there is general recognition that the relentless progress of medicine leads to the progressive irrelevance of clinical practice guidelines that do not undergo periodic review and updating. Paediatrics and paediatric cardiology, in particular, have had comparatively minimal participation in the clinical practice guidelines realm. As a result, most clinical practice guidelines either specifically exclude paediatrics from consideration, as has been the case for the guidelines related to cardiac failure in adults, or else involve clinical practice guidelines committees that include one or two paediatric cardiologists and produce guidelines that cannot reasonably be considered a consensus paediatric opinion. These circumstances raise a legitimate question as to whether the International Society for Heart and Lung Transplantation paediatric heart failure guidelines should be re-reviewed. The time, effort, and expense involved in producing clinical practice guidelines should be considered before recommending an update to the International Society for Heart and Lung Transplantation Paediatric Heart Failure guidelines. There are specific areas of rapid change in the evaluation and management of heart failure in children that are undoubtedly worthy of updating. These domains include areas such as use of serum and imaging biomarkers, wearable and implantable monitoring devices, and acute heart failure management and mechanical circulatory support. At the time the International Society for Heart and Lung Transplantation guidelines were published, echocardiographic tissue Doppler, 3 dimensional

  2. A novel non-linear recursive filter design for extracting high rate pulse features in nuclear medicine imaging and spectroscopy.

    PubMed

    Sajedi, Salar; Kamal Asl, Alireza; Ay, Mohammad R; Farahani, Mohammad H; Rahmim, Arman

    2013-06-01

    Applications in imaging and spectroscopy rely on pulse processing methods for appropriate data generation. Often, the particular method utilized does not highly impact data quality, whereas in some scenarios, such as in the presence of high count rates or high frequency pulses, this issue merits extra consideration. In the present study, a new approach for pulse processing in nuclear medicine imaging and spectroscopy is introduced and evaluated. The new non-linear recursive filter (NLRF) performs nonlinear processing of the input signal and extracts the main pulse characteristics, having the powerful ability to recover pulses that would ordinarily result in pulse pile-up. The filter design defines sampling frequencies lower than the Nyquist frequency. In the literature, for systems involving NaI(Tl) detectors and photomultiplier tubes (PMTs), with a signal bandwidth considered as 15 MHz, the sampling frequency should be at least 30 MHz (the Nyquist rate), whereas in the present work, a sampling rate of 3.3 MHz was shown to yield very promising results. This was obtained by exploiting the known shape feature instead of utilizing a general sampling algorithm. The simulation and experimental results show that the proposed filter enhances count rates in spectroscopy. With this filter, the system behaves almost identically as a general pulse detection system with a dead time considerably reduced to the new sampling time (300 ns). Furthermore, because of its unique feature for determining exact event times, the method could prove very useful in time-of-flight PET imaging.

  3. Imaging agent and method of use

    DOEpatents

    Wieland, Donald M.; Brown, Lawrence E.; Beierwaltes, William H.; Wu, Jiann-long

    1986-04-22

    A new radiopharmaceutical composition for use in nuclear medicine comprises a radioiodinated meta-iodobenzylguanidine. The composition is used as an imaging agent for the heart, adrenal medulla, and tumors of the adrenal medulla and can be used for treatment of tumors of the adrenal medulla.

  4. Imaging agent and method of use

    DOEpatents

    Wieland, D.M.; Brown, L.E.; Beierwaltes, W.H.; Wu, J.L.

    1986-04-22

    A new radiopharmaceutical composition for use in nuclear medicine comprises a radioiodinated meta-iodobenzylguanidine. The composition is used as an imaging agent for the heart, adrenal medulla, and tumors of the adrenal medulla and can be used for treatment of tumors of the adrenal medulla. No Drawings

  5. Image quality of CT angiography with model-based iterative reconstruction in young children with congenital heart disease: comparison with filtered back projection and adaptive statistical iterative reconstruction.

    PubMed

    Son, Sung Sil; Choo, Ki Seok; Jeon, Ung Bae; Jeon, Gye Rok; Nam, Kyung Jin; Kim, Tae Un; Yeom, Jeong A; Hwang, Jae Yeon; Jeong, Dong Wook; Lim, Soo Jin

    2015-06-01

    To retrospectively evaluate the image quality of CT angiography (CTA) reconstructed by model-based iterative reconstruction (MBIR) and to compare this with images obtained by filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR) in newborns and infants with congenital heart disease (CHD). Thirty-seven children (age 4.8 ± 3.7 months; weight 4.79 ± 0.47 kg) with suspected CHD underwent CTA on a 64detector MDCT without ECG gating (80 kVp, 40 mA using tube current modulation). Total dose length product was recorded in all patients. Images were reconstructed using FBP, ASIR, and MBIR. Objective image qualities (density, noise) were measured in the great vessels and heart chambers. The contrast-to-noise ratio (CNR) was calculated by measuring the density and noise of myocardial walls. Two radiologists evaluated images for subjective noise, diagnostic confidence, and sharpness at the level prior to the first branch of the main pulmonary artery. Images were compared with respect to reconstruction method, and reconstruction times were measured. Images from all patients were diagnostic, and the effective dose was 0.22 mSv. The objective image noise of MBIR was significantly lower than those of FBP and ASIR in the great vessels and heart chambers (P < 0.05); however, with respect to attenuations in the four chambers, ascending aorta, descending aorta, and pulmonary trunk, no statistically significant difference was observed among the three methods (P > 0.05). Mean CNR values were 8.73 for FBP, 14.54 for ASIR, and 22.95 for MBIR. In addition, the subjective image noise of MBIR was significantly lower than those of the others (P < 0.01). Furthermore, while FBP had the highest score for image sharpness, ASIR had the highest score for diagnostic confidence (P < 0.05), and mean reconstruction times were 5.1 ± 2.3 s for FBP and ASIR and 15.1 ± 2.4 min for MBIR. While CTA with MBIR in newborns and infants with CHD can reduce image noise and

  6. A report on the Academic Emergency Medicine 2015 consensus conference "Diagnostic imaging in the emergency department: a research agenda to optimize utilization".

    PubMed

    Gunn, Martin L; Marin, Jennifer R; Mills, Angela M; Chong, Suzanne T; Froemming, Adam T; Johnson, Jamlik O; Kumaravel, Manickam; Sodickson, Aaron D

    2016-08-01

    In May 2015, the Academic Emergency Medicine consensus conference "Diagnostic imaging in the emergency department: a research agenda to optimize utilization" was held. The goal of the conference was to develop a high-priority research agenda regarding emergency diagnostic imaging on which to base future research. In addition to representatives from the Society of Academic Emergency Medicine, the multidisciplinary conference included members of several radiology organizations: American Society for Emergency Radiology, Radiological Society of North America, the American College of Radiology, and the American Association of Physicists in Medicine. The specific aims of the conference were to (1) understand the current state of evidence regarding emergency department (ED) diagnostic imaging utilization and identify key opportunities, limitations, and gaps in knowledge; (2) develop a consensus-driven research agenda emphasizing priorities and opportunities for research in ED diagnostic imaging; and (3) explore specific funding mechanisms available to facilitate research in ED diagnostic imaging. Through a multistep consensus process, participants developed targeted research questions for future research in six content areas within emergency diagnostic imaging: clinical decision rules; use of administrative data; patient-centered outcomes research; training, education, and competency; knowledge translation and barriers to imaging optimization; and comparative effectiveness research in alternatives to traditional computed tomography use.

  7. Diagnostic medicine: A comprehensive ABCDE algorithm for accurate interpretation of radiology and pathology images and data.

    PubMed

    Zioga, Christina A; Destouni, Chariklia T

    2015-01-01

    A pathway to the procedure of interpreting radiology images or pathology slides is presented. This simplified mnemonic can be used as a memory aid determining the order in which diagnosis should be approached. First, before we place the radiology image in front of the lightbox or the slide under the microscope we have to be sure that it is adequately labelled and prepared (Correct). It is also necessary to have or gather all available information concerning the patient and if possible his full medical history (A, Available Information). Once we come across the image, two fundamental questions should be answered: which part of the body does the image concern and-where applicable-if the image is adequate (B, Body). Next, we proceed to answer if we have a neoplastic tissue or not (C, Cancer). We then either form a differential diagnosis list or we reach to a final diagnosis (D, Diagnosis), which is followed by the writing of the report (E, Exhibit). These series of steps followed as an ad hoc procedure by most specialists, are important in order to achieve a complete and clear diagnosis and report, which is intended to support optimal clinical practice. This ABCDE concept is a generic standard approach which is not limited to specific specimens and can lead to faster diagnosis with less mistakes. PMID:26665217

  8. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    NASA Technical Reports Server (NTRS)

    Gat, N.; Subramanian, S.; Barhen, J.; Toomarian, N.

    1996-01-01

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  9. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    SciTech Connect

    Gat, N.; Subramanian, S.; Barhen, J.; Toomarian, N.

    1996-12-31

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  10. Hyperspectral imaging in the quality control of herbal medicines - the case of neurotoxic Japanese star anise.

    PubMed

    Vermaak, Ilze; Viljoen, Alvaro; Lindström, Susanne Wiklund

    2013-03-01

    Illicium verum (Chinese star anise) dried fruit is popularly used as a remedy to treat infant colic. However, instances of life-threatening adverse events in infants have been recorded after use, in some cases due to substitution and/or adulteration of I. verum with Illicium anisatum (Japanese star anise), which is toxic. It is evident that rapid and efficient quality control methods are of utmost importance to prevent re-occurrence of such dire consequences. The potential of short wave infrared (SWIR) hyperspectral imaging and image analysis as a rapid quality control method to distinguish between I. anisatum and I. verum whole dried fruit was investigated. Images were acquired using a sisuChema SWIR hyperspectral pushbroom imaging system with a spectral range of 920-2514 nm. Principal component analysis (PCA) was applied to the images to reduce the high dimensionality of the data, remove unwanted background and to visualise the data. A classification model with 4 principal components and an R²X_cum of 0.84 and R²Y_cum of 0.81 was developed for the 2 species using partial least squares discriminant analysis (PLS-DA). The model was subsequently used to accurately predict the identity of I. anisatum (98.42%) and I. verum (97.85%) introduced into the model as an external dataset. The results show that SWIR hyperspectral imaging is an objective and non-destructive quality control method that can be successfully used to identify whole dried fruit of I. anisatum and I. verum. In addition, this method has the potential to detect I. anisatum whole dried fruits within large batches of I. verum through upscaling to a conveyor belt system. PMID:23277152

  11. Using medical imaging for the detection of adverse events ("incidents") during the utilization of left ventricular assist devices in adult patients with advanced heart failure.

    PubMed

    Kaufmann, Friedrich; Krabatsch, Thomas

    2016-05-01

    Ventricular assist devices (VAD) are used for mechanical support of the terminally failing heart. Failure of these life supporting systems can be fatal. Early and reliable detection of any upcoming problems is mandatory and is crucial for the outcome. Medical imaging methods are described within this review, which are not only essential for diagnosis of typically VAD-related complications but also for the detection or verification of technical issues. Within this review the utilization of medical imaging equipment for the diagnosis of technical malfunctions or damages of implanted system components is discussed. A newly developed specialized acoustic imaging method for pump thrombosis detection will also be described along with the most common VAD-related medical complications and their respective imaging methods and the limitations induced by the use of the VAD-system.

  12. Right ventricular reverse remodeling after pulmonary endarterectomy: magnetic resonance imaging and clinical and right heart catheterization assessment

    PubMed Central

    2014-01-01

    Abstract The objective of this study was to assess the effect of pulmonary endarterectomy (PEA) on right ventricular (RV) reverse remodeling using magnetic resonance imaging (MRI) and to correlate MRI findings with clinical and hemodynamic outcomes postsurgery. We performed a retrospective analysis in 72 patients undergoing PEA surgery in whom MRI and right heart catheterization (RHC) were performed preoperation and 3 months postoperation. RV volumes and mass were assessed by MRI. Continuous variables were expressed as means, changes were compared with a paired t test, and associations between the variables were explored using Pearson correlation coefficients. The mean age was 57 years, and 51% were male. Both RV end-diastolic volume (EDV; 176–117 mL; P < 0.001) and RV end-systolic volume (ESV; 129–64 mL; P < 0.001) reduced significantly following PEA. Preoperative pulmonary artery pressure (PAP) correlated moderately with ESV (r = 0.46, P < 0.001). Postoperatively, PAP correlated with EDV (r = 0.45, P < 0.001) and ESV (r = 0.44, P < 0.001). Moderate correlation was present between hemodynamic parameters: PAP, pulmonary vascular resistance, and right atrial pressure with pre- and postoperation end-systolic and end-diastolic RV mass (P < 0.001). RHC and MRI measurements of cardiac output and RV volumes were significantly different (P < 0.001). In conclusion, RV reverse remodeling, as measured by improvement in RV volumes and mass by MRI, was observed for 3 months in patients who underwent PEA surgery. This is the largest series of patients with pre- and post-PEA MRI assessment so far reported. MRI detects changes in parameters reflecting cardiac remodeling and pulmonary clearance, but measurements are significantly different from those of RHC. PMID:25006419

  13. Evaluation of left ventricular mechanical dyssynchrony in chronic heart failure patients by two-dimensional speckle tracking imaging.

    PubMed

    Jiang, Feng-Xia; Guo, Rui-Qiang; Chen, Jin-Ling

    2013-07-01

    The purpose of this study was to evaluate left ventricular mechanical dyssynchrony (LVMD) in chronic heart failure (CHF) patients using two-dimensional speckle tracking imaging (2D-STI), and also to compare the usefulness of three patterns of myocardial deformation in mechanical dyssynchrony assessment. Furthermore, the relationships between left ventricular ejection fraction (LVEF), QRS duration (QRSd), and LVMD were explored. In total, 78 patients and 60 healthy individuals (group 3) were enrolled. The patients were classified into two subgroups: LVEF≤35% (group 1), 35%0.05). CHF patients have different extents of LVMD. Longitudinal deformation shows the best detectability of dyssynchrony motion. Left ventricular systolic function was closely related to mechanical dyssynchrony, whereas QRSd showed no significant correlation.

  14. Reclassification of cardiovascular risk in patients with normal myocardial perfusion imaging using heart rate response to vasodilator stress.

    PubMed

    Iqbal, Fahad M; Al Jaroudi, Wael; Sanam, Kumar; Sweeney, Aaron; Heo, Jaekyeong; Iskandrian, Ami E; Hage, Fadi G

    2013-01-15

    Previous studies have shown that patients with normal vasodilator myocardial perfusion imaging (MPI) findings remain at a greater risk of future cardiac events than patients with normal exercise MPI findings. The aim was to assess improvement in risk classification provided by the heart rate response (HRR) in patients with normal vasodilator MPI findings when added to traditional risk stratification. We retrospectively studied 2,000 patients with normal regadenoson or adenosine MPI findings. Risk stratification was performed using Adult Treatment Panel III framework. Patients were stratified by HRR (percentage of increase from baseline) into tertiles specific to each vasodilator. All-cause mortality and cardiac death/nonfatal myocardial infarction (MI) ≤2 years from the index MPI were recorded. During follow-up, 11.8% patients died and 2.7% patients experienced cardiac death/nonfatal MI in the adenosine and regadenoson groups, respectively. The patients who died had a greater Framingham risk score (12 ± 4 vs 11 ± 4, p = 0.009) and lower HRR (22 ± 16 vs 32 ± 21, p <0.0001). In an adjusted Cox model, the lowest tertile HRR was associated with an increased risk of mortality (hazard ratio 2.1) and cardiac death/nonfatal MI (hazard ratio 2.9; p <0.01). Patients in the highest HRR tertile, irrespective of the Adult Treatment Panel III category, were at low risk. When added to the Adult Treatment Panel III categories, the HRR resulted in net reclassification improvement in mortality of 18% and cardiac death/nonfatal MI of 22%. In conclusion, a blunted HRR to vasodilator stress was independently associated with an increased risk of cardiac events and overall mortality in patients with normal vasodilator MPI findings. The HRR correctly reclassified a substantial proportion of these patients in addition to the traditional risk classification models and identified patients with normal vasodilator MPI findings, who had a truly low risk of events.

  15. Application of infrared thermal imaging in the study of preventing cardiovascular and cerebrovascular diseases with Chinese medicine health food

    NASA Astrophysics Data System (ADS)

    Li, Ziru; Zhang, Xusheng

    2009-08-01

    To explore the assessing technique which could objectively reflect the characteristics of Chinese medicine in the prevention of cardiovascular and cerebrovascular diseases, four balance features of infrared thermal images (ITI) corresponding to the up and down, left and right, proximal and distal balance of blood circulation of human body were studied. First, the ITI features of the middle-aged and elderly people with lipid abnormality history were compared with those of the healthy youth. It was found that the balance state of the youth was significantly better than that of the middle-aged and elderly, P<=0.01 for all the balance features. For the youth, the balance state of females was better than that of the males. But this sexual difference disappeared for the middle-aged and elderly group. Second, a double-blind randomized trial was carried out to study the influences of Shengyi capsule, a Chinese medicine health food with the function of helping to decrease serum lipid, on the balance features. The subjects were middle-aged and elderly people with lipid abnormality history. Shengyi capsule was taken by the trial group while Xuezhikang capsule (with lovastatin as the main effective component) by the control group for 108 days. The balance features of ITI showed that Shengyi was significantly better than Xuezhikang in improving the whole body balance of blood circulation (including the up and down, left and right, proximal and distal balance). The relative efficacy rate was 81.0% for the trial group and 33.3% for the control group, there was significant difference between the two groups (P=0.002). Shengyi could effectively decrease the low density lipoprotein cholesterol (LDL-C) but the effect of Xuezhikang in decreasing total cholesterol (TC) and LDL-C was better than Shengyi. Though the lipid-lowering effect of Shengyi was not as good as Xuezhikang, ITI reflected the obvious advantage of Shengyi in improving the whole body balance of blood circulation which

  16. Dynamic three-dimensional echocardiographic imaging of congenital heart defects in infants and children by computer-controlled tomographic parallel slicing using a single integrated ultrasound instrument.

    PubMed

    Fulton, D R; Marx, G R; Pandian, N G; Romero, B A; Mumm, B; Krauss, M; Wollschläger, H; Ludomirsky, A; Cao, Q L

    1994-03-01

    Three-dimensional cardiac reconstruction generated from transesophageal interrogation can be performed using an integrated unit that captures, processes, and postprocesses tomographic parallel slices of the heart. This probe was used for infants and young children in the transthoracic position to evaluate the feasibility of producing three-dimensional cardiac images with capability for real-time dynamic display. Twenty-two infants and children (range 1 day-3.5 years) underwent image acquisition using a 16 mm 5 MHz 64 element probe placed over the precordium. Two infants were also imaged from the subcostal position. Data was obtained and stored over a single cardiac cycle after acceptable cardiac and respiratory gating intervals were met. The transducer was advanced in 0.5-1 mm increments over the cardiac structures using identical acquisition criteria. The images were reconstructed from the stored digital cubic format and could be oriented in any desired plane. In 9 of the 22 infants the images obtained were of optimal quality. The images obtained displayed normal cardiac structures emphasizing depth relationships as well as visualization of planes not generally demonstrated by two-dimensional imaging. Several lesions were also depicted in a unique fashion using this technique. Though the method employed was limited by movement artifact and reconstruction time, the quality of the three-dimensional display was excellent and enhanced by real-time demonstration. The transthoracic approach was successful in capturing sufficient data to create three-dimensional images, which may have further application in more accurate diagnosis of complex cardiac abnormalities and generation of planes of view which could duplicate surgical visualization of a lesion. Further assessment of the technique in infants with congenital heart disease is warranted. PMID:10146717

  17. Prostate Radiotherapy in the Era of Advanced Imaging and Precision Medicine

    PubMed Central

    Dulaney, Caleb R.; Osula, Daniel O.; Yang, Eddy S.; Rais-Bahrami, Soroush

    2016-01-01

    Tremendous technological advancements in prostate radiotherapy have decreased treatment toxicity and improved clinical outcomes for men with prostate cancer. While these advances have allowed for significant treatment volume reduction and whole-organ dose escalation, further improvement in prostate radiotherapy has been limited by classic techniques for diagnosis and risk stratification. Developments in prostate imaging, image-guided targeted biopsy, next-generation gene expression profiling, and targeted molecular therapies now provide information to stratify patients and select treatments based on tumor biology. Image-guided targeted biopsy improves detection of clinically significant cases of prostate cancer and provides important information about the biological behavior of intraprostatic lesions which can further guide treatment decisions. We review the evolution of prostate magnetic resonance imaging (MRI) and MRI-ultrasound fusion-guided prostate biopsy. Recent advancements in radiation therapy including dose escalation, moderate and extreme hypofractionation, partial prostate radiation therapy, and finally dose escalation by simultaneous integrated boost are discussed. We also review next-generation sequencing and discuss developments in targeted molecular therapies. Last, we review ongoing clinical trials and future treatment paradigms that integrate targeted biopsy, molecular profiling and therapy, and prostate radiotherapy. PMID:27022486

  18. Developing a Research Agenda to Optimize Diagnostic Imaging in the Emergency Department: An Executive Summary of the 2015 Academic Emergency Medicine Consensus Conference.

    PubMed

    Marin, Jennifer R; Mills, Angela M

    2015-12-01

    The 2015 Academic Emergency Medicine consensus conference, "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization" was held on May 12, 2015, with the goal of developing a high-priority research agenda on which to base future research. The specific aims of the conference were to (1) understand the current state of evidence regarding emergency department (ED) diagnostic imaging use and identify key opportunities, limitations, and gaps in knowledge; (2) develop a consensus-driven research agenda emphasizing priorities and opportunities for research in ED diagnostic imaging; and (3) explore specific funding mechanisms available to facilitate research in ED diagnostic imaging. Over a 2-year period, the executive committee and other experts in the field convened regularly to identify specific areas in need of future research. Six content areas within emergency diagnostic imaging were identified before the conference and served as the breakout groups on which consensus was achieved: clinical decision rules; use of administrative data; patient-centered outcomes research; training, education, and competency; knowledge translation and barriers to imaging optimization; and comparative effectiveness research in alternatives to traditional computed tomography use. The executive committee invited key stakeholders to assist with the planning and to participate in the consensus conference to generate a multidisciplinary agenda. There were a total of 164 individuals involved in the conference and spanned various specialties, including general emergency medicine, pediatric emergency medicine, radiology, surgery, medical physics, and the decision sciences.

  19. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    SciTech Connect

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  20. Ultrasound Contrast Materials in Cardiovascular Medicine: from Perfusion Assessment to Molecular Imaging

    PubMed Central

    Klibanov, Alexander L

    2013-01-01

    Ultrasound imaging is widely used in cardiovascular diagnostics. Contrast agents expand the range of tasks that ultrasound can perform. In the clinic in US, endocardial border delineation and left ventricle opacification have been an approved indication for more than a decade. However, myocardial perfusion contrast ultrasound studies are still at the clinical trials stage. Blood pool contrast and perfusion in other tissues might be an easier indication to achieve: general blood pool ultrasound contrast is in wider use in Europe, Canada, Japan, and China. Targeted (molecular) contrast microbubbles will be the next generation of ultrasound imaging probes, capable of specific delineation of the areas of disease by adherence to molecular targets. The shell of targeted microbubbles (currently in the preclinical research and early stage clinical trials) is decorated with the ligands (antibodies, peptides or mimetics, hormones, carbohydrates) that ensure firm binding to the molecular markers of disease. PMID:23913363

  1. Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images.

    PubMed

    Mihalef, Viorel; Ionasec, Razvan Ioan; Sharma, Puneet; Georgescu, Bogdan; Voigt, Ingmar; Suehling, Michael; Comaniciu, Dorin

    2011-06-01

    There is a growing need for patient-specific and holistic modelling of the heart to support comprehensive disease assessment and intervention planning as well as prediction of therapeutic outcomes. We propose a patient-specific model of the whole human heart, which integrates morphology, dynamics and haemodynamic parameters at the organ level. The modelled cardiac structures are robustly estimated from four-dimensional cardiac computed tomography (CT), including all four chambers and valves as well as the ascending aorta and pulmonary artery. The patient-specific geometry serves as an input to a three-dimensional Navier-Stokes solver that derives realistic haemodynamics, constrained by the local anatomy, along the entire heart cycle. We evaluated our framework with various heart pathologies and the results correlate with relevant literature reports.

  2. General consumer communication tools for improved image management and communication in medicine

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Rosset, Antoine; McCoy, J. Michael

    2005-04-01

    We elected to explore emerging consumer technologies that can be adopted to improve and facilitate image and data communication in medical and clinical environment. The wide adoption of new communication paradigm such as instant messaging, chatting and direct emailing can be integrated in specific applications. The increasing capacity of portable and hand held devices such as iPod music players offer an attractive alternative for data storage that exceeds the capabilities of traditional offline storage media such as CD or even DVD. We adapted medical image display and manipulation software called OSIRIX to integrate different innovative technologies facilitating the communication and data transfer between remote users. We integrated email and instant messaging features to the program allowing users to instantaneously email an image or a set of images that are displayed on the screen. Using iChat instant messaging application from Apple a user can share the content of his screen with a remote correspondent and communicate in real time using voice and video. To provide convenient mechanism for exchange of large data sets the program can store the data in DICOM format on CD or DVD, but was also extended to use the large storage capacity of iPod hard disks as well as Apple"s online storage service "dot Mac" that users can subscribe to benefit from scalable secure storage that accessible from anywhere on the internet. The adoption of these innovative technologies is likely to change the architecture of traditional picture archiving and communication systems and provide more flexible and efficient means of communication.

  3. [Image guided and robotic treatment--the advance of cybernetics in clinical medicine].

    PubMed

    Fosse, E; Elle, O J; Samset, E; Johansen, M; Røtnes, J S; Tønnessen, T I; Edwin, B

    2000-01-10

    The introduction of advanced technology in hospitals has changed the treatment practice towards more image guided and minimal invasive procedures. Modern computer and communication technology opens up for robot aided and pre-programmed intervention. Several robotic systems are in clinical use today both in microsurgery and in major cardiac and orthopedic operations. As this trend develops, professions which are new in this context such as physicists, mathematicians and cybernetic engineers will be increasingly important in the treatment of patients.

  4. Human heart by art.

    PubMed

    Tamir, Abraham

    2012-11-01

    Heart is of great importance in maintaining the life of the body. Enough to stop working for a few minutes to cause death, and hence the great importance in physiology, medicine, and research. This fact was already emphasized in the Bible in the Book of Proverbs, chapter 4 verse 23: "Keep your heart with all diligence, for out of it is the wellspring of life." Art was able to demonstrate the heart from various aspects; realistically, as done by Leonardo de Vinci who demonstrated the halves of the heart and its blood vessels. Symbolically, as a source of life, the heart was demonstrated by the artist Mrs. Erlondeiel, as a caricature by Salvador Dali, as an open heart by Sawaya, etc. Finally, it should be emphasized that different demonstrations of the human heart by many artworks make this most important organ of our body (that cannot be seen from outside) more familiar and clearer to us. And this is the purpose of this article-to demonstrate the heart through a large number of artworks of different kinds.

  5. Heart transplant - series (image)

    MedlinePlus

    ... be increased up to 10 years or more. Immunosuppressive drugs must be taken indefinitely. Relatively normal activities can ... of the surgery and post-operative care, including immunosuppressive drugs

  6. Heart Attack

    MedlinePlus

    ... attack treatment works best when it's given right after symptoms occur. Prompt treatment of a heart attack can help prevent or limit damage to the heart and prevent sudden death. Call 9-1-1 Right Away A heart ...

  7. Heart Anatomy

    MedlinePlus

    ... Incredible Machine Bonus poster (PDF) The Human Heart Anatomy Blood The Conduction System The Coronary Arteries The ... of the Leg Vasculature of the Torso Heart anatomy illustrations and animations for grades K-6. Heart ...

  8. Heart attack

    MedlinePlus

    ... infarction; Non-ST - elevation myocardial infarction; NSTEMI; CAD - heart attack; Coronary artery disease - heart attack ... made up of cholesterol and other cells. A heart attack may occur when: A tear in the ...

  9. Heart murmurs

    MedlinePlus

    Chest sounds - murmurs; Heart sounds - abnormal; Murmur - innocent; Innocent murmur; Systolic heart murmur; Diastolic heart murmur ... classified ("graded") depending on how loud the murmur sounds with a stethoscope. The grading is on a ...

  10. Heart Block

    MedlinePlus

    ... Block Explore Heart Block What Is... Electrical System & EKG Results Types Causes Who Is at Risk Signs & ... heart block. Doctors use a test called an EKG (electrocardiogram) to help diagnose heart block. This test ...

  11. Micro modules for mobile shape, color and spectral imaging with smartpads in industry, biology and medicine

    NASA Astrophysics Data System (ADS)

    Hofmann, Dietrich; Dittrich, Paul-Gerald; Düntsch, Eric; Kraus, Daniel

    2014-02-01

    Aim of the paper is the demonstration of a paradigm shift in shape, color and spectral measurements in industry, biology and medicine as well as in measurement education and training. Innovative hardware apps (hwapps) and software apps (swapps) with smartpads are fundamental enablers for the transformation from conventional stationary working places towards innovative mobile working places with in-field measurements and point-of-care (POC) diagnostics. Mobile open online courses (MOOCs) are transforming the study habits. Practical examples for the application of innovative photonic micro shapemeters, colormeters and spectrometers will be given. The innovative approach opens so far untapped enormous markets for measurement science, engineering and training. These innovative working conditions will be fast accepted due to their convenience, reliability and affordability. A highly visible advantage of smartpads is the huge number of their distribution, their worldwide connectivity via Internet and cloud services, the standardized interfaces like USB and HDMI and the experienced capabilities of their users for practical operations, learned with their private smartpads.

  12. Three-dimensional magnetic resonance cardiac imaging shows initial promise

    SciTech Connect

    Not Available

    1988-04-15

    Three-dimensional magnetic resonance imaging (3-D MRI) of the heart is already receiving encouraging reviews from heart surgeons, says Michael Vannier, MD, an associate professor of radiology at Washington University School of Medicine, St. Louis. In fact, the demand for his group's 3-D images is becoming overwhelming, Vannier says. So far, the group has used 3-D MRI to evaluate congenital heart disease. The advantage of the 3-D system is that, even to an untrained eye, anomalies are apparent and the images can even be animated. Many of the patients are infants, who are sedated while the images are acquired. When the information is combined, the averaged image produced represents a slice about 5 mm thick. The computer then stacks a number of those images together to make the 3-D image. Total scanning takes about one hour.

  13. Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. Amyloid Imaging Task Force of the Alzheimer’s Association and Society for Nuclear Medicine and Molecular Imaging.

    PubMed

    Johnson, Keith A; Minoshima, Satoshi; Bohnen, Nicolaas I; Donohoe, Kevin J; Foster, Norman L; Herscovitch, Peter; Karlawish, Jason H; Rowe, Christopher C; Hedrick, Saima; Pappas, Virginia; Carrillo, Maria C; Hartley, Dean M

    2013-07-01

    Amyloid PET imaging is a novel diagnostic test that can detect in living humans one of the two defining pathologic lesions of Alzheimer disease, amyloid-β deposition in the brain. The Amyloid Imaging Task Force of the Alzheimer's Association and Society for Nuclear Medicine and Molecular Imaging previously published appropriate use criteria for amyloid PET as an important tool for increasing the certainty of a diagnosis of Alzheimer disease in specific patient populations. Here, the task force further clarifies and expands 3 topics discussed in the original paper: first, defining dementia experts and their use of proper documentation to demonstrate the medical necessity of an amyloid PET scan; second, identifying a specific subset of individuals with mild cognitive impairment for whom an amyloid PET scan is appropriate; and finally, developing educational programs to increase awareness of the amyloid PET appropriate use criteria and providing instructions on how this test should be used in the clinical decision-making process.

  14. Nano-imaging of the beating mouse heart in vivo: Importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function.

    PubMed

    Kobirumaki-Shimozawa, Fuyu; Oyama, Kotaro; Shimozawa, Togo; Mizuno, Akari; Ohki, Takashi; Terui, Takako; Minamisawa, Susumu; Ishiwata, Shin'ichi; Fukuda, Norio

    2016-01-01

    Sarcomeric contraction in cardiomyocytes serves as the basis for the heart's pump functions in mammals. Although it plays a critical role in the circulatory system, myocardial sarcomere length (SL) change has not been directly measured in vivo under physiological conditions because of technical difficulties. In this study, we developed a high speed (100-frames per second), high resolution (20-nm) imaging system for myocardial sarcomeres in living mice. Using this system, we conducted three-dimensional analysis of sarcomere dynamics in left ventricular myocytes during the cardiac cycle, simultaneously with electrocardiogram and left ventricular pressure measurements. We found that (a) the working range of SL was on the shorter end of the resting distribution, and (b) the left ventricular-developed pressure was positively correlated with the SL change between diastole and systole. The present findings provide the first direct evidence for the tight coupling of sarcomere dynamics and ventricular pump functions in the physiology of the heart. PMID:26712849

  15. Nano-imaging of the beating mouse heart in vivo: Importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function.

    PubMed

    Kobirumaki-Shimozawa, Fuyu; Oyama, Kotaro; Shimozawa, Togo; Mizuno, Akari; Ohki, Takashi; Terui, Takako; Minamisawa, Susumu; Ishiwata, Shin'ichi; Fukuda, Norio

    2016-01-01

    Sarcomeric contraction in cardiomyocytes serves as the basis for the heart's pump functions in mammals. Although it plays a critical role in the circulatory system, myocardial sarcomere length (SL) change has not been directly measured in vivo under physiological conditions because of technical difficulties. In this study, we developed a high speed (100-frames per second), high resolution (20-nm) imaging system for myocardial sarcomeres in living mice. Using this system, we conducted three-dimensional analysis of sarcomere dynamics in left ventricular myocytes during the cardiac cycle, simultaneously with electrocardiogram and left ventricular pressure measurements. We found that (a) the working range of SL was on the shorter end of the resting distribution, and (b) the left ventricular-developed pressure was positively correlated with the SL change between diastole and systole. The present findings provide the first direct evidence for the tight coupling of sarcomere dynamics and ventricular pump functions in the physiology of the heart.

  16. The development of MWPC-based systems for imaging X-rays, gamma rays and charged particles in applications in medicine, materials science and biochemistry. Part II. Applications in medicine, biology, low energy and X-ray physics

    NASA Astrophysics Data System (ADS)

    Bateman, J. E.; Connolly, J. F.; Stephenson, R.; Tappern, G. J. R.; Flesher, A. C.

    1983-11-01

    The development is described of several complete MWPC based imaging systems for applications in medicine (a positron camera), industry (a second positron camera), materials science (two 2-d X-ray diffraction systems) and biochemistry (an autoradiography system for 2-d immunoelectrophoresis using a tritium label). A moderately detailed description of two of the system is given and some special developments in the areas of fast modular electronics for the delay line readout technique and fast imaging data taking are described in more detail. The state of rapid expansion of this area of application of MWPC technology and its relationship to the microprocessor revolution are discussed.

  17. Microscopic identification of Chinese medicinal materials based on X-ray phase contrast imaging: from qualitative to quantitative

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Liang, Z.; Tan, H.; Ni, L.; Zhao, Z.; Xiao, T.; Xu, H.

    2016-07-01

    Although a variety of methods, ranging from simple morphological examination to physical and chemical analysis, and DNA molecular biology, exist for authenticating Chinese medicinal materials(CMMs), no methods can achieve both the source species identification and quality evaluation of CMMs simultaneously. Furthermore, the methods that are currently available for the identification of CMMs, including both optical and electronic microscopy, usually entail strict requirements for sample preparation or testing environment, such as the slicing of super-thin sections, or processing with specific chemical reagents. These treatments not only damage the CMMs but may also cause some of the original microstructures to be missed. Additionally, they may even yield false results. Owing to the unique penetrating character of X-rays, X-ray phase contrast imaging(XPCI) can be used to realize the inner microstructures of CMMs through nondestructive imaging. With the higher flux and luminance of the third generation of synchrotron radiation facility, XPCI can provides clearer and finer microstructures of CMMs, which are mainly composed of C, H, O, and N elements, with better spatial and density resolutions. For more than ten years, the X-ray imaging group at the Shanghai Institute of Applied Physics has investigated the microstructures of CMMs by XPCI and they have established and developed a quantitative X-ray phase contrast micro-CT for investigating the characteristic microstructures of CMMs. During this period, a variety of typical CMMs have been investigated, from two-dimensional (2D) radiography to three-dimensional (3D) micro-CT, from qualitative to quantitative. Taken together, these results verify that quantitative X-ray phase contrast micro-CT is a practical tool for the microscopic investigation of CMMs. Additionally, further efforts are being made to find the relationship between the microstructures' quantitative factors and active chemical components. At present

  18. Advanced devices for photoacoustic imaging to improve cancer and cerebrovascular medicine

    NASA Astrophysics Data System (ADS)

    Montilla Marien, Leonardo Gabriel

    Recent clinical studies have demonstrated that photoacoustic imaging (PAI) provides important diagnostic information for breast cancer staging. Despite these promising studies, PAI remains an unfeasible option for clinics due to the cost to implement, the required large modification in user conduct and the inflexibility of the hardware to accommodate other applications for the incremental enhancement in diagnostic information. The research described in this dissertation addresses these issues by designing attachments to clinical ultrasound probes and incorporating custom detectors into commercial ultrasound scanners. The ultimate benefit of these handheld devices is to expand the capability of current ultrasound systems and facilitate the translation of PAI to enhance cancer diagnostics and neurosurgical outcomes. Photoacoustic enabling devices (PEDs) were designed as attachments to two clinical ultrasound probes optimized for breast cancer diagnostics. PAI uses pulsed laser excitation to create transient heating (<1°C) and thermoelastic expansion that is detected as an ultrasonic emission. These ultrasonic emissions are remotely sensed to construct noninvasive images with optical contrast at depths much greater than other optical modalities. The PEDs are feasible in terms of cost, user familiarity and flexibility for various applications. Another possible application for PAI is in assisting neurosurgeons treating aneurysms. Aneurysms are often treated by placing a clip to prevent blood flow into the aneurysm. However, this procedure has risks associated with damaging nearby vessels. One of the developed PEDs demonstrated the feasibility to three-dimensionally image tiny microvasculature (<0.3mm) beyond large blood occlusions (>2.4mm) in a phantom model. The capability to use this during surgery would suggest decreasing the risks associated with these treatments. However, clinical ultrasound arrays are not clinically feasible for microsurgical applications due to

  19. Physical Activity and Public Health in Older Adults: Recommendation from the American College of Sports Medicine and the American Heart Association

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To issue a recommendation on the types and amounts of physical activity needed to improve and maintain health in older adults. Participants: A panel of scientists with expertise in public health, behavioral science, epidemiology, exercise science, medicine, and gerontology. Evidence: The ...

  20. New imaging systems in nuclear medicine. Final report, January 1, 1993--December 31, 1995

    SciTech Connect

    1995-12-31

    The aim of this program has been to improve the performance of positron emission tomography (PET) to achieve high resolution with high sensitivity. Towards this aim, the authors have carried out the following studies: (1) explored new techniques for detection of annihilation radiation including new detector materials and system geometries, specific areas that they have studied include--exploration of factors related to resolution and sensitivity of PET instrumentation including geometry, detection materials and coding, and the exploration of technique to improve the image quality by use of depth of interaction and increased sampling; (2) complete much of the final testing of PCR-II, an analog-coded cylindrical positron tomograph, developed and constructed during the current funding period; (3) developed the design of a positron microtomograph with mm resolution for quantitative studies in small animals, a single slice version of this device has been designed and studied by use of computer simulation; (4) continued and expanded the program of biological studies in animal models. Current studies have included imaging of animal models of Parkinson`s and Huntington`s disease and cancer. These studies have included new radiopharmaceuticals and techniques involving molecular biology.