Pita, Ricardo; Mira, António; Beja, Pedro
2013-01-01
The ability of patchy populations to persist in human-dominated landscapes is often assessed using focal patch approaches, in which the local occurrence or abundance of a species is related to the properties of individual patches and the surrounding landscape context. However, useful additional insights could probably be gained through broader, mosaic-level approaches, whereby whole land mosaics with contrasting patch-network and matrix characteristics are the units of investigation. In this study we addressed this issue, analysing how the southern water vole (Arvicola sapidus) responds to variables describing patch-network and matrix properties within replicated Mediterranean farmland mosaics, across a gradient of agricultural intensification. Patch-network characteristics had a dominant effect, with the total amount of habitat positively influencing both the occurrence of water voles and the proportion of area occupied in land mosaics. The proportions of patches and area occupied by the species were positively influenced by mean patch size, and negatively so by patch isolation. Matrix effects were weak, although there was a tendency for a higher proportion of occupied patches in more intensive, irrigated agricultural landscapes, particularly during the dry season. In terms of conservation, results suggest that water voles may be able to cope well with, or even be favoured by, the on-going expansion of irrigated agriculture in Mediterranean dry-lands, provided that a number of patches of wet herbaceous vegetation are maintained within the farmland mosaic. Overall, our study suggests that the mosaic-level approach may provide a useful framework to understand the responses of patchy populations to land use change.
Pita, Ricardo; Mira, António; Beja, Pedro
2013-01-01
The ability of patchy populations to persist in human-dominated landscapes is often assessed using focal patch approaches, in which the local occurrence or abundance of a species is related to the properties of individual patches and the surrounding landscape context. However, useful additional insights could probably be gained through broader, mosaic-level approaches, whereby whole land mosaics with contrasting patch-network and matrix characteristics are the units of investigation. In this study we addressed this issue, analysing how the southern water vole (Arvicola sapidus) responds to variables describing patch-network and matrix properties within replicated Mediterranean farmland mosaics, across a gradient of agricultural intensification. Patch-network characteristics had a dominant effect, with the total amount of habitat positively influencing both the occurrence of water voles and the proportion of area occupied in land mosaics. The proportions of patches and area occupied by the species were positively influenced by mean patch size, and negatively so by patch isolation. Matrix effects were weak, although there was a tendency for a higher proportion of occupied patches in more intensive, irrigated agricultural landscapes, particularly during the dry season. In terms of conservation, results suggest that water voles may be able to cope well with, or even be favoured by, the on-going expansion of irrigated agriculture in Mediterranean dry-lands, provided that a number of patches of wet herbaceous vegetation are maintained within the farmland mosaic. Overall, our study suggests that the mosaic-level approach may provide a useful framework to understand the responses of patchy populations to land use change. PMID:23875014
NASA Astrophysics Data System (ADS)
Corona, R.; Montaldo, N.; Albertson, J. D.
2016-12-01
Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Historical human influences (e.g., deforestation, urbanization) further altered these ecosystems. Sardinia island is a representative region of Mediterranean ecosystems. It is low urbanized except some plan areas close to the main cities where main agricultural activities are concentrated. Two contrasting case study sites are within the Flumendosa river basin (1700 km2). The first site is a typical grassland on an alluvial plan valley (soil depth > 2m) while the second is a patchy mixture of Mediterranean vegetation species (mainly wild olive trees and C3 herbaceous) that grow in a soil bounded from below by a rocky layer of basalt, partially fractured (soil depth 15 - 40 cm). In both sites land-surface fluxes and CO2 fluxes are estimated by the eddy correlation technique while soil moisture was continuously estimated with water content reflectometers, and periodically leaf area index (LAI) was estimated. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics; 3) evaluate the impact of past and future climate change scenarios on the two contrasting ecosystems. For reaching the objectives an ecohydrologic model that couples a vegetation dynamic model (VDM), and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM) has been used. Historical meteorological data are available from 1922 and hydro-meteorological scenarios are then generated using a weather generator. The VDM-LSM model predict soil water balance and vegetation dynamics for the generated hydrometeorological scenarios in the two contrasting ecosystems. Results demonstrate that vegetation dynamics are influenced by the inter-annual variability of atmospheric forcing, with vegetation density changing significantly according to seasonal rainfall amount. At the same time the vegetation dynamics affect the soil water balance.
NASA Astrophysics Data System (ADS)
Montaldo, N.; Albertson, J. D.; Corona, R.
2011-12-01
Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Mediterranean regions are characterized by two main ecosystems, grassland and woodland, which for both natural and anthropogenic causes can grow in soils with different characteristics, highly impacting water resources. Water resources and forestal planning need a deep understanding of the dynamics between PFTs, soil and atmosphere and their impacts on water and CO2 distributions of these two main ecosystems. The first step is the monitoring of land surface fluxes, soil moisture, and vegetation dynamics of the two contrasting ecosystems. Moreover, due to the large percentage of soils with low depth (< 50 cm), and due to the quick hydrologic answer to atmospheric forcing in these soils, there is also the need to understand the impact of the soil depth in the vegetation dynamics, and make measurements in these types of soils. Sardinia island is a very interesting and representative region of Mediterranean ecosystems. It is low urbanized, and is not irrigated, except some plan areas close to the main cities where main agricultural activities are concentrated. The case study sites are within the Flumendosa river basin on Sardinia. Two sites, both in the Flumendosa river and with similar height a.s.l., are investigated. The distance between the sites is around 4 km but the first is a typically grass site located on an alluvial plan valley with a soil depth more than 2m, while the second site is a patchy mixture of Mediterranean vegetation types Oaks, creepers of the wild olive trees and C3 herbaceous species and the soil thickness varies from 15-40 cm, bounded from below by a rocky layer of basalt, partially fractured. In both sites land-surface fluxes and CO2 fluxes are estimated by eddy correlation technique based micrometeorological towers. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index PFTs are estimated during the Spring-Summer 2005. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics. For reaching the objectives an ecohydrologic model is also successfully used and applied to the case studies. It couples a vegetation dynamic model, which computes the change in biomass over time for the PFTs, and a 3-component (bare soil, grass and woody vegetation) land surface model.
NASA Astrophysics Data System (ADS)
Corona, Roberto; Curreli, Matteo; Montaldo, Nicola; Oren, Ram
2013-04-01
Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFT) competing for the water use. Mediterranean regions suffer water scarcity due to the dry climate conditions. In semi-arid regions evapotranspiration (ET) is the leading loss term of the root-zone water budget with a yearly magnitude that may be roughly equal to the precipitation. Despite the attention these ecosystems are receiving, a general lack of knowledge persists about the estimate of ET and the relationship between ET and the plant survival strategies for the different PFTs under water stress. During the dry summers these water-limited heterogeneous ecosystems are mainly characterized by a simple dual PFT-landscapes with strong-resistant woody vegetation and bare soil since grass died. In these conditions due to the low signal of the land surface fluxes captured by the sonic anemometer and gas analyzer the widely used eddy covariance may fail and its ET estimate is not robust enough. In these conditions the use of the sap flow technique may have a key role, because theoretically it provides a direct estimate of the woody vegetation transpiration. Through the coupled use of the sap flow sensor observations, a 2D foot print model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. The case study is at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. An extensive field campaign started in 2004. Land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index (LAI) PFTs are estimated. From 2012 sap flow sensors based on the thermal Dissipation Method are installed on numerous trees around the tower. Preliminary results show first the need of careful use sap flow sensors outputs which are affected by errors in the estimates of their main parameters, mainly allometric relationships between, for instance, sapwood area, diameter, canopy cover area, which affect the upscale of the local tree measurements to the site plot larger scale. Finally we demonstrate that the sap flow sensors are essential for the estimate of ET in such dry conditions, typical of Mediterranean ecosystems.
Soil nitrogen availability in the open steppe with Stipa tenacissima
NASA Astrophysics Data System (ADS)
Novosadova, Irena; Damian Ruiz Sinoga, Jose; Záhora, Jaroslav
2010-05-01
Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Iberian Peninsula and show a higher degree of variability in composition and structure (Maestre et al., 2007). Vegetation patchiness, which are seen as mosaics including vegetated and non-vegetated components, is a common feature of such open steppes (Valentin et al., 1999). Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). First, soil moisture is greater beneath the clumps, due to water harvesting through rainfall interception, uptake by roots from adjacent unvegetated areas and water redistribution from gaps to clumps (Bergkamp et al., 1999; Puigdefá bregas et al., 1999). Second, the canopy diminishes the intense solar radiation (Maestre et al., 2001) avoiding the sun-baking effect, which is an important factor for soil temperature change and physical disruption (Magid et al., 1999). Plant clumps either functioned as microbial hotspots where enhanced microbially driven ecosystem processes took place or as microbial banks capable of undergoing a burst of activity under favourable climatic conditions (Goberna et al., 2007). The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). On the other hand there exists experimental evidence of a non-patchy distribution of certain soil microbial properties in semi-arid Mediterranean patchy ecosystems (Goberna et al., 2007). The microbial nutrient release processes have a fundamental role in ecosystem functioning, particularly in Mediterranean areas, where nutrient availability, mainly nitrogen and phosphorous, represents a limiting factor (Sardans et al., 2005) together with water availability. Soil N availability has been found to affect plant water use efficiency (Sardans et al., 2008a). This strong link between N availability and water use efficiency makes particularly important the understanding of factors affecting soil N availability in Mediterranean ecosystems in view of the future predicted increasing drought in this area. Changes in the soil nitrogen availability in the open steppe with S. tenacissima were monitored over a two distinct period of time during the years 2008 and 2009 at a field site in semi-arid south-eastern Spain (Novosádová et al., 2010). The availability of ammonia-nitrogen and nitrate nitrogen was estimated in situ according to Binkley at Matson (1982) by the trapping of mineral N into the ion exchange resin inserted into special cover. The availability of soil ammonia-N as well as the availability of nitrate-N were in the 2008 year significantly influenced by the addition of different substrate (only 38% of control after the cellulose addition and 176% of control after the raw silk addition). In the following 2009 year was the N availability probably due to favorable soil moisture nearly the same in all experimental variants. The availability of ammonia-N was, in general, higher than the availability of nitrate-N, but the differences were less noticeable in 2008 year. It can be concluded, that the microbial competition for available nitrogen is very high and spatially and/or temporary significantly different.
NASA Astrophysics Data System (ADS)
Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Oren, Ram
2015-04-01
Sapflow and eddy covariance techniques are attractive methods for evapotranspiration (ET) estimates. We demonstrated that in Mediterranean ecosystems, characterized by an heterogeneous spatial distribution of different plant functional types (PFT) such as grass and trees, the combined use of these techniques becomes essential for the actual ET estimates. Indeed, during the dry summers these water-limited heterogeneous ecosystems are typically characterized by a simple dual PFT system with strong-resistant woody vegetation and bare soil, since grass died. An eddy covariance - micrometeorological tower has been installed over an heterogeneous ecosystem at the Orroli site in Sardinia (Italy) from 2003. The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. Where patchy land cover leads and the surface fluxes from different cover are largely different, ET evaluation may be not robust enough and eddy covariance method hypothesis are not anymore preserved. In these conditions the sapflow measurements, performed by thermodissipation probes, provide robust estimates of the transpiration from woody vegetation. Through the coupled use of the sapflow sensor observations, a 2D footprint model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. Based on the Granier technique, 33 thermo-dissipation probes have been built and 6 power regulators have been assembled to provide a constant current of 3V to the sensors. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. The sap flow sensors outputs are analyzed to estimate innovative allometric relationships between sapwood area, diameter, canopy cover area, which are needed for the correct upscale of the local tree measurements to the site plot larger scale. Results show the response of wild olives stomatal conductance to vapor pressure deficit that follow an exponential decrease. Interestingly the tree exposure impacts transpiration significantly, showing double rates for the trees in the south part of the wild olive clumps. The soil depth also affects ET dynamics due to the influence on water absorption of the root tree system. Finally using an innovative scaling procedure, the sap-flow transpiration at field scale have been compared to the eddy covariance ET, showing the impact of climate dynamics on the ET estimates with the two tecniques.
NASA Astrophysics Data System (ADS)
Thomas, B. C.; Feulner, G.; Melott, A. L.; Kirsten, T.; von Bloh, W.
2017-12-01
Radioisotopes from deep-sea deposits show that Earth was affected by nearby supernovae about 2.5 and 8 million years ago. Recent modelling work shows that high-energy particles from these events resulted in greatly enhanced ionization of the troposphere. This could have led to an increase in wildfires via more frequent lightning. Here we show that published data on global fire activity from charcoal records reveal a marked increase in wildfires around the times of the supernova explosions. We use a dynamic global vegetation model to assess the impact of increased lightning frequency on vegetation patterns, finding a patchy global decrease in tree cover. Regionally, vegetation changes are particularly pronounced in western North America, the Mediterranean, Central Asia, Northern Indochina, subtropical South America, Africa and Australia, and notably East Africa, in agreement with empirical evidence for a global shift towards savannas during the Pleistocene. Our results demonstrate that moderately nearby supernovae have the potential to affect life on Earth even if they are too distant to initiate a mass extinction. Finally, we note that the shift from forest to savannah biomes in the East African Rift Valley region has been tentatively linked to hominin evolution in this region.
Mediterranean shrub vegetation: soil protection vs. water availability
NASA Astrophysics Data System (ADS)
García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi
2014-05-01
Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by at least 45% and soil loss by at least 59% in relation to an abandoned and degraded soil (bare soil) (Garcia-Estringana et al., 2010a). D. pentaphyllum, M. strasseri and C. arborescens were more effective in reducing runoff and soil loss (at least 83% and 97% respectively) than R. sphaerocarpa (45% and 59% respectively). Pisctacia Lentiscus L reduced the soil losses in 87% and the runoff rates (68%) meanwhile Quercus coccifera L reached a larger reduction (95% and 88 %) in comparison to herbicide treated agriculture soil. So, all shrub species protected the soil, but not in the same way. In relation to rainfall reaching the soil surface, great differences were observed among species, with interception losses varying between 10% for R. sphaerocarpa to greater than 36% for D. pentaphyllum and M. strasseri, and with stemflow percentages changing between less than 11% for D. pentaphyllum and M. strasseri and 20% for R. sphaerocarpa (Garcia-Estringana et al., 2010b). Rainfall interception on Pistacia Lentiscus and Quercus coccifera were 24% and 34% respectively for the two years of measurements. The integration of the effects of Mediterranean shrub vegetation on soil protection and rainfall partitioning fluxes facilitates understanding the effects of changes in vegetation type on soil and water resources. From this perspective, the interesting protective effect of D. pentpahyllum and M. strasseri, reducing intensely runoff and soil loss contrasts with the dangerous reduction in rainfall reaching the soil surface. Soil protection is essential in semiarid and arid environments, but a proper assessment of the effects on water availability is critical because of water is a scant resource in these kinds of environments. Pistacia Lentiscus and Quercus coccifera shown both a high capacity to intercept rainfall, increase infiltration and reduce the soil losses. We suggest to apply similar research programs into recently fire affected land as the role of vegetation after the fire is very dynamic (Cerdà 1998b). Acknowledgements The research projects 07 M/0077/1998, 07 M/0023/2000 and RTA01-078-C2- 2, GL2008-02879/BTE, LEDDRA 243857 and RECARE FP7 project 603498 supported this research. References Belmonte Serrato, F., Romero Díaz, A., López Bermúdez, F., Hernández Laguna, E. 1999. Óptimo de cobertura vegetal en relación a las pérdidas de suelo por erosión hídrica y las pérdidas de lluvia por interceptación. Papeles de Geografía 30, 5-15. Cammeraat, E., Cerdà, A., Imeson, A.C. 2010. Ecohydrological adaptation of soils following land abandonment in a semiarid environment. Ecohydrology, 3: 421-430. 10.1002/eco.161 Cerdà, A. 1997a. The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. Journal of Arid Environments, 36, 37-51. Cerdà, A. 1998. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78, 321-330. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A.1997b. Soil erosion after land abandonment in a semiarid environment of Southeastern Spain. Arid Soil Research and Rehabilitation, 11, 163-176. Garcia-Estringana, P., Alonso-Blázquez, N., Alegre, J. 2010b. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. Journal of Hydrology 389, 363-372. Garcia-Estringana, P., Alonso-Blázquez, N., Marques, M.J., Bienes, R., Alegre, J. 2010a. Direct and indirect effects of Mediterranean vegetation on runoff and soil loss. European Journal of Soil Science 61, 174-185. García-Ruiz, J.M. 2010. The effects of land uses on soil erosion in Spain: a review. Catena 81, 1-11. Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., and Moeyersons, J. 2013. Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM in Northern Ethiopia. Land Degradation & Development, 24: 188- 204. DOI 10.1002/ldr.1121 Kakembo, V., Ndlela, S., and Cammeraat, E. 2012. Trends in vegetation patchiness loss and implications for landscape function: the case of Pteronia incana invasion in the Eastern Cape Province, South Africa. Land Degradation & Development, 23: 548- 556. DOI 10.1002/ldr.2175 Kargar Chigani, H., Khajeddin, S. J. and Karimzadeh, H. R. 2012. Soil relationships of three arid land plant species and their use in rehabilitating degraded sites. Land Degradation & Development, 23: 92- 101. DOI 10.1002/ldr.1057 Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24: 499- 510. DOI 10.1002/ldr.2246 Ziadat, F. M., and Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24: 582- 590. DOI 10.1002/ldr.2239
NASA Astrophysics Data System (ADS)
Wright, K. A.; Hiatt, M. R.; Passalacqua, P.
2017-12-01
The humanitarian and ecological importance of coastal deltas has led many to research the factors influencing their ecogeomorphic evolution, in hopes of predicting the response of these regions to the growing number of natural and anthropogenic threats they face. One area of this effort, in which many unresolved questions remain, concerns the hydrological connectivity between the distributary channels and interdistributary islands, which field observations and numerical modeling have shown to be significant. Island vegetation is known to affect the degree of connectivity, but the effect of the spatial distribution of vegetation on connectivity remains an important question. This research aims to determine to what extent vegetation percent cover, patch size, and plant density affect connectivity in an idealized deltaic system. A 2D hydrodynamic model was used to numerically solve the shallow water equations in an idealized channel-island complex, modeled after Wax Lake Delta in Louisiana. For each model run, vegetation patches were distributed randomly throughout the islands according to a specified percent cover and patch size. Vegetation was modeled as a modified bed roughness, which was varied to represent a range of sparse-to-dense vegetation. To determine the effect of heterogeneity, the results of each patchy scenario were compared to results from a uniform run with the same spatially-averaged roughness. It was found that, while all patchy model runs demonstrated more channel-island connectivity than comparable uniform runs, this was particularly true when vegetation patches were dense and covered <50% of the island domain. Below this threshold, high-velocity pathways form in-between patches, greatly enhancing connectivity and transport capabilities. Above this threshold, however, little discrepancy is seen between patchy and uniform model runs. This threshold sits within the range of percent cover values observed in natural systems, and calculations show that these pathways affect shear stresses and residence time distributions in the deltaic islands, which can have implications for the fate and transport of sediment/nutrients. These results indicate that the spatial distribution of vegetation can have a notable impact on our ability to model connectivity in deltaic systems.
NASA Astrophysics Data System (ADS)
Montaldo, Nicola; Corona, Roberto; Albertson, John
2016-04-01
Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFT) competing for the water use. Often deforestation activities have been more intensive along the plan and alluvial river valleys, where deep soils are well suited for agricultural and grass became the primary PFT, while more natural woody vegetation (trees and shrubs) survived in the steep hillslopes and mountain areas, where soil thickness is low, i.e. less attractive for agricultural. Hence, Mediterranean regions are characterized by two main ecosystems, grassland and woodland, which for both natural and anthropogenic causes can grow in soils with also different characteristics (texture, hydraulic properties, depth), highly impacting water resources. Mediterranean regions suffer water scarcity produced in part by natural (e.g., climate variations) influences. For instance, in the Flumendosa basin water reservoir system, which plays a primary role in the water supply for much of southern Sardinia, the average annual input from stream discharge in the latter part of the 20th century was less than half the historic average rate. The precipitation over the Flumendosa basin has decreased, but not at such a drastic rate as the discharge, suggesting a marked non-linear response of discharge to precipitation changes. Indeed, precipitation decreased in winter months, which are crucial for reservoirs recharge through runoff. At the same time air temperature increased during the spring-summer season, when the precipitation slightly increased. The IPCC models predicts a further increase of drought in the Mediterranean region during winter, increasing the uncertainty on the future of the water resources system of these regions. Hence, there is the need to investigate the role of the PFT vegetation dynamics on the soil water budget of these ecosystems in the context of the climate change, and predict hydrologic variables for climate change scenarios. Sardinia island is a very interesting and representative region of Mediterranean ecosystems. It is low urbanized, and is not irrigated, except some plan areas close to the main cities where main agricultural activities are concentrated. The two case study sites are within the Flumendosa river basin, with similar height a.s.l., and close (distance of 4 km). But the first site is a typically grass site located on an alluvial plan valley with a soil depth more than 2m, while the second site is a patchy mixture of Mediterranean vegetation types with wild olive trees and C3 herbaceous (grass) species and the soil thickness varies from 15-40 cm. In both sites land-surface fluxes and CO2 fluxes are estimated by eddy correlation technique based micrometeorological towers. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index (LAI) PFTs are estimated from 2003. An ecohydrologic model is successfully tested to the case studies. It couples a vegetation dynamic model (VDM), which computes the change in biomass over time for the PFTs, and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM). Model is first used for simulating historically land surface fluxes from 1922 at the two sites. Climate change scenarios are then generated using a stochastic weather generator. It simulates hydrometeorological variables from historical time series altered by IPCC meteorological change predictions. The VDM-LSM predicts soil water balance and vegetation dynamics for the generated hydrometeorological scenarios at the two sites. Results demonstrate that contrasting climate change effects (decrease of winter precipitation vs increase of spring-summer air temperature) are significantly impacting land surface interactions (evapotranspiration and runoff dynamics) but with different effects on the two contrasting sites, due to the key role of the soil depth. Water resources predictions are worrying in both sites, with further decrease of runoff and water resources.
NASA Astrophysics Data System (ADS)
Mackay, D. S.; Ewers, B. E.; Sperry, J. S.; Frank, J. M.; Reed, D. E.
2014-12-01
Mediterranean water limited ecosystems are characterized by an heterogeneous spatial distribution of different plant functional types (PFT), such as grass and trees, competing for water use. Typically, during the dry summers, these ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. The coupled use of sap flow measurements and eddy covariance technique is essential to estimate Evapotransiration (ET) in an heterogeneous ecosystem. An eddy covariance - micrometeorological tower has been installed since 2003 and 33 thermo-dissipation probes based on the Granier technique have installed at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. A network of 30 soil moisture sensors has also been installed for monitoring soil moisture spatial and temporal dynamics and their correlation with trees. Sap flow measurements show the significantly impacts on ET of soil moisture, radiation, vapor pressure deficit (VPD) and interestingly of tree position into the clump, showing double rates for the trees inside the wild olive clumps. The sap flow sensor outputs are analyzed for estimating innovative allometric relationships between sapwood area, diameter, canopy cover area, which are needed for the correct upscale of the local tree measurements to the site plot larger scale. Finally using an innovative scaling procedure, the sap-flow transpiration at field scale have been compared to the eddy covariance ET, showing the approximation of the eddy covariance technique. Finally the impact of environmental factors on ET for different soil depth and tree position is demonstrated.
NASA Astrophysics Data System (ADS)
Montaldo, N.; Curreli, M.; Corona, R.; Oren, R.
2015-12-01
Mediterranean water limited ecosystems are characterized by an heterogeneous spatial distribution of different plant functional types (PFT), such as grass and trees, competing for water use. Typically, during the dry summers, these ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. The coupled use of sap flow measurements and eddy covariance technique is essential to estimate Evapotransiration (ET) in an heterogeneous ecosystem. An eddy covariance - micrometeorological tower has been installed since 2003 and 33 thermo-dissipation probes based on the Granier technique have installed at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. A network of 30 soil moisture sensors has also been installed for monitoring soil moisture spatial and temporal dynamics and their correlation with trees. Sap flow measurements show the significantly impacts on ET of soil moisture, radiation, vapor pressure deficit (VPD) and interestingly of tree position into the clump, showing double rates for the trees inside the wild olive clumps. The sap flow sensor outputs are analyzed for estimating innovative allometric relationships between sapwood area, diameter, canopy cover area, which are needed for the correct upscale of the local tree measurements to the site plot larger scale. Finally using an innovative scaling procedure, the sap-flow transpiration at field scale have been compared to the eddy covariance ET, showing the approximation of the eddy covariance technique. Finally the impact of environmental factors on ET for different soil depth and tree position is demonstrated.
NASA Astrophysics Data System (ADS)
Curreli, M.; Montaldo, N.; Oren, R.
2016-12-01
Typically, during the dry summers, Mediterranean ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. In these conditions the combined use of sap flow measurements, based on Granier's thermo-dissipative probes, eddy covariance technique and soil water content measurements provides a robust estimation of evapotranspiration (ET). An eddy covariance micrometeorological tower, thermo-dissipative probes based on the Granier technique and TDR sensors have been installed in the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. 33 sap flow sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics (tree size, exposition to wind, solar radiation and soil depth). Sap flow measurements show the significantly impacts on transpiration of soil moisture, radiation and vapor pressure deficit (VPD). In addition ET is strongly influenced by the tree position into the clump. Results show a significant difference in sap flow rate for the south exposed trees compared to inside clump and north exposed trees. Using an innovative scaling procedure, the transpiration calculated from sap flow measurements have been compared to the eddy covariance ET. Sap flow measurements show night time uptake allows the recharge of the stem capacity, depleted during the day before due to transpiration. The night uptake increases with increasing VPD and transpiration but surprisingly it is independent to soil water content. Soil moisture probes allow monitoring spatial and temporal dynamics of water content at different soil depth and distance to the trees, and estimating its correlation with hydraulic lift. During the light hours soil moisture is depleted by roots to provide the water for transpiration and during night time the lateral roots transfer water from pasture in conjunction whit deep roots uptake to recharge water in the stem.
Energy and Water Fluxes in Heterogeneous Mediterranean Water-limited Ecosystems
NASA Astrophysics Data System (ADS)
Detto, M.; Katul, G.; Mancini, M.
2005-12-01
Research efforts in distributed eco-hydrologic models often fall in one of two categories: prognostic, in which predictions of root-zone soil moisture content and land surface fluxes is required for a projected radiative and precipitation forcing time series, or diagnostic in which the relationship between soil water status and atmospheric water vapor demand is to be derived for the various components of the landscape. The latter relationships are now receiving broad attention in climate change, hydrological, and ecological studies of arid and semi-arid ecosystems. This interest is now a central focus given the recognition that the component latent heat flux sensitivity to soil moisture decline can directly impact plant productivity, carbon and nutrient cycling, and ground water recharge. With projected shifts in precipitation statistics, mainly towards increased desertification, the "stability" of these ecosystems is highly dependent on their ability to uptake water at low soil moisture Here, we determine the relationship between soil water status and atmospheric water vapor demand for patchy landscapes within a semi-arid ecosystems using a combination remote sensing products and field experiments. In particular, we investigate how VIS/NIR measurements, in conjunction with standard micrometeorological data and ground based thermal infrared thermometers, provide "diagnostic" hydrologic relationship between soil water content and potential evapo-transpiration for the various components of the landscape. These experiments were conducted in the Orroli site, situated in the mid-west of Sardinia (Italy) within the Flumendosa river watershed, which is considered one of the most important water supply resources to the island. The landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives (/Olea sylvestris/) and cork oaks (/Quercus suber/), different shrubs (/Asparagus acutifolius, Rubus ulmifolius/) and herbaceous species (/Asphodelus microcarpus, Ferula comunis, Scolymus hispanicum/) that are present only during wet seasons. The bare soil is the dominant landcover (~70%) during the summer .
Vegetation in drylands: Effects on wind flow and aeolian sediment transport
USDA-ARS?s Scientific Manuscript database
Drylands are characterised by patchy vegetation, erodible surfaces and erosive aeolian processes. Empirical and modelling studies have shown that vegetation elements provide drag on the overlying airflow, thus affecting wind velocity profiles and altering erosive dynamics on desert surfaces. However...
Bedford, D.R.; Small, E.E.
2008-01-01
Spatial patterns of soil properties are linked to patchy vegetation in arid and semi-arid landscapes. The patterns of soil properties are generally assumed to be linked to the ecohydrological functioning of patchy dryland vegetation ecosystems. We studied the effects of vegetation canopy, its spatial pattern, and landforms on soil properties affecting overland flow and infiltration in shrublands at the Sevilleta National Wildlife Refuge/LTER in central New Mexico, USA. We studied the patterns of microtopography and saturated conductivity (Ksat), and generally found it to be affected by vegetation canopy and pattern, as well as landform type. On gently sloping alluvial fans, both microtopography and Ksat are high under vegetation canopy and decay with distance from plant center. On steeper hillslope landforms, only microtopography was significantly higher under vegetation canopy, while there was no significant difference in Ksat between vegetation and interspaces. Using geostatistics, we found that the spatial pattern of soil properties was determined by the spatial pattern of vegetation. Most importantly, the effects of vegetation were present in the unvegetated interspaces 2-4 times the extent of vegetation canopy, on the order of 2-3??m. Our results have implications for the understanding the ecohydrologic function of semi-arid ecosystems as well as the parameterization of hydrologic models. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Curreli, Matteo; Montaldo, Nicola; Oren, Ram
2017-04-01
In water-limited environments, such as certain Mediterranean ecosystems, trees may survive prolonged droughts by uptake of water by dimorphic root system: deep roots, growing vertically, and shallower lateral roots, extending beyond the crown projection of tree clumps into zones of seasonal vegetative cover. In such ecosystems, therefore, the balance between soil water under tree canopy versus that in treeless patches plays a crucial role on sustaining tree physiological performance and surface water fluxes during drought periods. The study has been performed at the Orroli site, Sardinia (Italy). The landscape is covered by patchy vegetation: wild olives trees in clumps, herbaceous species, drying to bare soil in late spring. The climate is Mediterranean maritime with long droughts from May to October, and an historical mean yearly rain of about 670 mm concentrated in the autumn and winter months. Soil depth varies from 10 to 50 cm, with underlying fractured rocky layer of basalt. From 2003, a 10 meters micrometeorological tower equipped with eddy-covariance system has been used for measuring water and energy surface fluxes, as well as key state variables (e.g. leaf and soil skin temperature, radiations, air humidity and wind velocity). Soil moisture was measured with five soil water reflectometers (two below the olive canopy and three in patches with pasture vegetation alternating with bare soil in the dry season). Early analyses show that wild olive continue to transpire even as the soil dries and the pasture desiccates. In 2015, to estimate plant water use and in the context of soil water dynamic, 33 Granier-type thermal dissipation probes were installed for estimating sap flow in stems of wild olives trees, 40 cm aboveground, in representative trees over the eddy-covariance foot-print. The combined data of sap flow, soil water content, and eddy covariance, revealed hydraulic redistribution system through the plant and the soil at different layers, allowing to quantify the reliance of the system on different horizontally and vertically differentiated soil compartments. Results shows that during light hours, until transpiration decreases in midday, shallow roots uptake deplete the water content in the upper layer. As transpiration decreases, hydraulically redistributed water provides for both transpiration of wild olives and recharge of shallow soil layers. This buffering, attained by long recharge time of shallow soil, allow woody vegetation to remain physiologically active during very dry conditions. The hydraulically redistributed water is the main source of water for evapotranspiration in the dry summer, and its relevance increases with decreasing water availability. Thus, the spatial coverage and distribution of tree clumps is regulated by the soil water available in the inter-tree clump areas, suggesting that, if Mediterranean areas dry as predicted by IPCC, the proportion of an area occupied by tree clumps will shrink in the future, with predictable consequences to ecosystem services.
Sitters, Holly; Di Stefano, Julian; Christie, Fiona; Swan, Matthew; York, Alan
2016-01-01
Animal species diversity is often associated with time since disturbance, but the effects of disturbances such as fire on functional diversity are unknown. Functional diversity measures the range, abundance, and distribution of trait values in a community, and links changes in species composition with the consequences for ecosystem function. Improved understanding of the relationship between time since fire (TSF) and functional diversity is critical given that the frequency of both prescribed fire and wildfire is expected to increase. To address this knowledge gap, we examined responses of avian functional diversity to TSF and two direct measures of environmental heterogeneity, plant diversity, and structural heterogeneity. We surveyed birds across a 70-year chronosequence spanning four vegetation types in southeast Australia. Six bird functional traits were used to derive four functional diversity indices (richness, evenness, divergence, and dispersion) and the effects of TSF, plant diversity and structural heterogeneity on species richness and the functional diversity indices were examined using mixed models. We used a regression tree method to identify traits associated with species more common in young vegetation. Functional richness and dispersion were negatively associated with TSF in all vegetation types, suggesting that recent prescribed fire generates heterogeneous vegetation and provides greater opportunities for resource partitioning. Species richness was not significantly associated with TSF, and is probably an unreliable surrogate for functional diversity in fire-prone systems. A positive, relationship between functional evenness and structural heterogeneity was comnon to all vegetation types, suggesting that fine-scale (tens of meters) structural variation can enhance ecosystem function. Species more common in young vegetation were primarily linked by their specialist diets, indicating that ecosystem services such as seed dispersal and insect control are enhanced in more recently burnt vegetation. We suggest that patchy prescribed fire sustains functional diversity, and that controlled use of patchy fire to break up large expanses of mature vegetation will enhance ecosystem function.
Bagella, Simonetta; Filigheddu, Rossella; Caria, Maria Carmela; Girlanda, Mariangela; Roggero, Pier Paolo
2014-12-01
The aims of this paper were (i) to define how contrasting land uses affected plant biodiversity in Mediterranean agro-silvo-pastoral-systems across a gradient of disturbance regimes: cork oak forests, secondary grasslands, hay crops, grass covered vineyards, tilled vineyards; (ii) to determine whether these patterns mirrored those of below-ground microorganisms and whether the components of γ-diversity followed a similar model. The disturbance regimes affected plant assemblage composition. Species richness decreased with increasing land use intensity, the Shannon index showed the highest values in grasslands and hay crops. Plant assemblage composition patterns mirrored those of Basidiomycota and Ascomycota. Richness in Basidiomycota, denitrifying bacteria and microbial biomass showed the same trend as that observed for vascular plant richness. The Shannon index pattern of below-ground microorganisms was different from that of plants. The plant γ-diversity component model weakly mirrored those of Ascomycota. Patchy diversity patterns suggest that the maintenance of contrasting land uses associated with different productions typical of agro-silvo-pastoral-systems can guarantee the conservation of biodiversity. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Early Pliocene vegetation distribution in Europe
NASA Astrophysics Data System (ADS)
Popescu, S.; Warny, S.; Suc, J.
2010-12-01
The Early Pliocene corresponds to a global warm climate documented by marine & terrestrial records. Reconstruction of climatic parameters, based on terrestrial proxies, indicate at European mid-latitudes a MAT higher of about 1-5°C than today and MAP higher of about 400-1000 mm. This global warm situation was interrupted between 4.7 - 4.5 Ma by a cooling event related to small fluctuations of the Antarctic ice-sheet that modify the floristic assemblages. according to pollen recors, the Northern Mediterranean area is characterized by dominance of arboreal pollen, suggesting a dense forest cover, on contrary to the Southern Mediterranean where herbs were prevalent, signifying a widespread development of open vegetation during the early Pliocene. Such a contrast in landscape between the North and the South of the Mediterranean is to be related to the latitudinal gradient in humidity. In the North Mediterranean area, the vegetation organization was also closely linked to the relief. Coastal plains were inhabited by Taxodiaceae swamps replaced in some places by marshes. With respect to the geographic position, several plant ecosystems can distinguished: (1) salt marshes, along the Atlantic coastline (zone A); (2) marshes mostly made of Cyperaceae evidenced on the Mediterranean coastline. Such juxtaposed assemblages resemble the modern vegetation of the Mississippi Delta and Florida. Peculiar vegetation assemblages characterize the Mediterranean coastal plains. In the southeastern Mediterranean region (Zone B), the open vegetation was composed by herbs including subdesertic elements. Mediterranean xerophytes are only numerically represented in the area of Tarragona and Sicily, their assemblage resemble the modern thermo-mediterranean formation. Close to the mountains (Zone C) vegetation is organized according to an altitudinal gradient. The low altitude vegetation was composed by Taxodiaceae (Sequoia) while Cathaya and Cedrus dominated the mid-altitude belt. Abies and Picea developed in higher altitude. The Eastern Europe vegetation (zone D) was characterized by coexistent warm-temperate forests and open ecosystems. Some megathermic and mega-mesothermic elements were persisting. Mediterranean xerophytes were indentified in few amounts in the Eastern Europe, showing a slight increase according to the latitudinal gradient. Site 380A (Black Sea) provides relatively high percentages of Artemisia growing in Anatolia, which increased again during the cooler periods. Anatolia probably represents the origin of the repeated steppe expansions which occurred in Europe at each glacial phase. Finally, the Nile region (zone E) documents the presence of savannah (composed mainly by Poaceae and Cyperaceae) including some subdesertic taxa. Nile riparian forests preserved several tropical-subtropical elements.
Integration of visual quality considerations in development of Israeli vegetation management policy.
Misgav, A; Amir, S
2001-06-01
This article deals with the visual quality of Mediterranean vegetation groups in northern Israel, the public's preference of these groups as a visual resource, and the policy options for their management. The study is based on a sample of 44 Mediterranean vegetation groups and three population groups of local residents, who were interviewed using a questionnaire and photographs of the vegetation groups. The results of the research showed that plant classification methods based on flora composition, habitat, and external appearance were found to be suitable for visual plant classification and for the evaluation of visual preference of vegetation groups by the interviewed public. The vegetation groups of planted pine forests and olive groves, characterizing a cultured vegetation landscape, were preferred over typical Mediterranean landscapes such as scrub and grassed scrub. The researchers noted a marked difference between the two products of vegetation management policy, one that proposes the conservation and restoration of the variety of native Mediterranean vegetation landscape, and a second that advanced the development of the cultured landscape of planted olive groves and pines forests, which were highly preferred by the public. The authors suggested the development of an integrated vegetation management policy that would combine both needs and thus reduce the gap between the policy proposed by planners and the local population's visual preference.
The distribution of ticks (Acari: Ixodidae) of domestic livestock in Portugal.
Estrada-Peña, Agustín; Santos-Silva, Maria Margarida
2005-01-01
This paper introduces the first countrywide faunistic study of the tick parasites on ruminants in Portugal. The aim of this study was to map accurately the distribution of the ticks Dermacentor marginatus, Rhipicephalus (Boophilus) annulatus, R. bursa, Hyalomma m. marginatum, H. lusitanicum and Ixodes ricinus in Portugal. Additional information about the abiotic preferences of these species has been obtained through the use of abiotic (temperature- and vegetation-derived) variables have been recorded from remotely sensed information at a nominal resolution of 1.1 km(2). A further aim was the development of predictive models of distribution using Classification and Regression Trees (CART) methodologies. Four species (R. annulatus, R. bursa, D. marginatus and H. m. marginatum) are mostly restricted to south-eastern parts of the country, under hot and dry climate conditions of Mediterranean type. H. lusitanicum has been collected almost only in the southern half of Portugal. I. ricinus has a very patchy distribution and is mainly associated with vegetation of Quercus spp., found in southern zones of the country, but it is present also in the more humid western part. A variable number of abiotic variables, mainly temperature derived, are able to describe the preferences of the tick species. It is remarkable that variables derived from maximum values of the Normalized Derived Vegetation Index (yearly or summer-derived) only apply to discriminate areas where I. ricinus has been collected. CART models are able to map the distribution of these ticks with accuracy ranging within 75.3 and 96.4% of actual positive sites.
NASA Astrophysics Data System (ADS)
Morales-Molino, César; García-Antón, Mercedes; Postigo-Mijarra, José M.; Morla, Carlos
2013-01-01
A new palaeoecological sequence from the western Iberian Central Range significantly contributes to the knowledge on the Holocene vegetation dynamics in central Iberia. This sequence supports the existence of time-transgressive changes in the vegetation cover during the beginning of the Holocene over these central Iberian mountains, specifically the replacement of boreal birch-pine forests with Mediterranean communities. Anthracological analyses also indicate the replacement of boreal pines (Pinus sylvestris) with Mediterranean ones (Pinus pinaster) during the early Holocene. The observed vegetation changes were generally synchronous with climatic phases previously reconstructed for the western Mediterranean region, and they suggest that the climatic trends were most similar to those recorded in the northern Mediterranean region and central Europe. Several cycles of secondary succession after fire ending with the recovery of mature forest have been identified, which demonstrates that the vegetation of western Iberia was highly resilient to fire disturbance. However, when the recurrence of fire crossed a certain threshold, the original forests were not able to completely recover and shrublands and grasslands became dominant; this occurred approximately 5800-5400 cal yr BP. Afterwards, heathlands established as the dominant vegetation, which were maintained by frequent and severe wildfires most likely associated with human activities in a climatic framework that was less suitable for temperate trees. Finally, our palaeoecological record provides guidelines on how to manage protected areas in Mediterranean mountains of southwestern Europe, especially regarding the conservation and restoration of temperate communities that are threatened there such as birch stands.
NASA Astrophysics Data System (ADS)
Gouveia, C. M.; Trigo, R. M.; Beguería, S.; Vicente-Serrano, S. M.
2017-04-01
The present work analyzes the drought impacts on vegetation over the entire Mediterranean basin, with the purpose of determining the vegetation communities, regions and seasons at which vegetation is driven by drought. Our approach is based on the use of remote sensing data and a multi-scalar drought index. Correlation maps between fields of monthly Normalized Difference Vegetation Index (NDVI) and the Standardized Precipitation-Evapotranspiration Index (SPEI) at different time scales (1-24 months) were computed for representative months of winter (Feb), spring (May), summer (Aug) and fall (Nov). Results for the period from 1982 to 2006 show large areas highly controlled by drought, although presenting high spatial and seasonal differences, with a maximum influence in August and a minimum in February. The highest correlation values are observed in February for 3 months' time scale and in May for 6 and 12 months. The higher control of drought on vegetation in February and May is obtained mainly over the drier vegetation communities (Mediterranean Dry and Desertic) at shorter time scales (3 to 9 months). Additionally, in February the impact of drought on vegetation is lower for Temperate Oceanic and Continental vegetation types and takes place at longer time scales (18-24). The dependence of drought time-scale response with water balance, as obtained through a simple difference between precipitation and reference evapotranspiration, varies with vegetation communities. During February and November low water balance values correspond to shorter time scales over dry vegetation communities, whereas high water balance values implies longer time scales over Temperate Oceanic and Continental areas. The strong control of drought on vegetation observed for Mediterranean Dry and Desertic vegetation types located over areas with high negative values of water balance emphasizes the need for an early warning drought system covering the entire Mediterranean basin. We are confident that these results will provide a useful tool for drought management plans and play a relevant role in mitigating the impact of drought episodes.
NASA Astrophysics Data System (ADS)
Bonito, Andrea; Ricotta, Carlo; Iberite, Mauro; Gratani, Loretta; Varone, Laura
2017-09-01
Coastal sand dunes are among the most threatened habitats, especially in the Mediterranean Basin, where the high levels of human pressure impair the presence of plant species, putting at risk the maintenance of the ecosystem services, such as CO2 sequestration provided by these habitats. The aim of this study was to analyze how disturbance-induced changes in plant species abundance patterns account for variations in annual CO2 sequestration flow (CS) of Mediterranean sand dune areas. Two sites characterized by a high (site HAD) and a lower (site LAD) anthropogenic disturbance level were selected. At both sites, plant species number, cover, height and CS based on net photosynthesis measurements were sampled. At the plant species level, our results highlighted that Ammophila arenaria and Pancratium maritimum, had a key role in CS. Moreover, the results revealed a patchy species assemblage in both sites. In particular, HAD was characterized by a higher extension of the anthropogenic aphytoic zone (64% of the total transect length) than LAD. In spite of the observed differences in plant species composition, there were not significant differences between HAD and LAD in structural and functional traits, such as plant height and net photosynthesis. As a consequence, HAD and LAD had a similar CS (443 and 421 Mg CO2 ha-1 y-1, respectively). From a monetary point of view, our estimates based on the social costs of carbon revealed that the flow of sequestered CO2 valued on an average 3181 ± 114 ha-1 year-1 (mean value for the two sites). However, considering also the value of the CO2 negative flow related to loss of vegetated area, the annual net benefit arising from CO2 sequestration amounted to 1641 and 1772 for HAD and LAD, respectively. Overall, the results highlighted the importance to maximize the efforts to preserve dune habitats by applying an effective management policy, which could allow maintaining also a regulatory ecosystem service such as CO2 sequestration.
Expanding the global network of protected areas to save the imperiled mediterranean biome.
Underwood, Emma C; Klausmeyer, Kirk R; Cox, Robin L; Busby, Sylvia M; Morrison, Scott A; Shaw, M Rebecca
2009-02-01
: Global goals established by the Convention on Biological Diversity stipulate that 10% of the world's ecological regions must be effectively conserved by 2010. To meet that goal for the mediterranean biome, at least 5% more land must be formally protected over the next few years. Although global assessments identify the mediterranean biome as a priority, without biologically meaningful analysis units, finer-resolution data, and corresponding prioritization analysis, future conservation investments could lead to more area being protected without increasing the representation of unique mediterranean ecosystems. We used standardized analysis units and six potential natural vegetation types stratified by 3 elevation zones in a global gap analysis that systematically explored conservation priorities across the mediterranean biome. The highest levels of protection were in Australia, South Africa, and California-Baja California (from 9-11%), and the lowest levels of protection were in Chile and the mediterranean Basin (<1%). Protection was skewed to montane elevations in three out of five regions. Across the biome only one of the six vegetation types--mediterranean shrubland--exceeded 10% protection. The remaining vegetation types--grassland, scrub, succulent dominated, woodland, and forest--each had <3% protection. To guard against biases in future protection efforts and ensure the protection of species characteristic of the mediterranean biome, we identified biodiversity assemblages with <10% protection and subject to >30% conversion and suggest that these assemblages be elevated to high-priority status in future conservation efforts.
NASA Astrophysics Data System (ADS)
Russo, E.; Mauri, A.; Davis, B. A. S.; Cubasch, U.
2017-12-01
The evolution of the Mediterranean region's climate during the Holocene has been the subject of long-standing debate within the paleoclimate community. Conflicting hypotheses have emerged from the analysis of different climate reconstructions based on proxy records and climate models outputs.In particular, pollen-based reconstructions of cooler summer temperatures during the Holocene have been criticized based on a hypothesis that the Mediterranean vegetation is mainly limited by effective precipitation and not summer temperature. This criticism is important because climate models show warmer summer temperatures during the Holocene over the Mediterranean region, in direct contradiction of the pollen-based evidence. Here we investigate this problem using a high resolution model simulation of the climate of the Mediterranean region during the mid-to-late Holocene, which we compare against pollen-based reconstructions using two different approaches.In the first, we compare the simulated climate from the model directly with the climate derived from the pollen data. In the second, we compare the simulated vegetation from the model directly with the vegetation from the pollen data.Results show that the climate model is unable to simulate neither the climate nor the vegetation shown by the pollen-data. The pollen data indicates an expansion in cool temperate vegetation in the mid-Holocene while the model suggests an expansion in warm arid vegetation. This suggests that the data-model discrepancy is more likely the result of bias in climate models, and not bias in the pollen-climate calibration transfer-function.
Grace, James B.
2017-01-01
Society has an increasing awareness that there are finite limits to what we can expect the planet to absorb and still provide goods and services at current rates1. Both historical reconstructions and contemporary events continue to remind us that ecological regime changes are often abrupt rather than gradual. This reality motivates researchers who seek to discover leading indicators for impending ecosystem change. Berdugo et al.2 report an important advance in our ability to anticipate the conversion of arid lands from self-organized, self-maintaining and productive ecosystems, to a state characterized by disorganization and low functionality. Such conversions have important implications for our understanding of ‘desertification’ — which is a shift from arid to desert-like conditions.Theoretical studies have suggested that patterns in the patchiness of vegetation might indicate how close a system is to making an abrupt change to desert-like conditions3,4,5. Empirical studies, however, have tended to show instead that simply the total cover of vegetation, rather than its arrangement, often foretells the state of the system4,5,6,7,8,9. Berdugo et al.2 combine these competing ideas into one integrated perspective. They show how major environmental drivers, such as aridity, influence both vegetation cover and patchiness, as well as where self-organizing, stabilizing forces in the vegetation are likely to be found.
Tiszler, John; Rodriguez, Dirk; Lombardo, Keith; Sagar, Tarja; Aguilar, Luis; Lee, Lena; Handley, Timothy; McEachern, A. Kathryn; Harrod Starcevich, Leigh Ann; Witter, Marti; Philippi, Tom; Ostermann-Kelm, Stacey
2016-01-01
These Standard Operating Procedures are one part of a two-part protocol for monitoring terrestrial vegetation in the Mediterranean Coast Network. The second part of the protocol is the narrative:Tiszler, J., D. Rodriguez, K. Lombardo, T. Sagar, L. Aguilar, L. Lee, T. Handley, K. McEachern, L. Starcevich, M. Witter, T. Philippi, and S. Ostermann-Kelm. 2016. Terrestrial vegetation monitoring protocol for the Mediterranean Coast Network—Cabrillo National Monument, Channel Islands National Park, and Santa Monica Mountains National Recreation Area: Narrative, version 1.0. Natural Resource Report NPS/MEDN/NRR—2016/1296. National Park Service, Fort Collins, Colorado.National parks in the Mediterranean Inventory and Monitoring Network:Cabrillo National Monument (CABR)Channel Islands National Park (CHIS)Santa Monica Mountains National Recreation Area (SAMO)
NASA Astrophysics Data System (ADS)
Curreli, M.; Montaldo, N.; Oren, R.
2017-12-01
Partitioning evapotranspiration in water-limited environments, such as Mediterranean ecosystems, could give information on vegetation and hydraulic dynamics. Indeed, in such ecosystems, trees may survive prolonged droughts by uptake of water by dimorphic root system: deep roots and shallower lateral roots, extending beyond the crown into inter-trees grassy areas. The water exchange between under canopy areas and treeless patches plays a crucial role on sustaining tree and grass physiological performance during droughts. The study has been performed at the Orroli site, Sardinia (Italy). The landscape is covered by patchy vegetation: wild olives trees in clumps and herbaceous species, drying to bare soil in summer. The climate is characterized by long droughts from May to October and rain events concentrated in the autumn and winter, whit a mean yearly rain of about 700 mm. A 10 m micrometeorological tower equipped with eddy-covariance system has been used for measuring water and energy surface fluxes, as well as key state variables (e.g. temperature, radiations, humidity and wind velocity). Soil moisture was measured with five soil water reflectometers (two below the olive canopy and three in the pasture). To estimate plant water use in the context of soil water dynamic, 33 Granier-type thermal dissipation probes were installed 40 cm aboveground, in representative trees over the eddy covariance footprint. Early analyses show that wild olive continue to transpire even as the soil dries and the pasture desiccates. This reveled hydraulic redistribution system through the plant and the soil, and allows to quantify the reliance of the system on horizontally and vertically differentiated soil compartments. Results shows that during light hours, until transpiration decreases in midday, shallow roots uptake deplete the shallow water content. As transpiration decreases, hydraulically redistributed water provides for both transpiration of wild olives and recharge of shallow soil layers in the inter-tree areas. This consents trees to remain physiologically active during very dry conditions and represent a mechanism of facilitation of the coexistence of tree-grass system.
COLD-WATER CORALS AND HYDROCHEMISTRY - is there a unifying link?
NASA Astrophysics Data System (ADS)
Flögel, Sascha; Rüggeberg, Andres; Mienis, Furu; Dullo, Wolf-Christian
2010-05-01
Physical and chemical parameters were measured in five different regions of the Northeast Atlantic with known occurrences of cold-water coral reefs and mounds and in the Mediterranean, where these corals form living carpets over existing morphologies. In this study we analyzed 282 bottom water samples regarding delta13CDIC, delta18O, and DIC. The hydrochemical data reveal characteristic patterns and differences for cold-water coral sites with living coral communities and ongoing reef and mound growth at the Irish and Norwegian sites. While the localities in the Mediterranean, in the Gulf of Cadiz, and off Mauritania show only patchy coral growth on mound-like reliefs and various substrates. The analysis of delta13C/delta18O reveals distinct clusters for the different regions and the respective bottom water masses bathing the delta18O, and especially between delta13CDIC and DIC shows that DIC is a parameter with high sensitivity to the mixing of bottom water masses. It varies distinctively between sites with living reefs/mounds and sites with restricted patchy growth or dead corals. Results suggest that DIC and delta13CDIC can provide additional insights into the mixing of bottom water masses. Prolific cold-water coral growth forming giant biogenic structures plot into a narrow geochemical window characterized by a variation of delta13CDIC between 0.45 and 0.79 per mille being associated with the water mass having a density of sigma-theta of 27.5±0.15 kg m-3.
Shrublands and Soil Erosion. An State-of-the-Art
NASA Astrophysics Data System (ADS)
García Estríngana, Pablo; Dunkerley, David; Cerdà, Artemi
2014-05-01
Shrublands and Soil Erosion. An State-of-the-Art Arid and semiarid regions occupy two-fifth of the continents (Reynolds et al., 2007). These regions are characterized by dry climatic conditions, recurrent droughts and a scant rainfall pattern with a marked seasonality and a high inter-annual variability which makes water to be a scant resource and vegetation to follow a high variability spatial distribution pattern (Breshears et al., 1998; Cecchi et al., 2006; Dunkerley, 2008). These conditions make these areas more sensitive to climate change (Rowell, 2005) and to land use change as a consequence of land abandonment (Poyatos et al., 2003; Delgado et al., 2010; García-Ruiz, 2010), increasing the risk of desertification (Puigdefábregas and Mendizabal, 1998; Geeson et al., 2002), in such a way that 65-70% of arid and semiarid areas are vulnerable to this degradation process (UNEP, 1991). Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensity or slope (Ziadat and Taimeh, 2013) the plant cover is the main factor that controls the soil erosion, controlling the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012; Haregeweyn, 2013). Soil erosion show non-sustainable rates under these regions, such as under Mediterranean conditions (Cerdà et al., 2010) and on agriculture land (Cerdà et al; 2007; 2009) due to climatic conditions, to parent material and to the roughed terrain (Romero Díaz et al., 2010). The traditional impact of grazing, of extremely intense fires, of ploughing and the widespread use of herbicides on agriculture, the increase of the road and railway embankments and the agricultural land abandonment cause vegetation removal. Canopy cover partitions rainfall reducing the amount of water reaching the soil and the kinetic energy of rainfall drops, protecting the soil against the impact of rainfall drops. Vegetation distribution controls the exposure of soils to rainfall drops affecting soil erosion (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). The lost of vegetation can trigger Desertification (Izzo et al., 2013) because soil erosion is highly dependent on the effective rainfall striking soil particles (Cerdà and Lasanta, 2005; Haile and Fetene; 2012; Miao et al., 2012, Prokop and Poręba, 2012). Shrubs are the most characteristic vegetation type in semiarid and arid ecosystems all over the world (Tomaselli, 1981; Kummerrow, 1989), typical of intermediate stages of most vegetation succession series, being the first in terms of dominant vegetation coverage, occupying 24% of drylands, followed by crop vegetation with 20% (Reynolds et al., 2007). Moreover, shrub vegetation covers the soil permanently, being able to adapt to very unfavourable conditions like droughts, frosts, non-fertile soils,… improving the soil quality due to their capacity to activate organic matter cycles supplying greater amounts of litter (Alegre et al., 2004). Shrubs have complex root systems, inducing changes in soil properties and increasing soil macroporosity (indirect effects) that increase infiltration reducing runoff and the soil loss (Garcia-Estringana et al., 2010). Shrubs improve the infiltration capacity of soils (Cerdà, 1997), even in the most difficult conditions (Marques et al., 2005), the water retention capacity (Ruiz Sinoga et al., 2010) and the runoff and sediment redistribution. Shrub vegetation has been seen as a key vegetation cover in semiarid lands to control the soil and water losses (Francis and Thornes, 1990; Barea et al., 1996; Romero Díaz, 2003; Cerdà and Doerr, 2007). But the majority of revegetation programmes in arid and semiarid regions still ignores the great potential of this type of vegetation. Romero Díaz et al. (2010) indicated that 99% of revegetation programmes carried out by public authorities in Spain used fast growing tree vegetation (Pinus sp. and Eucalyptus sp.) that grow faster in non-fertile soils resisting to isolation. But the introduction of these species is conducted using aggressive techniques like terracing, changing topography and making more vulnerable terrain to soil loss, with erosion rates one or two order of magnitude greater than other shrublands naturally recovered (Romero Díaz et al., 2010). In relation to tree vegetation shrubs cover the soil faster, being very efficient in reducing runoff and soil erosion (Kummerow, 1989; Haase et al., 2000), not being necessary aggressive techniques for revegetation operations. The land use is the key factor that determines the soil loss and the vegetation recovery which can contribute to reduce the soil and water losses. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the abandonment. The natural vegetation recovery is the most effective way to regenerate degraded soils although under arid and semiarid climatic conditions this process is delayed due to the water stress and soil degradation and revegetation programmes are carried out. A firm commitment for shrub vegetation is necessary for improving soil recovery in semiarid and arid lands. Acknowledgements The research projects 07 M/0077/1998, 07 M/0023/2000 and RTA01-078-C2- 2, GL2008-02879/BTE, LEDDRA243857 and RECARE FP7 project 603498 supported this research. References Alegre, J., Alonso-Blázquez, N., de Andrés, F., Tenorio, J.L., Ayerbe, L. 2004. Revegetation and reclamation of soils using wild leguminous shrubs in cold semiarid Mediterranean conditions: Litterfall and carbon and nitrogen returns under two aridity regimes. Plant and Soil 263, 203-112. Barea, J.M., Requena, N., Jimenez, I. 1996. A revegetation strategy based on the management of arbuscular mycorrhizae, Rhizobium and rhizobacteria for the reclamation of desertified Mediterranean shrubland ecosystems. In: Mycorrhization of Forest Plants under Arid and Semi-arid Conditions and Desertification Control in the Mediterranean, CIHEAM-IAMZ, Zaragoza, pp. 75-86. Breshears, D.D., Nyhan, J.W., Heil, C.E., Wilcox, B.P. 1998. Effects of woody plants on microclimate in a semiarid woodland: Soil temperature and evaporation in canopy and intercanopy patches. International Journal of Plant Sciences 159, 1010-1017. Cammeraat, E.L.H., Cerdà, A., Imeson, A.C. 2010. Ecohydrological adaptation of soils following land abandonment in a semi-arid environment. Ecohydrology 3, 421-430. Cecchi, G.A., Kröpfl, A.I., Villasuso, N.M., Distel, R.A. 2006. Stemflow and soil water redistribution in intact and disturbed plants of Larrea divaricata in southern Argentina. Arid Land Research and Management 20, 209-217. Cerdà, A. 1997. The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. Journal of Arid Environments 36, 37-51. Cerdà, A. 1998. Relationship between climate and soil hydrological and erosional characteristics along climatic gradients in Mediterranean limestone areas. Geomorphology, 25, 123-134. Cerdà, A., Imeson, A.C., Poesen, J., 2007. Soil Water Erosion in Rural Areas. Catena special issue 71, 191- 252. Cerdà, A., Flanagan, D.C., le Bissonnais, Y., Boardman, J., 2009. Soil Erosion and Agriculture. Soil and Tillage Research 106, 107-108. Cerdà, A., Hooke, J., Romero-Diaz, A., Montanarella, L., Lavee, H., 2010. Soil erosion on Mediterranean type-ecosystems. Land Degradation and Development 21, 71-74. Cerdà, A., Doerr, S.H. 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrological Processes, 21, 2325-2336. doi: 10.1016/j.catena.2008.03.010. Cerdà, A., Lasanta, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 1. Water and sediment yield. Catena, 60, 59-80. Delgado J, Llorens P, Nord G, Calder IR, Gallart F. 2010. Modelling the hydrological response of a Mediterranean medium-sized headwater basin subject to land cover change: the Cardener River basin (NE Spain). Journal of Hydrology 383: 125-134. DOI: 10.1016/j.jhydrol.2009.07.024 Dunkerley, D. 2008. Intra-storm evaporation as a component of canopy interception loss in dryland shrubs: observations from Fowlers Gap, Australia. Hydrological Processes 22, 1985-1995. Francis, C., Thornes, J.B. 1990. Matorral: Erosion and reclamation. En: Albaladejo, J., Stocking,, M.A., Díaz, E. (Eds.), Degradación y regeneración del suelo en condiciones ambientales mediterráneas. Consejo Superior de Investigaciones Científicas, Murcia, pp. 87-116. Garcia-Estringana, P., Alonso-Blázquez, N., Marques, M.J., Bienes, R., Alegre, J. 2010. Direct and indirect effects of Mediterranean vegetation on runoff and soil loss. European Journal of Soil Science 61, 174-185. García-Ruiz, J.M. 2010. The effects of land uses on soil erosion in Spain: a review. Catena 81, 1-11. Geeson, N., Brandt, C.J., Thornes, J.B. 2002. Mediterranean desertification: a mosaic of processes and responses. John Wiley & Sons, LTD, 433 pp. Haase, P., Pugnaire, F.I., Clark, S.C., Incoll, L.D. 2000. Photosynthetic rate and canopy development in the drought-deciduous shrub Anthyllis cytisoides L. Journal of Arid Environments 46, 79-91. Haile, G.W., Fetene, M. 2012. Assessment of soil erosion hazard in Kilie catchment, East Shoa, Ethiopia. Land Degradation and Development 23, 293-306. Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., and Moeyersons, J. 2013. Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/ SEDEM in Northern Ethiopia. Land Degradation & Development, 24: 188- 204. DOI 10.1002/ldr.1121 Izzo, M., Araujo, N., Aucelli, P. P. C., Maratea, A., and Sánchez, A. 2013. Land sensitivity to Desertification in the Dominican Republic: an adaptation of the ESA methodology. Land Degradation & Development, 24: 486-498. DOI 10.1002/ldr.2241 Kakembo, V., Ndlela, S., and Cammeraat, E. 2012. Trends in vegetation patchiness loss and implications for landscape function: the case of Pteronia incana invasion in the Eastern Cape Province, South Africa. Land Degradation & Development, 23: 548- 556. DOI 10.1002/ldr.2175 Kargar Chigani, H., Khajeddin, S. J. and Karimzadeh, H. R. 2012. Soil relationships of three arid land plant species and their use in rehabilitating degraded sites. Land Degradation & Development, 23: 92- 101. DOI 10.1002/ldr.1057 Kummerrow, J. 1989. Structural aspects of shrubs in Mediterranean type plant communities. In: Bellot, J. (Ed.), Jornadas Sobre las Bases Ecológicas para la Gestión de Ecosistemas Terrestres. Options Méditerranéens. Série Séminaires. CIHEAM IAMZ, Zaragoza, Vol. 3, pp. 5-11. Marques, M.J., Jiménez, L., Pérez-Rodríguez, R., García-Ormaechea, S., Bienes, R. 2005. Reducing water erosion in a gypsic soil by combined use of organic amendment and shrub revegetation. Land Degradation and Development 16, 339-350. Miao, C. Y., Yang, L., Chen, X. H., Gao, Y. 2012. The vegetation cover dynamics (1982-2006) in different erosion regions of the Yellow River Basin, China. Land Degradation & Development, 23: 62- 71. DOI 10.1002/ldr.1050 Poyatos R, Llorens P, Piñol J, Rubio C. 2008. Response of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) to soil and atmospheric water deficits under Mediterranean mountain climate. Annals of Forest Science 65: 306/301-306/313. DOI: 10.1051/forest:2008003 Prokop, P., Poręba, G. J. 2012. Soil erosion associated with an upland farming system under population pressure in Northeast India. Land Degradation & Development, 23: 310- 321. DOI 10.1002/ldr.2147 Puigdefábregas, J., Mendizábal, T. 1998. Perspectives on desertification: western Mediterranean. Journal of Arid Environments 39, 209-224. Reynolds, J.F., Maestre, F.T., Kemp, P.R., Stafford-Smith, D.M., Lambin, E. 2007. Natural and human dimensions of land degradation in drylands: causes and consequences. In: Canadell, J.G., Pataki, D.E., Pitelka. L.F. (Eds.) Terrestrial Ecosystems in a Changing World, Global Change - The IGBP Series, pp. 247-259. Romero Díaz, A. 2003 Influencia de la litología en las consecuencias del abandono de tierras de cultivo en medio Mediterráneos semiáridos. Papeles de Geografía 38, 151-165. Romero Díaz, A., Belmonte Serrato, F., Ruiz-Sinoga, J.D. 2010. The geomorphic impact of afforestations on soil erosion in Southeast Spain. Land Degradation and Development 21, 188-195.Rowell, 2005 Ruiz Sinoga, J.D., Romero Díaz, A., Ferre Bueno, E., Martínez Murillo, J.F. 2010. The role of soil surface conditions in regulating runoff and erosion processes on a metamorphic hillslope (Southern Spain). Soil surface conditions, runoff and erosion in Southern Spain. Catena 80, 131-139. Tomaselli, R. 1981. Main physiognomic types and geographic distribution of shrub systems related to Mediterranean climates. In: di Castri, F., Goodall, D.W., Specht, R. (Eds.), Ecosystems of the world: Mediterranean-type shrublands. Elsevier, Amsterdam, Netherlands, pp. 95-106. UNEP. 1991. Status of Desertification and Implementation of the United Nations Plan of Action to Combat Desertification. United Nations Environment Programme (UNEP). Nairobi. Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24: 499- 510. DOI 10.1002/ldr.2246 Ziadat, F. M., and Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24: 582- 590. DOI 10.1002/ldr.2239
Late Pliocene vegetation and orbital-scale climate changes from the western Mediterranean area
NASA Astrophysics Data System (ADS)
Jiménez-Moreno, Gonzalo; Burjachs, Francesc; Expósito, Isabel; Oms, Oriol; Carrancho, Ángel; Villalaín, Juan José; Agustí, Jordi; Campeny, Gerard; Gómez de Soler, Bruno; van der Made, Jan
2013-09-01
The Late Pliocene is a very interesting period as climate deteriorated from a warm optimum at ca. 3.3-3.0 Ma to a progressive climate cooling. Simultaneously, the Mediterranean area witnessed the establishment of the Mediterranean-type seasonal precipitation rhythm (summer drought). These important climate changes produced significant vegetation changes, such as the extinction of several thermophilous and hygrophilous plant taxa from the European latitudes. Besides these long-term trends, climate was also characterized by cyclical variability (i.e., orbital changes) that forced vegetation changes (forested vs. open vegetation). In the Mediterranean area, cyclical changes in the vegetation were mostly forced by precession. In this study we analyzed pollen from a Late Pliocene maar lake core from NE Spain. An increase in aridity is observed as well as cyclic variations throughout the studied sequence. Cyclicity was mostly forced by precession but also by obliquity and eccentricity. Precipitation seems to be the main factor controlling these cycles. These data allowed estimating a sedimentary rate of ca. 0.19 mm/yr and the time duration covered by the studied core, close to 200 ka. The combination of biostratigraphy, palaeomagnetism and cyclostratigraphy allowed for a very precise dating of the sediments between ca. 3.3 and 3.1 Ma. Climate and paleobiogeographical implications are discussed within the context of the Late Pliocene Northern Hemisphere glacial intensification.
Design of a Mediterranean exchange list diet implemented by telephone counseling.
Djuric, Zora; Vanloon, Glee; Radakovich, Katherine; Dilaura, Nora M; Heilbrun, Lance K; Sen, Ananda
2008-12-01
A Greek-Mediterranean dietary pattern has two distinct aspects that differ relative to average intakes in the United States: a high intake of monounsaturated fats and a high intake of fruit and vegetables. The purpose of the study was to develop and test an exchange list Greek-Mediterranean diet that could be used in future clinical trials of breast cancer prevention. A total of 69 women, ages 25 to 59 years, were randomized to either continue their own usual diet or follow an intervention diet for 6 months during 2004 through 2005. Intervention goals were to decrease usual fat intakes by about half and to replace those fats with olive oil and other high-monounsaturated fatty acid foods; increase fruit and vegetable intakes to 7 to 9 servings/day, depending on energy intake; and consume at least one serving per day each of culinary herbs and allium vegetables. Registered dietitians provided exchange goals and individualized telephone counseling, and diets were self-selected using a Mediterranean exchange list developed specifically for this study. Changes in diet were assessed by 7-day food records. Results demonstrated that counseling using the Mediterranean exchange list was effective for large dietary changes relative to the nonintervention group. Repeated measures analysis of variance indicated a statistically significant 48% increase in dietary monounsaturated fat with no appreciable change in total fat intake, and a significant increase in fruit and vegetable intake from 4.0 to 8.6 servings/day (P < 0.05).
Vegetation recovery assessment following large wildfires in the Mediterranean Basin
NASA Astrophysics Data System (ADS)
Bastos, A.; Gouveia, C. M.; Trigo, R. M.; DaCamara, C. C.
2012-04-01
Mediterranean ecosystems have evolved along with fire, adapting to quick recovering following wildfire events. However, vegetation species respond differently to the changes in fire regimes that have been observed in the past decades in the Mediterranean. These changes, which occurred mainly due to socio-economic and climatic changes, led to dramatic modifications of landscape composition and structure (Malkinson et al., 2011). Post-fire vegetation recovery depends on environmental factors such as landscape features and climatic variables and on specific plant traits; however it also depends on the differentiated response of each species to the characteristics of fire regimes, such as recurrence, severity and extent. The complexity of the interactions between these factors emphasizes the importance of assessing quantitatively post-fire recovery as well as the role of driving factors of regeneration over different regions in the Mediterranean. In 2006, Spain experienced the fire season with larger fires, restricted to a relatively small region of the province of Galicia, that represents more than 60% of total burned area of this fire season (92000ha out of 148827 ha). The 2007 fire season in Greece was remarkably severe, registering the highest value of burnt area (225734 ha) since 1980. Finally, in 2010 a very large wildfire of about 5000 ha occurred in Mount Carmel, Israel, with major social and environmental impacts. The work relies on monthly NDVI data from SPOT/VEGETATION at 1km spatial resolution over the period from September 1998 - August 2011 for Spain, Greece and Israel. Here we have applied the same sequential methodology developed at our laboratory, starting by the identification of very large burnt scars by means of a spatial cluster analysis followed by the application of the monoparametric model (Gouveia et al., 2010; Bastos et al., 2011) in order to study post-fire vegetation dynamics. Post-fire recovery times were estimated for burnt scars from each fire season considered in this study. The influence of driving factors such as pre-fire land-cover type and fire damage on vegetation recovery was assessed by means of a spatial analysis on recovery time fields. Finally, post-fire behaviour of vegetation over the selected regions and the role of the driving factors were compared. This work draws attention to the fact that the simple model applied by Bastos et al. (2011) to monitor vegetation recovery in Portugal following large wildfires is still applicable over other Mediterranean regions using coarse resolution remotely sensed data. Bastos A., Gouveia C., DaCamara C.C., and Trigo R.M.: Modelling post-fire vegetation recovery in Portugal. Biogeosciences, 8, 4559-4601, 2011. Gouveia C., DaCamara C.C. and Trigo R.M.: Post fire vegetation recovery in Portugal based on SPOT-VEGETATION data. Natural Hazards and Earth System Sciences, 10, 673-684, 2010. Malkinson D., Wittenberg, L., Beeri O. and Barzilai R.: Effects of repeated fires on the structure, composition, and dynamics of Mediterranean maquis: Short- and long-term perspectives. Ecosystems, 14, 478-488, 2011.
Menotti, Alessandro; Kromhout, Daan; Puddu, Paolo Emilio; Alberti-Fidanza, Adalberta; Hollman, Peter; Kafatos, Anthony; Tolonen, Hanna; Adachi, Hisashi; Jacobs, David R
2017-12-01
This analysis deals with the ecologic relationships of dietary fatty acids, food groups and the Mediterranean Adequacy Index (MAI, derived from 15 food groups) with 50-year all-cause mortality rates in 16 cohorts of the Seven Countries Study. A dietary survey was conducted at baseline in cohorts subsamples including chemical analysis of food samples representing average consumptions. Ecologic correlations of dietary variables were computed across cohorts with 50-year all-cause mortality rates, where 97% of men had died. There was a 12-year average age at death population difference between extreme cohorts. In the 1960s the average population intake of saturated (S) and trans (T) fatty acids and hard fats was high in the northern European cohorts while monounsaturated (M), polyunsaturated (P) fatty acids and vegetable oils were high in the Mediterranean areas and total fat was low in Japan. The 50-year all-cause mortality rates correlated (r= -0.51 to -0.64) ecologically inversely with the ratios M/S, (M + P)/(S + T) and vegetable foods and the ratio hard fats/vegetable oils. Adjustment for high socio-economic status strengthened (r= -0.62 to -0.77) these associations including MAI diet score. The protective fatty acids and vegetable oils are indicators of the low risk traditional Mediterranean style diets. KEY MESSAGES We aimed at studying the ecologic relationships of dietary fatty acids, food groups and the Mediterranean Adequacy Index (MAI, derived from 15 food groups) with 50-year all-cause mortality rates in the Seven Countries Study. The 50-year all-cause mortality rates correlated (r = -0.51 to -0.64) ecologically inversely with the ratios M/S [monounsaturated (M) + polyunsaturated (P)]/[saturated (S) + trans (T)] fatty acids and vegetable foods and the ratio hard fats/vegetable oils. After adjustment for high socio-economic status, associations with the ratios strengthened (r = -0.62 to -0.77) including also the MAI diet score. The protective fatty acids and vegetable oils are indicators of the low risk traditional Mediterranean style diets.
Evolution of Mediterranean diets and cuisine: concepts and definitions.
Radd-Vagenas, Sue; Kouris-Blazos, Antigone; Singh, Maria Fiatarone; Flood, Victoria M
2017-01-01
The Mediterranean diet has been demonstrated to provide a range of health benefits in observational and clinical trials and adopted by various dietary guidelines. However, a broad range of definitions exist impeding synthesis across trials. This review aims to provide a historical description of Mediterranean diets, from the ancient to the modern, to inform future educational and diet index tool development representing the 'traditional' Mediterranean diet. Nine databases were searched from inception to July 2015 to identify papers defining the Mediterranean diet. The definition accepted by the United Nations Educational, Scientific and Cultural Organization (UNESCO) was also reviewed. The 'traditional' Mediterranean diet is described as high in unprocessed plant foods (grains, vegetables, fruits, legumes, nuts/seeds and extra virgin olive oil), moderate in fish/shellfish and wine and low in meat, dairy, eggs, animal fats and discretionary foods. Additional elements relating to cuisine and eating habits identified in this review include frequent intake of home cooked meals; use of moist, lower temperature, cooking methods; eating main meals in company; reduced snacking occasions; fasting practice; ownership of a vegetable garden; use of traditional foods and combinations; and napping after the midday meal. Scope exists for future tools to incorporate additional elements of the 'traditional' Mediterranean diet to improve the quality, consistency, and synthesis of ongoing research on the Mediterranean diet.
Cotrozzi, Lorenzo; Townsend, Philip A; Pellegrini, Elisa; Nali, Cristina; Couture, John J
2018-03-01
The Mediterranean basin can be considered a hot spot not only in terms of climate change (CC) but also for air quality. Assessing the impact of CC and air pollution on ecosystem functions is a challenging task, and adequate monitoring techniques are needed. This paper summarizes the present knowledge on the use of reflectance spectroscopy for the evaluation of the effects of air pollution on plants. First, the history of this technique is outlined. Next, we describe the vegetation reflectance spectrum, how it can be scaled from leaf to landscape levels, what information it contains, and how it can be exploited to understand plant and ecosystem functions. Finally, we review the literature concerning this topic, with special attention to Mediterranean air pollutants, showing the increasing interest in this technique. The ability of spectroscopy to detect the influence of air pollution on plant function of all major and minor Mediterranean pollutants has been evaluated, and ozone and its interaction with other gases (carbon dioxide, nitrogen oxides, and sulfur dioxide) have been the most studied. In the recent years, novel air pollutants, such as particulate matter, nitrogen deposition, and heavy metals, have drawn attention. Although various vegetation types have been studied, few of these species are representative of the Mediterranean environment. Thus, major emphasis should be placed on using vegetation spectroscopy for better understanding and monitoring the impact of air pollution on Mediterranean plants in the CC era.
Oak woodland vegetation dynamics: a state and transition approach
Melvin R. George; Maximo F. Alonso
2008-01-01
Californiaâs oak-woodlands are a complex, often multi-layered mosaic of grassland, shrubland, and woodland patches. While soil type and depth, topography, aspect, and geological substrate influence the distribution of these patches, disturbance and biological interactions are also important determinants of the patchy distribution of these plant communities. Fire...
Habitat diversity in uneven-aged northern hardwood stands: a case study
Laura S. Kenefic; Ralph D. Nyland
2000-01-01
Habitat characteristics were quantified in an empirically balanced uneven-aged northern hardwood stand in central New York. Canopy structure, wildlife trees, downed woody material, low cover, and richness and abundance of understory vegetation were assessed. High vertical structural diversity and low horizontal patchiness were associated with the single-tree selection...
NASA Astrophysics Data System (ADS)
Santos, A. M. P.; Nieblas, A.-E.; Verley, P.; Teles-Machado, A.; Bonhommeau, S.; Lett, C.; Garrido, S.; Peliz, A.
2018-03-01
The European sardine (Sardina pilchardus) is the most important small pelagic fishery of the Western Iberia Upwelling Ecosystem (WIUE). Recently, recruitment of this species has declined due to changing environmental conditions. Furthermore, controversies exist regarding its population structure with barriers thought to exist between the Atlantic-Iberian Peninsula, Northern Africa, and the Mediterranean. Few studies have investigated the transport and dispersal of sardine eggs and larvae off Iberia and the subsequent impact on larval recruitment variability. Here, we examine these issues using a Regional Ocean Modeling System climatology (1989-2008) coupled to the Lagrangian transport model, Ichthyop. Using biological parameters from the literature, we conduct simulations that investigate the effects of spawning patchiness, diel vertical migration behaviors, and egg buoyancy on the transport and recruitment of virtual sardine ichthyoplankton on the continental shelf. We find that release area, release depth, and month of release all significantly affect recruitment. Patchiness has no effect and diel vertical migration causes slightly lower recruitment. Egg buoyancy effects are significant and act similarly to depth of release. As with other studies, we find that recruitment peaks vary by latitude, explained here by the seasonal variability of offshore transport. We find weak, continuous alongshore transport between release areas, though a large proportion of simulated ichthyoplankton transport north to the Cantabrian coast (up to 27%). We also show low level transport into Morocco (up to 1%) and the Mediterranean (up to 8%). The high proportion of local retention and low but consistent alongshore transport supports the idea of a series of metapopulations along this coast.
Pita, Ricardo; Lambin, Xavier; Mira, António; Beja, Pedro
2016-09-01
According to ecological theory, the coexistence of competitors in patchy environments may be facilitated by hierarchical spatial segregation along axes of environmental variation, but empirical evidence is limited. Cabrera and water voles show a metapopulation-like structure in Mediterranean farmland, where they are known to segregate along space, habitat, and time axes within habitat patches. Here, we assess whether segregation also occurs among and within landscapes, and how this is influenced by patch-network and matrix composition. We surveyed 75 landscapes, each covering 78 ha, where we mapped all habitat patches potentially suitable for Cabrera and water voles, and the area effectively occupied by each species (extent of occupancy). The relatively large water vole tended to be the sole occupant of landscapes with high habitat amount but relatively low patch density (i.e., with a few large patches), and with a predominantly agricultural matrix, whereas landscapes with high patch density (i.e., many small patches) and low agricultural cover, tended to be occupied exclusively by the small Cabrera vole. The two species tended to co-occur in landscapes with intermediate patch-network and matrix characteristics, though their extents of occurrence were negatively correlated after controlling for environmental effects. In combination with our previous studies on the Cabrera-water vole system, these findings illustrated empirically the occurrence of hierarchical spatial segregation, ranging from within-patches to among-landscapes. Overall, our study suggests that recognizing the hierarchical nature of spatial segregation patterns and their major environmental drivers should enhance our understanding of species coexistence in patchy environments.
Mediterranean Diet: Choose This Heart-Healthy Diet Option
... exercise The Mediterranean diet traditionally includes fruits, vegetables, pasta and rice. For example, residents of Greece eat ... begin to eat more whole-grain rice and pasta products. Go nuts . Keep almonds, cashews, pistachios and ...
Castillo, Miguel E; Molina, Juan R; Rodríguez Y Silva, Francisco; García-Chevesich, Pablo; Garfias, Roberto
2017-02-01
Wildfires constitute the greatest economic disruption to Mediterranean ecosystems, from a socio-economic and ecological perspective (Molina et al., 2014). This study proposes to classify fire intensity levels based on potential fire behavior in different types of Mediterranean vegetation types, using two geographical scales. The study considered >4 thousand wildfires over a period of 25years, identifying fire behavior on each event, based on simulations using "KITRAL", a model developed in Chile in 1993 and currently used in the entire country. Fire intensity values allowed results to be classified into six fire effects categories (levels), each of them with field indicators linking energy values with damage related to burned vegetation and wildland urban interface zone. These indicators also facilitated a preliminary assessment of wildfire impact on different Mediterranean land uses and, are therefore, a useful tool to prioritize future interventions. Copyright © 2016 Elsevier B.V. All rights reserved.
Cornacchia, Loreta; van de Koppel, Johan; van der Wal, Daphne; Wharton, Geraldene; Puijalon, Sara; Bouma, Tjeerd J
2018-04-01
Spatial heterogeneity plays a crucial role in the coexistence of species. Despite recognition of the importance of self-organization in creating environmental heterogeneity in otherwise uniform landscapes, the effects of such self-organized pattern formation in promoting coexistence through facilitation are still unknown. In this study, we investigated the effects of pattern formation on species interactions and community spatial structure in ecosystems with limited underlying environmental heterogeneity, using self-organized patchiness of the aquatic macrophyte Callitriche platycarpa in streams as a model system. Our theoretical model predicted that pattern formation in aquatic vegetation - due to feedback interactions between plant growth, water flow and sedimentation processes - could promote species coexistence, by creating heterogeneous flow conditions inside and around the plant patches. The spatial plant patterns predicted by our model agreed with field observations at the reach scale in naturally vegetated rivers, where we found a significant spatial aggregation of two macrophyte species around C. platycarpa. Field transplantation experiments showed that C. platycarpa had a positive effect on the growth of both beneficiary species, and the intensity of this facilitative effect was correlated with the heterogeneous hydrodynamic conditions created within and around C. platycarpa patches. Our results emphasize the importance of self-organized patchiness in promoting species coexistence by creating a landscape of facilitation, where new niches and facilitative effects arise in different locations. Understanding the interplay between competition and facilitation is therefore essential for successful management of biodiversity in many ecosystems. © 2018 The Authors Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
NASA Astrophysics Data System (ADS)
Daliakopoulos, Ioannis; Tsanis, Ioannis
2017-04-01
Mitigating the vulnerability of Mediterranean rangelands against degradation is limited by our ability to understand and accurately characterize those impacts in space and time. The Normalized Difference Vegetation Index (NDVI) is a radiometric measure of the photosynthetically active radiation absorbed by green vegetation canopy chlorophyll and is therefore a good surrogate measure of vegetation dynamics. On the other hand, meteorological indices such as the drought assessing Standardised Precipitation Index (SPI) are can be easily estimated from historical and projected datasets at the global scale. This work investigates the potential of driving Random Forest (RF) models with meteorological indices to approximate NDVI-based vegetation dynamics. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The updated E-OBS-v13.1 dataset of the ENSEMBLES EU FP6 program provides observed monthly meteorological input to estimate SPI over the Mediterranean rangelands. RF models are trained to depict vegetation dynamics using the latest version (3g.v1) of the third generation GIMMS NDVI generated from NOAA's Advanced Very High Resolution Radiometer (AVHRR) sensors. Analysis is conducted for the period 1981-2015 at a gridded spatial resolution of 25 km. Preliminary results demonstrate the potential of machine learning algorithms to effectively mimic the underlying physical relationship of drought and Earth Observation vegetation indices to provide estimates based on precipitation variability.
Rumm-Kreuter, D
2001-05-01
It was already possible to demonstrate in the 50s that the Mediterranean countries have significantly less coronary heart disease than northern Europe and the USA and that this correlated closely with the diets of people in the Mediterranean region. Consequently, the traditional Mediterranean corresponds to the ideas of dietetics about a preventive diet with its high percentage of fruit, vegetables, cereal products legumes, olive oil and its slight share of animal products. However, an increase of the share of animal products can be detected in the diet of the Mediterranean populations with increasing wealth to the detriment of basic foodstuffs on a vegetable basis and their positive effects. This is reducing the preventive effect of the diet. The dietary situation is also becoming worse in northern Europe, which was already found to be unfavorable in the 60s. The reasons for this development can be found in the substantial socioeconomic changes throughout all of Europe over the past 40 years. A return or reversal to the Mediterranean way of eating would be desirable due to its positive effects. But the strong trend to convenience products and eating out is in opposition to this.
Fuel dynamics and fire behaviour in Australian mallee and heath vegetation
Juanita Myers; Jim Gould; Miguel Cruz; Meredith Henderson
2007-01-01
In southern Australia, shrubby heath vegetation together with woodlands dominated by multistemmed eucalypts (mallee) comprise areas of native vegetation with important biodiversity values. These vegetation types occur in semiarid and mediterranean climates and can experience large frequent fires. This study is investigating changes in the fuel complex with time, fuel...
Mayor, Ángeles G; Goirán, Silvana B; Vallejo, V Ramón; Bautista, Susana
2016-12-15
Fire-prone Mediterranean shrublands may be seriously threatened by land degradation due to progressive opening of the vegetation cover driven by increasing drought and fire recurrence. However, information about the consequences of this opening process for critical ecosystem functions is scant. In this work, we studied the influence of vegetation amount, type, and spatial pattern in the variation of extracellular soil enzyme activity (acid phosphatase, β-glucosidase, and urease) in fire-prone shrublands in eastern Spain. Soil was sampled in vegetation-patch and open-interpatch microsites in 15 shrubland sites affected by large wildfires in 1991. On average, the activities of the three enzymes were 1.5 (β-glucosidase and urease) to 1.7 (acid phosphatase) times higher in soils under vegetation patches than in adjacent interpatches. In addition, phosphatase activity for both microsites significantly decreased with the fragmentation of the vegetation. This result was attributed to a lower influence of roots -the main source of acid phosphatase- in the bigger interpatches of the sites with lower patch cover, and to feedbacks between vegetation pattern, redistribution of resources, and soil quality during post-fire vegetation dynamics. Phosphatase activity was also 1.2 times higher in patches of resprouter plants than in patches of non-resprouters, probably due to the faster post-fire recovery and older age of resprouter patches in these fire-prone ecosystems. The influence on the studied enzymes of topographic and climatic factors acting at the landscape scale was insignificant. According to our results, variations in the cover, pattern, and composition of vegetation patches may have profound impacts on soil enzyme activity and associated nutrient cycling processes in fire-prone Mediterranean shrublands, particularly in those related to phosphorus. Copyright © 2016 Elsevier B.V. All rights reserved.
Floristic and vegetation successional processes within landslides in a Mediterranean environment.
Neto, Carlos; Cardigos, Patrícia; Oliveira, Sérgio Cruz; Zêzere, José Luís
2017-01-01
Floristic and vegetation analysis in seven Mediterranean landslides led to the understanding of the successional processes occurring in different landslide disturbed sectors. Our study showed that in landslides that occurred between 1996 and 2010 there is a clear differentiation between the three main landslide sectors (scarp, main body and foot) concerning floristic composition, vegetation structure, floristic richness, successional processes and plant functional type. Additional differences were found between landslide areas and undisturbed agricultural areas adjacent to landslides. In this study 48 floristic relevés were made using a stratified random sampling design. The main landslide body exhibits the highest floristic richness whereas the landslide scarp has the lowest coverage rate and the highest presence of characteristic species from ruderal and strongly perturbed habitats. Finally, the landslide foot shows a late stage in the succession (maquis or pre-forest stage) with a high dominance of vines. We further discuss the importance of landslides as reservoirs of biodiversity especially for Mediterranean orchids. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bochet, E.
2014-10-01
Since seeds are the principle means by which plants move across the landscapes, the final fate of seeds plays a fundamental role in the assemblage, functioning and dynamics of plant communities. Once seeds land on the soil surface after being dispersed from the parent plant, they can be moved horizontally by surface runoff. In arid and semiarid patchy ecosystems, where seeds are scattered into a very heterogeneous environment and intense rainfalls occur, the transport of seeds by runoff to new sites may be an opportunity for seeds to reach more favourable sites for seed germination and seedling survival. Although seed transport by runoff may be of vital importance for the recruitment of plants in these ecosystems, it has received little attention in the scientific literature, especially among soil scientists. The main goals are (1) to offer an updated conceptual model of seed fate with a special attention to seed destiny in and on the soil, (2) to review studies on seed fate in overland flow and the ecological implications seed transport by runoff has for the origin, spatial patterning and maintenance of patches and for plant community composition in arid and semiarid patchy ecosystems, and finally (3) to point out directions for future research. Our review shows that seed fate in overland flow may result either in the export of seeds from the system (seed loss) or in the spatial redistribution of seeds within the system through short-distance seed movements (seed displacement). Seed transport by runoff depends on rainfall, slope and soil characteristics. Seed susceptibility to be removed varies highly between species and is mainly related to seed traits, as seed size, seed shape, presence of appendages, and seed ability to secrete mucilage. Although initially considered as a risk of seed loss, seed removal by runoff has recently been described as an ecological driver that shapes plant composition from the first phases of the plant life, by favouring species with seeds able to resist erosion and by selecting for plant traits that prevent seed loss. Moreover, the interaction of seed transport by overland flow with the high seed trapping capacity of vegetated patches results in a "patch-to-patch" transport of seeds that plays a relevant role in vegetation establishment and patterning in arid and semiarid patchy ecosystems. Overall, this review shows how the knowledge about seed fate in overland flow can be used to explain a number of important characteristics of whole plant communities. It also underlines important gaps of knowledge that should be filled in. Future lines of research are proposed in order to broaden our understanding of the origin, maintenance and dynamics of patchiness in arid and semiarid ecosystems and to improve restoration success of intensively eroded ecosystems.
NASA Astrophysics Data System (ADS)
Bochet, E.
2015-01-01
Since seeds are the principle means by which plants move across the landscape, the final fate of seeds plays a fundamental role in the assemblage, functioning and dynamics of plant communities. Once seeds land on the soil surface after being dispersed from the parent plant, they can be moved horizontally by surface runoff. In arid and semiarid patchy ecosystems, where seeds are scattered into a very heterogeneous environment and intense rainfalls occur, the transport of seeds by runoff to new sites may be an opportunity for seeds to reach more favourable sites for seed germination and seedling survival. Although seed transport by runoff may be of vital importance for the recruitment of plants in these ecosystems, it has received little attention in the scientific literature, especially among soil scientists. The main goals of this review paper are (1) to offer an updated conceptual model of seed fate with a focus on seed destiny in and on the soil; (2) to review studies on seed fate in overland flow and the ecological implications seed transport by runoff has for the origin, spatial patterning and maintenance of patches in arid and semiarid patchy ecosystems; and finally (3) to point out directions for future research. This review shows that seed fate in overland flow may result either in the export of seeds from the system (seed loss) or in the spatial redistribution of seeds within the system through short-distance seed movements (seed displacement). Seed transport by runoff depends on rainfall, slope and soil characteristics. Susceptibility of seed removal varies highly between species and is mainly related to seed traits, including seed size, seed shape, presence of appendages, and ability of a seed to secrete mucilage. Although initially considered as a risk of seed loss, seed removal by runoff has recently been described as an ecological driver that shapes plant composition from the first phases of the plant life by favouring species with seeds able to resist erosion and by selecting for plant traits that prevent seed loss. Moreover, the interaction of seed transport by overland flow with the high seed trapping capacity of vegetated patches results in a "patch-to-patch" transport of seeds that plays a relevant role in vegetation establishment and patterning in arid and semiarid patchy ecosystems. Overall, this review shows how the knowledge about seed fate in overland flow can be used to explain a number of important characteristics of whole plant communities. It also underlines important gaps in knowledge that should be filled in. Future lines of research are proposed in order to broaden our understanding of the origin, maintenance and dynamics of patchiness in arid and semiarid ecosystems and to improve restoration success of intensively eroded ecosystems. Among the most exciting challenges, empirical studies are needed to understand the relevance of short-distance seed displacements in the origin and maintenance of patchiness, addressing the feedbacks between structure and function and abiotic and biotic components, in order to validate existing models about the dynamics of arid and semiarid ecosystems and help to predict future changes under the scenarios of climate change.
NASA Astrophysics Data System (ADS)
Hawtree, Daniel; San Miguel, Jesus; Sedano, Fernando; Kempeneers, Pieter
2010-05-01
The Mediterranean basin region is highly susceptible to wildfire, with approximately 60,000 individual fires and half a million ha of natural vegetation burnt per year. Of particular concern in this region is the impact of repeated wildfires on the ability of natural lands to return to a pre-fire state, and of the possibility of desertification of semi-arid areas. Given these concerns, understanding the temporal patterns of vegetation recovery is important for the management of environmental resources in the region. A valuable tool for evaluating these recovery patterns are vegetation indices derived from remote sensing data. Previous research on post-fire vegetation recovery conducted in this region has found significant variability in recovery times across different study sites. It is unclear what the primary variables are affecting the differences in the rates of recovery, and if any geographic patterns of behavior exist across the Mediterranean basin. This research has primarily been conducted using indices derived from Landsat imagery. However, no extensive analysis of vegetation regeneration for large regions has been published, and assessment of vegetation recovery on the basis of medium-spatial resolution imagery such as that of MODIS has not yet been analyzed. This study examines the temporal pattern of vegetation recovery in a number of fire sites in the Mediterranean basin, using data derived from MODIS 16 -day composite vegetation indices. The intent is to develop a more complete picture of the temporal sequence of vegetation recovery, and to evaluate what additional factors impact variations in the recovery sequence. In addition, this study evaluates the utility of using MODIS derived vegetation indices for regeneration studies, and compares the findings to earlier studies which rely on Landsat data. Wildfires occurring between the years 2000 and 2004 were considered as potential study sites for this research. Using the EFFIS dataset, all wildfires covering an area of at least 1,000 ha were identified. The land-cover / land-use of these large fires sites were then evaluated using the CORINE land-cover data set, and the sites dominated primarily by natural vegetation were identified. Once these candidate sites were identified, a subset was selected across a range of locations and site characteristics for post-fire recovery analysis. To evaluate the post-fire recovery sequence in these locations, time-series of NDVI, EVI, and LAI were derived using 250 meter resolution MODIS data (MOD13Q). The vegetation index values were then compared to pre-fire values to determine recovery relative to the pre-fire vegetative state. The variability in rates of recovery are then considered with respect to moisture availability, vegetation type, and local site conditions to evaluate if any patterns of recovery can be determined.
Modeling loggerhead turtle movement in the Mediterranean: importance of body size and oceanography.
Eckert, Scott A; Moore, Jeffrey E; Dunn, Daniel C; van Buiten, Ricardo Sagarminaga; Eckert, Karen L; Halpin, Patrick N
2008-03-01
Adapting state-space models (SSMs) to telemetry data has been helpful for dealing with location error and for modeling animal movements. We used a combination of two hierarchical Bayesian SSMs to estimate movement pathways from Argos satellite-tag data for 15 juvenile loggerhead turtles (Caretta caretta) in the western Mediterranean Sea, and to probabilistically assign locations to one of two behavioral movement types and relate those behaviors to environmental features. A Monte Carlo procedure helped propagate location uncertainty from the first SSM into the estimation of behavioral states and environment--behavior relationships in the second SSM. Turtles using oceanic habitats of the Balearic Sea (n = 9 turtles) within the western Mediterranean were more likely to exhibit "intensive search" behavior as might occur during foraging, but only larger turtles responded to variations in sea-surface height. This suggests that they were better able than smaller turtles to cue on environmental features that concentrate prey resources or were more dependent on high-quality feeding areas. These findings stress the importance of individual heterogeneity in the analysis of movement behavior and, taken in concert with descriptive studies of Pacific loggerheads, suggest that directed movements toward patchy ephemeral resources may be a general property of larger juvenile loggerheads in different populations. We discovered size-based variation in loggerhead distribution and documented use of the western Mediterranean Sea by turtles larger than previously thought to occur there. With one exception, only individuals > 57 cm curved carapace length used the most westerly basin in the Mediterranean (western Alborán Sea). These observations shed new light on loggerhead migration phenology.
Tessler, Naama; Wittenberg, Lea; Greenbaum, Noam
2016-12-01
Fire is a common disturbance in Mediterranean ecosystems, and can have a destructive, influential, and even essential, effect on vegetation and wildlife. In recent decades there has been a general increase in the number of fires in the Mediterranean Basin, including in Mount Carmel, Israel. The effects of recurrent forest fires on vegetation cover and species richness were determined in the spring of 2009 and 2010 by field surveys. The results of this study showed that the vegetation cover changes after recurrent forest fires, and can serve as a good indicator of the influence of fire and the resulting ecosystem rehabilitation. The dominant cover in most fire-damaged areas was composed of shrubs and dwarf-shrubs, especially Cistus salviifolius and Calicotome villosa. Tree cover was severely damaged after recurrent fires, and in those areas there was a drastic decrease of the total plant cover. Species richness increased mainly in the first decade after the recurrent fires, and decreased when the forest canopy began to close. Fire recurrence with short intervals (4-6years) between fires may lower the rehabilitated processes of the ecosystem and change its equilibrium. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nezlobin, David; Pariente, Sarah; Lavee, Hanoch; Sachs, Eyal
2017-04-01
Source-sink systems are very common in hydrology; in particular, some land cover types often generate runoff (e.g. embedded rocks, bare soil) , while other obstruct it (e.g. vegetation, cracked soil). Surface runoff coefficients of patchy slopes/plots covered by runoff generating and obstructing covers (e.g., bare soil and vegetation) depend critically on the percentage cover (i.e. sources/sinks abundance) and decrease strongly with observation scale. The classic mathematical percolation theory provides a powerful apparatus for describing the runoff connectivity on patchy hillslopes, but it ignores strong effect of the overland flow directionality. To overcome this and other difficulties, modified percolation theory approaches can be considered, such as straight percolation (for the planar slopes), quasi-straight percolation and models with limited obstruction. These approaches may explain both the observed critical dependence of runoff coefficients on percentage cover and their scale decrease in systems with strong flow directionality (e.g. planar slopes). The contributing area increases sharply when the runoff generating percentage cover approaches the straight percolation threshold. This explains the strong increase of the surface runoff and erosion for relatively low values (normally less than 35%) of the obstructing cover (e.g., vegetation). Combinatorial models of urns with restricted occupancy can be applied for the analytic evaluation of meaningful straight percolation quantities, such as NOGA's (Non-Obstructed Generating Area) expected value and straight percolation probability. It is shown that the nature of the cover-related runoff scale decrease is combinatorial - the probability for the generated runoff to avoid obstruction in unit area decreases with scale for the non-trivial percentage cover values. The magnitude of the scale effect is found to be a skewed non-monotonous function of the percentage cover. It is shown that the cover-related scale effect becomes less prominent if the obstructing capacity decreases, as generally occurs during heavy rainfalls. The plot width have a moderate positive statistical effect on runoff and erosion coefficients, since wider patchy plots have, on average, a greater normalized contributing area and a higher probability to have runoff of a certain length. The effect of plot width depends by itself on the percentage cover, plot length, and compared width scales. The contributing area uncertainty brought about by cover spatial arrangement is examined, including its dependence on the percentage cover and scale. In general, modified percolation theory approaches and combinatorial models of urns with restricted occupancy may link between critical dependence of runoff on percentage cover, cover-related scale effect, and statistical uncertainty of the observed quantities.
Scanu, Bruno; Linaldeddu, Benedetto T.; Deidda, Antonio; Jung, Thomas
2015-01-01
The Mediterranean basin is recognized as a global biodiversity hotspot accounting for more than 25,000 plant species that represent almost 10% of the world’s vascular flora. In particular, the maquis vegetation on Mediterranean islands and archipelagos constitutes an important resource of the Mediterranean plant diversity due to its high rate of endemism. Since 2009, a severe and widespread dieback and mortality of Quercus ilex trees and several other plant species of the Mediterranean maquis has been observed in the National Park of La Maddalena archipelago (northeast Sardinia, Italy). Infected plants showed severe decline symptoms and a significant reduction of natural regeneration. First studies revealed the involvement of the highly invasive wide-host range pathogen Phytophthora cinnamomi and several fungal pathogens. Subsequent detailed research led to a better understanding of these epidemics showing that multiple Phytophthora spp. were involved, some of them unknown to science. In total, nine Phytophthora species were isolated from rhizosphere soil samples collected from around symptomatic trees and shrubs including Asparagus albus, Cistus sp., Juniperus phoenicea, J. oxycedrus, Pistacia lentiscus and Rhamnus alaternus. Based on morphological characters, growth-temperature relations and sequence analysis of the ITS and cox1 gene regions, the isolates were identified as Phytophthora asparagi, P. bilorbang, P. cinnamomi, P. cryptogea, P. gonapodyides, P. melonis, P. syringae and two new Clade 6 taxa which are here described as P. crassamura sp. nov. and P. ornamentata sp. nov. Pathogenicity tests supported their possible involvement in the severe decline that is currently threatening the Mediterranean maquis vegetation in the La Maddalena archipelago. PMID:26649428
De Luis, M; Raventós, J; González-Hidalgo, J C
2005-07-01
In Western Mediterranean areas, fires are frequent in forests established on old croplands where woody resprouting species are scarce and post-fire regeneration is limited to obligate-seeder species, such as Mediterranean gorse (Ulex parviflorus), that accumulate a great deal of fine dry fuel, increasing the risk of other severe fires. Under these conditions, fuel control techniques are required in order to prevent fires of high intensity and severity and the subsequent economic and ecological damage. Prescribed fires present an alternative to fuel control, and recent studies demonstrate that, under optimum climatic conditions, fire-line intensity values fall within the limits of those recommended for fire prescription. However, a better understanding of the consequences of fire on the regeneration of vegetation is needed in order to evaluate the suitability of prescribed fires as a technique for fuel reduction in Mediterranean gorse ecosystems. This paper analyses the factors controlling seedling germination after fire to make an evaluation from an ecological perspective of whether fire prescription is a suitable technique for fuel control in mature Mediterranean gorse shrublands. The results show that small differences in the composition of vegetation play a decisive role in fire behaviour, and have a decisive influence on the system's capacity for regeneration. Fire severity is low in mixed Mediterranean gorse communities with a low continuity of dead fine fuel (including Cistus sp., Rosmarinus sp., etc.) and fire creates a wide range of microhabitats where seedling emergence is high. In contrast, where U. parviflorus is more dominant, fire severity is higher and the regeneration of vegetation could be hindered. Our conclusions suggest that detailed studies of the composition of plant communities are required in order to decide whether prescribed burning should be applied.
Management of Solanum elaeagnifolium in the Mediterranean Basin
USDA-ARS?s Scientific Manuscript database
Solanum elaeagnifolium Cav. (silverleaf nightshade, SOLEL) is a prominent invasive alien weed in many countries of the Mediterranean Basin since its introduction in the mid-20th century, originating from the southwestern United States and northern Mexico. It reproduces vegetatively and by seeds that...
Geraci, Anna; Amato, Filippo; Di Noto, Giuseppe; Bazan, Giuseppe; Schicchi, Rosario
2018-02-14
Wild vegetables in the Mediterranean Basin are still often consumed as a part of the diet and, in particular, there is a great tradition regarding their use in Sicily. In this study, an ethnobotanical field investigation was carried out to (a) identify the wild native taxa traditionally gathered and consumed as vegetables in Sicily, comparing the collected ethnobotanical data with those of other countries that have nominated the Mediterranean diet for inclusion in the UNESCO Representative List of the Intangible Cultural Heritage of Humanity and (b) highlight new culinary uses of these plants. Interviews were carried out in 187 towns and villages in Sicily between 2005 and 2015. A total of 980 people over the age of 50 were interviewed (mainly farmers, shepherds, and experts on local traditions). Plants recorded were usually collected in collaboration with the informants to confirm the correct identification of the plants. The frequencies of citation were calculated. Two hundred fifty-three taxa (specific and intraspecific) belonging to 39 families, and 128 genera were recorded (26 were cited for the first time). The most represented families were Asteraceae, Brassicaceae, Apiaceae, Amaryllidaceae, Malvaceae, and Polygonaceae. Only 14 taxa were cited by 75% of the people interviewed. The aerial parts of wild plants, including leaves, tender shoots, and basal rosettes, are the main portions collected, while the subterranean parts are used to a lesser extent. For some vegetables, more parts are utilized. Most of the reported vegetables are consumed cooked. In addition to the widely known vegetables (Borago officinalis, Beta spp., Cichorium spp., Brassica spp., Carduus spp., etc.), the so-called ancient vegetables are included (Onopordum illyricum, Centaurea calcitrapa, Nasturtium officinale, Scolymus spp., Smyrnium rotundifolium), and some unique uses were described. Comparing the Sicilian findings to those from other countries, a very high number of vegetable taxa were detected, 72 of which are eaten only in Sicily, while 12 are consumed in all the Mediterranean countries examined. The research shows a high level of Sicilian knowledge about using wild plants as a traditional food source. Wild vegetables are healthy and authentic ingredients for local and ancient recipes, which are fundamental to the revitalization of quality food strictly connected to traditional agroecosystems.
Ben-David, Eric A; Zaady, Eli; Sher, Yoni; Nejidat, Ali
2011-06-01
Arid and semi-arid ecosystems are often characterized by vegetation patchiness and variable availability of resources. Phospholipid fatty acid (PLFA) and 16S rRNA gene fragment analyses were used to compare the bulk soil microbial community structure at patchy arid and semi-arid landscapes. Multivariate analyses of the PLFA data and the 16S rRNA gene fragments were in agreement with each other, suggesting that the differences between bulk soil microbial communities were primarily related to shrub vs intershrub patches, irrespective of climatic or site differences. This suggests that the mere presence of a living shrub is the dominant driving factor for the differential adaptation of the microbial communities. Lipid markers suggested as indicators of Gram-positive bacteria were higher in soils under the shrub canopies, while markers suggested as indicators of cyanobacteria and anaerobic bacteria were elevated in the intershrub soils. Secondary differences between soil microbial communities were associated with intershrub characteristics and to a lesser extent with the shrub species. This study provides an insight into the multifaceted nature of the factors that shape the microbial community structure in patchy desert landscapes. It further suggests that these drivers not only act in concert but also in a way that is dependent on the aridity level. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Fire regime in Mediterranean ecosystem
NASA Astrophysics Data System (ADS)
Biondi, Guido; Casula, Paolo; D'Andrea, Mirko; Fiorucci, Paolo
2010-05-01
The analysis of burnt areas time series in Mediterranean regions suggests that ecosystems characterising this area consist primarily of species highly vulnerable to the fire but highly resilient, as characterized by a significant regenerative capacity after the fire spreading. In a few years the area burnt may once again be covered by the same vegetation present before the fire. Similarly, Mediterranean conifer forests, which often refers to plantations made in order to reforest the areas most severely degraded with high erosion risk, regenerate from seed after the fire resulting in high resilience to the fire as well. Only rarely, and usually with negligible damages, fire affects the areas covered by climax species in relation with altitude and soil types (i.e, quercus, fagus, abies). On the basis of these results, this paper shows how the simple Drossel-Schwabl forest fire model is able to reproduce the forest fire regime in terms of number of fires and burned area, describing whit good accuracy the actual fire perimeters. The original Drossel-Schwabl model has been slightly modified in this work by introducing two parameters (probability of propagation and regrowth) specific for each different class of vegetation cover. Using model selection methods based on AIC, the model with the optimal number of classes with different fire behaviour was selected. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are situated in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in Liguria and is limited in Sardinia. What is common in the two regions is the widespread presence of shrub species frequently spread by fire. The analysis in the two regions thus allows in a rather limited area to study almost all the species that characterize the Mediterranean region. This work shows that the fire regime in Mediterranean area is strongly related with vegetation patterns, is almost totally independent by the cause of ignition, and only partially dependent by fire extinguishing actions.
USDA-ARS?s Scientific Manuscript database
The regular monitoring of the evapotranspiration rates and their links with vegetation conditions and soil moisture may support management and hydrological planning leading to reduce the economic and environmental vulnerability of complex water-controlled Mediterranean ecosystems. In this work, the ...
Post-fire vegetation dynamics in Portugal
NASA Astrophysics Data System (ADS)
Gouveia, C.; Dacamara, C. C.; Trigo, R. M.
2009-04-01
The number of fires and the extent of the burned surface in Mediterranean Europe have increased significantly during the last three decades. This may be due either to modifications in land-use (e.g. land abandonment and fuel accumulation) or to climatic changes (e.g. reduction of fuel humidity), both factors leading to an increase of fire risk and fire spread. As in the Mediterranean ecosystems, fires in Portugal have an intricate effect on vegetation regeneration due to the complexity of landscape structures as well as to the different responses of vegetation to the variety of fire regimes. A thorough evaluation of vegetation recovery after fire events becomes therefore crucial in land management. In the above mentioned context remote sensing plays an important role because of its ability to monitor and characterise post-fire vegetation dynamics. A number of fire recovery studies, based on remote sensing, have been conducted in regions characterised by Mediterranean climates and the use of NDVI to monitor plant regeneration after fire events was successfully tested (Díaz-Delgado et al., 1998). In particular, several studies have shown that rapid regeneration occurs within the first 2 years after the fire occurrences, with distinct recovery rates according to the geographical facing of the slopes (Pausas and Vallejo, 1999). In 2003 Portugal was hit by the most devastating sequence of large fires, responsible by a total burnt area of 450 000 ha (including 280 000 ha of forest), representing about 5% of the Portuguese mainland (Trigo et al., 2006). The aim of the present work is to assess and monitor the vegetation behaviour over Portugal following the 2003 fire episodes. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2008. We developed a methodology to identify large burnt scars in Portugal for the 2003 fire season. The vegetation dynamics was then analysed for some selected areas and a regression model of post-fire recovery was fitted to the recorded values of NDVI. The model allowed characterising the dynamics of the regeneration process. It was found that recovery rates depend on geographical location, fire intensity/severity and type of vegetation cover. Díaz-Delgado, R., Salvador, R. and Pons, X., 1998: Monitoring of plant community regeneration after fire by remote sensing. In L. Traboud (Ed.), Fire management and landscape ecology (pp. 315-324). International Association of Wildland Fire, Fairfield, WA. Pausas, G.J. and Vallejo, V.R., 1999: The role of fire in European Mediterranean Ecosystems. In: E. Chuvieco (Ed.), Remote sensing of large wildfires in the European Mediterranean basin (pp. 3-16). Springer-Verlag. Trigo R.M., Pereira J.M.C., Pereira M.G., Mota B., Calado M.T., DaCamara C.C., Santo F.E., 2006: Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. International Journal of Climatology 26 (13): 1741-1757 NOV 15 2006.
Jönsson, Tommy; Granfeldt, Yvonne; Erlanson-Albertsson, Charlotte; Ahrén, Bo; Lindeberg, Staffan
2010-11-30
We found marked improvement of glucose tolerance and lower dietary energy intake in ischemic heart disease (IHD) patients after advice to follow a Paleolithic diet, as compared to a Mediterranean-like diet. We now report findings on subjective ratings of satiety at meals and data on the satiety hormone leptin and the soluble leptin receptor from the same study. Twenty-nine male IHD patients with impaired glucose tolerance or diabetes type 2, and waist circumference > 94 cm, were randomized to ad libitum consumption of a Paleolithic diet (n = 14) based on lean meat, fish, fruit, vegetables, root vegetables, eggs, and nuts, or a Mediterranean-like diet (n = 15) based on whole grains, low-fat dairy products, vegetables, fruit, fish, and oils and margarines during 12 weeks. In parallel with a four day weighed food record the participants recorded their subjective rating of satiety. Satiety Quotients were calculated, as the intra-meal quotient of change in satiety during meal and consumed energy or weight of food and drink for that specific meal. Leptin and leptin receptor was measured at baseline and after 6 and 12 weeks. Free leptin index was calculated as the ratio leptin/leptin receptor. The Paleolithic group were as satiated as the Mediterranean group but consumed less energy per day (5.8 MJ/day vs. 7.6 MJ/day, Paleolithic vs. Mediterranean, p = 0.04). Consequently, the quotients of mean change in satiety during meal and mean consumed energy from food and drink were higher in the Paleolithic group (p = 0.03). Also, there was a strong trend for greater Satiety Quotient for energy in the Paleolithic group (p = 0.057). Leptin decreased by 31% in the Paleolithic group and by 18% in the Mediterranean group with a trend for greater relative decrease of leptin in the Paleolithic group. Relative changes in leptin and changes in weight and waist circumference correlated significantly in the Paleolithic group (p < 0.001) but not in the Mediterranean group. Changes in leptin receptor and free leptin index were not significant. A Paleolithic diet is more satiating per calorie than a Mediterranean-like diet. ClinicalTrials.gov NCT00419497.
NASA Astrophysics Data System (ADS)
Turco, Marco; Levin, Noam; Tessler, Naama; Saaroni, Hadas
2017-04-01
On-going changes in drought, vegetation and wildfires in Israel provide a key example of possible future evolution in transition areas at the border between Mediterranean and arid climates. Here we present multiple lines of evidence suggesting that drought conditions in Israel, representing the eastern Mediterranean, have increased during the period 1980-2014. Drought conditions were calculated using the Standardized Precipitation Evapotranspiration Index (SPEI), the Standardized Precipitation Index (SPI) and the Standardized Soil Moisture Index (SSI). A 30-year series (1982-2011) of monthly Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) indicates generally positive trends in winter and spring and negative ones in summer and autumn, except in the transition zone between the southern Negev desert and the Mediterranean climate region, where a statistically significant negative trend in all seasons was found. Available ground observations suggest that fire activity has decreased during the period 1987-2011. Apparent year-to-year oscillations are superposed onto these long-term trends. We show that inter-annual variability of summer fires is related to antecedent wet conditions and to above normal vegetation conditions. These relationships suggest the summer fires in Israel are mainly limited by fuel availability rather than by fuel flammability. On the other hand, the year-to-year variations of spring and autumn fires are significantly related with drought indices. Thus, the increase of drought conditions together with climate projections for further warming and drying in this region, point at a potential increase of fire risk in the intermediate seasons.
NASA Astrophysics Data System (ADS)
Saco, Patricia; Azadi, Samira; Moreno-de las Heras, Mariano; Keesstra, Saskia
2017-04-01
In semiarid systems, hydrologic, geomorphic and ecological processes are tightly coupled through strong feedback mechanisms occurring across fine to coarse scales. These feedbacks have implications for equilibrium and resilience of the landscape and are particularly relevant for understanding the potential degradation effects of climate and anthropogenic pressures. The vegetation of these regions is sparse and often associated to the development and maintenance of spatially variable infiltration rates, with lower infiltration in the bare areas. These variable infiltration rates have been observed in many field studies and are responsible for the emergence of a runoff-runon system, and for the associated redistribution of water and sediments. We will present a modelling framework developed to understand the role of surface water connectivity in degradation processes in semiarid landscapes with patchy vegetation. Surface water connectivity in these systems is highly dynamic and emerges from non-linear feedbacks between vegetation patterns and the coevolving landforms. The model captures these feedbacks through the coupled nature of the processes included in the landform-vegetation modules. As increased surface runoff connectivity has been linked to degradation, we focus on evolving hydrologic connectivity patterns resulting from feedback effects and co-evolving structures. First, we will discuss some general results on the coevolution of semiarid rangelands, and the effects of varying abiotic and biotic conditions. Next we will present results in which we investigate changes in functional hydrologic connectivity, and the existence of tipping points as observed in several sites in Australia. These results are based on data from our recent studies along a precipitation gradient in the Mulga bioregion of Australia. The analysis from satellite images reveals a major role of surface connectivity on the spatial organization of patchy vegetation, suggesting that transitions on the distribution of vegetation leading to degradation are related to sharp variations on the landscape surface connectivity. Finally we will discuss results analysing the potential effect of soils depths on the coevolution of system structures and connectivity. The relevance and implications of these results for the successful reclamation of water-limited environments in which vegetation stability largely depends on the redistribution of the scarce water resources will be discussed.
Cramer, Michael D; Hoffman, M Timm
2015-01-01
Globally, mediterranean-climate ecosystem vegetation has converged on an evergreen, sclerophyllous and shrubby growth form. The particular aspects of mediterranean-climate regions that contribute to this convergence include summer droughts and relatively nutrient-poor soils. We hypothesised that winter-precipitation implies stressful summer droughts and leaches soils due to greater water availability (i.e. balance between precipitation and potential evapotranspiration; P-PET) during cold periods. We conducted a comparative analysis of normalised difference vegetation indices (NDVI) and edaphic and climate properties across the biomes of South Africa. NDVI was strongly correlated with both precipitation and P-PET (r2 = 0.8). There was no evidence, however, that winter-precipitation reduces NDVI in comparison to similar amounts of summer-precipitation. Base saturation (BS), a measure of soil leaching was, however, negatively related to P-PET (r2 = 0.64). This led to an interaction between P-PET and BS in determining NDVI, indicating the existence of a trade-off between water availability and soil nutrients that enables NDVI to increase with precipitation, despite negative consequences for soil nutrient availability. The mechanism of this trade-off is suggested to be that water increases nutrient accessibility. This implies that along with nutrient-depauperate geologies and long periods of time since glaciation, the winter-precipitation may have contributed to the highly leached status of the soils. Since many of the ecophysiological characteristics of mediterranean-ecosystem flora are associated with low nutrient availabilities (e.g. evergreen foliage, sclerophylly, cluster roots), we conclude that mediterranean-climates promote convergence of growth-forms in these regions through high leaching capacity.
The Consequences of Precipitation Seasonality for Mediterranean-Ecosystem Vegetation of South Africa
2015-01-01
Globally, mediterranean-climate ecosystem vegetation has converged on an evergreen, sclerophyllous and shrubby growth form. The particular aspects of mediterranean-climate regions that contribute to this convergence include summer droughts and relatively nutrient-poor soils. We hypothesised that winter-precipitation implies stressful summer droughts and leaches soils due to greater water availability (i.e. balance between precipitation and potential evapotranspiration; P–PET) during cold periods. We conducted a comparative analysis of normalised difference vegetation indices (NDVI) and edaphic and climate properties across the biomes of South Africa. NDVI was strongly correlated with both precipitation and P–PET (r2 = 0.8). There was no evidence, however, that winter-precipitation reduces NDVI in comparison to similar amounts of summer-precipitation. Base saturation (BS), a measure of soil leaching was, however, negatively related to P–PET (r2 = 0.64). This led to an interaction between P–PET and BS in determining NDVI, indicating the existence of a trade-off between water availability and soil nutrients that enables NDVI to increase with precipitation, despite negative consequences for soil nutrient availability. The mechanism of this trade-off is suggested to be that water increases nutrient accessibility. This implies that along with nutrient-depauperate geologies and long periods of time since glaciation, the winter-precipitation may have contributed to the highly leached status of the soils. Since many of the ecophysiological characteristics of mediterranean-ecosystem flora are associated with low nutrient availabilities (e.g. evergreen foliage, sclerophylly, cluster roots), we conclude that mediterranean-climates promote convergence of growth-forms in these regions through high leaching capacity. PMID:26650081
USDA-ARS?s Scientific Manuscript database
The Mediterranean fruit fly (Medfly), Ceratitis capitata (Wiedemann), causes direct damage to fruits and vegetables through oviposition and larval feeding. Rigorous quarantine procedures are currently enforced to prevent domestic and transnational spread of Medfly. Accessible and reliable informatio...
Climate changes effects on vegetation in Mediterranean areas
NASA Astrophysics Data System (ADS)
Viola, F.; Pumo, D.; Noto, L. V.
2009-04-01
The Mediterranean ecosystems evolved under climatic conditions characterized by precipitations markedly out of phase with the growing period for the vegetation there established. In such environments, deep and shallow rooted species cohabit and compete each other. The formers, being characterized by deeper root, are able to utilize the water stored during the dormant season, while the conditions of shallow rooted plant are closely related to the intermittence of the precipitations. A numerical model has been here used in order to carry out an analysis of the potential climate changes influence on the vegetation state in a typical Mediterranean environment, such as Sicilian one. The most important consequences arising from climate changes in the Mediterranean area, due to the CO2 increase, are the temperatures raise and the contemporaneous rainfall reduction. Probably, this reduction could be accompanied by an increase in events intensity and, at the same time, by a decrease in the number of annual events. There are very few information about possible changes in the distribution of the rainfall events over the year. However, according to the analysis of the recorded trend, it is possible to predict that the rainfall reduction will be mainly concentrated during the autumnal and wintry months. The goal of this work is a quantitative evaluation of the effects due to the climatic forcing changes, on vegetation water stress. In particular, great attention is paid to the effects that rainfall decrease may have on vegetation, by itself or coupled with the temperature increase. A detailed investigation on the influence of the variations in rainfall seasonality, frequency and intensity is carried out. In this work two vegetation covers, with shallow and deep rooting depth (grass and tree) laying on three different soil types (loamy sand, sandy loam and clay) are considered. Simulations on Mediterranean ecosystems have lead to recognize the role of the rainfall amount, frequency and temporal distribution. Rainfall decrease increases the vegetation water stress much more than temperature increase do. Intense and rare rainfall events, as they are expected to be, could attenuate the effects of rainfall reduction because of the less interception correlated to them. The future rainfall distribution over the year is also crucial for vegetation water stress. If the current ratio between the growing season and the dormant season rainfall will be kept, trees and grasses will suffer a common increase of water stress, which seems more severe for trees than for grasses. Otherwise, if the rainfall reduction will be concentrated during the wintry periods, as emerges from literature, grasses will have some advantages over the trees species. In this conditions grasses will keep the water stress similar to the nowadays value, while trees will suffer for the lack of the winter recharge increasing their water stress.
Discrimination of common Mediterranean plant species using field spectroradiometry
NASA Astrophysics Data System (ADS)
Manevski, Kiril; Manakos, Ioannis; Petropoulos, George P.; Kalaitzidis, Chariton
2011-12-01
Field spectroradiometry of land surface objects supports remote sensing analysis, facilitates the discrimination of vegetation species, and enhances the mapping efficiency. Especially in the Mediterranean, spectral discrimination of common vegetation types, such as phrygana and maquis species, remains a challenge. Both phrygana and maquis may be used as a direct indicator for grazing management, fire history and severity, and the state of the wider ecosystem equilibrium. This study aims to investigate the capability of field spectroradiometry supporting remote sensing analysis of the land cover of a characteristic Mediterranean area. Five common Mediterranean maquis and phrygana species were examined. Spectra acquisition was performed during an intensive field campaign deployed in spring 2010, supported by a novel platform MUFSPEM@MED (Mobile Unit for Field SPEctral Measurements at the MEDiterranean) for high canopy measurements. Parametric and non-parametric statistical tests have been applied to the continuum-removed reflectance of the species in the visible to shortwave infrared spectral range. Interpretation of the results indicated distinct discrimination between the studied species at specific spectral regions. Statistically significant wavelengths were principally found in both the visible and the near infrared regions of the electromagnetic spectrum. Spectral bands in the shortwave infrared demonstrated significant discrimination features for the examined species adapted to Mediterranean drought. All in all, results confirmed the prospect for a more accurate mapping of the species spatial distribution using remote sensing imagery coupled with in situ spectral information.
NASA Technical Reports Server (NTRS)
Carlson, Toby N.
1988-01-01
Using model development, image analysis and micrometeorological measurements, the object is to push beyond the present limitations of using the infrared temperature method for remotely determining surface energy fluxes and soil moisture over vegetation. Model development consists of three aspects: (1) a more complex vegetation formulation which is more flexible and realistic; (2) a method for modeling the fluxes over patchy vegetation cover; and (3) a method for inferring a two-layer soil vertical moisture gradient from analyses of horizontal variations in surface temperatures. HAPEX and FIFE satellite data will be used along with aircraft thermal infrared and solar images as input for the models. To test the models, moisture availability and bulk canopy resistances will be calculated from data collected locally at the Rock Springs experimental field site and, eventually, from the FIFE project.
Post-wildfire soil erosion in the Mediterranean: Review and future research directions
NASA Astrophysics Data System (ADS)
Shakesby, R. A.
2011-04-01
Wildfires increased dramatically in frequency and extent in the European Mediterranean region from the 1960s, aided by a general warming and drying trend, but driven primarily by socio-economic changes, including rural depopulation, land abandonment and afforestation with flammable species. Published research into post-wildfire hydrology and soil erosion, beginning during the 1980s in Spain, has been followed by studies in other European Mediterranean countries together with Israel and has now attained a sufficiently large critical mass to warrant a major review. Although variations in climate, vegetation, soil, topography and fire severity cause differences in Mediterranean post-wildfire erosion, the long history of human landscape impact up to the present day is responsible for some its distinctive characteristics. This paper highlights these characteristics in reviewing wildfire impacts on hydrology, soil properties and soil erosion by water. The 'mosaic' nature of many Mediterranean landscapes (e.g. an intricate land-use pattern, abandoned terraces and tracks interrupting slopes) may explain sometimes conflicting post-fire hydrological and erosional responses at different sites and spatial scales. First-year post-wildfire soil losses at point- (average, 45-56 t ha - 1 ) and plot-scales (many < 1 t ha - 1 and the majority < 10 t ha - 1 in the first year) are similar to or even lower than those reported for fire-affected land elsewhere or other disturbed (e.g. cultivated) and natural poorly-vegetated (e.g. badlands, rangeland) land in the Mediterranean. The few published losses at larger-scales (hillslope and catchment) are variable. Thin soil and high stone content can explain supply-limited erosion preceding significant protection by recovering vegetation. Peak erosion can sometimes be delayed for years, largely through slow vegetation recovery and temporal variability of erosive storms. Preferential removal of organic matter and nutrients in the commonly thin, degraded soils is arguably just as if not more important than the total soil loss. Aspect is important, with more erosion reported for south- than north-facing slopes, which is attributed to greater fire frequency, slower vegetation recovery on the former and with soil characteristics more prone to erosion (e.g. lower aggregate stability). Post-fire wind erosion is a potentially important but largely neglected process. Gauging the degradational significance of wildfires has relied on comparison with unburnt land, but the focus for comparison should be switched to other agents of soil disturbance and/or currently poorly understood soil renewal rates. Human impact on land use and vegetation may alter expected effects (increased fire activity and post-wildfire erosion) arising from future climatic change. Different future wildfire mitigation responses and likely erosional consequences are outlined. Research gaps are identified, and more research effort is suggested to: (1) improve assessment of post-wildfire erosion impact on soil fertility, through further quantification of soil nutrient depletion resulting from single and multiple fire cycles, and on soil longevity; (2) investigate prescribed fire impacts on carbon release, air pollution and nutrient losses as well as on soil loss; (3) isolate hillslope- and catchment-scale impacts of soil water repellency under Mediterranean post-wildfire conditions; (4) test and refine application of cosmogenic radionuclides to post-wildfire hillslope-scale soil redistribution at different temporal scales; (5) use better temporal resolution of sedimentary sequences to understand palaeofire-erosion-sedimentation links; (6) quantify post-wildfire wind erosion; (7) improve the integration of wildfire into an overall assessment of the processes and impacts of land degradation in the Mediterranean; and (8) raise public awareness of wildfire impact on soil degradation.
NASA Astrophysics Data System (ADS)
Lozano, E.; Jiménez-Pinilla, P.; Mataix-Solera, J.; González-Pérez, J. A.; García-Orenes, F.; Torres, M. P.; Arcenegui, V.; Mataix-Beneyto, J.
2012-04-01
Soil water repellency (WR) is commonly observed in forest areas showing wettable and water repellent patches with high spatial variability. This has important hydrological implications; in semiarid areas where water supply is limited, even slight WR may play an important role in infiltration patterns and distribution of water into the soil (Mataix-Solera et al., 2007). It has been proposed that the origin of WR is the release of organic compounds from different plants species and sources (due to waxes and other organic substances in their tissues; Doerr et al., 1998). However, the relationship between WR and plants may not always be a direct one: a group of fungi (mainly mycorrhizal fungi) and microorganisms could be also responsible for WR. The aim of this research is to study the relationships between WR in soils under different plant cover with selected soil properties and the quantity of fungi and their exudates. The study area is located in Southeast Spain, "Sierra de la Taja" near Pinoso (Alicante)), with a semiarid Mediterranean climate (Pm=260mm). Samples were taken in September 2011, when WR is normally strongest after summer drought. Soil samples were collected from the first 2.5cm of the mineral A horizon at microsites beneath each of the four most representative species (Pinus halepensis, Rosmarinus officinalis, Quercus. rotundifolia and Cistus albidus; n=15 per specie) and 5 samples from bare soil with no influence of any species. Different soil parameters were analyzed; water content, soil organic mater content (SOM), pH, WR, easily extractable glomalin (EEG), total mycelium and extractable lipids. The occurrence of WR was higher under P. halepensis (87% of samples) and Q. rotundifolia (60% of samples). Positive significant correlations were found between WR and SOM content for all species, with the best correlations for Pinus and Quercus (r=0.855**, r= 0.934** respectively). In addition, negative significant correlations were found between WR and pH and between SOM and pH for all except for Q. rotundifolia. However, the negative correlation found between pH and persistence of WR seems to be related to soil organic matter (SOM) content for all vegetal species. Glomalin exudates from arbuscular mycorrhizal fungi in soil revealed significant differences between species. However, the first results do not point to a direct relationship between EEG content and WR but to soil mineralogy or certain components within SOM pool i.e. litter debris degradation products or specific components within the glomalin extract, as main factors affecting soil WR. Nonetheless, since some samples with the same SOM content (including some under the same vegetation cover) showed different WR persistence, complementary research including a more detailed characterization of most soil functional fractions (SOM and clays) is planned in order to elucidat the main factors influencing the presence and persistence of WR in soils under Mediterranean semiarid forest. Keywords: Water repellency, hydrophobicity, easily extractable glomalin, mycelium, arbuscular mycorrhizal fungi.
An Early Pleistocene 190 kyr pollen record from the ODP Site 976, Western Mediterranean region
NASA Astrophysics Data System (ADS)
Joannin, Sebastien; Combourieu Nebout, Nathalie
2010-05-01
The Mid-Pleistocene Transition (1.200 to 0.500 Ma) corresponded to a period of increased cooling and the shift from "41 kyr world" to "100 kyr world". Climate cycles were 41 kyr long as a response of the climate system to the obliquity orbital parameter forcing, then the climate system responded to a combination of eccentricity and precession resulting in 100 kyr long cycles. The Mediterranean region offers the opportunity to study climate response to orbital forcing at this particular period. It is usually done on marine proxies that are preserved in continuous sediments with good age attributions but may be affected by calorific inertia of marine environments. We investigate continental palaeoenvironment changes inferred from pollen analyses through time on a short interval of the ODP Site 976 (259.50 to 230.42 mcd). In order to search for short climate oscillations, the chronology has been refined according to the comparison between the pollen ratio "mesothermic vs. Caryophyllaceae, Amaranthaceae-Chenopodiaceae and steppe elements" curve and Mediterranean and LR04 oxygen isotope curves. The time slice runs from ~1.090 Ma (MIS 31) to ~0.900 Ma (MIS 23). Pollen analyses provide a new record of the south western Mediterranean vegetation and climate changes at the beginning of the Mid-Pleistocene Transition. Vegetation successions are evidenced in pollen diagram with replacement of mesothermic elements by mid- and high-altitude trees, ended by strengthening of Caryophyllaceae, Amaranthaceae-Chenopodiaceae, and steppe vegetation. These vegetation successions reveal two overlapping rhythms that may be related to climate responses to both obliquity and precession orbital parameters, while wavelet analyses on pollen ratio only indicate the shift from precession to obliquity dominance. The comparison of these two approaches raised the question of their own limit.
Ochoa-Hueso, Raúl; Munzi, Silvana; Alonso, Rocío; Arróniz-Crespo, María; Avila, Anna; Bermejo, Victoria; Bobbink, Roland; Branquinho, Cristina; Concostrina-Zubiri, Laura; Cruz, Cristina; Cruz de Carvalho, Ricardo; De Marco, Alessandra; Dias, Teresa; Elustondo, David; Elvira, Susana; Estébanez, Belén; Fusaro, Lina; Gerosa, Giacomo; Izquieta-Rojano, Sheila; Lo Cascio, Mauro; Marzuoli, Riccardo; Matos, Paula; Mereu, Simone; Merino, José; Morillas, Lourdes; Nunes, Alice; Paoletti, Elena; Paoli, Luca; Pinho, Pedro; Rogers, Isabel B; Santos, Arthur; Sicard, Pierre; Stevens, Carly J; Theobald, Mark R
2017-08-01
Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O 3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mediterranean biomes: Evolution of their vegetation, floras and climate
Rundel, Philip W.; Arroyo, Mary T.K.; Cowling, R.M.; Keeley, J. E.; Lamont, B.B.; Vargas, Pablo
2016-01-01
Mediterranean-type ecosystems (MTEs) possess the highest levels of plant species richness in the world outside of the wet tropics. Sclerophyll vegetation similar to today’s mediterranean-type shrublands was already present on oligotrophic soils in the wet and humid climate of the Cretaceous, with fire-adapted Paleogene lineages in southwestern Australia and the Cape Region. The novel MTC seasonality present since the mid-Miocene has allowed colonization of MTEs from a regional species pool with associated diversification. Fire persistence has been a primary driving factor for speciation in four of the five regions. Understanding the regional patterns of plant species diversity among the MTEs involves complex interactions of geologic and climatic histories for each region as well as ecological factors that have promoted diversification in the Neogene and Quaternary. A critical element of species richness for many MTE lineages has been their ability to speciate and persist at fine spatial scales, with low rates of extinction.
Food Processing and the Mediterranean Diet
Hoffman, Richard; Gerber, Mariette
2015-01-01
The benefits of the Mediterranean diet (MD) for protecting against chronic disorders such as cardiovascular disease are usually attributed to high consumption of certain food groups such as vegetables, and low consumption of other food groups such as meat. The influence of food processing techniques such as food preparation and cooking on the nutrient composition and nutritional value of these foods is not generally taken into consideration. In this narrative review, we consider the mechanistic and epidemiological evidence that food processing influences phytochemicals in selected food groups in the MD (olives, olive oil, vegetables and nuts), and that this influences the protective effects of these foods against chronic diseases associated with inflammation. We also examine how the pro-inflammatory properties of meat consumption can be modified by Mediterranean cuisine. We conclude by discussing whether food processing should be given greater consideration, both when recommending a MD to the consumer and when evaluating its health properties. PMID:26393643
Role of vegetables and fruits in Mediterranean diets to prevent hypertension.
Nuñez-Cordoba, J M; Alonso, A; Beunza, J J; Palma, S; Gomez-Gracia, E; Martinez-Gonzalez, M A
2009-05-01
Several studies support the effectiveness of increasing the consumption of fruits and vegetables (F&V) to prevent hypertension. However, none of them have been conducted in a Mediterranean setting. The aim of this study was to assess the association between F&V consumption and the risk of hypertension. A prospective Mediterranean study (the SUN cohort), including 8594 participants aged 20-95 years (mean, 41.1) with median follow-up of 49 months. Analyses according to the joint classification by olive oil and F&V consumption showed a significant inverse relation between F&V consumption and the risk of hypertension only among participants with a low olive oil consumption (<15 g per day). Also, tests for trend were significant only in the low olive oil intake stratum. We found a statistically significant interaction (P=0.01) between olive oil intake and F&V consumption. These data suggest a sub-additive effect of both food items.
Food Processing and the Mediterranean Diet.
Hoffman, Richard; Gerber, Mariette
2015-09-17
The benefits of the Mediterranean diet (MD) for protecting against chronic disorders such as cardiovascular disease are usually attributed to high consumption of certain food groups such as vegetables, and low consumption of other food groups such as meat. The influence of food processing techniques such as food preparation and cooking on the nutrient composition and nutritional value of these foods is not generally taken into consideration. In this narrative review, we consider the mechanistic and epidemiological evidence that food processing influences phytochemicals in selected food groups in the MD (olives, olive oil, vegetables and nuts), and that this influences the protective effects of these foods against chronic diseases associated with inflammation. We also examine how the pro-inflammatory properties of meat consumption can be modified by Mediterranean cuisine. We conclude by discussing whether food processing should be given greater consideration, both when recommending a MD to the consumer and when evaluating its health properties.
Diadema, Katia; Médail, Frédéric; Bretagnolle, François
2007-09-01
We examine the effects of fire and/or surrounding vegetation cover on demographic stage densities and plant performance for a rare endemic geophyte, Acis nicaeensis (Alliaceae), in Mediterranean xerophytic grasslands of the 'Alpes-Maritimes' French 'département', through sampling plots in unburned and burned treatments. Fire increases density of flowering individuals and seedling emergence, as well as clump densities and number of individuals per clump, per limiting vegetation height and cover, and increasing bare soil cover. In contrast, fire has no effect on reproductive success. Nevertheless, two growing seasons after fire, all parameters of demographic stages and plant performance do not significantly differ between the two treatments. Small-scale fire is beneficial for the regeneration of this threatened geophyte at a short-time scale. In this context, a conservation planning with small and controlled fires could maintain the regeneration window for populations of rare Mediterranean geophytes.
Post-fire vegetation succession in Mediterranean gorse shrublands
NASA Astrophysics Data System (ADS)
De Luis, Martin; Raventós, José; González-Hidalgo, José Carlos
2006-07-01
In Western Mediterranean areas, forest fires are frequent in forests established on old croplands where post-fire regeneration is limited to obligate-seeder species. This has resulted in the spread of Mediterranean gorse ( Ulex parviflorus) increasing the risk and severity of fires. The aim of this paper is to test the autosuccessional hypothesis on a Mediterranean gorse shrubland dominated by seeders species. Particular objectives are: a) to analyze the effect of fire on seedling emergence, survival and growth on the main species involved on plant regeneration process. b) to identify changes in the relative abundance of species as consequence of fire by using a before-after experiment. Then, after experimental fires, seedling emergence, survival and growth rates were analyzed for the main species present in the vegetation regeneration process. Our results show that Mediterranean gorse communities are dominated by Fabaceae species (64% of individuals, mainly of Ulex parviflorus). However, our study demonstrates that vegetation regeneration after fire does not display an autosuccessional pattern and is produced a change on dominance from Fabaceae (mainly U. parviflorus) to Cistaceae (mainly C. albidus) species. Cistaceae seedlings (mainly Cistus albidus and Helianthemum marifolium) were the most abundant post-fire (63% of total germination) while species of Fabaceae (including U. parviflorus and Ononis fruticosa) represented 25%, and Lamiaceae (restricted to Rosmarinus officinalis) comprised only 3% of total emergences. Seedling survival did not differ significantly from one species to another (25-30% of initial individuals over 3 years) but seedling growth rates were also higher for Cistaceae than for Fabaceae individuals. Then, after fire, in terms of biomass, Fabaceae presence decreased from 78.7% to 13.1% while Cistaceae increase from 8% to 83.4%. Given that fire frequency, intensity or severity is partially controlled by the composition and structure of the plant community population changes in the main species, could affect the future fire regime and in turn, affect the hydrological, ecological and economic role of a large stretch of forest and woodland areas in western Mediterranean ecosystems.
Chemotaxonomy in some Mediterranean plants and implications for fossil biomarker records
NASA Astrophysics Data System (ADS)
Norström, Elin; Katrantsiotis, Christos; Smittenberg, Rienk H.; Kouli, Katerina
2017-12-01
The increasing utilization of n-alkanes as plant-derived paleo-environmental proxies calls for improved chemotaxonomic control of the modern flora in order to calibrate fossil sediment records to modern analogues. Several recent studies have investigated long-chain n-alkane concentrations and chain-length distributions in species from various vegetation biomes, but up to date, the Mediterranean flora is relatively unexplored in this respect. Here, we analyse the n-alkane concentrations and chain-length distributions in some of the most common species of the modern macchia and phrygana vegetation in south western Peloponnese, Greece. We show that the drought adapted phrygana herbs and shrubs, as well as some of the sclerophyll and gymnosperm macchia components, produce high concentrations of n-alkanes, on average more than double n-alkane production in local wetland reed vegetation. Furthermore, the chain-length distribution in the analysed plants is related to plant functionality, with longer chain lengths associated with higher drought adaptive capacities, probably as a response to long-term evolutionary processes in a moisture limited environment. Furthermore, species with relatively higher average chain lengths (ACL) showed more enriched carbon isotope composition in their tissues (δ13Cplant), suggesting a dual imprint from both physiological and biochemical drought adaptation. The findings have bearings on interpretation of fossil sedimentary biomarker records in the Mediterranean region, which is discussed in relation to a case study from Agios Floros fen, Messenian plain, Peloponnese. The 6000 year long n-alkane record from Agios Floros (ACL, δ13Cwax) is linked to the modern analogue and then evaluated through a comparison with other regional-wide as well as local climate and vegetation proxy-data. The high concentration of long chain n-alkanes in phrygana vegetation suggests a dominating imprint from this vegetation type in sedimentary archives from this ecotone.
Ramírez-Anaya, Jessica Del Pilar; Samaniego-Sánchez, Cristina; Castañeda-Saucedo, Ma Claudia; Villalón-Mir, Marina; de la Serrana, Herminia López-García
2015-12-01
Potato, tomato, eggplant and pumpkin were deep fried, sautéed and boiled in Mediterranean extra virgin olive oil (EVOO), water, and a water/oil mixture (W/O). We determined the contents of fat, moisture, total phenols (TPC) and eighteen phenolic compounds, as well as antioxidant capacity in the raw vegetables and compared these with contents measured after cooking. Deep frying and sautéing led to increased fat contents and TPC, whereas both types of boiling (in water and W/O) reduced the same. The presence of EVOO in cooking increased the phenolics identified in the raw foods as oleuropein, pinoresinol, hydroxytyrosol and tyrosol, and the contents of vegetable phenolics such as chlorogenic acid and rutin. All the cooking methods conserved or increased the antioxidant capacity measured by DPPH, FRAP and ABTS. Multivariate analyses showed that each cooked vegetable developed specific phenolic and antioxidant activity profiles resulting from the characteristics of the raw vegetables and the cooking techniques. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vaquero, M Pilar; Sánchez-Muniz, Francisco J; Carbajal, Angeles; García-Linares, M Carmen; García-Fernández, M Camino; García-Arias, M Trinidad
2004-01-01
To assess dietary intake and serum mineral and vitamin levels in elderly people from Northwest Spain consuming a Mediterranean diet, rich in vegetables, fruit, meat, fish, olive oil, dairy products and moderate in wine. Cross-sectional observational study in four retirement homes. Forty-five men and 65 women participated. Dietary intake and serum calcium, magnesium, iron, retinol, alpha-tocopherol, albumin, cholesterol, glucose and hematological parameters were determined. Mean consumption of fruit plus vegetables was 600 g/day. Men consumed significantly more legumes, fruit, meat, and alcoholic beverages, but fewer vegetables than women. Women presented higher carbohydrate and lower alcohol energy contributions. Men consumed significantly more thiamin, niacin equivalents, riboflavin, retinol equivalents and iron. Vitamin D intake was 2.2 +/- 1.2 microg/day and folate intake was 204 +/- 47 microg/day without gender differences. Prevalence of anemia was 6.7% and that of high ferritin, 1.8%. Serum cholesterol and retinol were higher in women. Mean serum alpha-tocopherol/cholesterol ratio in the whole population was 6.3 +/- 2.3 mmol/mol without gender differences. This elderly population consumes an Atlantic-Mediterranean diet that appears, according to biochemical and hematological parameters, appropriate. However, more fatty fish and leafy green vegetables and the inclusion of fortified foods in the diet might optimize micronutrient status. Copyright 2004 S. Karger AG, Basel
2010-01-01
Background We found marked improvement of glucose tolerance and lower dietary energy intake in ischemic heart disease (IHD) patients after advice to follow a Paleolithic diet, as compared to a Mediterranean-like diet. We now report findings on subjective ratings of satiety at meals and data on the satiety hormone leptin and the soluble leptin receptor from the same study. Methods Twenty-nine male IHD patients with impaired glucose tolerance or diabetes type 2, and waist circumference > 94 cm, were randomized to ad libitum consumption of a Paleolithic diet (n = 14) based on lean meat, fish, fruit, vegetables, root vegetables, eggs, and nuts, or a Mediterranean-like diet (n = 15) based on whole grains, low-fat dairy products, vegetables, fruit, fish, and oils and margarines during 12 weeks. In parallel with a four day weighed food record the participants recorded their subjective rating of satiety. Satiety Quotients were calculated, as the intra-meal quotient of change in satiety during meal and consumed energy or weight of food and drink for that specific meal. Leptin and leptin receptor was measured at baseline and after 6 and 12 weeks. Free leptin index was calculated as the ratio leptin/leptin receptor. Results The Paleolithic group were as satiated as the Mediterranean group but consumed less energy per day (5.8 MJ/day vs. 7.6 MJ/day, Paleolithic vs. Mediterranean, p = 0.04). Consequently, the quotients of mean change in satiety during meal and mean consumed energy from food and drink were higher in the Paleolithic group (p = 0.03). Also, there was a strong trend for greater Satiety Quotient for energy in the Paleolithic group (p = 0.057). Leptin decreased by 31% in the Paleolithic group and by 18% in the Mediterranean group with a trend for greater relative decrease of leptin in the Paleolithic group. Relative changes in leptin and changes in weight and waist circumference correlated significantly in the Paleolithic group (p < 0.001) but not in the Mediterranean group. Changes in leptin receptor and free leptin index were not significant. Conclusions A Paleolithic diet is more satiating per calorie than a Mediterranean-like diet. Trial registration ClinicalTrials.gov NCT00419497 PMID:21118562
NASA Astrophysics Data System (ADS)
Nunes, J. P.; Lima, J. C.; Bernard-Jannin, L.; Veiga, S.; Rodríguez-Blanco, M. L.; Sampaio, E.; Batista, D. P.; Zhang, R.; Rial-Rivas, M. E.; Moreira, M.; Santos, J. M.; Keizer, J. J.; Corte-Real, J.
2012-04-01
Climate change in Mediterranean regions could lead to higher winter rainfall intensity and, due to higher climatic aridity, lower vegetation cover. This could lead to increasing soil erosion rates, accelerating ongoing soil degradation and desertification processes. Adaptation to these scenarios would have costs and benefits associated with soil protection but also agroforestry production and water usage. This presentation will cover project ERLAND, which is studying these impacts for two headwater catchments (<1000 ha) in Portugal, located in distinct climatic conditions within the Mediterranean climate area, and their land-use practices are adapted to these conditions. The Macieira de Alcoba catchment in northern Portugal has a wet Mediterranean climate (1800 mm/yr, but with a dry summer season). The high rainfall allows the plantation of fast growing tree species (pine and eucalypt) in the higher slopes, and the irrigation of corn in the lower slopes. Forest fires are a recurring problem, linked with the high biomass growth and the occurrence of a dry season. Potential impacts of climate change include less favorable conditions for eucalypt growth, higher incidence of wildfires, and less available water for summer irrigation, all of which could lead to lower vegetation cover. The Guadalupe catchment in southern Portugal has a dry Mediterranean climate (700 mm/yr, falling mostly in winter). The land-use is montado, an association between sclerophyllous oaks (cork and holm oaks) and annual herbaceous plans (winter wheat or pasture). The region suffers occasional severe droughts; climate change has the potential to increase the frequency and severity of these droughts, leading to lower vegetation cover and, potentially, limiting the conditions for cork and holm oak growth. Each catchment has been instrumented with erosion measurement plots and flow and turbidity measurements at the outlet, together with surveys of vegetation and soil properties; measurements in Macieira began in 2010 and in Guadalupe they began in 2011. These datasets will be used to parameterize, calibrate and validate the SWAT ecohydrological model, in order to ensure the appropriate simulation of the most important hydrological, vegetation growth and erosion processes which could be impacted upon by climate change. The model will, in turn, be the main tool to study future climate and land-use scenarios. The presentation will focus on the data collected so far, the modeling structure, and preliminary results coming for the work.
Proceedings of the symposium on dynamics and management of Mediterranean-type ecosystems
C. Eugene Conrad; Walter C. Oechel
1982-01-01
The symposium, held at San Diego State University, provided information about the Mediterranean-type ecosystems found throughout the world. In the papers, and in brief summeries of poster displays, both researchers and managers addressed concerns relating to vegetation, fauna, soils, hydrology, fire, and planning. A Review and Follow-up section presents general...
Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model
NASA Astrophysics Data System (ADS)
Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.
2015-11-01
In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.
Lahoz, Carlos; Castillo, Elisa; Mostaza, Jose M; de Dios, Olaya; Salinero-Fort, Miguel A; González-Alegre, Teresa; García-Iglesias, Francisca; Estirado, Eva; Laguna, Fernando; Sanchez, Vanesa; Sabín, Concesa; López, Silvia; Cornejo, Victor; de Burgos, Carmen; Garcés, Carmen
2018-03-20
Background: Adherence to a Mediterranean diet seems to be inversely associated with C-reactive protein (CRP) concentration. A 14-point Mediterranean Diet Adherence Screener (MEDAS) has been developed to assess dietary compliance. Objective: The aim of this study was to assess whether each of the MEDAS questions as well as their final score were associated with the levels of CRP in general Spanish population. Cross-sectional analysis of 1411 subjects (mean age 61 years, 43.0% males) randomly selected from the general population. CRP levels were determined by a commercial ELISA kit. Adherence to the Mediterranean diet was measured by the 14-point MEDAS. Results: There was an inverse correlation between adherence to the Mediterranean diet and the CRP concentration, even after adjusting by age, gender, hypertension, metabolic syndrome, body mass index, statin treatment and hypertension treatment ( p = 0.041). Subjects who consume ≥2 servings of vegetables per day ( p = 0.003), ≥3 pieces of fruit per day ( p = 0.003), ≥1 serving of butter, margarine, or cream per day ( p = 0.041) or ≥3 servings of fish/seafood per week ( p = 0.058) had significantly lower levels of CRP. Conclusions : Adherence to a Mediterranean-type diet measured by a simple questionnaire is associated with lower CRP concentration. However, this association seems to be particularly related to a higher consumption of vegetables, fruits, dairy products, and fish.
Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model
NASA Astrophysics Data System (ADS)
Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.
2015-06-01
Climate and land use change in the Mediterranean region is expected to affect natural and agricultural ecosystems by decreases in precipitation, increases in temperature as well as biodiversity loss and anthropogenic degradation of natural resources. Demographic growth in the Eastern and Southern shores will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development pave the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments on the consequences of land use transitions, the influence of management practices and climate change impacts.
Santos-Del-Blanco, L; Bonser, S P; Valladares, F; Chambel, M R; Climent, J
2013-09-01
A plastic response towards enhanced reproduction is expected in stressful environments, but it is assumed to trade off against vegetative growth and efficiency in the use of available resources deployed in reproduction [reproductive efficiency (RE)]. Evidence supporting this expectation is scarce for plants, particularly for long-lived species. Forest trees such as Mediterranean pines provide ideal models to study the adaptive value of allocation to reproduction vs. vegetative growth given their among-population differentiation for adaptive traits and their remarkable capacity to cope with dry and low-fertility environments. We studied 52 range-wide Pinus halepensis populations planted into two environmentally contrasting sites during their initial reproductive stage. We investigated the effect of site, population and their interaction on vegetative growth, threshold size for female reproduction, reproductive-vegetative size relationships and RE. We quantified correlations among traits and environmental variables to identify allocation trade-offs and ecotypic trends. Genetic variation for plasticity was high for vegetative growth, whereas it was nonsignificant for reproduction. Size-corrected reproduction was enhanced in the more stressful site supporting the expectation for adverse conditions to elicit plastic responses in reproductive allometry. However, RE was unrelated with early reproductive investment. Our results followed theoretical predictions and support that phenotypic plasticity for reproduction is adaptive under stressful environments. Considering expectations of increased drought in the Mediterranean, we hypothesize that phenotypic plasticity together with natural selection on reproductive traits will play a relevant role in the future adaptation of forest tree species. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Vargas, P; Fernández-Mazuecos, M; Heleno, R
2018-01-01
A review of 27 angiosperm clades (26 genera) of species-rich and species-poor plant groups of the Mediterranean floristic region was performed with phylogenetic and biological trait data. The emergent pattern is that a majority of Mediterranean plant clades split from their sister groups between the Miocene (23-5 Ma) and the Oligocene (34-23 Ma), far earlier than the onset of the Mediterranean climate (ca. 3.2 Ma). In addition, 12 of 14 clades of the species-poor group have stem ages inferred for each clade in the Miocene or older, and six of 13 clades within the species-rich group show divergence of each stem clade within the Oligocene and/or Miocene. High levels of species diversity are related to an ancient (Paleocene-Miocene) origin and also to recent origin (Pliocene-Pleistocene) followed by active speciation and even explosive radiations: some species and lineages diversified over a short period (Aquilegia, Cistus, Dianthus, Linaria sect. Supinae, Reseda). In the species-rich group, key reproductive characters were found to be significantly more important for species recognition than key vegetative characters in eight clades, but no difference was found in four clades, and vegetative characters were predominant in one clade (Saxifraga). Geographical differentiation is proposed as predominant over divergence driven by pollination ecology. We hypothesise an evolutionary process in which lineages adapted to pre-Mediterranean (pre-Pliocene) conditions in relatively small, xeric areas became strongly competitive and expanded as the Mediterranean climate became dominant (Pliocene-Quaternary) across the Mediterranean Basin. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
2012-08-01
ammunition ship USNS Sacagawea (left) and the amphibious transport dock ship USS Mesa Verde conduct an underway replenishment in the Mediterranean Sea...Odyssey Dawn and Unified Protector in Libya, for example, the organization went from supporting one ship in the Mediterranean Sea to 28. “They all...a combination of nutritional food groups including vegetables, beverages, meat, poultry, desserts and condiments, which provide a balanced diet
Elevation Control on Vegetation Organization in a Semiarid Ecosystem in Central New Mexico
NASA Astrophysics Data System (ADS)
Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.
2015-12-01
Many semiarid and desert ecosystems are characterized by patchy and dynamic vegetation. Topography plays a commanding role on vegetation patterns. It is observed that plant biomes and biodiversity vary systematically with slope and aspect, from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations. In this study, we investigate the role of elevation dependent climatology on vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. An ecohydrologic cellular automaton model developed within Landlab (component based modeling framework) is used. The model couples local vegetation dynamics (that simulate biomass production based on local soil moisture and potential evapotranspiration) and plant establishment and mortality based on competition for resources and space. This model is driven by elevation dependent rainfall pulses and solar radiation. The domain is initialized with randomly assigned plant types and the model parameters that couple plant response with soil moisture are systematically changed. Climate perturbation experiments are conducted to examine spatial vegetation organization and associated timescales. Model results reproduce elevation and aspect controls on observed vegetation patterns indicating that this model captures necessary and sufficient conditions that explain these observed ecohydrological patterns.
Janick, Jules; Paris, Harry S.; Parrish, David C.
2007-01-01
Background A critical analysis was made of cucurbit descriptions in Dioscorides' De Materia Medica, Columella's De Re Rustica and Pliny's Historia Naturalis, works on medicine, agriculture and natural science of the 1st century ce, as well as the Mishna and Tosefta, compilations of rabbinic law derived from the same time period together with cucurbit images dating from antiquity including paintings, mosaics and sculpture. The goal was to identify taxonomically the Mediterranean cucurbits at the time of the Roman Empire. Findings By ancient times, long-fruited forms of Cucumis melo (melon) and Lagenaria siceraria (bottle gourd) were selected, cultivated and used as vegetables around the Mediterranean and, in addition, bottle-shaped fruits of L. siceraria were employed as vessels. Citrullus lanatus (watermelons) and round-fruited forms of Cucumis melo (melons) were also consumed, but less commonly. A number of cucurbit species, including Bryonia alba, B. dioica, Citrullus colocynthis and Ecballium elaterium, were employed for medicinal purposes. No unequivocal evidence was found to suggest the presence of Cucumis sativus (cucumber) in the Mediterranean area during this era. The cucumis of Columella and Pliny was not cucumber, as commonly translated, but Cucumis melo subsp. melo Flexuosus Group (snake melon or vegetable melon). PMID:17932073
NASA Astrophysics Data System (ADS)
Ruiz-Sinoga, José D.; Gabarrón-Galeote, Miguel A.; Cerdà, Artemi; Martínez-Murillo, Juan F.
2014-05-01
Since 1990s, the climatic transect approach has been widely applied to Mediterranean mountainous areas where climatic conditions are modified in few kilometres, from semiarid to humid conditions. The target in most of the cases was to evaluate the climatic change effect on the spatial variability of eco-geomorphological system, runoff and erosion and soil degradation processes, especially, in abandoned fields and Mediterranean rangeland. The Physical Geography and Land Management Research Group from the University of Málaga is applying this experimental approach since 2001. The study area corresponded to the Mediterranean Cordillera Bética in South of Spain, from the Strait of Gibraltar to Cabo de Gata, where a longitudinal climatic transect can be observed: from humid Mediterranean climate in the West (>1,500 mm/y) to nearly arid Mediterranean climate in the East (200 mm/y). More specifically, the investigations were focussed on the spatial and temporal variability of eco-geomorphological system (vegetation, soil and water relationship), runoff and erosion processes and controlling factors affecting to abandoned fields located in steep hillslopes of metamorphic and acid bedrocks (phyllites, schists and mica-schists) but differing in climatic conditions (humid, subhumid, dry and semiarid Mediterranean climate). The aim of this contribution is to share our findings and challenges from the last 13 years being some of the most important ones: i) Mediterranean summer drought homogenise the functioning of eco-geomorphological system independently of the geographical location along the climatic transect; ii) drought period affects more dramatically to humid and subhumid Mediterranean areas, especially, to the vegetation cover and pattern; iii) areas characterised by dry-Mediterranean climate are found as threshold areas and in risk of aridification due to Climate Change; iv) runoff and erosion processes can be similar in humid and semiarid abandoned lands as it has to be taken into account local factors, such as exposure, repellency of soils to water and, especially, soil surface conditions. Further researches follow the transect approach but being applying to areas affected by recent and old fires in order to assess the effects of climate in the post-fire recovery of Mediterranean eco-geomorphological system and erosion processes.
The Ecohydrologic Role of Coexistence and Competition in Semiarid Hillslopes
NASA Astrophysics Data System (ADS)
Soltanjalili, M. J.; Saco, P. M.; Willgoose, G. R.
2015-12-01
Through its influence on runoff and erosion-deposition processes, vegetation remarkably regulates different aspects of landscape dynamics. Here, the influence of different plant functional traits on the coexistence of different species in arid and semi-arid regions with patchy vegetation is investigated using an ecohydrology model. The model simulates coevolving changes in biomass patterns for two species, as well as overland flow and soil moisture dynamics. Vegetation patterns emerge as a result of facilitation (shading and infiltration) and competition mechanisms as well as varying seed dispersal strategies. The results show that the survival of only one species or the coexistence of both species not only strongly depends on environmental stresses, but also on differences in hillslope micro and macro topography. These vegetation patterns have very different hydrologic signatures and the potential to trigger remarkably different geomorphic responses. Based on these results we establish new hypothesis that will be used to further investigate the role of plant interspecific and intraspecific feedbacks on landscape coevolution processes.
Bowker, Matthew A.; Maestre, Fernando T.
2012-01-01
Dryland vegetation is inherently patchy. This patchiness goes on to impact ecology, hydrology, and biogeochemistry. Recently, researchers have proposed that dryland vegetation patch sizes follow a power law which is due to local plant facilitation. It is unknown what patch size distribution prevails when competition predominates over facilitation, or if such a pattern could be used to detect competition. We investigated this question in an alternative vegetation type, mosses and lichens of biological soil crusts, which exhibit a smaller scale patch-interpatch configuration. This micro-vegetation is characterized by competition for space. We proposed that multiplicative effects of genetics, environment and competition should result in a log-normal patch size distribution. When testing the prevalence of log-normal versus power law patch size distributions, we found that the log-normal was the better distribution in 53% of cases and a reasonable fit in 83%. In contrast, the power law was better in 39% of cases, and in 8% of instances both distributions fit equally well. We further hypothesized that the log-normal distribution parameters would be predictably influenced by competition strength. There was qualitative agreement between one of the distribution's parameters (μ) and a novel intransitive (lacking a 'best' competitor) competition index, suggesting that as intransitivity increases, patch sizes decrease. The correlation of μ with other competition indicators based on spatial segregation of species (the C-score) depended on aridity. In less arid sites, μ was negatively correlated with the C-score (suggesting smaller patches under stronger competition), while positive correlations (suggesting larger patches under stronger competition) were observed at more arid sites. We propose that this is due to an increasing prevalence of competition transitivity as aridity increases. These findings broaden the emerging theory surrounding dryland patch size distributions and, with refinement, may help us infer cryptic ecological processes from easily observed spatial patterns in the field.
MONTES (“Woodlands”) was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Wester...
A long-term perspective on biomass burning in the Serra da Estrela, Portugal
NASA Astrophysics Data System (ADS)
Connor, Simon E.; Araújo, João; van der Knaap, Willem O.; van Leeuwen, Jacqueline F. N.
2012-11-01
Fire is currently perceived as a major threat to ecosystems and biodiversity in the mountains of the Mediterranean region. Portugal's highest mountain range, the Serra da Estrela, is one of the country's most important protected areas and also the most fire-prone. We present a ˜14,000-year fire history based on microscopic charred particles in an infilled glacial lake to better understand the antiquity of biomass burning and its effects on Mediterranean vegetation at the Atlantic margin. Results indicate the continuous occurrence of fire in the Serra da Estrela over the period of the record. Two periods of increased fire activity - around 12,000-11,000 calendar years before the present (cal. a BP) and 3500-2500 cal. a BP - were accompanied by major vegetation changes and followed by long periods of vegetation stabilisation. Cross-correlation analyses reveal that post-fire succession consistently began with herbaceous vegetation, followed by forest and shrubland stages. Past successional trends were often markedly different to those observed at present. Holocene climatic changes, including shifts in the North Atlantic Oscillation, played a pivotal role in the vegetation development and fire history of the Serra da Estrela. In the late Holocene, human use of fire became a major agent of vegetation change, accelerating the Holocene decline of forests.
Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics.
Braakhuis, Andrea J; Campion, Peta; Bishop, Karen S
2016-09-06
Evidence from numerous observational and clinical studies suggest that polyphenolic phytochemicals such as phenolic acids in olive oil, flavonols in tea, chocolate and grapes, and isoflavones in soy products reduce the risk of breast cancer. A dietary food pattern naturally rich in polyphenols is the Mediterranean diet and evidence suggests those of Mediterranean descent have a lower breast cancer incidence. Whilst dietary polyphenols have been the subject of breast cancer risk-reduction, this review will focus on the clinical effects of polyphenols on reducing recurrence. Overall, we recommend breast cancer patients consume a diet naturally high in flavonol polyphenols including tea, vegetables (onion, broccoli), and fruit (apples, citrus). At least five servings of vegetables and fruit daily appear protective. Moderate soy protein consumption (5-10 g daily) and the Mediterranean dietary pattern show the most promise for breast cancer patients. In this review, we present an overview of clinical trials on supplementary polyphenols of dietary patterns rich in polyphenols on breast cancer recurrence, mechanistic data, and novel delivery systems currently being researched.
NASA Astrophysics Data System (ADS)
Bruch, Angela; Bertini, Adele
2013-04-01
The pace and causes of the early human colonization, in one or several migratory waves from Africa in new environments of the Eurasian continent during the Early Pleistocene, are still a matter of debate. However, climate change is considered a major driving factor of hominin evolution and dispersal patterns. In fact directly or indirectly by its severe influence on vegetation, physiography of landscape, and animal distribution, climate modulates the availability of resources. Plant fossils usually are rare or even absent at hominin sites. Thus, direct evidence on local vegetation and environment is generally missing. Independent from such localities, pollen profiles from the Mediterranean realm show the response of regional vegetation on global climate changes and cyclicity, with distinct spatial and temporal differences. Furthermore, plant fossils provide proxies for climate quantification that can be compared to the global signal, and add data to understanding the regional differentiation of Mediterranean environments. In this presentation we will discuss various palaeobotanical data from Southern Europe to assess Early Pleistocene climate and vegetation in time and space as part of the environment during the first expansions of early humans out of Africa.
Soil-geomorphic heterogeneity governs patchy vegetation dynamics at an arid ecotone.
Bestelmeyer, Brandon T; Ward, Judy P; Havstad, Kris M
2006-04-01
Soil properties are well known to affect vegetation, but the role of soil heterogeneity in the patterning of vegetation dynamics is poorly documented. We asked whether the location of an ecotone separating grass-dominated and sparsely vegetated areas reflected only historical variation in degradation or was related to variation in inherent soil properties. We then asked whether changes in the cover and spatial organization of vegetated and bare patches assessed using repeat aerial photography reflected self-organizing dynamics unrelated to soil variation or the stable patterning of soil variation. We found that the present-day ecotone was related to a shift from more weakly to more strongly developed soils. Parts of the ecotone were stable over a 60-year period, but shifts between bare and vegetated states, as well as persistently vegetated and bare states, occurred largely in small (<40 m2) patches throughout the study area. The probability that patches were presently vegetated or bare, as well as the probability that vegetation persisted and/or established over the 60-year period, was negatively related to surface calcium carbonate and positively related to subsurface clay content. Thus, only a fraction of the landscape was susceptible to vegetation change, and the sparsely vegetated area probably featured a higher frequency of susceptible soil patches. Patch dynamics and self-organizing processes can be constrained by subtle (and often unrecognized) soil heterogeneity.
NASA Technical Reports Server (NTRS)
Bolle, H.-J.; Koslowsky, D.; Menenti, M.; Nerry, F.; Otterman, Joseph; Starr, D.
1998-01-01
Extensive areas in the Mediterranean region are subject to land degradation and desertification. The high variability of the coupling between the surface and the atmosphere affects the regional climate. Relevant surface characteristics, such as spectral reflectance, surface emissivity in the thermal-infrared region, and vegetation indices, serve as "primary" level indicators for the state of the surface. Their spatial, seasonal and interannual variability can be monitored from satellites. Using relationships between these primary data and combining them with prior information about the land surfaces (such as topography, dominant soil type, land use, collateral ground measurements and models), a second layer of information is built up which specifies the land surfaces as a component of the regional climate system. To this category of parameters which are directly involved in the exchange of energy, momentum and mass between the surface and the atmosphere, belong broadband albedo, thermodynamic surface temperature, vegetation types, vegetation cover density, soil top moisture, and soil heat flux. Information about these parameters finally leads to the computation of sensible and latent heat fluxes. The methodology was tested with pilot data sets. Full resolution, properly calibrated and normalized NOAA-AVHRR multi-annual primary data sets are presently compiled for the whole Mediterranean area, to study interannual variability and longer term trends.
NASA Astrophysics Data System (ADS)
Pellizzaro, Grazia; Dubrovsky, Martin; Bortolu, Sara; Ventura, Andrea; Arca, Bachisio; Masia, Pierpaolo; Duce, Pierpaolo
2014-05-01
Mediterranean shrubs are an important component of both Mediterranean vegetation communities and understorey vegetation. They also constitute the surface fuels primarily responsible for the ignition and the spread of wildland fires in Mediterranean forests. Although fire spread and behaviour are dependent on several factors, the water content of live fuel plays an important role in determining fire occurrence and spread, especially in the Mediterranean shrubland, where live fuel is often the main component of the available fuel which catches fire. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel, affecting load distribution in vegetation strata, floristic composition, and live and dead fuel ratio. In addition, variations in precipitation and mean temperature could directly affect fuel water status, and consequently flammability, and length of critical periods of high ignition danger for Mediterranean ecosystems. The main aim of this work was to propose a methodology for evaluating possible impacts of future climate change on moisture dynamic and length of fire danger period at local scale. Specific objectives were: i) evaluating performances of meteorological drought indices in describing seasonal pattern of live fuel moisture content (LFMC), and ii) simulating the potential impacts of future climate changes on the duration of fire danger period. Measurements of LFMC seasonal pattern of three Mediterranean shrub species were performed in North Western Sardinia (Italy) for 8 years. Seasonal patterns of LFMC were compared with the Drought Code of the Canadian Forest Fire Weather Index and the Keetch-Byram Drought Index. Analysis of frequency distribution and cumulative distribution curves were carried out in order to evaluate performance of codes and to identify threshold values of indices useful to determine the end of the potential fire season due to fuel status. A weather generator linked to climate change scenarios derived from 17 available General Circulation Models (GCMs) was used to produce synthetic weather series, representing present and future climates, for four selected sites located in North Sardinia, Italy. Finally, impacts of future climate change on fire season length at local scale were simulated. Results confirmed that the projected climate scenarios over the Mediterranean area will determine an overall increase of the fire season length.
USDA-ARS?s Scientific Manuscript database
The Mediterranean fruit fly is one of the most destructive agricultural pests throughout the world due to its broad host plant range that includes more than 260 different fruits, flowers, vegetables, and nuts. Host preferences vary in different regions of the world, which can be associated with its ...
NASA Technical Reports Server (NTRS)
Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.
1987-01-01
Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.
Post Fire Vegetation Recovery in Greece after the large Drought event of 2007
NASA Astrophysics Data System (ADS)
Gouveia, Célia M.; Bastos, Ana; DaCamara, Carlos; Trigo, Ricardo
2013-04-01
Fire is a natural factor of Mediterranean ecosystems. However, fire regimes in the European Mediterranean areas have been changing in the last decades, mainly due to land-use changes and climate driven factors possibly associated with climatic warming (e.g. decline of precipitation, increasing temperatures but also higher frequency of heatwaves). In Greece, the fire season of 2007 was particularly devastating, achieving the new all-time record of estimated burnt area (225 734 ha), since 1980. Additionally, we must stress that prior to the summer fire season in 2007, Greece suffered an exceptional drought event. This severe drought had a strong negative impact in vegetation dynamics. Since water availability is a crucial factor in post-fire vegetation recovery, it is desirable to assess the impact that such water-stress conditions had on fire sensitivity and post-fire vegetation recovery. Based on monthly values of NDVI, at the 1km×1km spatial scale, as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2010, large burnt scars are identified in Greece, during 2007 fire season. Vegetation recovery is then assessed based on a mono parametric regression model originally developed by Gouveia et al. (2010) to identify large burnt scars in Portugal during the 2003 fire season and after applied to 2005 fire season (Bastos et al., 2012). Some large burnt areas are selected and the respective NDVI behaviour is monitored throughout the pre and the post fire period. The vegetation dynamics during the pre-fire period is analysed and related to the extreme climatic events that characterised the considered period. An analysis is made of the dependence of recovery rates on land cover types and fire damage. Finally results are compared to results already obtained for Portugal (Gouveia et al. 2010). This work emphasises the use of a simple methodology, when applied to low resolution satellite imagery in order to monitor vegetation recovery after large fires events over distinct regions of Mediterranean Europe. Gouveia C., DaCamara C.C, Trigo R.M. (2010). "Post-fire vegetation dynamics in Portugal". Natural Hazards and Earth System Sciences, 10, 4, 673-684. Bastos A., Gouveia C., DaCamara C.C., and Trigo R.M.: Modelling post-fire vegetation recovery in Portugal.Biogeosciences, 8, 4559-4601, 2011.
Using rainwater harvesting techniques for firefighting in forest plantations
P. Garcia-Chevesich; R. Valdes-Pineda; D. Neary; R. Pizarro
2015-01-01
Fire is a natural component of forest ecosystems in parts of North America, South America, Europe, Australia, Africa and the Mediterranean region. These fires are usually uncontrolled wildfires in areas of ignitable vegetation but can also be prescribed fires set for vegetation management purposes. Wildfires are commonly characterised based on cause of ignition,...
Mediterranean Diet and cancer risk: an open issue.
D'Alessandro, Annunziata; De Pergola, Giovanni; Silvestris, Franco
2016-09-01
The traditional Mediterranean Diet of the early 1960s meets the characteristics of an anticancer diet defined by the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AIRC). A diet rich of whole grains, pulses, vegetables and fruits, limited in high-calorie foods (foods high in sugar or fat), red meat and foods high in salt, without sugary drinks and processed meat is recommended by the WCRF/AIRC experts to reduce the risk of cancer. The aim of this review was to examine whether Mediterranean Diet is protective or not against cancer risk. Three meta-analyses of cohort studies reported that a high adherence to the Mediterranean Diet significantly reduces the risk of cancer incidence and/or mortality. Nevertheless, the Mediterranean dietary pattern defined in the studies' part of the meta-analyses has qualitative and/or quantitative differences compared to the Mediterranean Diet of the early 1960s. Therefore, the protective role of the Mediterranean Diet against cancer has not definitely been established. In epidemiological studies, a universal definition of the Mediterranean Diet, possibly the traditional Mediterranean Diet of the early 1960s, could be useful to understand the role of this dietary pattern in cancer prevention.
Land abandonment, fire recurrence and soil carbon content in the Macizo del Caroig, Eastern Spain
NASA Astrophysics Data System (ADS)
Cerdá, A.; González Peñaloza, F.; Santín, C.; Doerr, S. H.
2012-04-01
During the last 50 years two main forces have driven the fate of Mediterranean landscapes: land abandonment and forest fires (MacDonald et al., 2000; Moreira et al., 2001). Due to the economical changes suffered by the of the Mediterranean countries after the Second World War, the population migrated from the rural to the urban areas, and from South to North Europe. The land abandonment allowed the vegetation to recover and, as a consequence, an increase in forest fire took place. The soils of the abandoned land recovered the vegetation and litter layers, and consequently changes in soil properties have being found. One of these changes is the increase of soil carbon content, which is due both to vegetation recovery and to fire occurrence that increases the ash and pyrogenic carbon content in soils. Twenty plots were selected in the Macizo del Caroig in Eastern Spain on soils developed on limestone. The period of abandonment and the forest fires that had affected each plot were determined by interviews with the owners, farmers and shepherds. In addition, six (three + three) plots were selected as forest (no plough) and cultivated control plots. Each plot was sampled (10 random samples) and the organic carbon content determined. The results show that the cultivated plots have organic matter contents of 1.02 %, and the forest (Quercus ilex sp.) plots reach the highest value: 14.98 %. Within those we found values that range from 2.34 %, in the recently abandoned plots (10 year abandonment), to values of 8.23 % in the 50 year old abandoned fields.The results demonstrate that there is a recovery of the organic carbon in abandoned soils and that the forest fires do no affect this trend. The increase of soil organic matter after abandonment is a result of the recovery of vegetation(Debussche et al., 2001), which is the consequence of the end of the disturbance of forest that have affected the Mediterranean for millennia (Barbero et al., 1990). The colonization of the abandoned fields by the vegetation is very efficient (Ne'eman and Izhaki, 1996) and fire adapted species are the main types, which demonstrates that fire is part of the Mediterranean ecosystems (Pausas, 1999). The fire was not found here as a factor increasing the organic carbon in the abandoned soils, although it was found in a nearby area (Novara et al., 2011). This research confirms that the soil development in Mediterranean Type-Ecosystems (Cerdà et al., 2010) is being affected by land abandonment and fire (Doerr and Cerdà, 2005).
González-De Vega, S; De Las Heras, J; Moya, D
2016-12-15
In recent decades, the fire regime of the Mediterranean Basin has been disturbed by various factors: climate change; forest management policies; land cover; changed landscape. Size and severity have notably increased, which in turn have increased large fires events with >500ha burned (high severity). In spite of Mediterranean ecosystems' high resilience to fire, these changes have implied more vulnerability and reduced natural recovery with irreparable long-term negative effects. Knowledge of the response of ecosystems to increasing severity, mainly in semiarid areas, is still lacking, which is needed to rehabilitate and restore burned areas. Our approach assessed the resilience concept by focusing on the recovery of ecosystem functions and services, measured as changes in the composition and diversity of plant community vegetation and structure. This will be validated in the long term as a model of ecosystem response. Also, depending on the pre-fire characteristics of vegetation, fire severity and the post-fire management, this approach will lead to tools that can be applied to implement post-fire restoration efforts in order to help decision making in planning activities. Regarding Mediterranean ecosystems' ability to recover after wildfires, this study concludes that pre-fire communities are resilient in these fire-prone areas, but the window for natural recovery in semiarid areas of Aleppo pine forest in SE Iberian Peninsula varied from 3 to 15 post-fire years. Fire severity was also key for effects on the ecosystem: the vegetation types of areas burned with low and medium severity recovered naturally, while those areas with a high-severity burn induced shrublands. We concluded that very strong regeneration activity exists in the short term, and that the negative effects of medium- and high-severity fire are evidenced in the mid and long term, which affect natural recovery. Adaptive forest management to rehabilitate and restore burned Mediterranean ecosystems should be implemented. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Meyers, C.; deMenocal, P. B.; Tierney, J. E.; Polissar, P. J.
2012-12-01
Terrestrial and marine paleoclimate records and changes in African fossil mammal taxa indicate that a transition towards more open, C4-dominated grasslands occurred in East Africa near 2 Ma. In contrast, the Mediterranean sapropel record documents pervasive precession-paced wet/dry cycles in the strength of the African monsoon and Nile runoff since at least the late Miocene. This study investigates whether the East African vegetation shift after 2 Ma was accompanied by a change in the monsoonal wet/dry cycle response to orbital precession forcing. We sampled eastern Mediterranean ODP Site 967 at 2-3 ka resolution in two 200 kyr intervals near 3.0 and 1.7 Ma. Nearly identical orbital configurations in these intervals allow us to compare mean conditions and orbital-paced variations before and after the 2 Ma transition. We used leaf wax biomarker concentrations and δD and δ13C compositions as proxies for monsoonal strength and vegetation type, and the δ18O composition of G. ruber as a proxy for Nile River runoff. Leaf wax biomarker concentrations varied over three orders of magnitude, with much higher concentrations in sapropels. During sapropel intervals, large-amplitude negative excursions occur in δDwax, δ13Cwax, and δ18Oruber, corresponding to a strengthened monsoon and less abundant C4 plants. Carbonate-rich intervals have positive isotope excursions indicating a weakened monsoon and more abundant C4 plants. The mean and variance of δDwax and δ13Cwax values are not significantly different between the 3.0 Ma and 1.7 Ma intervals indicating Northern Africa did not experience the vegetation and climate shifts observed in East Africa. While surprising, our finding suggests that the average monsoonal response to precession forcing, and corresponding vegetation variability, did not substantially change across the 2 Ma transition. This implies that North and East Africa exhibited different climate and vegetation behavior since 3 Ma.
The use of cover crops to increase soil organic carbon in Mediterranean vineyards
NASA Astrophysics Data System (ADS)
García-Díaz, Andrés; Bienes Allas, Ramón; Sastre Rodriguez, Blanca
2016-04-01
In Central Spain the vineyards are commonly managed with conventional tillage (CT) to remove water and nutrient competition between the spontaneous vegetation and the vine plants. The continuous tillage promotes high mineralization rates resulting in soils with low organic matter content and prone to erosion. Consequently the increase of soil organic carbon (SOC) in Mediterranean soils has been a main concern in the last years. It is necessary to carry out different soil managements to enhance soil fertility and reduce erosion through the increase of SOC. The aim of this study was to assess the capacity of cover crops (CC) to increase SOC in vineyards in Mediterranean climate. The experiment consisted in four vineyards in four different locations (different type of soil and microclimate), in the same region, to analyze the influence of CC on different conditions. A seeded CC (Brachypodium distachyon L. P. Beauv) and spontaneous vegetation were performed to compare to CT. The Brachypodium distachyon cover was seeded in December, 2012. We analyzed the organic carbon content and bulk density after three agronomy seasons. The samples were taken in the summer of 2015 at the depth of 0-5 cm. The bulk density of Brachypodium distachyon was 1.42 t•m-3, which was statistically significant comparing to both CT (1.33 t•m-3) and spontaneous vegetation (1.34 t•m-3). The SOC percentage of CT, Brachypodium distachyon and spontaneous vegetation was 0.82, 0.96 and 1.10 respectively. Only spontaneous vegetation showed statistically significant differences compared to CT. The results were highly variable depending on the vineyard. The spontaneous vegetation was the most effective CC increasing SOC with an average of 2 t•ha-1 more than CT in three agronomy seasons. These results point out the different efficiency of CC and the high influence of local conditions on SOC increase.
Fuentes, Laura; Duguy, Beatriz; Nadal-Sala, Daniel
2018-01-01
Since the 1970s, fire regimes have been modified in the Northern Mediterranean region due to profound landscape changes mostly driven by socioeconomic factors, such as rural abandonment and large-scale plantations. Both fuel accumulation and the increasing vegetation spatial continuity, combined with the expansion of the wildland-urban interface, have enhanced fire risk and the occurrence of large wildfires. This situation will likely worsen under the projected aridity increase resulting from climate change. Higher fire recurrences, in particular, are expected to cause changes in vegetation composition or structure and affect ecosystems' resilience to fire, which may lead to further land degradation. Prescribed burning is a common fuel reduction technique used for fire prevention, but for conservation and restoration purposes as well. It is still poorly accepted in the Mediterranean region since constrained by critical knowledge gaps about, in particular, its effects on the ecosystems (soil, vegetation). We studied the short-term (10months) effects on the understory vegetation of a spring prescribed burning conducted in a Pinushalepensis forest in Mediterranean climate (Northeastern Spain). Our results show that the understory plant community recovered after the burning without short term significant changes in either species richness, diversity, or floristic composition. Most vegetation structural characteristics were modified though. The burning strongly reduced shrub height, shrub and herbaceous percentage covers, and aerial shrub phytomass; especially its living fine fraction, thus resulting in a less flammable community. The treatment proved to be particularly effective for the short term control of Ulexparviflorus, a highly flammable seeder species. Moreover, the strong reduction of seeder shrubs frequency in relation to resprouters' likely promoted the resilience to fire of this plant community. From a fuel-oriented perspective, the burning caused a strong reduction of spatial continuity and surface fuel loads, leading to a less fire-prone fuel complex. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Albertson, John D.; Oren, Ram
2014-05-01
Mediterranean ecosystems are characterized by a strong heterogeneity, and often by water-limited conditions. In these conditions contrasting plant functional types (PFT, e.g. grass and woody vegetation) compete for the water use. Both the vegetation cover spatial distribution and the soil properties impact the soil moisture (SM) spatial distribution. Indeed, vegetation cover density and type affects evapotranspiration (ET), which is the main lack of the soil water balance in these ecosystems. With the objective to carefully estimate SM and ET spatial distribution in a Mediterranean water-limited ecosystem and understanding SM and ET relationships, an extended field campaign is carried out. The study was performed in a heterogeneous ecosystem in Orroli, Sardinia (Italy). The experimental site is a typical Mediterranean ecosystem where the vegetation is distributed in patches of woody vegetation (wild olives mainly) and grass. Soil depth is low and spatially varies between 10 cm and 40 cm, without any correlation with the vegetation spatial distribution. ET, land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. But in heterogeneous ecosystems a key assumption of the eddy covariance theory, the homogeneity of the surface, is not preserved and the ET estimate may be not correct. Hence, we estimate ET of the woody vegetation using the thermal dissipation method (i.e. sap flow technique) for comparing the two methodologies. Due the high heterogeneity of the vegetation and soil properties of the field a total of 54 sap flux sensors were installed. 14 clumps of wild olives within the eddy covariance footprint were identified as the most representative source of flux and they were instrumented with the thermal dissipation probes. Measurements of diameter at the height of sensor installation (height of 0.4 m above ground) were recorded in all the clumps. Bark thickness and sapwood depth were measured on several trees to obtain a generalized estimates of sapwood depth. The known of allometric relationships between sapwood area, diameter and canopy cover area within the eddy covariance footprint helped for the application of a reliable scaling procedure of the local sap flow estimates which are in a good agreement with the estimates of ET eddy covariance based. Soil moisture were also extensively monitored through 25 probes installed in the eddy covariance footprint. Results show that comparing eddy covariance and sap flow ET estimates eddy covariance technique is still accurate in this heterogeneous field, whereas the key assumption, surface homogeneity, is not preserved. Furthermore, interestingly wild olives still transpire at higher rates for the driest soil moisture conditions, confirming the hydraulic redistribution from soil below the roots, and from roots penetrating deep cracks in the underlying basalt parent rock.
NASA Technical Reports Server (NTRS)
Bounoua, Lahouari
2007-01-01
the radiative and physiological effects of doubled atmospheric carbon dioxide concentration (CO2) on climate are described using climate simulations. When CO2 was increased for vegetation only assuming no radiative effect, the response was a decrease in stomatal conductance followed by a temperature increase. This temperature increase was stronger when the vegetation physiological down-regulation was allowed in the model. The radiative forcing alone did not affect the global mean photosynthesis, however, some stimulation was observed in cold places. The interactions between the physiological and the radiative effects of doubled CO2 are not linearly additive and when acting together they tend to reduce the warming in the Mediterranean region.
NASA Astrophysics Data System (ADS)
Niedermeyer, E. M.; Mulch, A.; Pross, J.
2017-12-01
The "8.2 ka event" has been an abrupt and prominent climate perturbation during the Holocene, and is characterized by an episode of generally colder and dryer conditions in the Northern Hemisphere realm. However, evidence to what extent this event has had an impact on climate in the Mediterranean region is ambiguous, in particular with respect to rainfall, temperature and vegetation change on land. Here we present a new, high-resolution record (ø 15 years during the event) of paleotemperatures from the Tenaghi Philippon peat deposit, Eastern Macedonia, Greece, using the MBT'/CBT index based on brGDGTs (branched Glycerol-Dialkyl-Glycerol-Tetraethers). Our data show fairly stable temperatures before the event, which is initiated at 8.1 ka by an abrupt and continuous cooling during the first 35 years of the event. After a short, 10-year episode of minimum temperatures, the event is ended by a similarly abrupt and continuous warming within 38 years. Comparison of our record with a previous study of the stable hydrogen isotopic composition of higher-plant waxes (δDwax) on the same core1 shows that changes in temperature occurred simultaneously with shifts in atmospherics moisture sources (Mediterranean vs Atlantic). Interestingly, further comparison of our data with a previous palynological study of the same core2 reveals that changes in vegetation associated with the 8.2 ka event precede shifts in hydrology and temperature by 100 years. This suggests either pronounced changes in seasonality of temperature and rainfall after the onset of the 8.2 ka event, i.e. at the peak of the event, or that changes in local atmospheric circulation (moisture sources) and temperature where not the initial trigger of changes in vegetation. References: Pross, J., Kotthoff, U., Müller, U.C., Peyron, O., Dormoy, I., Schmiedl, G., Kalaitzidis, S. and Smith, A.M. (2009): Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean region associated with the 8.2 kyr B.P. climatic event. Geology 37, 887-890. Schemmel, F., Niedermeyer, E.M., Schwab, V.F., Gleixner, G., Pross, J. and Mulch, A. (2016): Plant wax δD values record changing Eastern Mediterranean atmospheric circulation patterns during the 8.2 kyr B.P. climatic event. Quaternary Science Reviews 133, 96-107.
The role of vegetation in the stability of forested slopes
Robert R. Ziemer
1981-01-01
Summary - Vegetation helps stabilize forested slopes by providing root strength and by modifying the saturated soil water regime. Plant roots can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In Mediterranean-type climates, having warm...
Hartwell H Welsh Jr; Garth R. Hodgson; Nancy E. Karraker
2005-01-01
We examined differences in riparian and aquatic environments within the three dominant vegetation patch types of the Mattole River watershed, a 789-km2 mixed conifer-deciduous (hardwood) forest and grassland-dominated landscape in northwestern California, USA. Riparian and aquatic environments, and particularly microclimates therein, influence...
NASA Astrophysics Data System (ADS)
Davis, B.
2013-12-01
Extensive evidence from high latitudes of the Northern Hemisphere indicates that temperatures were warmer than present during the early-mid Holocene, a period known as the Holocene thermal maximum (HTM). The existence of the HTM over lower mid-latitudes and the sub-tropics however is less clear, with pollen-based reconstructions in particular actually indicating a contrary cooling at this time in these regions. This apparent cooling is controversial because it is not shown in climate model simulations, which indicate that the HTM occurred across all extra-tropical latitudes of the Northern Hemisphere. This is also supported by alkenone based SST reconstructions, which also show a much more widespread HTM than indicated by the pollen data. Here this problem is investigated by reviewing the evidence both for, and against, the HTM in the Mediterranean region, which represents one of the most intensively studied regions of sub-tropical climate in the Northern Hemisphere. This evidence includes a large number of both marine and terrestrial records that can be directly compared due to their close proximity around the Mediterranean Sea. The results highlight the potential for bias in both marine and terrestrial climate proxies, but despite many criticisms of the pollen-based record, it is shown that the existence of more extensive temperate vegetation in the early-mid Holocene in the Mediterranean is difficult to explain by anything other than a cooler climate. For instance, vegetation models driven by climate model output show that the warmer climate suggested by the models produces a HTM vegetation even more arid than today. The results have important implications in the interpretation of proxy records, but perhaps most importantly, the potential for climate models to underestimate cooling processes in a warmer world needs further investigation.
Can landscape memory affect vegetation recovery in drylands?
NASA Astrophysics Data System (ADS)
Baartman, Jantiene; Garcia Mayor, Angeles; Temme, Arnaud; Rietkerk, Max
2016-04-01
Dryland ecosystems are water-limited and therefore vegetation typically forms banded or patchy patterns with high vegetation cover, interspersed with bare soil areas. In these systems, a runoff-runon system is often observed with bare areas acting as sources and vegetation patches acting as sinks of water, sediment and other transported substances. These fragile ecosystems are easily disturbed by overgrazing, removing above-ground vegetation. To avoid desertification, vegetation recovery after a disturbance is crucial. This poster discusses the potential of 'landscape memory' to affect the vegetation recovery potential. Landscape memory, originating in geomorphology, is the concept that a landscape is the result of its past history, which it 'remembers' through imprints left in the landscape. For example, a past heavy rainstorm may leave an erosion gully. These imprints affect the landscape's contemporary functioning, for example through faster removal of water from the landscape. In dryland ecosystems vegetation is known to affect the soil properties of the soil they grow in, e.g. increasing porosity, infiltration, organic matter content and soil structure. After a disturbance of the banded ecosystem, e.g. by overgrazing, this pattern of soil properties - favourable for regrowth, stays in the landscape. However, removal of the above-ground vegetation also leads to longer runoff pathways and increased rill and gully erosion, which may hamper vegetation regrowth. I hypothesize that vegetation recovery after a disturbance, depends on the balance between these two contrasting types of landscape memory (i.e. favourable soil properties and erosion rills/gullies).
Barboutis, Christos; Kassara, Christina; Giokas, Sinos
2017-01-01
Abstract Every spring a huge number of passerines cross the Sahara Desert and the Mediterranean Sea on their way to their breeding grounds. Stopover sites after such extended barriers where birds can rest, refuel, and find shelter from adverse weather, are of crucial importance for the outcome of their migration. Stopover habitat selection used by migrating birds depends on landscape context, habitat patch characteristics, as well as on the particular energetic conditions and needs of individual birds, but it is still poorly investigated. We focused on a long-distance migrating passerine, the woodchat shrike, in order to investigate for the first time the species’ habitat selection at a spring stopover site (island of Antikythira, Greece) after the crossing of the Sahara Desert and Mediterranean Sea. We implemented radio-tracking, color-ringing, and visual behavioral observations to collect data on microhabitat use. Generalized Linear Mixed Models were developed to identify the species’ most preferred microhabitat during its stopover on this low human disturbed island. We found that high maquis vegetation surrounded by low vegetation was chosen as perches for hunting. Moreover, high maquis vegetation appeared to facilitate hunting attempts toward the ground, the most frequently observed foraging strategy. Finally, we discuss our findings in the context of conservation practices for the woodchat shrike and their stopover sites on Mediterranean islands. PMID:29491971
NASA Astrophysics Data System (ADS)
Carlotti, F.; Eisenhauer, L.; Campbell, R.; Diaz, F.
2014-07-01
The spatio-temporal dynamics of a simulated Centropages typicus (Kröyer) population during the year 2001 at the regional scale of the northwestern Mediterranean Sea are addressed using a 3D coupled physical-biogeochemical model. The setup of the coupled biological model comprises a pelagic plankton ecosystem model and a stage-structured population model forced by the 3D velocity and temperature fields provided by an eddy-resolving regional circulation model. The population model for C. typicus (C. t. below) represents demographic processes through five groups of developmental stages, which depend on underlying individual growth and development processes and are forced by both biotic (prey and predator fields) and abiotic (temperature, advection) factors from the coupled physical-biogeochemical model. The objective is to characterize C. t. ontogenic habitats driven by physical and trophic processes. The annual dynamics are presented for two of the main oceanographic stations in the Gulf of Lions, which are representative of shelf and open sea conditions, while the spatial distributions over the whole area are presented for three dates during the year, in early and late spring and in winter. The simulated spatial patterns of C. t. developmental stages are closely related to mesoscale hydrodynamic features and circulation patterns. The seasonal and spatial distributions on the Gulf of Lions shelf depend on the seasonal interplay between the Rhône river plume, the mesoscale eddies on the shelf and the Northern Current acting as either as a dynamic barrier between the shelf and the open sea or allowing cross-shelf exchanges. In the central gyre of the northwestern Mediterranean Sea, the patchiness of plankton is tightly linked to mesoscale frontal systems, surface eddies and filaments and deep gradients. Due to its flexibility in terms of its diet, C. t. succeeds in maintaining its population in both coastal and offshore areas year round. The simulations suggest that the winte-spring food conditions are more favorable on the shelf for C. t., whereas in late summer and fall, the offshore depth-integrated food biomasses represent a larger resource for C. t., particularly when mesoscale structures and vertical discontinuities increase food patchiness. The development and reproduction of C. t. depend on the prey field within the mesoscale structures that induce a contrasting spatial distribution of successive developmental stages on a given observation date. In late fall and winter, the results of the model suggest the existence of three refuge areas where the population maintains winter generations near the coast and within the Rhone River plume, or offshore within canyons within the shelf break, or in the frontal system related to the Northern Current. The simulated spatial and temporal distributions as well as the life cycle and physiological features of C. t. are discussed in light of recent reviews on the dynamics of C. t. in the northwestern Mediterranean Sea.
Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics
Braakhuis, Andrea J.; Campion, Peta; Bishop, Karen S.
2016-01-01
Evidence from numerous observational and clinical studies suggest that polyphenolic phytochemicals such as phenolic acids in olive oil, flavonols in tea, chocolate and grapes, and isoflavones in soy products reduce the risk of breast cancer. A dietary food pattern naturally rich in polyphenols is the Mediterranean diet and evidence suggests those of Mediterranean descent have a lower breast cancer incidence. Whilst dietary polyphenols have been the subject of breast cancer risk-reduction, this review will focus on the clinical effects of polyphenols on reducing recurrence. Overall, we recommend breast cancer patients consume a diet naturally high in flavonol polyphenols including tea, vegetables (onion, broccoli), and fruit (apples, citrus). At least five servings of vegetables and fruit daily appear protective. Moderate soy protein consumption (5–10 g daily) and the Mediterranean dietary pattern show the most promise for breast cancer patients. In this review, we present an overview of clinical trials on supplementary polyphenols of dietary patterns rich in polyphenols on breast cancer recurrence, mechanistic data, and novel delivery systems currently being researched. PMID:27608040
NASA Astrophysics Data System (ADS)
Trigo, Ricardo; Gouveia, Celia M.; Beguería, Santiago; Vicente-Serrano, Sergio
2015-04-01
A number of recent studies have identified a significant increase in the frequency of drought events in the Mediterranean basin (e.g. Trigo et al., 2013, Vicente-Serrano et al., 2014). In the Mediterranean region, large drought episodes are responsible for the most negative impacts on the vegetation including significant losses of crop yield, increasing risk of forest fires (e.g. Gouveia et al., 2012) and even forest decline. The aim of the present work is to analyze in detail the impacts of drought episodes on vegetation in the Mediterranean basin behavior using NDVI data from (from GIMMS) for entire Mediterranean basin (1982-2006) and the multi-scale drought index (the Standardised Precipitation-Evapotranspiration Index (SPEI). Correlation maps between fields of monthly NDVI and SPEI for at different time scales (1-24 months) were computed in order to identify the regions and seasons most affected by droughts. Affected vegetation presents high spatial and seasonal variability, with a maximum in summer and a minimum in winter. During February 50% of the affected pixels corresponded to a time scale of 6 months, while in November the most frequent time scale corresponded to 3 months, representing more than 40% of the affected region. Around 20% of grid points corresponded to the longer time scales (18 and 24 months), persisting fairly constant along the year. In all seasons the wetter clusters present higher NDVI values which indicates that aridity holds a key role to explain the spatial differences in the NDVI values along the year. Despite the localization of these clusters in areas with higher values of monthly water balance, the strongest control of drought on vegetation activity are observed for the drier classes located over regions with smaller absolute values of water balance. Gouveia C.M., Bastos A., Trigo R.M., DaCamara C.C. (2012) "Drought impacts on vegetation in the pre and post-fire events over Iberian Peninsula". Natural Hazards and Earth System Sciences, 12, 3123-3137, 2012. Trigo R.M., Añel J., Barriopedro D., García-Herrera R., Gimeno L., Nieto R., Castillo R., Allen M.R., Massey N. (2013), The record Winter drought of 2011-12 in the Iberian Peninsula [in "Explaining Extreme Events of 2012 from a Climate Perspective". [Peterson, T. C., M. P. Hoerling, P.A. Stott and S. Herring, Eds.] Bulletin of the American Meteorological Society, 94 (9), S41-S45. Vicente-Serrano S.M., López-Moreno J.I., Beguería S., Lorenzo-Lacruz J., Sanchez-Lorenzo A., García-Ruiz J.M., Azorin-Molina C., Móran-Tejeda E., Revuelto J., Trigo R., Coelho F., Espejo F.: Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9, 044001, 2014. Acknowledgements: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project QSECA (PTDC/AAGGLO/4155/2012).
Mechanisms of nutrient retention and its relation to flow connectivity in river-floodplain corridors
Larsen, Laurel; Harvey, Judson; Maglio, Morgan M.
2015-01-01
Understanding heterogeneity or patchiness in the distribution of vegetation and retention of C and nutrients in river corridors is critical for setting priorities for river management and restoration. Several mechanisms of spatial differentiation in nutrient retention in river and floodplain corridors have been recognized, but few studies have distinguished their relative importance or established their role in long-term geomorphic change, nutrient retention, and connectivity with downstream systems. We evaluated the ability of 3 mechanisms (evapotranspiration focusing [EF], differential hydrologic exchange [DHE], and particulate nutrient redistribution [PNR]) to explain spatial patterns of P retention and function in the Everglades (Florida, USA). We used field measurements in sloughs and on slightly higher, more densely vegetated ridges to quantify P fluxes attributable to the 3 mechanisms. EF does not explain Everglades nutrient retention or P concentrations on ridges and in sloughs. However, DHE resulting from different periods of groundwater–surface-water connectivity across topographic elements is the primary cause of elevated P concentrations on ridges and completely explains interpatch differences in long-term P accumulation rates. With historical flow velocities, which were an order of magnitude higher than at present, PNR would have further increased the interpatch difference in long-term P retention rates nearly 2-fold. In conclusion, DHE and PNR are the dominant drivers of nutrient patchiness in the Everglades and are hypothesized to be important in P-limited river and floodplain corridors globally.
Water repellency and soil moisture variations under Rosmarinus officinalis in a burned soil
NASA Astrophysics Data System (ADS)
Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.
2009-04-01
Mediterranean semi-arid landscapes are characterised by the patchiness of the vegetation cover, in which variations in the distribution pattern of soil water repellency (SWR) can be of major importance for their hydrological and geomorphological effects in burned areas, and also for their ecological implications concerning to the re-establishment of their plant cover. Within a broader research framework, the present work studies the influence of Rosmarinus officinalis vegetated patches on SWR in burned and unburned soils and its relationship with the field soil moisture content (SMC). The results presented here are the first step analysing the spatial pattern of sink and source runoff areas in a burned hillslope. The study area is located in the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occurred in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12 ° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight at the nearest unburned area were selected. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for soil sampling (1 sample per zone at each microsite, n= 84, form the first 2 cm of the mineral A horizon) and field soil moisture measurements determined by means of the moisture meter HH2 with ThetaProbe sensor type ML2x (5 measurements per zone at each microsite, n= 420), which were taken one day after the first rainfall event after fire, when 11 mm were registered in the study area. Results showed that the largest repellency persistence (measured by means of the Water Drop Penetration Time test, WDPT) was found close to the burned R. officinalis stumps, where all soil samples showed water repellency, with mean WDPT of 68 seconds. Generally, we observed a sharp hydrophobic/hydrophilic boundary between the zones I (stump) and II (intermediate). Soil samples from bare soil (zone III) were entirely wettable. At control microsites, SWR was present only in one of the unburned R. officinalis samples. On the basis that unburned microsites are representative of the pre-fire conditions at the burned ones, these results imply that fire caused a significant increase in SWR occurrence at the soil surface. Field SMC showed statistically significant differences between the three zones. Both control and burned microsites showed the same trend, with an increasing gradient towards the outer zone. Furthermore, burned microsites showed larger differences in SMC between zone I and zone III (18% and 27%, respectively) than the unburned ones. It could be explained because at burned stumps, the largest persistence of water repellency and the highest SOM content might decrease the wettability of aggregates, slowing their rates of wetting, which might not occur at all during the rainstorms. In fact, there was obtained a significant and negative Pearson's correlation coefficients between SMC and WDPT, and between SMC and SOM at burned microsites. However, no correlation between field SMC and WDPT was found from control microsites. Moreover, at the burned microsites, the partial correlation analysis with SOM as control variable revealed that SMC and WDPT were influenced by the SOM. In addition, it is necessary to consider the existence of root channels with the development of preferential flow pathways, which could enhance deeper water infiltration in the stump areas. These results provide evidences of the importance of microsite soil surface properties on SMC variability on semiarid burned slopes. The existence of SWR and lowest SMC detected at burned stumps opposite to the highest SMC after rainfall and the absence of SWR in burned bare soil zones could be key factors for the differences in overland flow and erosional response of burned areas characterised by the patchiness of the vegetation cover.
Next-generation spectrometer aids study of Mediterranean
NASA Astrophysics Data System (ADS)
Abrams, M. J.; Bianchi, R.; Buongiorno, M. F.
The Mediterranean region's highly diverse topography, lithology, soils, microclimates, vegetation, and seawater result in a variety of ecosystems. Remote sensing techniques, especially imaging spectrometry, have the potential to provide data for environmental studies on a regional scale in this part of the world.A test deployment of the multispectral infrared and visible imaging spectrometer (MIVIS), a new 102-channel imaging spectrometer, was carried out in Sicily in July 1994. Active volcanoes were surveyed to differentiate volcanic products and determine SO2 emissions in plumes (Figure 1), coastlines were imaged jointly with LIDAR to study pollution, ecosystems at several ocean areas were monitored, vegetated areas were imaged to determine the health of the biota, and archeological sites were studied to reconstruct ancient land use practices. For sites, refer to Figure 2.
Nitrogen deposition effects on coastal sage vegetation of southern California
Edith B. Allen; Pamela E. Padgett; Andrzej Bytnerowicz; Richard Minnich
1998-01-01
The coastal sage scrub (CSS) vegetation of southern California has been declining in land area and in shrub density over the past 60 years or more, and is being replaced by Mediterranean annual grasses in many areas. Although much of this loss is attributable to agriculture, grazing, urbanization and frequent fire, even protected areas have experienced a loss in native...
Integrated High Resolution Monitoring of Mediterranean vegetation
NASA Astrophysics Data System (ADS)
Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone
2017-04-01
The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals (gcc, ExG) from digital images was also in according to the spectral signature (NDVI) obtained for single species (in particular for Juniperus phoenicea and Pistacia lentiscus). The integrated system developed during this project can provide continuous and high-resolution data, providing a valuable support for both ecological and environmental studies in particular for the analysis of phenological plants responses to environmental and climate changes, and the validation of eco-physiological models, and supporting research on climate change adaptations. This research was funded by the Regional Administration of Sardinia, RAS, L.R. 7/2007 "Scientific Research and Technological Innovation in Sardinia ".
Enforcement authority and vegetation change at Kumbhalgarh wildlife sanctuary, Rajasthan, India.
Robbins, Paul F; Chhangani, Anil K; Rice, Jennifer; Trigosa, Erika; Mohnot, S M
2007-09-01
Land cover change in protected areas is often associated with human use, especially illicit extraction, but the direction and spatial distribution of such effects and their drivers are poorly understood. We analyze and explain the spatial distribution of vegetation change at the Kumbhalgarh Wildlife Sanctuary in the Aravalli range of Rajasthan, India using remotely sensed data and observation of conservation institutions. Two satellite images are examined in time series over the 13 years following the founding of the sanctuary through a cross-tabulation technique of dominant classes of vegetation density. The resulting change trajectories are compared for their relative distance to high-traffic forest entrance points for local users. The results show 28% of the study area undergoing change, though in multiple trajectories, with both increasing and decreasing density of vegetation in discrete patches. Areas of change are shown to be closer to entrance points than areas experiencing no change. The patchiness of change results from complex issues in local enforcement authority for middle and lower-level officials in Forest Department bureaucracy, leading to further questions about the efficacy and impact of use restrictions in Protected Areas.
Kent, Rafi; Levanoni, Oded; Banker, Eran; Pe'er, Guy; Kark, Salit
2013-01-01
Mountains provide an opportunity to examine changes in biodiversity across environmental gradients and areas of transition (ecotones). Mountain ecotones separate vegetation belts. Here, we aimed to examine whether transition areas for birds and butterflies spatially correspond with ecotones between three previously described altitudinal vegetation belts on Mt. Hermon, northern Israel. These include the Mediterranean Maquis, xero-montane open forest and Tragacanthic mountain steppe vegetation belts. We sampled the abundance of bird and butterfly species in 34 sampling locations along an elevational gradient between 500 and 2200 m. We applied wombling, a boundary-detection technique, which detects rapid changes in a continuous variable, in order to locate the transition areas for bird and butterfly communities and compare the location of these areas with the location of vegetation belts as described in earlier studies of Mt. Hermon. We found some correspondence between the areas of transition of both bird and butterfly communities and the ecotones between vegetation belts. For birds and butterflies, important transitions occurred at the lower vegetation ecotone between Mediterranean maquis and the xero-montane open forest vegetation belts, and between the xero-montane open forest and the mountain steppe Tragacanthic belts. While patterns of species turnover with elevation were similar for birds and butterflies, the change in species richness and diversity with elevation differed substantially between the two taxa. Birds and butterflies responded quite similarly to the elevational gradient and to the shift between vegetation belts in terms of species turnover rates. While the mechanisms generating these patterns may differ, the resulting areas of peak turnover in species show correspondence among three different taxa (plants, birds and butterflies).
NASA Astrophysics Data System (ADS)
Imbrenda, Vito; Coluzzi, Rosa; D'Emilio, Mariagrazia; Lanfredi, Maria; Simoniello, Tiziana
2013-04-01
Vegetation is one of the key components to study land degradation vulnerability because of the complex interactions and feedbacks that link it to soil. In the Mediterranean region, degradation phenomena are due to a mix of predisposing factors (thin soil horizons, low soil organic matter, increasing aridity, etc.) and bad management practices (overgrazing, deforestation, intensification of agriculture, tourism development). In particular, in areas threatened by degradation processes but still covered by vegetation, large scale soil condition evaluation is a hard task and the detection of stressed vegetation can be useful to identify on-going soil degradation phenomena and to reduce their impacts through interventions for recovery/rehabilitation. In this context the use of satellite time series can increase the efficacy and completeness of the land degradation assessment, providing precious information to understand vegetation dynamics. In order to estimate vulnerability levels in Basilicata (a Mediterranean region of Southern Italy) in the framework of PRO-LAND project (PO-FESR Basilicata 2007-2013), we crossed information on potential vegetation vulnerability with information on photosynthetic activity dynamics. Potential vegetation vulnerability represents the vulnerability related to the type of present cover in terms of fire risk, erosion protection, drought resistance and plant cover distribution. It was derived from an updated land cover map by separately analyzing each factor, and then by combining them to obtain concise information on the possible degradation exposure. The analysis of photosynthetic activity dynamics provides information on the status of vegetation, that is fundamental to discriminate the different vulnerability levels within the same land cover, i.e. the same potential vulnerability. For such a purpose, we analyzed a time series (2000-2010) of a satellite vegetation index (MODIS NDVI) with 250m resolution, available as 16-day composite from the NASA LP DAAC dataset. Vegetation activity trends were estimated and then normalized to the starting conditions to obtain the percentage variation (NDVI-PV) for the considered period. Information on the potential vulnerability and vegetation activity dynamics were classified into indexes and combined to obtain the final map of the actual vegetation vulnerability and to identify on-going degradation phenomena and priority sites within areas already compromised. As for the investigated area, this map shows a composite picture in which only a few values of high vulnerability are scattered along areas where medium-high vulnerability values generally prevail. Here, we singled out two kind of areas: one largely devoted to intensive agriculture, and other one mostly characterized by bare soils and sparse vegetation. On the contrary, a large part of natural and seminatural vegetation located along the Apennine chain does not show critical vulnerability values. By comparing the vegetation vulnerability map with the vulnerability map due to anthropic factors (pressure induced by agricultural and grazing activities, estimated by indicators derived from census data), we found correlation, confirming the anthropogenic cause of vulnerability and therefore the major role held by soil management in areas mainly devoted to intensive farming.
Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil
NASA Astrophysics Data System (ADS)
Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.
2010-05-01
Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an open steppe dominated by Stipa tenacissima. In February 2009 representative soil samples from the top 10 cm were taken beneath grass tussock and from bare soil. Soil samples in three replicates were incubated after rewetting with distilled water (basal microbial activities) and after rewetting with the glucose solution and with the mixture of glucose and peptone solution (potential microbial activities). The CO2, C2H4 evolved under controlled conditions (60% WHC, 24°C) during a 37-day aerobic incubation were determined. Ammonia and nitrate nitrogen were estimated in percolates after simulated rainfall (on the 16th day of incubation) and in the incubated soil samples at the end of incubation. Net ammonification and net nitrification rates were determined by subtracting initial soil mineral N from both mineral N in percolates plus final mineral N contents at 37th day. Basal, potential microbial respiration and net nitrification in the soils beneath S. tenacissima were, in general, not significantly different from the bare soils. The differences between plant-covered soil and bare soil in cumulative values of CO2 production and in amounts of accumulated NO3--N (net nitrification) were less than ± 10%. Greater differences were found in the net ammonification, which were higher beneath S. tenacissima, mainly in the control (basal activities) variant (about 38 %). Significantly less ethylene produced by microbial activity in soils beneath S. tenacissima after the addition of glucose indicates the dependence of rhizospheric microbial communities on available carbon compounds mainly from root exudates. It can be concluded, similarly as published Goberna et al., (2007), that the distribution of soil microbial properties in semi-arid Mediterranean ecosystems is not necessarily associated with the patchy plant distribution and that some microbial activities characteristics can be unexpectedly homogenous.
A versatile model for soft patchy particles with various patch arrangements.
Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan
2016-01-21
We propose a simple and general mesoscale soft patchy particle model, which can felicitously describe the deformable and surface-anisotropic characteristics of soft patchy particles. This model can be used in dynamics simulations to investigate the aggregation behavior and mechanism of various types of soft patchy particles with tunable number, size, direction, and geometrical arrangement of the patches. To improve the computational efficiency of this mesoscale model in dynamics simulations, we give the simulation algorithm that fits the compute unified device architecture (CUDA) framework of NVIDIA graphics processing units (GPUs). The validation of the model and the performance of the simulations using GPUs are demonstrated by simulating several benchmark systems of soft patchy particles with 1 to 4 patches in a regular geometrical arrangement. Because of its simplicity and computational efficiency, the soft patchy particle model will provide a powerful tool to investigate the aggregation behavior of soft patchy particles, such as patchy micelles, patchy microgels, and patchy dendrimers, over larger spatial and temporal scales.
Kyratzis, Angelos C; Skarlatos, Dimitrios P; Menexes, George C; Vamvakousis, Vasileios F; Katsiotis, Andreas
2017-01-01
There is growing interest for using Spectral Vegetation Indices (SVI) derived by Unmanned Aerial Vehicle (UAV) imagery as a fast and cost-efficient tool for plant phenotyping. The development of such tools is of paramount importance to continue progress through plant breeding, especially in the Mediterranean basin, where climate change is expected to further increase yield uncertainty. In the present study, Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR) and Green Normalized Difference Vegetation Index (GNDVI) derived from UAV imagery were calculated for two consecutive years in a set of twenty durum wheat varieties grown under a water limited and heat stressed environment. Statistically significant differences between genotypes were observed for SVIs. GNDVI explained more variability than NDVI and SR, when recorded at booting. GNDVI was significantly correlated with grain yield when recorded at booting and anthesis during the 1st and 2nd year, respectively, while NDVI was correlated to grain yield when recorded at booting, but only for the 1st year. These results suggest that GNDVI has a better discriminating efficiency and can be a better predictor of yield when recorded at early reproductive stages. The predictive ability of SVIs was affected by plant phenology. Correlations of grain yield with SVIs were stronger as the correlations of SVIs with heading were weaker or not significant. NDVIs recorded at the experimental site were significantly correlated with grain yield of the same set of genotypes grown in other environments. Both positive and negative correlations were observed indicating that the environmental conditions during grain filling can affect the sign of the correlations. These findings highlight the potential use of SVIs derived by UAV imagery for durum wheat phenotyping under low yielding Mediterranean conditions.
de Santiago-Martín, Ana; Vaquero-Perea, Cristina; Valverde-Asenjo, Inmaculada; Quintana Nieto, Jose R; González-Huecas, Concepción; Lafuente, Antonio L; Vázquez de la Cueva, Antonio
2016-05-01
Abandonment of vineyards after uprooting has dramatically increased in last decades in Mediterranean countries, often followed by vegetation expansion processes. Inadequate management strategies can have negative consequences on soil quality. We studied how the age and type of vegetation cover and several environmental characteristics (lithology, soil properties, vineyard slope and so on) after vineyard uprooting and abandonment contribute to the variation patterns in total, HAc (acetic acid-method, HAc) and EDTA-extractable (ethylenediaminetetraacetic acid-method) concentrations of Cd, Cu, Pb and Zn in soils. We sampled 141 points from vineyards and abandoned vineyard Mediterranean soils recolonized by natural vegetation in recent decades. The contribution of several environmental variables (e.g. age and type of vegetation cover, lithology, soil properties and vineyard slope) to the total and extractable concentrations of metals was evaluated by canonical ordination based on redundancy analysis, considering the interaction between both environmental and response variables. The ranges of total metal contents were: 0.01-0.15 (Cd), 2.6-34 (Cu), 6.6-30 (Pb), and 29-92mgkg(-1) (Zn). Cadmium (11-100%) had the highest relative extractability with both extractants, and Zn and Pb the lowest. The total and EDTA-extractable of Cd, Pb and Zn were positively related to the age of abandonment, to the presence of Agrostis castellana and Retama sphaerocarpa, and to the contents of Fe-oxides, clay and organic matter (OM). A different pattern was noted for Cu, positively related to vineyard soils. Soil properties successfully explained HAc-extractable Cd, Cu, Pb and Zn but the age and type of vegetation cover lost significance. Clay content was negatively related to HAc-extractable Cu and Pb; and OM was positively related to HAc-Cd and Zn. In conclusion, the time elapsed after vineyard uprooting, and subsequent land abandonment, affects the soil content and availability of metals, and this impact depended on the colonizing plant species and soil properties. Copyright © 2016 Elsevier B.V. All rights reserved.
[Role of Mediterranean diet on the prevention of Alzheimer disease].
Miranda, Arnoldo; Gómez-Gaete, Carolina; Mennickent, Sigrid
2017-04-01
Type 2 diabetes and obesity are possible risk factors for Alzheimers disease and these can be modified by physical activity and changes in dietary patterns, such as switching to a Mediterranean diet. This diet includes fruits, vegetables, olive oil, fish and moderate wine intake. These foods provide vitamins, polyphenols and unsaturated fatty acids. This diet should be able to reduce oxidative stress. The inflammatory response is also reduced by unsaturated fatty acids, resulting in a lower expression and a lower production of pro-inflammatory cytokines. The Cardiovascular protection is related to the actions of polyphenols and unsaturated fatty acids on the vascular endothelium. The Mediterranean diet also can improve cardiovascular risk factors such as dyslipidemia, hypertension and metabolic syndrome. These beneficial effects of the Mediterranean diet should have a role in Alzheimers disease prevention.
Speed, C
2004-12-01
Studies are consistently declaring that the Mediterranean-type diet is transposable to non-Mediterranean regions. The nutritional end points of Med-type eating appear to be achievable through foods from a variety of traditions and appear to support predetermined expectations surrounding food preparation, choice, taste and sensory appeal. The broad emphasis on minimally processed plants and their products (vegetables, fruit, legumes, wholegrains, nuts, seeds and oils); low fat dairy, fish, less emphasis on animal products and removal of partially hydrogenated fats has piqued the attention of health professionals who are interested in arresting the incidence of chronic disease. The theoretical underpinnings of Med-type eating have driven new understandings in dietary guidelines, which is especially timely as well-marketed fad diets loom large on the current health horizon.
NASA Astrophysics Data System (ADS)
Mayser, Jan Peter; Flecker, Rachel; Marzocchi, Alice; Kouwenhoven, Tanja J.; Lunt, Dan J.; Pancost, Rich D.
2017-03-01
Eastern Mediterranean sediments over the past 12 Myr commonly show strongly developed precessional cyclicity, thought to be a biogeochemical response to insolation-driven freshwater input from run-off. The Mediterranean's dominant freshwater source today and in the past, is the Nile, which is fed by North African monsoon rain; other, smaller, circum-Mediterranean rivers also contribute to Mediterranean hydrology. Crucially, run-off through all of these systems appears to vary with precession, but there is no direct evidence linking individual water sources to the biogeochemical response recorded in Mediterranean sediments. Consequently, it is not clear whether the North African monsoon is entirely responsible for the Mediterranean's sedimentary cyclicity, or whether other, precessional signals, such as Atlantic storm precipitation, drive it. Organic matter in sediments derives from both marine and terrestrial sources and biomarker analysis can be used to discriminate between the two, thereby providing insight into sedimentary and ecological processes. We analysed a wide range of lipids from the Late Miocene (6.6-5.9 Ma) Pissouri section, southern Cyprus, and reconstructed the vegetation supplied to this region by measuring the carbon isotopes of the terrestrial component to identify its geographic source. BIT (Branched-Isoprenoidal-Tetraether) indices reflect changes in the relative abundance of marine vs terrestrial (soil) organic matter inputs, and with the exception of records from the last deglaciation, this work is the first application of the BIT approach to the reconstruction of orbital impacts on sedimentological processes. BIT indices show that the organic matter supplied to Cyprus changed over the course of each precession cycle and was dominantly terrestrial during insolation maxima when North African run-off was enhanced. The δ13C values from these intervals are compatible with tropical North African vegetation. However, the δ13C record indicates that during insolation minima, organic material supplied to southern Cyprus derives from a more arid source region. This is likely to have been aeolian-transported organic matter from the Anatolian Plateau demonstrating that even in Mediterranean sedimentary systems influenced by Nile run-off, there is more than one independent precessional organic matter contribution to the sedimentary cyclicity. Pissouri's organic geochemistry also illustrates a long-term trend towards more saline Mediterranean conditions during the 600 kyr leading up to the Messinian Salinity Crisis.
NASA Astrophysics Data System (ADS)
Santos, A. M. P. A.; Nieblas, A. E.; Verley, P.; Teles-Machado, A.; Bonhommeau, S.; Lett, C.; Garrido, S.; Peliz, A.
2017-12-01
The European sardine (Sardina pilchardus) is the most important small pelagic fishery of the Western Iberia Upwelling Ecosystem (WIUE). Recently, recruitment of this species has declined due to changing environmental conditions. Furthermore, controversies exist regarding its population structure with barriers thought to exist between the Atlantic-Iberian Peninsula, Northern Africa, and the Mediterranean. Few studies have investigated the transport and dispersal of sardine eggs and larvae off Iberia and the subsequent impact on larval recruitment variability. Here, we examine these issues using a Regional Ocean Modeling System climatology (1989-2008) coupled to the Lagrangian transport model, Ichthyop. Using biological parameters from the literature, we conduct simulations that investigate the effects of spawning patchiness, diel vertical migration behaviors, and egg buoyancy on the transport and recruitment of virtual sardine ichthyoplankton on the continental shelf. We find that release area, release depth, and month of release all significantly affect recruitment. Patchiness has no effect and diel vertical migration causes slightly lower recruitment. Egg buoyancy effects are significant and act similarly to depth of release. As with other studies, we find that recruitment peaks vary by latitude, explained here by the seasonal variability of offshore transport. We find weak, continuous alongshore transport between release areas, though a large proportion of simulated ichthyoplankton transport north to the Cantabrian coast (up to 27%). We also show low level transport into Morocco (up to 1%) and the Mediterranean (up to 8%). The high proportion of local retention and low but consistent alongshore transport supports the idea of a series of metapopulations along this coast. This study was supported by the Portuguese Science and Technology Foundation (FCT) through the research project MODELA (PTDC/MAR/098643/2008) and MedEx (MARIN-ERA/MAR/0002/2008). MedEx is also a project of the EC FP6 ERA-NET Program. This study also contributes to the FCT funded Strategic Project Pest-OE/MAR/UI0199/2011 and UID/Multi/04326/2013. SG was supported by FCT throughout research contract IF/01546/2015. ATM was supported by FCT throughout the PhD grant SFRH/BD/40142/2007.
Schaffhauser, Alice; Pimont, François; Curt, Thomas; Cassagne, Nathalie; Dupuy, Jean-Luc; Tatoni, Thierry
2015-12-01
Past fire recurrence impacts the vegetation structure, and it is consequently hypothesized to alter its future fire behaviour. We examined the fire behaviour in shrubland-forest mosaics of southeastern France, which were organized along a range of fire frequency (0 to 3-4 fires along the past 50 years) and had different time intervals between fires. The mosaic was dominated by Quercus suber L. and Erica-Cistus shrubland communities. We described the vegetation structure through measurements of tree height, base of tree crown or shrub layer, mean diameter, cover, plant water content and bulk density. We used the physical model Firetec to simulate the fire behaviour. Fire intensity, fire spread, plant water content and biomass loss varied significantly according to fire recurrence and vegetation structure, mainly linked to the time since the last fire, then the number of fires. These results confirm that past fire recurrence affects future fire behaviour, with multi-layered vegetation (particularly high shrublands) producing more intense fires, contrary to submature Quercus woodlands that have not burnt since 1959 and that are unlikely to reburn. Further simulations, with more vegetation scenes according to shrub and canopy covers, will complete this study in order to discuss the fire propagation risk in heterogeneous vegetation, particularly in the Mediterranean area, with a view to a local management of these ecosystems. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Castelló, Adela; Boldo, Elena; Pérez-Gómez, Beatriz; Lope, Virginia; Altzibar, Jone M; Martín, Vicente; Castaño-Vinyals, Gemma; Guevara, Marcela; Dierssen-Sotos, Trinidad; Tardón, Adonina; Moreno, Víctor; Puig-Vives, Montserrat; Llorens-Ivorra, Cristóbal; Alguacil, Juan; Gómez-Acebo, Inés; Castilla, Jesús; Gràcia-Lavedán, Esther; Dávila-Batista, Verónica; Kogevinas, Manolis; Aragonés, Nuria; Amiano, Pilar; Pollán, Marina
2017-09-01
To externally validate the previously identified effect on breast cancer risk of the Western, Prudent and Mediterranean dietary patterns. MCC-Spain is a multicase-control study that collected epidemiological information on 1181 incident cases of female breast cancer and 1682 healthy controls from 10 Spanish provinces. Three dietary patterns derived in another Spanish case-control study were analysed in the MCC-Spain study. These patterns were termed Western (high intakes of fatty and sugary products and red and processed meat), Prudent (high intakes of low-fat dairy products, vegetables, fruits, whole grains and juices) and Mediterranean (high intake of fish, vegetables, legumes, boiled potatoes, fruits, olives, and vegetable oil, and a low intake of juices). Their association with breast cancer was assessed using logistic regression models with random province-specific intercepts considering an interaction with menopausal status. Risk according to tumour subtypes - based on oestrogen (ER), progesterone (PR) and human epidermal growth factor 2 (HER2) receptors (ER+/PR+ & HER2-; HER2+; ER-/PR- & HER2-) - was evaluated with multinomial regression models. Breast cancer and histological subtype. Our results confirm most of the associations found in the previous case-control study. A high adherence to the Western dietary pattern seems to increase breast cancer risk in both premenopausal women (OR 4 th vs.1 st quartile (95% CI):1.68 (1.02;2.79); OR 1SD-increase (95% CI):1.19 (1.02;1.40)) and postmenopausal women (OR 4 th vs.1 st quartile (95% CI):1.48(1.07;2.05); OR 1SD-increase (95% CI): 1.14 (1.01;1.29)). While high adherence to the Prudent pattern did not show any effect on breast cancer, the Mediterranean dietary pattern seemed to be protective, but only among postmenopausal women (OR 4 th vs.1 st quartile (95% CI): 0.72 (95% CI 0.53;0.98); p-int=0.075). There were no significant differences by tumour subtype. Dietary recommendations based on a departure from the Western dietary pattern in favour of the Mediterranean diet could reduce breast cancer risk in the general population. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of vegetation dynamic modeling on the allocation of green and blue waters
NASA Astrophysics Data System (ADS)
Ruiz-Pérez, Guiomar; Francés, Félix
2015-04-01
The long history of the Mediterranean region is dominated by the interactions and co-evolution between man and its natural environment. It is important to consider that the Mediterranean region is recurrently or permanently confronted with the scarcity of the water. The issue of climate change is (and will be) aggravating this situation. This raises the question of a loss of services that ecosystems provide to human and also the amount of available water to be used by vegetation. The question of the water cycle, therefore, should be considered in an integrated manner by taking into account both blue water (water in liquid form used for the human needs or which flows into the oceans) and green water (water having the vapor for resulting from evaporation and transpiration processes). In spite of this, traditionally, very few hydrological models have incorporated the vegetation dynamic as a state variable. In fact, most of them are able to represent fairly well the observed discharge, but usually including the vegetation as a static parameter. However, in the last decade, the number of hydrological models which explicitly take into account the vegetation development as a state variable has increased substantially. In this work, we want to analyze if it is really necessary to use a dynamic vegetation model to quantify adequately the distribution of water into blue and green water. The study site is located in the Public Forest Monte de la Hunde y Palomeras (Spain). The vegetation in the study area is dominated by Aleppo pine of high tree density with scant presence of other species. Two different daily models were applied (with static and dynamic vegetation representation respectively) in three different scenarios: dry year (2005), normal year (2008) and wet year (2010). The static vegetation model simulates the evapotranspiration considering the vegetation as a stationary parameter. Contrarily, the dynamic vegetation model connects the hydrological model with a parsimonious dynamic vegetation sub-model which assumes the vegetation biomass as a state variable. Using both models, we estimated the amount of 'blue' water and the amount of 'green' water (according to the previous definitions) in each scenario. Comparing the results, we observed that the static model underestimated the amount of green water in any case (dry, normal or wet year). In fact, the value of the ratio between blue and green water is higher in all scenarios for the static option (0.23 in the dry year, 0.42 in the normal year and 0.96 in the wet year) than the obtained ones for the dynamic model (0.098, 0.29 and 0.76, respectively). It means that we are overestimating the amount of water available for human needs if we assume vegetation as static. This type of error can be very dangerous for water resources predictions with future climates, especially in Mediterranean areas due to their water scarcity.
Searching trans-resveratrol in fruits and vegetables: a preliminary screening.
Sebastià, Natividad; Montoro, Alegría; León, Zacarías; Soriano, Jose M
2017-03-01
Resveratrol is a phytoalexin with potent anti-inflammatory, anti-oxidant and anti-carcinogenic effects. The object of this work was to determine whether this promising compound was present in the typical fruits and vegetables used in the Mediterranean diet. Our results indicated the presence of trans -resveratrol in concentrations ranging from 0.2 µg/g in tomatoes and 3 lg/g. in strawberries.
American Indian influence on fire regimes in Calfornia's coastal ranges
Keeley, Jon E.
2004-01-01
Understanding the historical pattern of human impacts on landscapes is critical to correctly interpreting the ecological basis for vegetation distribution. In some parts of the world, such as the Mediterranean Basin, a long and intensive utilization of resources has greatly altered the distribution of forests and woodlands. Was vegetation distribution in the coastal ranges of California similarly influenced by humans before Euro-American colonization?
Barbera, Antonio C; Borin, Maurizio; Cirelli, Giuseppe L; Toscano, Attilio; Maucieri, Carmelo
2015-02-01
This study investigates carbon dioxide (CO2) and methane (CH4) emissions and carbon (C) budgets in a horizontal subsurface flow pilot-plant constructed wetland (CW) with beds vegetated with Cyperus papyrus L., Chrysopogon zizanioides (L.) Roberty, and Mischantus × giganteus Greef et Deu in the Mediterranean basin (Sicily) during the 1st year of plant growing season. At the end of the vegetative season, M. giganteus showed the higher biomass accumulation (7.4 kg m(-2)) followed by C. zizanioides (5.3 kg m(-2)) and C. papyrus (1.8 kg m(-2)). Significantly higher emissions of CO2 were detected in the summer, while CH4 emissions were maximum during spring. Cumulative CO2 emissions by C. papyrus and C. zizanioides during the monitoring period showed similar trends with final values of about 775 and 1,074 g m(-2), respectively, whereas M. giganteus emitted 3,395 g m(-2). Cumulative CH4 bed emission showed different trends for the three C4 plant species in which total gas release during the study period was for C. papyrus 12.0 g m(-2) and ten times higher for M. giganteus, while C. zizanioides bed showed the greatest CH4 cumulative emission with 240.3 g m(-2). The wastewater organic carbon abatement determined different C flux in the atmosphere. Gas fluxes were influenced both by plant species and monitored months with an average C-emitted-to-C-removed ratio for C. zizanioides, C. papyrus, and M. giganteus of 0.3, 0.5, and 0.9, respectively. The growing season C balances were positive for all vegetated beds with the highest C sequestered in the bed with M. giganteus (4.26 kg m(-2)) followed by C. zizanioides (3.78 kg m(-2)) and C. papyrus (1.89 kg m(-2)). To our knowledge, this is the first paper that presents preliminary results on CO2 and CH4 emissions from CWs vegetated with C4 plant species in Mediterranean basin during vegetative growth.
NASA Astrophysics Data System (ADS)
Azuara, J.; Combourieu-Nebout, N.; Lebreton, V.; Mazier, F.; Müller, S. D.; Dezileau, L.
2015-09-01
Holocene climate fluctuations and human activities since the Neolithic have shaped present-day Mediterranean environments. Separating anthropogenic effects from climatic impacts to reconstruct Mediterranean paleoenvironments over the last millennia remains a challenging issue. High resolution pollen analyses were undertaken on two cores from the Palavasian lagoon system (Hérault, southern France). These records allow reconstruction of vegetation dynamics over the last 4500 years. Results are compared with climatic, historical and archeological archives. A long-term aridification trend is highlighted during the Late Holocene and three superimposed arid events are recorded at 4600-4300, 2800-2400 and 1300-1100 cal BP. These periods of climatic instability coincide in time with the rapid climatic events depicted in the Atlantic Ocean (Bond et al., 2001). From the Bronze Age (4000 cal BP) to the end of the Iron Age (around 2000 cal BP), the spread of evergreen taxa and loss of forest cover result from anthropogenic impact. The Antiquity is characterized by a major reforestation event related to the concentration of rural activities and populations in coastal plains leading to forest recovery in the mountains. A major regional deforestation occurred at the beginning of the High Middle Ages. Around 1000 cal BP, forest cover is minimal while cover of olive, chestnut and walnut expands in relation to increasing human influence. The present day vegetation dominated by Mediterranean shrubland and pines has been in existence since the beginning of the 20th century.
NASA Astrophysics Data System (ADS)
Azuara, J.; Combourieu-Nebout, N.; Lebreton, V.; Mazier, F.; Müller, S. D.; Dezileau, L.
2015-12-01
Holocene climate fluctuations and human activity since the Neolithic have shaped present-day Mediterranean environments. Separating anthropogenic effects from climatic impacts to better understand Mediterranean paleoenvironmental changes over the last millennia remains a challenging issue. High-resolution pollen analyses were undertaken on two cores from the Palavasian lagoon system (Hérault, southern France). These records allow reconstruction of vegetation dynamics over the last 4500 years. Results are compared with climatic, historical and archeological archives. A long-term aridification trend is highlighted during the late Holocene, and three superimposed arid events are recorded at 4600-4300, 2800-2400 and 1300-1100 cal BP. These periods of high-frequency climate variability coincide in time with the rapid climatic events observed in the Atlantic Ocean (Bond et al., 2001). From the Bronze Age (4000 cal BP) to the end of the Iron Age (around 2000 cal BP), the spread of sclerophyllous taxa and loss of forest cover result from anthropogenic impact. Classical Antiquity is characterized by a major reforestation event related to the concentration of rural activity and populations in coastal plains leading to forest recovery in the mountains. A major regional deforestation occurred at the beginning of the High Middle Ages. Around 1000 cal BP, forest cover is minimal while the cover of olive, chestnut and walnut expands in relation to increasing human influence. The present-day vegetation dominated by Mediterranean shrubland and pines has been in existence since the beginning of the 20th century.
Sanz-Elorza, Mario; Dana, Elías D; González, Alberto; Sobrino, Eduardo
2003-08-01
Aerial images of the high summits of the Spanish Central Range reveal significant changes in vegetation over the period 1957 to 1991. These changes include the replacement of high-mountain grassland communities dominated by Festuca aragonensis, typical of the Cryoro-Mediterranean belt, by shrub patches of Juniperus communis ssp. alpina and Cytisus oromediterraneus from lower altitudes (Oro-Mediterranean belt). Climatic data indicate a shift towards warmer conditions in this mountainous region since the 1940s, with the shift being particularly marked from 1960. Changes include significantly higher minimum and maximum temperatures, fewer days with snow cover and a redistribution of monthly rainfall. Total yearly precipitation showed no significant variation. There were no marked changes in land use during the time frame considered, although there were minor changes in grazing species in the 19th century. It is hypothesized that the advance of woody species into higher altitudes is probably related to climate change, which could have acted in conjunction with discrete variations in landscape management. The pronounced changes observed in the plant communities of the area reflect the susceptibility of high-mountain Mediterranean species to environmental change.
NASA Astrophysics Data System (ADS)
Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.
2013-09-01
Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene < limonene < sabinene < ß-pinene). Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions, including reactive VOC species which are not easily detected by flux measurements, give reason to perform more screening at leaf level and, whenever possible, within the forests under ambient conditions.
NASA Astrophysics Data System (ADS)
Bracho-Nunez, A.; Knothe, N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.
2012-11-01
As volatile organic compounds (VOCs) significantly affect atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects), emission inventories defining regional and global biogenic VOC emission strengths are important. The aim of this work was to achieve a description of VOC emissions from poorly described tropical vegetation to be compared with the quite well investigated and highly heterogeneous emissions from Mediterranean vegetation. For this task, common plant species of both ecosystems were investigated. Sixteen plant species from the Mediterranean area, which is known for its special diversity in VOC emitting plant species, were chosen. In contrast, little information is currently available regarding emissions of VOCs from tropical tree species at the leaf level. Twelve plant species from different environments of the Amazon basin, i.e. Terra firme, Várzea and Igapó, were screened for emission of VOCs at leaf level with a branch enclosure system. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was quantitatively the most dominant compound emitted followed by monoterpenes, methanol and acetone. Most of the Mediterranean species emitted a variety of monoterpenes, whereas only five tropical species were monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene > limonene > sabinene > β-pinene). Mediterranean plants showed additional emissions of sesquiterpenes, whereas in the case of plants from the Amazon region no sesquiterpenes were detected probably due to a lack of sensitivity in the measuring systems. On the other hand methanol emissions, an indicator of growth, were common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions including reactive VOC species which are not easily detected by flux measurements, give reason to perform more screening at leaf level and, whenever possible, within the forests under ambient conditions.
Sazzini, Marco; Gnecchi Ruscone, Guido Alberto; Giuliani, Cristina; Sarno, Stefania; Quagliariello, Andrea; De Fanti, Sara; Boattini, Alessio; Gentilini, Davide; Fiorito, Giovanni; Catanoso, Mariagrazia; Boiardi, Luigi; Croci, Stefania; Macchioni, Pierluigi; Mantovani, Vilma; Di Blasio, Anna Maria; Matullo, Giuseppe; Salvarani, Carlo; Franceschi, Claudio; Pettener, Davide; Garagnani, Paolo; Luiselli, Donata
2016-09-01
The Italian peninsula has long represented a natural hub for human migrations across the Mediterranean area, being involved in several prehistoric and historical population movements. Coupled with a patchy environmental landscape entailing different ecological/cultural selective pressures, this might have produced peculiar patterns of population structure and local adaptations responsible for heterogeneous genomic background of present-day Italians. To disentangle this complex scenario, genome-wide data from 780 Italian individuals were generated and set into the context of European/Mediterranean genomic diversity by comparison with genotypes from 50 populations. To maximize possibility of pinpointing functional genomic regions that have played adaptive roles during Italian natural history, our survey included also ~250,000 exomic markers and ~20,000 coding/regulatory variants with well-established clinical relevance. This enabled fine-grained dissection of Italian population structure through the identification of clusters of genetically homogeneous provinces and of genomic regions underlying their local adaptations. Description of such patterns disclosed crucial implications for understanding differential susceptibility to some inflammatory/autoimmune disorders, coronary artery disease and type 2 diabetes of diverse Italian subpopulations, suggesting the evolutionary causes that made some of them particularly exposed to the metabolic and immune challenges imposed by dietary and lifestyle shifts that involved western societies in the last centuries.
NASA Astrophysics Data System (ADS)
Mariani, Patrizio; MacKenzie, Brian R.; Iudicone, Daniele; Bozec, Alexandra
2010-07-01
Knowledge of early life history of most fish species in the Mediterranean Sea is sparse and processes affecting their recruitment are poorly understood. This is particularly true for bluefin tuna, Thunnus thynnus, even though this species is one of the world’s most valued fish species. Here we develop, apply and validate an individually based coupled biological-physical oceanographic model of fish early life history in the Mediterranean Sea. We first validate the general structure of the coupled model with a 12-day Lagrangian drift study of anchovy ( Engraulis encrasicolus) larvae in the Catalan Sea. The model reproduced the drift and growth of anchovy larvae as they drifted along the Catalan coast and yielded similar patterns as those observed in the field. We then applied the model to investigate transport and retention processes affecting the spatial distribution of bluefin tuna eggs and larvae during 1999-2003, and we compared modelled distributions with available field data collected in 2001 and 2003. Modelled and field distributions generally coincided and were patchy at mesoscales (10s-100s km); larvae were most abundant in eddies and along frontal zones. We also identified probable locations of spawning bluefin tuna using hydrographic backtracking procedures; these locations were situated in a major salinity frontal zone and coincided with distributions of an electronically tagged bluefin tuna and commercial bluefin tuna fishing vessels. Moreover, we hypothesized that mesoscale processes are responsible for the aggregation and dispersion mechanisms in the area and showed that these processes were significantly correlated to atmospheric forcing processes over the NW Mediterranean Sea. Interannual variations in average summer air temperature can reduce the intensity of ocean mesoscale processes in the Balearic area and thus potentially affect bluefin tuna larvae. These modelling approaches can increase understanding of bluefin tuna recruitment processes and eventually contribute to management of bluefin tuna fisheries.
NASA Astrophysics Data System (ADS)
Pellizzaro, Grazia; Ventura, Andrea; Bortolu, Sara; Duce, Pierpaolo
2017-04-01
Mediterranean shrubs are an important component of Mediterranean vegetation communities. In this kind of vegetation, live fuel is a relevant component of the available fuel which catches fire and, consequently, its water content plays an important role in determining fire occurrence and spread. In live plant, water content patterns are related to both environmental conditions (e.g. meteorological variables, soil water availability) and ecophysiological characteristics of the plant species. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel. In addition, variations in precipitation and mean temperature could directly affect fuel water status and length of critical periods of high ignition danger for Mediterranean ecosystems. The aims of this work were to analyse the influence of both weather seasonality and inter-annual weather variability on live fuel moisture content within and among some common Mediterranean species, and to investigate the effects of prolonged drought season on live moisture content dynamic. The study was carried out in North Sardinia (Italy). Measurements of LFMC seasonal pattern of two really common and flammable Mediterranean shrub species (Cistus monspeliensis and Rosmarinus officinalis) were performed periodically for 8 years. Meteorological variables were also recorded. Relationships between live fuel moisture content and environmental conditions (i.e. rainfall, air temperature and soil moisture) were investigated and effects of different lengths of drought season on LFMC pattern were analysed. Results showed that distribution and amount of rainfall affected seasonal variation of live fuel moisture content. In particular more prolonged drought seasons caused a longer period in which LFMC was below 95 -100% that is commonly considered as critical threshold for fire ignition and spread. This impact was particular evident at the begin of the autumn whereas a limited water availability in spring seemed to have less strongly influenced moisture content in the Mediterranean shrubs that we studied.
NASA Astrophysics Data System (ADS)
Fois, Laura; Montaldo, Nicola
2017-04-01
Soil moisture plays a key role in water and energy exchanges between soil, vegetation and atmosphere. For water resources planning and managementthesoil moistureneeds to be accurately and spatially monitored, specially where the risk of desertification is high, such as Mediterranean basins. In this sense active remote sensors are very attractive for soil moisture monitoring. But Mediterranean basinsaretypicallycharacterized by strong topography and high spatial variability of physiographic properties, and only high spatial resolution sensorsare potentially able to monitor the strong soil moisture spatial variability.In this regard the Envisat ASAR (Advanced Synthetic Aperture Radar) sensor offers the attractive opportunity ofsoil moisture mapping at fine spatial and temporal resolutions(up to 30 m, every 30 days). We test the ASAR sensor for soil moisture estimate in an interesting Sardinian case study, the Mulargia basin withan area of about 70 sq.km. The position of the Sardinia island in the center of the western Mediterranean Sea basin, its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. The Mulargia basin is a typical Mediterranean basinin water-limited conditions, and is an experimental basin from 2003. For soil moisture mapping23 satellite ASAR imagery at single and dual polarization were acquired for the 2003-2004period.Satellite observationsmay bevalidated through spatially distributed soil moisture ground-truth data, collected over the whole basin using the TDR technique and the gravimetric method, in days with available radar images. The results show that ASAR sensor observations can be successfully used for soil moisture mapping at different seasons, both wet and dry, but an accurate calibration with field data is necessary. We detect a strong relationship between the soil moisture spatial variability and the physiographic properties of the basin, such as soil water storage capacity, deep and texture of soils, type and density of vegetation, and topographic parameters. Finally we demonstrate that the high resolution ASAR imagery are an attractive tool for estimating surface soil moisture at basin scale, offering a unique opportunity for monitoring the soil moisture spatial variability in typical Mediterranean basins.
NASA Astrophysics Data System (ADS)
Sanz, Inés; Aguilar, Cristina; Millares, Agustín
2013-04-01
In the last fifty years, forest fires and changes in land use and management practices have had a significant influenceon the evolution of soil loss processes in the Mediterranean area. Forest fires have immediate effects in hydrological processes mainly due to sudden changes in soil properties and vegetation cover. After a fire there is an increase in runoff processes and peak flows and thus in the amount and composition of the sediments produced. Silting in dams downstream is often reported so the description of the post-fire hydrological processes is crucial in order to optimize decision making. This study analyzes a micro-watershed of 25 ha in the south of Spain that suffered a fire in October 2010 burning around a 2 km2 area. As the erosive processes in this area are directly related to concentrated overland flow, an indirect assessment of soil loss is presented in this work based on evaluating changes in runoff in Mediterranean post-fire situations. For this, the study is divided into two main parts. Firstly, changes in soil properties and vegetation cover are evaluated. Secondly, the effects of these changes in the hydrological and erosive dynamics are assessed.The watershed had been monitored in previous studies so soil properties and the vegetation cover before the fire took place were already characterized. Besides, the hydrological response was also available through an already calibrated and validated physically-based distributed hydrological model. For the evaluation of soil properties, field measurement campaigns were designed. Philip Dunne's tests for the determination of saturated hydraulic conductivity, as well as moisture content and bulk density measurements were carried out in both unaltered and burned soil samples. Changes in the vegetation cover fraction were assessed through desktop analysis of Landsat-TM5 platform satellite images as well as through visual inspection in the field campaigns. The analysis of the hydraulic conductivity revealed a reduction in post-fire values of near 90 % over those previous to the fire. Regarding the vegetation cover, the recovery of the burned covers, mainly herbaceous with some bushes, turned out to quick due to the wet character of the year. Nevertheless, an apparent decrease in the cover fraction and thus in the vegetation storage capacity was reported. These changes were incorporated into a new hydrological model configuration and compared to the response previous to the fire. The results point out the rainfall pattern to be a determinant factor in post-fire situation with an increase in modeled runoff of up to 350% and even more in dry years. These results have direct implications in soil erodibility changes in hillslopes as well as a considerable increase in bedload processes in Mediterranean alluvial rivers.
Stevens, Andrew W.; Lacy, Jessica R.; Finlayson, David P.; Gelfenbaum, Guy
2008-01-01
Seagrass at two sites in northern Puget Sound, Possession Point and nearby Browns Bay, was mapped using both a single-beam sonar and underwater video camera. The acoustic and underwater video data were compared to evaluate the accuracy of acoustic estimates of seagrass cover. The accuracy of the acoustic method was calculated for three classifications of seagrass observed in underwater video: bare (no seagrass), patchy seagrass, and continuous seagrass. Acoustic and underwater video methods agreed in 92 percent and 74 percent of observations made in bare and continuous areas, respectively. However, in patchy seagrass, the agreement between acoustic and underwater video was poor (43 percent). The poor agreement between the two methods in areas with patchy seagrass is likely because the two instruments were not precisely colocated. The distribution of seagrass at the two sites differed both in overall percent vegetated and in the distribution of percent cover versus depth. On the basis of acoustic data, seagrass inhabited 0.29 km2 (19 percent of total area) at Possession Point and 0.043 km2 (5 percent of total area) at the Browns Bay study site. The depth distribution at the two sites was markedly different. Whereas the majority of seagrass at Possession Point occurred between -0.5 and -1.5 m MLLW, most seagrass at Browns Bay occurred at a greater depth, between -2.25 and -3.5 m MLLW. Further investigation of the anthropogenic and natural factors causing these differences in distribution is needed.
Mediterranean dietary pattern and cancer risk in the EPIC cohort
Couto, E; Boffetta, P; Lagiou, P; Ferrari, P; Buckland, G; Overvad, K; Dahm, C C; Tjønneland, A; Olsen, A; Clavel-Chapelon, F; Boutron-Ruault, M-C; Cottet, V; Trichopoulos, D; Naska, A; Benetou, V; Kaaks, R; Rohrmann, S; Boeing, H; von Ruesten, A; Panico, S; Pala, V; Vineis, P; Palli, D; Tumino, R; May, A; Peeters, P H; Bueno-de-Mesquita, H B; Büchner, F L; Lund, E; Skeie, G; Engeset, D; Gonzalez, C A; Navarro, C; Rodríguez, L; Sánchez, M-J; Amiano, P; Barricarte, A; Hallmans, G; Johansson, I; Manjer, J; Wirfärt, E; Allen, N E; Crowe, F; Khaw, K-T; Wareham, N; Moskal, A; Slimani, N; Jenab, M; Romaguera, D; Mouw, T; Norat, T; Riboli, E; Trichopoulou, A
2011-01-01
Background: Although several studies have investigated the association of the Mediterranean diet with overall mortality or risk of specific cancers, data on overall cancer risk are sparse. Methods: We examined the association between adherence to Mediterranean dietary pattern and overall cancer risk using data from the European Prospective Investigation Into Cancer and nutrition, a multi-centre prospective cohort study including 142 605 men and 335 873. Adherence to Mediterranean diet was examined using a score (range: 0–9) considering the combined intake of fruits and nuts, vegetables, legumes, cereals, lipids, fish, dairy products, meat products, and alcohol. Association with cancer incidence was assessed through Cox regression modelling, controlling for potential confounders. Results: In all, 9669 incident cancers in men and 21 062 in women were identified. A lower overall cancer risk was found among individuals with greater adherence to Mediterranean diet (hazard ratio=0.96, 95% CI 0.95–0.98) for a two-point increment of the Mediterranean diet score. The apparent inverse association was stronger for smoking-related cancers than for cancers not known to be related to tobacco (P (heterogeneity)=0.008). In all, 4.7% of cancers among men and 2.4% in women would be avoided in this population if study subjects had a greater adherence to Mediterranean dietary pattern. Conclusion: Greater adherence to a Mediterranean dietary pattern could reduce overall cancer risk. PMID:21468044
Integration of ground and satellite data to model Mediterranean forest processes
NASA Astrophysics Data System (ADS)
Chiesi, M.; Fibbi, L.; Genesio, L.; Gioli, B.; Magno, R.; Maselli, F.; Moriondo, M.; Vaccari, F. P.
2011-06-01
The current work presents the testing of a modeling strategy that has been recently developed to simulate the gross and net carbon fluxes of Mediterranean forest ecosystems. The strategy is based on the use of a NDVI-driven parametric model, C-Fix, and of a biogeochemical model, BIOME-BGC, whose outputs are combined to simulate the behavior of forest ecosystems at different development stages. The performances of the modeling strategy are evaluated in three Italian study sites (San Rossore, Lecceto and Pianosa), where carbon fluxes are being measured through the eddy correlation technique. These sites are characterized by variable Mediterranean climates and are covered by different types of forest vegetation (pine wood, Holm oak forest and Macchia, respectively). The results of the tests indicate that the modeling strategy is generally capable of reproducing monthly GPP and NEE patterns in all three study sites. The highest accuracy is obtained in the most mature, homogenous pine wood of San Rossore, while the worst results are found in the Lecceto forest, where there are the most heterogeneous terrain, soil and vegetation conditions. The main error sources are identified in the inaccurate definition of the model inputs, particularly those regulating the site water budgets, which exert a strong control on forest productivity during the Mediterranean summer dry season. In general, the incorporation of NDVI-derived fAPAR estimates corrects for most of these errors and renders the forest flux simulations more stable and accurate.
NASA Astrophysics Data System (ADS)
De Mei, Massimiliano; Di Mauro, Mariaida
2006-07-01
Natural recovery of worked-out or closed municipal solid waste (MSW) landfills is a current topic, but knowledge about the adaptability of Mediterranean vegetation species to such stressful conditions is still quite poor. Autochthonous plants were selected to withstand the stresses such as hot climate and drought typical of Mediterranean areas; this characteristic potentially allows the plants an easier, efficient adaptation. Our aim was to provide information in order to obtain an adequate quality of environmental renewal of a landfill and a reduced management cost while ensuring rehabilitation to an acceptable naturalistic state. The investigation lasted 3 years; some Mediterranean scrub native plant species were selected and monitored in their morphological (total and relative height, basal diameter, number of inter-nodes) and physiological (photosynthetic rate and water potential) activity. In order to test dependence on CO 2 concentration, different meteorological parameters were also monitored. Ceratonia siliqua, Phillyrea latifolia, Olea europaea and Quercus ilex showed considerable adaptability, reacting positively to every improvement in environmental conditions, particularly those of a meteorological nature. Survival and growth was satisfactory in Hedysarum coronarium, Medicago sativa, Lotus corniculatus, Rosmarinus officinalis, Myrtus communis and Viburnum tinus. Fraxinus ornus and Acer campestre suffered stress during the summer dry period and recovered quickly when atmospheric conditions improved. A drop irrigation system to ensure a satisfactory soil moisture during summer dry periods was the fundamental element for survival.
A coupled vegetation/sediment transport model for dryland environments
NASA Astrophysics Data System (ADS)
Mayaud, Jerome R.; Bailey, Richard M.; Wiggs, Giles F. S.
2017-04-01
Dryland regions are characterized by patchy vegetation, erodible surfaces, and erosive aeolian processes. Understanding how these constituent factors interact and shape landscape evolution is critical for managing potential environmental and anthropogenic impacts in drylands. However, modeling wind erosion on partially vegetated surfaces is a complex problem that has remained challenging for researchers. We present the new, coupled cellular automaton Vegetation and Sediment TrAnsport (ViSTA) model, which is designed to address fundamental questions about the development of arid and semiarid landscapes in a spatially explicit way. The technical aspects of the ViSTA model are described, including a new method for directly imposing oblique wind and transport directions onto a cell-based domain. Verification tests for the model are reported, including stable state solutions, the impact of drought and fire stress, wake flow dynamics, temporal scaling issues, and the impact of feedbacks between sediment movement and vegetation growth on landscape morphology. The model is then used to simulate an equilibrium nebkha dune field, and the resultant bed forms are shown to have very similar size and spacing characteristics to nebkhas observed in the Skeleton Coast, Namibia. The ViSTA model is a versatile geomorphological tool that could be used to predict threshold-related transitions in a range of dryland ecogeomorphic systems.
Kim, Youngyo; Je, Youjin
2018-03-21
Findings from studies in Western countries showed that Mediterranean diet is inversely associated with metabolic syndrome, but little is known about this association in Asian countries. To evaluate the association between Mediterranean diet and metabolic syndrome in Korean population, this study was conducted. A total of 8387 adults 19-64 years of age from the Korea National Health and Nutrition Examination Survey 2012-2015 were assessed. A 112-item dish-based semiquantitative food frequency questionnaire was used to assess dietary intakes. Mediterranean diet was assessed by a modified Mediterranean diet score, which was based on the alternate Mediterranean diet score of Fung et al. Multivariable logistic regression models were used to calculate odds ratios (ORs) with 95% confidence intervals (CIs) adjusted for other dietary and lifestyle variables. Participants with 5-6 and 7 or higher modified Mediterranean diet scores had a lower prevalence of metabolic syndrome by 27% (OR = 0.73, 95% CI: 0.56-0.96) and 36% (OR = 0.64, 95% CI: 0.46-0.89; P-trend = 0.0031), compared with those with 2 or lower modified Mediterranean diet scores, respectively. Higher modified Mediterranean diet scores were associated with a lower prevalence of abdominal obesity and hypertriglyceridemia, which are components of metabolic syndrome CONCLUSIONS: Our findings suggest that diet rich in fruit, vegetables, whole grains, legumes, peanuts and fish is associated with a lower prevalence of metabolic syndrome in Korean adults.
Mediterranean diet and life expectancy; beyond olive oil, fruits and vegetables
Martinez-Gonzalez, Miguel A.; Martín-Calvo, Nerea
2018-01-01
Purpose to review the recent relevant evidence of the effects of the Mediterranean diet and lifestyle on health (2015 and first months of 2016). Recent findings Large observational prospective epidemiological studies with adequate control of confounding and two large randomized trials support the benefits of the Mediterranean dietary pattern to increase life expectancy, reduce the risk of major chronic disease, and improve quality of life and well-being. Recently, 19 new reports from large prospective studies showed –with nearly perfect consistency– strong benefits of the Mediterranean diet to reduce the risk of myocardial infarction, stroke, total mortality, heart failure and disability. Interestingly, two large and well-conducted cohorts reported significant cardiovascular benefits after using repeated measurements of diet during a long follow-up period. Besides, PREDIMED, the largest randomized trial with Mediterranean diet, recently reported benefits of this dietary pattern to prevent cognitive decline and breast cancer. Summary In the era of evidence-based medicine, the Mediterranean diet represents the gold standard in preventive medicine, probably due to the harmonic combination of many elements with antioxidant and antiinflammatory properties, which overwhelm any single nutrient or food item. The whole seems more important than the sum of its parts. PMID:27552476
Holocene fire activity and vegetation response in South-Eastern Iberia
NASA Astrophysics Data System (ADS)
Gil-Romera, Graciela; Carrión, José S.; Pausas, Juli G.; Sevilla-Callejo, Miguel; Lamb, Henry F.; Fernández, Santiago; Burjachs, Francesc
2010-05-01
Since fire has been recognized as an essential disturbance in Mediterranean landscapes, the study of long-term fire ecology has developed rapidly. We have reconstructed a sequence of vegetation dynamics and fire changes across south-eastern Iberia by coupling records of climate, fire, vegetation and human activities. We calculated fire activity anomalies (FAAs) in relation to 3 ka cal BP for 10-8 ka cal BP, 6 ka cal BP, 4 ka cal BP and the present. For most of the Early to the Mid-Holocene uneven, but low fire events were the main vegetation driver at high altitudes where broadleaved and coniferous trees presented a highly dynamic post-fire response. At mid-altitudes in the mainland Segura Mountains, fire activity remained relatively stable, at similar levels to recent times. We hypothesize that coastal areas, both mountains and lowlands, were more fire-prone landscapes as biomass was more likely to have accumulated than in the inland regions, triggering regular fire events. The wet and warm phase towards the Mid-Holocene (between ca 8 and 6 ka cal BP) affected the whole region and promoted the spread of mesophytic forest co-existing with Pinus, as FAAs appear strongly negative at 6 ka cal BP, with a less important role of fire. Mid and Late Holocene landscapes were shaped by an increasing aridity trend and the rise of human occupation, especially in the coastal mountains where forest disappeared from ca 2 ka cal BP. Mediterranean-type vegetation (evergreen oaks and Pinus pinaster- halepensis types) showed the fastest post-fire vegetation dynamics over time.
Woodlands Grazing Issues in Mediterranean Basin
NASA Astrophysics Data System (ADS)
Campos, P.
2009-04-01
In Mediterranean basin, woodlands grazing still continue to be important commercial owners' benefits. These owners manage woodlands vegetations as if they were not at risk of degradation and declining. Frequently, no temporally grazing set-aside is taken into account to avoid overgrazing of annual and perennial vegetations. Although less common, in the northern shore of Mediterranean basin undergrazing might increase the frequency and the number of catastrophic forest fires. This under/over grazing regime occurs in the Mediterranean basin woodlands with contrasted differences on land property rights, local economies and government livestock policy incentives. Spain and Tunisia are examples of these Mediterranean livestock contrasts. Most of Spanish Mediterranean woodlands and livestock herds are large private ownerships and owners could maintain their lands and livestock herds properties on the basis of moderate cash-income compensation against land revaluation and exclusive amenity self-consumption. The later is less tangible benefit and it could include family land legacy, nature enjoyment, country stile of life development, social status and so on. In public woodlands, social and environmental goals -as they are cultural heritage, biodiversity loss mitigation, soil conservation and employment- could maintain market unprofitable woodlands operations. Last three decades Spanish Mediterranean woodlands owners have increased the livestock herds incentivized by government subsidies. As result, grazing rent is pending on the level of European Union and Spanish government livestock subsidies. In this context, Spanish Mediterranean woodlands maintain a high extensive livestock stoking population, which economy could be called fragile and environmentally unsustainable because forest degradation and over/under grazing practices. Tunisian Mediterranean woodlands are state properties and livestock grazing is practice as a free private regimen. Livestock herds are small herd's family ownerships. These poor livestockeepers could maintain their livestock regimen on the basis of low cash-income earnings and crops self-consumption in extremely poor family living conditions. In this state woodlands, social an environmental goals -as they were noted above- could generate high trade off between family basic needs and soil degradation because woodlands and crops operations. As result, grazing rent is pending on the low opportunity cost for family labour. In this context, Tunisian Mediterranean woodlands maintain the highest livestock rate population, which woodland economy could be called for poor people subsistence and environmentally unsustainable because soil erosion, forest degradation and over/under grazing. These study present three study cases where Mediterranean basin grazing resources economies are analyzed in the contexts of Tunisian developing economy (Iteimia woodlands, North West of Tunisia) and Spanish developed economy (Jerez de la Frontera and Monfragüe woodlands, South and West of Spain). The results show the crucial role that livestock (goat, sheep and cattle) play in maintaining the working Mediterranean woodlands landscape. People, woodlands and livestock grazing dependences are changing so fast in Mediterranean basin that they appear too complex for being accurately forecasting by rangeland economists. In this context, perhaps a question might be a more suitable concluding remark: ¿will does woodlands extensive livestock become a quasi-wild management for urban landowners pleasure aims in rich Mediterranean basin countries?
Scognamiglio, Monica; Fiumano, Vittorio; D'Abrosca, Brigida; Esposito, Assunta; Choi, Young Hae; Verpoorte, Robert; Fiorentino, Antonio
2014-10-01
Allelopathy is the chemical mediated communication among plants. While on one hand there is growing interest in the field, on the other hand it is still debated as doubts exist at different levels. A number of compounds have been reported for their ability to influence plant growth, but the existence of this phenomenon in the field has rarely been demonstrated. Furthermore, only few studies have reported the uptake and the effects at molecular level of the allelochemicals. Allelopathy has been reported on some plants of Mediterranean vegetation and could contribute to structuring this ecosystem. Sixteen plants of Mediterranean vegetation have been selected and studied by an NMR-based metabolomics approach. The extracts of these donor plants have been characterized in terms of chemical composition and the effects on a selected receiving plant, Aegilops geniculata, have been studied both at the morphological and at the metabolic level. Most of the plant extracts employed in this study were found to have an activity, which could be correlated with the presence of flavonoids and hydroxycinnamate derivatives. These plant extracts affected the receiving plant in different ways, with different rates of growth inhibition at morphological level. The results of metabolomic analysis of treated plants suggested the induction of oxidative stress in all the receiving plants treated with active donor plant extracts, although differences were observed among the responses. Finally, the uptake and transport into receiving plant leaves of different metabolites present in the extracts added to the culture medium were observed. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dümenil Gates, Lydia; Ließ, Stefan
2001-10-01
For two reasons it is important to study the sensitivity of the global climate to changes in the vegetation cover over land. First, in the real world, changes in the vegetation cover may have regional and global implications. Second, in numerical simulations, the sensitivity of the simulated climate may depend on the specific parameterization schemes employed in the model and on the model's large-scale systematic errors. The Max-Planck-Institute's global general circulation model ECHAM4 has been used to study the sensitivity of the local and global climate during a full annual cycle to deforestation and afforestation in the Mediterranean region. The deforestation represents an extreme desertification scenario for this region. The changes in the afforestation experiment are based on the pattern of the vegetation cover 2000 years before present when the climate in the Mediterranean was more humid. The comparison of the deforestation integration to the control shows a slight cooling at the surface and reduced precipitation during the summer as a result of less evapotranspiration of plants and less evaporation from the assumption of eroded soils. There is no significant signal during the winter season due to the stronger influence of the mid-latitude baroclinic disturbances. In general, the results of the afforestation experiment are opposite to those of the deforestation case. A significant response was found in the vicinity of grid points where the land surface characteristics were modified. The response in the Sahara in the afforestation experiment is in agreement with the results from other general circulation model studies.
NASA Astrophysics Data System (ADS)
Ramos Román, M. J.; Jimenez-Moreno, G.; Anderson, R. S.; García-Alix, A.; Toney, J. L.; Jiménez-Espejo, F. J. J.; Carrión, J. S.
2015-12-01
Sediments from alpine peat bogs and lakes from the Sierra Nevada in southeastern Spain (western Mediterranean area) have been very informative in terms of how vegetation and wetland environments were impacted by past climate change. Recently, many studies try to find out the relationship between solar activity, atmosphere and ocean dynamics and changes in the terrestrial environments. The Mediterranean is a very sensitive area with respect to atmospheric dynamics due to (1) its location, right in the boundary between subtropical and temperate climate systems and (2) the North Atlantic Oscillation (NAO) is one of the main mechanism that influence present climate in this area. Here we present a multi-proxy high-resolution study from Borreguil de la Caldera (BdlC), a peat bog that records the last ca. 4500 cal yr BP of vegetation, fire, human impact and climate history from the Sierra Nevada. The pollen, charcoal and non-pollen palynomorphs (NPPs) reconstruction in the BdlC-01 record evidence relative humidity changes in the last millennia interrupting the late Holocene aridification trend. This study shows a relative arid period between ca. 4000 and 3100 cal yr BP; the Iberian Roman humid period (ca. 2600 to 1600 cal yr BP); a relative arid period during the Dark Ages (from ca. AD 500 to AD 900) and Medieval Climate Anomaly (from ca. AD 900 to ca. AD 1300) and predominantly wetter conditions corresponding with The Little Ice Age period (from ca. AD 1300 to AD 1850). This climate variability could be explained by centennial scale changes in the NAO and solar activity.
Using synthetic polymers to reduce soil erosion after forest fires in Mediterranean soils
NASA Astrophysics Data System (ADS)
Lado, Marcos; Ben-Hur, Meni; Inbar, Assaf
2010-05-01
Forest fires are a major environmental problem in the Mediterranean region because they result in a loss of vegetation cover, changes in biodiversity, increases in greenhouse gasses emission and a potential increase of runoff and soil erosion. The large increases in runoff and sediment yields after high severity fires have been attributed to several factors, among them: increase in soil water repellency; soil sealing by detached particles and by ash particles, and the loss of a surface cover. The presence of a surface cover increases infiltration, and decreases runoff and erosion by several mechanisms which include: rainfall interception, plant evapotranspiration, preservation of soil structure by increasing soil organic matter, and increasing surface roughness. The loss of vegetation cover as a result of fire leaves the surface of the soil exposed to the direct impact of the raindrops, and therefore the sensitivity of the soil to runoff generation and soil loss increases. In this work, we propose a new method to protect soils against post-fire erosion based on the application of synthetic polymers to the soil. Laboratory rainfall simulations and field runoff plots were used to analyze the suitability of the application of synthetic polymers to reduce soil erosion and stabilize soil structure in Mediterranean soils. The combination of these two processes will potentially favor a faster recovery of the vegetation structure. This method has been successfully applied in arable land, however it has not been tested in burnt forests. The outcome of this study may provide important managerial tools for forest management following fires.
The Paleo-Anthropocene in the East Mediterranean
NASA Astrophysics Data System (ADS)
Ackermann, Oren; Frumin, Suembikya; Kolska Horwitz, Liora; Maeir, Aren M.; Weiss, Ehud; Zhevelev, Helena M.
2015-04-01
The East Mediterranean region is located in a transition zone between the sub-humid Mediterranean climate and the semi-arid and arid climates. During the last few Millennia, this area has witnessed human activities at various levels of intensity that have affected the landscape system evolution. For this reason, the given region is an excellent example of an anthropogenic landscape that has been shaped since the Paleo-Anthropocene and until today. The lecture will present a few milestones that demonstrate the ancient anthropogenic impact on various landscape components including physical structure and vegetation and fauna composition and patterns. Physical structure Site density increased dramatically from prehistoric times through to the Byzantine period, when it reached more than 5 sites/km2. Agricultural terraces cover more than 50% of the slopes in the main ridge slope. Vegetation patterns and composition Ancient activities that altered the physical structure had an impact on vegetation patterns that remain visible today. Human land use over history changed the vegetation composition, as revealed in archaeobotanical finds and pollen analysis. For example, changes in conditions during the Neolithic period, at the beginning of agriculture, can be seen by the appearance of weeds. In later periods, the planting of olive trees changed the vegetation composition which has an effect until today. The area also underwent human transitions, as many cultures appeared and inhabited the area. These cultures at times brought with them plants associated specifically with these cultures (e.g. the Philistines). Fauna extinction and invasion There are a few example of species extinction that occurred in the past as a result of mass hunting and killing; for example, the extinction of the Gazella subgutturosa in North Syria. In addition, there is evidence that ancient cultures brought animal species with them. For example, the Philistines that came to the area during the early Iron Age brought with them the European Boar. This species eventually became the dominant type in the area, affecting other species as well. All of these incidents are evidence of the ancient anthropogenic impact on the landscape in ancient times and until today.
NASA Astrophysics Data System (ADS)
Falcini, Federico; Palatella, Luigi; Cuttitta, Angela; Bignami, Francesco; Patti, Bernardo; Santoleri, Rosalia; Fiorentino, Fabio
2014-05-01
The European Anchovy (Engraulis encrasicolus, Linnaeus, 1758) is one of the most important resources of the Mediterranean Sea. Despite its abundance and relevance, the anchovy population off the Mediterranean coasts exhibits a patchy distribution. Moreover, its biology and the influence of environment on its variability is poorly known. We here use data from ichthyoplankton-surveys carried out during the peak spawning season in order to analyze abundance and age of anchovy larvae in the Strait of Sicily, with respect to sea surface dynamic and hydrographic parameter patterns. The Strait of Sicily dynamics is characterized by upwelling regions, fronts, vortices, and filaments, with a consequent complexity in the spatial distribution of oceanographic parameters and anchovy larvae. To investigate the role of mesoscale features and oceanographic environment on the latter, anchovy larvae observations were paired to remote sensing data (such as sea surface temperature, chlorophyll, primary production, surface wind speed as well as light attenuation, absorption, and particle backscattering coefficients) and Lagrangian and Eulerian numerical simulations results for ocean currents and larval transport. The subsequent analysis shows and quantifies how the Atlantic Ionian Stream (AIS, a meandering current of Atlantic origin) path and variability, as well as the upwelling-induced south Sicilian coastal current, have consequences for anchovy spawning and larvae distribution. These currents transport anchovy larvae towards the Sicilian coast's south-eastern tip, where larvae are then retained in a frontal structure. However, significant cross-shore transport events due to relatively cold filament-like baroclinic instabilities generated by wind-induced coastal upwelling were also observed. Finally, the larval age distribution qualitatively agrees well with this transport pattern.
Impact of vegetation types on soil organic carbon stocks SOC-S in Mediterranean natural areas
NASA Astrophysics Data System (ADS)
Parras-Alcántara, Luis; Lozano-García, Beatriz; Cantudo-Pérez, Marta
2015-04-01
Soils play a key role in the carbon geochemical cycle because they can either emit large quantities of CO2 or on the contrary they can act as a store for carbon. Agriculture and forestry are the only activities that can achieve this effect through photosynthesis and the carbon incorporation into carbohydrates (Parras-Alcántara et al., 2013). The Mediterranean evergreen oak Woodland (MEOW - dehesa) is a type of pasture with scattered evergreen and deciduous oak stands in which cereals are often grown under the tree cover. It is a system dedicated to the combined production of Iberian swine, sheep, fuel wood, coal and cork as well as to hunting. These semi-natural areas still preserve some of the primitive vegetation of the Mediterranean oak forests. The dehesa is a pasture where the herbaceous layer is comprised of either cultivated cereals such as oat, barley and wheat or native vegetation dominated by annual species, which are used as grazing resources. These Iberian open woodland rangelands (dehesas) have been studied from different points of view: hydrologically, with respect to soil organic matter content, as well as in relation to gully erosion, topographical thresholds, soil erosion and runoff production, soil degradation and management practices…etc, among others. The soil organic carbon stock capacity depends not only on abiotic factors such as the mineralogical composition and the climate, but also on soil use and management (Parras et al., 2014 and 2015). In Spanish soils, climate, use and management strongly affect the carbon variability, mainly in soils in dry Mediterranean climates characterized by low organic carbon content, weak structure and readily degradable soils. Hontoria et al. (2004) emphasized that the climate and soil use are two factors that greatly influence carbon content in the Mediterranean climate. This research sought to analyze the SOC stock (SOCS) variability in MEOW - dehesa with cereals, olive grove and Mediterranean oak forest with different vegetation types (Quercus suber, Quercus ilex, Quercus faginea, Pinus pinaster and Pinus pinea) in The Cardeña-Montoro Natural Park, a nature reserve that consists of a 38,449 ha forested area in southern Spain. Sixty-eight sampling points were selected in the study zone. Each sampling point was analyzed as soil control section with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The studied soils were classified as Cambisols and the major goal of this research was to study the SOCS variability at regional scale. The total SOCS in The Cardeña-Montoro Natural Park was higher in MEOW with olive grove (111,69 Mg ha-1) and lower in MEOW with Quercus faginea (93,57 Mg ha-1). However, when the top soil (superficial section control) was analyzed, the SOCS was the highest in MEOW with olive grove (70,12 Mg-1) and the lowest in MEOW with Pinus (47,82 Mg ha-1). This research is a preliminary assessment for modeling SOCS at the regional level in Mediterranean natural areas. References Hontoria, C., Rodríguez-Murillo, J., and Saa, A.: Contenido de carbono orgánico en el suelo y factores de control en la España Peninsular, Edafología, 11, 149-155, 2004. Parras-Alcántara, L., Díaz-Jaimes, L., and Lozano-García, B: Organic farming affects C and N in soils under olive groves in Mediterranean areas, Land Degrad. Develop., in press, available online: in Wiley Online Library (wileyonlinelibrary.com), http://dx.doi.org/10.1002/ldr.2231, 2013. Parras-Alcántara, L., Díaz-Jaimes, L., Lozano-García, B., Fernández Rebollo, P., Moreno Elcure, F., Carbonero Muñoz, M.D.: Organic farming has little effect on carbon stock in a Mediterranean dehesa (southern Spain). Catena 113 (2014) 9-17. http://dx.doi.org/10.1016/j.catena.2013.09.002 Parras-Alcántara, L., Díaz-Jaimes, L., and Lozano-García, B.: Management effects on soil organic carbon stock in Mediterranean open rangelands -- treeless grasslands, Land Degrad. Develop., in press, available online: in Wiley Online Library (wileyonlinelibrary.com), http://dx.doi.org/10.1002/ldr.2269, 2015.
Vegetation Patterns and Degradation Thresholds in the Mulga Landscapes of Australia
NASA Astrophysics Data System (ADS)
Azadi, Samira; Saco, Patricia; Moreno-de las Heras, Mariano; Willgoose, Garry
2017-04-01
Drylands are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches dense vegetation within bare soil. This 'patterned' or 'patchy' vegetation cover is sensitive to human pressures. Previous work suggests that within these landscapes there is a critical vegetation cover threshold below which the landscape functionality is lost. This threshold behaviour is tightly linked to the overland flow redistribution and an increase in hydrologic connectivity that induces loss of resources (i.e., leakiness). In fact, disturbances (such as wildfire, overgrazing or harvesting activities) can disrupt the spatial structure of vegetation, increase landscape hydrologic connectivity, trigger erosion and produce a substantial loss of water. All these effects affect ecosystem functionality. Here we present the results of exploring the impact of degradation processes induced by vegetation disturbances (mainly grazing) on ecosystem functionality and connectivity in semiarid landscapes with various types of vegetation patterns. The sites are carefully selected in Mulga landscapes bioregion (New South Wales, Queensland) and in sites of Northern Territory in Australia, which display similar vegetation characteristics but with different vegetation patterns and good quality rainfall information. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades). Using MODIS NDVI and local precipitation data, we compute rainfall use efficiency and precipitation marginal response in order to assess the ecosystem functionality. We use vegetation binary maps and digital elevation models to estimate mean Flowlength as an indicator of structural hydrologic connectivity. We compare the trends for several sites with varying vegetation patterns (i.e., banded versus spotted patterns). Our results show that disturbances increase hydrologic connectivity and suggest threshold behaviour that affects landscape functionality. Though this threshold behaviour is found in all sites, the plots in higher rainfall landscapes with banded vegetation patterns show evidence of higher resilience. We will also present some preliminary modelling results that complement this analysis and capture the coevolution of vegetation and landforms (erosion), leading to this type of threshold behaviour.
Milla, R; Castro-Díez, P; Maestro-Martínez, M; Montserrat-Martí, G
2005-10-01
Few studies have examined the effects of plant growth on nutrient remobilization in phenologically contrasting species. Here we evaluated the consequences of above-ground seasonality of growth and leaf shedding on the remobilization of nutrients from branches in eight evergreen Mediterranean phanaerophytes that differ widely in phenology. Vegetative growth, flower bud formation, flowering, fruiting, leaf shedding, and the variations in nitrogen (N), phosphorus (P) and potassium (K) pools in branches throughout the year were monitored in each species. Nitrogen and P remobilization occurred in summer, after vegetative growth and synchronously with leaf shedding. Despite the time-lag between growth and remobilization, the branches that invested more nutrients in vegetative growth also remobilized more nutrients from their old organs. Potassium remobilization peaked in the climatically harshest periods, and appears to be related to osmotic requirements. We conclude that N and P remobilization occurs mainly associated with leaf senescence, which might be triggered by factors such as the replenishment of nutrient reserves in woody organs, the hormonal relations between new and old leaves, or the constraints that summer drought poses on the amount of leaf area per branch in summer.
Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.
Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando
2016-01-01
The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .
Relationship between major dietary patterns and sarcopenia among menopausal women.
Mohseni, Reza; Aliakbar, Sima; Abdollahi, Afsoun; Yekaninejad, Mir Saeed; Maghbooli, Zhila; Mirzaei, Khadijeh
2017-12-01
Dietary habits have been associated with the prevalence of the sarcopenia and limited data are available in this field for menopausal women. This study focused on the relationship between dietary patterns and prevalence of the sarcopenia in menopausal women. This cross-sectional study was done in 250 menopausal women 45 years old or older. Dietary data were collected using a food-frequency questionnaire and physical activity was assessed by International Physical Activity Questionnaire (IPAQ). Height, weight, skeletal muscle mass, hand grip, and gait speed were measured and sarcopenia was defined based on European Working Group on Sarcopenia in Older People (EWGSOP) guidelines. Using factor analysis, two major dietary patterns were found: a Western pattern (high in commercial beverage, sugar and dessert, snacks, solid fat, potato, high fat dairy, legume, organ meat, fast food, and sweets) and a Mediterranean pattern (high in olive, low-fat dairy, vegetable, fish, nut, and vegetable oil). After adjusting for confounding variables, for the highest vs the lowest tertiles, the Odds Ratio (OR) for sarcopenia was 1.06 [95% confidence interval (CI), 0.47-2.37] in the Western pattern and 0.40 [95% confidence interval (CI), 0.17-0.89] in the Mediterranean pattern. Our findings suggest that Mediterranean dietary pattern has a favorable role in the prevention of sarcopenia.
7300 years of vegetation history and climate for NW Malta: a Holocene perspective
NASA Astrophysics Data System (ADS)
Gambin, B.; Andrieu-Ponel, V.; Médail, F.; Marriner, N.; Peyron, O.; Montade, V.; Gambin, T.; Morhange, C.; Belkacem, D.; Djamali, M.
2015-09-01
This paper investigates the Holocene vegetation dynamics for Burmarrad in north-west Malta and provides a pollen-based quantitative palaeoclimatic reconstruction for this centrally located Mediterranean archipelago. The pollen record from this site provides new insight into the vegetation changes from 7280 to 1730 cal BP which correspond well with other regional records. The climate reconstruction for the area also provides strong correlation with southern (below 40° N) Mediterranean sites. Our interpretation suggests an initially open landscape during the early Neolithic, surrounding a large palaeobay, developing into a dense Pistacia scrubland ca. 6700 cal BP. From about 4450 cal BP the landscape once again becomes open, coinciding with the start of the Bronze Age on the archipelago. This period is concurrent with increased climatic instability (between 4500 and 3700 cal BP) which is followed by a gradual decrease in summer moisture availability in the late Holocene. During the early Roman occupation period (1972 to 1730 cal BP) the landscape remains generally open with a moderate increase in Olea. This increase, corresponds to archaeological evidence for olive oil production in the area, along with increases in cultivated crop taxa and associated ruderal species, as well as a rise in fire events. The Maltese archipelago provides important insight into vegetation, human impacts and climatic changes in an island context during the Holocene.
7300 years of vegetation history and climate for NW Malta: a Holocene perspective
NASA Astrophysics Data System (ADS)
Gambin, B.; Andrieu-Ponel, V.; Médail, F.; Marriner, N.; Peyron, O.; Montade, V.; Gambin, T.; Morhange, C.; Belkacem, D.; Djamali, M.
2016-02-01
This paper investigates the Holocene vegetation dynamics for Burmarrad in Northwest Malta and provides a pollen-based quantitative palaeoclimatic reconstruction for this centrally located Mediterranean archipelago. The pollen record from this site provides new insight into the vegetation changes from 7280 to 1730 cal BP which correspond well with other regional records. The climate reconstruction for the area also provides strong correlation with southern (below 40° N) Mediterranean sites. Our interpretation suggests an initially open landscape during the early Neolithic, surrounding a large palaeobay, developing into a dense Pistacia scrubland ca. 6700 cal BP. From about 4450 cal BP the landscape once again becomes open, coinciding with the start of the Bronze Age on the archipelago. This period is concurrent with increased climatic instability (between 4500 and 3700 cal BP) which is followed by a gradual decrease in summer moisture availability in the late Holocene. During the early Roman occupation period (1972-1730 cal BP) the landscape remains generally open with a moderate increase in Olea. This increase corresponds to archaeological evidence for olive oil production in the area, along with increases in cultivated crop taxa and associated ruderal species, as well as a rise in fire events. The Maltese archipelago provides important insight into vegetation, human impacts, and climatic changes in an island context during the Holocene.
Natural Resources – Food Nexus: Food-Related Environmental Footprints in the Mediterranean Countries
Lacirignola, Cosimo; Capone, Roberto; Debs, Philipp; El Bilali, Hamid; Bottalico, Francesco
2014-01-01
Immediate action is required in the Mediterranean to address environmental degradation that is mainly driven by consumption patterns. Increasing stress on biological and social systems is put by unsustainable consumption patterns. Food consumption patterns are important drivers of environment degradation. The objective of this review paper is to explore natural resources-food nexus in the Mediterranean region by highlighting the environmental footprints of the current consumption and production patterns. Secondary data from different sources such as FAOSTAT, the World Bank, Water Footprint Network (WFN), and Global Footprint Network were used to analyze the situation in 21 Mediterranean countries. The region faces many environmental challenges, e.g., land degradation, water scarcity, environment pollution, biodiversity loss, and climate change. The current consumption patterns imply high ecological, carbon, and water footprints of consumption and unfavorable national virtual-water balances. Food Balance Sheets data show that the contribution of vegetal and animal-based food product groups to food supply is variable among the Mediterranean countries. This has implications also in terms of the WF of food supply, which was calculated for Bosnia, Egypt, Italy, Morocco, and Turkey. The WF of the current diet resulted lower than that of the proposed Mediterranean one in the case of Italy. There is a strong scientific evidence supporting assumption that it is so also for other Mediterranean countries. The Mediterranean is characterized by a high resource use intensity that is further exacerbated by food losses and waste (FLW). In fact, FLW implies the loss of precious resources (water, land, energy) and inputs (fertilizers). Therefore, it is crucial to increase adherence to the traditional Mediterranean diet and to reduce FLW in order to foster transition to more sustainable food consumption patterns thus reducing pressure on the scarce resources of the Mediterranean region. PMID:25988125
Lacirignola, Cosimo; Capone, Roberto; Debs, Philipp; El Bilali, Hamid; Bottalico, Francesco
2014-01-01
Immediate action is required in the Mediterranean to address environmental degradation that is mainly driven by consumption patterns. Increasing stress on biological and social systems is put by unsustainable consumption patterns. Food consumption patterns are important drivers of environment degradation. The objective of this review paper is to explore natural resources-food nexus in the Mediterranean region by highlighting the environmental footprints of the current consumption and production patterns. Secondary data from different sources such as FAOSTAT, the World Bank, Water Footprint Network (WFN), and Global Footprint Network were used to analyze the situation in 21 Mediterranean countries. The region faces many environmental challenges, e.g., land degradation, water scarcity, environment pollution, biodiversity loss, and climate change. The current consumption patterns imply high ecological, carbon, and water footprints of consumption and unfavorable national virtual-water balances. Food Balance Sheets data show that the contribution of vegetal and animal-based food product groups to food supply is variable among the Mediterranean countries. This has implications also in terms of the WF of food supply, which was calculated for Bosnia, Egypt, Italy, Morocco, and Turkey. The WF of the current diet resulted lower than that of the proposed Mediterranean one in the case of Italy. There is a strong scientific evidence supporting assumption that it is so also for other Mediterranean countries. The Mediterranean is characterized by a high resource use intensity that is further exacerbated by food losses and waste (FLW). In fact, FLW implies the loss of precious resources (water, land, energy) and inputs (fertilizers). Therefore, it is crucial to increase adherence to the traditional Mediterranean diet and to reduce FLW in order to foster transition to more sustainable food consumption patterns thus reducing pressure on the scarce resources of the Mediterranean region.
NASA Technical Reports Server (NTRS)
Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N.; Torres, O.
2015-01-01
An algorithm able to identify and characterize episodes of different aerosol types above sea surfaces of the greater Mediterranean basin (GMB), including the Black Sea and the Atlantic Ocean off the coasts of Iberia and northwest Africa, is presented in this study. Based on this algorithm, five types of intense (strong and extreme) aerosol episodes in the GMB are identified and characterized using daily aerosol optical properties from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMIAura. These aerosol episodes are: (i) biomass-burning/urban-industrial (BU), (ii) desert dust (DD), (iii) dust/sea-salt (DSS), (iv) mixed (MX) and (v) undetermined (UN). The identification and characterization is made with our algorithm using a variety of aerosol properties, namely aerosol optical depth (AOD), Angstrom exponent (a), fine fraction (FF), effective radius (reff) and Aerosol Index (AI). During the study period (2000e2007), the most frequent aerosol episodes are DD, observed primarily in the western and central Mediterranean Sea, and off the northern African coasts, 7 times/year for strong episodes and 4 times/year for extreme ones, on average. The DD episodes yield 40% of all types of strong aerosol episodes in the study region, while they account for 71.5% of all extreme episodes. The frequency of occurrence of strong episodes exhibits specific geographical patterns, for example the BU are mostly observed along the coasts of southern Europe and off the Atlantic coasts of Portugal, the MX episodes off the Spanish Mediterranean coast and over the Adriatic and northern Aegean Sea, while the DSS ones over the western and central Mediterranean Sea. On the other hand, the extreme episodes for all but DD aerosol display more patchy spatial patterns. The strong episodes exhibit AOD at 550 nm as high as 1.6 in the southernmost parts of central and eastern Mediterranean Sea, which rise up to 5 for the extreme, mainly DD and DSS, episodes. Although more than 90% of all aerosol episodes last 1 day, there are few cases, mainly extreme DD episodes, which last up to 4 days. Independently of their type, the Mediterranean aerosol episodes occur more frequently in spring (strong and extreme episodes) and summer (strong episodes) and most rarely during winter. A significant year by year variability of Mediterranean aerosol episodes has been identified, more in terms of their frequency than intensity. An analysis of 5-day back trajectories for the most extreme episodes provides confidence on the obtained results of the algorithm, based on the revealed origin and track of air masses causing the episodes. The 25 and 6% of all strong and extreme episodes, respectively, are MX, thus highlighting the co-existence of different aerosol types in the greater Mediterranean. The intensity of both MX and DSS episodes exhibits similar patterns to those of DD strong ones, indicating that desert dust is a determinant factor for the intensity of aerosol episodes in the Mediterranean, including DSS and MX episodes.
NASA Astrophysics Data System (ADS)
Parra, Antonio; Ramírez, David A.; Resco, Víctor; Velasco, Ángel; Moreno, José M.
2012-11-01
Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.
Parra, Antonio; Ramírez, David A; Resco, Víctor; Velasco, Ángel; Moreno, José M
2012-11-01
Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.
Conte, Annamaria; Candeloro, Luca; Ippoliti, Carla; Monaco, Federica; De Massis, Fabrizio; Bruno, Rossana; Di Sabatino, Daria; Danzetta, Maria Luisa; Benjelloun, Abdennasser; Belkadi, Bouchra; El Harrak, Mehdi; Declich, Silvia; Rizzo, Caterina; Hammami, Salah; Ben Hassine, Thameur; Calistri, Paolo; Savini, Giovanni
2015-01-01
West Nile virus (WNV) is a mosquito-transmitted Flavivirus belonging to the Japanese encephalitis antigenic complex of the Flaviviridae family. Its spread in the Mediterranean basin and the Balkans poses a significant risk to human health and forces public health officials to constantly monitor the virus transmission to ensure prompt application of preventive measures. In this context, predictive tools indicating the areas and periods at major risk of WNV transmission are of paramount importance. Spatial analysis approaches, which use environmental and climatic variables to find suitable habitats for WNV spread, can enhance predictive techniques. Using the Mahalanobis Distance statistic, areas ecologically most suitable for sustaining WNV transmission were identified in the Mediterranean basin and Central Europe. About 270 human and equine clinical cases notified in Italy, Greece, Portugal, Morocco, and Tunisia, between 2008 and 2012, have been considered. The environmental variables included in the model were altitude, slope, night time Land Surface Temperature, Normalized Difference Vegetation Index, Enhanced Vegetation Index, and daily temperature range. Seasonality of mosquito population has been modelled and included in the analyses to produce monthly maps of suitable areas for West Nile Disease. Between May and July, the most suitable areas are located in Tunisia, Libya, Egypt, and North Cyprus. Summer/Autumn months, particularly between August and October, characterize the suitability in Italy, France, Spain, the Balkan countries, Morocco, North Tunisia, the Mediterranean coast of Africa, and the Middle East. The persistence of suitable conditions in December is confined to the coastal areas of Morocco, Tunisia, Libya, Egypt, and Israel.
Conte, Annamaria; Candeloro, Luca; Ippoliti, Carla; Monaco, Federica; De Massis, Fabrizio; Bruno, Rossana; Di Sabatino, Daria; Danzetta, Maria Luisa; Benjelloun, Abdennasser; Belkadi, Bouchra; El Harrak, Mehdi; Declich, Silvia; Rizzo, Caterina; Hammami, Salah; Ben Hassine, Thameur; Calistri, Paolo; Savini, Giovanni
2015-01-01
West Nile virus (WNV) is a mosquito-transmitted Flavivirus belonging to the Japanese encephalitis antigenic complex of the Flaviviridae family. Its spread in the Mediterranean basin and the Balkans poses a significant risk to human health and forces public health officials to constantly monitor the virus transmission to ensure prompt application of preventive measures. In this context, predictive tools indicating the areas and periods at major risk of WNV transmission are of paramount importance. Spatial analysis approaches, which use environmental and climatic variables to find suitable habitats for WNV spread, can enhance predictive techniques. Using the Mahalanobis Distance statistic, areas ecologically most suitable for sustaining WNV transmission were identified in the Mediterranean basin and Central Europe. About 270 human and equine clinical cases notified in Italy, Greece, Portugal, Morocco, and Tunisia, between 2008 and 2012, have been considered. The environmental variables included in the model were altitude, slope, night time Land Surface Temperature, Normalized Difference Vegetation Index, Enhanced Vegetation Index, and daily temperature range. Seasonality of mosquito population has been modelled and included in the analyses to produce monthly maps of suitable areas for West Nile Disease. Between May and July, the most suitable areas are located in Tunisia, Libya, Egypt, and North Cyprus. Summer/Autumn months, particularly between August and October, characterize the suitability in Italy, France, Spain, the Balkan countries, Morocco, North Tunisia, the Mediterranean coast of Africa, and the Middle East. The persistence of suitable conditions in December is confined to the coastal areas of Morocco, Tunisia, Libya, Egypt, and Israel. PMID:26717483
Kucianski, Teagan; Moschonis, George; Tierney, Audrey C.; Itsiopoulos, Catherine
2018-01-01
Substantial evidence supports the effect of the Mediterranean Diet (MD) for managing chronic diseases, although trials have been primarily conducted in Mediterranean populations. The efficacy and feasibility of the Mediterranean dietary pattern for the management of chronic diseases has not been extensively evaluated in non-Mediterranean settings. This paper aims to describe the development of a MD model that complies with principles of the traditional MD applied in a multiethnic context. Optimal macronutrient and food-based composition was defined, and a two-week menu was devised incorporating traditional ingredients with evidence based on improvements in chronic disease management. Strategies were developed for the implementation of the diet model in a multiethnic population. Consistent with the principles of a traditional MD, the MD model was plant-based and high in dietary fat, predominantly monounsaturated fatty acids from extra virgin olive oil. Fruits, vegetables and wholegrains were a mainstay, and moderate amounts of nuts and seeds, fish, dairy and red wine were recommended. The diet encompassed key features of the MD including cuisine, biodiversity and sustainability. The MD model preserved traditional dietary components likely to elicit health benefits for individuals with chronic diseases, even with the adaptation to an Australian multiethnic population. PMID:29642557
George, Elena S; Kucianski, Teagan; Mayr, Hannah L; Moschonis, George; Tierney, Audrey C; Itsiopoulos, Catherine
2018-04-09
Substantial evidence supports the effect of the Mediterranean Diet (MD) for managing chronic diseases, although trials have been primarily conducted in Mediterranean populations. The efficacy and feasibility of the Mediterranean dietary pattern for the management of chronic diseases has not been extensively evaluated in non-Mediterranean settings. This paper aims to describe the development of a MD model that complies with principles of the traditional MD applied in a multiethnic context. Optimal macronutrient and food-based composition was defined, and a two-week menu was devised incorporating traditional ingredients with evidence based on improvements in chronic disease management. Strategies were developed for the implementation of the diet model in a multiethnic population. Consistent with the principles of a traditional MD, the MD model was plant-based and high in dietary fat, predominantly monounsaturated fatty acids from extra virgin olive oil. Fruits, vegetables and wholegrains were a mainstay, and moderate amounts of nuts and seeds, fish, dairy and red wine were recommended. The diet encompassed key features of the MD including cuisine, biodiversity and sustainability. The MD model preserved traditional dietary components likely to elicit health benefits for individuals with chronic diseases, even with the adaptation to an Australian multiethnic population.
NASA Astrophysics Data System (ADS)
Gil, Juan; Priego-Navas, Mercedes; Zavala, Lorena M.; Jordán, Antonio
2013-04-01
Generally, literature shows that the high variability of rainfall-induced soil erosion is related to climatic differences, relief, soil properties and land use. Very different runoff rates and soil loss values have been reported in Mediterranean cropped soils depending on soil management practices, but also in soils under natural vegetation types. OBJECTIVES The aim of this research is to study the relationships between soil erosion risk, soil use and soil properties in three typical Mediterranean areas from southern Spain: olive groves under conventional tillage, minimum tillage and no-till practices, and soils under natural vegetation. METHODS Rainfall simulation experiments have been carried out in order to assess the relationship between soil erosion risk, land use, soil management and soil properties in olive-cropped soils under different types of management and soils under natural vegetation type from Mediterranean areas in southern Spain RESULTS Results show that mean runoff rates decrease from 35% in olive grove soils under conventional tillage to 25% in olive (Olea europaea) grove soils with minimum tillage or no-till practices, and slightly over 22% in soils under natural vegetation. Moreover, considering the different vegetation types, runoff rates vary in a wide range, although runoff rates from soils under holm oak (Quercus rotundifolia), 25.70%, and marginal olive groves , 25.31%, are not significantly different. Results from soils under natural vegetation show that the properties and nature of the organic residues play a role in runoff characteristics, as runoff rates above 50% were observed in less than 10% of the rainfall simulations performed on soils with a organic layer. In contrast, more than half of runoff rates from bare soils reached or surpassed 50%. Quantitatively, average values for runoff water losses increase up to 2.5 times in unprotected soils. This is a key issue in the study area, where mean annual rainfall is above 600 mm. Regarding soil properties, the analysis shows that organic matter from soils under minimum tillage or no-till is strongly related with runoff, the amount of sediments in runoff and soil loss. In soils from olive groves, the amount of sediments in runoff was significantly related to soil pH. Moreover, for olive-cropped soils under conventional tillage, soil loss is strongly related with clayey texture, which is characteristic of these soils. Concerning this, the relationship between soil loss and coarse sand contents is highly significant, and shows that medium-sized soil particles are most prone to detachment and transport by runoff. Thus, the average content of these fractions in soils under conventional management is more than two times that from olive groves under minimal or no tillage, which are more coarsely textured. In fine-textured soils, hydraulic conductivity is reduced, thus increasing soil erosion risk. In addition, in sandy and silty soils with low clay content, infiltration rates are high even when soil sealing is observed. At the scale of this experiment, runoff generation and soil erosion risk decrease significantly in areas under natural vegetation, with lower clay contents
NASA Astrophysics Data System (ADS)
Quéguiner, Solen; Martin, Eric; Lafont, Sébastien; Calvet, Jean-Christophe; Faroux, Stéphanie
2010-05-01
In the framework of the assessment of the impact of climate change, the uncertainty associated to the direct effect of CO2 on plant physiology was seldom addressed, while some other sources of uncertainties have been more studied, such as those related to climate modeling or the downscaling method. A few studies are available at global or continental scale. The purpose of this study is to quantify this effect in a regional study focussed on the Mediterranean area of France. The Safran-Isba-Modcou chain was used. This chain is composed of a meteorological analysis system (SAFRAN), a land surface model describing the exchange with the atmosphere (ISBA) and a hydrogeological model (MODCOU), and has already been used in many studies in France. The present study focuses on the uncertainties related to the representation of carbon cycle and the photosynthesis in the surface model. Two versions of ISBA were used and compared. The standard version simulates the mass and energy exchanges between the continental surface (including vegetation and snow) and the atmosphere. In this version, the LAI (Leaf Area Index) is provided by the ECOCLIMAP2 database and the vegetation is divided into 12 types. The A-gs version accounts for the process of photosynthesis taking into account the vegetation assimilation of atmospheric CO2 concentration, and simulates the evolution of the biomass and the LAI. The domain studied is the French mediterranean basin, in which a sub domain was defined (latitude < 45 °N et height < 1000m) in order to identify the low land area pertaining to a Mediterranean climate. The study focuses on the impact of the climate change on the surface variables (LAI, water balance) and the discharges. The periods chosen to compare the changes are the end of the 20th century (1995-2005) and the end of the 21st century (2090-2099). A first comparison is made for the present climate between the versions of model and the observations of discharges, using two type of meteorological forcing : SAFRAN and data from a continuous high resolution climate scenario, based on the scenario A2, with a coupled atmosphere-mediterranean sea GCM. This scenario was further downscaled to the resolution of the study (a grid mesh of 8x8 km), using a quantile-quantile correction method. Concerning the present climate, the comparison shows a delay of the development of the vegetation simulated by ISBA-A-gs causing an underestimation of evaporation and an overestimation of discharges in the spring compared to the observations and the standard version of ISBA. In future climate, the explicit response of vegetation to the CO2 concentration of the ISBA A-gs version gives an different answer on the surface water budget and flow from the standard version of ISBA. This difference is especially visible in the southern area, the impact on the flow is increased and impact on evaporation is decreased, showing the interest of using a CO2 responsive version of ISBA for impact studies.
Fire regimes and vegetation responses in two Mediterranean-climate regions
Montenegro, G.; Ginocchio, R.; Segura, A.; Keely, J.E.; Gomez, M.
2004-01-01
Wildfires resulting from thunderstorms are common in some Mediterranean-climate regions, such as southern California, and have played an important role in the ecology and evolution of the flora. Mediterranean-climate regions are major centers for human population and thus anthropogenic impacts on fire regimes may have important consequences on these plant formations. However, changes in fire regimes may have different impacts on Mediterranean type-ecosystems depending on the capability of plants to respond to such perturbations. Therefore, we compare here fire regimes and vegetation responses of two Mediterranean-climate regions which differ in wildfire regimes and history of human occupation, the central zone of Chile (matorral) and the southern area of California in United States (chaparral). In Chile almost all fires result from anthropogenic activities, whereas lightning fires resulting from thunderstorms are frequent in California. In both regions fires are more frequent in summer, due to high accumulation of dry plant biomass for ignition. Humans have markedly increased fires frequency both in the matorral and chaparral, but extent of burned areas has remained unaltered, probably due to better fire suppression actions and a decline in the built-up of dry plant fuel associated to increased landscape fragmentation with less flammable agricultural and urban developments. As expected, post-fire plant regeneration responses differs between the matorral and chaparral due to differences in the importance of wildfires as a natural evolutionary force in the system. Plants from the chaparral show a broader range of post-fire regeneration responses than the matorral, from basal resprouting, to lignotuber resprouting, and to fire-stimulated germination and flowering with fire-specific clues such as heat shock, chemicals from smoke or charred wood. Plants from the matorral have some resprouting capabilities after fire, but these probably evolved from other environmental pressures, such as severe and long summer droughts, herbivory, and volcanism. Although both Mediterranean-type ecosystems have shown to be resilient to anthropogenic fires, increasing fire frequency may be an important factor that needs to be considered as it may result in strong negative effects on plant successional trends and on plant diversity.
Post Fire Vegetation Recovery in Portugal
NASA Astrophysics Data System (ADS)
Gouveia, Celia; Bastos, Ana; DaCamara, Carlos; Trigo, Ricardo M.
2011-01-01
Fires in Portugal, as in the Mediterranean ecosystems, have a complex effect on vegetation regeneration due to the different responses of vegetation to the variety of fire regimes and to the complexity of landscape structures. A thorough evaluation of vegetation recovery after fire events becomes therefore crucial in land management. In 2005, Portugal suffered a strong damage from forest fires that damaged an area of 300 000 ha of forest and shrub. This year are particularly interesting because it is associated the severe drought of 2005. The aim of the present study is to identify large burnt scars in Portugal during the 2005 fire seasons and monitoring vegetation behaviour throughout the pre and the post fire periods. The mono-parametric model developed by Gouveia et al. (2010), based on monthly values of NDVI, at the 1km×1km spatial scale, as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2009, was used.
Duguy, Beatriz; Alloza, José Antonio; Baeza, M Jaime; De la Riva, Juan; Echeverría, Maite; Ibarra, Paloma; Llovet, Juan; Cabello, Fernando Pérez; Rovira, Pere; Vallejo, Ramon V
2012-12-01
Forest fires represent a major driver of change at the ecosystem and landscape levels in the Mediterranean region. Environmental features and vegetation are key factors to estimate the ecological vulnerability to fire; defined as the degree to which an ecosystem is susceptible to, and unable to cope with, adverse effects of fire (provided a fire occurs). Given the predicted climatic changes for the region, it is urgent to validate spatially explicit tools for assessing this vulnerability in order to support the design of new fire prevention and restoration strategies. This work presents an innovative GIS-based modelling approach to evaluate the ecological vulnerability to fire of an ecosystem, considering its main components (soil and vegetation) and different time scales. The evaluation was structured in three stages: short-term (focussed on soil degradation risk), medium-term (focussed on changes in vegetation), and coupling of the short- and medium-term vulnerabilities. The model was implemented in two regions: Aragón (inland North-eastern Spain) and Valencia (eastern Spain). Maps of the ecological vulnerability to fire were produced at a regional scale. We partially validated the model in a study site combining two complementary approaches that focused on testing the adequacy of model's predictions in three ecosystems, all very common in fire-prone landscapes of eastern Spain: two shrublands and a pine forest. Both approaches were based on the comparison of model's predictions with values of NDVI (Normalized Difference Vegetation Index), which is considered a good proxy for green biomass. Both methods showed that the model's performance is satisfactory when applied to the three selected vegetation types.
Constraints on patchy reionization from Planck CMB temperature trispectrum
NASA Astrophysics Data System (ADS)
Namikawa, Toshiya
2018-03-01
We present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics of the observed CMB anisotropies is altered. We estimate the trispectrum of the CMB temperature anisotropies to constrain spatial variation of the optical depth. We show that the measured trispectrum is consistent with that from the standard lensed CMB simulation at 2 σ . While no evidence of the patchy reionization is found in the Planck 2015 temperature trispectrum, the CMB constraint on the patchy reionization is significantly improved from previous works. Assuming the analytic bubble-halo model of Wang and Hu (2006), the constraint obtained in this work rules out the typical bubble size at the ionization fraction of ˜0.5 as R ≳10 Mpc . Further, our constraint implies that large-scale B -modes from the patchy reionization are not a significant contamination in detecting the primordial gravitational waves of r ≳0.001 if the B mode induced by the patchy reionization is described by Dvorkin et al. (2009). The CMB trispectrum data starts to provide meaningful constraints on the patchy reionization.
Santana, Victor M; Baeza, M Jaime; Blanes, M Carmen
2013-01-01
This study aims to determine the role that both direct effects of fire and subsequent daily temperature fluctuations play in the seed bank dynamics of obligate seeders from the Mediterranean Basin. The short yet high soil temperatures experienced due to passage of fire are conflated with the lower, but longer, temperatures experienced by daily fluctuations which occur after removing vegetation. These germination cues are able to break seed dormancy, but it is difficult to assess their specific level of influence because they occur consecutively after summer fires, just before the flush of germination in the wet season (autumn). By applying experimental fires, seed treatments were imposed that combined fire exposure/non-fire exposure with exposure to microhabitats under a gradient of disturbance (i.e. gaps opened by fire, mechanical brushing and intact vegetation). The seeds used were representative of the main families of obligate seeders (Ulex parviflorus, Cistus albidus and Rosmarinus officinalis). Specifically, an assessment was made of (1) the proportion of seeds killed by fire, (2) seedling emergence under field conditions and (3) seeds which remained ungerminated in soil. For the three species studied, the factors that most influenced seedling emergence and seeds remaining ungerminated were microhabitats with higher temperature fluctuations after fire (gaps opened by fire and brushing treatments). The direct effect of fire decreased the seedling emergence of U. parviflorus and reduced the proportion of seeds of R. officinalis remaining ungerminated. The relevance of depleting vegetation (and subsequent daily temperature fluctuation in summer) suggests that studies focusing on lower temperature thresholds for breaking seed dormancy are required. This fact also supports the hypothesis that the seeding capacity in Mediterranean Basin obligate seeders may have evolved as a response to a wide range of disturbances, and not exclusively to fire.
NASA Astrophysics Data System (ADS)
Moreno de las Heras, Mariano; Gallart, Francesc
2016-04-01
Badlands (i.e. highly dissected areas carved in soft bedrock with little or no vegetation) are pervasive in a wide range of environmental conditions across the Mediterranean region, including semiarid, sub-humid and humid environments, and represent hotspots of erosion and sediment production at the regional scale. On montane (cold sub-humid and humid) Mediterranean landscapes, harsh thermal conditions on north-facing slopes favors intense bedrock weathering and impose serious constraints for plant colonization, which has generally been argued to explain preferential distribution of badlands on shady aspects. We study the distribution and typology of badlands in the upper Llobregat basin (500 km2, 700-2400 m.a.s.l. elevation, 700-900 mm annual rainfall, 8-11°C mean temp.). We mapped regional badlands by manually digitizing affected areas on recent (2012) high resolution (50 cm pixel) ortophotos. Badlands extend over about 200 ha in the upper Llobregat basin and are developed on Paleocene continental lutites (Garumnian Facies, Tremp Formation) and Eocene marine marls (Sagnari, Armancies and Vallfogona Formations). While badlands on Eocene marls showed a preferential distribution on north-facing shady slopes, badland occurrence on the highly unstable smectite-rich Garumnian lutites did not reveal clear aspect trends. In addition, elevation, which broadly controls winter temperatures in the region, did not show a clear influence on badland distribution. A principal component analysis was applied to study badland type using general geomorphological and vegetation metrics (i.e. badland size, slope, aspect, elevation gradient, connection to the regional drainage network, vegetation greenness) derived from a high resolution digital elevation model (5 m pixel) and pan-sharpened Landsat 8 MSAVI imagery (15 m pixel). Lithology was found to largely impact badland type, with Garumnian lutite badlands showing lower slope gradients (20°-30° average slope) than badlands on Eocene marls (30°-40° avg. slope). Badland size affected the extent to which badlands are hydrologically arranged in the basin (i.e. the larger the size and elevation gradient of the badland, the better connected was to the regional drainage network), while aspect regulated vegetation development (i.e. north-exposed badlands showed lower levels of vegetation greenness than south-exposed badlands). Overall our results reveal lithology as the main factor that broadly rule badland distribution and diversity under the montane Mediterranean conditions of the upper Llobregat basin, improving former results obtained in the area. This work is funded by a Beatriu de Pinós fellowship co-funded by the European Commission and the Generalitat de Catalunya (SEDCONMED, ref. 2014 BP-B 00111).
NASA Astrophysics Data System (ADS)
Peñuelas, J.; Guenther, A.; Rapparini, F.; Llusia, J.; Filella, I.; Seco, R.; Estiarte, M.; Mejia-Chang, M.; Ogaya, R.; Ibañez, J.; Sardans, J.; Castaño, L. M.; Turnipseed, A.; Duhl, T.; Harley, P.; Vila, J.; Estavillo, J. M.; Menéndez, S.; Facini, O.; Baraldi, R.; Geron, C.; Mak, J.; Patton, E. G.; Jiang, X.; Greenberg, J.
2013-08-01
MONTES (“Woodlands”) was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Western Mediterranean Basin (WMB). The measurements were performed at a semidesertic area (Monegros), at a coastal Mediterranean shrubland area (Garraf), at a typical Mediterranean holm oak forest area (Prades) and at a wet temperate beech forest (Montseny) during spring (April 2010) under optimal plant physiological conditions in driest-warmest sites and during summer (July 2010) with drought and heat stresses in the driest-warmest sites and optimal conditions in the wettest-coolest site. The objective of this campaign was to study the differences in gas, water and energy exchange occurring at different vegetation coverages and biomasses. Particular attention was devoted to quantitatively understand the exchange of biogenic volatile organic compounds (BVOCs) because of their biological and environmental effects in the WMB. A wide range of instruments (GC-MS, PTR-MS, meteorological sensors, O3 monitors,…) and vertical platforms such as masts, tethered balloons and aircraft were used to characterize the gas, water and energy exchange at increasing footprint areas by measuring vertical profiles. In this paper we provide an overview of the MONTES campaign: the objectives, the characterization of the biomass and gas, water and energy exchange in the 4 sites-areas using satellite data, the estimation of isoprene and monoterpene emissions using MEGAN model, the measurements performed and the first results. The isoprene and monoterpene emission rates estimated with MEGAN and emission factors measured at the foliar level for the dominant species ranged from about 0 to 0.2 mg m-2 h-1 in April. The warmer temperature in July resulted in higher model estimates from about 0 to ca. 1.6 mg m-2 h-1 for isoprene and ca. 4.5 mg m-2 h-1 for monoterpenes, depending on the site vegetation and footprint area considered. There were clear daily and seasonal patterns with higher emission rates and mixing ratios at midday and summer relative to early morning and early spring. There was a significant trend in CO2 fixation (from 1 to 10 mg C m-2 d-1), transpiration (from 1-5 kg C m-2 d-1), and sensible and latent heat from the warmest-driest to the coolest-wettest site. The results showed the strong land-cover-specific influence on emissions of BVOCs, gas, energy and water exchange, and therefore demonstrate the potential for feed-back to atmospheric chemistry and climate.
... page: //medlineplus.gov/ency/article/003224.htm Skin color - patchy To use the sharing features on this page, please enable JavaScript. Patchy skin color is areas where the skin color is irregular. ...
Miller, P C; Poole, D K
1983-02-01
The influence of annual precipitation and vegetation cover on soil moisture and on the length of the summer drought was estimated quantitatively using 9 years of soil moisture data collected at Echo Valley in southern California. The measurements support the conclusions that in the semi-arid mediterranean climate a soil drought will occur regardless of vegetation cover and annual precipitation, but the length of the drought is greatly dependent on soil depth and rockiness. Evergreen species which can survive this drought tend to accentuate the drought, especially in deep soil levels, by developing a canopy with a large transpiring surface.
The use of UAVs for monitoring land degradation
NASA Astrophysics Data System (ADS)
Themistocleous, Kyriacos
2017-10-01
Land degradation is one of the causes of desertification of drylands in the Mediterranean. UAVs can be used to monitor and document the various variables that cause desertification in drylands, including overgrazing, aridity, vegetation loss, etc. This paper examines the use of UAVs and accompanying sensors to monitor overgrazing, vegetation stress and aridity in the study area. UAV images can be used to generate digital elevation models (DEMs) to examine the changes in microtopography as well as ortho-photos were used to detect changes in vegetation patterns. The combined data of the digital elevation models and the orthophotos can be used to identify the mechanisms for desertification in the study area.
Lou-Bonafonte, José M.; Gabás-Rivera, Clara; Navarro, María A.; Osada, Jesús
2015-01-01
The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases. Paraoxonase 1 (PON1) has been implicated in the development of those conditions, especially atherosclerosis. The present work describes a systematic review of current evidence supporting the influence of Mediterranean diet and its constituents on this enzyme. Despite the differential response of some genetic polymorphisms, the Mediterranean diet has been shown to exert a protective action on this enzyme. Extra virgin olive oil, the main source of fat, has been particularly effective in increasing PON1 activity, an action that could be due to low saturated fatty acid intake, oleic acid enrichment of phospholipids present in high-density lipoproteins that favor the activity, and increasing hepatic PON1 mRNA and protein expressions induced by minor components present in this oil. Other Mediterranean diet constituents, such as nuts, fruits and vegetables, have been effective in modulating the activity of the enzyme, pomegranate and its compounds being the best characterized items. Ongoing research on compounds isolated from all these natural products, mainly phenolic compounds and carotenoids, indicates that some of them are particularly effective, and this may enhance the use of nutraceuticals and functional foods capable of potentiating PON1 activity. PMID:26024295
NASA Astrophysics Data System (ADS)
Kanakidou, Maria; Myriokefalitakis, Stelios; Mihalopoulos, Nikos; Vrekoussis, Mihalis; Daskalakis, Nikos; Sfakianaki, Maria; Hatziannastassiou, Nikos; Im, Ulas
2016-07-01
The Mediterranean, and particularly its east basin, is a crossroad of air masses coming from Europe, Asia and Africa. Over this area, anthropogenic emissions, mainly from Europe, Balkans and the Black Sea, meet with natural emissions from Sahara (Saharan dust), vegetation and the ocean as well as from biomass burning, overall presenting a strong seasonal pattern. As a consequence of its unique location and emissions, the Mediterranean region is climatically very sensitive and often exposed to multiple stresses, such as a simultaneous water shortage and elevated air pollution exposure. During the last decades, the Eastern Mediterranean, following the general trend, has experienced a rapid growth in urbanization, including increased vehicle circulation, and industrialization, all impacting pollutant emissions in the atmosphere. Air pollution is one of the challenging environmental problems for Istanbul and Cairo megacities but also for the whole Eastern Mediterranean region. The recent financial crisis resulted in changes in human habits, energy production and subsequently air pollution. This resulted in changes in tropospheric composition that reflect changes in natural emissions and in human behavior have been detected by satellites and simulated by chemistry transport models. The results are presented and their robustness is discussed.
Lou-Bonafonte, José M; Gabás-Rivera, Clara; Navarro, María A; Osada, Jesús
2015-05-27
The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases. Paraoxonase 1 (PON1) has been implicated in the development of those conditions, especially atherosclerosis. The present work describes a systematic review of current evidence supporting the influence of Mediterranean diet and its constituents on this enzyme. Despite the differential response of some genetic polymorphisms, the Mediterranean diet has been shown to exert a protective action on this enzyme. Extra virgin olive oil, the main source of fat, has been particularly effective in increasing PON1 activity, an action that could be due to low saturated fatty acid intake, oleic acid enrichment of phospholipids present in high-density lipoproteins that favor the activity, and increasing hepatic PON1 mRNA and protein expressions induced by minor components present in this oil. Other Mediterranean diet constituents, such as nuts, fruits and vegetables, have been effective in modulating the activity of the enzyme, pomegranate and its compounds being the best characterized items. Ongoing research on compounds isolated from all these natural products, mainly phenolic compounds and carotenoids, indicates that some of them are particularly effective, and this may enhance the use of nutraceuticals and functional foods capable of potentiating PON1 activity.
Ecohydrology and tipping points in semiarid australian rangelands
NASA Astrophysics Data System (ADS)
Saco, P. M.; Azadi, S.; Moreno de las Heras, M.; Willgoose, G. R.
2017-12-01
Semiarid landscapes are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches with dense vegetation within bare soil. This patchy vegetation cover, which is linked to the healthy function of these ecosystems, is sensitive to human disturbances that can lead to degradation. Previous work suggests that vegetation loss below a critical value can lead to a sudden decrease in landscape functionality following threshold behaviour. The decrease in vegetation cover is linked to erosion and substantial water losses by increasing landscape hydrological connectivity. We study these interactions and the possible existence of tipping points in the Mulga land bioregion, by combining remote sensing observations and results from an eco-geomorphologic model to investigate changes in ecosystem connectivity and the existence of threshold behaviour. More than 30 sites were selected along a precipitation gradient spanning a range from approximately 250 to 500 mm annual rainfall. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades) and MODIS NDVI, which combined with local precipitation data is used to compute rainfall use efficiency to assess the ecosystem function. A critical tipping point associated to loss of vegetation cover appears in the sites with lower annual precipitation. We found that this tipping point behaviour decreases for sites with higher rainfall. We use the model to investigate the relation between structural and functional connectivity and the emergence of threshold behaviour for selected plots along this precipitation gradient. Both observations and modelling results suggest that sites with higher rainfall are more resilient to changes in surface connectivity. The implications for ecosystem resilience and land management are discussed
NASA Astrophysics Data System (ADS)
Mouillot, F.; Koutsias, N.; Conedera, M.; Pezzatti, B.; Madoui, A.; Belhadj Kheder, C.
2017-12-01
Wildfire is the main disturbance affecting Mediterranean ecosystems, with implications on biogeochemical cycles, biosphere/atmosphere interactions, air quality, biodiversity, and socio-ecosystems sustainability. The fire/climate relationship is time-scale dependent and may additionally vary according to concurrent changes climatic, environmental (e.g. land use), and fire management processes (e.g. fire prevention and control strategies). To date, however, most studies focus on a decadal scale only, being fire statistics ore remote sensing data usually available for a few decades only. Long-term fire data may allow for a better caption of the slow-varying human and climate constrains and for testing the consistency of the fire/climate relationship on the mid-time to better apprehend global change effects on fire risks. Dynamic Global Vegetation Models (DGVMs) associated with process-based fire models have been recently developed to capture both the direct role of climate on fire hazard and the indirect role of changes in vegetation and human population, to simulate biosphere/atmosphere interactions including fire emissions. Their ability to accurately reproduce observed fire patterns is still under investigation regarding seasonality, extreme events or temporal trend to identify potential misrepresentations of processes. We used a unique long-term fire reconstruction (from 1880 to 2016) of yearly burned area along a North/South and East/West environmental gradient across the Mediterranean Basin (southern Switzerland, Greece, Algeria, Tunisia) to capture the climatic and socio economic drivers of extreme fire years by linking yearly burned area with selected climate indices derived from historical climate databases and socio-economic variables. We additionally compared the actual historical reconstructed fire history with the yearly burned area simulated by a panel of DGVMS (FIREMIP initiative) driven by daily CRU climate data at 0.5° resolution across the Mediterranean basin. We will present and discuss the key processes driving interannual fire hazard along the 20th century, and analysed how DGVMs capture this interannual variability.
NASA Astrophysics Data System (ADS)
Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang
2017-04-01
Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. We will present a recently published study1 that estimates the current level of water demand for Mediterranean agriculture and simulates the potential impacts of climate change, population growth and transitions to water-saving irrigation and conveyance technologies. The results indicate that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems, with large differences in the saving potentials across countries. Under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean. Both the Eastern and the Southern Mediterranean would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. However, in some scenarios water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain. In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a large development2 that comprised the improved representation of Mediterranean crops.
78 FR 6227 - Importation of Fresh Apricots From Continental Spain
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
...: Apiognomonia erythrostoma (Pers.), a brown rot fungus; Ceratitis capitata Wiedemann, the Mediterranean fruit... fruits and vegetables regulations to allow the importation into the United States of fresh apricots from... fruit would also have to be imported in commercial consignments, with each consignment identified...
Nadtochiy, Sergiy M.; Redman, Emily K.
2010-01-01
The continually increasing rate of myocardial infarction (MI) in the Western world at least partly can be explained by a poor diet lacking in green vegetables, fruits, and fish, and enriched in food that contains saturated fat. In contrast, a number of epidemiological studies provide strong evidence highlighting the cardioprotective benefits of the Mediterranean diet enriched in green vegetables, fruits, fish and grape wine. Regular consumption of these products leads to an accumulation of nitrate/nitrite/NO•, polyunsaturated fatty acids (PUFA), and polyphenolic compounds, such as resveratrol, in the human body. Studies have confirmed that these constituents are bioactive exogenous mediators, which induce strong protection against MI. The aim of this review is to provide a critical, in-depth analysis of the cardioprotective pathways mediated by nitrite/NO•, PUFA, and phenolic compounds of grape wines discovered in the recent years, including cross-talk between different mechanisms and compounds. Overall, these findings may facilitate the design and synthesis of novel therapeutic tools for the treatment of MI. PMID:21454053
Global attention to Turkey due to desertification.
Camci Cetin, S; Karaca, A; Haktanir, K; Yildiz, H
2007-05-01
Desertification has recognized as an environmental problem by many international organizations such as UN, NATO and FAO. Desertification in Turkey is generally caused by incorrect land use, excessive grazing, forest fires, urbanization, industry, genetic erosion, soil erosion, salinization, and uncontrolled wild type plants picking. Due to anthropogenic destruction of forest, steppe flora gradually became dominant in Anatolia. In terms of biodiversity, Turkey has a significant importance in Europe and Middle East. Nine thousands plant species naturally grown in Turkey, one third of them are endemic. Also, endemic species of vertebrates, thrive in the lakes and marshy areas. The studies of modelling simulation of vegetation on the effects of Mediterranean climate during the Roman Classical period by using vegetation history showed that, in 2000 years BP, Mediterranean countries were more humid than today. Turkey is a special place on the global concern in terms of desertification because of biodiversity, agricultural potential, high population, social and economical structure, topographical factors and strategic regional location. Communication among scientists, decision makers and international non-profit organizations must be improved.
NASA Astrophysics Data System (ADS)
Alday, Josu G.; Martínez-Ruiz, Carolina; Marrs, Rob H.; Bravo, Felipe
2010-05-01
Understorey plant species composition is an important part of forest ecosystems and its conservation is becoming an increasingly frequent objective in forest management plans. However, there is a lack of knowledge of the effect of timber harvesting on the characteristic understorey species in the Mediterranean region. We investigated the effects of three different harvest intensities on the short-term dynamics of understorey vegetation in a natural Maritime pine forest in Spain, and compared the results with uncut controls. Clear-cutting induced both qualitative and quantitative differences with respect to the controls, but intermediate levels of harvesting (25% and 50% removal) induced only quantitative differences. Harvesting reduced the frequency and cover of 56% of characteristic forest species, but only 22% showed an increase. Of the most abundant plant families only the Fabaceae showed a significant response with respect to harvesting intensity. Our findings suggest that Light- and Medium-harvest regimes are better management options than clear-cutting if the aim is to conserve the understorey vegetation.
Mediterranean diet in the southern Croatia - does it still exist?
Kolčić, Ivana; Relja, Ajka; Gelemanović, Andrea; Miljković, Ana; Boban, Kristina; Hayward, Caroline; Rudan, Igor; Polašek, Ozren
2016-10-31
To assess the adherence to the Mediterranean diet in the population of Dalmatia in southern Croatia. A cross-sectional study was performed within the 10001 Dalmatians cohort, encompassing 2768 participants from Korčula and Vis islands and the City of Split, who were recruited during 2011-2014. Using the data obtained from food frequency questionnaire we calculated the Mediterranean Diet Serving Score (MDSS). Multivariate logistic regression was used to identify the characteristics associated with the adherence to the Mediterranean diet, with age, sex, place of residence, education attainment, smoking, and physical activity as covariates. The median MDSS score was 11 out of maximum 24 points (interquartile range 8-13), with the highest score recorded on the island of Vis. Participants reported a dietary pattern that had high compliance with the Mediterranean diet guidelines for consumption of cereals (87% met the criteria), potatoes (73%), olive oil (69%), and fish (61%), moderate for consumption of fruit (54%) and vegetables (31%), and low for consumption of nuts (6%). Overall, only 23% of the participants were classified as being adherent to the Mediterranean diet, with a particularly low percentage among younger participants (12%) compared to the older ones (34%). Men were less likely to show good adherence (odds ratio 0.52, 95% confidence interval 0.42-0.65). This study revealed rather poor compliance with the current recommendations on the Mediterranean diet composition in the population of Dalmatia. Public health intervention is especially needed in younger age groups and in men, who show the greatest departure from traditional Mediterranean diet and lifestyle.
Mediterranean diet in the southern Croatia – does it still exist?
Kolčić, Ivana; Relja, Ajka; Gelemanović, Andrea; Miljković, Ana; Boban, Kristina; Hayward, Caroline; Rudan, Igor; Polašek, Ozren
2016-01-01
Aim To assess the adherence to the Mediterranean diet in the population of Dalmatia in southern Croatia. Methods A cross-sectional study was performed within the 10 001 Dalmatians cohort, encompassing 2768 participants from Korčula and Vis islands and the City of Split, who were recruited during 2011-2014. Using the data obtained from food frequency questionnaire we calculated the Mediterranean Diet Serving Score (MDSS). Multivariate logistic regression was used to identify the characteristics associated with the adherence to the Mediterranean diet, with age, sex, place of residence, education attainment, smoking, and physical activity as covariates. Results The median MDSS score was 11 out of 24 points (interquartile range 8-13), with the highest score recorded on the island of Vis. Participants reported a dietary pattern that had high compliance with the Mediterranean diet guidelines for consumption of cereals (87% met the criteria), potatoes (73%), olive oil (69%), and fish (61%), moderate for consumption of fruit (54%) and vegetables (31%), and low for consumption of nuts (6%). Overall, only 23% of the participants were classified as being adherent to the Mediterranean diet, with a particularly low percentage among younger participants (12%) compared to the older ones (34%). Men were less likely to show good adherence (odds ratio 0.52, 95% confidence interval 0.42-0.65). Conclusion This study revealed rather poor compliance with the current recommendations on the Mediterranean diet composition in the population of Dalmatia. Public health intervention is especially needed in younger age groups and in men, who show the greatest departure from traditional Mediterranean diet and lifestyle. PMID:27815932
NASA Astrophysics Data System (ADS)
Piayda, Arndt; Dubbert, Maren; Siegwolf, Rolf; Cuntz, Matthias; Werner, Christiane
2017-04-01
The presence of vegetation alters hydrological cycles of ecosystems. Complex plant-soil interactions govern the fate of precipitation input and water transitions through ecosystem compartments. Disentangling these interactions is a major challenge in the field of ecohydrology and pivotal foundation for understanding the carbon cycle of semi-arid ecosystems. Stable water isotopes can be used in this context as tracer to quantify water movement through soil-vegetation-atmosphere interfaces. The aim of this study is to disentangle vegetation effects on soil water infiltration and distribution as well as dynamics of soil evaporation and grassland water-use in a Mediterranean cork-oak woodland during dry conditions. An irrigation experiment using δ18O-labeled water was carried out in order to quantify distinct effects of tree and herbaceous vegetation on infiltration and distribution of event water in the soil profile. Dynamic responses of soil and herbaceous vegetation fluxes to precipitation regarding event water-use, water uptake depth plasticity and contribution to ecosystem evapotranspiration were quantified. Total water loss to the atmosphere from bare soil was as high as from vegetated soil, utilizing large amounts of unproductive water loss for biomass production, carbon sequestration and nitrogen fixation. During the experiment no adjustments of main root water uptake depth to changes of water availability could be observed, rendering light to medium precipitation events under dry conditions useless. This forces understory plants to compete with adjacent trees for soil water in deeper soil layers. Thus understory plants are faster subject to chronic drought, leading to premature senescence at the onset of drought. Despite this water competition, the presence of Cork oak trees fosters infiltration to large degrees. That reduces drought stress, caused by evapotranspiration, due to favourable micro climatic conditions under tree crown shading. This study highlights complex soil-plant-atmosphere and inter-species interactions in both space and time controlling the fate of rain pulse transitions through a typical Mediterranean savannah ecosystem, disentangled by the use of stable water isotopes.
NASA Astrophysics Data System (ADS)
Piayda, Arndt; Dubbert, Maren; Siegwolf, Rolf; Cuntz, Matthias; Werner, Christiane
2017-05-01
The presence of vegetation alters hydrological cycles of ecosystems. Complex plant-soil interactions govern the fate of precipitation input and water transitions through ecosystem compartments. Disentangling these interactions is a major challenge in the field of ecohydrology and a pivotal foundation for understanding the carbon cycle of semi-arid ecosystems. Stable water isotopes can be used in this context as tracer to quantify water movement through soil-vegetation-atmosphere interfaces. The aim of this study is to disentangle vegetation effects on soil water infiltration and distribution as well as dynamics of soil evaporation and grassland water use in a Mediterranean cork oak woodland during dry conditions. An irrigation experiment using δ18O labelled water was carried out in order to quantify distinct effects of tree and herbaceous vegetation on the infiltration and distribution of event water in the soil profile. Dynamic responses of soil and herbaceous vegetation fluxes to precipitation regarding event water use, water uptake depth plasticity, and contribution to ecosystem soil evaporation and transpiration were quantified. Total water loss to the atmosphere from bare soil was as high as from vegetated soil, utilizing large amounts of unproductive evaporation for transpiration, but infiltration rates decreased. No adjustments of main root water uptake depth to changes in water availability could be observed during the experiment. This forces understorey plants to compete with adjacent trees for water in deeper soil layers at the onset of summer. Thus, understorey plants are subjected to chronic water deficits faster, leading to premature senescence at the onset of drought. Despite this water competition, the presence of cork oak trees fosters infiltration and reduces evapotranspirative water losses from the understorey and the soil, both due to altered microclimatic conditions under crown shading. This study highlights complex soil-plant-atmosphere and inter-species interactions controlling rain pulse transitions through a typical Mediterranean savannah ecosystem, disentangled by the use of stable water isotopes.
Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying
2015-04-14
Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.
Suberin-derived aliphatic monomers as biomarkers for SOM affected by root litter contribution
NASA Astrophysics Data System (ADS)
Kogel-Knabner, I.; Spielvogel, S.-; Prietzel, J.-
2012-12-01
The patchy distribution of trees and ground vegetation may have major impact on SOC variability and stability at the small scale. Knowledge about correlations between the pattern of tree and ground vegetation, SOC stocks in different soil depths and the contribution of root- vs. shoot-derived carbon to different SOC fractions is scarce. We have tested analysis of hydrolysable aliphatic monomers derived from the biopolyesters cutin- and suberin to investigate whether their composition can be traced back after decay and transformation into soil organic matter (SOM) to study SOM source, degradation, and stand history. The main objective of this study was to elucidate the relative abundance of cutin and suberin in different particle size and density fractions of a Norway spruce and a European beech site with increasing distance to stems. Soil samples, root, bark and needle/leave samples were analyzed for their cutin and/or suberin signature. Previous to isolation of bound lipids, sequential solvent extraction was used to remove free lipids and other solvent extractable compounds. Cutin- and suberin-derived monomers were extracted from the samples using base hydrolysis. Before analysis by Gas Chromatography/Mass Spectrometry (GC/MS), extracts were derivatized to convert compounds to trimethylsilyl derivatives. Statistical analysis identified four variables which as combined factors discriminated significantly between cutin and suberin based on their structural units. We found a relative enrichment of cutin and suberin contents in the occluded fraction at both sites that decreased with increasing distance to the trees. We conclude from our results that (i) patchy above- and belowground carbon input caused by heterogeneous distribution of trees and ground vegetation has major impact on SOC variability and stability at the small scale, (ii) tree species is an important factor influencing SOC heterogeneity at the stand scale due to pronounced differences in above- and belowground carbon input among the tree species and that (iii) forest conversion may substantially alter SOC stocks and spatial distribution. Suberin biomarkers can thus be used as indicators for the presence of root influence on SOM composition and for identifying root-affected soil compartments.
Vegetation Response to Upper Pliocene Glacial/Interglacial Cyclicity in the Central Mediterranean
NASA Astrophysics Data System (ADS)
Combourieu-Nebout, Nathalie
1993-09-01
New detailed pollen analysis of the lower part of the Upper Pliocene Semaforo section (Crotone, Italy) documents cyclic behavior of vegetation at the beginning of the Northern Hemisphere glaciations. The competition between four vegetation units (subtropical humid forest, deciduous temperate forest, altitudinal coniferous forest, and open xeric assemblage) probably reflects modifications of vegetation belts at this montane site. Several increases in herbaceous open vegetation regularly alternate with subtropical humid forest, which expresses rapid climatic oscillations. The complete temporal succession—deciduous forest (rich in Quercus), followed by subtropical humid forest (Taxodiaceae and Cathaya), then altitudinal coniferous forest ( Tsuga, Cedrus, Abies, and Picea), and finally herbaceous open vegetation (Graminae, Compositae, and Artemisia )—displays the climatic evolution from warm and humid interglaciation to cold and dry glaciation. It also suggests an independent variation of temperature and humidity, the two main climatic parameters. The vegetation history of southern Calabria recorded in the Semaforo section have been correlated with the ∂ 18O signal established in the Atlantic Ocean.
Buil-Cosiales, Pilar; Martinez-Gonzalez, Miguel Angel; Ruiz-Canela, Miguel; Díez-Espino, Javier; García-Arellano, Ana; Toledo, Estefania
2017-01-01
Fiber and fiber-rich foods have been inversely associated with cardiovascular disease (CVD), but the evidence is scarce in young and Mediterranean cohorts. We used Cox regression models to assess the association between quintiles of total fiber and fiber from different sources, and the risk of CVD adjusted for the principal confounding factors in a Mediterranean cohort of young adults, the SUN (Seguimiento Universidad de Navarra, Follow-up) cohort. After a median follow-up of 10.3 years, we observed 112 cases of CVD among 17,007 participants (61% female, mean age 38 years). We observed an inverse association between fiber intake and CVD events (p for trend = 0.024) and also between the highest quintile of fruit consumption (hazard ratio (HR) 0.51, 95% confidence interval (CI) 0.27–0.95) or whole grains consumption (HR 0.43 95% CI 0.20–0.93) and CVD compared to the lowest quintile, and also a HR of 0.58 (95% CI 0.37–0.90) for the participants who ate at least 175 g/day of fruit. Only the participants in the highest quintile of fruit-derived fiber intake had a significantly lower risk of CVD (HR 0.52, 95% CI 0.28–0.97). The participants who ate at least one serving per week of cruciferous vegetables had a lower risk than those who did not (HR 0.52, 95% CI 0.30–0.89). In conclusion, high fruit consumption, whole grain consumption, or consumption of at least one serving/week of cruciferous vegetables may be protective against CVD in young Mediterranean populations. PMID:28304346
Kromhout, Daan; Menotti, Alessandro; Alberti-Fidanza, Adalberta; Puddu, Paolo Emilio; Hollman, Peter; Kafatos, Anthony; Tolonen, Hanna; Adachi, Hisashi; Jacobs, David R
2018-05-17
We studied the ecologic relationships of food groups, macronutrients, eating patterns, and an a priori food pattern score (Mediterranean Adequacy Index: MAI) with long-term CHD mortality rates in the Seven Countries Study. Sixteen cohorts (12,763 men aged 40-59 years) were enrolled in the 1960s in seven countries (US, Finland, The Netherlands, Italy, Greece, former Yugoslavia: Croatia/Serbia, Japan). Dietary surveys were carried out at baseline and only in a subsample of each cohort. The average food consumption of each cohort was chemically analyzed for individual fatty acids and carbohydrates. Ecologic correlations of diet were computed across cohorts for 50-year CHD mortality rates; 97% of men had died in cohorts with 50-year follow-up. CHD death rates ranged 6.7-fold among cohorts. At baseline, hard fat was greatest in northern Europe, olive oil in Greece, meat in the US, sweet products in northern Europe and the US, and fish in Japan. The MAI was high in Mediterranean and Japanese cohorts. The 50-year CHD mortality rates of the cohorts were closely positively ecologically correlated (r = 0.68-0.92) with average consumption of hard fat, sweet products, animal foods, saturated fat, and sucrose, but not with naturally occurring sugars. Vegetable foods, starch, and the a priori pattern MAI were inversely correlated (r = -0.59 to -0.91) with CHD mortality rates. Long-term CHD mortality rates had statistically significant ecologic correlations with several aspects of diet consumed in the 1960s, the traditional Mediterranean and Japanese patterns being rich in vegetable foods, and low in sweet products and animal foods.
Buil-Cosiales, Pilar; Martinez-Gonzalez, Miguel Angel; Ruiz-Canela, Miguel; Díez-Espino, Javier; García-Arellano, Ana; Toledo, Estefania
2017-03-17
Fiber and fiber-rich foods have been inversely associated with cardiovascular disease (CVD), but the evidence is scarce in young and Mediterranean cohorts. We used Cox regression models to assess the association between quintiles of total fiber and fiber from different sources, and the risk of CVD adjusted for the principal confounding factors in a Mediterranean cohort of young adults, the SUN (Seguimiento Universidad de Navarra, Follow-up) cohort. After a median follow-up of 10.3 years, we observed 112 cases of CVD among 17,007 participants (61% female, mean age 38 years). We observed an inverse association between fiber intake and CVD events ( p for trend = 0.024) and also between the highest quintile of fruit consumption (hazard ratio (HR) 0.51, 95% confidence interval (CI) 0.27-0.95) or whole grains consumption (HR 0.43 95% CI 0.20-0.93) and CVD compared to the lowest quintile, and also a HR of 0.58 (95% CI 0.37-0.90) for the participants who ate at least 175 g/day of fruit. Only the participants in the highest quintile of fruit-derived fiber intake had a significantly lower risk of CVD (HR 0.52, 95% CI 0.28-0.97). The participants who ate at least one serving per week of cruciferous vegetables had a lower risk than those who did not (HR 0.52, 95% CI 0.30-0.89). In conclusion, high fruit consumption, whole grain consumption, or consumption of at least one serving/week of cruciferous vegetables may be protective against CVD in young Mediterranean populations.
Doménech-Asensi, Guillermo; Sánchez-Martínez, Álvaro; Ros-Berruezo, Gaspar
2014-12-17
The "Mediterranean diet" is recognized as one of the healthiest dietary patterns but, even in Mediterranean countries it is gradually being lost. Adolescence is a crucial period for changes in dietary patterns. The purpose of this study was to evaluate the Adherence to Mediterranean diet (AMD) of secondary school students and evaluate possible variations between those residents in the city or in the districts. A cross-sectional study was designed with 379 secondary school students. To assess the AMD a self-administered questionnaire KIDMED was used. They were classified according to sex and residence (city or districts). The body mass index (BMI) for the whole sample was 22.34 in boys and 20.79 in girls (p<0.05). Students from the city resulted more physically active than those from the districts (p<0.05). The average AMD score was 5.8, with 20.3% of students showing good adherence. In general, there was a low consumption of fruits, vegetables and pasta or rice, all foods included in the bottom of the dietary pyramid and the consumption of olive oil and legumes was very positive. Around 25% of students skip breakfast regularly. Although BMI was in general in the range of normality, AMD of secondary school students is lower than expected attending to previous studies. Consume of fruits and vegetables several times per day, having breakfast daily and regular physical activity should be promoted. Educational and informative activities should be designed for adolescents and also for their parents since in these stages menus at home are usually established by them. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Pea (Pisum sp.) genetic resources, its analysis and exploration
USDA-ARS?s Scientific Manuscript database
Pea is important temperate region pulse, with feed, fodder and vegetable uses. Originated and domesticated in Middle East and Mediterranean, it formed important dietary components of early civilizations. Although Pisum is a small genus with two or three species, it is very diverse and structured, r...
Stroke and Nutrition: A Review of Studies
Foroughi, Mehdi; Akhavanzanjani, Mohsen; Maghsoudi, Zahra; Ghiasvand, Reza; Khorvash, Fariborz; Askari, Gholamreza
2013-01-01
Background: Stroke is one of the leading causes of death and certainly the major cause of disability in the world. Diet and nutrient has an effective role in prevention and control of the risk of stroke. The aim of this study was to review the studies on the relationship between dietary intake and stroke incidence. Methods: In this study, the terms of “Fat”, “cholesterol”, “antioxidant”, “vitamins”, “salt”, “potassium”, “calcium”, “carbohydrate”, “vegetables”, “fruits”, “meat”, “tea”, “whole grains”, “sugar-sweetened beverages”, “Mediterranean diet”, “dietary approaches to stop hypertension diet (DASH diet)”, “Western diet”, and “stroke” were searched in Pubmed search engine. The observational studies, cohort studies, clinical trial studies, systemic review, and meta-analysis reviews are also included in this study. Results: The study revealed that adherence to theimprovements in nutrition and diet canreducethe incidence ofstroke. Higher antioxidant, vitamins, potassium, calcium, vegetables, fruits, whole grain intake, and adherence to the Mediterranean dietor DASH diet can lower stroke incidence. Conclusions: Adherence to Mediterranean diet or DASH diet and increasing the consumption of antioxidant, vitamins, potassium, calcium food sources, vegetables, fruits, and whole grains intake can lower the risk of stroke. Healthy diet is effective in reducing risk of stroke, however, more studies need to be carried out in this area. PMID:23776719
NASA Astrophysics Data System (ADS)
Cienciala, P.; Pasternack, G. B.
2017-04-01
Floodplain inundation regime defines hydrological connectivity between river channel and floodplain and thus strongly controls structure and function of these highly diverse and productive ecosystems. We combined an extensive LiDAR data set on topography and vegetation, long-term hydrological records, as well as the outputs of hydrological and two-dimensional hydraulic models to examine how floodplain inundation regimes in a dynamic, regulated, gravel-cobble river in a Mediterranean-climate region are controlled by reach-scale valley morphology, hydroclimatic conditions, and flow regulation. Estimated relative differences in the extent, duration, and cumulative duration of inundation events were often as large as an order of magnitude and generally greatest for large and long duration events. The relative impact of flow regulation was greatest under dry hydroclimatic conditions. Although the effects of hydroclimate and flow impairment are larger than that of valley floor topography, the latter controls sensitivity of floodplain hydroperiod to flow regime changes and should not be ignored. These quantitative estimates of the relative importance of factors that control floodplain processes in Mediterranean, semiarid rivers contributes to better understanding of hydrology and geomorphology of this important class of channels. We also discuss implications of our findings for processes that shape floodplain habitat for riparian vegetation and salmonid fish, especially in the context of ecological restoration.
Is breast cancer avoidable? Could dietary changes help?
Walker, A R; Walker, B F; Stelma, S
1995-11-01
In the US, the life time odds of developing breast cancer has reached one in eight, with an incidence rate of 85 per 100,000 world population. The rate is half or less in women in some Mediterranean countries. At the extreme are rural African women whose rate is approximately 5-10 per 100,000. In African, compared with White women, protective factors include (1) reproductive behaviour, namely, slower growth before and after puberty, later age at menarche, high teenage pregnancy, high parity and long periods of lactation and amenorrhoea and (2) a diet of relatively low energy intake and of low-fat and high-fibre contents. In the Mediterranean setting, major dietary protective factors include a relatively low intake of saturated fat and high intakes of monounsaturated fat and of vegetables and fruit. Among White women, a reversion to protective reproductive behaviour is out of the question. Only in respect of diet, could significant avoiding action be taken. Adoption of an African type diet is wholly impracticable. Moreover, even conformation to a former Mediterranean diet, which is already changing, would be difficult, requiring reorientation of fat composition and large rises in intakes of vegetable and fruit. However, with resolution, were such changes made, at least by the very vulnerable, they would help, additionally, to protect against other diet-related cancers, especially colon cancer and against coronary heart disease.
Spatial analysis of climate factors used to determine suitability of greenhouse production in Turkey
NASA Astrophysics Data System (ADS)
Cemek, Bilal; Güler, Mustafa; Arslan, Hakan
2017-04-01
This study aimed to identify the most suitable growing periods for greenhouse production in Turkey in order to make valuable contribution to economic viability. Data collected from the meteorological databases of 81 provinces was used to determine periodic climatological requirements of greenhouses in terms of cooling, heating, natural ventilation, and lighting. Spatial distributions of mean daily outside temperatures and greenhouse heating requirements were derived using ordinary co-kriging (OCK) supported by Geographical Information System (GIS). Mean monthly temperatures throughout the country were found to decrease below 12 °C in January, February, March, and December, indicating heating requirements, whereas temperatures in 94.46 % of the country rose above 22 °C in July, indicating cooling requirements. Artificial lighting is not a requirement in Turkey except for November, December, and January. The Mediterranean, Aegean, Marmara, and Black Sea Regions are more advantageous than the Central, East, and Southeast Anatolia Regions in terms of greenhouse production because the Mediterranean and Aegean Regions are more advantageous in terms of heating, and the Black Sea Region is more advantageous in terms of cooling. Results of our study indicated that greenhouse cultivation of winter vegetables is possible in certain areas in the north of the country. Moreover, greenhouses could alternatively be used for drying fruits and vegetables during the summer period which requires uneconomical cooling systems due to high temperatures in the Mediterranean and Southeastern Anatolian Regions.
Effect of fire on soil physical and chemical properties in a Mediterranean area of Sardinia.
NASA Astrophysics Data System (ADS)
Canu, Annalisa; Motroni, Andrea; Arca, Bachisio; Pellizzaro, Grazia; Ventura, Andrea; Secci, Romina; Robichaud, Peter
2014-05-01
Wildfires are one of the most widespread factors of ecosystem degradation around the world. The degree of change in both chemical and biological properties of soil inducted by forest fires is related to temperature and persistence of the fire as well as to moisture content of soil and of fuel. The present note reports the first experimental results of a wider-scale research project, whose aim is to develop methods for analysis and collection of field data by using a multidisciplinary approach in order to evaluate land erosion hazard. Specific objectives of this study are: i) to compare burned and unburned soil in order to evaluate the effect of fire on physical and chemical soil properties; ii) to measure soil erosion after fire in relation to different slopes. The experimental site is located in Mediterranean basin, on a steep slope in a hilly area of north-western Sardinia (Municipality of Ittiri, Italy), where a human caused fire occurred in august 2013. The area is mainly covered by the typical Mediterranean vegetation. Immediately after fire, several soil samples were collected from 0-10 cm depth, both in burned and in unburned plots. The soil organic matter, N, and P contents, pH, and soil texture were then determined in laboratory. Soil erosion rates from experimental plots were measured and estimated by silt fences technique taking into account different slopes and vegetation distribution.
Estimating soil erosion in Natura 2000 areas located on three semi-arid Mediterranean Islands.
Zaimes, George N; Emmanouloudis, Dimitris; Iakovoglou, Valasia
2012-03-01
A major initiative in Europe is the protection of its biodiversity. To accomplish this, specific areas from all countries of the European Union are protected by the establishment of the "Natura 2000" network. One of the major threats to these areas and in general to ecosystems is soil erosion. The objective of this study was to quantitatively estimate surface soil losses for three of these protected areas that are located on semi-arid islands of the Mediterranean. One Natura 2000 area was selected from each of the following islands: Sicily in Italy, Cyprus and Rhodes in Greece. To estimate soil losses, Gerlach troughs were used. These troughs were established on slopes that ranged from 35-40% in four different vegetation types: i) Quercus ilex and Quercus rotundifolia forests, ii) Pinus brutia forests, iii) "Phrygana" shrublands and iv) vineyards. The shrublands had the highest soil losses (270 kg ha(-1) yr(-1)) that were 5-13 times more than the other three vegetation types. Soil losses in these shrublands should be considered a major concern. However, the other vegetation types also had high soil losses (21-50 kg ha(-1) yr(-1)). Conclusively, in order to enhance and conserve the biodiversity of these Natura 2000 areas protective management measures should be taken into consideration to decrease soil losses.
Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet.
Willcox, Donald Craig; Scapagnini, Giovanni; Willcox, Bradley J
2014-01-01
The traditional diet in Okinawa is anchored by root vegetables (principally sweet potatoes), green and yellow vegetables, soybean-based foods, and medicinal plants. Marine foods, lean meats, fruit, medicinal garnishes and spices, tea, alcohol are also moderately consumed. Many characteristics of the traditional Okinawan diet are shared with other healthy dietary patterns, including the traditional Mediterranean diet, DASH diet, and Portfolio diet. All these dietary patterns are associated with reduced risk for cardiovascular disease, among other age-associated diseases. Overall, the important shared features of these healthy dietary patterns include: high intake of unrefined carbohydrates, moderate protein intake with emphasis on vegetables/legumes, fish, and lean meats as sources, and a healthy fat profile (higher in mono/polyunsaturated fats, lower in saturated fat; rich in omega-3). The healthy fat intake is likely one mechanism for reducing inflammation, optimizing cholesterol, and other risk factors. Additionally, the lower caloric density of plant-rich diets results in lower caloric intake with concomitant high intake of phytonutrients and antioxidants. Other shared features include low glycemic load, less inflammation and oxidative stress, and potential modulation of aging-related biological pathways. This may reduce risk for chronic age-associated diseases and promote healthy aging and longevity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Healthy aging diets other than the Mediterranean: A Focus on the Okinawan Diet
Willcox, Donald Craig; Scapagnini, Giovanni; Willcox, Bradley J.
2014-01-01
The traditional diet in Okinawa is anchored by root vegetables (principally sweet potatoes), green and yellow vegetables, soybean-based foods, and medicinal plants. Marine foods, lean meats, fruit, medicinal garnishes and spices, tea, alcohol are also moderately consumed. Many characteristics of the traditional Okinawan diet are shared with other healthy dietary patterns, including the traditional Mediterranean diet, DASH diet, and Portfolio diet. All these dietary patterns are associated with reduced risk for cardiovascular disease, among other age-associated diseases. Overall, the important shared features of these healthy dietary patterns include: high intake of unrefined carbohydrates, moderate protein intake with emphasis on vegetables/legumes, fish, and lean meats as sources, and a healthy fat profile (higher in mono/polyunsaturated fats, lower in saturated fat; rich in omega-3). The healthy fat intake is likely one mechanism for reducing inflammation, optimizing cholesterol, and other risk factors. Additionally, the lower caloric density of plant-rich diets results in lower caloric intake with concomitant high intake of phytonutrients and antioxidants. Other shared features include low glycemic load, less inflammation and oxidative stress, and potential modulation of aging-related biological pathways. This may reduce risk for chronic age-associated diseases and promote healthy aging and longevity. PMID:24462788
NASA Astrophysics Data System (ADS)
Jiménez-Moreno, Gonzalo; García-Alix, Antonio; Hernández-Corbalán, María Dolores; Anderson, R. Scott; Delgado-Huertas, Antonio
2013-03-01
Detailed pollen, charcoal, isotope and magnetic susceptibility data from an alpine lake sediment core from Sierra Nevada, southern Spain record changes in vegetation, fire history and lake sedimentation since ca. 4100 cal yr BP. The proxies studied record an arid period from ca. 3800 to 3100 cal yr BP characterized by more xerophytic vegetation and lower lake levels. A humid period is recorded between ca. 3100 and 1850 cal yr BP, which occurred in two steps: (1) an increase in evergreen Quercus between 3100 and 2500 cal yr BP, indicating milder conditions than previously and (2) an increase in deciduous Quercus and higher lake levels, between ca. 2500 and 1850 cal yr BP, indicating a further increase in humidity and reduction in seasonal contrast. Humid maxima occurred during the Roman Humid Period, previously identified in other studies in the Mediterranean region. Intensified fire activity at this time could be related to an increase in fuel load and/or in human disturbance. An arid period subsequently occurred between 1850 and 650 cal yr BP, though a decrease in Quercus and an increase in xerophytes. The alternation of persistent North Atlantic Oscillation modes probably played an important role in controlling these humid-arid cycles.
Deriving Vegetation Dynamics of Natural Terrestrial Ecosystems from MODIS NDVI/EVI Data over Turkey.
Evrendilek, Fatih; Gulbeyaz, Onder
2008-09-01
The 16-day composite MODIS vegetation indices (VIs) at 500-m resolution for the period between 2000 to 2007 were seasonally averaged on the basis of the estimated distribution of 16 potential natural terrestrial ecosystems (NTEs) across Turkey. Graphical and statistical analyses of the time-series VIs for the NTEs spatially disaggregated in terms of biogeoclimate zones and land cover types included descriptive statistics, correlations, discrete Fourier transform (DFT), time-series decomposition, and simple linear regression (SLR) models. Our spatio-temporal analyses revealed that both MODIS VIs, on average, depicted similar seasonal variations for the NTEs, with the NDVI values having higher mean and SD values. The seasonal VIs were most correlated in decreasing order for: barren/sparsely vegetated land > grassland > shrubland/woodland > forest; (sub)nival > warm temperate > alpine > cool temperate > boreal = Mediterranean; and summer > spring > autumn > winter. Most pronounced differences between the MODIS VI responses over Turkey occurred in boreal and Mediterranean climate zones and forests, and in winter (the senescence phase of the growing season). Our results showed the potential of the time-series MODIS VI datasets in the estimation and monitoring of seasonal and interannual ecosystem dynamics over Turkey that needs to be further improved and refined through systematic and extensive field measurements and validations across various biomes.
NASA Astrophysics Data System (ADS)
Baldocchi, Dennis D.; Xu, Liukang
2007-10-01
The prediction of evaporation from Mediterranean woodland ecosystems is complicated by an array of climate, soil and plant factors. To provide a mechanistic and process-oriented understanding, we evaluate theoretical and experimental information on water loss of Mediterranean oaks at three scales, the leaf, tree and woodland. We use this knowledge to address: what limits evaporation from Mediterranean oak woodlands - the supply of moisture in the soil, physiological control by plants or the demand by the atmosphere? The Mediterranean climate is highly seasonal with wet winters and hot, dry summers. Consequently, available sunlight is in surplus, causing potential evaporation to far exceed available rainfall on an annual basis. Because the amount of precipitation to support woody plants is marginal, Mediterranean oaks must meet their limited water supply by a variety of means. They do so by: (1) constraining the leaf area index of the landscape by establishing a canopy with widely spaced trees; (2) reducing the size of individual leaves; (3) by adopting physiological characteristics that meter the use of water (e.g. regulating stomatal, leaf nitrogen/photosynthetic capacity and/or hydraulic conductance); (4), by tapping deep supplies of water in the soil; (5) and/or by adopting a deciduous life form, which reduces the time interval that the vegetation transpires.
NASA Astrophysics Data System (ADS)
Lawson, Ian; Venevsky, Sergey; Sitch, Stephen; Tzedakis, Pc; Roucoux, Kh; Frogley, Mr
2010-05-01
Wildfire is an important element of the Earth system, responsible to a large extent for determining vegetation structure, contributing to global carbon cycling, and destructive of human life and property. Understanding wildfire behaviour can help us to predict how fire regimes are likely to change in future and to devise appropriate management strategies. One challenge in studying wildfire is to unpick the relative importance of human activity as a factor; in many densely-populated areas of the world, such as the Mediterranean, the majority of vegetation fires are thought to be started accidentally or deliberately by people. This makes it difficult to establish whether the fire frequency and/or intensity experienced today are unusual, in historical terms; whether ecosystems are in equilibrium with modern fire regimes, or are in the process of adjusting to them; and it makes it difficult to determine what an "appropriate" level of burning should be, given that complete elimination of fire is likely in the long run to be detrimental to plant communities that have evolved in environments where burning occurred naturally. Here we present new data from a lake sediment sequence from Lake Ioannina in NW Greece. The sequence contains varying amounts of charcoal, which can be interpreted as a proxy for the intensity and/or frequency of burning in the lake's catchment. Sub-fossil pollen allow us to reconstruct past vegetation communities, and stable isotope data provide some indication of local variations in past climate, supplemented by regional syntheses of other palaeoclimatic data and results of climate modelling experiments. The sediment sequence spans several interglacial-glacial cycles. Here we compare the charcoal, pollen and stable isotope records of the present interglacial, the Holocene, with the last interglacial, the Eemian. Although there are some known climatic differences between the two periods, the overwhelming difference between them is that hominin activity is thought to have been much more limited during the Eemian: the archaeological record from Greece before c. 40,000 years ago is exceedingly sparse, suggesting very little human activity. We argue therefore that the Eemian record can be used to give a reasonably good indication of what modern vegetation and fire conditions might be like without human influence. A detailed interpretation of the interaction between climate, vegetation and fire regime, informed by insights from the fire modules of the LPJ dynamic global vegetation model, provides further assessment of the main controls on Mediterranean fire regimes both with and without significant human influence.
NASA Astrophysics Data System (ADS)
Vannière, B.; Colombaroli, D.; Chapron, E.; Leroux, A.; Tinner, W.; Magny, M.
2008-06-01
A high-resolution sedimentary charcoal record from Lago dell'Accesa in southern Tuscany reveals numerous changes in fire regime over the last 11.6 kyr cal. BP and provides one of the longest gap-free series from Italy and the Mediterranean region. Charcoal analyses are coupled with gamma density measurements, organic-content analyses, and pollen counts to provide data about sedimentation and vegetation history. A comparison between fire frequency and lake-level reconstructions from the same site is used to address the centennial variability of fire regimes and its linkage to hydrological processes. Our data reveal strong relationships among climate, fire, vegetation, and land-use and attest to the paramount importance of fire in Mediterranean ecosystems. The mean fire interval (MFI) for the entire Holocene was estimated to be 150 yr, with a minimum around 80 yr and a maximum around 450 yr. Between 11.6 and 3.6 kyr cal. BP, up to eight high-frequency fire phases lasting 300-500 yr generally occurred during shifts towards low lake-level stands (ca 11,300, 10,700, 9500, 8700, 7600, 6200, 5300, 3400, 1800 and 1350 cal. yr BP). Therefore, we assume that most of these shifts were triggered by drier climatic conditions and especially a dry summer season that promoted ignition and biomass burning. At the beginning of the Holocene, high climate seasonality favoured fire expansion in this region, as in many other ecosystems of the northern and southern hemispheres. Human impact affected fire regimes and especially fire frequencies since the Neolithic (ca 8000-4000 cal. yr BP). Burning as a consequence of anthropogenic activities became more frequent after the onset of the Bronze Age (ca 3800-3600 cal. yr BP) and appear to be synchronous with the development of settlements in the region, slash-and-burn agriculture, animal husbandry, and mineral exploitation. The anthropogenic phases with maximum fire activity corresponded to greater sensitivity of the vegetation and triggered significant changes in vegetational communities (e.g. temporal declines of Quercus ilex forests and expansion of shrublands and macchia). The link between fire and climate persisted during the mid- and late Holocene, when human impact on vegetation and the fire regime was high. This finding suggests that climatic conditions were important for fire occurrence even under strongly humanised ecosystem conditions.
L-MEB Model Calibration Over the Valencia Anchor Station Area
NASA Astrophysics Data System (ADS)
Lopez-Baeza, E.
2009-04-01
In the framework of ESA's SMOS (Soil Moisture and Ocean Salinity) Mission, several studies are being carried out over different types of land surfaces to study their microwave L-band emission (1.4 GHz). These studies are being integrated in the SMOS emission model (L-MEB, L-band Microwave Emission of the Biosphere, Wigneron et al. 2007), which is the core of the SMOS algorithm for the retrieval of land surface parameters from SMOS data. To contribute to Cal/Val activities at the Valencia Anchor Station (VAS) area (Caudete de las Fuentes, Valencia, Spain), one of the primary validation areas for SMOS land data and products (ESA SMOS Cal/Val AO, Project ID 3252, Lopez-Baeza et al., 2005), a number of experiments have been carried out to study the vegetation influence over the L-band emission proceeding from the soil surface. In the VAS area, a reduced number of homogeneous units have been defined according to the type and use of the soil, mainly, shrubs, vineyards, orchards (almond-and olive-trees) and Mediterranean pine forests. In order to implement the SMOS algorithm over this reference area, it is necessary to characterize and calibrate the L-MEB model for the different cover types. This work is significantly contributing to the definition of the VAS site as a validation area for SMOS land products of the size of a SMOS pixel (SMOS reference pixel). Shrubs and vineyards are the two most significant vegetation types which cover a large percentage of the area and for which very little information at L-band is available in the literature. These two types of vegetation covers have been studied in two separate dedicated experiments under the common name of MELBEX (Mediterranean Ecosystem L-Band characterisation EXperiment). The first one (MELBEX-I) took place over a shrub area characterised by a significant proportion of bare soil with superficial stones. The second one (MELBEX-II) was carried out from March to December 2007 over a large vineyard area. During the time period of both experiments, there was a large range of vegetation and soil moisture conditions related to significant rainfall events, different temperature and vegetation biomass conditions, etc. The experiments consisted on the continuous acquisition of L-band polarimetric and multi angular measurements (from 20 to 60 degrees of elevation) over both types of vegetation using the EMIRAD L-band radiometer from the Electromagnetic System Group (EMI) of the Technical University of Denmark. In addition, measurements of infrared temperature, gravimetric and volumetric soil moisture, soil temperature profile, soil roughness and Leaf Area Index (LAI) were also monitored with an adequate frequency. This paper presents the main results from both experiments. In particular, the main L-MEB parameters that characterize these two significant Mediterranean Ecosystem species have been computed and evaluated for soil moisture retrieval purposes in the framework of the imminent SMOS over land measurements. References Lopez-Baeza, E. et al. (2207): Validation of SMOS Products over Mediterranean Ecosystem Vegetation at the Valencia Anchor Station Reference Area. ESA SMOS Cal/Val Announcement of Opportunities (ID 3252). P.I.: E. Lopez-Baeza Wigneron J-P, Y. Kerr, P. Waldteufel, K. Saleh, M.-J. Escorihuela, P. Richaume, P. Ferrazzoli, P. de Rosnay, R. Gurney, J.-C. Calvet, J.P. Grant, M. Guglielmetti, B. Hornbuckle, C. Mätzler, T. Pellarin, M. Schwank (2007): L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields, Remote Sens. Env., 107, p. 639-655, 2007
NASA Astrophysics Data System (ADS)
Sarigu, Alessio; Montaldo, Nicola
2017-04-01
In the last three decades, climate change and human activities increased desertification process in Mediterranean regions, with dramatic consequences for agriculture and water availability. For instance in the main reservoir systems in Sardinia the average annual runoff in the latter part of the 20th century decreased of more than 50% compared with the previous period, while the precipitation over the Sardinia basin has decreased, but not at such a drastic rate as the discharge, with an high precipitation elasticity to streamflow, highlighting the key role of the rainfall seasonality on runoff production. IPCC climate change scenarios predict a further decrease of winter rainfall, which is the key term for runoff production in these typical Mediterranean climate basins, and air temperature increase, which can potentially impact on evapotranspiration, soil moisture and runoff. Only the use of an accurate ecohydrological physically based distributed model allow to well predict the impact of the climate change scenarios on the basin water resources. A new eco-hydrological model is developed that couples a distributed hydrological model of and a vegetation dynamic model (VDM). The hydrological model estimates the soil water balance of each basin cell using the force-restore method, the Philips model for infiltration estimate and the Penman-Monteith equation for evapotranspiration estimate. The VDM evaluates the changes in biomass over time for each cell and provides the leaf area index (LAI), which is then used by the hydrological model for evapotranspiration and rainfall interception estimates. Case study is the Mulargia basin (Sardinia, basin area of about 70 km2), where an extended field campaign started from 2003, with rain and discharge data observed at the basin outlet, periodic field measurements of soil moisture and LAI all over the basin, and evapotraspiration estimates using an eddy correlation based tower. The Mulargia basin case study is a very interesting laboratory of Mediterranean basins, thanks to its typical Mediterranean climate, its typical physiografic characteristics, its low human activities and influences and its attractive hydrologic database. The model has been successfully and deeply calibrated for the 2003 and validated for the 2004-2005 period, using both field data and satellite Modis data. Three future climate change scenarios has been generated using a stochastic model (Richardson, 1991), opportunely adapted for accounting the future changes of climate conditions. The scenarios (A1-A1B-A2) assume that in the next century there will be a drastic reduction of precipitation (with maximum reduction of 30% in A2) and that will continue the warming process. A reduction of soil moisture (about 40%) is predicted, especially during winter month and also the LAI will drastically decrease (more than 50% for woody vegetation and 75% for grass especially during the spring). Runoff will decrease even more (up to 70%) during the winter season, which is the key season for the water resource management and planning of these Mediterranean basins. These results anticipate a dramatic reduction of water resources availability, a change of vegetation species and ecosystems, increasing the desertification process in this typical Mediterranean area.
Livestock grazing supports native plants and songbirds in a California annual grassland.
Gennet, Sasha; Spotswood, Erica; Hammond, Michele; Bartolome, James W
2017-01-01
Over eight years we measured the effects of plant community composition, vegetation structure, and livestock grazing on occurrence of three grassland bird species-Western Meadowlark (Sturnella neglecta), Horned Lark (Eremophila alpestris), and Grasshopper Sparrow (Ammodramus savannarum)-at sites in central California during breeding season. In California's Mediterranean-type climatic region, coastal and inland grassland vegetation is dominated by exotic annual grasses with occasional patches of native bunchgrass and forbs. Livestock grazing, primarily with beef cattle, is the most widely used management tool. Compared with ungrazed plots, grazed plots had higher bare ground, native plant cover, and vertically heterogeneous vegetation. Grazed plots also had less plant litter and shorter vegetation. Higher native plant cover, which is predominantly composed of bunchgrasses in our study area, was associated with livestock grazing and north-facing aspects. Using an information theoretic approach, we found that all three bird species had positive associations with native plant abundance and neutral (Western Meadowlark, Grasshopper Sparrow) or positive (Horned Lark) association with livestock grazing. All species favored flatter areas. Horned Larks and Western Meadowlark occurred more often where there were patches of bare ground. Western Meadowlarks and Grasshopper Sparrows were most common on north-facing slopes, suggesting that these species may be at risk from projected climate change. These findings demonstrate that livestock grazing is compatible with or supports grassland bird conservation in Mediterranean-type grasslands, including areas with high levels of exotic annual grass invasion, in part because grazing supports the persistence of native plants and heterogeneity in vegetation structure. However, conservation of low-lying grasslands with high native species presence, and active management to increase the abundance of native plant species are also likely to be important for sustaining grassland birds long-term.
NASA Astrophysics Data System (ADS)
von Keyserlingk, Jennifer; Paton, Eva Nora; Förster, Saskia; Bronstert, Axel
2017-04-01
Many of the dry rangelands of Southern Europe are threatened by land degradation. This process not only reduces the land's ecological functioning, but also its capacity to provide ecosystem goods and services for local land users. In rangelands, one important aspect is vegetation degradation, which reduces the land's capacity to support livestock. Thus, there is an urgent need to understand the complex dynamics and drivers of land degradation. In the past, both have been difficult to study due to the extensive spatial and temporal scales involved. In the last decade, a large number of remotely sensed imageries has become available for free, which enables a new approach to this topic. The aim of this research is to study land degradation as a multidimensional process incorporating its spatial and temporal components. We developed a methodological approach that makes use of long-term satellite Landsat data. Here, we use imagery of a typical degraded Mediterranean rangeland in Southern Cyprus (Randi Forest) for the years 1998-2015. We have chosen the NDVI as a proxy for vegetation greenness and applied different spatial landscape metrics to calculate changes in vegetation patterns over time. Further, we applied a time-series based approach (BFAST) on selected pixels, to look for sudden changes and trends in the vegetation dynamics. The results promoted our knowledge on how land degradation dynamics in Mediterranean rangelands can be captured through spatio-temporal vegetation dynamics and allowed us to select the most suitable metrics for further analysis. In the long-term, we aim at using Landsat satellite data covering 30 years. To gain a functional understanding of land degradation, we want to overlay our results from the remotely sensed data with results of an eco-hydrological model (SWAT).
Past and future climatic changes in the Mediterranean area under various global warming scenarios
NASA Astrophysics Data System (ADS)
Guiot, Joel
2016-04-01
Past climatic changes and their impacts on the natural vegetation can be used as a reference for the climatic changes projected by ensembles of climate models for the 21st century. The study of the Holocene shows that he Mediterranean has known several precipitation falls equivalent to what is projected for the end of the 21st century. These droughts were often correlated with the decline or collapse of Mediterranean civilisations, particularly in the eastern Basin. Nevertheless, while the past droughts were not characterized by particularly high temperature, future temperature increase will more or less significant according to the scenario. This will much intensify the water deficit for natural and artificial ecosystems. As a consequence, the projected climatic change can be considered as unprecedented during the last 10,000 years. We explore how they compare with the various scenarios corresponding to a 1.5°C, 2°C and 3°C global warming according to the pre-industrial mean temperature, and we will determine the degree of dissimilarity of the Mediterranean climate under these global thresholds according to the long term climate variability.
Scoditti, Egeria; Capurso, Cristiano; Capurso, Antonio; Massaro, Marika
2014-12-01
The lower occurrence of cardiovascular disease and cancer in populations around the Mediterranean basin as detected in the 1950s was correctly attributed to the peculiar dietary habits of those populations. Essentially, until the mid-20th century, typical Mediterranean diets were rich in fruits, vegetables, legumes, whole-wheat bread, nuts, fish, and, as a common culinary trait, the routine use of extra-virgin olive oil. Nowadays, the regular adoption of such dietary patterns is still thought to result in healthful benefits. Such patterns ensure the assumption of molecules with antioxidant and anti-inflammatory actions, among which ω-3 polyunsaturated fatty acids (PUFAs), ω-9 monounsaturated fatty acids (oleic acid), and phenolic compounds. The aim of this review is to provide an update of the vasculo-protective pathways mediated by ω-3 PUFAs and polyphenols in the context of the modern Mediterranean dietary habits, including the possible cross-talk and synergy between these typical components. This review complements a parallel one focusing on the role of dietary nitrates and alimentary fats. Copyright © 2014 Elsevier Inc. All rights reserved.
Bonaccio, Marialaura; Di Castelnuovo, Augusto; Costanzo, Simona; Persichillo, Mariarosaria; De Curtis, Amalia; Donati, Maria Benedetta; de Gaetano, Giovanni; Iacoviello, Licia
2016-03-01
Adherence to the Mediterranean diet is associated with lower mortality in a general population but limited evidence exists on the effect of a Mediterranean diet on mortality in subjects with diabetes. We aim to examine the association between the Mediterranean diet and mortality in diabetic individuals. Prospective cohort study on 1995 type 2 diabetic subjects recruited within the MOLI-SANI study. Food intake was recorded by the European Project Investigation into Cancer and Nutrition food frequency questionnaire. Adherence to the Mediterranean diet was appraised by the Greek Mediterranean diet score. Hazard ratios were calculated using multivariable Cox-proportional hazard models. During follow-up (median 4.0 years), 109 all-cause including 51 cardiovascular deaths occurred. A 2-unit increase in Mediterranean diet score was associated with 37% (19%-51%) lower overall mortality. Data remained unchanged when restricted to those being on a hypoglycaemic diet or on antidiabetic drug treatment. A similar reduction was observed when cardiovascular mortality only was considered (hazard ratio = 0.66; 0.46-0.95). A Mediterranean diet-like pattern, originated from principal factor analysis, indicated a reduced risk of overall death (hazard ratio = 0.81; 0.62-1.07). The effect of Mediterranean diet score was mainly contributed by moderate alcohol drinking (14.7% in the reduction of the effect), high intake of cereals (12.2%), vegetables (5.8%) and reduced consumption of dairy and meat products (13.4% and 3.4% respectively). The traditional Mediterranean diet was associated with reduced risk of both total and cardiovascular mortality in diabetic subjects, independently of the severity of the disease. Major contributions were offered by moderate alcohol intake, high consumption of cereals, fruits and nuts and reduced intake of dairy and meat products. © The European Society of Cardiology 2015.
Issa, C; Darmon, N; Salameh, P; Maillot, M; Batal, M; Lairon, D
2011-02-01
The beneficial impact of the traditional Mediterranean diet pattern on adiposity is still under debate, and this has never been assessed in a developing Mediterranean country. To assess the relationships between adherence to a traditional Mediterranean diet and adiposity indexes, that is, body mass index (BMI) and waist circumference (WC), in a sample from rural Lebanon. A sample of 798 adults, aged 40-60 years, was selected in continental rural areas of Lebanon for a cross-sectional study. The questionnaire included socio-demographic, anthropometric and dietary sections. The daily consumption frequencies of selected food groups, categorized as positive or negative components, were calculated based on a food frequency questionnaire. Adherence to the Mediterranean diet was assessed using six a priori scores; including the widely used Mediterranean diet score (MDS). Associations between diet scores and BMI and WC were assessed. Overall, the diet of the study sample only partially matched the traditional Mediterranean diet. A total of 17.0% of men and 33.7% women were obese. The MDS was negatively associated (P<0.05) with WC, but not BMI, in men and women. The constructed composite Mediterranean score combining positive components of the diet (whole cereals, vegetables, legumes and fruit, olive oil and fish) and negative components adapted to this sample (refined cereals and pastries, and liquid sweets) was consistently and negatively associated with both BMI and WC for men and women in multivariate models. A 2-point increase in that score was associated with a decrease in BMI of 0.51 and 0.78 kg m(-2) and a decrease in WC of 2.77 and 4.76 cm in men and women, respectively. The results demonstrate that a Mediterranean diet is negatively associated with obesity and visceral adiposity in a rural population of a developing Mediterranean country.
Mapping burned areas and burn severity patterns across the Mediterranean region
NASA Astrophysics Data System (ADS)
Kalogeropoulos, Christos; Amatulli, Giuseppe; Kempeneers, Pieter; Sedano, Fernando; San Miguel-Ayanz, Jesus; Camia, Andrea
2010-05-01
The Mediterranean region is highly susceptible to wildfires. On average, about 60,000 fires take place in this region every year, burning on average half a million hectares of forests and natural vegetation. Wildfires cause environmental degradation and affect the lives of thousands of people in the region. In order to minimize the consequences of these catastrophic events, fire managers and national authorities need to have in their disposal accurate and updated spatial information concerning the size of the burned area as well as the burn severity patterns. Mapping burned areas and burn severity patterns is necessary to effectively support the decision-making process in what concerns strategic (long-term) planning with the definition of post-fire actions at European and national scales. Although a comprehensive archive of burnt areas exists at the European Forest Fire Information System, the analysis of the severity of the areas affected by forest fires in the region is not yet available. Fire severity is influenced by many variables, including fuel type, topography and meteorological conditions before and during the fire. The analysis of fire severity is essential to determine the socio-economic impact of forest fires, to assess fire impacts, and to determine the need of post-fire rehabilitation measures. Moreover, fire severity is linked to forest fire emissions and determines the rate of recovery of the vegetation after the fire. Satellite imagery can give important insights about the conditions of the live fuel moisture content and can be used to assess changes on vegetation structure and vitality after forest fires. Fire events occurred in Greece, Portugal and Spain during the fire season of 2009 were recorded and analyzed in a GIS environment. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the Normalized Burn Ratio (NBR) were calculated from 8-days composites MODIS/TERRA imagery from March to October 2009. In addition, subtracting a post-fire from a pre-fire image derived index produces a measure of absolute change of the vegetation condition, like the differenced Normalized Burn Ratio index (dNBR). The aim of this study was the assessment of fire severity across diverse ecological and environmental conditions in the Mediterranean region. The specific objectives were: • The analysis of the correlation between the fire severity and local site conditions, including topography, fuel type, land use, land cover. • The analysis of the correlation between fire severity and fire danger conditions during the fire, as estimated by the European Forest Fire Information System. • Assessing the performance of several vegetation indices derived from MODIS imagery in estimating fire severity. • Assessing the permanence of the burnt signal for large fires as an estimate of fire severity.
The method presented here allows mapping changes in vegetation cover trends over large areas quickly and inexpensively, thus providing policy-makers with a technical capacity to locate and assess areas of environmental instability and improve their ability to positively respond o...
Coates, Peter S.; Howe, Kristy B.; Casazza, Michael L.; Delehanty, David J.
2014-01-01
Energy-related infrastructure and other human enterprises within sagebrush steppe of the American West often results in changes that promote common raven (Corvus corax; hereafter, raven) populations. Ravens, a generalist predator capable of behavioral innovation, present a threat to many species of conservation concern. We evaluate the effects of detailed features of an altered landscape on the probability of raven occurrence using extensive raven survey (n= 1045) and mapping data from southern Idaho, USA. We found nonlinear relationships between raven occurrence and distances to transmission lines, roads, and facilities. Most importantly, raven occurrence was greater with presence of transmission lines up to 2.2 km from the corridor.We further explain variation in raven occurrence along anthropogenic features based on the amount of non-native vegetation and cover type edge, such that ravens select fragmented sagebrush stands with patchy, exotic vegetative introgression. Raven occurrence also increased with greater length of edge formed by the contact of big sagebrush (Artemisia tridentate spp.) with non-native vegetation cover types. In consideration of increasing alteration of sagebrush steppe, these findings will be useful for planning energy transmission corridor placement and other management activities where conservation of sagebrush obligate species is a priority.
Mediterranean diet and cognitive function in older age: results from the Women’s Health Study
Samieri, Cécilia; Grodstein, Francine; Rosner, Bernard A.; Kang, Jae H.; Cook, Nancy R.; Manson, JoAnn E.; Buring, Julie E.; Willett, Walter C.; Okereke, Olivia I.
2013-01-01
Background Adherence to a Mediterranean diet may help prevent cognitive decline in older age, but studies are limited. We examined the association of adherence to the Mediterranean diet with cognitive function and decline. Methods We included 6,174 participants, aged 65+ years, from the cognitive sub-study of the Women’s Health Study. Women provided dietary information in 1998 and completed a cognitive battery 5 years later, followed by two assessments at 2-year intervals. The primary outcomes were composite scores of global cognition and verbal memory. The alternate Mediterranean diet adherence 9-point-score was constructed based on intakes of: vegetables, fruits, legumes, whole grains, nuts, fish, red and processed meats, moderate alcohol, and the ratio of monounsaturated-to-saturated fats. Results After multivariable adjustment, the alternate Mediterranean diet score was not associated with trajectories of repeated cognitive scores (P-trend across quintiles=0.26 and 0.40 for global cognition and verbal memory, respectively), nor with overall global cognition and verbal memory at older ages, assessed by averaging the three cognitive measures (P-trend=0.63 and 0.44, respectively). Among alternate Mediterranean diet components, higher monounsaturated-to-saturated fats ratio was associated with more favorable cognitive trajectories (P-trend=0.03 and 0.05 for global cognition and verbal memory, respectively). Greater whole grain intake was not associated with cognitive trajectories, but was related to better average global cognition (P-trend=0.02). Conclusions In this large study of older women, we observed no association of the Mediterranean diet with cognitive decline. Relations between individual Mediterranean diet components, particularly whole grains, and cognitive function merit further study. PMID:23676264
NASA Astrophysics Data System (ADS)
de Jong, Steven M.; Addink, Elisabeth A.; Hoogenboom, Priscilla; Nijland, Wiebe
2012-11-01
The European Mediterranean regions are expected to encounter drier summer conditions and warmer temperatures for the winter of +2 °C and of +5 °C for the summer in the next six decennia. As a result the natural vegetation will face harsher conditions due to lower water availability, longer summer droughts and higher temperatures resulting in plant stress conditions. To monitor vegetation conditions like stress and leaf area index dynamics in our study area in Mediterranean France we use earth observation techniques like imaging spectroscopy. To assist image analysis interpretation we carried out a laboratory experiment to investigate the spectral and visible response of Buxus sempervirens, a common Mediterranean species, to five different types of stress: drought, drought-and-heat, light deprivation, total saturation and chlorine poisoning. For 52 days plants were subjected to stress. We collected data on the visible and spectral signs, and calculated thirteen vegetation indices. The plant's response time to different stress types varied from 10 to 32 days. Spectroscopic techniques revealed plant stress up to 15 days earlier than visual inspection. Visible signs of stress of the plants included curling and shrinking of the leaves, de-colouring of the leaves, leaves becoming breakable, opening up of the plant's canopy and sagging of the branches. Spectral signs of stress occurred first in the water absorption bands at 1450 and 1940 nm, followed by reduced absorption in the visible wavelengths, and next by reduced reflectance in near infrared. Light deprivation did not result in any stress signs, while drought, drought and heat and chlorine poisoning resulted in significant stress. The spectral response did not show differences for different stress types. Analysis of the vegetation indices identified the Carter-2 (R695/R760), the Red-Green Index (R690/R550) and the Vogelman-2 (R734 - R747)/(R715 + R726) as the best performing ones to identify stress. The lab experiment shows that spectroscopic techniques are useful to detect stress status of plants and in an earlier stage than visible signs of stress become apparent, but that spectroscopy does not reveal the type of plant stress.
NASA Astrophysics Data System (ADS)
de Dato, Giovanbattista; de Angelis, Paolo; Cesaraccio, Carla; Pellizzaro, Grazia; Duce, Pierpaolo; Sirca, Costantino; Spano, Donatella; Beier, Claus
2010-05-01
Where water is a limiting factor, like in arid and semiarid shrubland ecosystems of the Mediterranean basin, soil moisture, strengthen by high temperatures, is the key limiting factor controlling biogeochemical cycles. During the drought season, the unavailable water reduces plant growth, litter decomposition and microbial soil respiration. In order to assess the impacts of precipitation reduction on Mediterranean shrublands, a natural community has been exposed since 2001 to prolonged summer droughts by means of mobile plastic roofs, covering three experimental plots (20 m2) during rain events, in spring and in autumn. Three additional plots were used as control. The vegetation reaches a maximum height of 1.0 m and the main shrub species are Cistus monspeliensis, Helichrysum italicum and Dorycnium pentaphyllum. Bare soil constitutes about 20% of the plot surface. The aim of this paper is to summarize the impact of the treatment on the plant community structure and on ecosystem functions, after 8 years of experimentation. A general increase of vegetation cover was observed in the whole community during the years, as result of a natural process of recolonisation. This positive temporal pattern was mainly observed in the control plots, whereas in the drought treatment it was less evident and practically null in the year 2003. At species-specific level, a clear negative effect of drought treatment was observed for C. monspeliensis. Moreover, anticipated drought reduced C assimilation and induced an earlier change of leaf morphology in Cistus. These effects produced the reduction of LAI and of whole plant productivity. The seasonal pattern of soil CO2 efflux was characterized by higher rates during the wet vegetative season (autumn-spring) and lower rates during the dry non-vegetative season (summer). Significant negative effects were occasionally recorded during the period with the treatment turned on. The relation of soil respiration with temperature and soil water content was not altered by the drier conditions, but was affected by the season. The annual soil CO2 emissions were not significantly affected by the treatments.
NASA Astrophysics Data System (ADS)
Biondi, Guido; D'Andrea, Mirko; Fiorucci, Paolo; Franciosi, Chiara; Lima, Marco
2013-04-01
Mediterranean landscape during the last centuries has been subject to strong anthropogenic disturbances who shifted natural vegetation cover in a cultural landscape. Most of the natural forest were destroyed in order to allow cultivation and grazing activities. In the last century, fast growing conifer plantations were introduced in order to increase timber production replacing slow growing natural forests. In addition, after the Second World War most of the grazing areas were changed in unmanaged mediterranean conifer forest frequently spread by fires. In the last decades radical socio economic changes lead to a dramatic abandonment of the cultural landscape. One of the most relevant result of these human disturbances, and in particular the replacement of deciduous forests with coniferous forests, has been the increasing in the number of forest fires, mainly human caused. The presence of conifers and shrubs, more prone to fire, triggered a feedback mechanism that makes difficult to return to the stage of potential vegetation causing huge economic, social and environmental damages. The aim of this work is to investigate the sustainability of the current landscape. A future landscape scenario has been simulated considering the natural succession in absence of human intervention assuming the current fire regime will be unaltered. To this end, a new model has been defined, implementing an ecological succession model coupled with a simply Forest Fire Model. The ecological succession model simulates the vegetation dynamics using a rule-based approach discrete in space and time. In this model Plant Functional Types (PFTs) are used to describe the landscape. Wildfires are randomly ignited on the landscape, and their propagation is simulated using a stochastic cellular automata model. The results show that the success of the natural succession toward a potential vegetation cover is prevented by the frequency of fire spreading. The actual landscape is then unsustainable because of the high cost of fire fighting activities. The right path to success consists in development of suitable land use planning and forest management to mitigate the consequences of past anthropogenic disturbances.
Constraints on patchy reionization from Planck CMB temperature trispectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namikawa, Toshiya
Here, we present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics of the observed CMB anisotropies is altered. Here, we estimate the trispectrum of the CMB temperature anisotropies to constrain spatial variation of the optical depth. We show that the measured trispectrum is consistent with that from the standard lensed CMB simulation at 2σ. While no evidence of the patchy reionization is found in the Planck 2015 temperature trispectrum, the CMB constraint on the patchymore » reionization is significantly improved from previous works. Assuming the analytic bubble-halo model of Wang and Hu (2006), the constraint obtained in this work rules out the typical bubble size at the ionization fraction of ~ 0.5 as R ≳ 10 Mpc. Further, our constraint implies that large-scale B -modes from the patchy reionization are not a significant contamination in detecting the primordial gravitational waves of r ≳ 0.001 if the B mode induced by the patchy reionization is described by Dvorkin et al. (2009). The CMB trispectrum data starts to provide meaningful constraints on the patchy reionization.« less
Constraints on patchy reionization from Planck CMB temperature trispectrum
Namikawa, Toshiya
2018-03-05
Here, we present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics of the observed CMB anisotropies is altered. Here, we estimate the trispectrum of the CMB temperature anisotropies to constrain spatial variation of the optical depth. We show that the measured trispectrum is consistent with that from the standard lensed CMB simulation at 2σ. While no evidence of the patchy reionization is found in the Planck 2015 temperature trispectrum, the CMB constraint on the patchymore » reionization is significantly improved from previous works. Assuming the analytic bubble-halo model of Wang and Hu (2006), the constraint obtained in this work rules out the typical bubble size at the ionization fraction of ~ 0.5 as R ≳ 10 Mpc. Further, our constraint implies that large-scale B -modes from the patchy reionization are not a significant contamination in detecting the primordial gravitational waves of r ≳ 0.001 if the B mode induced by the patchy reionization is described by Dvorkin et al. (2009). The CMB trispectrum data starts to provide meaningful constraints on the patchy reionization.« less
Last Glacial vegetation and climate change in the southern Levant
NASA Astrophysics Data System (ADS)
Miebach, Andrea; Chen, Chunzhu; Litt, Thomas
2015-04-01
Reconstructing past climatic and environmental conditions is a key task for understanding the history of modern mankind. The interaction between environmental change and migration processes of the modern Homo sapiens from its source area in Africa into Europe is still poorly understood. The principal corridor of the first human dispersal into Europe and also later migration dynamics crossed the Middle East. Therefore, the southern Levant is a key area to investigate the paleoenvironment during times of human migration. In this sense, the Last Glacial (MIS 4-2) is particularly interesting to investigate for two reasons. Firstly, secondary expansions of the modern Homo sapiens are expected to occur during this period. Secondly, there are ongoing discussions on the environmental conditions causing the prominent lake level high stand of Lake Lisan, the precursor of the Dead Sea. This high stand even culminated in the merging of Lake Lisan and Lake Kinneret (Sea of Galilee). To provide an independent proxy for paleoenvironmental reconstructions in the southern Levant during the Last Glacial, we investigated pollen assemblages of the Dead Sea/Lake Lisan and Lake Kinneret. Located at the Dead Sea Transform, the freshwater Lake Kinneret is nowadays connected via the Jordan with the hypersaline Dead Sea, which occupies Earth's lowest elevation on land. The southern Levant is a transition area of three different vegetation types. Therefore, also small changes in the climate conditions effect the vegetation and can be registered in the pollen assemblage. In contrast to the Holocene, our preliminary results suggest another vegetation pattern during the Last Glacial. The vegetation belt of the fragile Mediterranean biome did no longer exist in the vicinity of Lake Kinneret. Moreover, the vegetation was rather similar in the whole study area. A steppe vegetation with dwarf shrubs, herbs, and grasses predominated. Thermophilous elements like oaks occurred in limited amounts. The limiting factor for tree growth was precipitation. Consequently, the precipitation gradient was not as strong as today, and semiarid conditions prevailed in the southern Levant during the Last Glacial. Our study will contribute to the overall aim to reconstruct the way of modern humans to Europe and to understand the complex connection between climate and vegetation change in the Eastern Mediterranean.
On the use of satellite VEGETATION time series for monitoring post fire vegetation recovery
NASA Astrophysics Data System (ADS)
de Santis, F.; Didonna, I.
2009-04-01
Fire is one of the most critical factors of disturbance in worldwide ecosystems. The effects of fires on soil, plants, landscape and ecosystems depend on many factors, among them fire frequency, fire severity and plant resistance. The characterization of vegetation post-fire behaviour is a fundamental issue to model and evaluate the fire resilience, which the ability of vegetation to recover after fire. Recent changes in fire regime, due to abandonment of local land use practice and climate change, can induce significant variations in vegetation fire resilience. In the Mediterranean-type communities, post fire vegetation trends have been analysed in a wide range of habitats, although pre- and post-fire investigation has been widely performed at stand level. But, factors controlling regeneration at the landscape scale are less well known. In this study, a time series of normalized difference vegetation index (NDVI) data derived from SPOT-VEGETATION was used to examine the recovery characteristics of fire affected vegetation in some test areas of the Mediterranean ecosystems of Southern Italy. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) data from 1998 to 2005 were analyzed in order to evaluate the resilient effects in a some significant test sites of southern Italy. In particular, we considered: (i) one stable area site, one site affected by one fire during the investigated time window, (iii) one site affected by two consecutive fires during the investigated time window. In order to eliminate the phenological fluctuations, for each decadal composition of each pixel, we focused on the departure NDVId = [NDVI -
NASA Astrophysics Data System (ADS)
Hope, Allen; Albers, Noah; Bart, Ryan
2010-05-01
Wildland fires in Mediterranean-Type Ecosystems (MTEs) are episodic events that dramatically alter land-cover conditions. Monitoring post-fire vegetation recovery is important for land management applications such as the scheduling of prescribed burns, post-fire resource management and soil erosion control. Full recovery of MTE shrublands may take many years and have a prolonged effect on water, energy and carbon fluxes in these ecosystems. Comparative studies of fynbos ecosystems in the Cape Floristic Region of South Africa (Western Cape Region) and chaparral ecosystems of California have demonstrated that there is a considerable degree of convergence in some aspects of post-fire vegetation regeneration and marked differences in other aspects. Since these MTEs have contrasting rainfall and soil nutrient conditions, an obvious question arises as to the similarity or dissimilarity in remotely sensed post-fire recovery pathways of vegetation stands in these two regions and the extent to which fire severity and drought impact the rate of vegetation recovery. Post-fire recovery pathways of chaparral and fynbos vegetation stands were characterized using the normalized difference vegetation index (NDVI) based on TM/ETM+ and MODIS (250 m) data. Procedures based on stands of unburned vegetation (control) were implemented to normalize the NDVI for variations associated with inter-annual differences in rainfall. Only vegetation stands that had not burned for 20 years were examined in this study to eliminate potential effects of variable fire histories on the recovery pathways. Post-fire recovery patterns of vegetation in both regions and across different vegetation types were found to be very similar. Post-fire stand age was the primary control over vegetation recovery and the NDVI returned to pre-fire values within seven to 10 years of the fires. Droughts were shown to cause slight interruptions in recovery rates while fire severity had no discernable effect. Intra-stand variability in the NDVI (pixel-scale) also returned to pre-fire values within the same time frame but increased with water stress associated with droughts. While these studies indicated that the NDVI of fynbos and chaparral stands recovered to pre-fire values within 10 years, it is recognized that other ecosystem characteristics may take considerably longer to recover. Despite the larger pixel size, MODIS data were found to be more suitable for monitoring vegetation post-fire recovery than TM/ETM+ data, requiring considerably less pre-processing and providing substantially more information regarding phenological characteristics of recovery pathways. Future studies will include consideration of fire history in the post-fire recovery characteristics of vegetation in these two MTEs.
Carbon storage in the seagrass meadows of Gazi Bay, Kenya
Githaiga, Michael N.; Kairo, James G.; Gilpin, Linda; Huxham, Mark
2017-01-01
Vegetated marine habitats are globally important carbon sinks, making a significant contribution towards mitigating climate change, and they provide a wide range of other ecosystem services. However, large gaps in knowledge remain, particularly for seagrass meadows in Africa. The present study estimated biomass and sediment organic carbon (Corg) stocks of four dominant seagrass species in Gazi Bay, Kenya. It compared sediment Corg between seagrass areas in vegetated and un-vegetated ‘controls’, using the naturally patchy occurence of seagrass at this site to test the impacts of seagrass growth on sediment Corg. It also explored relationships between the sediment and above-ground Corg, as well as between the total biomass and above-ground parameters. Sediment Corg was significantly different between species, range: 160.7–233.8 Mg C ha-1 (compared to the global range of 115.3 to 829.2 Mg C ha-1). Vegetated areas in all species had significantly higher sediment Corg compared with un-vegetated controls; the presence of seagrass increased Corg by 4–6 times. Biomass carbon differed significantly between species with means ranging between 4.8–7.1 Mg C ha-1 compared to the global range of 2.5–7.3 Mg C ha-1. To our knowledge, these are among the first results on seagrass sediment Corg to be reported from African seagrass beds; and contribute towards our understanding of the role of seagrass in global carbon dynamics. PMID:28489880
Grammer, Benedikt; Draganits, Erich; Gretscher, Martin; Muss, Ulrike
2017-01-01
In 2013, an airborne laser scan survey was conducted in the territory of the Ionian city of Kolophon near the western coast of modern Turkey as part of an archaeological survey project carried out by the Mimar Sinan University of Istanbul (Turkey) and the University of Vienna (Austria). Several light detection and ranging (LiDAR) studies have been carried out in the temperate climate zones of Europe, but only a few in Mediterranean landscapes. Our study is based on the first LiDAR survey carried out for an archaeological purpose in Turkey and one of the first in the Mediterranean that have been planned, measured and filtered especially for archaeological research questions. The interpretation of LiDAR data combined with ground-observations proved extremely useful for the detection and documentation of archaeological remains below Mediterranean evergreen vegetation and dense maquis. This article deals with the methodological aspects of interpreting LiDAR data, using the Kolophon data as a case study. We offer a discussion of the strengths and limitations of LiDAR as an archaeological remote sensing method and suggest a best practice model for interpreting LiDAR data in a Mediterranean context. © 2017 The Authors. Archaeological Prospection published by John Wiley & Sons Ltd.
Draganits, Erich; Gretscher, Martin; Muss, Ulrike
2017-01-01
Abstract In 2013, an airborne laser scan survey was conducted in the territory of the Ionian city of Kolophon near the western coast of modern Turkey as part of an archaeological survey project carried out by the Mimar Sinan University of Istanbul (Turkey) and the University of Vienna (Austria). Several light detection and ranging (LiDAR) studies have been carried out in the temperate climate zones of Europe, but only a few in Mediterranean landscapes. Our study is based on the first LiDAR survey carried out for an archaeological purpose in Turkey and one of the first in the Mediterranean that have been planned, measured and filtered especially for archaeological research questions. The interpretation of LiDAR data combined with ground‐observations proved extremely useful for the detection and documentation of archaeological remains below Mediterranean evergreen vegetation and dense maquis. This article deals with the methodological aspects of interpreting LiDAR data, using the Kolophon data as a case study. We offer a discussion of the strengths and limitations of LiDAR as an archaeological remote sensing method and suggest a best practice model for interpreting LiDAR data in a Mediterranean context. © 2017 The Authors. Archaeological Prospection published by John Wiley & Sons Ltd. PMID:29242700
Key role of European rabbits in the conservation of the Western Mediterranean basin hotspot.
Delibes-Mateos, Miguel; Delibes, Miguel; Ferreras, Pablo; Villafuerte, Rafael
2008-10-01
The Mediterranean Basin is a global hotspot of biodiversity. Hotspots are said to be experiencing a major loss of habitat, but an added risk could be the decline of some species having a special role in ecological relationships of the system. We reviewed the role of European rabbits (Oryctolagus cuniculus) as a keystone species in the Iberian Peninsula portion of the Mediterranean hotspot. Rabbits conspicuously alter plant species composition and vegetation structure through grazing and seed dispersal, which creates open areas and preserves plant species diversity. Moreover, rabbit latrines have a demonstrable effect on soil fertility and plant growth and provide new feeding resources for many invertebrate species. Rabbit burrows provide nest sites and shelter for vertebrates and invertebrates. In addition, rabbits serve as prey for a number of predators, including the critically endangered Iberian lynx (Lynx pardinus) and Spanish Imperial Eagle (Aquila adalberti). Thus, the Mediterranean ecosystem of the Iberian Peninsula should be termed "the rabbit's ecosystem." To our knowledge, this is the first empirical support for existence of a multifunctional keystone species in a global hotspot of biodiversity. Rabbit populations have declined drastically on the Iberian Peninsula, with potential cascading effects and serious ecological and economic consequences. From this perspective, rabbit recovery is one of the biggest challenges for conservation of the Mediterranean Basin hotspot.
Krusinska, Beata; Hawrysz, Iwona; Wadolowska, Lidia; Slowinska, Malgorzata Anna; Biernacki, Maciej; Czerwinska, Anna; Golota, Janusz Jacek
2018-04-11
Lung cancer in men and breast cancer in women are the most commonly diagnosed cancers in Poland and worldwide. Results of studies involving dietary patterns (DPs) and breast or lung cancer risk in European countries outside the Mediterranean Sea region are limited and inconclusive. This study aimed to develop a 'Polish-adapted Mediterranean Diet' ('Polish-aMED') score, and then study the associations between the 'Polish-aMED' score and a posteriori -derived dietary patterns with breast or lung cancer risk in adult Poles. This pooled analysis of two case-control studies involved 560 subjects (280 men, 280 women) aged 40-75 years from Northeastern Poland. Diagnoses of breast cancer in 140 women and lung cancer in 140 men were found. The food frequency consumption of 21 selected food groups was collected using a 62-item Food Frequency Questionnaire (FFQ)-6. The 'Polish-adapted Mediterranean Diet' score which included eight items-vegetables, fruit, whole grain, fish, legumes, nuts and seeds-as well as the ratio of vegetable oils to animal fat and red and processed meat was developed (range: 0-8 points). Three DPs were identified in a Principal Component Analysis: 'Prudent', 'Non-healthy', 'Dressings and sweetened-low-fat dairy'. In a multiple logistic regression analysis, two models were created: crude, and adjusted for age, sex, type of cancer, Body Mass Index (BMI), socioeconomic status (SES) index, overall physical activity, smoking status and alcohol abuse. The risk of breast or lung cancer was lower in the average (3-5 points) and high (6-8 points) levels of the 'Polish-aMED' score compared to the low (0-2 points) level by 51% (odds ratio (OR): 0.49; 95% confidence interval (Cl): 0.30-0.80; p < 0.01; adjusted) and 63% (OR: 0.37; 95% Cl: 0.21-0.64; p < 0.001; adjusted), respectively. In the middle and upper tertiles compared to the bottom tertile of the 'Prudent' DP, the risk of cancer was lower by 38-43% (crude) but was not significant after adjustment for confounders. In the upper compared to the bottom tertile of the 'Non-healthy' DP, the risk of cancer was higher by 65% (OR: 1.65; 95% Cl: 1.05-2.59; p < 0.05; adjusted). In conclusion, the Polish adaptation of the Mediterranean diet could be considered for adults living in non-Mediterranean countries for the prevention of the breast or lung cancers. Future studies should explore the role of a traditional Mediterranean diet fitted to local dietary patterns of non-Mediterranean Europeans in cancer prevention.
Krusinska, Beata; Hawrysz, Iwona; Wadolowska, Lidia; Slowinska, Malgorzata Anna; Biernacki, Maciej; Czerwinska, Anna; Golota, Janusz Jacek
2018-01-01
Lung cancer in men and breast cancer in women are the most commonly diagnosed cancers in Poland and worldwide. Results of studies involving dietary patterns (DPs) and breast or lung cancer risk in European countries outside the Mediterranean Sea region are limited and inconclusive. This study aimed to develop a ‘Polish-adapted Mediterranean Diet’ (‘Polish-aMED’) score, and then study the associations between the ‘Polish-aMED’ score and a posteriori-derived dietary patterns with breast or lung cancer risk in adult Poles. This pooled analysis of two case-control studies involved 560 subjects (280 men, 280 women) aged 40–75 years from Northeastern Poland. Diagnoses of breast cancer in 140 women and lung cancer in 140 men were found. The food frequency consumption of 21 selected food groups was collected using a 62-item Food Frequency Questionnaire (FFQ)-6. The ‘Polish-adapted Mediterranean Diet’ score which included eight items—vegetables, fruit, whole grain, fish, legumes, nuts and seeds—as well as the ratio of vegetable oils to animal fat and red and processed meat was developed (range: 0–8 points). Three DPs were identified in a Principal Component Analysis: ‘Prudent’, ‘Non-healthy’, ‘Dressings and sweetened-low-fat dairy’. In a multiple logistic regression analysis, two models were created: crude, and adjusted for age, sex, type of cancer, Body Mass Index (BMI), socioeconomic status (SES) index, overall physical activity, smoking status and alcohol abuse. The risk of breast or lung cancer was lower in the average (3–5 points) and high (6–8 points) levels of the ‘Polish-aMED’ score compared to the low (0–2 points) level by 51% (odds ratio (OR): 0.49; 95% confidence interval (Cl): 0.30–0.80; p < 0.01; adjusted) and 63% (OR: 0.37; 95% Cl: 0.21–0.64; p < 0.001; adjusted), respectively. In the middle and upper tertiles compared to the bottom tertile of the ‘Prudent’ DP, the risk of cancer was lower by 38–43% (crude) but was not significant after adjustment for confounders. In the upper compared to the bottom tertile of the ‘Non-healthy’ DP, the risk of cancer was higher by 65% (OR: 1.65; 95% Cl: 1.05–2.59; p < 0.05; adjusted). In conclusion, the Polish adaptation of the Mediterranean diet could be considered for adults living in non-Mediterranean countries for the prevention of the breast or lung cancers. Future studies should explore the role of a traditional Mediterranean diet fitted to local dietary patterns of non-Mediterranean Europeans in cancer prevention. PMID:29641468
Groundwater dependant vegetation identified by remote sensing in the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Gouveia, Célia; Pascoa, Patrícia; Kurz-Besson, Cathy
2017-04-01
Groundwater Dependant Ecosystems (GDEs) are defined as ecosystems whose composition, structure, and function depend on the water supplies from groundwater aquifers. Within GDEs, phreatophytes are terrestrial plants relying on groundwater through deep rooting. They can be found worldwide but are mostly adapted to environments facing scarce water availability or recurrent drought periods mainly in semi-arid to arid climate geographical areas, such as the Mediterranean basin. We present a map of the potential distribution of GDEs over the Iberian Peninsula (IP) obtained by remote sensing and identifying hotspots corresponding to the most vulnerable areas for rainfed vegetation facing the risk of desertification. The characterization of GDEs was assessed by remote sensing (RS), using CORINE land-cover information and the Normalized Difference Vegetation Index (NDVI) from VEGETATION recorded between 1998 and 2014 with a resolution of 1km. The methodology based on Gou et al (2015) relied on three approaches to map GDEs over the IP by: i) Detecting vegetation remaining green during the dry periods, since GDEs are more likely to show high NDVI values during summer of dry years; ii) Spotting vegetation with low seasonal changes since GDEs are more prone to have the lowest NDVI standard deviation along an entire year, and iii) Discriminating vegetation with low inter-annual variability since GDEs areas should provide the lowest NDVI changes between extreme wet and dry years. A geospatial analysis was performed to gather the potential area of GDEs (obtained with NDVI), vegetation land cover types (CORINE land cover) and climatic variables (temperature, precipitation and the Standardized Precipitation-Evapotranspiration Index SPEI). This analysis allowed the identification of hotspots of the most vulnerable areas for rainfed vegetation regarding water scarcity over the Iberian Peninsula, where protection measures should be urgently applied to sustain rainfed ecosystem and agro-systems and biodiversity in the near future. Keywords: NDVI, CORINE, SPEI, Groundwater, Mediterranean vegetation, Phreatophyte species. Reference: Gou S., Susana Gonzales S., and Gretchen R. Miller G. R. (2015). Mapping Potential Groundwater-Dependent Ecosystems for Sustainable Management. Groundwater 53, 99-110. Acknowledgements: This work was supported by the project PIEZAGRO (PTDC/AAG-REC/7046/2014) funded by the Fundação para a Ciência e a Tecnologia, Portugal.
Mone, I; Kraja, B; Bregu, A; Duraj, V; Sadiku, E; Hyska, J; Burazeri, G
2016-10-01
Our aim was to assess the association of a Mediterranean diet and gastroesophageal reflux disease among adult men and women in Albania, a former communist country in South Eastern Europe with a predominantly Muslim population. A cross-sectional study was conducted in 2012, which included a population-based sample of 817 individuals (≥18 years) residing in Tirana, the Albanian capital (333 men; overall mean age: 50.2 ± 18.7 years; overall response rate: 82%). Assessment of gastroesophageal reflux disease was based on Montreal definition. Participants were interviewed about their dietary patterns, which in the analysis was dichotomized into: predominantly Mediterranean (frequent consumption of composite/traditional dishes, fresh fruit and vegetables, olive oil, and fish) versus largely non-Mediterranean (frequent consumption of red meat, fried food, sweets, and junk/fast food). Logistic regression was used to assess the association of gastroesophageal reflux disease with the dietary patterns. Irrespective of demographic and socioeconomic characteristics and lifestyle factors including eating habits (meal regularity, eating rate, and meal-to-sleep interval), employment of a non-Mediterranean diet was positively related to gastroesophageal reflux disease risk (fully adjusted odds ratio = 2.3, 95% confidence interval = 1.2-4.5). Our findings point to a beneficial effect of a Mediterranean diet in the occurrence of gastroesophageal reflux disease in transitional Albania. Findings from this study should be confirmed and expanded further in prospective studies in Albania and in other Mediterranean countries. © 2015 International Society for Diseases of the Esophagus.
The Mediterranean diet, its components, and cardiovascular disease.
Widmer, R Jay; Flammer, Andreas J; Lerman, Lilach O; Lerman, Amir
2015-03-01
One of the best-studied diets for cardiovascular health is the Mediterranean diet. This consists of fish, monounsaturated fats from olive oil, fruits, vegetables, whole grains, legumes/nuts, and moderate alcohol consumption. The Mediterranean diet has been shown to reduce the burden, or even prevent the development, of cardiovascular disease, breast cancer, depression, colorectal cancer, diabetes, obesity, asthma, erectile dysfunction, and cognitive decline. This diet is also known to improve surrogates of cardiovascular disease, such as waist-to-hip ratio, lipids, and markers of inflammation, as well as primary cardiovascular disease outcomes such as death and events in both observational and randomized controlled trial data. These enhancements easily rival those seen with more established tools used to fight cardiovascular disease such as aspirin, beta-blockers, angiotensin-converting enzyme inhibitors, and exercise. However, it is unclear if the Mediterranean diet offers cardiovascular disease benefit from its individual constituents or in aggregate. Furthermore, the potential benefit of the Mediterranean diet or its components is not yet validated by concrete cardiovascular disease endpoints in randomized trials or observational studies. This review will focus on the effects of the whole and parts of the Mediterranean diet with regard to both population-based and experimental data highlighting cardiovascular disease morbidity or mortality and cardiovascular disease surrogates when hard outcomes are not available. Our synthesis will highlight the potential for the Mediterranean diet to act as a key player in cardiovascular disease prevention, and attempt to identify certain aspects of the diet that are particularly beneficial for cardioprotection. Copyright © 2015 Elsevier Inc. All rights reserved.
Postfire chaparral regeneration under mediterranean and non-mediterranean climates
Keeley, Jon E.; Fotheringham, Connie J.; Rundel, Philip W.
2012-01-01
This study compares postfire regeneration and diversity patterns in fire-prone chaparral shrublands from mediterranean (California) and non-mediterranean-type climates (Arizona). Vegetation sampling was conducted in tenth hectare plots with nested subplots for the first two years after fire. Floras in the two regions were compared with Jaccard's Index and importance of families and genera compared with dominance-diversity curves. Although there were 44 families in common between the two regions, the dominant families differed; Poaceae and Fabaceae in Arizona and Hydrophyllaceae and Rosaceae in California. Dominance diversity curves indicated in the first year a more equable distribution of families in Arizona than in California. Woody plants were much more dominant in the mediterranean climate and herbaceous plants more dominant in the bimodal rainfall climate. Species diversity was comparable in both regions at the lowest spatial scales but not at the tenth hectare scale. Due to the double growing season in the non-mediterranean region, the diversity for the first year comprised two different herbaceous floras in the fall and spring growing seasons. The Mediterranean climate in California, in contrast, had only a spring growing season and thus the total diversity for the first year was significantly greater in Arizona than in California for both annuals and herbaceous perennials. Chaparral in these two climate regimes share many dominant shrub species but the postfire communities are very different. Arizona chaparral has both a spring and fall growing season and these produce two very different postfire floras. When combined, the total annual diversity was substantially greater in Arizona chaparral.
NASA Astrophysics Data System (ADS)
Nebout, Nathalie Combourieu; Grazzini, Colette Vergnaud
Detailed pollen analyses and oxygen isotope records of three foraminiferal species, Globigerina bulloides, Uvigerina peregrina and Cibicides pachyderma, from the Semaforo and Vrica composite sections (Crotone, southern Italy) have been compared to the global climatic changes depicted by late Pliocene-early Pleistocene foraminiferal δ 18O records of Site 607 in the North Atlantic, and Hole 653A in the Tyrrhenian basin, West Mediterranean. Major overturns in the mid-altitude vegetation are shown near isotopic stages 82, 60, 58 and 50, at about 2.03 Ma, 1.6 Ma and 1.37 Ma according to the Raymo et al. (1989) and Ruddiman et al. (1989) timescales. At the same dates, glacial 18O maxima either became higher or display step increases in the western Mediterranean or in the open ocean as well. This suggests that size increases of Northern Hemisphere ice sheets were the driving factor for regional or local marine and continental environmental changes within the Mediterranean basin. Near isotopic stages 62-60, close to the conventional Plio-Pleistocene boundary, the climatic conditions severed enough within the Mediterranean basin to modify the continental environment, as depicted by a sudden increase of Artemisia percentages, while the first significant southward migration of the North Polar Front may have been recorded by an influx of left coiling Neogloboquadrina pachyderma in the central Mediterranean. It also appears that 'Boreal Guests' entered the Mediterranean during phases of 18O enrichment of foraminiferal calcite. There does not seem to be any discrepancy between the climatic concept of the Pliocene-Pleistocene boundary and its chronostratigraphic definition.
Lambrechts, Marcel M; Charmantier, Anne; Demeyrier, Virginie; Lucas, Annick; Perret, Samuel; Abouladzé, Matthieu; Bonnet, Michel; Canonne, Coline; Faucon, Virginie; Grosset, Stéphanie; le Prado, Gaëlle; Lidon, Frédéric; Noell, Thierry; Pagano, Pascal; Perret, Vincent; Pouplard, Stéphane; Spitaliéry, Rémy; Bernard, Cyril; Perret, Philippe; Blondel, Jacques; Grégoire, Arnaud
2017-12-01
Investigations of urbanization effects on birds have focused mainly on breeding traits expressed after the nest-building stage (e.g. first-egg date, clutch size, breeding success, and offspring characteristics). Urban studies largely ignored how and why the aspects of nest building might be associated with the degree of urbanization. As urban environments are expected to present novel environmental changes relative to rural environments, it is important to evaluate how nest-building behavior is impacted by vegetation modifications associated with urbanization. To examine nest design in a Mediterranean city environment, we allowed urban great tits ( Parus major ) to breed in nest boxes in areas that differed in local vegetation cover. We found that different measures of nest size or mass were not associated with vegetation cover. In particular, nests located adjacent to streets with lower vegetation cover were not smaller or lighter than nests in parks with higher vegetation cover. Nests adjacent to streets contained more pine needles than nests in parks. In addition, in nests adjacent to streets, nests from boxes attached to pine trees contained more pine needles than nests from boxes attached to other trees. We suggest that urban-related alterations in vegetation cover do not directly impose physical limits on nest size in species that are opportunistic in the selection of nesting material. However, nest composition as reflected in the use of pine needles was clearly affected by habitat type and the planted tree species present, which implies that rapid habitat change impacts nest composition. We do not exclude that urbanization might impact other aspects of nest building behaviour not covered in our study (e.g. costs of searching for nest material), and that the strengths of the associations between urbanization and nest structures might differ among study populations or species.
Into the depth of population genetics: pattern of structuring in mesophotic red coral populations
NASA Astrophysics Data System (ADS)
Costantini, Federica; Abbiati, Marco
2016-03-01
Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.
Deep and intermediate mediterranean water in the western Alboran Sea
NASA Astrophysics Data System (ADS)
Parrilla, Gregorio; Kinder, Thomas H.; Preller, Ruth H.
1986-01-01
Hydrographic and current meter data, obtained during June to October 1982, and numerical model experiments are used to study the distribution and flow of Mediterranean waters in the western Alboran Sea. The Intermediate Water is more pronounced in the northern three-fourths of the sea, but its distribution is patchy as manifested by variability of the temperature and salinity maxima at scales ≤10 km. Current meters in the lower Intermediate Water showed mean flow toward the Strait at 2 cm s -1. A reversal of this flow lasted about 2 weeks. A rough estimate of the mean westward Intermediate Water transport was 0.4 × 10 6 m 3 s -1, about one-third of the total outflow, so that the best estimates of the contributions of traditionally defined Intermediate Water and Deep Water account for only about one-half of the total outflow. The Deep Water was uplifted against the southern continental slope from Alboran Island (3°W) to the Strait. There was also a similar but much weaker banking against the Spanish slope, but a deep current record showed that the eastward recirculation implied by this banking is probably intermittent. Two-layer numerical model experiments simulated the Intermediate Water flow with a flat bottom and the Deep Water with realistic bottom topography. Both experiments replicated the major circulation features, and the Intermediate Water flow was concentrated in the north because of rotation and the Deep Water flow in the south because of topographic control.
Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András
2017-01-01
Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection–polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny–shady–patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies. PMID:29291065
Horváth, Gábor; Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András; Åkesson, Susanne
2017-11-01
Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection-polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny-shady-patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies.
NASA Astrophysics Data System (ADS)
Segurado, Pedro; Figueiredo, Diogo
2007-09-01
In the Iberian Peninsula the European pond turtle ( Emys orbicularis) and the Mediterranean pond turtle ( Mauremys leprosa) share many freshwater habitats, in particular Mediterranean streams. Whether and how these two species divide space within those habitats is poorly known in part due to the very low abundance of E. orbicularis at most syntopic sites. The spatial coexistence of these two species was studied along a 1.3 km reach of a typical Mediterranean stream based on data from trapping sessions and basking counts. The effect of the hydrological regime on differences in space use between species was also assessed. Spatial associations between species and between each species and microhabitat descriptors were estimated using a permutation procedure to account for spatial autocorrelation. Differences in the use of space were also estimated using a resample technique to account for the small sample sizes of E. orbicularis. Results indicate that E. orbicularis shows a preference for temporary, shallow, well vegetated and sandy reaches, while M. leprosa is less selective regarding microhabitat. Differences between E. orbicularis and juveniles of M. leprosa were less obvious. The high spatial heterogeneity of Mediterranean streams may be responsible for the persistence of viable populations of E. orbicularis as well as favouring the coexistence of the two turtle species. Therefore, stream habitat management and conservation plans for E. orbicularis should give priority to the maintenance of high levels of heterogeneity along Mediterranean streams.
Cancer prevention in Europe: the Mediterranean diet as a protective choice.
Giacosa, Attilio; Barale, Roberto; Bavaresco, Luigi; Gatenby, Piers; Gerbi, Vincenzo; Janssens, Jaak; Johnston, Belinda; Kas, Koen; La Vecchia, Carlo; Mainguet, Paul; Morazzoni, Paolo; Negri, Eva; Pelucchi, Claudio; Pezzotti, Mario; Rondanelli, Mariangela
2013-01-01
In the coming years, European death rates because of cancer will further decline, but the overall number of cases will increase, mostly as a consequence of the ageing of the population. The target for cancer prevention in Europe will remain a healthy diet and control of obesity in addition to a decrease in smoking. A healthy diet model in European countries is the traditional Mediterranean diet, which is based on abundant and variable plant foods, high consumption of cereals, olive oil as the main (added) fat, low intake of (red) meat and moderate consumption of wine. The Mediterranean diet is associated with a reduced risk of cardiovascular disease and cancer. The biological mechanisms for cancer prevention associated with the Mediterranean diet have been related to the favourable effect of a balanced ratio of omega 6 and omega 3 essential fatty acids and high amounts of fibre, antioxidants and polyphenols found in fruit, vegetables, olive oil and wine. The Mediterranean diet also involves a 'Mediterranean way of drinking', that is, regular, moderate consumption of wine mainly with food. This pattern of drinking increases longevity, reduces the risk of cardiovascular disease and does not appreciably influence the overall risk of cancer. However, heavy alcohol drinking is associated with digestive, upper respiratory tract, liver and breast cancers; therefore, avoidance or restriction of alcohol consumption to two drinks/day in men and one drink/day in women is a global public health priority.
Ricceri, Fulvio; Giraudo, Maria Teresa; Fasanelli, Francesca; Milanese, Dario; Sciannameo, Veronica; Fiorini, Laura; Sacerdote, Carlotta
2017-11-13
Endometrial cancer is the fourth most common cancer in European women. The major risk factors for endometrial cancer are related to the exposure of endometrium to estrogens not opposed to progestogens, that can lead to a chronic endometrial inflammation. Diet may play a role in cancer risk by modulating chronic inflammation. In the framework of a case-control study, we recruited 297 women with newly diagnosed endometrial cancer and 307 controls from Northern Italy. Using logistic regression, we investigated the role of fruit and vegetable intake, adherence to the Mediterranean diet (MD), and the dietary inflammatory index (DII) in endometrial cancer risk. Women in the highest quintile of vegetable intake had a statistically significantly lower endometrial cancer risk (adjusted OR 5th quintile vs 1st quintile: 0.34, 95% CI 0.17-0.68). Women with high adherence to the MD had a risk of endometrial cancer that was about half that of women with low adherence to the MD (adjusted OR: 0.51, 95% CI 0.39-0.86). A protective effect was detected for all the lower quintiles of DII, with the highest protective effect seen for the lowest quintile (adjusted OR 5th quintile vs 1st quintile: 3.28, 95% CI 1.30-8.26). These results suggest that high vegetable intake, adherence to the MD, and a low DII are related to a lower endometrial cancer risk, with several putative connected biological mechanisms that strengthen the biological plausibility of this association.
Simonson, William D; Allen, Harriet D; Coomes, David A
2012-10-01
Airborne lidar is a remote-sensing tool of increasing importance in ecological and conservation research due to its ability to characterize three-dimensional vegetation structure. If different aspects of plant species diversity and composition can be related to vegetation structure, landscape-level assessments of plant communities may be possible. We examined this possibility for Mediterranean oak forests in southern Portugal, which are rich in biological diversity but also threatened. We compared data from a discrete, first-and-last return lidar data set collected for 31 plots of cork oak (Quercus suber) and Algerian oak (Quercus canariensis) forest with field data to test whether lidar can be used to predict the vertical structure of vegetation, diversity of plant species, and community type. Lidar- and field-measured structural data were significantly correlated (up to r= 0.85). Diversity of forest species was significantly associated with lidar-measured vegetation height (R(2) = 0.50, p < 0.001). Clustering and ordination of the species data pointed to the presence of 2 main forest classes that could be discriminated with an accuracy of 89% on the basis of lidar data. Lidar can be applied widely for mapping of habitat and assessments of habitat condition (e.g., in support of the European Species and Habitats Directive [92/43/EEC]). However, particular attention needs to be paid to issues of survey design: density of lidar points and geospatial accuracy of ground-truthing and its timing relative to acquisition of lidar data. ©2012 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Carrión, José S.
2002-10-01
This paper examines the Late Quaternary (c. 20,300-<505 cal yr BP) environmental history of Siles, a lake situated at 1320 m in the Segura mountains of southern Spain, with the goal of establishing the mechanisms exerting control on vegetation change. Palaeoecological indicators include pollen, microcharcoal, spores of terrestrial plants, fungi, and non-siliceous algae, and other microfossils. The Siles sequence is shown to be sensitive to climatic change, although the control exerted by climate on vegetation is ultimately shaped by disturbances and species interactions, determining the occurrence of century-scale lags and threshold responses. Biotically induced changes of vegetation are also shown at the intrazonal level of variation. The new sequence is placed in the context of two previous records to postulate a picture of Holocene environmental change for the Segura region. The existence of mid-elevation glacial refugia for a number of temperate and Mediterranean trees is shown. A mid-Holocene phase (c. 7500-5200 cal yr BP) emerges regionally as the time of maximum forest development and highest lake levels. The early Holocene occurs as a generally dry, pyrophytic period of pine forests, with grassland scrub in high altitudes, and the late Holocene as a period of protracted vegetation sensitivity, with return to development of pine forests, spread of xerophytic communities, and increased fire activity, under the context of dry spells, localized anthropogenic disturbance, and shallowing and desiccation of lakes. Several events described here correlate with established times of abrupt transitions in the climates of northern Europe, the Mediterranean basin, north Africa, and the Sahel.
The effect of changes in landscape factors on socioeconomics was analyzed
locally and regionally. The method presented here allows mapping changes in vegetation cover
trends over large areas quickly and inexpensively, thus providing policy-makers with a technical
Entyloma scandicis, a new smut fungus on Scandix verna from Mediterranean forests of Israel
USDA-ARS?s Scientific Manuscript database
Entyloma is a genus of more than 170 species of smut fungi parasitizing dicotyledons. Within the genus, the species sporulating in vegetative organs of Apiaceae form a separate group. In this study, the morphology and phylogeny of Entyloma on Scandix verna (Apiaceae, Scandiceae) collected in Mount C...
78 FR 79634 - Importation of Fresh Blueberry Fruit From Morocco Into the Continental United States
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
...: Ceratitis capitata, the Mediterranean fruit fly, and the fungus Monilinia fructigena Honey ex Whetzel. (a...-0016] RIN 0579-AD81 Importation of Fresh Blueberry Fruit From Morocco Into the Continental United... proposing to amend the regulations concerning the importation of fruits and vegetables to allow the...
Castelló, Adela; Boldo, Elena; Amiano, Pilar; Castaño-Vinyals, Gemma; Aragonés, Nuria; Gómez-Acebo, Inés; Peiró, Rosana; Jimenez-Moleón, Jose Juan; Alguacil, Juan; Tardón, Adonina; Cecchini, Lluís; Lope, Virginia; Dierssen-Sotos, Trinidad; Mengual, Lourdes; Kogevinas, Manolis; Pollán, Marina; Pérez-Gómez, Beatriz
2018-02-01
We explored the association of the previously described Western, prudent and Mediterranean dietary patterns with prostate cancer risk by tumor aggressiveness and extension. MCC-Spain (Multicase-Control Study on Common Tumors in Spain) is a population based, multicase-control study that was done in 7 Spanish provinces between September 2008 and December 2013. It collected anthropometric, epidemiological and dietary information on 754 histologically confirmed incident cases of prostate cancer and 1,277 controls 38 to 85 years old. Three previously identified dietary patterns, including Western, prudent and Mediterranean, were reconstructed using MCC-Spain data. The association of each pattern with prostate cancer risk was assessed by logistic regression models with random, province specific intercepts. Risk according to tumor aggressiveness (Gleason score 6 vs greater than 6) and extension (cT1-cT2a vs cT2b-cT4) was evaluated by multinomial regression models. High adherence to a Mediterranean dietary pattern rich not only in fruits and vegetables but also in fish, legumes and olive oil was specifically associated with a lower risk of Gleason score greater than 6 prostate cancer (quartile 3 vs 1 relative RR 0.66, 95% CI 0.46-0.96 and quartile 4 vs 1 relative RR 0.68, 95% CI 0.46-1.01, p-trend = 0.023) or with higher clinical stage (cT2b-T4 quartile 4 vs 1 relative RR 0.49, 95% CI 0.25-0.96, p-trend = 0.024). This association was not observed with the prudent pattern, which combines vegetables and fruits with low fat dairy products, whole grains and juices. The Western pattern did not show any association with prostate cancer risk. Nutritional recommendations for prostate cancer prevention should consider whole dietary patterns instead of individual foods. We found important differences between the Mediterranean dietary pattern, which was associated with a lower risk of aggressive prostate cancer, and Western and prudent dietary patterns, which had no relationship with prostate cancer risk. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Fares, Silvano; Schnitzhofer, Ralf; Jiang, Xiaoyan; Guenther, Alex; Hansel, Armin; Loreto, Francesco
2013-10-01
The Estate of Castelporziano (Rome, Italy) hosts many ecosystems representative of Mediterranean vegetation, especially holm oak and pine forests and dune vegetation. In this work, basal emission factors (BEFs) of biogenic volatile organic compounds (BVOCs) obtained by Eddy Covariance in a field campaign using a proton transfer reaction-time-of-flight-mass spectrometer (PTR-TOF-MS) were compared to BEFs reported in previous studies that could not measure fluxes in real-time. Globally, broadleaf forests are dominated by isoprene emissions, but these Mediterranean ecosystems are dominated by strong monoterpene emitters, as shown by the new BEFs. The original and new BEFs were used to parametrize the model of emissions of gases and aerosols from nature (MEGAN v2.1), and model outputs were compared with measured fluxes. Results showed good agreement between modeled and measured fluxes when a model was used to predict radiative transfer and energy balance across the canopy. We then evaluated whether changes in BVOC emissions can affect the chemistry of the atmosphere and climate at a regional level. MEGAN was run together with the land surface model (community land model, CLM v4.0) of the community earth system model (CESM v1.0). Results highlighted that tropospheric ozone concentration and air temperature predicted from the model are sensitive to the magnitude of BVOC emissions, thus demonstrating the importance of adopting the proper BEF values for model parametrization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fares, Silvano; Schnitzhofer, Ralf; Jiang, Xiaoyan
2013-10-01
The Estate of Castelporziano (Rome, Italy) hosts many ecosystems representative of Mediterranean vegetation, especially holm oak and pine forests and dune vegetation. In this work, basal emission factors (BEFs) of biogenic volatile organic compounds (BVOCs) obtained by Eddy Covariance in a field campaign using a proton transfer reaction–time-of-flight–mass spectrometer (PTR-TOF-MS) were compared to BEFs reported in previous studies that could not measure fluxes in real-time. Globally, broadleaf forests are dominated by isoprene emissions, but these Mediterranean ecosystems are dominated by strong monoterpene emitters, as shown by the new BEFs. The original and new BEFs were used to parametrize the modelmore » of emissions of gases and aerosols from nature (MEGAN v2.1), and model outputs were compared with measured fluxes. Results showed good agreement between modeled and measured fluxes when a model was used to predict radiative transfer and energy balance across the canopy. We then evaluated whether changes in BVOC emissions can affect the chemistry of the atmosphere and climate at a regional level. MEGAN was run together with the land surface model (community land model, CLM v4.0) of the community earth system model (CESM v1.0). Finally, results highlighted that tropospheric ozone concentration and air temperature predicted from the model are sensitive to the magnitude of BVOC emissions, thus demonstrating the importance of adopting the proper BEF values for model parametrization.« less
Herrero, Asier; Zamora, Regino
2014-01-01
The expected and already observed increment in frequency of extreme climatic events may result in severe vegetation shifts. However, stabilizing mechanisms promoting community resilience can buffer the lasting impact of extreme events. The present work analyzes the resilience of a Mediterranean mountain ecosystem after an extreme drought in 2005, examining shoot-growth and needle-length resistance and resilience of dominant tree and shrub species (Pinus sylvestris vs Juniperus communis, and P. nigra vs J. oxycedrus) in two contrasting altitudinal ranges. Recorded high vegetative-resilience values indicate great tolerance to extreme droughts for the dominant species of pine-juniper woodlands. Observed tolerance could act as a stabilizing mechanism in rear range edges, such as the Mediterranean basin, where extreme events are predicted to be more detrimental and recurrent. However, resistance and resilience components vary across species, sites, and ontogenetic states: adult Pinus showed higher growth resistance than did adult Juniperus; saplings displayed higher recovery rates than did conspecific adults; and P. nigra saplings displayed higher resilience than did P. sylvestris saplings where the two species coexist. P. nigra and J. oxycedrus saplings at high and low elevations, respectively, were the most resilient at all the locations studied. Under recurrent extreme droughts, these species-specific differences in resistance and resilience could promote changes in vegetation structure and composition, even in areas with high tolerance to dry conditions.
Herrero, Asier; Zamora, Regino
2014-01-01
The expected and already observed increment in frequency of extreme climatic events may result in severe vegetation shifts. However, stabilizing mechanisms promoting community resilience can buffer the lasting impact of extreme events. The present work analyzes the resilience of a Mediterranean mountain ecosystem after an extreme drought in 2005, examining shoot-growth and needle-length resistance and resilience of dominant tree and shrub species (Pinus sylvestris vs Juniperus communis, and P. nigra vs J. oxycedrus) in two contrasting altitudinal ranges. Recorded high vegetative-resilience values indicate great tolerance to extreme droughts for the dominant species of pine-juniper woodlands. Observed tolerance could act as a stabilizing mechanism in rear range edges, such as the Mediterranean basin, where extreme events are predicted to be more detrimental and recurrent. However, resistance and resilience components vary across species, sites, and ontogenetic states: adult Pinus showed higher growth resistance than did adult Juniperus; saplings displayed higher recovery rates than did conspecific adults; and P. nigra saplings displayed higher resilience than did P. sylvestris saplings where the two species coexist. P. nigra and J. oxycedrus saplings at high and low elevations, respectively, were the most resilient at all the locations studied. Under recurrent extreme droughts, these species-specific differences in resistance and resilience could promote changes in vegetation structure and composition, even in areas with high tolerance to dry conditions. PMID:24489971
Santana, Victor M.; Baeza, M. Jaime; Blanes, M. Carmen
2013-01-01
Background and Aims This study aims to determine the role that both direct effects of fire and subsequent daily temperature fluctuations play in the seed bank dynamics of obligate seeders from the Mediterranean Basin. The short yet high soil temperatures experienced due to passage of fire are conflated with the lower, but longer, temperatures experienced by daily fluctuations which occur after removing vegetation. These germination cues are able to break seed dormancy, but it is difficult to assess their specific level of influence because they occur consecutively after summer fires, just before the flush of germination in the wet season (autumn). Methods By applying experimental fires, seed treatments were imposed that combined fire exposure/non-fire exposure with exposure to microhabitats under a gradient of disturbance (i.e. gaps opened by fire, mechanical brushing and intact vegetation). The seeds used were representative of the main families of obligate seeders (Ulex parviflorus, Cistus albidus and Rosmarinus officinalis). Specifically, an assessment was made of (1) the proportion of seeds killed by fire, (2) seedling emergence under field conditions and (3) seeds which remained ungerminated in soil. Key Results For the three species studied, the factors that most influenced seedling emergence and seeds remaining ungerminated were microhabitats with higher temperature fluctuations after fire (gaps opened by fire and brushing treatments). The direct effect of fire decreased the seedling emergence of U. parviflorus and reduced the proportion of seeds of R. officinalis remaining ungerminated. Conclusions The relevance of depleting vegetation (and subsequent daily temperature fluctuation in summer) suggests that studies focusing on lower temperature thresholds for breaking seed dormancy are required. This fact also supports the hypothesis that the seeding capacity in Mediterranean Basin obligate seeders may have evolved as a response to a wide range of disturbances, and not exclusively to fire. PMID:23129044
Bower, Allyson; Marquez, Susan; de Mejia, Elvira Gonzalez
2016-12-09
The Mediterranean diet is considered one of the healthiest diets in the world. This is often attributed to low saturated fat consumption, moderate wine consumption, and high vegetable consumption. However, herbs and spices associated with these diets may also play an important role in the quality of this diet. This review summarizes the most recent research regarding the anti-diabetic, anti-inflammatory, anti-hyperlipidemic and anti-hypertensive properties of this collection of culinary species. Additionally, this review briefly summarizes studies performed on lesser known herbs from around the world, with the goal of identifying new culinary species that may be useful in the treatment or prevention of diseases.
Little evidence for fire-adapted plant traits in Mediterranean climate regions.
Bradshaw, S Don; Dixon, Kingsley W; Hopper, Stephen D; Lambers, Hans; Turner, Shane R
2011-02-01
As climate change increases vegetation combustibility, humans are impacted by wildfires through loss of lives and property, leading to an increased emphasis on prescribed burning practices to reduce hazards. A key and pervading concept accepted by most environmental managers is that combustible ecosystems have traditionally burnt because plants are fire adapted. In this opinion article, we explore the concept of plant traits adapted to fire in Mediterranean climates. In the light of major threats to biodiversity conservation, we recommend caution in deliberately increasing fire frequencies if ecosystem degradation and plant extinctions are to be averted as a result of the practice. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Wade, Alexandra T; Davis, Courtney R; Dyer, Kathryn A; Hodgson, Jonathan M; Woodman, Richard J; Keage, Hannah A D; Murphy, Karen J
2017-12-22
The Mediterranean diet is characterised by the high consumption of extra virgin olive oil, fruits, vegetables, grains, legumes and nuts; moderate consumption of fish, poultry, eggs and dairy; and low consumption of red meat and sweets. Cross sectional, longitudinal and intervention studies indicate that a Mediterranean diet may be effective for the prevention of cardiovascular disease and dementia. However, previous research suggests that an Australian population may find red meat restrictions difficult, which could affect long term sustainability of the diet. This paper outlines the protocol for a randomised controlled trial that will assess the cardiovascular and cognitive benefits of a Mediterranean diet modified to include 2-3 weekly serves of fresh, lean pork. A 24-week cross-over design trial will compare a modified Mediterranean diet with a low-fat control diet in at-risk men and women. Participants will follow each of the two diets for 8 weeks, with an 8-week washout period separating interventions. Home measured systolic blood pressure will be the primary outcome measure. Secondary outcomes will include body mass index, body composition, fasting blood lipids, C-reactive protein, fasting plasma glucose, fasting serum insulin, erythrocyte fatty acids, cognitive function, psychological health and well-being, and dementia risk. To our knowledge this research is the first to investigate whether an alternate source of protein can be included in the Mediterranean diet to increase sustainability and feasibility for a non-Mediterranean population. Findings will be significant for the prevention of cardiovascular disease and age-related decline, and may inform individuals, clinicians and public health policy. ACTRN12616001046493 . Registered 5 August 2016.
Benhammou, Samira; Heras-González, Leticia; Ibáñez-Peinado, Diana; Barceló, Carla; Hamdan, May; Rivas, Ana; Mariscal-Arcas, Miguel; Olea-Serrano, Fatima; Monteagudo, Celia
2016-12-01
Fruit, vegetables, cereals, and olive oil are common elements of the Mediterranean diet (MD), but each country in the Mediterranean basin has its own gastronomic customs influenced by socio-cultural, religious, and economic factors. This study compared the dietary habits of three Mediterranean populations with different cultures and lifestyles, a total of 600 adults (61.9% females) between 25 and 70 yrs from Spain, Morocco, and Palestine. All participants completed a self administered questionnaire, including sociodemographic and anthropometric items, a validated semi-quantitative food frequency questionnaire adapted to the foods consumed in each country, and three 24-h recalls. MD adherence was estimated with the MD Serving Score (MDSS). All populations showed a moderate adherence to the Mediterranean dietary pattern. In comparison to the Palestine population, MDSS-assessed adherence to the MD was 6.36-fold higher in the Spanish population and 3.88-fold higher in the Moroccan population. Besides the country of origin, age was another predictive factor of MD adherence, which was greater (higher MDSS) in participants aged over 50 yrs than in those aged 30 yrs or younger. This preliminary study contributes initial data on dietary differences between European and non-European countries in the Mediterranean basin. The Spanish diet was shown to be closer to MD recommendations than the diet of Morocco or Palestine. Given the impact of good dietary habits on the prevention of chronic non-transmittable diseases, health policies should focus on adherence to a healthy diet, supporting traditional dietary patterns in an era of intense commercial pressures for change. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mediterranean diet adherence and body composition among Southern Italian adolescents.
Mistretta, Antonio; Marventano, Stefano; Antoci, Mariagrazia; Cagnetti, Antonella; Giogianni, Gabriele; Nolfo, Francesca; Rametta, Stefania; Pecora, Giulia; Marranzano, Marina
Adherence to the traditional Mediterranean diet has been associated with health benefits in young populations. The aim of this study was to evaluate the association between adherence to the Mediterranean diet and cardio-metabolic parameters in adolescents living in Sicily, Southern Italy. A cross-sectional study was conducted during two school years (2012-2013 and 2013-2014) on 1643 adolescents of 11-16 years attending 15 secondary schools. Socio-demographic, dietary, lifestyle, and anthropometric data were collected. The KIDMED score was used to evaluate the adherence to the Mediterranean diet. Linear and logistic regression models were used to test the association between the variable of interest and the outcomes. A higher percentage of boys compared with girls was overweight (30.8% vs. 25.4%) and obese (28.7% vs. 18.5%) and only 9.1% had high adherence to the Mediterranean diet. Vegetable intake was negatively associated with being overweight/obese whereas higher intake of sweets, sugar-sweetened beverages, and fast foods was associated with overweight and obesity. A good adherence to the Mediterranean diet resulted in 30% decreased odds of being overweight or obese (odd ratio 0.70, 95% confidence interval: 0.56-0.87) in both boys and girls. An inverse correlation was found between KIDMED score and BMI, waist circumference and fat mass. No relation with blood pressure was found. Mediterranean dietary pattern resulted significantly associated with weight status in adolescents. These results underline the importance of providing lifestyle and dietary habits education to prevent overweight and obesity in adolescent. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
The Mediterranean Diet and ADHD in Children and Adolescents.
Ríos-Hernández, Alejandra; Alda, José A; Farran-Codina, Andreu; Ferreira-García, Estrella; Izquierdo-Pulido, Maria
2017-02-01
Although attention-deficit/hyperactivity disorder (ADHD) has been related to nutrient deficiencies and "unhealthy" diets, to date there are no studies that examined the relationship between the Mediterranean diet and ADHD. We hypothesized that a low adherence to a Mediterranean diet would be positively associated with an increase in ADHD diagnosis. A total of 120 children and adolescents (60 with newly diagnosed ADHD and 60 controls) were studied in a sex- and age-matched case-control study. ADHD diagnosis was made according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision. Energy, dietary intake, adherence to a Mediterranean diet, and familial background were measured. Logistic regression was used to determine associations between the adherence to a Mediterranean diet and ADHD. Lower adherence to a Mediterranean diet was associated with ADHD diagnosis (odds ratio: 7.07; 95% confidence interval: 2.65-18.84; relative risk: 2.80; 95% confidence interval: 1.54-5.25). Both remained significant after adjusting for potential confounders. Lower frequency of consuming fruit, vegetables, pasta, and rice and higher frequency of skipping breakfast and eating at fast-food restaurants were associated with ADHD diagnosis (P < .05). High consumption of sugar, candy, cola beverages, and noncola soft drinks (P < .01) and low consumption of fatty fish (P < .05) were also associated with a higher prevalence of ADHD diagnosis. Although these cross-sectional associations do not establish causality, they raise the question of whether low adherence to a Mediterranean diet might play a role in ADHD development. Our data support the notion that not only "specific nutrients" but also the "whole diet" should be considered in ADHD. Copyright © 2017 by the American Academy of Pediatrics.
Chatzi, Leda; Mendez, Michelle; Garcia, Raquel; Roumeliotaki, Theano; Ibarluzea, Jesús; Tardón, Adonina; Amiano, Pilar; Lertxundi, Aitana; Iñiguez, Carmen; Vioque, Jesus; Kogevinas, Manolis; Sunyer, Jordi
2012-01-01
Dietary intake of specific nutrients or food groups during pregnancy could influence fetal growth, but scant evidence is available on effects of dietary patterns. The aim of this study was to evaluate the impact of Mediterranean diet (MD) adherence during pregnancy on fetal growth in two population-based mother-child cohorts in Spain and Greece. We studied 2461 mother-newborn pairs from the Spanish multi-centre 'INMA' study (Atlantic area: INMA-Atlantic; Mediterranean area: INMA-Mediterranean), and 889 pairs from the 'RHEA' study in Crete, Greece. Maternal diet during pregnancy was assessed by FFQ and MD adherence was evaluated through an a priori score. Fetal growth restriction was based on a customised model, and multivariate log-binomial and linear regression models were used to adjust for several confounders. MD scores differ significantly between the cohorts with women in INMA-Atlantic reporting higher intakes of fish and dairy products, while women in the Mediterranean area reported higher intakes of cereals, vegetables and fruits. Women with high MD adherence had a significantly lower risk of delivering a fetal growth-restricted infant for weight (risk ratios: 0·5; 95 % CI 0·3, 0·9) in the INMA-Mediterranean cohort. Stratified analysis by smoking revealed that higher MD adherence increased birth weight and birth length in smoking mothers, whereas this effect was not apparent in non-smoking mothers. The results of the present study show that several types of MD exist across European Mediterranean regions. High MD adherence may modify the detrimental effect of smoking on birth size, but overall effects of diet were not universal for the studies in this analysis.
Aronson, J; Kigel, J; Shmida, A
1993-03-01
Reproductive effort (relative allocation of biomass to diaspore production) was compared in matched pairs of Mediterranean and desert populations of three unrelated annual species, Erucaria hispanica (L.) Druce, Bromus fasciculatus C. Presl. and Brachypodium distachyon (L.) Beauv., grown under high and low levels of water availability in a common-environment experiment. Desert populations in all three species showed higher reproductive effort than corresponding Mediterranean populations, as expressed by both a reproductive index (RI= reproductive biomass/vegetative biomass), and a reproductive efficiency index (REI=number of diaspores/total plant biomass). Moreover, in E. hispanica and Brachypodium distachyon, inter-populational differences in reproductive effort were greater under water stress, the main limiting factor for plant growth in the desert. These results indicate that variability in reproductive effort in response to drought is a critical and dynamic component of life history strategies in annual species in heterogeneous, unpredictable xeric environments. When subjected to water stress the Mediterranean populations of E. hispanica and B. distachyon showed greater plasticity (e.g. had a greater reduction) in reproductive effort than the desert populations, while in Bromus fasciculatus both populations showed similar amounts of plasticity.
Liebel, Heiko T; Bidartondo, Martin I; Preiss, Katja; Segreto, Rossana; Stöckel, Marcus; Rodda, Michele; Gebauer, Gerhard
2010-06-01
We compared the nutritional modes and habitats of orchids (e.g., autotrophic, partially or fully mycoheterotrophic) of the Mediterranean region and adjacent islands of Macaronesia. We hypothesized that ecological factors (e.g., relative light availability, surrounding vegetation) determine the nutritional modes of orchids and thus impose restrictions upon orchid distribution. Covering habitats from dark forests to open sites, orchid samples of 35 species from 14 genera were collected from 20 locations in the Mediterranean and Macaronesia to test for mycoheterotrophy. Mycorrhizal fungi were identified via molecular analyses, and stable isotope analyses were applied to test whether organic nutrients are gained from the fungal associates. Our results show that orchids with partial or full mycoheterotrophy among the investigated species are found exclusively in Neottieae thriving in light-limited forests. Neottioid orchids are missing in Macaronesia, possibly because mycoheterotrophy is constrained by the lack of suitable ectomycorrhizal fungi. Furthermore, most adult orchids of open habitats in the Mediterranean and Macaronesia show weak or no N gains from fungi and no C gain through mycoheterotrophy. Instead isotope signatures of some of these species indicate net plant-to-fungus C transfer.
NASA Astrophysics Data System (ADS)
Zethof, Jeroen; Cammeraat, Erik; Nadal-Romero, Estela
2016-04-01
Soils under the Mediterranean climate are vulnerable for degradation, especially after land abandonment. Abandonment is an important factor in the Mediterranean landscape as vegetation regeneration is hampered due to the characteristic semi-arid and sub-humid Mediterranean climate regime. During the past 70 year extensive afforestation projects have been conducted with the aim to protect landscapes and soils against degradation. While large investments are still being made, little is known about the impact of afforestation on soil quality on a longer time scale. During the past decade, there is a growing interest in qualifying and quantifying the carbon storage in soils by such afforestation projects, to get a better understanding of the carbon cycle and look for possibilities to fixate atmospheric CO2 in the soil. It is generally accepted that afforestation projects will increase the soil carbon pool, but data on this process is scarce. Therefore an intensive fieldwork has been carried out in Murcia, southeastern Spain to study the effects of land abandonment and afforestation on soil quality along a chronosequence and included two afforested areas (from the early '70s and 1993). The Pinus halepensis trees were planted in rows, for which the underlying calcrete was broken. Samples were taken to study changes in soil quality (Aggregate stability, Corg, N, P, K, Na), Soil Organic Carbon (SOC) stocks and soil hydraulic properties, such as infiltration and water retention, between the afforestation projects, abandoned agricultural plots of similar age, semi-natural vegetation, cereal crop fields and almond orchards. As the natural vegetation is characterized by a spotted pattern of bare areas and trees, forming so-called "islands of fertility", both bare and vegetation covered sub-sites were sampled. First results showed a positive effect of both land abandonment and afforestation on the soil aggregation. Especially the 40-year-old plots showed underneath trees similar values as the semi-natural sites, while the open areas in the afforested sites lag behind. Especially the soil at a depth of 10-20 cm showed a clear decrease in aggregate stability, while the surface layer showed a clear increase in aggregate stability. Abandonment sites showed a non-linear increase in soil quality, which means that aggregate stability slightly declines after 20 year of abandonment, but the positive change was less than on the afforested sites. Changes in vegetation along the chronosequence studied, could be expected to have an impact on organic matter input quality and quantity. Such changes in vegetation cover, structure and composition were not observed for the afforested sites in the field, but preliminary results suggest that the 40-year-old afforested sites could have a higher soil quality than the semi-natural sites.
Post-fire vegetation behaviour in large burnt scars from 2005 fire season in Spain
NASA Astrophysics Data System (ADS)
Bastos, A.; Gouveia, C. M.; DaCamara, C. C.; Trigo, R. M.
2012-04-01
Wildfires have a wide diversity of impacts on landscape which, in turn, depend on the interaction of fire regimes (e.g. intensity, extent, frequency) and the response of vegetation to them in short and long-terms. The increase in erosion rates and the loss of nutrients by runoff in the first months following the fire are among the major impacts of wildfires. A minimum of 30% of vegetation cover is enough to protect soils against erosion but vegetation may require a long period to reach this threshold after severe fires. Since erosion risk is strongly linked to vegetation recovery rates, post-fire vegetation monitoring becomes crucial in land management. Fire regimes in the Mediterranean have been changing in the past decades due to modifications in both socio-economic and climate patterns. Although many vegetation species in Mediterranean ecosystems are adapted to wildfires, changes in fire regime characteristics affect the ability of ecosystems to recover to their previous state. In Spain, fire is an important driver of changes in landscape composition, leading to dominance of shrubland following fire and to a major decrease of pine woodlands (Viedma et al., 2006). Remote sensing is a powerful tool in land management, allowing vegetation monitoring on large spatial scales for relatively long periods of time. In order to assess vegetation dynamics, monthly NDVI data from 1998-2009 from SPOT/VEGETATION at 1km spatial resolution over the Iberian Peninsula were used. This work focuses on 2005 fire season in Spain, which registered the highest amount of burnt area since 1994, with more than 188000 ha burnt. Burnt scars in this fire season were identified by cluster analysis. Post-fire vegetation recovery was assessed based on the monoparametric model developed by Gouveia et al. (2010) that was applied to four large scars located in different geographical settings with different land cover characteristics. While the two northern regions presented fast recovery, in the remaining areas (centre and south), vegetation recovered very slowly and irregularly. Four years following the fire, vegetation density in these two scars was still markedly below pre-fire levels. Spatial patterns of recovery times were assessed in order to evaluate the influence of physical factors such as fire damage, pre-fire vegetation density and land-cover type, in post-fire behaviour of vegetation for each scar. Pre-fire land-cover type raised as a key factor that may partially explain the differences observed, with shrublands and mixed forests recovering faster than coniferous. Gouveia C., DaCamara C.C. and Trigo R.M.: Post fire vegetation recovery in Portugal based on SPOT-VEGETATION data, Natural Hazards and Earth System Sciences, 10, 673-684, 2010. Viedma, O., Moreno, J.M. and Rieiro, I.: Interactions between land use/land cover change, forest fires and landscape structure in Sierra de Gredos (central Spain), Environmental Conservation, 33, 212-222, 2006.
The Middle Eastern and biblical origins of the Mediterranean diet.
Berry, Elliot M; Arnoni, Yardena; Aviram, Michael
2011-12-01
To place the Mediterranean diet (MedDi) in the context of the cultural history of the Middle East and emphasise the health effects of some of the biblical seven species - wheat, barley, grapes, figs, pomegranates, olives and date honey. Review of the literature concerning the benefits of these foods. Middle East and Mediterranean Basin. Mediterranean populations and clinical studies utilising the MedDi. The MedDi has been associated with lower rates of CVD, and epidemiological evidence promotes the benefits of consuming fruit and vegetables. Recommended foods for optimal health include whole grain, fish, wine, pomegranates, figs, walnuts and extra virgin olive oil. The biblical traditional diet, including the seven species and additional Mediterranean fruits, has great health advantages, especially for CVD. In addition to the diet, lifestyle adaptation that involves increasing physical activity and organised meals, together with healthy food choices, is consistent with the traditional MedDi. The MedDi is a manageable, lifestyle-friendly diet that, when fortified with its biblical antecedent attributes, may prove to be even more enjoyable and considerably healthier in combating the obesogenic environment and in decreasing the risks of the non-communicable diseases of modern life than conventional, modern dietary recommendations. The biblical seven species, together with other indigenous foods from the Middle East, are now scientifically recognised as healthy foods, and further improve the many beneficial effects of the MedDi.
Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages
NASA Astrophysics Data System (ADS)
Samartin, Stéphanie; Heiri, Oliver; Joos, Fortunat; Renssen, Hans; Franke, Jörg; Brönnimann, Stefan; Tinner, Willy
2017-02-01
Understanding past climate trends is key for reliable projections of global warming and associated risks and hazards. Uncomfortably large discrepancies between vegetation-based summer temperature reconstructions (mainly based on pollen) and climate model results have been reported for the current interglacial, the Holocene. For the Mediterranean region these reconstructions indicate cooler-than-present mid-Holocene summers, in contrast with expectations based on climate models and long-term changes in summer insolation. We present new quantitative and replicated Holocene summer temperature reconstructions based on fossil chironomid midges from the northern central Mediterranean region. The Holocene thermal maximum is reconstructed 9,000-5,000 years ago and estimated to have been 1-2 °C warmer in mean July temperature than the recent pre-industrial period, consistent with glacier and marine records, and with transient climate model runs. This combined evidence implies that widely used pollen-based summer temperature reconstructions in the Mediterranean area are significantly biased by precipitation or other forcings such as early land use. Our interpretation can resolve the previous discrepancy between climate models and quantitative palaeotemperature records for millennial-scale Holocene summer temperature trends in the Mediterranean region. It also suggests that pollen-based evidence for cool mid-Holocene summers in other semi-arid to arid regions of the Northern Hemisphere may have to be reconsidered, with potential implications for global-scale reconstructions.
Ecohydrological controls over water budgets in floodplain meadows
NASA Astrophysics Data System (ADS)
Morris, Paul J.; Verhoef, Anne; Macdonald, David M. J.; Gardner, Cate M.; Punalekar, Suvarna M.; Tatarenko, Irina; Gowing, David
2013-04-01
Floodplain meadows are important ecosystems, characterised by high plant species richness including rare species. Fine-scale partitioning along soil hydrological gradients allows many species to co-exist. Concerns exist that even modest changes to soil hydrological regime as a result of changes in management or climate may endanger floodplain meadows communities. As such, understanding the interaction between biological and physical controls over floodplain meadow water budgets is important to understanding their likely vulnerability or resilience. Floodplain meadow plant communities are highly heterogeneous, leading to patchy landscapes with distinct vegetation. However, it is unclear whether this patchiness in plant distribution is likely to translate into heterogeneous soil-vegetation-atmosphere transfer (SVAT) rates of water and heat, or whether floodplain meadows can reasonably be treated as internally homogeneous in physical terms despite this patchy vegetation. We used a SVAT model, the Soil-Water-Atmosphere-Plants (SWAP) model by J.C. van Dam and co-workers, to explore the controls over the partitioning of water budgets in floodplain meadows. We conducted our research at Yarnton Mead on the River Thames in Oxfordshire, one of the UK's best remaining examples of a floodplain meadow, and which is still managed and farmed in a low-intensity mixed-use manner. We used soil and plant data from our site to parameterise SWAP; we drove the model using in-situ half-hourly meteorological data. We analysed the model's sensitivity to a range of soil and plant parameters - informed by our measurements - in order to assess the effects of different plant communities on SVAT fluxes. We used a novel method to simulate water-table dynamics at the site; the simulated water tables provide a lower boundary condition for SWAP's hydrological submodel. We adjusted the water-table model's parameters so as to represent areas of the mead with contrasting topography, and so different heights above the river level and different moisture and drainage regimes. The model was most sensitive to changes in the parameters that define the water-table model. Plant above-ground parameters, such as leaf area index and canopy height also had strong influences on simulated fluxes. The model exhibited low sensitivity to plant root parameters; this was particularly true during wet periods when the simulated plant communities were oxygen stressed. Changes in soil texture profile exhibited an intermediate level of control over SVAT fluxes. Our findings indicate that unlike in environments with deep water tables, such as drylands and headwater basins, high-quality water-table data with decimetre or even centimetre accuracy are important to accurate simulation of SVAT fluxes. Future studies that seek to simulate SVAT fluxes in shallow groundwater systems should either use high frequency, high-quality water-table observations as part of the driving data set, or should ensure that water-table dynamics and their interactions with surface processes can be simulated in a robust and physically meaningful manner. The low sensitivity of our model to plant root parameters reflects the proximity of the water table to the ground surface and the fact that the simulated plant community is rarely water-stressed, and again contrasts with findings from existing SVAT model research in environments with deep water tables.
ERIC Educational Resources Information Center
Sureda-Negre, Jaume; Catalan-Fernandez, Albert; Comas-Forgas, Ruben; Fagan, Geoffrey; Llabres-Bernat, Antonia
2011-01-01
In this article, the authors analyze evidence regarding the dissemination of mistaken ideas concerning the presence and function of pine trees ("Pinus halepensis") in a Mediterranean archipelago: the Balearic Islands (Spain). The main errors concerning the natural vegetation that are disseminated among citizens by the forest management…
Biodiversity, ecology, and microelement composition of Kyzylkum Desert shrubs (Uzbekistan)
Lyuba A. Kapustina
2001-01-01
Geobotanic research and large-scale mapping with the help of Geographical Information System (GIS) permit us to find out the present state of Kyzylkum Desert shrublands, regularities of plant communities distribution, and chemical composition of the main dominant shrubs. Zonal vegetation types were formed on the basis of Old Xerophilous and Old Mediterranean floras in...
A tree-ring based fire history of riparian reserves in the Klamath Mountains.
Carl N. Skinner
2003-01-01
Surprisingly little fire history information is available for riparian environments despite their ecological importance. Thus, there is a great deal of uncertainty about the ecological role of fire in riparian environments. Considering the Mediterranean climate and the general pattern of frequent low-moderate severity fires in most vegetation types, it is logical to...
Electroformation of Janus and patchy capsules
NASA Astrophysics Data System (ADS)
Rozynek, Zbigniew; Mikkelsen, Alexander; Dommersnes, Paul; Fossum, Jon Otto
2014-05-01
Janus and patchy particles have designed heterogeneous surfaces that consist of two or several patches with different materials properties. These particles are emerging as building blocks for a new class of soft matter and functional materials. Here we introduce a route for forming heterogeneous capsules by producing highly ordered jammed colloidal shells of various shapes with domains of controlled size and composition. These structures combine the functionalities offered by Janus or patchy particles, and those given by permeable shells such as colloidosomes. The simple assembly route involves the synergetic action of electro-hydrodynamic flow and electro-coalescence. We demonstrate that the method is robust and straightforwardly extendable to production of multi-patchy capsules. This forms a starting point for producing patchy colloidosomes with domains of anisotropic chemical surface properties, permeability or mixed liquid-solid phase domains, which could be exploited to produce functional emulsions, light and hollow supra-colloidosome structures, or scaffolds.
NASA Astrophysics Data System (ADS)
Gonzales, H. B.; Ravi, S.; Li, J. J.; Sankey, J. B.
2016-12-01
Hydrological and aeolian processes control the redistribution of soil and nutrients in arid and semi arid environments thereby contributing to the formation of heterogeneous patchy landscapes with nutrient-rich resource islands surrounded by nutrient depleted bare soil patches. The differential trapping of soil particles by vegetation canopies may result in textural changes beneath the vegetation, which, in turn, can alter the hydrological processes such as infiltration and runoff. We conducted infiltration experiments and soil grain size analysis of several shrub (Larrea tridentate) and grass (Bouteloua eriopoda) microsites and in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate heterogeneity in soil texture and infiltration patterns under grass and shrub microsites. We assessed the trapping effectiveness of vegetation canopies using a novel computational fluid dynamics (CFD) approach. An open-source software (OpenFOAM) was used to validate the data gathered from particle size distribution (PSD) analysis of soil within the shrub and grass microsites and their porosities (91% for shrub and 68% for grass) determined using terrestrial LiDAR surveys. Three-dimensional architectures of the shrub and grass were created using an open-source computer-aided design (CAD) software (Blender). The readily available solvers within the OpenFOAM architecture were modified to test the validity and optimize input parameters in assessing trapping efficiencies of sparse vegetation against aeolian sediment flux. The results from the numerical simulations explained the observed textual changes under grass and shrub canopies and highlighted the role of sediment trapping by canopies in structuring patch-scale hydrological processes.
NASA Astrophysics Data System (ADS)
Roskin, Joel
2017-10-01
The location of the Gaza Strip at the southeastern corner of the Mediterranean Sea along a transition zone between Mediterranean and arid climate zones at the meeting point between fluvial, coastal, and aeolian sediments makes the Strip an important region for Quaternary, hydrogeologic, geomorphic, and palaeoclimatic studies (Aish, 2004). Wadi Gaza, the only water course that fully crosses the Gaza Strip into the southeastern Mediterranean Sea is an important water source for the proliferating and dense population of the Gaza Strip (Zaineldeen and Aish, 2012), is an indispensable part of natural life in Gaza and has an interesting history and rich vegetation (Abd Rabou et al., 2016). As such, the hydrogeologic conditions of Wadi Gaza need to be fully resolved. This includes the study of the wadi's palaeohydrology and the current anthropogenic impact upon flow and deposition along the watercourse.
NASA Astrophysics Data System (ADS)
Morellón, Mario; Aranbarri, Josu; Moreno, Ana; González-Sampériz, Penélope; Valero-Garcés, Blas L.
2018-02-01
Comparison of selected, well-dated, lacustrine, speleothem and terrestrial pollen records spanning the Holocene onset and the Early Holocene (ca. 11.7-8 cal kyrs BP) in the Iberian Peninsula shows large hydrological fluctuations and landscape changes with a complex regional pattern in timing and intensity. Marine pollen records from Alboran, the Mediterranean and off shore Atlantic sites show a step-wise increase in moisture and forest during this transition. However, available continental records point to two main patterns of spatial and temporal hydrological variability: i) Atlantic-influenced sites located at the northwestern areas (Enol, Sanabria, Lucenza, PRD-4), characterized by a gradual increase in humidity from the end of the Younger Dryas to the Mid Holocene, similarly to most North Atlantic records; and ii) continental and Mediterranean-influenced sites (Laguna Grande, Villarquemado, Fuentillejo, Padul, Estanya, Banyoles, Salines), with prolonged arid conditions of variable temporal extension after the Younger Dryas, followed by an abrupt increase in moisture at 10-9 cal kyrs BP. Different local climate conditions influenced by topography or the variable sensitivity (gradual versus threshold values) of the proxies analyzed in each case are evaluated. Vegetation composition (conifers versus mesothermophilous taxa) and resilience would explain a subdued response of vegetation in central continental areas while in Mediterranean sites, insufficient summer moisture availability could not maintain high lake levels and promote mesophyte forest, in contrast to Atlantic-influenced areas. Comparison with available climate models, Greenland ice cores, North Atlantic marine sequences and continental records from Central and Northern Europe and the whole Mediterranean region underlines the distinctive character of the hydrological changes occurred in inner Iberia throughout the Early Holocene. The persistent arid conditions might be explained by the intensification of the summer drought due to the high seasonality contrast at these latitudes caused by the orbital-induced summer insolation maximum. New records, particularly from western and southernmost Iberia, and palaeoclimate models with higher spatial resolution would help to constrain these hypotheses.
Adherence to the Mediterranean diet by nursing students of Murcia (Spain).
Navarro-González, Inmaculada; López-Nicolás, Rubén; Rodríguez-Tadeo, Alejandra; Ros-Berruezo, Gaspar; Martínez-Marín, Mariano; Doménech-Asensi, Guillermo
2014-07-01
The Mediterranean diet is recognized as one with the healthiest dietary patterns; however, this diet is deteriorating and being abandoned even in the Mediterranean countries themselves. Generally speaking, dietary habits get fixed during adolescence although during the college phase, students may experience important changes in their lifestyles. The KIDMED index is recognized as a good tool to assess adherence to the Mediterranean diet (AMD). The aim of this study was to assess AMD in college students and to evidence possible variations throughout the college period assessing differences between the college years. A cross-sectional study with 213 alumni in first grade and 105 in fourth grade was carried out. The students were classified by gender, type of residence (parents' home or out of the parents' house) and body mass index (BMI) (< 25 or > 25). The BMI for the whole sample was 24.35 ± 2.71 in men and 22.54 ± 3.25 in women (p < 0.001). The mean score in AMD was 7.0 ± 1.9, with 43% of the students showing good adherence. In general, a low intake of fruits, vegetables, rice or pasta was observed, foods that are included in the base of the dietary pyramid. Consumption of olive oil and legumes was very high and a direct relationship was observed between overweighed people (BMI > 25) and the habit of not having breakfast usually. No significant differences were observed between the student of first and fourth grades although those students in the fourth grade living away from the parental house had higher AMD level than the other students (p < 0.001). Educational programs promoting the intake of the different groups of food are recommended, was well as strategies promoting the consumption of fruits and vegetables within the university area and the healthy habit of having breakfast. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Arouca, Aline; Michels, Nathalie; Moreno, Luis A; González-Gil, Esther M; Marcos, Ascensión; Gómez, Sonia; Díaz, Ligia Esperanza; Widhalm, Kurt; Molnár, Dénes; Manios, Yannis; Gottrand, Frederic; Kafatos, Antonio; Kersting, Mathilde; Sjöström, Michael; de la O, Alejandro; Ferrari, Marika; Huybrechts, Inge; Gonzalez-Gross, Marcela; De Henauw, Stefaan
2017-04-18
To test whether the Mediterranean diet score and each food-subgroup is associated with inflammatory biomarkers in European adolescents. In 464 adolescents (13-17 years) of the European HELENA study, data were available on body composition, inflammation markers, and food intake determined by two computerized 24-h recalls. The Mediterranean diet score and its food-subgroups (Vegetables, Fruits and Nuts, Pulses, Cereal and Roots, Monounsaturated/Saturated fat ratio, Dairy, Fish, Meat and Alcohol) were evaluated. A set of inflammation-related biomarkers was measured: IL-1, IL-2, IL-4, IL-5, IL-6, IL-10, TGFβ-1, TNF-α, sVCAM-1, sICAM1, sE-selectin, white blood cells, lymphocytes, CD3, CRP, GGT, ALT, and homocysteine. Multivariate and multiple linear regression analyses were adjusted for age, sex, country, socioeconomic status, paternal and maternal education, adiposity, and smoking habits. The Mediterranean diet score was positively associated with CRP, and negatively with sVCAM-1. The subgroups showed the following positive/negative associations: Vegetables with IL-10(+), CRP(+), CD3(+), ALT(+), lymphocytes(+), sE-selectin(-); Fruits and Nuts with IL-4(-), TNF-alpha; Pulses with IL-5(+), IL-6(+), IL-2(-); Cereals and Roots with IL-6(-), IL-10(-); Monounsaturated/Saturated-fat ratio with IL-6(+), TGFβ-1(+), sVCAM-1(+boys, -girls), homocysteine(-); Dairy with IL-1(+), IL-5(+), IL-6(+), IL-10(+), TGFβ-1(+), homocysteine(-); Fish with homocysteine(-); Meat with IL-2(+), IL-10(+); Alcohol with CRP(+), lymphocytes(-). Sex differences were found. Some specific food-inflammation associations were found, suggesting that diet is to a certain extent already related to inflammation in adolescents and can be used in disease prevention. Also some counterintuitive results were found, which might be due to grouping very different foods into a single group, besides considering that the human body may respond differently depending on the interaction between diet, lifestyle, genetics, biochemical individuality, age and sex.
Jiménez-González, Marco A; De la Rosa, José María; Jiménez-Morillo, Nicasio T; Almendros, Gonzalo; González-Pérez, José Antonio; Knicker, Heike
2016-12-01
Wildfire is a recurrent phenomenon in Mediterranean ecosystems and contributes to soil degradation and desertification, which are partially caused by alterations to soil organic matter (SOM). The SOM composition from a Cambisol under a Mediterranean forest affected by a wildfire is studied in detail in order to assess soil health status and better understand of soil recovery after the fire event. The soil was sampled one month and twenty-five months after the wildfire. A nearby unburnt site was taken as control soil. Soil rehabilitation actions involving heavy machinery to remove burnt vegetation were conducted sixteen months after the wildfire. Immediately after fire the SOM increased in topsoil due to inputs from charred vegetation, whereas a decrease was observed in the underlying soil layer. Twenty-five months after fire soil-pH increased in fire-affected topsoil due to the presence of ashes, a decrease in SOM content was recorded for the burnt topsoil and similar trend was observed for the water holding capacity. The pyro-chromatograms of burned soils revealed the formation of additional aromatic compounds. The thermal cracking of long-chain n-alkanes was also detected. Solid-state 13 C NMR spectroscopy supported the increase of aromatic compounds in the fire-affected topsoil due to the accumulation of charcoal, whereas the deeper soil sections were not affected by the fire. Two years later, soil parameters for the unburnt and burnt sites showed comparable values. The reduction of the relative intensity in the aromatic C region of the NMR spectra indicated a decrease in the charcoal content of the topsoil. Due to the negligible slope in the sampling site, the loss of charcoal was explained by the post-fire restoration activity, degradation, leaching of pyrogenic SOM into deeper soil horizons or wind erosion. Our results support that in the Mediterranean region, fire-induced alteration of the SOM is not lasting in the long-term. Copyright © 2016 Elsevier B.V. All rights reserved.
Estruch, Ramon; Martínez-González, Miguel Angel; Corella, Dolores; Salas-Salvadó, Jordi; Fitó, Montserrat; Chiva-Blanch, Gemma; Fiol, Miquel; Gómez-Gracia, Enrique; Arós, Fernando; Lapetra, José; Serra-Majem, Lluis; Pintó, Xavier; Buil-Cosiales, Pilar; Sorlí, José V; Muñoz, Miguel A; Basora-Gallisá, Josep; Lamuela-Raventós, Rosa María; Serra-Mir, Mercè; Ros, Emilio
2016-08-01
Because of the high density of fat, high-fat diets are perceived as likely to lead to increased bodyweight, hence health-care providers are reluctant to recommend them to overweight or obese individuals. We assessed the long-term effects of ad libitum, high-fat, high-vegetable-fat Mediterranean diets on bodyweight and waist circumference in older people at risk of cardiovascular disease, most of whom were overweight or obese. PREDIMED was a 5 year parallel-group, multicentre, randomised, controlled clinical trial done in primary care centres affiliated to 11 hospitals in Spain. 7447 asymptomatic men (aged 55-80 years) and women (aged 60-80 years) who had type 2 diabetes or three or more cardiovascular risk factors were randomly assigned (1:1:1) with a computer-generated number sequence to one of three interventions: Mediterranean diet supplemented with extra-virgin olive oil (n=2543); Mediterranean diet supplemented with nuts (n=2454); or a control diet (advice to reduce dietary fat; n=2450). Energy restriction was not advised, nor was physical activity promoted. In this analysis of the trial, we measured bodyweight and waist circumference at baseline and yearly for 5 years in the intention-to-treat population. The PREDIMED trial is registered with ISRCTN.com, number ISRCTN35739639. After a median 4·8 years (IQR 2·8-5·8) of follow-up, participants in all three groups had marginally reduced bodyweight and increased waist circumference. The adjusted difference in 5 year changes in bodyweight in the Mediterranean diet with olive oil group was -0·43 kg (95% CI -0·86 to -0·01; p=0·044) and in the nut group was -0·08 kg (-0·50 to 0·35; p=0·730), compared with the control group. The adjusted difference in 5 year changes in waist circumference was -0·55 cm (-1·16 to -0·06; p=0·048) in the Mediterranean diet with olive oil group and -0·94 cm (-1·60 to -0·27; p=0·006) in the nut group, compared with the control group. A long-term intervention with an unrestricted-calorie, high-vegetable-fat Mediterranean diet was associated with decreases in bodyweight and less gain in central adiposity compared with a control diet. These results lend support to advice not restricting intake of healthy fats for bodyweight maintenance. Spanish Government, CIBERobn, Instituto de Salud Carlos III, Hojiblanca, Patrimonio Comunal Olivarero, California Walnut Commission, Borges SA, and Morella Nuts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Davis, Courtney; Hodgson, Jonathan; Bryan, Janet; Garg, Manohar; Woodman, Richard; Murphy, Karen
2017-01-01
Adherence to a Mediterranean diet (MedDiet) is thought to be achievable in non-Mediterranean regions, but this has yet to be investigated. We aimed to determine if an older Australian population could adhere to a MedDiet for six months. We conducted a randomised, parallel dietary intervention trial with two dietary arms: the Mediterranean diet (MedDiet) group and the habitual diet (HabDiet) control group. A 15-point Mediterranean diet adherence score and food and nutrient intakes were estimated from three-day weighed food records collected at baseline, two and four months. Erythrocyte fatty acids, serum carotenoids and urinary metabolites were assessed at baseline, three and six months. We enrolled 166 participants; 152 commenced and 137 completed the study (70 in the MedDiet group, 67 in the HabDiet group). Adherence scores were significantly higher in the MedDiet group at two months (between group difference 2.2, 95% CI 1.3, 2.9) and four months (between group difference 2.6, 95% CI 1.9, 3.3). Consumption of vegetables, fruits, fish, legumes, nuts and olive oil significantly increased in the MedDiet group compared to the control, and discretionary food intake decreased (p < 0.01). Measures of compliance including serum β-carotene, lycopene and erythrocyte monounsaturated fatty acids were significantly higher in the MedDiet group at three and six months (p < 0.05). Our results indicate that a population of older Australians can adopt a Mediterranean diet over a six month period. PMID:28538676
Davis, Courtney; Hodgson, Jonathan; Bryan, Janet; Garg, Manohar; Woodman, Richard; Murphy, Karen
2017-05-24
Adherence to a Mediterranean diet (MedDiet) is thought to be achievable in non-Mediterranean regions, but this has yet to be investigated. We aimed to determine if an older Australian population could adhere to a MedDiet for six months. We conducted a randomised, parallel dietary intervention trial with two dietary arms: the Mediterranean diet (MedDiet) group and the habitual diet (HabDiet) control group. A 15-point Mediterranean diet adherence score and food and nutrient intakes were estimated from three-day weighed food records collected at baseline, two and four months. Erythrocyte fatty acids, serum carotenoids and urinary metabolites were assessed at baseline, three and six months. We enrolled 166 participants; 152 commenced and 137 completed the study (70 in the MedDiet group, 67 in the HabDiet group). Adherence scores were significantly higher in the MedDiet group at two months (between group difference 2.2, 95% CI 1.3, 2.9) and four months (between group difference 2.6, 95% CI 1.9, 3.3). Consumption of vegetables, fruits, fish, legumes, nuts and olive oil significantly increased in the MedDiet group compared to the control, and discretionary food intake decreased ( p < 0.01). Measures of compliance including serum β-carotene, lycopene and erythrocyte monounsaturated fatty acids were significantly higher in the MedDiet group at three and six months ( p < 0.05). Our results indicate that a population of older Australians can adopt a Mediterranean diet over a six month period.
NASA Astrophysics Data System (ADS)
García-Estringana, Pablo; Nieves Alonso-Blazquez, M.; Alegre, Jesús; Cerdà, Artemi
2014-05-01
Desertification can be triggered by the lost of vegetation (Izzo et al., 2013). One of the impacts of the lack of vegetation is the increase in the effective rainfall and then higher soil and water losses. Vegetation can reduce the effective rainfall by interception. To recover the land that is affected by Desertification we must select plant species that will intercept the rainfall, but will not avoid the rainfall to reach the soil. This is why, studies on the plant rainfall interception are relevant to flight Land Degradation processes. Soil erosion is highly dependent on the effective rainfall (Cerdà and Lasanta, 2005; Haile and Fetene; 2012; Miao et al., 2012, Prokop and Poręba, 2012). The amount of rainfall that reaches the soil surface and can contribute to detach and transport material is determined by the interception of plants. Interception is also a key factor of the watershed hydrology (Zema et al., 2012). The importance of the rainfall partitioning fluxes is related to the climatic conditions, as climate control the plant cover and the soil properties, and then the soil losses (Cerdà, 1998). Although the shrubs has been seen as a key vegetation cover in semiarid lands to control the soil and water losses (Cerdà and Doerr, 2007) little information is available about rainfall interception in Mediterranean shrub vegetation, due to technical difficulties to measure them in such small-sized vegetation (Belmonte Serrato and Romero Diaz, 1998). The aim of this work was to assess the influence of different Mediterranean shrubs (Retama sphaerocarpa, Colutea arborescens, Dorycnium pentaphyllum, Medicago strasseri, Pistacia Lentiscus and Quercus coccifera) on rainfall partitioning fluxes (interception losses, throughfall and stemflow) in semiarid environments. The experiment was carried out under natural rainfall conditions with live specimens during two years, with automatic measurement of rainfall partitioning fluxes. In order to assess the influence of biotic and abiotic factors on rainfall partitioning fluxes and their seasonal variation, twenty rainfall events, ten small-size events (P≤10 mm) and ten major events (P>10 mm), were selected. Great differences were observed among species, with interception losses varying between 10% for R. sphaerocarpa to greater than 36% for D. pentaphyllum and M. strasseri, and with stemflow percentages changing between less than 11% for D. pentaphyllum and M. strasseri and 20% for R. sphaerocarpa (Garcia-Estringana, 2011). Pistacia Lentiscus intercepted 21 % of the rainfall and Quercus coccifera 31 %. Species was the most important biotic factor, rainfall volume was the most significant abiotic factor. Stemflow percentages increased and interception losses percentages decreased as rainfall volume increased, both until a stable value reached when rainfall volume was greater than 10 mm. Stemflow and interception losses varied greatly in small events, consequently it is difficult to predict rainfall interception fluxes in semiarid regions, where small events are the most frequent ones. Rainfall volume events greater than 10 mm are much less frequent, but more rainfall is concentrated around the stem base, being during these events when species which used stemflow as an adaptive mechanism to aridity store water in deep soil layers. Stemflow reached their maximum values in autumn and winter, and their minimum values in summer, unlike interception losses, which were higher in summer, except for M. strasseri because it sheds all its leaves. Hydrologic impact of shrubs was very variable depending on the species, and its capacity to form dense communities. Therefore it makes this type of vegetation of great interest in the Mediterranean region, not only by the effect on soil protection (Garcia-Estringana et al., 2010), but also by the effect on hydrology and water availability in a region where water is a scarce resource and shrub vegetation is proliferating as a result of agricultural abandonment. Acknowledgements TThe research projects 07 M/0077/1998, 07 M/0023/2000 and RTA01-078-C2- 2, GL2008-02879/BTE, LEDDRA243857 and RECARE FP7 project 603498 supported this research. References: Belmonte Serrato, F., Romero Díaz, A. 1998. A simple technique for measuring rainfall interception by small shrub: "interception flow collection box. Hydrological Processes 12, 471-481. Cerdà, A. 1998. Relationship between climate and soil hydrological and erosional characteristics along climatic gradients in Mediterranean limestone areas. Geomorphology, 25, 123-134. Cerdà, A., Doerr, S.H. 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrological Processes, 21, 2325-2336. doi: 10.1016/j.catena.2008.03.010. Cerdà, A., Lasanta, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 1. Water and sediment yield. Catena, 60, 59-80. Garcia-Estringana, P. 2011. Efectos de diferentes tipos de vegetación mediterránea sobre la hidrología y la pérdida de suelo. Tesis Doctoral, Universidad de Alcalá, Facultad de Ciencias, pp. 170. Garcia-Estringana, P., Alonso-Blázquez, N., Marques, M.J., Bienes, R., Alegre, J. 2010. Direct and indirect effects of Mediterranean vegetation on runoff and soil loss. European Journal of Soil Science 61, 174-185. Izzo, M., Araujo, N., Aucelli, P. P. C., Maratea, A., and Sánchez, A. 2013. Land sensitivity to Desertification in the Dominican Republic: an adaptation of the ESA methodology. Land Degradation & Development, 24: 486- 498. DOI 10.1002/ldr.2241 Lasanta, A., Cerdà, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 2. Solute release. Catena, 60, 80-101 Miao, C. Y., Yang, L., Chen, X. H., Gao, Y. 2012. The vegetation cover dynamics (1982-2006) in different erosion regions of the Yellow River Basin, China. Land Degradation & Development, 23: 62- 71. DOI 10.1002/ldr.1050 Prokop, P., Poręba, G. J. 2012. Soil erosion associated with an upland farming system under population pressure in Northeast India. Land Degradation & Development, 23: 310- 321. DOI 10.1002/ldr.2147 Zema, D. A., Bingner, R. L., Denisi, P., Govers, G., Licciardello, F., Zimbone, S. M. 2012. Evaluation of runoff, peak flow and sediment yield for events simulated by the AnnAGNPS model in a belgian agricultural watershed. Land Degradation & Development, 23: 205- 215. DOI 10.1002/ldr.1068
Mosaic organization of DNA nucleotides
NASA Technical Reports Server (NTRS)
Peng, C. K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L.
1994-01-01
Long-range power-law correlations have been reported recently for DNA sequences containing noncoding regions. We address the question of whether such correlations may be a trivial consequence of the known mosaic structure ("patchiness") of DNA. We analyze two classes of controls consisting of patchy nucleotide sequences generated by different algorithms--one without and one with long-range power-law correlations. Although both types of sequences are highly heterogenous, they are quantitatively distinguishable by an alternative fluctuation analysis method that differentiates local patchiness from long-range correlations. Application of this analysis to selected DNA sequences demonstrates that patchiness is not sufficient to account for long-range correlation properties.
Exploring fire dynamics with BFAST approach: case studies in Sardinia, Italy
NASA Astrophysics Data System (ADS)
Quarfeld, Jamie; di Mauro, Biagio; Colombo, Roberto; Verbesselt, Jan
2016-04-01
The synergistic effect of wildfire and extreme post-fire climatic events, (e.g. droughts or torrential rainfall), may result in long windows of disturbance - challenging the overall resilience of Mediterranean ecosystems and communities. The notion that increased fire frequency and severity may reduce ecosystem resilience has received much attention in Mediterranean regions in recent decades. Careful evaluation of vegetation recovery and landscape regeneration after a fire event provides vital information useful in land management. In this study, an extension of Breaks For Additive Seasonal and Trend (BFAST) is proposed as an ideal approach to monitor change and assess fire dynamics at the landscape level based on analysis of the MODerate-resolution Imaging Spectroradiometer (MODIS, TERRA) time series. To this end, satellite images of three vegetation indices (VIs), the Normalized Burn Ratio (NBR), the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) were used. The analysis was conducted on areas affected by wildfires in the Sardinia region (Italy) between 2007 and 2010. Some land surface (LS) descriptors (i.e. mean and maximum VI) and fire characteristics (e.g. pre-fire trend & VI, change magnitude, current VI) were extracted to characterize the post-fire evolution of each site within a fifteen-year period (2000-2015). Resilience was estimated using a classic linear function, whereby recovery rates were compared to regional climate data (e.g. water balance) and local landscape components (e.g.topography, land use and land cover). The methodology was applied according to land cover type (e.g. mixed forest, maquis, shrubland, pasture) within each fire site and highlighted the challenge of isolating effects and quantifying the role of fire regime characteristics on resilience in a dynamic way when considering large, heterogeneous areas. Preliminary findings can be outlined as follows: I. NBR showed it was most effective at detecting fire occurrence. EVI showed it was more sensitive to the influence of the Savitkzy-Golay smoothing filter than NBR or NDVI; II. The quantitative assessment of resilience for different land covers (maquis, mixed forest, shrubland) allows discrimination of diverse post-fire dynamics. Mixed forest showed an overall lower resilience compared to maquis and shrubland. Detection of post-fire breakpoints appears to occur in a similar time sequence with respect to both year of fire occurrence and land cover. III. The combined use of several climate and landscape components enables characterization of different features of post-fire dynamics in a Mediterranean ecosystem. In summary, the approach used in this study provides useful insight into complex post-fire vegetation dynamics in Mediterranean regions from a remote sensing perspective. Tailoring of the methodologies employed this study can inform a broad spectrum of forest and wildfire management activities, from monitoring and decision support during the fire season to long-term fuel management and landscape planning, with the general goal of reducing fire exposure and losses from future wildfires. Results can be expanded to include additional LS descriptors or soil geological aspects that contribute to a stronger integration of remote sensing data in operational natural resource management plans for ecosystem conservation and natural hazard prevention.
2013-01-01
Background Cataract is among the major causes of vision impairment and blindness worldwide. Epidemiological studies support the role of antioxidants in the etiology of cataract, but the evidence for one specific antioxidant over another is inconsistent. Few studies have examined the association of cataract with fruit and vegetable intake with inconclusive results. In the present study, the relationship between cataract and fruit and vegetable intake and dietary and blood levels of carotenoids, vitamins C and E were examined in a Spanish Mediterranean population. Methods The present work is an analysis of data from 599 elderly ( ≥ 65 years) participants from the Spanish segment of the EUREYE study. This is a European multi-center cross-sectional population-based study. Cataract was diagnosed using a slit-lamp examination and defined as any lens opacity in either eye or evidence of its removal (cataract extraction). Energy-adjusted intake of fruit and vegetables and antioxidant vitamins was estimated using a semi-quantitative food frequency questionnaire. Plasma concentrations of vitamin C were analyzed by a colorimetric method and carotenoids and α-tocopherol by a HPLC method. The associations between cataract and quartiles of fruit and vegetable intake and plasma antioxidants were investigated using logistic regression models. Results Of the 599 elderly recruited, 433 (73%) had cataract or cataract extraction, 54% were women and 46% were men. After adjustments, increasing quartiles of combined fruit and vegetable intake were associated with decreasing reduction of odds of cataract or cataract extraction, (P for trend = 0.008). Increasing quartiles of dietary intakes from 107 mg/d of vitamin C showed a significant decreasing association with prevalence of cataract or cataract extraction (P for trend = 0.047). For vitamin E, a protective association was found from intakes from 8 mg/d, but no linear trend was observed across quartiles of intake (P for trend = 0.944). Conclusions High daily intakes of fruit and vegetables and vitamins C and E were associated with a significantly decreased of the prevalence of cataract or cataract surgery. This study reinforces the WHO recommendations on the benefits of diets rich in fruit and vegetables. PMID:24106773
Prieto, Iván; Armas, Cristina; Pugnaire, Francisco I
2012-03-01
Hydraulic redistribution (HR) is the passive movement of water between different soil parts via plant root systems, driven by water potential gradients in the soil-plant interface. New data suggest that HR is a heterogeneous and patchy process. In this review we examine the main biophysical and environmental factors controlling HR and its main implications at the plant, community and ecosystem levels. Experimental evidence and the use of novel modelling approaches suggest that HR may have important implications at the community scale, affecting net primary productivity as well as water and vegetation dynamics. Globally, HR may influence hydrological and biogeochemical cycles and, ultimately, climate. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
New insights into the paleoenvironment of northern Israel during the Last Glacial
NASA Astrophysics Data System (ADS)
Miebach, Andrea; Chen, Chunzhu; Schwab, Markus J.; Lev, Lilach; Stein, Mordechai; Litt, Thomas
2016-04-01
Archaeological findings in the vicinity of the Dead Sea rift display the outstanding role of the region for reconstructing human history. The environmental settings of the historical developments are obtained from the sedimentary sections that were accumulated in the lakes occupying the tectonic depressions along the rift. Here, we focus on the vegetation history in the vicinity of the Sea of Galilee (Lake Kinneret), northern Israel, during MIS2 when the lake reached its high stands and even merged with the southern Lake Lisan at an elevation of ~ 170 m below sea level (cf. Hazan et al., 2005). A continuous vegetation and climate record could provide valuable insights into the environmental context of human developments. We analyzed pollen from sediment cores that were drilled at the Ohalo II archaeological site at the southwestern shore of the Sea of Galilee. New radiocarbon dates refined the age-depth model. Most of the cores comprise laminated authigenic calcites and detritus material that was deposited between ~27,000 to 22,000 years before present. The Sea of Galilee is currently the lowest freshwater lake on the Earth (209 m below mean sea level). It is situated in the Mediterranean climate and vegetation zone of northern Israel. Further to the south and east, the Mediterranean biome is displaced by steppe and desert due to considerably lower precipitations. Our results suggest that a steppe with dwarf shrubs, herbs, and grasses predominated in northern Israel during the Last Glacial. In contrast to the Holocene, there was no vegetation belt of the Mediterranean biome in the vicinity of the Sea of Galilee. Deciduous oaks were the dominant trees, although they only occurred in limited amounts. Trees and shrubs were almost absent during most arid periods. While the pollen data may indicate semiarid conditions (less precipitation) in the vicinity of the Sea of Galilee, the high lake levels and deposition of authigenic calcite require enhanced freshwater input to the lake. Thus, other environmental factors might have affected the pollen patterns or controlled the freshwater input to the lake. Reference: Hazan, N., Stein, M., Agnon, A., Marco, S., Nadel, D., Negendank, J. F. W., Schwab, M. J., and Neev, D. (2005): The late Quaternary limnological history of Lake Kinneret (Sea of Galilee), Israel. Quaternary Research 63: 60-77.
Evangelista, Alberto; Frate, Ludovico; Carranza, Maria Laura; Attorre, Fabio; Pelino, Giovanni; Stanisci, Angela
2016-01-27
High-mountain ecosystems are increasingly threatened by climate change, causing biodiversity loss, habitat degradation and landscape modifications. However, very few detailed studies have focussed on plant biodiversity in the high mountains of the Mediterranean. In this study, we investigated the long-term changes that have occurred in the composition, structure and ecology of high-mountain vegetation in the central Apennines (Majella) over the last 42 years. We performed a re-visitation study, using historical and newly collected vegetation data to explore which ecological and structural features have been the most successful in coping with climatic changes. Vegetation changes were analysed by comparing geo-referenced phytosociological relevés collected in high-mountain habitats (dolines, gentle slopes and ridges) on the Majella massif in 1972 and in 2014. Composition analysis was performed by detrended correspondence analysis, followed by an analysis of similarities for statistical significance assessment and by similarity percentage procedure (SIMPER) for identifying which species indicate temporal changes. Changes in ecological and structural indicators were analysed by a permutational multivariate analysis of variance, followed by a post hoc comparison. Over the last 42 years, clear floristic changes and significant ecological and structural variations occurred. We observed a significant increase in the thermophilic and mesonitrophilic plant species and an increment in the frequencies of hemicryptophytes. This re-visitation study in the Apennines agrees with observations in other alpine ecosystems, providing new insights for a better understanding of the effects of global change on Mediterranean high-mountain biodiversity. The observed changes in floristic composition, the thermophilization process and the shift towards a more nutrient-demanding vegetation are likely attributable to the combined effect of higher temperatures and the increase in soil nutrients triggered by global change. The re-visitation approach adopted herein represents a powerful tool for studying climate-related changes in sensitive high-mountain habitats. Published by Oxford University Press on behalf of the Annals of Botany Company.
Multi-Model approach to reconstruct the Mediterranean Freshwater Evolution
NASA Astrophysics Data System (ADS)
Simon, Dirk; Marzocchi, Alice; Flecker, Rachel; Lunt, Dan; Hilgen, Frits; Meijer, Paul
2016-04-01
Today the Mediterranean Sea is isolated from the global ocean by the Strait of Gibraltar. This restricted nature causes the Mediterranean basin to react more sensitively to climatic and tectonic related phenomena than the global ocean. Not just eustatic sea-level and regional river run-off, but also gateway tectonics and connectivity between sub-basins are leaving an enhanced fingerprint in its geological record. To understand its evolution, it is crucial to understand how these different effects are coupled. The Miocene-Pliocene sedimentary record of the Mediterranean shows alternations in composition and colour and has been astronomically tuned. Around the Miocene-Pliocene Boundary the most extreme changes occur in the Mediterranean Sea. About 6% of the salt in the global ocean deposited in the Mediterranean Region, forming an approximately 2 km thick salt layer, which is still present today. This extreme event is named the Messinian Salinity Crisis (MSC, 5.97-5.33 Ma). The gateway and climate evolution is not well constrained for this time, which makes it difficult to distinguish which of the above mentioned drivers might have triggered the MSC. We, therefore, decided to tackle this problem via a multi-model approach: (1) We calculate the Mediterranean freshwater evolution via 30 atmosphere-ocean-vegetation simulations (using HadCM3L), to which we fitted to a function, using a regression model. This allows us to directly relate the orbital curves to evaporation, precipitation and run off. The resulting freshwater evolution can be directly correlated to other sedimentary and proxy records in the late Miocene. (2) By feeding the new freshwater evolution curve into a box/budget model we can predict the salinity and strontium evolution of the Mediterranean for a certain Atlantic-Mediterranean gateway. (3) By comparing these results to the known salinity thresholds of gypsum and halite saturation of sea water, but also to the late Miocene Mediterranean strontium record, we can infer how the connectivity between global ocean and the Mediterranean must have changed through time in order to cause the MSC. (4) Such a connectivity evolution will give us the basis to understand the interplay between eustatic sea-level and regional tectonic changes in the Gibraltar region. Here we present the detailed method, the results and the applications of this multi-model approach.
NASA Astrophysics Data System (ADS)
Hedo de Santiago, Javier; Borja, Manuel Esteban Lucas; de las Heras, Jorge
2016-04-01
Soils of semiarid Mediterranean forest ecosystems are very fragile and sensitive to changes due to different anthropogenic and natural disturbances. The increasing vulnerability of semiarid lands within this world framework has generated growing awareness in the field of research, with highly intensified study into soils properties. One of the main problems of Mediterranean forests is wildfire disturbance. Fire should be considered more an ecological factor but, in contrast to the role of fire, it is now a closely related factor to human action. On the other hand, to improve the recovery of forest communities after fire, silvicultural treatments are needed and, for that matter, another disturbance is added to the ecosystem. By last, climate change is also affecting the fire regime increasing fire frequency and burned area, enhancing the destructiveness to Mediterranean ecosystems. After all of these three disturbances, changes in vegetation dynamics and soil properties are expected to occur due to the plant-soil feedback. Soil plays an essential role in the forest ecosystem's fertility and stability and specifically soil microorganisms, which accomplish reactions to release soil nutrients for vegetation development, for that is essential to enlarge knowledge about soil properties resilience in semiarid forest ecosystems. Physico-chemical and microbiological soil properties, and enzyme activities have been studied in two Aleppo pine forest stands that have suffered three disturbances: 1) a wildfire event, 2) silvicultural treatments (thinning) and 3) an artificial drought (simulating climate change) and results showed that soil recovered after 15 years. Final results showed that soils have been recovered from the three disturbances at the medium-long term.
NASA Astrophysics Data System (ADS)
Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C.
2014-09-01
Aboveground biomass (AGB) estimation from optical satellite data is usually based on regression models of original or synthetic bands. To overcome the poor relation between AGB and spectral bands due to mixed-pixels when a medium spatial resolution sensor is considered, we propose to base the AGB estimation on fraction images from Linear Spectral Mixture Analysis (LSMA). Our study area is a managed Mediterranean pine woodland (Pinus pinaster Ait.) in central Spain. A total of 1033 circular field plots were used to estimate AGB from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical data. We applied Pearson correlation statistics and stepwise multiple regression to identify suitable predictors from the set of variables of original bands, fraction imagery, Normalized Difference Vegetation Index and Tasselled Cap components. Four linear models and one nonlinear model were tested. A linear combination of ASTER band 2 (red, 0.630-0.690 μm), band 8 (short wave infrared 5, 2.295-2.365 μm) and green vegetation fraction (from LSMA) was the best AGB predictor (Radj2=0.632, the root-mean-squared error of estimated AGB was 13.3 Mg ha-1 (or 37.7%), resulting from cross-validation), rather than other combinations of the above cited independent variables. Results indicated that using ASTER fraction images in regression models improves the AGB estimation in Mediterranean pine forests. The spatial distribution of the estimated AGB, based on a multiple linear regression model, may be used as baseline information for forest managers in future studies, such as quantifying the regional carbon budget, fuel accumulation or monitoring of management practices.
Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T
2016-08-01
Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses.
NASA Astrophysics Data System (ADS)
Meyer, C. P.(Mick); Cook, Garry; Reisen, Fabienne; Russell-Smith, Jeremy; Maier, Stefan; Schatz, Jon; Yates, Cameron; Watt, Felicity
2010-05-01
Burning of savannas and grasslands consumes more than one third of the total annual biomass burning globally. In Australia, savanna fires emit annually from 2% to 4% of Australia's greenhouse gas emissions. This has led to efforts to reduce savanna burning emissions through early season prescribed burning. These programs aim to change the fire seasonality from predominantly high intensity late season fires which are characterized by low levels of patchiness and high burning efficiencies to early-season fires characterized by low intensity, a high degree of patchiness and low burning efficiency. The result is a net reduction in fire area and associated carbon emissions. Mitigation of greenhouse gas emissions is predicated on there being little change in methane (CH4) or nitrous oxide (N2O) emission factors (EFs) as the fire season progresses, however, recent analysis of the emission characteristics of African savanna fires by Korontzi et al., indicates CH4-EF, in particular, could decline substantially as the fire season progresses. If this also occurs in Australian savanna woodlands, then the current mitigation strategy could be ineffective. To address the issue a series of field campaigns were undertaken in the savanna woodlands of Western Arnhem land, Australia to quantify the variability in CH4 and N2O EFs throughout the fire season. This study compared CH4 and N2O EFs measured in smoke sampled from prescribed burning in late June/early July with those from late season fires in early October. It concentrated on the two major vegetation classes in Western Arnhemland; eucalypt open woodland, in which the fuel is composed predominantly tree leaf-litter supplemented by senescent native Sorghum, and sandstone heaths which are dominated by Spinifex hummocks. There were no significant differences in CH4 EFs between early or late season fires, however there were substantial differences between vegetation classes. The woodland emitted 0.3% of fuel carbon as CH4 compared to 0.15% in the sandstone heathland and pure Spinifex and Sorghum swords. The lower emission factors from the grasses compared to leaf litter can be entirely explained by higher combustion efficiency of grass fires. Emission of N2O were less dependent on combustion conditions; approximately 0.5% of fuel nitrogen was emitted as N2O, however there were no differences between early and late season fires or between vegetation classes. These results compare favorably with previous studies; the CH4-EF is similar to earlier measurements in open woodland, although the N2O-EF is lower than the value of 0.8% reported in previous work. Therefore we conclude that the proposed mitigation strategy is feasible and but the variation in EF with vegetation class calls for further quantification of EFs across all major vegetation types in the savanna regions.
Kaya, Bastürk; Akis, Ayhan
2012-04-01
Köprü River Basin is located in the western Taurus mountains in south-western Turkey. The area is in the Mediterranean phytogeographical region. The climate in the area is typically Mediterranean: mild and rainy in winter, hot and dry in summer. Xerophytic plants can easily grow in this climate. Pinus brutia forests are common in the study area. Maquis and garique elements with sclerophyll character also occur in the region. The study aims to determine the distribution of the vegetation in the eastern province of lower part of the "Köprü River" Basin. The factors which affect the distribution of vegetation are climate, landforms and soils. In order to determine the plant growth and climate relationship, the climatic data were analyzed. As well as the geological and geomorphological conditions, the soils were investigated and the effects of these factors on vegetation cover were analyzed. The region also has various attributes for the development of ecotourism, including canyons, forests and historical places. The region has a great potential for many different social, cultural, and scientific activities related to ecotourism. These are highland tourism, rafting, botanic tourism, trekking, and climbing. In order to make ecotourism available for local people to benefit, ecotourism should be developed and introduced to the world. Moreover, plans for the sustainability of the resources should be made. The study highlights the ecotourism potential of the area which is of social, economic, and ecological importance for the region.
Climate and vegetation change during the Holocene in southern Iberia
NASA Astrophysics Data System (ADS)
Jiménez Moreno, Gonzalo; Anderson, R. Scott; Ramos-Roman, María J.; Camuera, Jon; Garcia-Alix, Antonio; Jimenez-Espejo, FranciscoJ.; Toney, Jaime L.; Mesa-Fernandez, Jose Manuel; Manzano, Saul; Carrion, Jose S.
2017-04-01
Detailed pollen analysis has been carried out on several sediment cores taken from high-elevation alpine lakes and bog areas located in Sierra Nevada and coastal and offshore environments from southern Spain. The early Holocene is characterized in these records by the highest abundance of arboreal pollen, indicating the warmest and wettest conditions in the area at that time. The pollen records show a progressive aridification trend since the beginning of the middle Holocene through a decrease in forest species and the increase in xerophytes. The progressive aridification is punctuated by millennial-scale periodically enhanced droughts that coincide in timing and duration with well-known arid events in the Mediterranean and other areas. A relatively humid period occurred during the Iberian-Roman Humid Period. The Medieval Climate Anomaly (900-1300 AD) was characterized by a wet phase at first, coinciding with a solar minimum, and a later arid phase, coinciding with the Medieval solar Maximum and a positive NAO. The Little Ice Age (1300-1850 AD) was markedly wetter than earlier, as shown by the increase in tree pollen, coinciding with a phase of negative NAO and the Maunder solar minimum. This study shows that vegetation and climate in the Western Mediterranean are modulated by solar and atmospheric factors. Out-of-trend vegetation changes are observed in the last centuries, which probably indicate the high-impact of humans in the Sierra Nevada, with pasturing leading to nutrient enrichment and eutrophication of the wetlands, Olea cultivation at lower elevations and Pinus reforestation.
Francisco Rodríguez y Silva; Armando González-Cabán
2013-01-01
The abandonment of land, the high energy load generated and accumulated by vegetation covers, climate change and interface scenarios in Mediterranean forest ecosystems are demanding serious attention to forest fire conditions. This is particularly true when dealing with the budget requirements for undertaking protection programs related to the state of current and...
USDA-ARS?s Scientific Manuscript database
For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a “two-sou...
Philip E. Dennison; Dar A. Roberts; Sommer R. Thorgusen; Jon C. Regelbrugge; David Weise; Christopher Lee
2003-01-01
Live fuel moisture, an important determinant of fire danger in Mediterranean ecosystems, exhibits seasonal changes in response to soil water availability. Both drought stress indices based on meteorological data and remote sensing indices based on vegetation water absorption can be used to monitor live fuel moisture. In this study, a cumulative water balance index (...
Wilson, Hannah; Johnson, Bart R; Bohannan, Brendan; Pfeifer-Meister, Laurel; Mueller, Rebecca; Bridgham, Scott D
2016-01-01
Arbuscular mycorrhizal fungi (AMF) provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. We used a combination of a greenhouse experiment and a manipulative climate change experiment embedded within a Mediterranean climate gradient in the Pacific Northwest, USA to examine this question. Structural equation modeling (SEM) was used to determine the direct and indirect effects of experimental warming on AMF colonization. Warming directly decreased AMF colonization across plant species and across the climate gradient of the study region. Other positive and negative indirect effects of warming, mediated by soil water availability, soil nutrient availability, and vegetation dynamics, canceled each other out. A warming-induced decrease in AMF colonization would likely have substantial consequences for plant communities and ecosystem function. Moreover, predicted increases in more intense droughts and heavier rains for this region could shift the balance among indirect causal pathways, and either exacerbate or mitigate the negative, direct effect of increased temperature on AMF colonization.
NASA Astrophysics Data System (ADS)
Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.
2015-06-01
The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (high Agri Valley - Basilicata region) that occurred over 24 years. In this period, the valuable agricultural and natural areas that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European onshore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest areas and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land cover classes) and the forest/non-forest arrangement. Our results indicate a net increase of 11% of forest areas between 1985 and 2009. The major changes concern increase of all forest covers at the expense of pastures and grasses, enlargement of riparian vegetation, and expansion of artificial areas. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous areas. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.
NASA Astrophysics Data System (ADS)
Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.
2014-08-01
The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (High Agri Valley - Basilicata region) occurred during 24 years. In this period, the valuable agricultural and natural areas that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European on-shore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest areas and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land cover classes) and the Forest/Non Forest arrangement. Our results indicate a net increase of 11% of forest areas between 1985 and 2009. The major changes concern: increase of all forest covers at the expense of pastures and grasses, enlargement of riparian vegetation, expansion of artificial areas. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous areas. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.
Towards understanding resprouting at the global scale
Pausas, Juli G.; Pratt, R. Brandon; Keeley, Jon E.; Jacobsen, Anna L.; Ramirez, Aaron R.; Vilagrosa, Alberto; Paula, Susana; Kanekua-Pia, Iolana N.; Davis, Stephen D.
2016-01-01
Understanding and predicting plant response to disturbance is of paramount importance in our changing world. Resprouting ability is often considered a simple qualitative trait and used in many ecological studies. Our aim is to show some of the complexities of resprouting while highlighting cautions that need be taken in using resprouting ability to predict vegetation responses across disturbance types and biomes. There are marked differences in resprouting depending on the disturbance type, and fire is often the most severe disturbance because it includes both defoliation and lethal temperatures. In the Mediterranean biome, there are differences in functional strategies to cope with water deficit between resprouters (dehydration avoiders) and nonresprouters (dehydration tolerators); however, there is little research to unambiguously extrapolate these results to other biomes. Furthermore, predictions of vegetation responses to changes in disturbance regimes require consideration not only of resprouting, but also other relevant traits (e.g. seeding, bark thickness) and the different correlations among traits observed in different biomes; models lacking these details would behave poorly at the global scale. Overall, the lessons learned from a given disturbance regime and biome (e.g. crown-fire Mediterranean ecosystems) can guide research in other ecosystems but should not be extrapolated at the global scale.
Rivaes, Rui; Pinheiro, António N; Egger, Gregory; Ferreira, Teresa
2017-01-01
Fluvial disturbances, especially floods and droughts, are the main drivers of the successional patterns of riparian vegetation. Those disturbances control the riparian landscape dynamics through the direct interaction between flow and vegetation. The main aim of this work is to investigate the specific paths by which fluvial disturbances, distributed by its components of groundwater hydrology (grndh) and morphodynamic disturbance (mrphd), drive riparian landscape patterns as characterized by the location (position in the river corridor) and shape (physical form of the patch) of vegetation patches in Mediterranean rivers. Specifically, this work assesses how the different components of fluvial disturbances affect these features in general and particularly in each succession phase of riparian vegetation. grndh and mrphd were defined by time and intensity weighted indexes calculated, respectively, from the mean annual water table elevations and the annual maximum instantaneous discharge shear stresses of the previous decade. The interactions between riparian landscape features and fluvial disturbances were assessed by confirmatory factor analysis using structural equation modeling. Two hypothetical models for patch location and shape were conceptualized and tested against empirical data collected from 220 patches at four different study sites. Both models were successfully fitted, meaning that they adequately depicted the relationships between the variables. Furthermore, the models achieved a good adjustment for the observed data, based on the evaluation of several approximate fit indexes. The patch location model explained approximately 80% of the patch location variability, demonstrating that the location of the riparian patches is primarily driven by grndh, while the mrphd had very little effect on this feature. In a multigroup analysis regarding the succession phases of riparian vegetation, the fitted model explained more than 68% of the variance of the data, confirming the results of the general model. The patch shape model explained nearly 13% of the patch shape variability, in which the disturbances came to have less influence on driving this feature. However, grndh continues to be the primary driver of riparian vegetation between the two disturbance factors, despite the proportional increase of the mrphd effect to approximately a third of the grndh effect.
Rivaes, Rui; Pinheiro, António N.; Egger, Gregory; Ferreira, Teresa
2017-01-01
Fluvial disturbances, especially floods and droughts, are the main drivers of the successional patterns of riparian vegetation. Those disturbances control the riparian landscape dynamics through the direct interaction between flow and vegetation. The main aim of this work is to investigate the specific paths by which fluvial disturbances, distributed by its components of groundwater hydrology (grndh) and morphodynamic disturbance (mrphd), drive riparian landscape patterns as characterized by the location (position in the river corridor) and shape (physical form of the patch) of vegetation patches in Mediterranean rivers. Specifically, this work assesses how the different components of fluvial disturbances affect these features in general and particularly in each succession phase of riparian vegetation. grndh and mrphd were defined by time and intensity weighted indexes calculated, respectively, from the mean annual water table elevations and the annual maximum instantaneous discharge shear stresses of the previous decade. The interactions between riparian landscape features and fluvial disturbances were assessed by confirmatory factor analysis using structural equation modeling. Two hypothetical models for patch location and shape were conceptualized and tested against empirical data collected from 220 patches at four different study sites. Both models were successfully fitted, meaning that they adequately depicted the relationships between the variables. Furthermore, the models achieved a good adjustment for the observed data, based on the evaluation of several approximate fit indexes. The patch location model explained approximately 80% of the patch location variability, demonstrating that the location of the riparian patches is primarily driven by grndh, while the mrphd had very little effect on this feature. In a multigroup analysis regarding the succession phases of riparian vegetation, the fitted model explained more than 68% of the variance of the data, confirming the results of the general model. The patch shape model explained nearly 13% of the patch shape variability, in which the disturbances came to have less influence on driving this feature. However, grndh continues to be the primary driver of riparian vegetation between the two disturbance factors, despite the proportional increase of the mrphd effect to approximately a third of the grndh effect. PMID:28979278
NASA Astrophysics Data System (ADS)
Corona, R.; Montaldo, N.; Cortis, C.; Albertson, J. D.
2012-04-01
In semi-arid regions with the Mediterranean climate of cool, wet winters and hot, dry summers, precipitation timing and amount, vegetation growth, and surface runoff are tightly intertwined. In the experimental site of Sardinia, the main source of water is surface reservoirs that are recharged by surface runoff in the rainy winter season. However, changes in climate are expected to bring both an overall decrease in winter precipitation and increased interannual variability of precipitation to this region. These changes may affect characteristics of the water-limited vegetation growth such as timing and production, and consequently change the amount of overland flow and reservoir recharge. Currently, there is little research on the combination of these effects; therefore, the goal of this research is to assess the runoff response of the land surface with varying vegetation states to ultimately predict how changes in the climate of Mediterranean watersheds may affect the needs of water resource management. A 4 m by 4 m rainfall simulator was designed, constructed, and tested as the first stage of this research. The rainfall simulator consisted of four independent lines of low-cost pressure washing nozzles operated at a pressure of 80 mbar, with the number of nozzles determining the rainfall intensity delivered to the plot. The rainfall intensity of the simulator varies from approximately 26 to 52 mm/h with a coefficient of uniformity ranging from 0.40 to 0.59. Measurements taken include surface runoff using a tipping bucket flow meter and soil moisture throughout the plot. Literature models for surface runoff predictions (Philips, Horton, Green Ampt, Soil conservation Service model, bucket model) are widely tested highlighting the typical hortonian behavior of this soil. The simulator was used to monitor changes in the surface runoff throughout the seasons (July 2010, August 2010, June 2011, July 2011, December 2011, January 2012) as the vegetation changes. Results shows the great impact of changes in vegetation cover on soil runoff processes: the increase of LAI from values of 0 to 1.5 produces a decrease of surface runoff of the 50%.
NASA Astrophysics Data System (ADS)
Weil, Gilad; Lensky, Itamar M.; Levin, Noam
2017-10-01
The spectral reflectance of most plant species is quite similar, and thus the feasibility of identifying most plant species based on single date multispectral data is very low. Seasonal phenological patterns of plant species may enable to face the challenge of using remote sensing for mapping plant species at the individual level. We used a consumer-grade digital camera with near infra-red capabilities in order to extract and quantify vegetation phenological information in four East Mediterranean sites. After illumination corrections and other noise reduction steps, the phenological patterns of 1839 individuals representing 12 common species were analyzed, including evergreen trees, winter deciduous trees, semi-deciduous summer shrubs and annual herbaceous patches. Five vegetation indices were used to describe the phenology: relative green and red (green/red chromatic coordinate), excess green (ExG), normalized difference vegetation index (NDVI) and green-red vegetation index (GRVI). We found significant differences between the phenology of the various species, and defined the main phenological groups using agglomerative hierarchical clustering. Differences between species and sites regarding the start of season (SOS), maximum of season (MOS) and end of season (EOS) were displayed in detail, using ExG values, as this index was found to have the lowest percentage of outliers. An additional visible band spectral index (relative red) was found as useful for characterizing seasonal phenology, and had the lowest correlation with the other four vegetation indices, which are more sensitive to greenness. We used a linear mixed model in order to evaluate the influences of various factors on the phenology, and found that unlike the significant effect of species and individuals on SOS, MOS and EOS, the sites' location did not have a direct significant effect on the timing of phenological events. In conclusion, the relative advantage of the proposed methodology is the exploitation of representative temporal information that is collected with accessible and simple devices, for the subsequent determination of optimal temporal acquisition of images by overhead sensors, for vegetation mapping over larger areas.
Patchy Particles of Block Copolymers from Interface-Engineered Emulsions
NASA Astrophysics Data System (ADS)
Ku, Kang Hee; Kim, Yongjoo; Yi, Gi-Ra; Jung, Yeon Sik; Kim, Bumjoon
A simple method for creating soft patchy particles with a variety of three-dimensional shapes has been developed through the evaporation-induced assembly of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) in an oil-in-water emulsion. Depending on the particle volume, a series of patchy particles in the shapes of snowmen, dumbbells, triangles, tetrahedra, and raspberry can be prepared, which are then precisely tuned by modulating the interfacial interaction at the particle/water interface using a mixture of two different surfactants. Moreover, for a given interfacial interaction, the stretching penalty of the BCPs in the patchy particles can be systematically controlled by adding P4VP homopolymers, which decreases the number of patches of soft particles from multiple patches to a single patch but increases the size of the patch. Calculations based on the strong segregation theory supported the experimental observation of various soft patchy particles and identified the underlying principles of their formation with tunable 3D structures.
Wang, Yong-Jian; Bai, Yun-Fei; Zeng, Shi-Qi; Yao, Bin; Wang, Wen; Luo, Fang-Li
2016-07-21
Spatial patchiness and temporal variability in water availability are common in nature under global climate change, which can remarkably influence adaptive responses of clonal plants, i.e. clonal integration (translocating resources between connected ramets). However, little is known about the effects of spatial patchiness and temporal heterogeneity in water on growth and clonal integration between congeneric invasive and native Hydrocotyle species. In a greenhouse experiment, we subjected severed or no severed (intact) fragments of Hydrocotyle vulgaris, a highly invasive species in China, and its co-existing, native congener H. sibthorpioides to different spatial patchiness (homogeneous and patchy) and temporal interval (low and high interval) in water supply. Clonal integration had significant positive effects on growth of both species. In the homogeneous water conditions, clonal integration greatly improved the growth in fragments of both species under low interval in water. However, in the patchy water conditions, clonal integration significantly increased growth in both ramets and fragments of H. vulgaris under high interval in water. Therefore, spatial patchiness and temporal interval in water altered the effects of clonal integration of both species, especially for H. vulgaris. The adaptation of H. vulgaris might lead to invasive growth and potential spread under the global water variability.
NASA Astrophysics Data System (ADS)
Imeson, Anton
2014-05-01
The motivation for this session is the statement or claim that Mediterranean areas are sensitive to erosion and desertification. One result of the LEDDRA Approach, which is applying the Complex Adaptive (CAS)paradigm at study sites in Mediterranean Spain, Greece and Italy is that there is just a single socio-environmental system in which land degradation is being caused by the actions of people and the Mediterranean soils have co-eveolved with people under the influence of fire and grazing. They are therefore resilient, and this was demonstrated by Naveh and Thornes. Also the Medalus field sites showed very low rates of erosion. With examples from different Mediterranean landscapes, it is considered that Mediterranean landscapes went through an initial phase of being sensitive to erosion which ended up with the original soils before ploughing or deforestation, being eroded from most of the areas, In some places these are found. LEDDRA The Leddra approach is to consider different states which are separated by transitions. The first state is that of the deforestaion and destruction of the forest that took place 6000 10000 years ago, in the Eastern and Northern Mediterranean, and 2000 to 4,000 years ago in large areas of the Western Mediterranean, and 100 to 400 years ago in California. Australia, New Zealand and Chile. The second state involves appropriating and settling the land from indigenous people and introducing cattle and sheep and Mediterranean crops. The current state of desertification is one in which erosion occurs because of the use of specific cultivation methods and subsidies for irrigating and producing crops outside of their range. In the Mediterranean landscape State, such as found near Santiago in Chile and in Crete, society gains many cultural benefits from grazing. However, the consequences of this are that the whole ecosystem is maintained in an arid state, so that areas in Crete receiving 800-1100 mm rainfall have a semi arid vegetation, instead of the Cedars they once had. Much of the rainfall in Crete is lost as an asset to evaporation or it runs off and does not infiltrate to become groundwater. The conclusion is that the cause of Mediterranean desertification is not at all related to erosion. Erosion is a problem of the non sustainable practices that destroy damage biodiversity and compact and transform the soil. This has nothing to do with climate because it happens everywhere. The Ermes project suggested that erosion is greatest where the annual rainfall is about 300 -400 mm because of the influence of salt and the dispersion of clay.
NASA Astrophysics Data System (ADS)
González-Dugo, Maria P.; Chen, Xuelong; Andreu, Ana; Carpintero, Elisabet; Gómez-Giraldez, Pedro; Su, Z.(Bob)
2017-04-01
Drought is one of the major hazards faced by natural and cropped vegetation in the Mediterranean Sea Basin. Water scarcity is likely to be worsened under the predicted conditions of climate change, which is expected to make this region both warmer and drier. A Holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs. This ecosystem is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural economy. A similar ecosystem is worldwide distributed in areas with Mediterranean climate (as California or South Africa) and shares structural and functional properties with tropical savannas in Africa, Australia and South America. Remote sensing time series can assist the monitoring of the energy balance components, with special attention to the evapotranspiration and vegetation water stress over these areas. Long-term data analysis may improve our understanding of the functioning of the system, helping to assess drought impacts and leading to reduce the economic and environmental vulnerability of this ecosystem. This work analyzes the evolution the surface energy balance components, mapping the evapotranspiration and moisture stress of holm oak woodlands of Spain and Portugal during the last 15 years (2001-2015). The surface energy balance model (SEBS) has been applied over the Iberian Peninsula on a monthly time scale and 0.05° spatial resolution, using multi-satellite and meteorological forcing data. Modelled energy and water fluxes have been validated using ground measurements of two eddy covariance towers located in oak savanna sites during 3 years, resulting in moderate deviations from observations (10-25 W/m2). The departure of actual ET from the potential rate, expected under optimum soil water conditions, has been used to assess the water stress of the system. An annual drought index has been calculated based on this relative ET, in order to compare the main drought events occurred during the study period. Two generalised events (2005 and 2012) and a partial one (2009) have been characterised by analysing the evaporative stress time series, performing a detailed comparison over the two eddy covariance tower sites and a general one over the entire oak savanna area of the Peninsula.
Tektonidis, Thanasis G; Åkesson, Agneta; Gigante, Bruna; Wolk, Alicja; Larsson, Susanna C
2015-11-01
The Mediterranean diet, which is palatable and easily achievable, has been associated with lower all-cause and cardiovascular disease (CVD) incidence and mortality. Data on heart failure (HF) and stroke types are lacking. The aim was to examine a Mediterranean diet in relation to incidence of myocardial infarction (MI), HF and stroke types in a Swedish prospective cohort. In a population-based cohort of 32,921 women, diet was assessed through a self-administered questionnaire. The modified Mediterranean diet (mMED) score was created based on high consumption of vegetables, fruits, legumes, nuts, whole grains, fermented dairy products, fish and monounsaturated fat, moderate intakes of alcohol and low consumption of red meat, on a 0-8 scale. Relative risks (RR) with 95% confidence intervals (CI), adjusted for potential confounders, were estimated by Cox proportional hazards regression models. During 10 y of follow-up (1998-2008), 1109 MIs, 1648 HFs, 1270 ischemic strokes and 262 total hemorrhagic strokes were ascertained. A high adherence to the mMED score (6-8), compared to low, was associated with a lower risk of MI (RR: 0.74, 95% CI: 0.61-0.90, p = 0.003), HF (RR: 0.79, 95% CI: 0.68-0.93, p = 0.004) and ischemic stroke (RR: 0.78, 95% CI: 0.65-0.93, p = 0.007), but not hemorrhagic stroke (RR: 0.88, 95% CI: 0.61-1.29, p = 0.53). Better adherence to a Mediterranean diet was associated with lower risk of MI, HF and ischemic stroke. The Mediterranean diet is most likely to be beneficial in primary prevention of all major types of atherosclerosis-related CVD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Grimaldi, Ilaria Maria; Muthukumaran, Sureshkumar; Tozzi, Giulia; Nastasi, Antonino; Boivin, Nicole; Matthews, Peter J; van Andel, Tinde
2018-01-01
Taro, Colocasia esculenta (L.) Schott, is a vegetable and starchy root crop cultivated in Asia, Oceania, the Americas, Africa, and the Mediterranean. Very little is known about its early history in the Mediterranean, which previous authors have sought to trace through Classical (Greek and Latin) texts that record the name colocasia (including cognates) from the 3rd century BC onwards. In ancient literature, however, this name also refers to the sacred lotus, Nelumbo nucifera Gaertn. and its edible rhizome. Like taro, lotus is an alien introduction to the Mediterranean, and there has been considerable confusion regarding the true identity of plants referred to as colocasia in ancient literature. Another early name used to indicate taro was arum, a name already attested from the 4th century BC. Today, this name refers to Arum, an aroid genus native to West Asia, Europe, and the Mediterranean. Our aim is to explore historical references to taro in order to clarify when and through which routes this plant reached the Mediterranean. To investigate Greek and Latin texts, we performed a search using the Thesaurus Linguae Graecae (TLG) and the Thesaurus Linguae Latinae (TLL), plus commentaries and English and French translations of original texts. Results show that while in the early Greek and Latin literature the name kolokasia (Greek κολοκάσια) and its Latin equivalent colocasia refer to Nelumbo nucifera Gaertn., after the 4th century AD a poorly understood linguistic shift occurs, and colocasia becomes the name for taro. We also found that aron (Greek ἄρον) and its Latin equivalent arum are names used to indicate taro from the 3rd century BC and possibly earlier.
Ruiz-Labourdette, Diego; Martínez, Felipe; Martín-López, Berta; Montes, Carlos; Pineda, Francisco D
2011-05-01
Mediterranean mountains harbour some of Europe's highest floristic richness. This is accounted for largely by the mesoclimatic variety in these areas, along with the co-occurrence of a small area of Eurosiberian, Boreal and Mediterranean species, and those of Tertiary Subtropical origin. Throughout the twenty-first century, we are likely to witness a climate change-related modification of the biogeographic scenario in these mountains, and there is therefore a need for accurate climate regionalisations to serve as a reference of the abundance and distribution of species and communities, particularly those of a relictic nature. This paper presents an objective mapping method focussing on climate regions in a mountain range. The procedure was tested in the Cordillera Central Mountains of the Iberian Peninsula, in the western Mediterranean, one of the ranges occupying the largest area of the Mediterranean Basin. This regionalisation is based upon multivariate analyses and upon detailed cartography employing 27 climatic variables. We used spatial interpolation of data based on geographic information. We detected high climatic diversity in the mountain range studied. We identified 13 climatic regions, all of which form a varying mosaic throughout the annual temperature and rainfall cycle. This heterogeneity results from two geographically opposed gradients. The first one is the Mediterranean-Euro-Siberian variation of the mountain range. The second gradient involves the degree of oceanicity, which is negatively related to distance from the Atlantic Ocean. The existing correlation between the climatic regions detected and the flora existing therein enables the results to be situated within the projected trends of global warming, and their biogeographic and ecological consequences to be analysed.
Muthukumaran, Sureshkumar; Tozzi, Giulia; Nastasi, Antonino; Boivin, Nicole
2018-01-01
Taro, Colocasia esculenta (L.) Schott, is a vegetable and starchy root crop cultivated in Asia, Oceania, the Americas, Africa, and the Mediterranean. Very little is known about its early history in the Mediterranean, which previous authors have sought to trace through Classical (Greek and Latin) texts that record the name colocasia (including cognates) from the 3rd century BC onwards. In ancient literature, however, this name also refers to the sacred lotus, Nelumbo nucifera Gaertn. and its edible rhizome. Like taro, lotus is an alien introduction to the Mediterranean, and there has been considerable confusion regarding the true identity of plants referred to as colocasia in ancient literature. Another early name used to indicate taro was arum, a name already attested from the 4th century BC. Today, this name refers to Arum, an aroid genus native to West Asia, Europe, and the Mediterranean. Our aim is to explore historical references to taro in order to clarify when and through which routes this plant reached the Mediterranean. To investigate Greek and Latin texts, we performed a search using the Thesaurus Linguae Graecae (TLG) and the Thesaurus Linguae Latinae (TLL), plus commentaries and English and French translations of original texts. Results show that while in the early Greek and Latin literature the name kolokasia (Greek κολοκάσια) and its Latin equivalent colocasia refer to Nelumbo nucifera Gaertn., after the 4th century AD a poorly understood linguistic shift occurs, and colocasia becomes the name for taro. We also found that aron (Greek ἄρον) and its Latin equivalent arum are names used to indicate taro from the 3rd century BC and possibly earlier. PMID:29870533
Models of Small-Scale Patchiness
NASA Technical Reports Server (NTRS)
McGillicuddy Dennis J., Jr.
2001-01-01
Patchiness is perhaps the most salient characteristic of plankton populations in the ocean. The scale of this heterogeneity spans many orders of magnitude in its spatial extent, ranging from planetary down to microscale. It has been argued that patchiness plays a fundamental role in the functioning of marine ecosystems, insofar as the mean conditions may not reflect the environment to which organisms are adapted. For example, the fact that some abundant predators cannot thrive on the mean concentration of their prey in the ocean implies that they are somehow capable of exploiting small-scale patches of prey whose concentrations are much larger than the mean. Understanding the nature of this patchiness is thus one of the major challenges of oceanographic ecology. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Garrigues, S.; Olioso, A.; Calvet, J.-C.; Lafont, S.; Martin, E.; Chanzy, A.; Marloie, O.; Bertrand, N.; Desfonds, V.; Renard, D.
2012-04-01
Vegetation productivity and water balance of Mediterranean regions will be particularly affected by climate and land-use changes. In order to analyze and predict these changes through land surface models, a critical step is to quantify the uncertainties associated with these models (processes, parameters) and their implementation over a long period of time. Besides, uncertainties attached to the data used to force these models (atmospheric forcing, vegetation and soil characteristics, crop management practices...) which are generally available at coarse spatial resolution (>1-10 km) and for a limited number of plant functional types, need to be evaluated. This paper aims at assessing the uncertainties in water (evapotranspiration) and energy fluxes estimated from a Soil Vegetation Atmosphere Transfer (SVAT) model over a Mediterranean agricultural site. While similar past studies focused on particular crop types and limited period of time, the originality of this paper consists in implementing the SVAT model and assessing its uncertainties over a long period of time (10 years), encompassing several cycles of distinct crops (wheat, sorghum, sunflower, peas). The impacts on the SVAT simulations of the following sources of uncertainties are characterized: - Uncertainties in atmospheric forcing are assessed comparing simulations forced with local meteorological measurements and simulations forced with re-analysis atmospheric dataset (SAFRAN database). - Uncertainties in key surface characteristics (soil, vegetation, crop management practises) are tested comparing simulations feeded with standard values from global database (e.g. ECOCLIMAP) and simulations based on in situ or site-calibrated values. - Uncertainties dues to the implementation of the SVAT model over a long period of time are analyzed with regards to crop rotation. The SVAT model being analyzed in this paper is ISBA in its a-gs version which simulates the photosynthesis and its coupling with the stomata conductance, as well as the time course of the plant biomass and the Leaf Area Index (LAI). The experiment was conducted at the INRA-Avignon (France) crop site (ICOS associated site), for which 10 years of energy and water eddy fluxes, soil moisture profiles, vegetation measurements, agricultural practises are available for distinct crop types. The uncertainties in evapotranspiration and energy flux estimates are quantified from both 10-year trend analysis and selected daily cycles spanning a range of atmospheric conditions and phenological stages. While the net radiation flux is correctly simulated, the cumulated latent heat flux is under-estimated. Daily plots indicate i) an overestimation of evapotranspiration over bare soil probably due to an overestimation of the soil water reservoir available for evaporation and ii) an under-estimation of transpiration for developed canopy. Uncertainties attached to the re-analysis atmospheric data show little influence on the cumulated values of evapotranspiration. Better performances are reached using in situ soil depths and site-calibrated photosynthesis parameters compared to the simulations based on the ECOCLIMAP standard values. Finally, this paper highlights the impact of the temporal succession of vegetation cover and bare soil on the simulation of soil moisture and evapotranspiration over a long period of time. Thus, solutions to account for crop rotation in the implementation of SVAT models are discussed.
NASA Astrophysics Data System (ADS)
Hueso Gonzalez, Paloma; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose
2016-04-01
During dry periods in the Mediterranean area, the lack of water entering the soil matrix reduces organic contributions to the soil. These processes lead to reduced soil fertility and soil vegetation recovery which creates a positive feedback process that can lead to desertification. Restoration of native vegetation is the most effective way to regenerate soil health, and control runoff and sediment yield. In Mediterranean areas, after a forestry proposal, it is highly common to register a significant number of losses for the saplings that have been introduced due to the lack of rainfall. When no vegetation is established, organic amendments can be used to rapidly protect the soil surface against the erosive forces of rain and runoff. In this study we investigated the hydrological effects of five soil treatments in relation to the temporal variability of the available water for plants. Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. In control plots, during June, July, August and September, soils were registered below the wilting point, and therefore, in the area of water unusable by plants. These months were coinciding with the summer mediterranean drought. This fact justifies the high mortality found on plants after the seeding plan. Similarly, soils have never exceeded the field capacity value measured for control plots. Conversely, in the straw and pinus mulch, soils were above the wilting point during a longer time than in control plots. Thus, the soil moisture only has stayed below the 4.2 pF suction in July, July and August. Regarding the amount of water available was also higher, especially in the months of December, January and February. However, the field capacity value measured has not showed any differences regarding the control. For these treatments, the survival sapling rates measured were the highest. Sludge, manure and polymers showed a moisture retention capacity slightly more limited than straw and pinus mulch. Likewise, it has been found that the area of usable water by plants was also lower, especially during the months of January and February. This situation is especially sharpened in plots amended with manure. In this treatment, the upper part of the soil profile was below the wilting point for six months a year (from April to August). For this treatment, the survival sapling rates measured were the lowest. In conclusion, from a land management standpoint, the pinus and straw mulch treatments have been shown as effective methods reducing water stress for plants. In this research, mulching has been proved as a significant method to reduce the mortality sapling rates during the mediterranean summer drought.
Soil erosion in a man-made landscape: the Mediterranean
NASA Astrophysics Data System (ADS)
Cerdà, A.; Ruiz Sinoga, J. D.; Cammeraat, L. H.
2012-04-01
Mediterranean-type ecosystems are characterised by a seasonally contrasted distribution of precipitation, by the coincidence of the driest and hottest season in summer, by an often-mountainous terrain, and by a long history of intense human occupation, especially around the Mediterranean Sea. The history of the Mediterranean lands is the history of human impacts on the soil system, and soil erosion is the most intense and widespread impact on this land where high intensity and uneven rainfall is found. A review of the soil erosion rates measured in the Mediterranean basin will be shown. The measurements done by means of erosion pins, topographical measurements, rainfall simulators, Gerlach collectors in open or close plots, watershed/basin measurements, reservoirs siltation and historical data will be shown. A review of the soil erosion models applied in the Mediterranean will be shown. The tentative approach done until October 2011 show that the soil erosion rates on Mediterranean type ecosystems are not as high as was supposed by the pioneers in the 70's. And this is probably due to the fact that the soils are very shallow and sediments are not available after millennia of high erosion rates. This is related to the large amount of rock fragments are covering the soil, and the rock outcrops that are found in the upper slope trams and the summits. Soil erosion in the Mediterranean is seasonal due to the rainfall concentration in winter, and highly variable within years as the high intensity rainfall events control the sediment production. Natural vegetation is adapted to the Mediterranean environmental conditions, and they are efficient to control the soil losses. An example are the forest fire that increase the soil losses but this is a temporal change as after 2-4 years the soil erosion rates are similar to the pre-fire period. Agriculture lands are the source of sediments although the highest erosion rates are found in badland areas that cover a small part of the Mediterranean lands. The methods applied to measure or estimate the soil erosion should be improved to make them comparable. An agreement is necessary to decide the size of the plots, the material and equipment to be used and the future research topics. This research study is being supported by the the research project CGL2008-02879/BTE
'Mediterranean' dietary pattern for the primary prevention of cardiovascular disease.
Rees, Karen; Hartley, Louise; Flowers, Nadine; Clarke, Aileen; Hooper, Lee; Thorogood, Margaret; Stranges, Saverio
2013-08-12
The Seven Countries study in the 1960s showed that populations in the Mediterranean region experienced lower cardiovascular disease (CVD) mortality probably as a result of different dietary patterns. Later observational studies have confirmed the benefits of adherence to a Mediterranean dietary pattern on CVD risk factors. Clinical trial evidence is limited, and is mostly in secondary prevention. To determine the effectiveness of a Mediterranean dietary pattern for the primary prevention of CVD. We searched the following electronic databases: the Cochrane Central Register of Controlled Trials (CENTRAL, Issue 9 of 12, September 2012); MEDLINE (Ovid, 1946 to October week 1 2012); EMBASE (Ovid, 1980 to 2012 week 41); ISI Web of Science (1970 to 16 October 2012); Database of Abstracts of Reviews of Effects (DARE), Health Technology Assessment Database and Health Economics Evaluations Database (Issue 3 of 12, September 2012). We searched trial registers and reference lists of reviews and applied no language restrictions. We selected randomised controlled trials in healthy adults and adults at high risk of CVD. A Mediterranean dietary pattern was defined as comprising at least two of the following components: (1) high monounsaturated/saturated fat ratio, (2) low to moderate red wine consumption, (3) high consumption of legumes, (4) high consumption of grains and cereals, (5) high consumption of fruits and vegetables, (6) low consumption of meat and meat products and increased consumption of fish, and (7) moderate consumption of milk and dairy products. The comparison group received either no intervention or minimal intervention. Outcomes included clinical events and CVD risk factors. Two review authors independently extracted data and contacted chief investigators to request additional relevant information. We included 11 trials (15 papers) (52,044 participants randomised). Trials were heterogeneous in the participants recruited, in the number of dietary components and follow-up periods. Seven trials described the intervention as a Mediterranean diet. Clinical events were reported in only one trial (Women's Health Initiative 48,835 postmenopausal women, intervention not described as a Mediterranean diet but increased fruit and vegetable and cereal intake) where no statistically significant effects of the intervention were seen on fatal and non-fatal endpoints at eight years. Small reductions in total cholesterol (-0.16 mmol/L, 95% confidence interval (CI) -0.26 to -0.06; random-effects model) and low-density lipoprotein (LDL) cholesterol (-0.07 mmol/L, 95% CI -0.13 to -0.01) were seen with the intervention. Subgroup analyses revealed statistically significant greater reductions in total cholesterol in those trials describing the intervention as a Mediterranean diet (-0.23 mmol/L, 95% CI -0.27 to -0.2) compared with control (-0.06 mmol/L, 95% CI -0.13 to 0.01). Heterogeneity precluded meta-analyses for other outcomes. Reductions in blood pressure were seen in three of five trials reporting this outcome. None of the trials reported adverse events. The limited evidence to date suggests some favourable effects on cardiovascular risk factors. More comprehensive interventions describing themselves as the Mediterranean diet may produce more beneficial effects on lipid levels than those interventions with fewer dietary components. More trials are needed to examine the impact of heterogeneity of both participants and the intervention on outcomes.
Effects of topoclimatic complexity on the composition of woody plant communities.
Oldfather, Meagan F; Britton, Matthew N; Papper, Prahlad D; Koontz, Michael J; Halbur, Michelle M; Dodge, Celeste; Flint, Alan L; Flint, Lorriane E; Ackerly, David D
2016-01-01
Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales. Published by Oxford University Press on behalf of the Annals of Botany Company.
Effects of topoclimatic complexity on the composition of woody plant communities
Oldfather, Meagan F.; Britton, Matthew N.; Papper, Prahlad D.; Koontz, Michael J.; Halbur, Michelle M.; Dodge, Celeste; Flint, Alan L.; Flint, Lorriane E.; Ackerly, David D.
2016-01-01
Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales. PMID:27339048
NASA Astrophysics Data System (ADS)
Kusserow, Hannelore
2017-12-01
Since the turn of the millennium various scientific publications have been discussing a re-greening of the Sahel after the 1980s drought mainly based on coarse-resolution satellite data. However, the author's own field studies suggest that the situation is far more complex and that both paradigms, the encroaching Sahara
and the re-greening Sahel
, need to be questioned.
This paper discusses the concepts of desertification, resilience, and re-greening by addressing four main aspects: (i) the relevance of edaphic factors for a vegetation re-greening, (ii-iii) the importance of the selected observation period in the debate on Sahel greening or browning, and (iv) modifications in the vegetation pattern as possible indicators of ecosystem changes (shift from originally diffuse to contracted vegetation patterns).
The data referred to in this paper cover a time period of more than 150 years and include the author's own research results from the early 1980s until today. A special emphasis, apart from fieldwork data and remote sensing data, is laid on the historical documents.
The key findings summarised at the end show the following: (i) vegetation recovery predominantly depends on soil types; (ii) when discussing Sahel greening vs. Sahel browning, the majority of research papers only focus on post-drought conditions. Taking pre-drought conditions (before the 1980s) into account, however, is essential to fully understand the situation. Botanical investigations and remote-sensing-based time series clearly show a substantial decline in woody species diversity and cover density compared to pre-drought conditions; (iii) the self-organised patchiness of vegetation is considered to be an important indicator of ecosystem changes.
Yohay Carmel; Curtis H. Flather
2004-01-01
A long line of inquiry on the notion of ecological convergence has compared ecosystem structure and function between areas that are evolutionarily unrelated but under the same climate regime. Much of this literature has focused on quantifying the degree to which animal morphology or plant physiognomy is alike between disjunct areas. An important property of ecosystems...
NASA Astrophysics Data System (ADS)
Di Mauro, D.; Alfonsi, L.; Sapia, V.; Urbini, S.
2014-05-01
The archaeological site of Mozia, a small island in front of the western coast of Sicily (Italy), is one of the most important Phoenician-Punic settlements in the Mediterranean; it preserves important vestiges and remains, located in an uncontaminated site, inhabited and car-free. The remains are still partially hidden under vegetation and vineyards.
Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.
Bianchi, Emanuela; Doppelbauer, Günther; Filion, Laura; Dijkstra, Marjolein; Kahl, Gerhard
2012-06-07
We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show that the two methods are equally successful and provide consistent results on crystalline phases of patchy particle systems.
Patchy colloidosomes - an emerging class of structures
NASA Astrophysics Data System (ADS)
Rozynek, Z.; Józefczak, A.
2016-07-01
A colloidosome, i.e., a selectively permeable capsule composed of colloidal particles forming a stable homogenous shell, is a tiny container that can be used for storage, transportation, and release of cargo species. There are many routes to preparing colloidosomes; dozens of examples of future applications of such colloidal capsules have been demonstrated. Their functionality can be further extended if the capsules are designed to have heterogeneous shells, i.e., one or more regions (patches) of a shell are composed of material with specific properties that differ from the rest of the shell. Such patchy colloidosomes, supplemented by functionalities similar to that offered by well-studied patchy particles, will surely possess advantageous properties when compared with their homogenous counterparts. For example, owing to specific interactions between patches, they either can self-assemble into complex structures; specifically adhere to a surface; release their cargo species in specific direction; or guided-align,-orient or -propel. Fabrication of patchy colloidal microcapsules has long been theorized by scientists able to design different models, but actual large-scale production remains a challenge. Until now, only a few methods for fabricating patchy colloidosomes have been demonstrated, and these include production by means of microfluidics and mechanical pipetting. The field of science related to fabrication and application of patchy colloidosomes is clearly unexplored, and we envision it blooming in the coming years.
NASA Astrophysics Data System (ADS)
Verhoef, Anne; Egea, Gregorio; Garrigues, Sebastien; Vidale, Pier Luigi; Balan Sarojini, Beena
2017-04-01
Current land surface schemes in many crop, weather and climate models make use of the coupled photosynthesis-stomatal conductance (A-gs) models of plant function to determine the transpiration flux and gross primary productivity. Vegetation exchange is controlled by many environmental factors, and soil moisture control on root water uptake and stomatal function is a primary pathway for feedbacks in sub-tropical to temperate ecosystems. Representations of the above process of soil moisture control on plant function (often referred to as a 'beta' factor) vary among models. This matters because the simulated energy, water and carbon balances are very sensitive to the representation of water stress in these models. Building on Egea et al. (2011) and Verhoef and Egea (2014), we tested a range of 'beta' approaches in a leaf-level A-gs model (compatible with models such as JULES, CHTESSEL, ISBA, CLM), as well as some beta-approaches borrowed from the agronomic, and plant physiological communities (a combined soil-plant hydraulic approach, see Verhoef and Egea, 2014). Root zone soil moisture was allowed to limit plant function via individual routes (via CO2 assimilation, stomatal conductance, or mesophyll conductance) as well as combinations of that. The simulations were conducted for a typical Mediterranean field site (Avignon, France; Garrigues et al., 2015) which provides 14 years of near-continuous measurements of soil moisture and atmospheric driving data. Daytime (8-16 hrs local time) data between April-September were used. This allowed a broad range of atmospheric and soil moisture/vegetation states to be explored. A number of crops and tree types were investigated in this way. We evaluated the effect of choice of beta-function for Mediterranean climates in relation to stomatal conductance, transpiration, photosynthesis, and leaf surface temperature. We also studied the implications for a range of widely used agro-/micro-meteorological indicators such as Bowen ratio and the omega decoupling coefficient (which quantifies the degree of the aerodynamic coupling between a vegetated surface and the atmospheric boundary layer; Jacobs and de Bruin, 1992); and applications (e.g. the use of surface temperature based water stress indices). Results showed that choice of 'beta' function has far-reaching consequences. For certain widely used 'beta'-models the predicted key fluxes and state variables, predominantly compared using kernel density functions, showed considerable 'clumping' around narrow data ranges. This will have implications for the strength of land-surface feedback predicted by these models, and for any agrometeorological applications they are used for. Recommendations as to the most suitable 'beta'-functions, and related parameter sets, for Mediterranean climates were made. References Garrigues, S. et al. (2015) Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties, Hydrol. Earth Syst. Sci., 19, 3109-3131; Jacobs, C. M. J. and de Bruin, H. A. R. (1992) The sensitivity of regional transpiration to land-surface characteristics: Significance of feedback, J. Climate, 5(7), 683-698; Verhoef, A. and Egea, G. (2014) Agriculture and Forest Meteorology, 191, 22-32; Egea, G., Verhoef, A., and Vidale, P. L. (2011) Agricultural and Forest Meteorology, 151, 1370-1384
Wang, Xiaoguang; Miller, Daniel S.; de Pablo, Juan J.; ...
2014-08-15
The spontaneous positioning of colloids on the surfaces of micrometer-sized liquid crystal (LC) droplets and their subsequent polymerization offers the basis of a general and facile method for the synthesis of patchy microparticles. The existence of multiple local energetic minima, however, can generate kinetic traps for colloids on the surfaces of the LC droplets and result in heterogeneous populations of patchy microparticles. To address this issue, in this paper it is demonstrated that adsorbate-driven switching of the internal configurations of LC droplets can be used to sweep colloids to a single location on the LC droplet surfaces, thus resulting inmore » the synthesis of homogeneous populations of patchy microparticles. The surface-driven switching of the LC can be triggered by addition of surfactant or salts, and permits the synthesis of dipolar microparticles as well as “Janus-like” microparticles. Finally, by using magnetic colloids, the utility of the approach is illustrated by synthesizing magnetically responsive patchy microdroplets of LC with either dipolar or quadrupolar symmetry that exhibit distinct optical responses upon application of an external magnetic field.« less
Virgin Olive Oil and Hypertension.
Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Jaramillo, Sara; Abia, Rocio; Muriana, Francisco Jg
2016-01-01
The incidence of high blood pressure (BP) along with other cardiovascular (CV) risk factors on human health has been studied for many years. These studies have proven a link between unhealthy dietary habits and sedentary lifestyle with the onset of hypertension, which is a hallmark of CV and cerebrovascular diseases. The Mediterranean diet, declared by the UNESCO as an Intangible Cultural Heritage since 2013, is rich in vegetables, legumes, fruits and virgin olive oil. Thanks to its many beneficial effects, including those with regard to lowering BP, the Mediterranean diet may help people from modern countries to achieve a lower occurrence of CV disease. Data from human and animal studies have shown that the consumption of virgin olive oil shares most of the beneficial effects of the Mediterranean diet. Virgin olive oil is the only edible fat that can be consumed as a natural fruit product with no additives or preservatives, and contains a unique constellation of bioactive entities, namely oleic acid and minor constituents. In this review, we summarize what is known about the effects of virgin olive oil on hypertension.
Vilén, Terhi; Fernandes, Paulo M
2011-09-01
Forest fires are an integral part of the ecology of the Mediterranean Basin; however, fire incidence has increased dramatically during the past decades and fire is expected to become more prevalent in the future due to climate change. Fuel modification by prescribed burning reduces the spread and intensity potential of subsequent wildfires. We used the most recently published data to calculate the average annual wildfire CO(2) emissions in France, Greece, Italy, Portugal and Spain following the IPCC guidelines. The effect of prescribed burning on emissions was calculated for four scenarios of prescribed burning effectiveness based on data from Portugal. Results show that prescribed burning could have a considerable effect on the carbon balance of the land use, land-use change and forestry (LULUCF) sector in Mediterranean countries. However, uncertainty in emission estimates remains large, and more accurate data is needed, especially regarding fuel load and fuel consumption in different vegetation types and fuel layers and the total area protected from wildfire per unit area treated by prescribed burning, i.e. the leverage of prescribed burning.
Pizarro-Tobías, Paloma; Fernández, Matilde; Niqui, José Luis; Solano, Jennifer; Duque, Estrella; Ramos, Juan-Luis; Roca, Amalia
2015-01-01
Forest fires pose a serious threat to countries in the Mediterranean basin, often razing large areas of land each year. After fires, soils are more likely to erode and resilience is inhibited in part by the toxic aromatic hydrocarbons produced during the combustion of cellulose and lignins. In this study, we explored the use of bioremediation and rhizoremediation techniques for soil restoration in a field-scale trial in a protected Mediterranean ecosystem after a controlled fire. Our bioremediation strategy combined the use of Pseudomonas putida strains, indigenous culturable microbes and annual grasses. After 8 months of monitoring soil quality parameters, including the removal of monoaromatic and polycyclic aromatic hydrocarbons as well as vegetation cover, we found that the site had returned to pre-fire status. Microbial population analysis revealed that fires induced changes in the indigenous microbiota and that rhizoremediation favours the recovery of soil microbiota in time. The results obtained in this study indicate that the rhizoremediation strategy could be presented as a viable and cost-effective alternative for the treatment of ecosystems affected by fires. PMID:25079309
Population genetics at three spatial scales of a rare sponge living in fragmented habitats
2010-01-01
Background Rare species have seldom been studied in marine habitats, mainly because it is difficult to formally assess the status of rare species, especially in patchy benthic organisms, for which samplings are often assumed to be incomplete and, thus, inappropriate for establishing the real abundance of the species. However, many marine benthic invertebrates can be considered rare, due to the fragmentation and rarity of suitable habitats. Consequently, studies on the genetic connectivity of rare species in fragmented habitats are basic for assessing their risk of extinction, especially in the context of increased habitat fragmentation by human activities. Sponges are suitable models for studying the intra- and inter-population genetic variation of rare invertebrates, as they produce lecitotrophic larvae and are often found in fragmented habitats. Results We investigated the genetic structure of a Mediterranean sponge, Scopalina lophyropoda (Schmidt), using the allelic size variation of seven specific microsatellite loci. The species can be classified as "rare" because of its strict habitat requirements, the low number of individuals per population, and the relatively small size of its distribution range. It also presents a strong patchy distribution, philopatric larval dispersal, and both sexual and asexual reproduction. Classical genetic-variance-based methods (AMOVA) and differentiation statistics revealed that the genetic diversity of S. lophyropoda was structured at the three spatial scales studied: within populations, between populations of a geographic region, and between isolated geographic regions, although some stochastic gene flow might occur among populations within a region. The genetic structure followed an isolation-by-distance pattern according to the Mantel test. However, despite philopatric larval dispersal and fission events in the species, no single population showed inbreeding, and the contribution of clonality to the population makeup was minor (only ca. 4%). Conclusions The structure of the S. lophyropoda populations at all spatial scales examined confirms the philopatric larval dispersal that has been reported. Asexual reproduction does not seem to play a relevant role in the populations. The heterozygote excess and the lack of inbreeding could be interpreted as a hitherto unknown outcrossing strategy of the species. The envisaged causes for this strategy are sperm dispersal, a strong selection against the mating of genetically related individuals to avoid inbreeding depression or high longevity of genets combined with stochastic recruitment events by larvae from other populations. It should be investigated whether this strategy could also explain the genetic diversity of many other patchy marine invertebrates whose populations remain healthy over time, despite their apparent rarity. PMID:20074333
De Filippis, Francesca; Pellegrini, Nicoletta; Vannini, Lucia; Jeffery, Ian B; La Storia, Antonietta; Laghi, Luca; Serrazanetti, Diana I; Di Cagno, Raffaella; Ferrocino, Ilario; Lazzi, Camilla; Turroni, Silvia; Cocolin, Luca; Brigidi, Patrizia; Neviani, Erasmo; Gobbetti, Marco; O'Toole, Paul W; Ercolini, Danilo
2016-11-01
Habitual diet plays a major role in shaping the composition of the gut microbiota, and also determines the repertoire of microbial metabolites that can influence the host. The typical Western diet corresponds to that of an omnivore; however, the Mediterranean diet (MD), common in the Western Mediterranean culture, is to date a nutritionally recommended dietary pattern that includes high-level consumption of cereals, fruit, vegetables and legumes. To investigate the potential benefits of the MD in this cross-sectional survey, we assessed the gut microbiota and metabolome in a cohort of Italian individuals in relation to their habitual diets. We retrieved daily dietary information and assessed gut microbiota and metabolome in 153 individuals habitually following omnivore, vegetarian or vegan diets. The majority of vegan and vegetarian subjects and 30% of omnivore subjects had a high adherence to the MD. We were able to stratify individuals according to both diet type and adherence to the MD on the basis of their dietary patterns and associated microbiota. We detected significant associations between consumption of vegetable-based diets and increased levels of faecal short-chain fatty acids, Prevotella and some fibre-degrading Firmicutes, whose role in human gut warrants further research. Conversely, we detected higher urinary trimethylamine oxide levels in individuals with lower adherence to the MD. High-level consumption of plant foodstuffs consistent with an MD is associated with beneficial microbiome-related metabolomic profiles in subjects ostensibly consuming a Western diet. This study was registered at clinical trials.gov as NCT02118857. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
What evidence for the benefits of '5-a-day', a Mediterranean diet and sodium restriction on health?
2015-01-01
Guidelines for healthcare professionals encourage the provision of dietary advice to promote healthy eating, especially to patients at risk of chronic disease.1 Yet the evidence base for dietary interventions relies heavily on epidemiological studies, which are subject to the challenges associated with observational research. Such problems include difficulties of assessing and measuring outcomes, misclassification, confounding and establishing causation. This reliance on epidemiological evidence may reflect the difficulty and cost of carrying out large-scale long-term randomised controlled studies of diet.2 In addition, there is a dearth of organisations willing to fund such research. Recent publications have questioned the '5-a-day' advice for fruit and vegetable consumption and population-level attempts to lower salt consumption.3,4 Studies of lifestyle advice are widely reported in the media, which may lead to public confusion about dietary advice when conclusions differ. Some researchers have urged a move from assessing how single foods or nutrients affect risk factors, to a consideration of the overall diet pattern, as this may overcome the risk of confounding the effect of one food type by others in the diet.5 The Mediterranean diet pattern is one of the most studied, since its identification in the late 1970s. Here, we provide an update of evidence for three aspects of dietary recommendations that feature regularly in the media-fruit and vegetable intake, salt reduction and the Mediterranean diet. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Kondraskov, Paulina; Schütz, Nicole; Schüßler, Christina; de Sequeira, Miguel Menezes; Guerra, Arnoldo Santos; Caujapé-Castells, Juli; Jaén-Molina, Ruth; Marrero-Rodríguez, Águedo; Koch, Marcus A.; Linder, Peter; Kovar-Eder, Johanna; Thiv, Mike
2015-01-01
The Macaronesian laurel forests (MLF) are dominated by trees with a laurophyll habit comparable to evergreen humid forests which were scattered across Europe and the Mediterranean in the Paleogene and Neogene. Therefore, MLF are traditionally regarded as an old, 'Tertiary relict' vegetation type. Here we address the question if key taxa of the MLF are relictual. We evaluated the relict hypothesis consulting fossil data and analyses based on molecular phylogenies of 18 representative species. For molecular dating we used the program BEAST, for ancestral trait reconstructions BayesTraits and Lagrange to infer ancestral areas. Our molecular dating showed that the origins of four species date back to the Upper Miocene while 14 originated in the Plio-Pleistocene. This coincides with the decline of fossil laurophyllous elements in Europe since the middle Miocene. Ancestral trait and area reconstructions indicate that MLF evolved partly from pre-adapted taxa from the Mediterranean, Macaronesia and the tropics. According to the fossil record laurophyllous taxa existed in Macaronesia since the Plio- and Pleistocene. MLF are composed of species with a heterogeneous origin. The taxa dated to the Pleistocene are likely not 'Tertiary relicts'. Some species may be interpreted as relictual. In this case, the establishment of most species in the Plio-Pleistocene suggests that there was a massive species turnover before this time. Alternatively, MLF were largely newly assembled through global recruitment rather than surviving as relicts of a once more widespread vegetation. This process may have possibly been triggered by the intensification of the trade winds at the end of the Pliocene as indicated by proxy data. PMID:26173113
Fire regime characterization in Mediterranean ecosystems of Southern Italy
NASA Astrophysics Data System (ADS)
Lanorte, A.; Lasaponara, R.
2009-04-01
This paper addresses the wildfire regime in Mediterranean ecosystems of Southern Italy. Fire regimes refer to average fire conditions (including fire size, fire density, fire frequency, fire seasonality, fire intensity, fire severity, fire thresholds, etc.) occurring over a long period of time. Information on spatial pattern of forest fire locations is a key point in the study of the dynamics of fire disturbance, and allows us to improve the knowledge of past and current role of fire. Historical evidence clearly shows what did happen and this can fruitfully help to understand what is happening and what could happen in the next future. Mapping fire regimes is very challenging, because fire ocurrence features are the expression of the interactions between climate, fire, vegetation, topography, social factors. The main objective of this work is to provide a comprehensive characterization of the fire regime in Italy based on a recently updated national wildfire database. Fire data were obtained from the Italian National Forestry Service. This national database is comprised of information contained in individual fire reports completed for every fire that occurs on public lands in the Italian peninsula. Complete data were only available for 1996-2006 at the time we accessed the database, which determined the years we analysed. The primary fire history variables that we reported were number of fires, area burned, burning time and duration, and fire size (average size of individual fires) The wildfire records (wildfire area, location, time, vegetation) were analysed with other environmental (fuel availability and type), topographic features, and meteorological/climatological data. Results of our analysis could help better understand the different factors on the wildfire regime in Mediterranean ecosystems of Southern Italy.
Least Disturbed Condition for European Mediterranean rivers.
Feio, M J; Aguiar, F C; Almeida, S F P; Ferreira, J; Ferreira, M T; Elias, C; Serra, S R Q; Buffagni, A; Cambra, J; Chauvin, C; Delmas, F; Dörflinger, G; Erba, S; Flor, N; Ferréol, M; Germ, M; Mancini, L; Manolaki, P; Marcheggiani, S; Minciardi, M R; Munné, A; Papastergiadou, E; Prat, N; Puccinelli, C; Rosebery, J; Sabater, S; Ciadamidaro, S; Tornés, E; Tziortzis, I; Urbanič, G; Vieira, C
2014-04-01
The present report describes a three-step approach that was used to characterize and define thresholds for the Least Disturbed Condition in Mediterranean streams of four different types, regarding organic pollution and nutrients, hydrological and morphological alterations, and land use. For this purpose, a common database composed of national reference sites (929 records) from seven countries, sampled for invertebrates, diatoms and macrophytes was used. The analyses of reference sites showed that small (catchment <100 km(2)) siliceous and non-siliceous streams were mainly affected by channelization, bank alteration and hydropeaking. Medium-sized siliceous rivers were the most affected by stressors: 25-43% of the samples showed at least slight alterations regarding channelization, connectivity, upstream dam influence, hydropeaking and degradation of riparian vegetation. Temporary streams were the least affected by hydromorphological changes, but they were nevertheless affected by alterations in riparian vegetation. There were no major differences between all permanent stream types regarding water quality, but temporary streams showed lower values for oxygenation (DO) and wider ranges for other variables, such as nitrates. A lower threshold value for DO (60%) was determined for this stream type and can be attributed to the streams' natural characteristics. For all other river types, common limits were found for the remaining variables (ammonium, nitrate, phosphate, total P, % of artificial areas, % of intensive and extensive agriculture, % of semi-natural areas in the catchment). These values were then used to select the list of reference sites. The biological communities were characterized, revealing the existence of nine groups of Mediterranean invertebrate communities, six for diatoms and five for macrophytes: each group was characterized by specific indicator taxa that highlighted the differences between groups. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, A.D.; Webb, K.L.
1984-03-01
Annual acetylene reduction rates associated with intertidal communities in a chronically oil polluted Virgina salt marsh were compared to rates measured in an undisturbed marsh. Chronic oil treatment resulted in visible damage to the higher plants of the Spartina alterniflora zones; however, vegetation-associated acetylene reduction was not different from the untreated control. Sediment rates generally were affected little by oil application, except during the summer when rates in the median tidal elevation zones were considerably higher than those of the control. Acetylene reduction occurred in all transects, each of which extended from upper mudflat to the Spartina patens zone. Intertidalmore » sediment acetylene reduction was patchy, both spatially and seasonally. Estimated rates were greatest near the surface; free-living bacterial N/sub 2/ fixation activity averaged 2.23 mg N per m/sup 2/ per d (range = undetectable to 365 mg N per m/sup 2/ per d) in the untreated and 3.17 mg N per m/sup 2/ per d (range = undetectable to 564 mg N per m/sup 2/ per d) in the oil-treated marsh during the year. Vegetation-associated N/sub 2/ fixation activity yielded highest overall mean rates (156 mg N per M/sub 2/ per d). The seasonal pattern of sediment and vegetation-associated fixation may be controlled by temperature and availability of oxidizable substrates. 39 references, 2 figures, 5 tables.« less
Dermoscopic clues to distinguish trichotillomania from patchy alopecia areata.
Abraham, Leonardo Spagnol; Torres, Fernanda Nogueira; Azulay-Abulafia, Luna
2010-01-01
Trichotillomania and patchy alopecia areata have similar clinical and dermoscopic features. In trichotillomania, dermoscopy shows decreased hair density, short vellus hair, broken hairs with different shaft lengths, coiled hairs, short vellus hair, trichoptilosis, sparse yellow dots, which may or may not contain black dots and no exclamation mark hairs. In the case of patchy alopecia and broken hairs, the absence of exclamation mark hairs suggests a diagnosis of trichotillomania. On the other hand, the finding of yellow dots without black dots does not exclude it.
Tur, Josep A; Romaguera, Dora; Pons, Antoni
2005-05-01
To assess the dietary habits of Balearic Islands' consumers who are successful in meeting current nutritional recommendations, to find clues for the development of future food-based dietary guidelines (FBDG) that would be relevant to this population. Cross-sectional nutritional survey carried out in the Balearic Islands between 1999 and 2000. Dietary habits were assessed by means of 24-hour recall (two non-consecutive days: warm and cold season) and a food-frequency questionnaire in a random sample (n=1200, aged 16-65 years) living in private households. Differences in percentage of compliers with the intermediate nutritional objectives for the Spanish population and differences in food consumption patterns between genders and between high (above the upper quartile of intake) and low (below the lower quartile of intake) consumers of fat, saturated fatty acids (SFA), fibre, and fruit and vegetables were analysed. Gender differences were observed in nutrient and energy intakes, as well as in attainment of the recommendations. Less than 25% of the population reached the intermediate nutritional recommendations for iodine, fruit, carbohydrates, SFA, fibre and vegetables. Low fat/SFA and high fruit and vegetables/fibre consumers kept a diet in line with the traditional Balearic diet and prevailing dietary pyramids, which ensured better compliance with the nutritional goals. The intermediate nutritional objectives for the Spanish population could be achieved through maintenance of the traditional Balearic diet, a Mediterranean-type diet in the Balearic population. Therefore, this dietary model could be used to develop FBDG relevant to this population.
Climate and vegetation change during the Holocene in southern Iberia
NASA Astrophysics Data System (ADS)
Jimenez-Moreno, G.; Anderson, R. S.; Ramos Román, M. J.; García-Alix, A.; Jiménez-Espejo, F. J. J.; Hernández-Corbalán, M. D.; Toney, J. L.; Mesa-Fernández, J. M.; Camuera-Bidaurreta, J.; Carrión, J. S.
2015-12-01
Detailed pollen analysis has been carried out on several sediment cores taken from high-elevation alpine lakes and bog areas located in Sierra Nevada and coastal and offshore environments from southern Spain. The earliest part of the record, from 8200 to about 7000 cal yr BP, is characterized by the highest abundance of arboreal pollen and Pediastrum, indicating the warmest and wettest conditions in the area at that time. The pollen records show a progressive aridification trend since 7000 cal yr BP through a decrease in forest species and the increase in xerophytes. The progressive aridification is punctuated by millennial-scale periodically enhanced droughts that coincide in timing and duration with well-known arid events in the Mediterranean and other areas. A relatively humid period occurred during the Roman Humid Period. The Medieval Climate Anomaly (900-1300 AD) was characterized by a wet phase at first, coinciding with a solar minimum, and a later arid phase, coinciding with the Medieval solar Maximum and a positive NAO. The Little Ice Age (1300-1850 AD) was markedly wetter than earlier, as shown by the increase in tree pollen, coinciding with a phase of negative NAO and the Maunder solar minimum. This study shows that vegetation and climate in Western Mediterranean are modulated by solar and atmospheric factors. Several vegetation changes are observed in the last centuries, which probably indicate the high-impact of humans in the Sierra Nevada, with pasturing leading to nutrient enrichment and eutrophication of the wetlands, Olea cultivation at lower elevations and Pinus reforestation.
Phenomapping of rangelands in South Africa using time series of RapidEye data
NASA Astrophysics Data System (ADS)
Parplies, André; Dubovyk, Olena; Tewes, Andreas; Mund, Jan-Peter; Schellberg, Jürgen
2016-12-01
Phenomapping is an approach which allows the derivation of spatial patterns of vegetation phenology and rangeland productivity based on time series of vegetation indices. In our study, we propose a new spatial mapping approach which combines phenometrics derived from high resolution (HR) satellite time series with spatial logistic regression modeling to discriminate land management systems in rangelands. From the RapidEye time series for selected rangelands in South Africa, we calculated bi-weekly noise reduced Normalized Difference Vegetation Index (NDVI) images. For the growing season of 20112012, we further derived principal phenology metrics such as start, end and length of growing season and related phenological variables such as amplitude, left derivative and small integral of the NDVI curve. We then mapped these phenometrics across two different tenure systems, communal and commercial, at the very detailed spatial resolution of 5 m. The result of a binary logistic regression (BLR) has shown that the amplitude and the left derivative of the NDVI curve were statistically significant. These indicators are useful to discriminate commercial from communal rangeland systems. We conclude that phenomapping combined with spatial modeling is a powerful tool that allows efficient aggregation of phenology and productivity metrics for spatially explicit analysis of the relationships of crop phenology with site conditions and management. This approach has particular potential for disaggregated and patchy environments such as in farming systems in semi-arid South Africa, where phenology varies considerably among and within years. Further, we see a strong perspective for phenomapping to support spatially explicit modelling of vegetation.
Sankey, Joel B.; Ravi, Sujith; Wallace, Cynthia S.A.; Webb, Robert H.; Huxman, Travis E.
2012-01-01
Woody plant encroachment, a worldwide phenomenon, is a major driver of land degradation in desert grasslands. Woody plant encroachment by shrub functional types ultimately leads to the formation of a patchy landscape with fertile shrub patches interspaced with nutrient-depleted bare soil patches. This is considered to be an irreversible process of land and soil degradation. Recent studies have indicated that in the early stages of shrub encroachment, when there is sufficient herbaceous connectivity, fires (prescribed or natural) might provide some reversibility to the shrub encroachment process by negatively affecting shrub demography and homogenizing soil resources across patches within weeks to months after burning. A comprehensive understanding of longer term changes in microtopography and spatial patterning of soil properties following fire in shrub-encroached grasslands is desirable. Here, we investigate the changes in microtopography with LiDAR (light detection and ranging), vegetation recovery, and spatial pattering of soil properties in replicated burned, clipped, and control areas in a shrub-grass transition zone in the northern Chihuahuan Desert four years after prescribed fire or clipping. Results indicate a greater homogeneity in soil, microtopography, and vegetation patterning on burned relative to clipped and control treatments. Findings provide further evidence that disturbance by prescribed fire may allow for reversal of the shrub encroachment process, if the event occurs in the early stages of the vegetation shift. Improved understanding of longer-term effects of fire and associated changes in soil patterning can inform the use and role of fire in the context of changing disturbance regimes and climate.
NASA Astrophysics Data System (ADS)
Cartier, V.; Claret, C.; Garnier, R.; Fayolle, S.; Franquet, E.
2010-03-01
The complexity of the relationships between environmental factors and organisms can be revealed by sampling designs which consider the contribution to variability of different temporal and spatial scales, compared to total variability. From a management perspective, a multi-scale approach can lead to time-saving. Identifying environmental patterns that help maintain patchy distribution is fundamental in studying coastal lagoons, transition zones between continental and marine waters characterised by great environmental variability on spatial and temporal scales. They often present organic enrichment inducing decreased species richness and increased densities of opportunist species like C hironomus salinarius, a common species that tends to swarm and thus constitutes a nuisance for human populations. This species is dominant in the Bolmon lagoon, a French Mediterranean coastal lagoon under eutrophication. Our objective was to quantify variability due to both spatial and temporal scales and identify the contribution of different environmental factors to this variability. The population of C. salinarius was sampled from June 2007 to June 2008 every two months at 12 sites located in two areas of the Bolmon lagoon, at two different depths, with three sites per area-depth combination. Environmental factors (temperature, dissolved oxygen both in sediment and under water surface, sediment organic matter content and grain size) and microbial activities (i.e. hydrolase activities) were also considered as explanatory factors of chironomid densities and distribution. ANOVA analysis reveals significant spatial differences regarding the distribution of chironomid larvae for the area and the depth scales and their interaction. The spatial effect is also revealed for dissolved oxygen (water), salinity and fine particles (area scale), and for water column depth. All factors but water column depth show a temporal effect. Spearman's correlations highlight the seasonal effect (temperature, dissolved oxygen in sediment and water) as well as the effect of microbial activities on chironomid larvae. Our results show that a multi-scale approach identifies patchy distribution, even when there is relative environmental homogeneity.
Adherence to the Mediterranean diet and nasopharyngeal cancer risk in Italy.
Turati, Federica; Bravi, Francesca; Polesel, Jerry; Bosetti, Cristina; Negri, Eva; Garavello, Werner; Taborelli, Martina; Serraino, Diego; Libra, Massimo; Montella, Maurizio; Decarli, Adriano; Ferraroni, Monica; La Vecchia, Carlo
2017-02-01
Few studies investigated the role of diet on nasopharyngeal cancer (NPC) risk in non-endemic areas. The aim of this study was to assess the association between adherence to the traditional Mediterranean diet and NPC risk in a southern European low-risk population. We conducted a hospital-based case-control study in Italy, including 198 histologically confirmed NPC cases and 594 matched controls. Dietary habits were collected by means of a validated food-frequency questionnaire, including 83 foods, food groups, or beverages. Adherence to the traditional Mediterranean diet was assessed through a Mediterranean Diet Score (MDS), based on nine dietary components characterizing this dietary profile, i.e., high intake of vegetables, fruits and nuts, cereals, legumes, and fish; low intake of dairy products and meat; high monounsaturated to saturated fatty acid ratio; and moderate alcohol intake. We estimated odds ratios (ORs) of NPC, and the corresponding 95% confidence intervals (CIs), for increasing MDS (i.e., increasing adherence) using multiple logistic regression models, adjusted for major confounding factors. As compared to MDS ≤ 4, the ORs of NPC were 0.83 (95% CI: 0.54-1.25) for MDS of 5 and 0.66 (95% CI: 0.44-0.99) for MDS ≥ 6, with a significant trend of decreasing risk (p 0.043). The corresponding population attributable fraction was 22%, indicating that 22% of NPC cases in this population would be avoided by shifting all subjects to a score ≥6. Our study supports a favorable role of the Mediterranean diet on NPC risk.
Mediterranean diet adherence rates in Sicily, southern Italy.
Grosso, Giuseppe; Marventano, Stefano; Giorgianni, Gabriele; Raciti, Teodoro; Galvano, Fabio; Mistretta, Antonio
2014-09-01
To assess adherence to the Mediterranean diet and nutrient intakes in a population of Sicily, southern Italy and to evaluate possible determinants, particularly socio-cultural and lifestyle factors. Cross-sectional. Urban and rural areas of eastern Sicily. Between May 2009 and December 2010, 3090 adults were randomly recruited through the collaboration of fourteen general practitioners. Adherence to the Mediterranean diet was measured by the MedDietScore. Nutrient intakes were assessed through the 24 h recall of the previous day's dietary intake. Rural participants were barely more adherent to the Mediterranean diet than their urban counterparts (mean scores were 27·8 and 27·2, respectively, P = 0·037). The MedDietScore was correlated with intakes of MUFA, fibre and vitamin C, as well as with consumption of non-refined cereals, vegetables, fruit, meat, dairy products, alcohol and nuts. Regression analysis revealed that older and more educated people were more likely to be in the highest tertile of MedDietScore (OR = 1.90; 95 % CI 1·39, 2·59 and OR = 1·29; 95 % CI 1·05, 1·58, respectively). A significant difference in quantity (moderate) and quality (red wine and beer) of alcohol was found according to adherence to the Mediterranean diet. Finally, more active participants were 1·5 times more likely to form part of the high-adherence group. A slow but concrete moving away from traditional patterns has been observed in younger people and low educated people. Public health interventions should focus on these target populations in order to improve the quality of their diet.
Carrington, M.E.; Keeley, J.E.
1999-01-01
I Both fire regimes and the conditions under which fires occur vary widely. Abiotic conditions (such as climate) in combination with fire season, frequency and intensity could influence vegetation responses to fire. A variety of adaptations facilitate post-fire recruitment in mediterranean climate ecosystems, but responses of other communities are less well known. We evaluated the importance of climate by comparing sites with mediterranean and subtropical climates. 2 We used paired burned and mature sites in chamise chaparral, mixed chaparral and coastal sage scrub (California), and rosemary scrub, sand pine scrub and sand-hill (Florida), to test whether (i) patterns of pre-fire and post-fire seedling recruitment are more similar between communities within a region than between regions, and (ii) post-fire stimulation of seedling establishment is greater in regions with marked fire-induced contrasts in abiotic site characteristics. 3 Post-fire seedling densities were more similar among sites within climatic regions than between regions. Both seedling densities and proportions of species represented by seedlings after fires were generally higher in California. 4 The only site characteristic showing a pre-fire-post-fire contrast was percentage open canopy, and the effect was greater in California than in Florida. Soil properties were unaffected by fire. 5 Mediterranean climate ecosystems in other regions have nutrient-poor soils similar to our subtropical Florida sites, but show post-fire seedling recruitment patterns more similar to the nutrient-rich sites in California. Climate therefore appears to play a more major role than soil characteristics.
Understanding the North Atlantic Oscillation and Its Effects in the Mediterranean
NASA Astrophysics Data System (ADS)
Trigo, Ricardo M.; Serrano, Sergio M. Vicente
2010-11-01
ESF-MedCLIVAR Workshop on Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean; Zaragoza, Spain, 24-27 May 2010; According to the latest Intergovernmental Panel on Climate Change report, the Mediterranean basin represents one of the most important hot spots of climate change in the world, with recent trends toward a hotter and drier climate being related to changes in atmospheric circulation patterns. Among these patterns the North Atlantic Oscillation (NAO) is the most important one and the only one that exerts a clear influence throughout the year, although with stronger intensity and extension during winter. In the framework of the European Science Foundation's Mediterranean Climate Variability and Predictability (MedCLIVAR) program (http://www.medclivar.eu/), a thematic workshop devoted to the hydrological, socioeconomic, and ecological impacts of the NAO in the Mediterranean area was held in Spain. The main objective of this 3-day workshop was to foster interaction in this increasingly interdisciplinary topic, in particular, among climatologists, hydrologists, geographers, agronomists, biologists, and other scientists. The workshop was attended by 62 participants from 15 different countries and included a mix of senior scientists and graduate students. The workshop was divided into five sessions focusing on (1) natural hazards, including droughts, severe precipitations, floods, heat waves, and cold spells; (2) vegetation activity and agriculture production; (3) natural ecosystems and environment, including forest dynamics, fisheries, dynamics of animal populations, and air quality; (4) geomorphology, including landslides and debris flows, erosivity mechanisms, and surface erosion processes; and (5) renewable energies production, including hydraulic, eolic, and solar.
Vegetables, unsaturated fats, moderate alcohol intake, and mild cognitive impairment.
Roberts, Rosebud O; Geda, Yonas E; Cerhan, James R; Knopman, David S; Cha, Ruth H; Christianson, Teresa J H; Pankratz, V Shane; Ivnik, Robert J; Boeve, Bradley F; O'Connor, Helen M; Petersen, Ronald C
2010-01-01
To investigate associations of the Mediterranean diet (MeDi) components and the MeDi score with mild cognitive impairment (MCI). Participants (aged 70-89 years) were clinically evaluated to assess MCI and dementia, and completed a 128-item food frequency questionnaire. 163 of 1,233 nondemented persons had MCI. The odds ratio of MCI was reduced for high vegetable intake [0.66 (95% CI = 0.44-0.99), p = 0.05] and for high mono- plus polyunsaturated fatty acid to saturated fatty acid ratio [0.52 (95% CI = 0.33-0.81), p = 0.007], adjusted for confounders. The risk of incident MCI or dementia was reduced in subjects with a high MeDi score [hazard ratio = 0.75 (95% CI = 0.46-1.21), p = 0.24]. Vegetables, unsaturated fats, and a high MeDi score may be beneficial to cognitive function.
NASA Astrophysics Data System (ADS)
Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang
2016-04-01
Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a large development that comprised the improved representation of Mediterranean crops (2). References: (1) Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer, W. (2015) : Mediterranean irrigation under climate change : More efficient irrigation needed to compensate increases in irrigation water requirements. HESSD 12, 8459-8504. (2) Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer, W. (2015) : Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model. Geosci. Model Dev., 8, 3545-3561, 2015.
Ye, Y; Zhao, Y; Gong, Y; Zhang, X; Caulloo, S; Zhang, B; Cai, Z; Yang, J; McElwee, K J; Zhang, X
2013-12-01
Non-scaring patchy alopecia associated with systematic lupus erythematosus (SLE) is sometimes mis-diagnosed as alopecia areata (AA). Our aim was to differentiate non-scarring patchy SLE alopecia features from patchy AA. Clinical, dermatoscopic and histopathological data from 21 SLE patients with patchy alopecia were compared with data from 21 patients with patchy AA. Incomplete alopecia was common in SLE alopecia patches, while AA patches exhibited complete alopecia. Exclamation-mark hairs, black dots, broken hair and yellow dots were common to AA, while hair shaft thinning and hypopigmentation, angiotelectasis, peripilar sign, perifollicular red dots, white dots and honeycomb pigment patterns were more common in SLE. Interfollicular polymorphous vessels were the most common angiotelectasis presentation in the SLE alopecia patches, but interfollicular arborizing vessels were significantly more common in non-hair-loss-affected SLE regions and in AA hair-loss regions. During follow-up, increased vellus hair was the earliest feature that emerged after treatment both in SLE and AA, while the earliest feature that disappeared was hair shaft hypopigmentation in SLE and broken hair in AA. After treatment, no SLE patients had relapse of alopecia, while 41.7% of AA patients did. Distinct clinical, dermatoscopic and histopathological features were found in SLE-associated alopecia regions, which were different from those of AA. Serological autoantibody tests are of value to confirm the differential diagnosis. Local angiotelectasis and vasculitis close to hair follicles may be involved in the pathogenesis of alopecia in SLE.
Arnold, Sarah E J; Chittka, Lars
2012-07-01
Patchy illumination presents foraging animals with a challenge, as the targets being sought may appear to vary in colour depending on the illumination, compromising target identification. We sought to explore how the bumblebee Bombus terrestris copes with tasks involving flower colour discrimination under patchy illumination. Light patches varied between unobscured daylight and leaf-shade, as a bee might encounter in and around woodland. Using a flight arena and coloured filters, as well as one or two different colours of artificial flower, we quantified how bees chose to forage when presented with foraging tasks under patchy illumination. Bees were better at discriminating a pair of similar colours under simulated unobscured daylight illumination than when foraging under leaf-shade illumination. Accordingly, we found that bees with prior experience of simulated daylight but not leaf-shade illumination initially preferred to forage in simulated daylight when all artificial flowers contained rewards as well as when only one colour was rewarding, whereas bees with prior experience of both illuminants did not exhibit this preference. Bees also switched between illuminants less than expected by chance. This means that bees prefer illumination conditions with which they are familiar, and in which rewarding flower colours are easily distinguishable from unrewarding ones. Under patchy illumination, colour discrimination performance was substantially poorer than in homogenous light. The bees' abilities at coping with patchy light may therefore impact on foraging behaviour in the wild, particularly in woodlands, where illumination can change over short spatial scales.
Patchy particles made by colloidal fusion
NASA Astrophysics Data System (ADS)
Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano
2017-10-01
Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or `patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.
Effect of grazing on vegetation and soil of the heuweltjieveld in the Succulent Karoo, South Africa
NASA Astrophysics Data System (ADS)
Schmiedel, Ute; Röwer, Inga Ute; Luther-Mosebach, Jona; Dengler, Jürgen; Oldeland, Jens; Gröngröft, Alexander
2016-11-01
We asked how historical and recent grazing intensity affect the patchy landscape of the heuweltjieveld in the semi-arid biodiversity hotspot Succulent Karoo. The study was carried out on a communal farmland 80 km south-west of Springbok, in Namaqualand. Heuweltjies are roughly circular earth mounds that are regularly distributed in this landscape. We sampled plant species and life-form composition, diversity measures, habitat and soil variables in 100 m2 plots, placed in three visually distinguishable heuweltjie zones (centre, fringe, and matrix) and distributed across grazing camps with different recent and historic grazing intensities. Differences between heuweltjie zones were assessed with ANOVAs and multiple linear regressions. The effect of past and recent grazing intensity on soil and plant variables was analysed by Generalized Linear Models for each heuweltjie zone separately. The three zones constituted clearly distinguishable units in terms of vegetation and soil characteristics. Soil pH and cover of annual plants increased from matrix to centres, while total vegetation cover, species richness and perennial plant cover decreased in the same direction. Historic (pre-2000) grazing patterns had the strongest effects on fringes, showing the strongest soil and vegetation-related signs of overutilization with increased stocking density. Centres showed signs of overutilization irrespective of the stocking density. The much shorter exposure to recent grazing pattern (post-2000), which was nearly inverse to the historic grazing pattern, showed increase of vegetation cover (centres) and species richness (matrix) with recent grazing intensity. We interpret these effects as still visible responses of the lower grazing intensity in these camps during the historic period. No recovery under recent grazing was observed at any of the zones. We conclude that irrespective of their conducive growing conditions, once transformed to a disturbed state, heuweltjie centres recover slowly, whereas the less impacted soil and vegetation of fringes are more responsive than centres and matrix.
Cost Benefit Analysis for Turkish Navy.
1987-12-01
must be added to the irreplaceable human eye -brain combination, can be carried by ships or patrol aircraft. In the silent world below the surface...with relatively low banks are of a brownish grey color wherever they are not covered by the maquis and other species of Mediterranean vegetation. The...respectively and a dry dock for small vessels of about 5()() tonN. V2V." ." . -. ,",.’,’. v
Towards understanding resprouting at the global scale.
Pausas, Juli G; Pratt, R Brandon; Keeley, Jon E; Jacobsen, Anna L; Ramirez, Aaron R; Vilagrosa, Alberto; Paula, Susana; Kaneakua-Pia, Iolana N; Davis, Stephen D
2016-02-01
Understanding and predicting plant response to disturbance is of paramount importance in our changing world. Resprouting ability is often considered a simple qualitative trait and used in many ecological studies. Our aim is to show some of the complexities of resprouting while highlighting cautions that need be taken in using resprouting ability to predict vegetation responses across disturbance types and biomes. There are marked differences in resprouting depending on the disturbance type, and fire is often the most severe disturbance because it includes both defoliation and lethal temperatures. In the Mediterranean biome, there are differences in functional strategies to cope with water deficit between resprouters (dehydration avoiders) and nonresprouters (dehydration tolerators); however, there is little research to unambiguously extrapolate these results to other biomes. Furthermore, predictions of vegetation responses to changes in disturbance regimes require consideration not only of resprouting, but also other relevant traits (e.g. seeding, bark thickness) and the different correlations among traits observed in different biomes; models lacking these details would behave poorly at the global scale. Overall, the lessons learned from a given disturbance regime and biome (e.g. crown-fire Mediterranean ecosystems) can guide research in other ecosystems but should not be extrapolated at the global scale. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Ginocchio, Rosanna; León-Lobos, Pedro; Arellano, Eduardo Carlos; Anic, Vinka; Ovalle, Juan Francisco; Baker, Alan John Martin
2017-05-01
Abandoned tailing dumps (ATDs) offer an opportunity to identify the main physicochemical filters that determine colonization of vegetation in solid mine wastes. The current study determined the soil physicochemical factors that explain the compositional variation of pioneer vegetal species on ATDs from surrounding areas in semiarid Mediterranean-climate type ecosystems of north-central Chile (Coquimbo Region). Geobotanical surveys-including physicochemical parameters of substrates (0-20 cm depth), plant richness, and coverage of plant species-were performed on 73 ATDs and surrounding areas. A total of 112 plant species were identified from which endemic/native species (67%) were more abundant than exotic species (33%) on ATDs. The distribution of sampling sites and plant species in canonical correspondence analysis (CCA) ordination diagrams indicated a gradual and progressive variation in species composition and abundance from surrounding areas to ATDs because of variations in total Cu concentration (1.3%) and the percentage of soil particles <2 μm (1.8%). According to the CCA, there were 10 plant species with greater abundance on sites with high total Cu concentrations and fine-textured substrates, which could be useful for developing plant-based stabilization programs of ATDs in semiarid Mediterranean-climate type ecosystems of north-central Chile.
Biogenic emissions from Pinus halepensis: a typical species of the Mediterranean area
NASA Astrophysics Data System (ADS)
Simon, V.; Dumergues, L.; Solignac, G.; Torres, L.
2005-03-01
Volatile organic compounds (VOCs) emissions by vegetation present in the Mediterranean area are not well known. They may contribute with anthropogenic VOC emissions to the tropospheric ozone formation that reaches important level in the European Mediterranean region. The present work, carried out as part of the European ESCOMPTE project «fiEld experimentS to COnstrain Models of atmospheric Pollution and Transport of Emissions», adds a new contribution to the inventory of the main natural hydrocarbons sources likely to participate in the ozone production. The corresponding measurement campaign was conducted in La Barben, a site close to Marseilles (France), with the aim to quantify the terpenic emission pattern and the behaviour of Pinus halepensis, an important Mediterranean species slightly studied. The determination of biogenic emissions from P. halepensis was done by the enclosure of an intact branch in a Teflon cuvette. Main emitted monoterpenes were β trans-ocimene and linalool. The total monoterpenic emission rates thus recorded were found to reach maximum values around 30 μg g dry weight-1 h -1. The normalized emission rates calculated at 30 °C and 1000 μmol m -2 s -1 with Guenther's algorithm was 14.76, 8.65 and 4.05 μg g dry weight-1 h -1, respectively, for the total monoterpenes, β trans-ocimene and linalool.
Giacobbe, Maria Grazia; Riccardi, Elena; Bruno, Milena; Pigozzi, Silvia; Mariani, Maria Antonietta; Stacca, Daniela; Caddeo, Tiziana; Farina, Pasqualina; Padedda, Bachisio Mario; Pulina, Silvia; Sechi, Nicola; Milandri, Anna
2017-01-01
Harmful algal blooms represent a severe issue worldwide. They affect ecosystem functions and related services and goods, with consequences on human health and socio-economic activities. This study reports new data on paralytic shellfish toxins (PSTs) from Sardinia and Sicily (Italy), the largest Mediterranean islands where toxic events, mainly caused by Alexandrium species (Dinophyceae), have been ascertained in mussel farms since the 2000s. The toxicity of the A. minutum, A. tamarense and A. pacificum strains, established from the isolation of vegetative cells and resting cysts, was determined by high performance liquid chromatography (HPLC). The analyses indicated the highest toxicity for A. pacificum strains (total PSTs up to 17.811 fmol cell−1). The PSTs were also assessed in a strain of A. tamarense. The results encourage further investigation to increase the knowledge of toxic species still debated in the Mediterranean. This study also reports new data on microcystins (MCs) and β-N-methylamino-l-alanine (BMAA) from a Sardinian artificial lake (Lake Bidighinzu). The presence of MCs and BMAA was assessed in natural samples and in cell cultures by enzyme-linked immunosorbent assay (ELISA). BMAA positives were found in all the analysed samples with a maximum of 17.84 µg L−1. The obtained results added further information on cyanotoxins in Mediterranean reservoirs, particularly BMAA, which have not yet been thoroughly investigated. PMID:29144421
"Towards an even healthier Mediterranean diet".
Estruch, R; Salas-Salvadó, J
2013-12-01
Dietary guidelines to promote good health are usually based on foods, nutrients, and dietary patterns predictive of chronic disease risk in epidemiologic studies. However, sound nutritional recommendations for cardiovascular prevention should be based on the results of large randomized clinical trials with "hard" end-points as the main outcome. Such evidence has been obtained for the Mediterranean diet from the PREDIMED (Prevención con Dieta Mediterránea) trial and the Lyon Heart Study. The traditional Mediterranean diet was that found in olive growing areas of Crete, Greece, and Southern Italy in the late 1950s. Their major characteristics include: a) a high consumption of cereals, legumes, nuts, vegetables, and fruits; b) a relatively high-fat consumption, mostly provided by olive oil; c) moderate to high fish consumption; d) poultry and dairy products consumed in moderate to small amounts; e) low consumption of red meats, and meat products; and f) moderate alcohol intake, usually in the form of red wine. However, these protective effects of the traditional Mediterranean diet may be even greater if we upgrade the health effects of this dietary pattern changing the common olive oil used for extra-virgin olive oil, increasing the consumption of nuts, fatty fish and whole grain cereals, reducing sodium intake, and maintaining a moderate consumption of wine with meals. © 2013 Elsevier B.V. All rights reserved.
Lugliè, Antonella; Giacobbe, Maria Grazia; Riccardi, Elena; Bruno, Milena; Pigozzi, Silvia; Mariani, Maria Antonietta; Satta, Cecilia Teodora; Stacca, Daniela; Bazzoni, Anna Maria; Caddeo, Tiziana; Farina, Pasqualina; Padedda, Bachisio Mario; Pulina, Silvia; Sechi, Nicola; Milandri, Anna
2017-11-16
Harmful algal blooms represent a severe issue worldwide. They affect ecosystem functions and related services and goods, with consequences on human health and socio-economic activities. This study reports new data on paralytic shellfish toxins (PSTs) from Sardinia and Sicily (Italy), the largest Mediterranean islands where toxic events, mainly caused by Alexandrium species (Dinophyceae), have been ascertained in mussel farms since the 2000s. The toxicity of the A. minutum, A. tamarense and A. pacificum strains, established from the isolation of vegetative cells and resting cysts, was determined by high performance liquid chromatography (HPLC). The analyses indicated the highest toxicity for A. pacificum strains (total PSTs up to 17.811 fmol cell-1). The PSTs were also assessed in a strain of A. tamarense. The results encourage further investigation to increase the knowledge of toxic species still debated in the Mediterranean. This study also reports new data on microcystins (MCs) and β-N-methylamino-L-alanine (BMAA) from a Sardinian artificial lake (Lake Bidighinzu). The presence of MCs and BMAA was assessed in natural samples and in cell cultures by enzyme-linked immunosorbent assay (ELISA). BMAA positives were found in all the analysed samples with a maximum of 17.84 µg L-1. The obtained results added further information on cyanotoxins in Mediterranean reservoirs, particularly BMAA, which have not yet been thoroughly investigated.
Progression of Myopic Maculopathy during 18-Year Follow-up.
Fang, Yuxin; Yokoi, Tae; Nagaoka, Natsuko; Shinohara, Kosei; Onishi, Yuka; Ishida, Tomoka; Yoshida, Takeshi; Xu, Xian; Jonas, Jost B; Ohno-Matsui, Kyoko
2018-06-01
To examine the progression pattern of myopic maculopathy. Retrospective, observational case series. Highly myopic patients who had been followed up for 10 years or more. Using fundus photographs, myopic features were differentiated according to Meta-analysis of Pathologic Myopia (META-PM) Study Group recommendations. Progression pattern of maculopathy. The study included 810 eyes of 432 patients (mean age, 42.3±16.8 years; mean axial length, 28.8±1.9 mm; mean follow-up, 18.7±7.1 years). The progression rate of myopic maculopathy was 47.0 per 1000 eye-years. Within the pathologic myopia (PM) group (n = 521 eyes), progression of myopic maculopathy was associated with female gender (odds ratio [OR], 2.21; P = 0.001), older age (OR, 1.03; P = 0.002), longer axial length (OR, 1.20; P = 0.007), greater axial elongation (OR, 1.45; P = 0.005), and development of parapapillary atrophy (PPA; OR, 3.14; P < 0.001). Diffuse atrophy, found in 217 eyes without choroidal neovascularization (CNV) or lacquer cracks (LCs) at baseline, progressed in 111 (51%) eyes, leading to macular diffuse atrophy (n = 64; 64/111 or 58%), patchy atrophy (n = 59; 53%), myopic CNV (n = 18; 16%), LCs (n = 9; 5%), and patchy-related macular atrophy (n = 3; 3%). Patchy atrophy, detected in 63 eyes without CNV or LCs at baseline, showed progression in 60 eyes (95%), leading to enlargement of original patchy atrophy (n = 59; 59/60 or 98%), new patchy atrophy (n = 29; 48%), CNV-related macular atrophy (n = 13; 22%), and patchy-related macular atrophy (n = 5; 8%). Of 66 eyes with LCs, 43 eyes (65%) showed progression with development of new patchy atrophy (n = 38; 38/43 or 88%) and new LCs (n = 7; 16%). Reduction in best-corrected visual acuity (BCVA) was associated mainly (all P < 0.001) with the development of CNV or CNV-related macular atrophy and enlargement of macular atrophy. The most frequent progression patterns were an extension of peripapillary diffuse atrophy to macular diffuse atrophy in diffuse atrophy, enlargement of the original atrophic lesion in patchy atrophy, and development of patchy atrophy in LCs. Main risk factors for progression were older age, longer axial length, and development of PPA. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Villate, Fernando; Uriarte, Ibon; Olivar, M. Pilar; Maynou, Francesc; Emelianov, Mikhail; Ameztoy, Iban
2014-11-01
The abundance, composition and mesoscale variability of the microplankton (53-200 μm) and the mesoplankton (0.2-2 mm) fractions in relation to oceanographic factors and phytoplankton biomass were compared off the Catalan coast (NW Mediterranean) during the summer stratification (June) and autumn mixing (November) periods in 2005. This work aims to determine whether the two plankton fractions that more contribute to fish larval diet respond to a common variable environment, and this study constitutes the first attempt to analyse, in parallel, the spatial structure of both fractions in this area. From June to November microplankton abundance increased mainly by the increase of dinoflagellates, tintinnids and radiolarians, and mesoplankton decreased due mainly to the decrease of long-horned dinoflagellates, cladocerans, doliolids and appendicularians. Plankton mesoscale variability in relation to environmental variables showed higher complexity in June, where environmental horizontal and vertical gradients were more marked than in November. In June, the major mode of variability of the microplankton was mainly accounted by the patchy distribution of several tintinnid species dominated by Rhabdonella spiralis associated to the subsurface phytoplankton biomass. The main mode of variability of the mesoplankton was related to the intrusion of the Ebro river plume and the related aggregation of doliolids and cladocerans, dominated by Evadne spinifera. In November, the major variability pattern in both fractions was a combination of inshore-offshore and eastern-western gradients in taxa distributions shaped mainly by the course of the Catalan Current along the shelf-break. Spatial differences in planktonic food pathways in each period are discussed on the basis of literature on plankton feeding habits and types, and on the diet of fish larvae of the main species from the same surveys.
Habitat fragmentation influences nestling growth in Mediterranean blue and great tits
NASA Astrophysics Data System (ADS)
Bueno-Enciso, Javier; Ferrer, Esperanza S.; Barrientos, Rafael; Serrano-Davies, Eva; Sanz, Juan José
2016-01-01
In patchy forest areas, the size of the forest patch where birds breed has a strong influence on their breeding success. However, the proximate effects contributing to lowering the breeding success in small forest patches remain unclear; and a shortage of crucial resources in those forest patches has been suggested to account in some degree for this failure. With the aim to further investigate this issue, we have monitored the breeding cycle of blue and great tits in three 'large' forest patches (ranging between 26.5 and 29.6 ha) and twelve 'small' forest patches (ranging between 1.1 and 2.1 ha) in a Mediterranean area in central Spain, during three years (2011-2013). We also recorded the nestling diet inside the nest-boxes with the aid of handy-cams. Only males significantly differed between forest patch size categories; being on average younger and with better body condition in small patches for great and blue tits respectively. Reproductive traits did not vary between forest patch size categories, but the body condition of blue tit nestlings and the size of great tit nestlings did, being significantly better and larger respectively in large forest patches. The recruitment rate of blue tit nestlings was also higher in large patches. Regarding nestling diet, blue tits did not differ but great tits did, delivering a larger amount of caterpillars in large forest patches. Most variation in the reproductive traits occurred between years, probably due to annual differences in environmental conditions. This study suggests that food supply could be limiting the breeding success of birds above all in small patches, but also in large patches under particular environmental conditions.
Self-assembly of Archimedean tilings with enthalpically and entropically patchy polygons.
Millan, Jaime A; Ortiz, Daniel; van Anders, Greg; Glotzer, Sharon C
2014-03-25
Considerable progress in the synthesis of anisotropic patchy nanoplates (nanoplatelets) promises a rich variety of highly ordered two-dimensional superlattices. Recent experiments of superlattices assembled from nanoplates confirm the accessibility of exotic phases and motivate the need for a better understanding of the underlying self-assembly mechanisms. Here, we present experimentally accessible, rational design rules for the self-assembly of the Archimedean tilings from polygonal nanoplates. The Archimedean tilings represent a model set of target patterns that (i) contain both simple and complex patterns, (ii) are comprised of simple regular shapes, and (iii) contain patterns with potentially interesting materials properties. Via Monte Carlo simulations, we propose a set of design rules with general applicability to one- and two-component systems of polygons. These design rules, specified by increasing levels of patchiness, correspond to a reduced set of anisotropy dimensions for robust self-assembly of the Archimedean tilings. We show for which tilings entropic patches alone are sufficient for assembly and when short-range enthalpic interactions are required. For the latter, we show how patchy these interactions should be for optimal yield. This study provides a minimal set of guidelines for the design of anisostropic patchy particles that can self-assemble all 11 Archimedean tilings.
Sunyer, Pau; Boixadera, Ester; Muñoz, Alberto; Bonal, Raúl; Espelta, Josep Maria
2015-01-01
The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitation effect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent's behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests.
Boixadera, Ester; Bonal, Raúl
2015-01-01
The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitationeffect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent’s behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests. PMID:26070129
RGB picture vegetation indexes for High-Throughput Phenotyping Platforms (HTPPs)
NASA Astrophysics Data System (ADS)
Kefauver, Shawn C.; El-Haddad, George; Vergara-Diaz, Omar; Araus, José Luis
2015-10-01
Extreme and abnormal weather events, as well as the more gradual meteorological changes associated with climate change, often coincide with not only increased abiotic risks (such as increases in temperature and decreases in precipitation), but also increased biotic risks due to environmental conditions that favor the rapid spread of crop pests and diseases. Durum wheat is by extension the most cultivated cereal in the south and east margins of the Mediterranean Basin. It is of strategic importance for Mediterranean agriculture to develop new varieties of durum wheat with greater production potential, better adaptation to increasingly adverse environmental conditions (drought) and better grain quality. Similarly, maize is the top staple crop for low-income populations in Sub-Saharan Africa and is currently suffering from the appearance of new diseases, which, together with increased abiotic stresses from climate change, are challenging the very sustainability of African societies. Current constraints in field phenotyping remain a major bottleneck for future breeding advances, but RGB-based High-Throughput Phenotyping Platforms (HTPPs) have shown promise for rapidly developing both disease-resistant and weather-resilient crops. RGB cameras have proven costeffective in studies assessing the effect of abiotic stresses, but have yet to be fully exploited to phenotype disease resistance. Recent analyses of durum wheat in Spain have shown RGB vegetation indexes to outperform multispectral indexes such as NDVI consistently in disease and yield prediction. Towards HTTP development for breeding maize disease resistance, some of the same RGB picture vegetation indexes outperformed NDVI (Normalized Difference Vegetation Index), with R2 values up to 0.65, compared to 0.56 for NDVI. . Specifically, hue, a*, u*, and Green Area (GA), as produced by FIJI and BreedPix open source software, performed similar to or better than NDVI in predicting yield and disease severity conditions for wheat and maize. Results using UAVs (Unmanned Aerial Vehicles) have produced similar results demonstrating the robust strengths, and limitations, of the more cost-effective RGB picture indexes.
NASA Astrophysics Data System (ADS)
Di Rita, Federico; Lirer, Fabrizio; Bonomo, Sergio; Cascella, Antonio; Ferraro, Luciana; Florindo, Fabio; Insinga, Donatella Domenica; Lurcock, Pontus Conrad; Margaritelli, Giulia; Petrosino, Paola; Rettori, Roberto; Vallefuoco, Mattia; Magri, Donatella
2018-01-01
A new high-resolution pollen record, spanning the last five millennia, is presented from the Gulf of Gaeta (Tyrrhenian Sea, central Italy), with the aim of verifying if any vegetation change occurred in the central Mediterranean region in relation to specific well-known global and/or regional climate events, including the 4.2 ka event, the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA), and to detect possible vegetation changes related to still under-investigated climate signals, for example the so-called "Bond 2" cold event around 2.8 ka BP. The vegetation dynamics of the Gaeta record shows a recurrent pattern of forest increase and decline punctuating the mid- and late Holocene. When the timing of these patterns is compared with the climate proxy data available from the same core (planktonic foraminifera assemblages and oxygen stable isotope record) and with the NAO (North Atlantic Oscillation) index, it clearly appears that the main driver for the forest fluctuations is climate, which may even overshadow the effects of human activity. We have found a clear correspondence between phases with negative NAO index and forest declines. In particular, around 4200 cal BP, a drop in AP (Arboreal Pollen) confirms the clearance recorded in many sites in Italy south of 43°N. Around 2800 cal BP, a vegetation change towards open conditions is found at a time when the NAO index clearly shows negative values. Between 800 and 1000 AD, a remarkable forest decline, coeval with a decrease in the frequencies of both Castanea and Olea, matches a shift in the oxygen isotope record towards positive values, indicating cooler temperatures, and a negative NAO. Between 1400-1850 AD, in the time period chronologically corresponding to the LIA (Little Ice Age), the Gaeta record shows a clear decline of the forest cover, particularly evident after 1550 AD, once again in correspondence with negative NAO index.
NASA Astrophysics Data System (ADS)
Morales-Molino, César; Colombaroli, Daniele; Valbuena-Carabaña, María; Tinner, Willy; Salomón, Roberto L.; Carrión, José S.; Gil, Luis
2017-05-01
In the Mediterranean Basin, long-lasting human activities have largely resulted in forest degradation or destruction. Consequently, conservation efforts aimed at preserving and restoring Mediterranean forests often lack well-defined targets when using current forest composition and structure as a reference. In the Iberian mountains, the still widespread Pinus sylvestris and Quercus pyrenaica woodlands have been heavily impacted by land-use. To assess future developments and as a baseline for planning, forest managers are interested in understanding the origins of present ecosystems to disclose effects on forest composition that may influence future vegetation trajectories. Quantification of land-use change is particularly interesting to understand vegetation responses. Here we use three well-dated multi-proxy palaeoecological sequences from the Guadarrama Mountains (central Spain) to quantitatively reconstruct changes occurred in P. sylvestris forests and the P. sylvestris-Q. pyrenaica ecotone at multi-decadal to millennial timescales, and assess the driving factors. Our results show millennial stability of P. sylvestris forests under varying fire and climate conditions, with few transient declines caused by the combined effects of fire and grazing. The high value of pine timber in the past would account for long-lasting pine forest preservation and partly for the degradation of native riparian vegetation (mostly composed of Betula and Corylus). Pine forests further spread after planned forest management started at 1890 CE. In contrast, intensive coppicing and grazing caused Q. pyrenaica decline some centuries ago (ca. 1500-1650 CE), with unprecedented grazing during the last decades seriously compromising today's oak regeneration. Thus, land-use history played a major role in determining vegetation changes. Finally, we must highlight that the involvement of forest managers in this work has guaranteed a practical use of palaeoecological data in conservation and management practice.
Olano, J M; Caballero, I; Escudero, A
2012-01-01
Seed banks are critical in arid ecosystems and ensure the persistence of species. Despite the importance of seed banks, knowledge about their formation and the extent to which a seed bank can recover after severe perturbation remains scarce. If undisturbed, soil seed banks reflect a long vegetation history; therefore, we would expect that new soil seed banks and those of undisturbed soils require long periods to become similar with respect to both density and composition. In contrast, if soil seed banks are only a short- to mid-term reservoir in which long-term accumulation constitutes only a tiny fraction, they will recover rapidly from the vegetation. To shed light on this question, we evaluated seed bank formation in a semi-arid gypsum community. Soils from 300 plots were replaced with sterilized soil in an undisturbed semi-arid Mediterranean community. Seasonal changes in seed bank density and composition were monitored for 3 years by comparing paired sterilized and control soil samples at each plot. Differences in seed bank density between sterilized and control soil disappeared after 18 months. The composition of sterilized seed banks was correlated with that of the control plots from the first sampling date, and both were highly correlated with vegetation. Nearly 24 % of the seed bank density could be attributed to secondary dispersal. Most seeds died before emergence (66·41-71·33 %), whereas the rest either emerged (14·08-15·48 %) or persisted in the soil (14·59-18·11 %). Seed banks can recover very rapidly even under the limiting and stressful conditions of semi-arid environments. This recovery is based mainly on the seed rain at small scales together with secondary dispersal from intact seed banks in the vicinity. These results emphasize the relevance of processes occurring on short spatial scales in determining community structure.
NASA Astrophysics Data System (ADS)
Loozen, Yasmina; Rebel, Karin T.; Karssenberg, Derek; Wassen, Martin J.; Sardans, Jordi; Peñuelas, Josep; De Jong, Steven M.
2018-05-01
Canopy nitrogen (N) concentration and content are linked to several vegetation processes. Therefore, canopy N concentration is a state variable in global vegetation models with coupled carbon (C) and N cycles. While there are ample C data available to constrain the models, widespread N data are lacking. Remotely sensed vegetation indices have been used to detect canopy N concentration and canopy N content at the local scale in grasslands and forests. Vegetation indices could be a valuable tool to detect canopy N concentration and canopy N content at larger scale. In this paper, we conducted a regional case-study analysis to investigate the relationship between the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) time series from European Space Agency (ESA) Envisat satellite at 1 km spatial resolution and both canopy N concentration (%N) and canopy N content (N g m-2, of ground area) from a Mediterranean forest inventory in the region of Catalonia, in the northeast of Spain. The relationships between the datasets were studied after resampling both datasets to lower spatial resolutions (20, 15, 10 and 5 km) and at the original spatial resolution of 1 km. The results at higher spatial resolution (1 km) yielded significant log-linear relationships between MTCI and both canopy N concentration and content: r2 = 0.32 and r2 = 0.17, respectively. We also investigated these relationships per plant functional type. While the relationship between MTCI and canopy N concentration was strongest for deciduous broadleaf and mixed plots (r2 = 0.24 and r2 = 0.44, respectively), the relationship between MTCI and canopy N content was strongest for evergreen needleleaf trees (r2 = 0.19). At the species level, canopy N concentration was strongly related to MTCI for European beech plots (r2 = 0.69). These results present a new perspective on the application of MTCI time series for canopy N detection.
Seasonal changes of the infiltration rates in urban parks of Valencia City, Eastern Spain
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Keesstra, Saskia; Burguet, María; Pereira, Paulo; Esteban Lucas-Borja, Manuel; Martinez-Murillo, Juan F.
2016-04-01
Infiltration is a key process of the hydrological cycle. Infiltration also controls the soil water resources, and the development of the vegetation, and moreover, in the Mediterranean, determines the runoff generation (Cerdà, 1996; 1997; 2001). In the Mediterranean, the infiltration in forest soils shows high spatial variability and seasonal and temporal changes (Cerdà, 1999; Bodí and Cerdà, 2009) and is being affected by forest fires (Cerdà, 1998), which introduce a new temporal change in the seasonality of the infiltration rates. Although the forest soils are well assessed, there is no information about the infiltration in urban areas in Mediterranean cities. The Mediterranean dense urban systems use to be treated as impermeable areas. However, the cities show areas covered by vegetation and with soils that allow the rainfall to infiltrate. Those areas are mainly the parks. In order to shed some light on the infiltration capacity of the soils of the urban area of Valencia city 30 rainfall simulations experiments (Cerdà, 1996) and 90 ring infiltrometer (10 cm diameter) measurements were carried out in January 2011, and they were repeated in July 2011, to compare wet (19.4 % of soil moisture) and dry (5.98 % of soil moisture) soils. The infiltration curves where fitted to the Horton (1933) equation and they lasted for 1 hour. The results show that the infiltration is 11 times higher when measured with ring infiltrometer than with the simulated rainfall at 55 mmh-1, and that the infiltration rates where higher in summer than in winter: 2.01 higher for the ring infiltrometer, and 1.45 higher when measured with the rainfall simulator. In comparison to the soils from the forest areas, the infiltration rate in the gardens were lower, with values of 10.23 and 21.65 mm h-1 in average for winter and summer when measured with the rainfall simulator. Similar results were found with the ring infiltrometer. It was also found a clear relationship between the vegetation cover and the infiltration, with high infiltration rates with the grass covers. This is due to the higher infiltration rates of the soils with roots and due to the impact of plant stems on the runoff generation (Wang et al., 2015; Zhao et al., 2015). The importance of the vegetation on the soil infiltration capacity in the gardens of Valencia is a key factor to reduce the runoff sediment concentration such as was found at different scales (Keesstra et al., 2007; Nanko et al., 2015; Pereira et al, 2015; Prosdocimi et al., 2016) Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project). References Cerdà, A. 1996. Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain. Geoderma, 69 (3-4), 217-232. Cerdà, A. 1997. Seasonal changes of the infiltration rates in a mediterranean scrubland on limestone. Journal of Hydrology, 198 (1-4), 209-225. DOI: 10.1016/S0022-1694(96)03295-7 Cerdà, A. 1998. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland, Hydrological Processes, 12 (7), 1031-1042. Cerdà, A. 1999. Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research, 35 (1), 319-328. DOI: 10.1029/98WR01659 Cerdà, A. 2001.Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52 (1), 59-68. DOI: 10.1046/j.1365-2389.2001.00354.x Cerdà, A., Bodì, M.B. 2009. Infiltration process in the badlands of the East in the Iberian Peninsula. Progress and challenges. Cuadernos de Investigación Geográfica, 35 (1), 7-42. Keesstra, S.D. 2007. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surface Processes and Landforms, 32(1): 49-65. DOI: 10.1002/esp.1360 Nanko, K., Giambelluca, T.W., Sutherland, R.A., Mudd, R.G., Nullet, M.A., Ziegler, A.D. 2015.Erosion potential under miconia calvescens stands on the island of hawai'i. Land Degradation and Development, 26 (3), pp. 218-226. DOI: 10.1002/ldr.2200 Pereira, P., Giménez-Morera, A., Novara, A., Keesstra, S., Jordán, A., Masto, R. E., Brevik, E., Azorin-Molina, C. Cerdà, A. 2015. The impact of road and railway embankments on runoff and soil erosion in eastern Spain. Hydrology and Earth System Sciences Discussions, 12, 12947-12985. Prosdocimi,M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà, A. 2016. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547, 15 ,323-330, doi:10.1016/j.scitotenv.2015.12.076 Wang Y., Fan J., Cao L., Liang Y. 2015. Infiltration and Runoff Generation Under Various Cropping Patterns in the Red Soil Region of China. Land Degradation and Development. DOI: 10. 1002/ldr. 2460 Zhao, C., Gao, J., Huang, Y., Wang, G., Zhang, M. 2015. Effects of Vegetation Stems on Hydraulics of Overland Flow Under Varying Water Discharges. Land Degradation and Development, DOI: 10.1002/ldr.2423
Changes in future fire regimes under climate change
NASA Astrophysics Data System (ADS)
Thonicke, Kirsten; von Bloh, Werner; Lutz, Julia; Knorr, Wolfgang; Wu, Minchao; Arneth, Almut
2013-04-01
Fires are expected to change under future climate change, climatic fire is is increasing due to increase in droughts and heat waves affecting vegetation productivity and ecosystem function. Vegetation productivity influences fuel production, but can also limit fire spread. Vegetation-fire models allow investigating the interaction between wildfires and vegetation dynamics, thus non-linear effects between changes in fuel composition and production on fire as well as changes in fire regimes on fire-related plant mortality and fuel combustion. Here we present results from simulation experiments, where the vegetation-fire models LPJmL-SPITFIRE and LPJ-GUESS are applied to future climate change scenarios from regional climate models in Europe and Northern Africa. Climate change impacts on fire regimes, vegetation dynamics and carbon fluxes are quantified and presented. New fire-prone regions are mapped and changes in fire regimes of ecosystems with a long-fire history are analyzed. Fuel limitation is likely to increase in Mediterranean-type ecosystems, indicating non-linear connection between increasing fire risk and fuel production. Increased warming in temperate ecosystems in Eastern Europe and continued fuel production leads to increases not only in climatic fire risk, but also area burnt and biomass burnt. This has implications for fire management, where adaptive capacity to this new vulnerability might be limited.
Vegetation and climate of the southern Levant during the last Interglacial
NASA Astrophysics Data System (ADS)
Chen, Chunzhu; Litt, Thomas
2015-04-01
Sediments in the Dead Sea basin are outstanding archives for understanding the paleoenvironment of the southern Levant because of their locations at the boundary between the Mediterranean and Arabian-Sahara climate zones. During the past decades, extensive investigations have demonstrated high lake levels during the last Glacial but low lake levels during the present and last Interglacial. However, palynological results from Lake Kinneret and Birkat Ram suggested a dry last Glacial and wet Holocene (Schiebel, 2013; Chen and Miebach, unpublished). Studies on Lake Samra (last interglacial precursor of the modern Dead Sea) became a focus after deep drilling cores were retrieved in 2011. Core 5017-1A encompasses the most complete Samra profile in the region, which exhibits thick halite layers indicating extremely low lake levels (Neugebauer et al., 2014). As interpreted based on lithological and hydrological results, the marine isotope stage (MIS) 5e was the most arid period (work in progress). In this case, pollen analysis would provide independent evidence of the regional climate changes. Our preliminary result shows that late MIS 6 was characterized by an expansion of goosefoot (Chenopodiaceae)-dominated desert/semi-desert. During the MIS 6/5 transition, an abrupt increase of grasses and a corresponding decline of goosefoot suggest the occurrence of a more humid grass steppe, whereas the woodlands were still open. The MIS 5e has witnessed higher woodland density and moisture availability provided high values of Mediterranean woodland components (mainly olives and deciduous oaks). From MIS 5d to 5a, a drying trend was recorded from the contraction of the Mediterranean biome and the expansion of steppe/semi-steppe. As a key time interval of our study, MIS 5e comprised a typical vegetation succession process that is also prevalent in other Mediterranean pollen records. Therefore, in biostratigraphical terms, high abundances of woody taxa marks the MIS 5e, although the timing and moisture pattern contradict those implied by non-pollen proxies. This study presents the first consecutive last Interglacial pollen record in the southern Levant and will contribute to researches of modern human dispersal. Further quantitative reconstructions will be carried out on the basis of the Holocene counterpart (Litt et al., 2012). Reference: Litt, T., et al., 2012. Holocene climate variability in the Levant from the Dead Sea pollen record. Quaternary Science Reviews 49, 95-105. Neugebauer, I., et al., 2014. Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP). Quaternary Science Reviews 102, 149-165. Schiebel, V., 2013. Vegetation and climate history of the southern levant during the last 30,000 years based on palynological investigation. Bonn, University of Bonn, Dissertation, 2013.
Applying remote sensing measurements of phenology to southern California vegetation
NASA Astrophysics Data System (ADS)
Willis, K. S.; Gillespie, T. W.
2012-12-01
Monitoring vegetation phenology can be used to assess the impacts of climate change on a localized region. This study aims to determine the most applicable remote sensing method for monitoring phenological changes in the largest urban National Park in the US: the Santa Monica Mountains of southern California. This is achieved by comparing the Normalized Difference Vegetation Index (NDVI), considered applicable to Mediterranean-type ecosystems due to the low amount of greenness present in the vegetation, with relative spectral mixture analysis (RMSA). RMSA is a technique developed to measure temporal changes in green vegetation (GV), nonphotosynthetic vegetation plus litter (NPV), and snow cover designed for the south-central US. This study analyzes areas of natural vegetation in the Santa Monica Mountains using MODIS imagery by comparing GV and NPV indices derived from RMSA with the classic NDVI. The phenological transition dates of focus here include: (1) greenup, the date of onset of photosynthetic activity; (2) maturity, the date at which plant green leaf area is maximum; (3) senescence, the date at which photosynthetic activity and green leaf area begin to rapidly decrease; (4) dormancy, the date at which physiological activity becomes near zero. Overall, this study tests the application of RMSA to a new environment, compares these results to those derived from NDVI, and provides insight regarding the impacts of climate change on southern California phenological cycles.
NASA Astrophysics Data System (ADS)
Ireland, Gareth; Petropoulos, George P.; Kalivas, Dionissios; Griffirths, Hywel M.; Louka, Panagiota
2015-04-01
Altering land cover dynamics is currently regarded as the single most important variable of global change affecting ecological systems. Wildfires are an integral part of many terrestrial ecosystems and are considered to dramatically affect land cover dynamics at a variety of spatial and temporal scales. In this context, knowledge of the spatio-temporal distribution of post-fire vegetation recovery dynamics is of key importance. In this study, we explore the relationships between vegetation recovery dynamics to topography and burn severity for two different ecosystems using a chronosequence of Landsat TM data images analysis. One of our experimental sites is the Okanagan Mountain Park, located in the Montane Cordillera Ecozones of western Canada at which a fire occurred in 2003. The other is Mt. Parnitha, located in Greece, representing a typical Mediterranean setting. The spatio-temporal patterns of regrowth for 8 years following the fire events were quantified based on the analysis of 2 widely used indices, the Normalized Difference Vegetation Index (NDVI) and the Regeneration Index (RI). Burn severity was derived from the differenced Normalized Burn Ratio (dNBR) index computed from the Landsat TM images. Topographical information for the studied area was obtained from the ASTER global operational product. Relationships of vegetation regrowth to both topography and burn severity was quantified using a series of additional statistical metrics. In overall, results indicated noticeable differences in the recovery rates of both ecosystems to the pre-fire patterns. Re-growth rates appeared to be somewhat higher in north-facing slopes in comparison to south facing ones for both experimental sites, in common with other similar studies in different ecosystems. Lastly, areas of lower burn severity exhibited a higher recovery rate compared to areas of high severity burns. Results are presented in detail and an explanation of the main observation trends is also attempted to be provided. To our knowledge, this study is one of the few attempting to explore the relationships between post-fire vegetation regrowth and topography or burn severity, particularly so in such a comparative and systematic manner between two contrasting ecosystem types. It corroborates the significance of EO technology as a successful and cost-effective solution in providing information related to post-fire regeneration assessment. Keywords: post-fire vegetation regeneration, topography, burn severity, Landsat, remote sensing, Cordillera Ecozones, Canada, Mt. Parnitha, Greece
Soil erosion after forest fires in the Valencia region
NASA Astrophysics Data System (ADS)
González-Pelayo, Óscar; Keizer, Jan Jacob; Cerdà, Artemi
2014-05-01
Soil erosion after forest fire is triggered by the lack of vegetation cover and the degradation of the physical, biological and chemical properties (Martí et al., 2012; Fernández et al., 2012; Guénon, 2013). Valencia region belongs to the west Mediterranean basin ("Csa", Köppen climate classification), with drought summer periods that enhance forest fire risk. The characteristics of the climate, lithology and land use history makes this region more vulnerable to soil erosion. In this area, fire recurrence is being increased since late 50s (Pausas, 2004) and post-fire erosion studies became more popular from 80's until nowadays (Cerdá and Mataix-Solera, 2009). Research in Valencia region has contributed significantly to a better understanding of the effect of spatial and temporal scale on runoff and sediment yield measurements. The main achievements concerns: a) direct measurement of erosion rates under a wide range of methodologies (natural vs simulated rainfall, open vs closed plots); from micro- to meso-plot and catchment scale in single (Rubio et al., 1994; Cerdà et al., 1995; Cerdà 1998a; 1998b; Llovet et al., 1998; Cerdà, 2001; Calvo-Cases et al., 2003; Andreu et al., 2001; Mayor et al., 2007; Cerdà and Doerr, 2008) and multiples fires (Campo et al., 2006; González-Pelayo et al., 2010a). Changes in soil properties (Sanroque et al., 1985; Rubio et al., 1997; Boix-Fayós, 1997; Gimeno-Garcia et al., 2000; Guerrero et al., 2001; Mataix-Solera et al., 2004; González-Pelayo et al., 2006; Arcenegui et al., 2008; Campo et al., 2008; Bodí et al., 2012), in post-fire vegetation patterns (Gimeno-García et al., 2007) and, studies on mitigation strategies (Bautista et al., 1996; Abad et al., 2000). b) Progress to understanding post-fire erosion mechanism and sediment movement (Boix-Fayós et al., 2005) by definition of thresholds for sediment losses; fire severity, slope angle, bedrock, rain characteristics, vegetation pattern and ecosystem resilience (Mayor et al., 2007; González-Pelayo et al., 2010b). The knowledge achieved on post-fire erosion must very valuable for new insights and new strategies for landscape management. This research will review the State-of-the-Art of the contribution of the research on soil erosion as a consequence of forest fires in the Valencia Region. The review will show the contribution of the pioneers in the 80's when the USLE and mapping was the main too, the use of plots under simulated and natural rainfall, and also the strategies to control the soil erosion. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE FP7 project 603498 supported this research. References Abad, N., Bautista, S., Blade, C., Caturla, R.N. 2000. Seeding and mulching as erosion control techniques after wildfires in the Valencia region. En P. Balabanis, D. Peter, A. Ghazi y M. Tsogas (Eds.), Mediterranean Desertification Research Results and Policy Implications. Directorate-General Research, vol. 2. European Commission, Brussels, 419-429. Andreu, V., Imeson, A.C., Rubio, J.L. 2001. Temporal changes in soil aggregates and water erosion after a wildfire in a Mediterranean pine forest. Catena. 44, 69-84. Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zornoza, R., Mataix-Beneyto, J., García-Orenes, F., 2008. Immediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils. Catena 74, 219-226. Bautista, S., Bellot, J., Vallejo, R. 1996. Mulching treatment for postfire soil conservation in a semiarid ecosystem. Arid Soil Research and Rehabilitation 10, 235-242. Bodí, M., Mataix-Solera, J., Stefan H. Doerr, S.H., Cerdà, A. 2012. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma 160, 599-607. Boix-Fayos, C. 1997. The roles of texture and structure in the water retention capacity of burnt Mediterranean soils with varying rainfall. Catena 31, 219-236. Boix-Fayos, C., Martínez-Mena, M., Calvo-Cases, A., Castillo, V.M., Albadalejo, J. 2005. Concise review of interrill erosion studies in SE Spain (Alicante and Murcia): erosion rates and progress of knowledge from the 1980s. Land Degradation and Developement 16, 517-528. Calvo-Cases, A., Boix-Fayós, C., Imeson, A.C. 2003. Runoff generation, sediment movement and soil water behaviour on calcareous (limestone) slopes of some Mediterranean environments in southeast Spain. Geomorphology 50, 269-291. Campo, J., Andreu, V., Gimeno-García, E., González-Pelayo, O., Rubio, J.L. 2008. Aggregation of under canopy and bare soils in a Mediterranean environment affected by different fire intensities. Catena 74 (3), 212-218. Campo, J., Andreu, V., Gimeno-García, E., González, O., Rubio, J.L. 2006. Occurrence of soil erosion after repeated experimental fires in a Mediterranean environment. Geomorphology 82, 376-387. Cerdà A. 2001. Erosión hídrica del suelo en el territorio Valenciano. El estado de la cuestión a través de la revisión bibliográfica. Geoforma Ediciones: Logronho. A. 2001. Cerdá, A, Mataix-Solera, J. 2009. Incendios forestales en España. Ecosistemas terrestres y suelos. En: Cerdá y Mataix-Solera (Eds.), Efectos de los incendios forestales sobre los suelos en España. Universidad de Valencia, 2009. Cerdà, A. 1998a. Postfire dynamics of erosional processes under mediterranean climatic conditions. Zeitschrift für Geomorphologie, 42 (3) 373-398. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A., Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74 , 256- 263. doi:10.1016/S0341-8162(02)00027-9 Cerdà, A., Imeson, A.C., Calvo, A. 1995. Fire and aspect induced differences on the erodibility and hydrology of soils at La Costera, Valencia, Southeast Spain. Catena 24, 289-304. Fernández, C., Vega, J. A., Jiménez, E., Vieira, D. C. S., Merino, A., Ferreiro, A., Fonturbel, T. 2012. Seedingand mulching + seeding effects on post-fire runoff, soil erosion and species diversity in Galicia (NW Spain). Land Degradation & Development, 23: 150- 156. DOI 10.1002/ldr.1064 Gimeno-García, Andreu, V., Rubio, J.L. 2000. Changes in organic matter, nitrogen, phosphorus and cations in soils as a result of fire and water erosion in a Mediterranean landscape. European Journal of Soil Science 51, 201-210. Gimeno-García, E., Andreu, V.,, Rubio, J.L., 2007. Influence of vegetation recovery on water erosion at short and medium-term after experimental fires in a Mediterranean shrubland. Catena 69, 150-160. González-Pelayo, O, Andreu, V., Gimeno-García, E., Campo, J., Rubio, J.L. 2010a. Effects of fire and vegetation cover on hydrological characteristics of a Mediterranean shrubland soil. Hydrological Processes 24, 1504-1513. González-Pelayo, O., Andreu, V., Campo, J., Gimeno-García, E., Rubio, J.L. 2006. Hydrological Properties of Mediterranean Soils Burned with Different Fire Intensities. Catena 68 (2-3), 186-193. González-Pelayo, O., Andreu, V., Campo, J., Gimeno-García, E., Rubio, J.L. 2010b. Rainfall influence on plot-scale runoff and soil loss from repeated burning in a Mediterranean-shrub ecosystem, Valencia, Spain. Geomorphology 118, 444-452. Guénon, R., Vennetier, M., Dupuy, N., Roussos, S., Pailler, A., Gros, R. 2013. Trends in recovery of Mediterranean soil chemical properties and microbial activities after infrequent and frequent wildfires. Land Degradation & Development, 24: 115- 128. DOI 10.1002/ldr.1109 Guerrero, C., Mataix-Solera, J., Navarro-Pedreño, J., García-Orenes, F. Gómez, I. 2001. Different patterns of aggregate stability in burned and restored soils. Arid Land Research and Management 15, 163-171. Llovet, J., Bautista, S., Giovanardi, F., Vallejo, V. R., 1998. Sediment production in burned catchments of eastern spain. Annales Geophysicae. C531. Martín, A., Díaz-Raviña, M., Carballas, T. 2012. Short- and medium-term evolution of soil properties in Atlantic forest ecosystems affected by wildfires. Land Degradation & Development, 23: 427- 439. DOI 10.1002/ldr.1078 Mataix-Solera, J., Doerr, S.H. 2004. Hydrophobic and aggregate stability in calcareous topsoils from fire-affected pine forest in southeastern Spain. Geoderma 118, 77-88. Mayor, A.G., Bautista, S., Llovet, L., Bellot, J. 2007. Post-fire hydrological and erosional responses of a Mediterranean landscape: Seven years of catchment-scale dynamics. Catena 71, 68-75. Pausas, J.G. 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change 63: 337-350. Rubio, J.L., Andreu, V., Cerni, R. 1994. A monitoring system for experimental soil erosion plots. In: Rickson, R.J. (Ed.), Conserving Soil Resources: European Perspectives. CAB International, Wallingford, pp. 127-135. Rubio, J.L., Forteza, J., Andreu,V., Cerní, R. 1997. Soil profile characteristics influencing runoff and soil erosion after forest fire: A case of study (Valencia, Spain). Soil Technology 11, 67-78. Sanroque, P., Rubio, J.L., Mansanet, J. 1985. Efectos de los incendios forestales en las propiedades del suelo, en la composición florística y en la erosión hídrica de zonas forestales de Valencia (España). Rev. Ecol. Biol. Sol. 22 (2), 131-147.
Tognon, G; Moreno, L A; Mouratidou, T; Veidebaum, T; Molnár, D; Russo, P; Siani, A; Akhandaf, Y; Krogh, V; Tornaritis, M; Börnhorst, C; Hebestreit, A; Pigeot, I; Lissner, L
2014-09-01
Despite documented benefits of a Mediterranean-like dietary pattern, there is a lack of knowledge about how children from different European countries compare with each other in relation to the adherence to this pattern. In response to this need, we calculated the Mediterranean diet score (MDS) in 2-9-year-old children from the Identification and prevention of dietary- and lifestyle-induced health effects in children and infants (IDEFICS) eight-country study. Using 24 h dietary recall data obtained during the IDEFICS study (n=7940), an MDS score was calculated based on the age- and sex-specific population median intakes of six food groups (vegetables and legumes, fruit and nuts, cereal grains and potatoes, meat products and dairy products) and the ratio of unsaturated to saturated fats. For fish and seafood, which was consumed by 10% of the population, one point was given to consumers. The percentages of children with high MDS levels (>3) were calculated and stratified by sex, age and by having at least one migrant parent or both native parents. Demographic (sex and age) and socioeconomic characteristics (parental education and income) of children showing high (>3) vs low (⩽3) MDS levels were examined. The highest prevalence of children with MDS>3 was found among the Italian pre-school boys (55.9%) and the lowest among the Spanish school-aged girls (26.0%). Higher adherence to a Mediterranean-like dietary pattern was not associated with living in a Mediterranean country or in a highly educated or high-income family, although with some exceptions. Differences in adherence between boys and girls or age groups varied between countries without any general pattern. With the exception of Italian pre-schoolers, similar adherence levels to a Mediterranean-like dietary pattern have been observed among European children.
Ulaszewska, Maria M; Luzzani, Gloria; Pignatelli, Sonia; Capri, Ettore
2017-01-01
Food production and preparation affect the environment in many ways, with effects on greenhouse gases, use of land, biodiversity, etc. The impact is influenced by consumer demand and eating habits. Two different recommended dietary models were considered, the Mediterranean Diet and the New Nordic Diet, with quantitative analysis of GHG emissions through LCA. An environmental hourglass (EH) approach based on LCA was introduced to help translate health-promoting dietary recommendations that consider regional circumstances and cultural diversity into practical eating habits, to promote sustainable and environmentally friendly consumption. Using the environmental hourglass approach, we examined whether dietary choices based on nutritional recommendations can minimise certain negative effects on the food production environment. Using two examples of health-enhancing, regionally-oriented and culturally appropriate dietary patterns - the Mediterranean Diet and the New Nordic Diet - we showed that consumption of high protein foods has a similar and comparable environmental impact to fruit and vegetable consumption. The results of this work may provide a starting point for integrated policy addressing issues related to the healthy diet of the population, aware food choices and sustainable agriculture. Copyright © 2016 Elsevier B.V. All rights reserved.
Mediterranean diet and life expectancy; beyond olive oil, fruits, and vegetables.
Martinez-Gonzalez, Miguel A; Martin-Calvo, Nerea
2016-11-01
The recent relevant evidence of the effects of the Mediterranean diet (MedDiet) and lifestyle on health (2015 and first months of 2016). Large observational prospective epidemiological studies with adequate control of confounding and two large randomized trials support the benefits of the Mediterranean dietary pattern to increase life expectancy, reduce the risk of major chronic disease, and improve quality of life and well-being. Recently, 19 new studies from large prospective studies showed - with nearly perfect consistency - strong benefits of the MedDiet to reduce the risk of myocardial infarction, stroke, total mortality, heart failure, and disability. Interestingly, two large and well conducted cohorts reported significant cardiovascular benefits after using repeated measurements of diet during a long follow-up period. In addition, Prevención con Dieta Mediterránea, the largest randomized trial with MedDiet, recently reported benefits of this dietary pattern to prevent cognitive decline and breast cancer. In the era of evidence-based medicine, the MedDiet represents the gold standard in preventive medicine, probably because of the harmonic combination of many elements with antioxidant and anti-inflammatory properties, which overwhelm any single nutrient or food item. The whole seems more important than the sum of its parts.
Diet Quality-The Greeks Had It Right!
Anderson, John J B; Nieman, David C
2016-10-14
The Mediterranean diet is upheld in the 2015-2020 Dietary Guidelines as an example of an eating pattern that promotes good health, a healthy body weight, and disease prevention throughout the lifespan. The Mediterranean eating pattern is based on a variety of unprocessed plant foods including fruits, vegetables, whole grains, legumes, nuts, and seeds that are high in polyphenols. The majority of polyphenols arrive in the colon where bacteria degrade them into smaller phenolics that can be translocated via the portal vein to the liver. In the liver, the phenolics undergo additional biotransformation prior to release into the circulation and transport to specific tissues where bioactive effects take place before removal in the urine. Recent epidemiologic studies using improved assessment techniques support that high versus low dietary polyphenol intake predicts reduced risk for neurodegenerative diseases, diabetes, cardiovascular disease, hypertension, obesity, and early death from all causes. Emerging science reveals that many of these health-related benefits can be traced to the biotransformed, gut-derived phenolics. In conclusion, the high consumption of unprocessed plant foods by inhabitants of countries bordering the Mediterranean Sea has been linked to multiple health and disease prevention benefits that are in large part due to a varied intake of polyphenols.
Diet Quality—The Greeks Had It Right!
Anderson, John J. B.; Nieman, David C.
2016-01-01
The Mediterranean diet is upheld in the 2015–2020 Dietary Guidelines as an example of an eating pattern that promotes good health, a healthy body weight, and disease prevention throughout the lifespan. The Mediterranean eating pattern is based on a variety of unprocessed plant foods including fruits, vegetables, whole grains, legumes, nuts, and seeds that are high in polyphenols. The majority of polyphenols arrive in the colon where bacteria degrade them into smaller phenolics that can be translocated via the portal vein to the liver. In the liver, the phenolics undergo additional biotransformation prior to release into the circulation and transport to specific tissues where bioactive effects take place before removal in the urine. Recent epidemiologic studies using improved assessment techniques support that high versus low dietary polyphenol intake predicts reduced risk for neurodegenerative diseases, diabetes, cardiovascular disease, hypertension, obesity, and early death from all causes. Emerging science reveals that many of these health-related benefits can be traced to the biotransformed, gut-derived phenolics. In conclusion, the high consumption of unprocessed plant foods by inhabitants of countries bordering the Mediterranean Sea has been linked to multiple health and disease prevention benefits that are in large part due to a varied intake of polyphenols. PMID:27754409
Pizarro-Tobías, Paloma; Fernández, Matilde; Niqui, José Luis; Solano, Jennifer; Duque, Estrella; Ramos, Juan-Luis; Roca, Amalia
2015-01-01
Forest fires pose a serious threat to countries in the Mediterranean basin, often razing large areas of land each year. After fires, soils are more likely to erode and resilience is inhibited in part by the toxic aromatic hydrocarbons produced during the combustion of cellulose and lignins. In this study, we explored the use of bioremediation and rhizoremediation techniques for soil restoration in a field-scale trial in a protected Mediterranean ecosystem after a controlled fire. Our bioremediation strategy combined the use of Pseudomonas putida strains, indigenous culturable microbes and annual grasses. After 8 months of monitoring soil quality parameters, including the removal of monoaromatic and polycyclic aromatic hydrocarbons as well as vegetation cover, we found that the site had returned to pre-fire status. Microbial population analysis revealed that fires induced changes in the indigenous microbiota and that rhizoremediation favours the recovery of soil microbiota in time. The results obtained in this study indicate that the rhizoremediation strategy could be presented as a viable and cost-effective alternative for the treatment of ecosystems affected by fires. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Keesstra, Saskia; Wittenberg, Lea; Maroulis, Jerry; Malkinson, Dan; Cerdà, Artemi; Pereira, Paulo
2016-04-01
Fire is a key factor impacting soil hydrology in many Mediterranean catchments. Soil water repellency (SWR) can stimulate land degradation processes by reducing the affinity of soil and water thereby triggering a reduction in soil fertility and increasing soil and water losses (. The effects of two consequent fires (1989 and 2005) on SWR were assessed in the Carmel Mountains, Israel. Fire history, plant recovery and post-fire management were investigated as determining factors in a time dependent system. SWR was highest in the >50 years unburnt plots, where soil under Pinus halepensis is most hydrophobic. In the most disturbed soils (twice burnt), many sites have a low to absent SWR even if the soil is very dry. The dynamics and fluctuations in SWR differ in magnitude under different plant species. The areas treated with CC (chipping of charred trees) showed a much higher SWR than areas left untreated. From these insights, a conceptual model of the reaction of SWR on multiple fires was developed. KEYWORDS: Soil water repellency, WDPT, Wildfires, Vegetation recovery, post-fire management, Mediterranean.
Pereira-da-Silva, Luís; Rêgo, Carla; Pietrobelli, Angelo
2016-06-08
This systematic review discusses data on the dietary intake of preschool children living in the Mediterranean countries of the European Union, including the comparison with a Mediterranean-like diet and the association with nutritional status. Specifically, data from the multinational European Identification and Prevention on Dietary and life style induced health effects in children and infants (IDEFICS) study and national studies, such as the Estudo do Padrão Alimentar e de Crescimento Infantil (EPACI) study and Geração XXI cohort in Portugal, ALimentando la SAlud del MAñana (ALSALMA) study in Spain, Étude des Déterminants pré-et postnatals précoces du développement et de la santé de l'ENfant (EDEN) cohort in France, Nutrintake 636 study in Italy, and Growth, Exercise and Nutrition Epidemiological Study in preSchoolers (GENESIS) cohort in Greece, were analyzed. In the majority of countries, young children consumed fruit and vegetables quite frequently, but also consumed sugared beverages and snacks. High energy and high protein intakes mainly from dairy products were found in the majority of countries. The majority of children also consumed excessive sodium intake. Early high prevalence of overweight and obesity was found, and both early consumption of energy-dense foods and overweight seemed to track across toddler and preschool ages. Most children living in the analyzed countries showed low adherence to a Mediterranean-like diet, which in turn was associated with being overweight/obese. Unhealthier diets were associated with lower maternal educational level and parental unemployment. Programs promoting adherence of young children to the traditional Mediterranean diet should be part of a multi-intervention strategy for the prevention and treatment of pediatric overweight and obesity.
Tong, Tammy Y.N.; Imamura, Fumiaki; Monsivais, Pablo; Brage, Søren; Griffin, Simon J.; Wareham, Nicholas J.; Forouhi, Nita G.
2018-01-01
High cost of healthy foods could be a barrier to healthy eating. We aimed to examine the association between dietary cost and adherence to the Mediterranean diet in a non-Mediterranean country. We evaluated cross-sectional data from 12,417 adults in the UK Fenland Study. Responses to 130-item food frequency questionnaires were used to calculate a Mediterranean diet score (MDS). Dietary cost was estimated by matching food consumption data with retail prices of five major supermarkets. Using multivariable-adjusted linear regression, we examined the association of MDS and individual foods with dietary cost in absolute and relative scales. Subsequently, we assessed how much the association was explained by education, income, marital status, and occupation, by conducting mediation analysis and testing interaction by these variables. High compared to low MDS (top to bottom third) was associated with marginally higher cost by 5.4% (95% CI 4.4. 6.4%) or £0.20/day (£0.16, 0.25). Participants with high adherence had higher cost associated with the healthier components (e.g. vegetables, fruits, and fish), and lower cost associated with the unhealthy components (e.g. red meat, processed meat and sweets) (p<0.001 each for trend). 20.7% (14.3, 27.0%) of the MDS-cost association was explained by the selected socio-economic factors, and the MDS-cost association was of greater magnitude in lower socio-economic groups (p interaction<0.005). Overall, greater adherence to the Mediterranean diet was associated with marginally higher dietary cost, partly modified and explained by socio-economic status, but the potential economic barriers of high adherence might be offset by cost saving from reducing unhealthy food consumption. PMID:29553031
Pereira-da-Silva, Luís; Rêgo, Carla; Pietrobelli, Angelo
2016-01-01
This systematic review discusses data on the dietary intake of preschool children living in the Mediterranean countries of the European Union, including the comparison with a Mediterranean-like diet and the association with nutritional status. Specifically, data from the multinational European Identification and Prevention on Dietary and life style induced health effects in children and infants (IDEFICS) study and national studies, such as the Estudo do Padrão Alimentar e de Crescimento Infantil (EPACI) study and Geração XXI cohort in Portugal, ALimentando la SAlud del MAñana (ALSALMA) study in Spain, Étude des Déterminants pré-et postnatals précoces du développement et de la santé de l’ENfant (EDEN) cohort in France, Nutrintake 636 study in Italy, and Growth, Exercise and Nutrition Epidemiological Study in preSchoolers (GENESIS) cohort in Greece, were analyzed. In the majority of countries, young children consumed fruit and vegetables quite frequently, but also consumed sugared beverages and snacks. High energy and high protein intakes mainly from dairy products were found in the majority of countries. The majority of children also consumed excessive sodium intake. Early high prevalence of overweight and obesity was found, and both early consumption of energy-dense foods and overweight seemed to track across toddler and preschool ages. Most children living in the analyzed countries showed low adherence to a Mediterranean-like diet, which in turn was associated with being overweight/obese. Unhealthier diets were associated with lower maternal educational level and parental unemployment. Programs promoting adherence of young children to the traditional Mediterranean diet should be part of a multi-intervention strategy for the prevention and treatment of pediatric overweight and obesity. PMID:27338427
NASA Astrophysics Data System (ADS)
Vessella, Federico; Simeone, Marco Cosimo; Schirone, Bartolomeo
2015-07-01
Ecological Niche Modelling (ENM) is widely used to depict species potential occurrence according to environmental variables under different climatic scenarios. We tested the ENM approach to infer past range dynamics of cork oak, a keystone species of the Mediterranean Biome, from 130 ka to the present time. Hindcasting implications would deal with a better species risk assessment and conservation management for the future. We modelled present and past occurrence of cork oak using seven ENM algorithms, starting from 63,733 spatially unique presence points at 30 arc-second resolution. Fourteen environmental variables were used and four time slices were considered (Last Interglacial, Last Glacial Maximum, mid-Holocene and present time). A threshold-independent evaluation of the goodness-of-fit of the models was evaluated by means of ROC curve and fossil or historical evidences were used to validate the results. Four weighted average maps depicted the dynamics of area suitability for cork oak in the last 130 ka. The derived species autoecology allowed its long-term occurrence in the Mediterranean without striking range reduction or shifting. Fossil and historical post-processing validation support the modelled past spatial extension and a neglected species presence at Levantine until the recent time. Despite the severe climatic oscillation since the Last Glacial Maximum, cork oak potential distribution area experienced limited range changes, confirming its strong link with the Mediterranean Basin. The ecological amplitude of Quercus suber could be therefore adopted as a reference to trace the Mediterranean bioclimate area. A better knowledge of the past events of Mediterranean vegetation, a wider range of study species and environmental determinants are essential to inform us about its current state, its sensitivity to human impact and the potential responses to future changes.
Scholz, Alexander; Navarrete-Muñoz, Eva Maria; Garcia de la Hera, Manuela; Gimenez-Monzo, Daniel; Gonzalez-Palacios, Sandra; Valera-Gran, Desirée; Torres-Collado, Laura; Vioque, Jesus
2016-01-01
To describe the association between consumption of different alcoholic beverages and adherence to the Mediterranean diet. A cross-sectional analysis was conducted of the baseline data of the DiSA-UMH study, an ongoing cohort study with Spanish health science students (n=1098) aged 17-35 years. Dietary information was collected by a validated 84-item food frequency questionnaire. Participants were grouped into non-drinkers, exclusive beer and/or wine drinkers and drinkers of all types of alcoholic beverages. Mediterranean diet adherence was determined by using a modification of the relative Mediterranean Diet Score (rMED; score range: 0-16) according to consumption of 8 dietary components. We performed multiple linear and multinomial regression analyses. The mean alcohol consumption was 4.3g/day (SD: 6.1). A total of 19.5%, 18.9% and 61.6% of the participants were non-drinkers, exclusive beer and/or wine drinkers and drinkers of all types of alcoholic beverages, respectively. Participants who consumed beer and/or wine exclusively had higher rMED scores than non-drinkers (β: 0.76, 95%CI: 0.25-1.27). Drinkers of all types of alcoholic beverages had similar rMED scores to non-drinkers. Non-drinkers consumed less fish and more meat, whereas drinkers of all types of alcoholic beverages consumed fewer fruits, vegetables and more meat than exclusive beer and/or wine drinkers. The overall alcohol consumption among the students in our study was low-to-moderate. Exclusive beer and/or wine drinkers differed regarding the Mediterranean diet pattern from non-drinkers and drinkers of all types of alcohol. These results show the need to properly adjust for diet in studies of the effects of alcohol consumption. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.
Panagiotakos, Demosthenes B; Polystipioti, Anna; Papairakleous, Natassa; Polychronopoulos, Evangelos
2007-01-01
There is increasing evidence that there are protective health effects from diets which are high in fruits, vegetables, legumes, and whole grains, and which include fish, nuts, and low-fat dairy products. We sought to investigate the association of Mediterranean diet on clinical status of 150 elderly men and women. During 2004 - 2005, we studied 53 men and 97 women, aged 65 to 100 years, from various areas of Cyprus. A diet score that assesses the inherent characteristics of the Mediterranean diet was developed for each individual (range 0-55). Adoption of the Mediterranean diet was evaluated against the presence of cardiovascular risk factors like hypertension, diabetes, hypercholesterolemia and obesity. 26% of men and 18% of women had diabetes, 60% of men and 58% of women had hypertension, 60% of men and 68% of women had hypercholesterolemia, and 34% of men and 52% of women were obese. More than 90% of the participants reported consistency in their dietary habits for at least the past 3-4 decades. A significant inverse correlation was observed between diet score and the number of the investigated risk factors (rho= -0.26, p< 0.001). When we took into account age, sex, smoking habits, and physical activity status, we observed that a 10-unit increase in the diet score was associated with 21% lower odds of having one additional risk factor in women (p< 0.001) and with 14% lower odds in men (p = 0.05). Adherence to a Mediterranean diet is associated with reduced odds of having hypercholesterolemia, hypertension, diabetes and obesity among elderly people.
Levitan, Emily B.; Lewis, Cora E.; Tinker, Lesley F.; Eaton, Charles B.; Ahmed, Ali; Manson, JoAnn E.; Snetselaar, Linda G.; Martin, Lisa W.; Trevisan, Maurizio; Howard, Barbara V.; Shikany, James M.
2015-01-01
Background Current dietary recommendations for heart failure (HF) patients are largely based on data from non-HF populations; evidence regarding associations of dietary patterns with outcomes in HF is limited. We therefore evaluated associations of Mediterranean and DASH diet scores with mortality among postmenopausal women with HF. Methods and Results Women’s Health Initiative participants were followed from the date of HF hospitalization through the date of death or last participant contact prior to August 2009. Mediterranean and DASH diet scores were calculated from food-frequency questionnaires. Cox proportional hazards models adjusted for demographics, health behaviors, and health status were used to calculate hazard ratios (HR) and 95% confidence intervals (CI). Over a median of 4.6 years of follow-up, 1,385 of 3,215 (43.1%) participants who experienced a HF hospitalization died. Multivariable-adjusted HRs were 1 (reference), 1.05 (95% CI 0.89–1.24), 0.97 (95% CI 0.81–1.17), and 0.85 (95% CI 0.70–1.02) across quartiles of the Mediterranean diet score (p-trend = 0.08) and 1 (reference), 1.04 (95% CI 0.89–1.21), 0.83 (95% CI 0.70–0.98), and 0.84 (95% CI 0.70–1.00) across quartiles of the DASH diet score (p-trend = 0.01). Diet score components vegetables, must, and whole grain intake were inversely associated with mortality. Conclusions Higher DASH diet scores were associated with modestly lower mortality in women with HF, and there was a non-significant trend towards an inverse association with Mediterranean diet scores. These data provide support for the concept that dietary recommendations developed for other cardiovascular conditions or general populations may also be appropriate in HF patients. PMID:24107587
Levitan, Emily B; Ahmed, Ali; Arnett, Donna K; Polak, Joseph F; Hundley, W Gregory; Bluemke, David A; Heckbert, Susan R; Jacobs, David R; Nettleton, Jennifer A
2016-01-01
Background: Data are limited on the relation between dietary patterns and left ventricular (LV) structure and function. Objective: We examined cross-sectional associations of a diet-score assessment of a Mediterranean dietary pattern with LV mass, volume, mass-to-volume ratio, stroke volume, and ejection fraction. Design: We measured LV variables with the use of cardiac MRI in 4497 participants in the Multi-Ethnic Study of Atherosclerosis study who were aged 45–84 y and without clinical cardiovascular disease. We calculated a Mediterranean diet score from intakes of fruit, vegetables, nuts, legumes, whole grains, fish, red meat, the monounsaturated fat:saturated fat ratio, and alcohol that were self-reported with the use of a food-frequency questionnaire. We used linear regression with adjustment for body size, physical activity, and cardiovascular disease risk factors to model associations and assess the shape of these associations (linear or quadratic). Results: The Mediterranean diet score had a slight U-shaped association with LV mass (adjusted means: 146, 145, 146, and 147 g across quartiles of diet score, respectively; P-quadratic trend = 0.04). The score was linearly associated with LV volume, stroke volume, and ejection fraction: for each +1-U difference in score, LV volume was 0.4 mL higher (95% CI: 0.0, 0.8 mL higher), the stroke volume was 0.5 mL higher (95% CI: 0.2, 0.8 mL higher), and the ejection fraction was 0.2 percentage points higher (95% CI: 0.1, 0.3 percentage points higher). The score was not associated with the mass-to-volume ratio. Conclusions: A higher Mediterranean diet score is cross-sectionally associated with a higher LV mass, which is balanced by a higher LV volume as well as a higher ejection fraction and stroke volume. Participants in this healthy, multiethnic sample whose dietary patterns most closely conformed to a Mediterranean-type pattern had a modestly better LV structure and function than did participants with less–Mediterranean-like dietary patterns. This trial was registered at clinicaltrials.gov as NCT00005487. PMID:27488238
Levitan, Emily B; Ahmed, Ali; Arnett, Donna K; Polak, Joseph F; Hundley, W Gregory; Bluemke, David A; Heckbert, Susan R; Jacobs, David R; Nettleton, Jennifer A
2016-09-01
Data are limited on the relation between dietary patterns and left ventricular (LV) structure and function. We examined cross-sectional associations of a diet-score assessment of a Mediterranean dietary pattern with LV mass, volume, mass-to-volume ratio, stroke volume, and ejection fraction. We measured LV variables with the use of cardiac MRI in 4497 participants in the Multi-Ethnic Study of Atherosclerosis study who were aged 45-84 y and without clinical cardiovascular disease. We calculated a Mediterranean diet score from intakes of fruit, vegetables, nuts, legumes, whole grains, fish, red meat, the monounsaturated fat:saturated fat ratio, and alcohol that were self-reported with the use of a food-frequency questionnaire. We used linear regression with adjustment for body size, physical activity, and cardiovascular disease risk factors to model associations and assess the shape of these associations (linear or quadratic). The Mediterranean diet score had a slight U-shaped association with LV mass (adjusted means: 146, 145, 146, and 147 g across quartiles of diet score, respectively; P-quadratic trend = 0.04). The score was linearly associated with LV volume, stroke volume, and ejection fraction: for each +1-U difference in score, LV volume was 0.4 mL higher (95% CI: 0.0, 0.8 mL higher), the stroke volume was 0.5 mL higher (95% CI: 0.2, 0.8 mL higher), and the ejection fraction was 0.2 percentage points higher (95% CI: 0.1, 0.3 percentage points higher). The score was not associated with the mass-to-volume ratio. A higher Mediterranean diet score is cross-sectionally associated with a higher LV mass, which is balanced by a higher LV volume as well as a higher ejection fraction and stroke volume. Participants in this healthy, multiethnic sample whose dietary patterns most closely conformed to a Mediterranean-type pattern had a modestly better LV structure and function than did participants with less-Mediterranean-like dietary patterns. This trial was registered at clinicaltrials.gov as NCT00005487. © 2016 American Society for Nutrition.
Harpacticoid copepod diversity at two physically reworked sites in the deep sea
NASA Astrophysics Data System (ADS)
Thistle, David
1998-01-01
Grassle's and Jumars' theories of diversity maintenance in the quiescent deep sea view millimeter-to-meter-scale patchiness (mostly of biological origin) as crucial. In other deep-sea regions, episodes of strong near-bottom flow put the surficial sediment layers into motion, obliterating the biologically produced, millimeter-to-meter-scale patchiness. Under these theories, sites eroded so frequently that such patchiness is eliminated almost as soon as it is created should have lower diversities than sites where the time between erosive events is sufficient for this type of patchiness to be produced and exploited. I tested this prediction by comparing the diversities of harpacticoid copepods at two sites on Fieberling Guyot to determine whether Grassle's and Jumars' theories can be extended to the portion of the deep sea that experiences episodic erosive flows. At White Sand Swale (=WSS) (32°27.581'N, 127°47.839'W), strong near-bottom flows erode the surficial sediment daily. At Sea Pen Rim (=SPR) (32°27.631'N, 127°49.489'W), strong near-bottom flows erode the surficial sediment a few times annually. Contrary to expectation, the diversity of harpacticoid copepods was significantly greater at WSS than at SPR. However, the erosion regime at WSS may create small-scale patchiness that promotes harpacticoid diversity.
Computed tomography in pulmonary sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, D.A.; Webb, W.R.; Gamsu, G.
1989-05-01
We studied the high resolution CT (HRCT) scans of 15 patients with biopsy-proven sarcoidosis and correlated the findings with pulmonary function tests (12 patients), 67Ga scans (10 patients), bronchoalveolar lavage (five patients), recent transbronchial biopsy (six patients), and recent open lung biopsy (three patients). The HRCT features included small nodules, thickened interlobular septa, patchy focal increase in lung density, honeycombing, and central conglomeration of vessels and bronchi. Active alveolitis was present by gallium scanning criteria in 5 of 10 cases. By bronchoalveolar lavage criteria, activity was present in three of five cases. Patchy increase in density may correlate with activemore » alveolitis as seen on /sup 67/Ga scanning. High resolution CT was better than chest X-radiography for demonstration of patchy increase in density and for distinguishing nodules from septal thickening. Both nodules and patchy density were partly reversible following therapy. Nodular densities seen on CT correlated with the presence of granulomata on histology. Resting pulmonary function tests correlated poorly with presence and extent of lung disease on HRCT. The presence on HRCT of focal fine nodules, patchy focal increase in lung density, and central crowding of bronchi and vessels should suggest the diagnosis of sarcoidosis. In some patients, HRCT can identify unsuspected parenchymal lung disease and document the reversible components of sarcoid lung disease.« less
NASA Astrophysics Data System (ADS)
Miebach, A.; Chen, C.; Litt, T.
2017-12-01
Assessing paleoenvironmental conditions is crucial to understand the history of modern humans. The southern Levant functioned as a corridor for human migration processes such as the colonization of Europe and the spread of agriculture. Despite its important role in human history, the Levantine paleoenvironment is still insufficiently investigated. In particular, current reconstructions of the paleovegetation are grounded on poor data bases. Here, we revise former hypotheses about the paleovegetation of the southern Levant during the last glacial based on new palynological results from the Sea of Galilee and the Dead Sea. We further evaluate early signs of anthropogenic influences in the Dead Sea catchment by combining evidence of pollen, micro-charcoal, and spores. The palynological results suggest that drought-adapted herbs, dwarf shrubs, and grasses prevailed in the southern Levant during the last glacial. In contrast to the Holocene, there was no belt of continuous and dense Mediterranean vegetation surrounding the Sea of Galilee during MIS 2. Mediterranean elements such as deciduous oaks only occurred in limited amounts and were probably patchily distributed in the whole study area. The vegetation and moisture gradient was not as strong as today. Since the Lateglacial, the Dead Sea region witnessed several rapid environmental changes. Phases with considerably reduced woodland density, increased fire activity, and enhanced catchment erosion occurred. Although climatic triggers were possible, there is a strong indication of anthropogenic influences due to overall increasing human activities in the region. The study gains new insights into environmental responses of the southern Levant to climate variations in the past. It also contributes towards our understanding of human-environmental interactions during the early Holocene.
Intensity of African Humid Periods Estimated from Saharan Dust Fluxes.
Ehrmann, Werner; Schmiedl, Gerhard; Beuscher, Sarah; Krüger, Stefan
2017-01-01
North Africa experienced dramatic changes in hydrology and vegetation during the late Quaternary driven by insolation-induced shifts of the tropical rain belt and further modulated by millennial-scale droughts and vegetation-climate feedbacks. While most past proxy and modelling studies concentrated on the temporal and spatial dynamics of the last African humid period, little is known about the intensities and characteristics of pre-Holocene humid periods. Here we present a high-resolution record of fine-grained eastern Saharan dust from the Eastern Mediterranean Sea spanning the last 180 kyr, which is based on the clay mineral composition of the marine sediments, especially the kaolinite/chlorite ratio. Minimum aeolian kaolinite transport occurred during the African Humid Periods because kaolinite deflation was hampered by increased humidity and vegetation cover. Instead, kaolinite weathering from kaolinite-bearing Cenozoic rocks was stored in lake basins, river beds and soils during these periods. During the subsequent dry phases, fine-grained dust was mobilised from the desiccated lakes, rivers and soils resulting in maximum aeolian uptake and transport of kaolinite. The kaolinite transport decreased again when these sediment sources exhausted. We conclude that the amount of clay-sized dust blown out of the Sahara into the Eastern Mediterranean Sea is proportional to the intensity of the kaolinite weathering and accumulation in soils and lake sediments, and thus to the strength of the preceding humid period. These humid periods provided the windows for the migration of modern humans out of Africa, as postulated previously. The strongest humid period occurred during the Eemian and was followed by two weaker phases centred at ca. 100 ka and ca. 80 ka.
Intensity of African Humid Periods Estimated from Saharan Dust Fluxes
Ehrmann, Werner; Schmiedl, Gerhard; Beuscher, Sarah; Krüger, Stefan
2017-01-01
North Africa experienced dramatic changes in hydrology and vegetation during the late Quaternary driven by insolation-induced shifts of the tropical rain belt and further modulated by millennial-scale droughts and vegetation-climate feedbacks. While most past proxy and modelling studies concentrated on the temporal and spatial dynamics of the last African humid period, little is known about the intensities and characteristics of pre-Holocene humid periods. Here we present a high-resolution record of fine-grained eastern Saharan dust from the Eastern Mediterranean Sea spanning the last 180 kyr, which is based on the clay mineral composition of the marine sediments, especially the kaolinite/chlorite ratio. Minimum aeolian kaolinite transport occurred during the African Humid Periods because kaolinite deflation was hampered by increased humidity and vegetation cover. Instead, kaolinite weathering from kaolinite-bearing Cenozoic rocks was stored in lake basins, river beds and soils during these periods. During the subsequent dry phases, fine-grained dust was mobilised from the desiccated lakes, rivers and soils resulting in maximum aeolian uptake and transport of kaolinite. The kaolinite transport decreased again when these sediment sources exhausted. We conclude that the amount of clay-sized dust blown out of the Sahara into the Eastern Mediterranean Sea is proportional to the intensity of the kaolinite weathering and accumulation in soils and lake sediments, and thus to the strength of the preceding humid period. These humid periods provided the windows for the migration of modern humans out of Africa, as postulated previously. The strongest humid period occurred during the Eemian and was followed by two weaker phases centred at ca. 100 ka and ca. 80 ka. PMID:28129378
Nurmatov, Ulugbek; Devereux, Graham; Sheikh, Aziz
2011-03-01
Epidemiologic studies suggest that deficiencies of the nutrients selenium; zinc; vitamins A, C, D, and E; and low fruit and vegetable intake may be associated with the development of asthma and allergic disorders. To investigate the evidence that nutrient and food intake modifies the risk of children developing allergy. We systematically searched 11 databases. Studies were critically appraised, and meta-analyses were undertaken. We identified 62 eligible reports. There were no randomized controlled trials. Studies used cohort (n = 21), case-control (n = 15), or cross-sectional (n = 26) designs. All studies were judged to be at moderate to substantial risk of bias. Meta-analysis revealed that serum vitamin A was lower in children with asthma compared with controls (odds ratio [OR], 0.25; 95% CI, 0.10-0.40). Meta-analyses also showed that high maternal dietary vitamin D and E intakes during pregnancy were protective for the development of wheezing outcomes (OR, 0.56, 95% CI, 0.42-0.73; and OR, 0.68, 95% CI, 0.52-0.88, respectively). Adherence to a Mediterranean diet was protective for persistent wheeze (OR, 0.22; 95% CI, 0.08-0.58) and atopy (OR, 0.55; 95% CI, 0.31-0.97). Seventeen of 22 fruit and vegetable studies reported beneficial associations with asthma and allergic outcomes. Results were not supportive for other allergic outcomes for these vitamins or nutrients, or for any outcomes in relation to vitamin C and selenium. The available epidemiologic evidence is weak but nonetheless supportive with respect to vitamins A, D, and E; zinc; fruits and vegetables; and a Mediterranean diet for the prevention of asthma. Experimental studies of these exposures are now warranted. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
2000 Years of Grazing History and the Making of the Cretan Mountain Landscape, Greece.
Jouffroy-Bapicot, Isabelle; Vannière, Boris; Iglesias, Virginia; Debret, Maxime; Delarras, Jean-François
2016-01-01
Understanding the processes that led to the recent evolution of Mediterranean landscapes is a challenging question that can be addressed with paleoecological data. Located in the White Mountains of Crete, Asi Gonia peat bog constitutes an exceptional 2000-years-long sedimentary archive of environmental change. In this study, we document the making of the White Mountains landscape and assess human impact on ecosystem trajectories. The paleoenvironmental reconstruction is based on high-resolution analyses of sediment, pollen, dung fungal spores and charcoal obtained from a 6-m core collected from the bog. Multiproxy analyses and a robust chronological control have shed light on anthropogenic and natural processes that have driven ecological changes, giving rise to the present-day Mediterranean ecosystem. Our results suggest that sediment accumulation began during the transition from the Hellenistic to the Roman period, likely due to watershed management. The evolution of the peat bog as well as vegetation dynamics in the surrounding area were linked to past climate changes but were driven by human activities, among which breeding was of great importance. Charcoal analysis reveals that fire was largely used for the construction and maintenance of sylvo-agropastoral areas. Pollen data allow the identification of three main vegetation assemblages: 1) evergreen oak forest (before ca. 850 AD), 2) heather maquis (ca. 850 to 1870 AD), 3) phrygana/steppe landscape. Rapid changes between phases in vegetation development are associated with tipping-points in ecosystem dynamics resulting from anthropogenic impact. The modern ecosystem did not get established until the 20th century, and it is characterized by biodiversity loss along with a dramatic drying of the peat bog.
2000 Years of Grazing History and the Making of the Cretan Mountain Landscape, Greece
Jouffroy-Bapicot, Isabelle; Vannière, Boris; Iglesias, Virginia; Debret, Maxime; Delarras, Jean-François
2016-01-01
Understanding the processes that led to the recent evolution of Mediterranean landscapes is a challenging question that can be addressed with paleoecological data. Located in the White Mountains of Crete, Asi Gonia peat bog constitutes an exceptional 2000-years-long sedimentary archive of environmental change. In this study, we document the making of the White Mountains landscape and assess human impact on ecosystem trajectories. The paleoenvironmental reconstruction is based on high-resolution analyses of sediment, pollen, dung fungal spores and charcoal obtained from a 6-m core collected from the bog. Multiproxy analyses and a robust chronological control have shed light on anthropogenic and natural processes that have driven ecological changes, giving rise to the present-day Mediterranean ecosystem. Our results suggest that sediment accumulation began during the transition from the Hellenistic to the Roman period, likely due to watershed management. The evolution of the peat bog as well as vegetation dynamics in the surrounding area were linked to past climate changes but were driven by human activities, among which breeding was of great importance. Charcoal analysis reveals that fire was largely used for the construction and maintenance of sylvo-agropastoral areas. Pollen data allow the identification of three main vegetation assemblages: 1) evergreen oak forest (before ca. 850 AD), 2) heather maquis (ca. 850 to 1870 AD), 3) phrygana/steppe landscape. Rapid changes between phases in vegetation development are associated with tipping-points in ecosystem dynamics resulting from anthropogenic impact. The modern ecosystem did not get established until the 20th century, and it is characterized by biodiversity loss along with a dramatic drying of the peat bog. PMID:27280287
NASA Astrophysics Data System (ADS)
Seaby, L. P.; Tague, C. L.; Hope, A. S.
2006-12-01
The Mediterranean type environments (MTEs) of California are characterized by a distinct wet and dry season and high variability in inter-annual climate. Water limitation in MTEs makes eco-hydrological processes highly sensitive to both climate variability and frequent fire disturbance. This research modeled post-fire eco- hydrologic behavior under historical and moderate and extreme scenarios of future climate in a semi-arid chaparral dominated southern California MTE. We used a physically-based, spatially-distributed, eco- hydrological model (RHESSys - Regional Hydro-Ecologic Simulation System), to capture linkages between water and vegetation response to the combined effects of fire and historic and future climate variability. We found post-fire eco-hydrologic behavior to be strongly influenced by the episodic nature of MTE climate, which intensifies under projected climate change. Higher rates of post-fire net primary productivity were found under moderate climate change, while more extreme climate change produced water stressed conditions which were less favorable for vegetation productivity. Precipitation variability in the historic record follows the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), and these inter-annual climate characteristics intensify under climate change. Inter-annual variation in streamflow follows these precipitation patterns. Post-fire streamflow and carbon cycling trajectories are strongly dependent on climate characteristics during the first 5 years following fire, and historic intra-climate variability during this period tends to overwhelm longer term trends and variation that might be attributable to climate change. Results have implications for water resource availability, vegetation type conversion from shrubs to grassland, and changes in ecosystem structure and function.
Jiménez-Pinilla, P; Lozano, E; Mataix-Solera, J; Arcenegui, V; Jordán, A; Zavala, L M
2016-12-01
Forest fires usually modify soil water repellency (SWR), and its persistence and intensity show a high variability both in space and time. This research studies the evolution of SWR in a Mediterranean calcareous soil affected by a forest fire, which occurred in Gorga (SE Spain) in July 2011, comparing the effect of the main vegetation cover between pine (Pinus halepensis) and shrubs species (Quercus coccifera, Rosmarinus officinalis, Cistus albidus, Erica arborea and Brachypodium retusum) and the relationship with soil moisture content (SMC). Also the study analyzed the effect of ash on SWR dynamics under field conditions. Six plots were established on the fire-affected area and the unburned-control-adjacent area to monitoring SWR with the water drop penetration time (WDPT) test, SMC through moist sensors (5cm depth) and three different ash treatments: ash presence, ash absence and incorporation of ash into the soil. An immediate increase of SWR was observed in the fire-affected area, mainly in pine plots. SWR changes in control (unburned) plots were quite similar between different types of vegetation influence, despite higher SWR values being observed on pine plots during the study period. A noticeable decrease of SWR was observed during the first months after fire in the affected areas, especially after the first rainy period, both in pine and shrubs plots. SWR increase was registered in all plots, and the highest levels were in March 2012 in burned pine plots. SWR decrease was higher in plots where ash was removed. Fire-affected soils became wettable 1year and a half after the fire. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gouveia, Célia M.; Trigo, Ricardo M.
2014-05-01
The Iberian Peninsula is recurrently affected by drought episodes and therefore by the adverse effects associated that range from severe water shortages to economic losses and related social impacts. During the hydrological years of 2004/2005 and 2011/2012, Iberia was hit by two of the worst drought episodes ever recording in this semi-arid region (Garcia-Herrera at al., 2007; Trigo et al., 2013). These two drought episodes were extreme in both its magnitude and spatial extent. A tendency towards a drier Mediterranean for the period 1970-2010 in comparison with 1901-70 has been identified (Hoerling et al., 2012), reinforcing the need for a continuous monitoring of vegetation stress and reliable estimates of the drought impacts. The strong effect of water scarcity on vegetation dynamics is well documented in Mediterranean and other semi-arid regions. Despite the usual link established between the decrease of vegetation greenness and the lack of precipitation during a considerably long period, the impact on vegetation activity may be amplified by other climatic anomalies, such as high temperature, high wind, and low relative humidity. The recent availability of consistent satellite imagery covering large regions over long periods of time has progressively reinforced the role of remote sensing in environmental studies, in particular in those related to drought episodes (e.g. Gouveia et al., 2009). The aim of the present work is to assess and monitor the cumulative impact over time of drought conditions on vegetation over Iberian Peninsula. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2013. The entire 15-yr long period was analysed, but particular attention was devoted to the two extreme drought episodes of 2004-2005 and 2011-2012. During the hydrological years of 2004-2005 and 2011-2012 drought episodes negative anomalies of NDVI were observed over large sectors of Iberia for up to seven months (out of eleven) of the vegetative cycle. While in the case of the drought episode of 2005 the impact on vegetation covered roughly 2/3 of the Iberian Peninsula (Gouveia et al., 2012), whereas in the recent episode of 2012 the deficit in greenness affected a more restrictive area located in central Iberia. The vegetation response to water stress was also analysed and compared for different land cover types. Results revealed a stronger vulnerability to drought events for arable land with severe impacts on cereals crop productions and yield (namely wheat), for Portugal and Spain in both years, however slightly less severe for 2012. In conclusion, and from an operational point of view, our results reveal the ability of the developed methodology to monitor vegetation stress and droughts in Iberia. Acknowledgments: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project QSECA (PTDC/AAG-GLO/4155/2012) Garcia-Herrera R., Paredes D., Trigo R. M., Trigo I. F., Hernandez E., Barriopedro D. and Mendes M. A., 2007: The Outstanding 2004/05 Drought in the Iberian Peninsula: Associated Atmospheric Circulation, J. Hydrometeorol., 8, 483-498. Gouveia C., Trigo R. M., and DaCamara C. C., 2009: Drought and vegetation stress monitoring in Portugal using satellite data, Nat. Hazards Earth Syst. Sci., 9, 185-195, doi:10.5194/nhess-9-185- 2009. Gouveia C.M., Bastos A., Trigo R.M., DaCamara C.C., 2012: Drought impacts on vegetation in the pre and post-fire events over Iberian Peninsula". Natural Hazards Earth System Sciences, 12, 3123-3137, 2012, doi:10.5194/nhess-12-3123-2012. Hoerling M., Eischeid J., Perlwitz J., Quan X., Zhang T., Pegion P., 2012: On the Increased Frequency of Mediterranean Drought. J. Climate, 25, 2146-2161. doi: http://dx.doi.org/10.1175/JCLI-D-11-00296.1 Trigo R.M., Añel J., Barriopedro D., García-Herrera R., Gimeno L., Nieto R., Castillo R., Allen M.R., Massey N. (2013), The record Winter drought of 2011-12 in the Iberian Peninsula [in "Explaining Extreme Events of 2012 from a Climate Perspective". [Peterson, T. C., M. P. Hoerling, P.A. Stott and S. Herring, Eds.] Bulletin of the American Meteorological Society, 94 (9), S41-S45.
NASA Astrophysics Data System (ADS)
Corona, R.; Montaldo, N.
2017-12-01
Mediterranean ecosystems are typically heterogeneous, with contrasting plant functional types (PFT, woody vegetation and grass) that compete for water use. Due to the complexity of these ecosystems there is still uncertainty on the estimate of the evapotranspiration (ET). Micrometerological measurements (e.g. eddy covariance method based, EC ) are widely used for ET estimate, but in heterogeneous systems one of the main assumption (surface homogeneity) is not preserved and the method may become less robust. In this sense, the coupled use of sap flow sensors for tree transpiration estimate, surface temperature sensors, remote sensing information for land surface characterization allow to estimate the ET components and the energy balances of the three main land surface components (woody vegetation, grass and bare soil), overtaking the EC method uncertainties. The experimental site of Orroli, in Sardinia (Italy), is a typical Mediterranean heterogeneous ecosystem, monitored from the University of Cagliari since 2003. With the intent to perform an intensive field campaign for the ET estimation, we verified the potentiality of coupling eddy covariance (EC) method, infrared sensors and thermal dissipation methods (i.e. sap flow technique) for tree transpiration estimate. As a first step 3 commercial sap flux sensors were installed in a wild olive clump where the skin temperature of one tree in the clump was monitored with an infrared transducer. Then, other 54 handmade sensors were installed in 14 clumps in the EC footprint. Measurements of diameter were recorded in all the clumps and the sapwood depth was derived from measurements in several trees. The field ET estimation from the 4 commercial sensors was obtained assuming 4 different relationship between the monitored sap flux and the diameter of the species in the footprint. Instead for the 54 handmade sensors a scaling procedure was applied based on the allometric relationships between sapwood area, diameter and canopy cover area within the EC footprint. Furthermore, the hydrologic relationships between soil moisture content and ET of woody vegetation has been computed from sap flux measurements. The ET components are well estimated, highlighting the strong water resistance of wild olive, which survive in drastic dry conditions, in contrast with grass species.
Mediterranean-type ecosystems: the influence of biodiversity on their functioning
Davis, George W.; Richardson, David M.; Keeley, Jon E.; Hobbs, Richard J.; Mooney, H.A.; Cushman, J.H.; Medina, E.; Sala, O.E.; Schulze, E.-D.
1996-01-01
Ecosystems in the Mediterranean-climate regions of the world have served as a unit for comparative ecological studies for over two decades. The cohesiveness of research in this set of widely distributed regions rests on the similarity of the climates where they occur, and the identifiable convergence in elements of their vegetation structure (Di Castri and Mooney 1973). In this chapter we review functional aspects of what have come to be known as Mediterranean-type ecosystems (METs) in the context of a concerned global interest in the sustainability of the human environment and its dependence on biological diversity. The approach we adopt here is to look for evidence that this biodiversity, for which some MTEs are renowned (Cowling, 1992; Hobbs, 1992), has an influence on processes which are important both for the maintenance of natural systems, and for providing "ecosystem services" with human utility. Almost a century ago, Schimper (1903) recognized the biological similarities between five widely separated regions characterized by Mediterranean-type climates, and much comparative work has been done on that basis since. These regions comprise the Mediterranean basin itself, a major portion of California, central Chile, the southwestern and southern extremities of South Africa, and parts of southwestern and southern Australia (Figure 7.1). The first attention paid to MTEs in terms of quantitative ecological research arose out of the International Biological Programme (IBP) of the 1960s and 1970s. Those efforts focused on comparisons between the Chilean and Californian systems (Mooney 1977), and dealt with parallel models of ecosystem processes, especially water flux (Fuentes et al 1995). Because of the already perceived similarities between vegetation in these and the other three regions, the project was soon extended to include all five regions. The first broad comparative overview was published as an anthology which considered the origins and the convergent evolution of MTE components (Di Castri and Mooney 1973). Although the currently accepted classifications of the MTEs is to some extent artificial, it does provide a basis for comparative work, as well as placing mild, temperate winter rainfall regions in perspective with other system types, such as forests, arid lands and even savannas. It is against this backdrop that the MTE research collegium has grown, giving rise to the organizational structure known as ISOMED (the International Society of Mediterranean Ecologists), which has convened regular conferences under the label MEDECOS, plus a number of extra meetings on specific topics (Table 7.1). One of the more recent in this series of MTE meetings was convened under the auspices of ICSU's Scientific Committee on Problems of the Environment (SCOPE) (see Table 7.1), and dealt with the questions about the functional value of biodiversity. This chapter is based on that meeting and its proceedings (Richardson and Cowling 1993); David and Richardson 1995), and is a distillation of input by teams of ecologists from each of the five regions.
NASA Astrophysics Data System (ADS)
Gampe, David; Ludwig, Ralf
2013-04-01
According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. While there is scientific consensus that climate induced changes on the hydrology of Mediterranean regions are presently occurring and are projected to amplify in the future, very little knowledge is available about the quantification of these changes, which is hampered by a lack of suitable and cost effective hydrological monitoring and modeling systems. The European FP7-project CLIMB is aiming to analyze climate induced changes on the hydrology of the Mediterranean Basins by investigating seven test sites located in the countries Italy, France, Turkey, Tunisia, Gaza and Egypt. CLIMB employs a combination of novel geophysical field monitoring concepts, remote sensing techniques and integrated hydrologic modeling to improve process descriptions and understanding and to quantify existing uncertainties in climate change impact analysis. One of those seven sites is the Gaza Strip, located in the Eastern Mediterranean and part of the Palestinian Autonomous Area, covers an area of 365km² with a length of 35km and 6 to 12km in width. Elevation ranges from sea level up to 104m in the East of the test site. Mean annual precipitation varies from 235mm in the South to 420mm in the North of the area. The inter annual variability of rainfall and the rapid population growth in an highly agricultural used area represent the major challenges in this area. The physically based Water Simulation Model WaSiM Vers. 2 (Schulla & Jasper (1999)) is setup to model current and projected future hydrological conditions. The availability of measured meteorological and hydrological data is poor as common to many Mediterranean catchments. The lack of available measured input data hampers the calibration of the model setup and the validation of model outputs. WaSiM was driven with meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. State of the art remote sensing techniques and field measuring techniques were applied to improve the quality of hydrological input parameters. For the parameterization of the vegetation the Leaf Area Index (LAI) is a crucial component. However, the LAI is difficult to access at field scale, hence a simple remote sensing approach, using the Normalized Difference Vegetation Index (NDVI) and MODIS LAI information, was applied for the parameterization in WaSiM. As no permanent streams, hence no discharge measurements, exist in the Gaza Strip, the actual evapotranspiration (ETact) outputs of the model were used for model validation. Landsat TM images were applied to calculate the actual monthly mean ETact rates using the triangle method (Jiang and Islam, 1999). Simulated spatial ETact patterns and those derived from remote sensing show a good fit especially for the growing season.
A Heart-Healthy Diet: Recent Insights and Practical Recommendations.
Dinu, Monica; Pagliai, Giuditta; Sofi, Francesco
2017-08-24
The purpose of this study is to review the current evidence on the relationship between diet and heart, giving practical recommendations for cardiovascular prevention. A heart-healthy diet should maximize the consumption of whole grains, vegetables, fruit, and legumes and discourage the consumption of meat and meat products as well as refined and processed foods. Plant-based diets fully meet these criteria, and the evidence supporting the protective effect of these dietary patterns evolved rapidly in recent years. Among plant-based diets, the Mediterranean and vegetarian diets gained the greater interest, having been associated with numerous health benefits such as reduced levels of traditional and novel risk factors and lower risk of cardiovascular disease. These positive effects may be explained by their high content of dietary fiber, complex carbohydrate, vitamins, minerals, polyunsaturated fatty acids, and phytochemicals. Current evidence suggests that both Mediterranean and vegetarian diets are consistently beneficial with respect to cardiovascular disease.
Volatile diterpene emission by two Mediterranean Cistaceae shrubs.
Yáñez-Serrano, A M; Fasbender, L; Kreuzwieser, J; Dubbert, D; Haberstroh, S; Lobo-do-Vale, R; Caldeira, M C; Werner, C
2018-05-01
Mediterranean vegetation emits a wide range of biogenic volatile organic compounds (BVOCs) among which isoprenoids present quantitatively the most important compound class. Here, we investigated the isoprenoid emission from two Mediterranean Cistaceae shrubs, Halimium halimifolium and Cistus ladanifer, under controlled and natural conditions, respectively. For the first time, diurnal emission patterns of the diterpene kaurene were detected in real-time by Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometer. Kaurene emissions were strongly variable among H. halimifolium plants, ranging from 0.01 ± 0.003 to 0.06 ± 0.01 nmol m -2 s -1 in low and high emitting individuals, respectively. They were in the same order of magnitude as monoterpene (0.01 ± 0.01 to 0.11 ± 0.04 nmol m -2 s -1 ) and sesquiterpene (0.01 ± 0.01 to 0.52 nmol m -2 s -1 ) emission rates. Comparable range and variability was found for C. ladanifer under natural conditions. Labelling with 13 C-pyruvate suggested that emitted kaurene was not derived from de novo biosynthesis. The high kaurene content in leaves, the weak relationship with ecophysiological parameters and the tendency of higher emissions with increasing temperatures in the field indicate an emission from storage pools. This study highlights significant emissions of kaurene from two Mediterranean shrub species, indicating that the release of diterpenes into the atmosphere should probably deserve more attention in the future.
Anthropization of groundwater resources in the Mediterranean region: processes and challenges
NASA Astrophysics Data System (ADS)
Leduc, Christian; Pulido-Bosch, Antonio; Remini, Boualem
2017-09-01
A comprehensive overview is provided of processes and challenges related to Mediterranean groundwater resources and associated changes in recent decades. While most studies are focused thematically and/or geographically, this paper addresses different stages of groundwater exploitation in the region and their consequences. Examples emphasize the complex interactions between the physical and social dimensions of uses and evolution of groundwater. In natural conditions, Mediterranean groundwater resources represent a wide range of hydrogeological contexts, recharge conditions and rates of exploitation. They have been actively exploited for millennia but their pseudo-natural regimes have been considerably modified in the last 50 years, especially to satisfy agricultural demand (80% of total water consumption in North Africa), as well as for tourism and coastal cities. Climate variability affects groundwater dynamics but the various forms of anthropization are more important drivers of hydrological change, including changes in land use and vegetation, hydraulic works, and intense pumpings. These changes affect both the quantity and quality of groundwater at different scales, and modify the nature of hydrogeological processes, their location, timing, and intensity. The frequent cases of drastic overexploitation illustrate the fragility of Mediterranean groundwater resources and the limits of present forms of management. There is no easy way to maintain or recover sustainability, which is often threatened by short-term interests. To achieve this goal, a significant improvement in hydrogeological knowledge and closer collaboration between the various disciplines of water sciences are indispensable.
Fagnano, Massimo; Maggio, Albino
2018-03-01
The main environmental stresses of Italian croplands are discussed in relation to their interactions with ozone effects on crops. Water deficit and salinization are frequent in Mediterranean environments during spring-summer causing a decrease of soil water potential and water uptake by roots and consequently stomatal closure. These stresses also stimulate secondary metabolism and antioxidant accumulation, which also serves as a stress protection mechanism. High concentrations of tropospheric ozone are common all over Italy during the spring-summer season. Ozone injuries to vegetation are related to its penetration into plant tissues, mostly via stomatal uptake, rather than to tropospheric concentrations per se. In several crops, closure of stomata due to drought/salinization reduces ozone entering into leaf tissues and counteracts possible ozone damages. Furthermore, the stimulation of antioxidant synthesis as a response to environmental stresses can represent a further protection factor from ozone injuries for Mediterranean crops.The co-existence of stress-induced stomatal closure and high ozone levels during spring-summer in Mediterranean environments implies that models that do not take into account physiological responses of crops to drought and salinity stress may overestimate ozone damages when stress responses overlap with seasonal ozone peaks. The shift from concentration-based to flux-based approaches has improved the accuracy of models to assess ozone effects on agricultural crops. It is, however, necessary to further refine the flux concept with respect to the plant abiotic stress defense capacity that can differ among genotypes, climatic conditions, and physiological states.
Development of an Indicator to Monitor Mediterranean Wetlands
Sanchez, Antonio; Abdul Malak, Dania; Guelmami, Anis; Perennou, Christian
2015-01-01
Wetlands are sensitive ecosystems that are increasingly subjected to threats from anthropogenic factors. In the last decades, coastal Mediterranean wetlands have been suffering considerable pressures from land use change, intensification of urban growth, increasing tourism infrastructure and intensification of agricultural practices. Remote sensing (RS) and Geographic Information Systems (GIS) techniques are efficient tools that can support monitoring Mediterranean coastal wetlands on large scales and over long periods of time. The study aims at developing a wetland indicator to support monitoring Mediterranean coastal wetlands using these techniques. The indicator makes use of multi-temporal Landsat images, land use reference layers, a 50m numerical model of the territory (NMT) and Corine Land Cover (CLC) for the identification and mapping of wetlands. The approach combines supervised image classification techniques making use of vegetation indices and decision tree analysis to identify the surface covered by wetlands at a given date. A validation process is put in place to compare outcomes with existing local wetland inventories to check the results reliability. The indicator´s results demonstrate an improvement in the level of precision of change detection methods achieved by traditional tools providing reliability up to 95% in main wetland areas. The results confirm that the use of RS techniques improves the precision of wetland detection compared to the use of CLC for wetland monitoring and stress the strong relation between the level of wetland detection and the nature of the wetland areas and the monitoring scale considered. PMID:25826210
Development of an indicator to monitor mediterranean wetlands.
Sanchez, Antonio; Abdul Malak, Dania; Guelmami, Anis; Perennou, Christian
2015-01-01
Wetlands are sensitive ecosystems that are increasingly subjected to threats from anthropogenic factors. In the last decades, coastal Mediterranean wetlands have been suffering considerable pressures from land use change, intensification of urban growth, increasing tourism infrastructure and intensification of agricultural practices. Remote sensing (RS) and Geographic Information Systems (GIS) techniques are efficient tools that can support monitoring Mediterranean coastal wetlands on large scales and over long periods of time. The study aims at developing a wetland indicator to support monitoring Mediterranean coastal wetlands using these techniques. The indicator makes use of multi-temporal Landsat images, land use reference layers, a 50m numerical model of the territory (NMT) and Corine Land Cover (CLC) for the identification and mapping of wetlands. The approach combines supervised image classification techniques making use of vegetation indices and decision tree analysis to identify the surface covered by wetlands at a given date. A validation process is put in place to compare outcomes with existing local wetland inventories to check the results reliability. The indicator´s results demonstrate an improvement in the level of precision of change detection methods achieved by traditional tools providing reliability up to 95% in main wetland areas. The results confirm that the use of RS techniques improves the precision of wetland detection compared to the use of CLC for wetland monitoring and stress the strong relation between the level of wetland detection and the nature of the wetland areas and the monitoring scale considered.
NASA Astrophysics Data System (ADS)
Marshall, Bennett D.; Chapman, Walter G.
2013-09-01
In this work we develop a new theory to model self assembling mixtures of single patch colloids and colloids with spherically symmetric attractions. In the development of the theory we restrict the interactions such that there are short ranged attractions between patchy and spherically symmetric colloids, but patchy colloids do not attract patchy colloids and spherically symmetric colloids do not attract spherically symmetric colloids. This results in the temperature, density, and composition dependent reversible self assembly of the mixture into colloidal star molecules. This type of mixture has been recently synthesized by grafting of complimentary single stranded DNA [L. Feng, R. Dreyfus, R. Sha, N. C. Seeman, and P. M. Chaikin, Adv. Mater. 25(20), 2779-2783 (2013)], 10.1002/adma.201204864. As a quantitative test of the theory, we perform new monte carlo simulations to study the self assembly of these mixtures; theory and simulation are found to be in excellent agreement.
Bacterial predator–prey dynamics in microscale patchy landscapes
Rotem, Or; Jurkevitch, Edouard; Dekker, Cees
2016-01-01
Soil is a microenvironment with a fragmented (patchy) spatial structure in which many bacterial species interact. Here, we explore the interaction between the predatory bacterium Bdellovibrio bacteriovorus and its prey Escherichia coli in microfabricated landscapes. We ask how fragmentation influences the prey dynamics at the microscale and compare two landscape geometries: a patchy landscape and a continuous landscape. By following the dynamics of prey populations with high spatial and temporal resolution for many generations, we found that the variation in predation rates was twice as large in the patchy landscape and the dynamics was correlated over shorter length scales. We also found that while the prey population in the continuous landscape was almost entirely driven to extinction, a significant part of the prey population in the fragmented landscape persisted over time. We observed significant surface-associated growth, especially in the fragmented landscape and we surmise that this sub-population is more resistant to predation. Our results thus show that microscale fragmentation can significantly influence bacterial interactions. PMID:26865299
The AAF in the Invasion of Southern France
1992-01-01
action. (e) To transport and drop airborne troops engaged in the operation. (f) To cooperate with the Maquis by air action and air supply. In addition MAAF...operations in aid of the Partisans. PLANNING As far back as i April 1943 the eyes of the Allied forces in the Mediterranean were focusing on a possible landing...elimination of bush and dry vegetation fire hazards; and erection of airfield buildings. Signals The problems faced by the Signals Planning Staff at
NASA Astrophysics Data System (ADS)
De la Torriente, A.; Serrano, A.; Fernández-Salas, L. M.; García, M.; Aguilar, R.
2018-05-01
High habitat diversity was observed on the Seco de los Olivos Seamount (SW Mediterranean Sea), a Site of Community Importance belonging to the Spanish marine Natura 2000 Network. Thirteen epibenthic habitats were identified by analysing 55 Remotely Operated Vehicle (ROV) transects from 76 m to 700 m depth and derived data from multibeam bathymetry and high resolution seismic profiles. Habitat identification was based on a combination of assemblages of habitat-forming species and the environmental characteristics supporting their distribution. Depth and slope were identified as the main significant factors structuring epibenthic assemblages. The high diversity and patchiness of habitats found on the Seco de los Olivos Seamount can be explained by the high environmental variability resulting from its wide geomorphologic diversity, where flat summits, steep flanks, rocky outcrops and sedimentary moats are combined. The distribution of benthic habitats at this seamount is likely a combination of suitable ecological conditions, local recruitment, feeding strategies and attachment mechanisms. Knowledge on the occurrence of habitats in areas of natural importance is crucial to species and habitats conservation and to develop proper monitoring and management programs aimed at fulfilling European regulation requirements.
NASA Astrophysics Data System (ADS)
Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen
2011-08-01
The seasonality of vegetation, i.e., developmental stages and phenological processes, affects the emission of volatile organic compounds (VOCs). Despite the potential significance, the contributions of seasonality to VOC emission quality and quantity are not well understood and are therefore often ignored in emission simulations. We investigated the VOC emission patterns of young and mature leaves of several Mediterranean plant species in relation to their physiological and developmental changes during the growing period and estimated Es. Foliar emissions of isoprenoids and oxygenated VOCs like methanol and acetone were measured online by means of a proton transfer reaction mass spectrometer (PTR-MS) and offline with gas chromatography coupled with a mass spectrometer and flame ionization detector. The results suggest that VOC emission is a developmentally regulated process and that quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced both the VOC Es and the relative importance of different VOCs. Methanol was the major compound contributing to the sum of target VOC emissions in young leaves (11.8 ± 10.4 μg g-1 h-1), while its contribution was minor in mature leaves (4.1 ± 4.1 μg g-1 h-1). Several plant species showed a decrease or complete subsidence of monoterpene, sesquiterpene, and acetone emissions upon maturity, perhaps indicating a potential response to the higher defense demands of young emerging leaves.
A montane Mediterranean climate supports year-round photosynthesis and high forest biomass.
Kelly, Anne E; Goulden, Michael L
2016-04-01
The mid-elevation forest of California's Sierra Nevada poses a bioclimatic paradox. Mid-elevation trees experience a montane Mediterranean climate, with near-freezing winter days and rain-free summers. The asynchrony between warmth and water input suggests low primary production, limited by photosynthetic dormancy in winter cold, and again in summer and early autumn with drought, yet this forest is characterized by tall trees and high biomass. We used eddy covariance in a mid-elevation Sierra stand to understand how winter cold and summer drought limit canopy photosynthesis and production. The trees exhibited canopy photosynthesis year-round. Trees avoided winter dormancy, and daytime CO2uptake continued despite a deep snowpack and near-freezing temperatures. Photosynthesis on sunny days continued at half of maximum rates when air temperature was 0 °C. Likewise, the vegetation avoided summer drought dormancy, and high rates of daytime CO2uptake and transpiration continued despite a 5-month period with only negligible water input. We attribute this drought avoidance to deep rooting and availability of deep soil water. Year-round photosynthesis helps explain the large biomass observed in the Sierra Nevada, and implies adaptive strategies that may contribute to the resiliency or vulnerability of Sierran vegetation to climate change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Models of Small-Scale Patchiness
NASA Technical Reports Server (NTRS)
McGillicuddy, D. J.
2001-01-01
Patchiness is perhaps the most salient characteristic of plankton populations in the ocean. The scale of this heterogeneity spans many orders of magnitude in its spatial extent, ranging from planetary down to microscale. It has been argued that patchiness plays a fundamental role in the functioning of marine ecosystems, insofar as the mean conditions may not reflect the environment to which organisms are adapted. Understanding the nature of this patchiness is thus one of the major challenges of oceanographic ecology. The patchiness problem is fundamentally one of physical-biological-chemical interactions. This interconnection arises from three basic sources: (1) ocean currents continually redistribute dissolved and suspended constituents by advection; (2) space-time fluctuations in the flows themselves impact biological and chemical processes, and (3) organisms are capable of directed motion through the water. This tripartite linkage poses a difficult challenge to understanding oceanic ecosystems: differentiation between the three sources of variability requires accurate assessment of property distributions in space and time, in addition to detailed knowledge of organismal repertoires and the processes by which ambient conditions control the rates of biological and chemical reactions. Various methods of observing the ocean tend to lie parallel to the axes of the space/time domain in which these physical-biological-chemical interactions take place. Given that a purely observational approach to the patchiness problem is not tractable with finite resources, the coupling of models with observations offers an alternative which provides a context for synthesis of sparse data with articulations of fundamental principles assumed to govern functionality of the system. In a sense, models can be used to fill the gaps in the space/time domain, yielding a framework for exploring the controls on spatially and temporally intermittent processes. The following discussion highlights only a few of the multitude of models which have yielded insight into the dynamics of plankton patchiness. In addition, this particular collection of examples is intended to furnish some exposure to the diversity of modeling approaches which can be brought to bear on the problem. These approaches range from abstract theoretical models intended to elucidate specific processes, to complex numerical formulations which can be used to actually simulate observed distributions in detail.
Vegetation-induced spatial variability of soil redox properties in wetlands
NASA Astrophysics Data System (ADS)
Szalai, Zoltán; Jakab, Gergely; Kiss, Klaudia; Ringer, Marianna; Balázs, Réka; Zacháry, Dóra; Horváth Szabó, Kata; Perényi, Katalin
2016-04-01
Vegetation induced land patches may result spatial pattern of on soil Eh and pH. These spatial pattern are mainly emerged by differences of aeration and exudation of assimilates. Present paper focuses on vertical extent and temporal dynamics of these patterns in wetlands. Two study sites were selected: 1. a plain wetland on calcareous sandy parent material (Ceglédbercel, Danube-Tisza Interfluve, Hungary); 2. headwater wetland with calcareous loamy parent material (Bátaapáti, Hungary). Two vegetation patches were studied in site 1: sedgy (dominated by Carex riparia) and reedy (dominated by Phragmites australis). Three patches were studied in site2: sedgy1 (dominated by C vulpina), sedgy 2 (C. riparia); nettle-horsetail (Urtica dioica and Equisetum arvense). Boundaries between patches were studied separately. Soil redox, pH and temperature studied by automated remote controlled instruments. Three digital sensors (Ponsell) were installed in each locations: 20cm and 40cm sensors represent the solum and 100 cm sensor monitors the subsoil). Groundwater wells were installed near to triplets for soil water sampling. Soil Eh, pH and temperature values were recorded in each 10 minutes. Soil water sampling for iron and DOC were carried out during saturated periods. Spatial pattern of soil Eh is clearly caused by vegetation. We measured significant differences between Eh values of the studied patches in the solum. We did not find this kinds horizontal differences in the subsoil. Boundaries of the patches usually had more reductive soil environment than the core areas. We have found temporal dynamics of the spatial redox pattern. Differences were not so well expressed during wintertime. These spatial patterns had influence on the DOC and iron content of porewater, as well. Highest temporal dynamics of soil redox properties and porewater iron could be found in the boundaries. These observations refer to importance patchiness of vegetation on soil chemical properties in wetlands. Authors are grateful to Hungarian Scientific research Fund (K100180)
NASA Astrophysics Data System (ADS)
Rey, Freddy; Louis, Séverine; Burylo, Mélanie; Raymond, Pierre
2013-04-01
On marly eroded terrains of the French Southern Alps, many researches are undertaken in order to better understand the role of vegetation and bioengineering works on erosion and sedimentation control. To this view, the eroded marly gullies of the French Southern Alps are an experimental design where an original French strategy of rehabilitation, developed by scientists from Irstea (ex-Cemagref), has been tested since 2002. It is comprised of the construction of bioengineering works, namely of "brush layers and brush mats of cuttings on deadwood microdams", and implements the use of willow cuttings (Salix purpurea and S. incana). The main objective of these works is to sustainably trap and retain marly sediment, by checking their performance (growth and survival of the cuttings, sediment trapping) in a mountainous and Mediterranean climate. In Canada, several private companies have developed their own knowledge and expertise in the conception and building of bioengineering works for erosion control, especially in the context of hilly and mountainous landscapes and climates. Therefore, it was decided to use the competence and expertise of Terra Erosion Control Ltd., a Canadian company, in the French torrential Mediterranean climate. Ten modalities were tested, the aims being to develop and/or to modify existing designs of current techniques, to experiment with other live cuttings (Populus nigra) and rooted species (Alnus spp. and Hippophae spp.), to evaluate and compare the potential use of different organic soil amendments in order to increase beneficial soil microorganisms and finally, to evaluate the potential use of specialized tools and equipment in order to increase the efficiency of the installation for vegetation establishment and sediment trapping, while decreasing the implementation costs. The experimental design was installed in March 2011 and the early observations in Spring 2012 showed that: 1/ most of the cuttings and the plants resisted to burial and to drought conditions; in particular, the structures using wooden boards instead of locally harvested logs appeared to be holding up well; 2/ designs of current techniques with vertical cuttings were better for resprouting and sediment trapping; 3/ 0.8m live cuttings of Populus nigra may represent an alternative to Salix spp., but resprout appeared lower; 4/ it was not possible to evaluate the performance of rooted species (Alnus spp. and Hippophae spp.); therefore more experiment is needed, especially with longer plants; 5/ organic soil amendments may increase vegetation development (BRF > fertilizer > compost > mixes). By comparing the results with similar sites used as benchmarks, installed since 2002, further observations in the spring of 2013 will allow us to evaluate the efficiency of the different modalities to improve vegetation establishment and sediment trapping.
NASA Astrophysics Data System (ADS)
Bellin, Nicolas; Vanacker, Veerle
2010-05-01
The Mediterranean region is commonly reported as the European region that is most affected by soil degradation. The degradation of Mediterranean soils has often been linked to inappropriate agricultural practices during the last decades besides its typical semiarid conditions. The present-day landscape in Southeast Spain is the result of a long occupation history. To have a better understanding of the impact of human societies on soil degradation, the main shifts in vegetation cover, climate and human occupation have to be taken into account. Recently published paleo-environmental data from continental pollen sequences, high-resolution marine cores, and estimations of the past Sea Surface Temperature (SST) of the Alborán Sea provide new insights in the evolution of the Mediterranean climate and vegetation during the Holocene. These data allow overcoming some of the shortcomings of previous studies on the interaction between humans and the landscape that were mainly based on extrapolations of site-specific information from continental deposits and archeological sites and large-scale regional correlations. Our compilation of multi-continental proxies from the Iberic Peninsula indicates that environmental conditions are strongly related to climatic oscillations and strongly correlated with the North Atlantic changes. By use of a vertical approach, several aridification episodes were detected from marine and continental records at 12000-11600 (H), 11100-10800 (G), 10300-9900 (F), 8600-8000 (E), 5500-4600 (D), 4000-3400 (C), 2700-2400 (B), 1800-1300 (A) cal. years BP. The data suggest that those severe aridification phases were most likely climatically induced, not human-driven and well correlated with the Bond events. We observe a clear association between climate, vegetation cover and sediment fluxes for the period from 12000 to 4600 cal. years BP. In contrast, during the last 4600 years, the reconstruction of various eco-historical periods indicated a weak to low association between sediment fluxes and climatic shifts. Periods of improved climatic conditions were associated with both low (end of Post Argaric-Omeya-Nazarene) and high (Chalcolithic-Roman-Early Phoenician I) erosion rates. Various prosperous civilizations (such as Agarics, Phoenicians and Romans) defined by a demographic explosion and associated with an overexploitation of natural resources, are accompanied with higher sediment fluxes. At the moment, we cannot exclude the possibility that the weak association observed between sediment fluxes and human-climatic factors for the last 4600 years is an artifact resulting from the low temporal resolution of soil erosion data from local sites compared to the high-resolution climatic data. It is clear that high-resolution data on sediment fluxes are required to test these hypotheses further.
Fog water collection and reforestation at mountain locations in a western Mediterranean basin region
NASA Astrophysics Data System (ADS)
Valiente, Ja; Estrela, Mj; Corell, D.; Fuentes, D.; Valdecantos, A.
2010-07-01
Previous studies carried out by the authors have shown the potential of fog water collection at several mountain locations in the Valencia region (western Mediterranean basin). This coastal region features typical conditions for a dry Mediterranean climate characterized by a pluviometric regime ranging from 400 to 600 mm with a strong annual dependence. Dry conditions together with land degradation that frequently results after recurrent fires occurred in the past make a difficult self-recovery for native forest vegetation so that some kind of human intervention is always recommended. In plots reforested with Mediterranean woody species, periods of more than 120 days without significant precipitation (>5 mm) result in mortality rates above 80% during the first summer in the field. The good potential of fog-water collection at certain mountain locations is considered in this study as an easily available water resource for the reforestation of remote areas where native vegetation cannot be reestablished by itself. A large flat panel made of UV-resistant HD-polyethylene monofilament mesh was deployed at a mountain location for bulk fog water harvesting. Water was stored in high-capacity tanks for the whole length of the experimental campaign and small timely water pulses localized deep in the planting holes were conducted during the summer dry periods. Survival rates and seedling performance of two forest tree species, Pinus pinaster and Quercus ilex, were quantified and correlated to irrigation pulses in a reforestation plot that took an area of about 2500 m2 and contained 620 1-year-old plants. Before and concurrently to the flat panel deployment, a passive omnidirectional fog-water collector of cylindrical shape was set in the area in combination to other environmental instruments such as a rain gauge, a wind direction and velocity sensor and a temperature and humidity probe. Proper orientation of the large flat panel was possible once the direction of local winds was matched up to fog occurrence and fog water yields. Additionally, a simple methodology was also found to transform fog water yields from the cylindrical collector into cumulative large flat-panel collector water catches by using wind sensor data. The method found allows an estimation of bulk fog-water catches at any single station of our fog collection network and the use of that information in future potential applications.
Donini, Lorenzo M; Dernini, Sandro; Lairon, Denis; Serra-Majem, Lluis; Amiot, Marie-Josèphe; Del Balzo, Valeria; Giusti, Anna-Maria; Burlingame, Barbara; Belahsen, Rekia; Maiani, Giuseppe; Polito, Angela; Turrini, Aida; Intorre, Federica; Trichopoulou, Antonia; Berry, Elliot M
2016-01-01
There is increasing evidence of the multiple effects of diets on public health nutrition, society, and environment. Sustainability and food security are closely interrelated. The traditional Mediterranean Diet (MD) is recognized as a healthier dietary pattern with a lower environmental impact. As a case study, the MD may guide innovative inter-sectorial efforts to counteract the degradation of ecosystems, loss of biodiversity, and homogeneity of diets due to globalization through the improvement of sustainable healthy dietary patterns. This consensus position paper defines a suite of the most appropriate nutrition and health indicators for assessing the sustainability of diets based on the MD. In 2011, an informal International Working Group from different national and international institutions was convened. Through online and face-to-face brainstorming meetings over 4 years, a set of nutrition and health indicators for sustainability was identified and refined. Thirteen nutrition indicators of sustainability relating were identified in five areas. Biochemical characteristics of food (A1. Vegetable/animal protein consumption ratios; A2. Average dietary energy adequacy; A3. Dietary Energy Density Score; A4. Nutrient density of diet), Food Quality (A5. Fruit and vegetable consumption/intakes; A6. Dietary Diversity Score), Environment (A7. Food biodiversity composition and consumption; A8. Rate of Local/regional foods and seasonality; A9. Rate of eco-friendly food production and/or consumption), Lifestyle (A10. Physical activity/physical inactivity prevalence; A11. Adherence to the Mediterranean dietary pattern), Clinical Aspects (A12. Diet-related morbidity/mortality statistics; A13. Nutritional Anthropometry). A standardized set of information was provided for each indicator: definition, methodology, background, data sources, limitations of the indicator, and references. The selection and analysis of these indicators has been performed (where possible) with specific reference to the MD. Sustainability of food systems is an urgent priority for governments and international organizations to address the serious socioeconomic and environmental implications of short-sighted and short-term practices for agricultural land and rural communities. These proposed nutrition indicators will be a useful methodological framework for designing health, education, and agricultural policies in order, not only to conserve the traditional diets of the Mediterranean area as a common cultural heritage and lifestyle but also to enhance the sustainability of diets in general.
NASA Astrophysics Data System (ADS)
Ciccarelli, D.; Pinna, M. S.; Alquini, F.; Cogoni, D.; Ruocco, M.; Bacchetta, G.; Sarti, G.; Fenu, G.
2017-03-01
Coastal dune ecosystems have been severely degraded as a result of excessive natural resource exploitation, urbanisation, industrial growth, and worldwide tourism. Coastal management often requires the use of vulnerability indices to facilitate the decision-making process. The main objective of this study was to develop a Mediterranean dune vulnerability index (MDVI) for sandy coasts, starting from the existing dune vulnerability index (DVI) proposed by Garcia-Mora et al. (2001) related to the oceanic coasts. Given that the Mediterranean sandy coasts are quite different from the Atlantic coasts, several adjustments and integrations were introduced. Our proposed index is based on the following five main group of factors: geomorphological conditions of the dune systems (GCD), marine influence (MI), aeolian effect (AE), vegetation condition (VC), and human effect (HE), for a total of 51 variables derived (and adapted) from the bibliography or proposed for the first time in this study. For each coastal site, a total vulnerability index, ranging from 0 (very low vulnerability) to 1 (very high vulnerability), was calculated as the unweighted average of the five partial vulnerability indices. Index computation was applied to 23 coastal dune systems of two different contexts in Italy, i.e. peninsular and continental island territories representative of the W-Mediterranean Basin, in order to compare the dune systems with different geomorphology, shoreline dynamics, and human pressure. In particular, our research addressed the following two questions: (1) Which variables are the most critical for the Italian coastal systems? (2) How can the coastal dune vulnerability index be used to develop appropriate strategies of conservation and management for these ecosystems? Cluster analysis and non-metric multidimensional scaling separated the peninsular from the insular sites, both of which were characterised by low to moderate values of vulnerability (0.32 < MDVI < 0.49). The most critical factors for the coastal systems examined in this study were marine negative influence, low stabilising ability of vegetation, and human disturbance. Hence, coastal managers are encouraged to plan specific management actions such as protection of foredunes from marine factors (particularly erosion), to promote dune formation with the reintroduction of native dune builder species and to minimise human pressure where vulnerability depends on these variables.
Ecophysiological responses of three evergreen woody Mediterranean species to water stress
NASA Astrophysics Data System (ADS)
Abril, Mireia; Hanano, Ralph
1998-08-01
The ecophysiological response to drought in three different evergreen Mediterranean species were compared. For a better interpretation of the mechanisms regulating physiological processes, the choice of species was based on evident differences in morphological and structural features (leaf size, leaf specific weight, water-conducting system). Seedlings of Ceanothus thyrsiflorus, Quercus agrifolia and Buxus microphylla grown in pots were subjected to natural stressing conditions during late spring in Southern California. Gas exchange, xylem water potential and abscisic acid concentration in xylem sap were measured in control (irrigated) and water-stressed plants, from predawn to sunset. Environmental, hydraulic and hormonal effects on water control and limitations to photosynthesis were analyzed. Q. agrifolia had the highest maximums of net photosynthesis, stomatal conductance and transpiration, which were significantly different from C. thyrsiflorus and B. microphylla. B. microphylla had the lowest values. Stressed individuals of C. thyrsiflorus and B. microphylla reached absolute minimum water potentials during the day and at predawn. Q. agrifolia plants had a water conservative behaviour and did not show these low values. Control plants from Q. agrifolia had the lowest values of hydraulic resistance with high maximum stomatal conductance, while B. microphylla control plants had the lowest maximum stomatal conductance due to higher hydraulic resistance. Changes in plant hydraulic resistance during soil drying were found, which differed among the species. In general, water-use efficiency was reduced during the day by water stress but increased as seasonal drought proceeded. On a long-term basis, Q. agrifolia was the most efficient species in water use. The results support the hypothesis that information on abscisic acid concentration in xylem sap may be one of the most important physiological keys when modelling stomatal conductance and canopy gas exchange over seasons as drought develops on Mediterranean vegetation. Nevertheless, we believe it is necessary to integrate all known factors that control stomatal behaviour in order to construct general models of the vegetation response to environmental changes.
NASA Astrophysics Data System (ADS)
Ramos-Román, María J.; Jiménez-Moreno, Gonzalo; Camuera, Jon; García-Alix, Antonio; Anderson, R. Scott; Jiménez-Espejo, Francisco J.; Sachse, Dirk
2017-04-01
The Iberian Peninsula, located in the Mediterranean area, is an interesting location for paleoclimate studies due to its geographic situation between arid and humid climates. Sediments from peat bogs and lakes from Sierra Nevada, in southeastern Iberian Peninsula, have been very informative in terms of how vegetation and wetland environments were impacted by Holocene climate change. These studies are essential if we want to understand the past climate change in the area, which is the key to identify the possible environmental response of the Sierra Nevada ecosystems to future climate scenarios. Padul basin, located in the southwest of the Sierra Nevada mountain range, contains a ca. 100 m-thick peat bog sedimentary sequence that was deposited during the past 1 Ma making this area interesting for paleoenvironmental and paleoclimatic reconstructions. A new 43 m-long sedimentary record has recently been retrieved from the Padul peat bog. In this study we have developed a multiproxy analysis of the Holocene part of the Padul-15-05 core including pollen analysis, XRF-core scanner, magnetic susceptibility and organic geochemistry, supported by an age control based on AMS radiocarbon dates, providing with information about vegetation and climate variability during the past 9.9 cal ka BP. This multiproxy reconstruction of the Padul-15-05 evidences the Mediterranean as a sensitive area with respect to global-scale climate system, showing relevant climate episodes such as the ca. 8, 7.5, 6.5 and 5.5 cal ka BP events during the early and middle Holocene. The trend to aridification to the late Holocene is interrupted by more arid and humid periods as the Iberian Roman Humid Period (from ca. 3 to 1.6 cal ka BP), the Dark Ages (from ca. 1.5 to 1.1 cal ka BP), the Medieval Climate Anomaly (from ca. 1.1 to 1.3 cal ka BP) and the Little Ice Age period (from ca. 500 to 100 cal yr BP).
An analysis on Wildland Urban Interface in North Sardinia
NASA Astrophysics Data System (ADS)
Arca, B.; Pellizzaro, G.; Canu, A.; Pintus, G. V.; Ferrara, R.; Duce, P.
2012-04-01
Climate variability and drought, typical of the Mediterranean climate, together with different anthropogenic disturbances (modifications of land use, deforestation, grazing, forest fires, etc.) makes the Mediterranean basin ecosystems extremely sensitive and vulnerable. In the last three decades, an increasing number of fires threatening the wildland urban interface (WUI) was observed. In Sardinia, this phenomenon is particularly evident in tourist and coastal areas where a large number of resorts is built within and surrounded by Mediterranean vegetation that is highly prone to events of wildfire. In these situations, the related risk of damage for villages, tourist resorts, other human activities and people is elevated especially in summer when the presence of human people is highest and meteorological conditions are extreme. In addition, fire can have significant effect on the hydrological response of the WUI causing the intensification of the erosive processes. Therefore, the development of planning policies is required in order to implement strategies to prevent and reduce wildfire and soil erosion risk in wildland urban interface areas. The main aims of this work are i) to assess presence and characteristics of wildland urban interface in a touristic areas of North Sardinia and ii) to evaluate fire danger and soil erosion risk in the studied area. The study was carried out in a coastal area located in North Sardinia, characterized by strong touristic development in the last thirty years. In that area, the characterization and mapping of the WUI were performed. In addition several simulation were carried out by the Farsite fire area simulator with the aim to study the spatial pattern of the fire danger factors in the vegetated areas closer to the WUI. Finally, maps of soil erosion were produced for the identification of the areas at high erosion risk in the WUI. This work is supported by MIIUR - Metodologie e indicatori per la valutazione del rischio di Incendio nelle aree di Interfaccia Urbano Rurale in ambiente mediterraneo. Legge Regionale 7 agosto 2007, n. 7.
Treitler, Julia Tabea; Drissen, Tim; Stadtmann, Robin; Zerbe, Stefan; Mantilla-Contreras, Jasmin
2017-12-19
Endozoochory is, in grazing systems, a substantial vector for seed dispersal. It can play an important role in vegetation dynamics, especially in colonization processes through seed input on the vegetation and on the soil seed bank. We investigated the endozoochorous seed input of donkeys and goats on a semi-natural island ecosystem in the Mediterranean. Through germination experiments, we assessed the viable seed content of the dung of these grazing animals to estimate their suitability and efficiency for seed dispersal of the vegetation types of the island. We show different dispersal patterns of donkeys and goats. Goats disperse a high number of diaspores from shrubs while donkeys disperse more diaspores of grasses. In addition, goats disperse plants of greater growth height and donkeys plants of shorter height. These dispersal patterns are in accordance with the vegetation types of which donkeys and goats disperse indicator species. Both, donkeys and goats, feed on and disperse species of the vegetation types, open grassland and temporarily wet grassland. In addition, goats feed on and disperse diagnostic species of the semi-open maquis and preforest formations. Overall, our results show that donkeys and goats are complementing each other in their endozoochorous seed dispersal potential. This emphasizes the importance of both grazing animals for the vegetation dynamics of the semi-natural island ecosystem. Therefore, the adaption of the goat management to a traditional land management based on directed transhumance might maintain and enrich vegetation types.
Holtvoeth, Jens; Vogel, Hendrik; Valsecchi, Verushka; Lindhorst, Katja; Schouten, Stefan; Wagner, Bernd; Wolff, George A
2017-08-14
The impact of past global climate change on local terrestrial ecosystems and their vegetation and soil organic matter (OM) pools is often non-linear and poorly constrained. To address this, we investigated the response of a temperate habitat influenced by global climate change in a key glacial refuge, Lake Ohrid (Albania, Macedonia). We applied independent geochemical and palynological proxies to a sedimentary archive from the lake over the penultimate glacial-interglacial transition (MIS 6-5) and the following interglacial (MIS 5e-c), targeting lake surface temperature as an indicator of regional climatic development and the supply of pollen and biomarkers from the vegetation and soil OM pools to determine local habitat response. Climate fluctuations strongly influenced the ecosystem, however, lake level controls the extent of terrace surfaces between the shoreline and mountain slopes and hence local vegetation, soil development and OM export to the lake sediments. There were two phases of transgressional soil erosion from terrace surfaces during lake-level rise in the MIS 6-5 transition that led to habitat loss for the locally dominant pine vegetation as the terraces drowned. Our observations confirm that catchment morphology plays a key role in providing refuges with low groundwater depth and stable soils during variable climate.
Tree growth and vegetation activity at the ecosystem-scale in the eastern Mediterranean
NASA Astrophysics Data System (ADS)
Coulthard, Bethany L.; Touchan, Ramzi; Anchukaitis, Kevin J.; Meko, David M.; Sivrikaya, Fatih
2017-08-01
Linking annual tree growth with remotely-sensed terrestrial vegetation indices provides a basis for using tree rings as proxies for ecosystem primary productivity over large spatial and long temporal scales. In contrast with most previous tree ring/remote sensing studies that have focused on temperature-limited boreal and taiga environments, here we compare the normalized difference vegetation index (NDVI) with a network of Pinus brutia tree ring width chronologies collected along ecological gradients in semiarid Cyprus, where both radial tree growth and broader vegetation activity are controlled by drought. We find that the interaction between precipitation, elevation, and land-cover type generate a relationship between radial tree growth and NDVI. While tree ring chronologies at higher-elevation forested sites do not exhibit climate-driven linkages with NDVI, chronologies at lower-elevation dry sites are strongly correlated with NDVI during the winter precipitation season. At lower-elevation sites, land cover is dominated by grasslands and shrublands and tree ring widths operate as a proxy for ecosystem-scale vegetation activity. Tree rings can therefore be used to reconstruct productivity in water-limited grasslands and shrublands, where future drought stress is expected to alter the global carbon cycle, biodiversity, and ecosystem functioning in the 21st century.
Pleistocene and Holocene Iberian flora: a complete picture and review
NASA Astrophysics Data System (ADS)
González Sampériz, Penélope
2010-05-01
A detailed analysis of the location and composition of Iberian vegetation types during the whole Pleistocene and Holocene periods shows a complex patched landscape with persistence of different types of ecosystems, even during glacial times. In addition, recent, high-resolution palaeoecological records are changing the traditional picture of post-glacial vegetation succession in the Iberian Peninsula. The main available charcoal and pollen sequences include, coniferous and deciduous forest, steppes, shrublands, savannahs and glacial refugia during the Pleistocene for Meso-thermophytes (phytodiversity reservoirs), in different proportions. This panorama suggests an environmental complexity that relates biotic responses to climate changes forced by Milankovitch cycles, suborbital forcings and by the latitudinal and physiographic particularities of the Iberian Peninsula. Thus, many factors are critical in the course of vegetational developments and strong regional differences are observed since the Early Pleistocene. Currently, the flora of Iberia is located in two biogeographical/climatic regions: the Eurosiberian and the Mediterranean. The first one includes northern and northwestern areas of the peninsula, where post-glacial responses of vegetation are very similar to Central Europe, although with some particularities due to its proximity to both the Atlantic Ocean and the Mediterranean region. The second one comprises the main territory of Iberia and shows more complex patterns and singularities, now and in the past. Steppe landscapes dominated extensive areas over all the territory during the cold spells of the Quaternary, especially during the Late Pleistocene up to the Last Glacial Maximum, but differences in composition of the dominant taxa (Compositae versus Artemisia) are observed since the Early Pleistocene, probably related to moisture regional gradients. Coastal shelves and intramountainous valleys, even in continental areas, are spots of floristic diversity and nuclei of population expansion during climatic ameliorations of the Pleistocene. The floristic composition, location and structure of glacial tree populations and communities may have been a primary control on these developments and on the origin and composition of Holocene scenarios. Refugial populations would have been a source, but not the only one, for the early Lateglacial oak expansions for example. From Middle to Late Holocene, inertial, resilient, and rapid responses of vegetation to climatic change are described, any time with regional and local differences. The role of fire, pastoralism, agriculture and other anthropogenic disturbances such as mining during the Copper, Bronze, Iberic, and Roman times must be also considered as an important factor of the current vegetation distribution. In fact, the Iberian Peninsula constitutes a territory where climatic, geological, biogeographical and historical conditions have converged to produce environmental heterogeneity, large biological diversity and ecosystem richness. A note of singularity: in comparison with other Mediterranean peninsulas, Iberia was, doubtless, particularly suitable for the survival and permanence of sclerophyllous elements of any kind (including Ibero-Maghrebian scrubs such as Maytenus, Periploca, Ziziphus,Withania, Lycium, and Calicotome), currently, during the Holocene, and even during glacial stages of the Pleistocene. However, no macro-remains of these taxa have been documented until Late Holocene chronologies, but the survival of other thermophilous species, such as Olea, reveals the existence of glacial refugia in the southernmost areas of Iberia. Over all, and dealing with plant species, the Iberian Peninsula is a land of survival.
NASA Astrophysics Data System (ADS)
Guiot, J.
2017-12-01
In the last decades, climate reconstruction has much evolved. A important step has been passed with inverse modelling approach proposed by Guiot et al (2000). It is based on appropriate algorithms in the frame of the Bayesian statistical theory to estimate the inputs of a vegetation model when the outputs are known. The inputs are the climate variables that we want to reconstruct and the outputs are vegetation characteristics, which can be compared to pollen data. The Bayesian framework consists in defining prior distribution of the wanted climate variables and in using data and a model to estimate posterior probability distribution. The main interest of the method is the possibility to set different values of exogenous variables as the atmospheric CO2 concentration. The fact that the CO2 concentration has an influence on the photosynthesis and that its level is different between the calibration period (the 20th century) and the past, there is an important risk of biases on the reconstructions. After that initial paper, numerous papers have been published showing the interested of the method. In that approach, the prior distribution is fixed by educated guess of by using complementary information on the expected climate (other proxies or other records). In the data assimilation approach, the prior distribution is provided by a climate model. The use of a vegetation model together with proxy data, enable to calculate posterior distributions. Data assimilation consists in constraining climate model to reproduce estimates relatively close to the data, taking into account the respective errors of the data and of the climate model (Dubinkina et al, 2011). We compare both approaches using pollen data for the Holocene from the Mediterranean. Pollen data have been extracted from the European Pollen Database. The earth system model, LOVECLIM, is run to simulate Holocene climate with appropriate boundary conditions and realistic forcing. Simulated climate variables (temperature, precipitation and sunshine) are used as the forcing parameters to a vegetation model, BIOME4, that calculates the equilibrium distribution of vegetation types and associated phenological, hydrological and biogeochemical properties. BIOME4 output, constrained with the pollen observations, are off-line coupled using a particle filter technique.
Coastal wetlands, sea level, and the dimensions of geomorphic resilience
NASA Astrophysics Data System (ADS)
Phillips, Jonathan D.
2018-03-01
Geomorphic system resilience is often perceived as an intrinsic property of system structure and interactions but is also related to idiosyncratic place and history factors. The importance of geographical and historical circumstances makes it difficult to generate categorical statements about geomorphic resilience. However, network-based analyses of system structure can be used to determine the dynamical stability (= resilience) based on generally applicable relationships and to determine scenarios of stability or instability. These provide guidelines for assessing place and history factors to assess resilience. A model of coastal wetlands is analyzed, based on interactions among relative sea level, wetland surface elevation, hydroperiod, vegetation, and sedimentation. The system is generally (but not always) dynamically unstable and non-resilient. Because of gradients of environmental factors and patchy distributions of microtopography and vegetation, a coastal wetland landscape may have extensive local variations in stability/resilience and in the key relationships that trigger instabilities. This is illustrated by a case study where dynamically unstable fragmentation is found in two nearby coastal wetlands in North Carolina's Neuse River estuary-Otter Creek Mouth and Anderson Creek. Neither is keeping pace with relative sea level rise, and both show unstable state transitions within the wetland system; but locally stable relationships exist within the wetland systems.
How will wind and water erosion change in drylands in the future?
NASA Astrophysics Data System (ADS)
Okin, G. S.; Sala, O.; Vivoni, E. R.
2017-12-01
Drylands are characterized as much by high spatial and temporal variability as they are by low precipitation. Cover that is patchy at multiple scales allows connectivity for wind and water transport. Vegetation dynamics at interannual scales occurs in the context of community change (including woody encroachment) at decadal scales. Periods of drought alternate with relatively wet periods. Future predictions for the world's drylands are that many will become more arid, but near all will experience greater climate variability. This work explores how future variability will affect transport by wind and water, both of which are crucial elements of biotic-abiotic feedbacks that control community change in drylands. This work is based on long-term observations from the Jornada Long Term Ecological Research (LTER), but with lessons that are applicable elsewhere. We find strong relationships between vegetation community, precipitation and aeolian transport related to changes in connectivity. We further identify strong, scale-dependent relationships between precipitation and runoff. Thus, aeolian transport decreases with increasing annual precipitation and transport by water increases with annual precipitation, with the combined effect that increased variability in annual precipitation is likely to increase both water and wind transport. The consequence of this is that feedbacks associated with community change are likely to strengthen in the future.
Possible rainfall reduction through reduced surface temperatures due to overgrazing
NASA Technical Reports Server (NTRS)
Otterman, J.
1975-01-01
Surface temperature reduction in terrain denuded of vegetation (as by overgrazing) is postulated to decrease air convection, reducing cloudiness and rainfall probability during weak meteorological disturbances. By reducing land-sea daytime temperature differences, the surface temperature reduction decreases daytime circulation of thermally driven local winds. The described desertification mechanism, even when limited to arid regions, high albedo soils, and weak meteorological disturbances, can be an effective rainfall reducing process in many areas including most of the Mediterranean lands.
Biogenic volatile organic compound emissions from vegetation fires
CICCIOLI, PAOLO; CENTRITTO, MAURO; LORETO, FRANCESCO
2014-01-01
The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733
Remotely-sensed detection of effects of extreme droughts on gross primary production.
Vicca, Sara; Balzarolo, Manuela; Filella, Iolanda; Granier, André; Herbst, Mathias; Knohl, Alexander; Longdoz, Bernard; Mund, Martina; Nagy, Zoltan; Pintér, Krisztina; Rambal, Serge; Verbesselt, Jan; Verger, Aleixandre; Zeileis, Achim; Zhang, Chao; Peñuelas, Josep
2016-06-15
Severe droughts strongly impact photosynthesis (GPP), and satellite imagery has yet to demonstrate its ability to detect drought effects. Especially changes in vegetation functioning when vegetation state remains unaltered (no browning or defoliation) pose a challenge to satellite-derived indicators. We evaluated the performance of different satellite indicators to detect strong drought effects on GPP in a beech forest in France (Hesse), where vegetation state remained largely unaffected while GPP decreased substantially. We compared the results with three additional sites: a Mediterranean holm oak forest (Puéchabon), a temperate beech forest (Hainich), and a semi-arid grassland (Bugacpuszta). In Hesse, a three-year reduction in GPP following drought was detected only by the Enhanced Vegetation Index (EVI). The Photochemical Reflectance Index (PRI) also detected this drought effect, but only after normalization for absorbed light. In Puéchabon normalized PRI outperformed the other indicators, while the short-term drought effect in Hainich was not detected by any tested indicator. In contrast, most indicators, but not PRI, captured the drought effects in Bugacpuszta. Hence, PRI improved detection of drought effects on GPP in forests and we propose that PRI normalized for absorbed light is considered in future algorithms to estimate GPP from space.
NASA Astrophysics Data System (ADS)
Cerasoli, Sofia; Costa e Silva, Filipe; Silva, João M. N.
2016-06-01
The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus ( Cistus salviifolius) and ulex ( Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence ( ΔF/ Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.
Cerasoli, Sofia; Costa E Silva, Filipe; Silva, João M N
2016-06-01
The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus (Cistus salviifolius) and ulex (Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence (ΔF/Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.
Friend, Andrew D; Lucht, Wolfgang; Rademacher, Tim T; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B; Dankers, Rutger; Falloon, Pete D; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F Ian
2014-03-04
Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.
Fruit and vegetables and cancer risk: a review of southern European studies.
Turati, Federica; Rossi, Marta; Pelucchi, Claudio; Levi, Fabio; La Vecchia, Carlo
2015-04-01
High intakes of fruit and vegetables may reduce the risk of cancer at several sites. Evidence has been derived mainly from case-control studies. We reviewed the relationship between consumption of vegetables and fruit and the risk of several common cancers in a network of Italian and Swiss case-control studies including over 10,000 cases of fourteen different cancers and about 17,000 controls. Data were suggestive of a protective role of vegetable intake on the risk of several common epithelial cancers. OR for the highest compared with the lowest levels of consumption ranged from 0.2 (larynx, oral cavity and pharynx) to 0.9 (prostate). Inverse associations were found for both raw and cooked vegetables, although for upper digestive tract cancers the former were somewhat stronger. Similar inverse associations were found for cruciferous vegetables. Frequent consumption of allium vegetables was also associated with reduced risk of several cancers. Fruit was a favourable correlate of the risk of several cancers, particularly of the upper digestive tract, with associations generally weaker than those reported for vegetables. A reduced risk of cancers of the digestive tract and larynx was found for high consumption of citrus fruit. Suggestive protections against several forms of cancer, mainly digestive tract cancers, were found for high consumption of apples and tomatoes. High intakes of fibres, flavonoids and proanthocyanidins were inversely related to various forms of cancer. In conclusion, data from our series of case-control studies suggested a favourable role of high intakes of fruit and vegetables in the risk of many common cancers, particularly of the digestive tract. This adds evidence to the indication that aspects of the Mediterranean diet may have a favourable impact not only on CVD, but also on several common (epithelial) cancers, particularly of the digestive tract.
Friend, Andrew D.; Lucht, Wolfgang; Rademacher, Tim T.; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B.; Dankers, Rutger; Falloon, Pete D.; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R.; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F. Ian
2014-01-01
Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510–758 ppm of CO2), vegetation carbon increases by 52–477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended. PMID:24344265
NASA Astrophysics Data System (ADS)
Shields, C. A.; Tague, C.
2010-12-01
With a majority of the world's population now living in urban areas, the role of vegetation in urban ecosystems warrants increased attention. We address the question of how the fine scale (<5m) spatial arrangement of impervious surfaces affects water available to vegetation, which in turn can significantly impact the productivity of vegetation and uptake of C and N. To gain insight into how landscape features influence vegetation productivity, we use a coupled ecohydrogic model to estimate impacts of the amount and arrangement of impervious surfaces on vegetation water use. We use the model to explore how concepts from research in natural semi-arid ecosystems can be applied in the urban context. Ecological research in semi-arid ecosystems has shown that the arrangement of vegetated and bare surfaces plays a key role in regulating both runoff and ecosystem water use and productivity. Systems that include a mixture of bare and vegetated surfaces, for example, tend to show less runoff and more productivity than those with more homogeneous cover. In some instances, patchiness of bare and vegetated surfaces is more important than total vegetated area in determining rates of runoff and vegetation use of rainfall. In an urban context, impervious surfaces can be viewed as analogous to the bare surfaces present in undeveloped ecosystems. We consider not only the total impervious area (TIA), but also the effect of impervious area with a direct hydrologic connection to the stream network, effective impervious area (EIA). While increases in total impervious area (TIA) have been widely shown to impact catchment hydrology, the role of effective impervious area (EIA) has been less extensively studied. A consensus is emerging from the literature that EIA is as important or even more important than TIA as an indicator of catchment response to urbanization. Ecohydrologic models offer a tool to quantify the role of EIA on water availability and plant productivity and demonstrate the potential of urban areas to act as C or N sinks (and minimize the impacts such as increased storm runoff and degraded downstream water quality). We explore the relative roles of TIA and EIA on water availability and plant productivity in a semi-arid urban environment through a series of modeling exercises. The Regional HydroEcological Simulation System (RHESSys) is used to model a range of impervious surface and vegetation scenarios on a test hillslope in the Mission Creek catchment in Santa Barbara CA. Results indicate that reduced EIA can indeed act to mitigate the impact of TIA on water available to plants. We then implement a modification to the RHESSys model that incorporates patch scale estimates of EIA into simulations of the entire Mission Creek catchment, allowing us to quantify likely catchment-scale impacts of altering EIA.
NASA Astrophysics Data System (ADS)
Martinez-Murillo, Juan F.; Gabarron-Galeote, Miguel A.; Ruiz-Sinoga, Jose D.
2013-04-01
Soil water repellency (SWR) has become an important field of scientific study because of its effects on soil hydrological behavior, including reduced matrix infiltration, development of fingered flow in structural or textural preferential flow paths, irregular wetting fronts, and increased runoff generation and soil erosion. The aim of this study is to evaluate the temporal variability of SWR in Mediterranean rangeland under humid Mediterranean climatic conditions (Tª=14.5 °C; P=1,010 mm y-1) in South of Spain. Every month from September 2008 to May 2009 (rainy season), soil moisture and SWR was measured in field conditions by means of gravimetric method and Water Drop Penetration Test, respectively. The entire tests were performed in differente eco-geomorphological conditions in the experimental site: North and South aspect hillslopes and beneath shrub and bare soil in every of them. The results indicate that: i) climatic conditions seem to be more transcendent than the vegetal cover for explaining the temporal variability of SWR in field conditions; ii) thus, SWR appears to be controlled by the antecedent rainfall and soil moisture; iii) more severity SWR were observed in patches characterized by sandier soils and/or greater organic matter contents; and iv) the factor 'hillslope aspect' was not found very influential in the degree of SWR.
Monteiro, Cristina M; Calheiros, Cristina S C; Palha, Paulo; Castro, Paula M L
2017-09-01
Green roof technology has evolved in recent years as a potential solution to promote vegetation in urban areas. Green roof studies for Mediterranean climates, where extended drought periods in summer contrast with cold and rainy periods in winter, are still scarce. The present research study assesses the use of substrates with different compositions for the growth of six aromatic plant species - Lavandula dentata, Pelargonium odoratissimum, Helichrysum italicum, Satureja montana, Thymus caespititius and T. pseudolanuginosus, during a 2-year period, and the monitoring of water runoff quality. Growing substrates encompassed expanded clay and granulated cork, in combination with organic matter and crushed eggshell. These combinations were adequate for the establishment of all aromatic plants, allowing their propagation in the extensive system located on the 5th storey. The substrate composed of 70% expanded clay and 30% organic matter was the most suitable, and crushed eggshell incorporation improved the initial plant establishment. Water runoff quality parameters - turbidity, pH, conductivity, NH 4 + , NO 3 - , PO 4 3- and chemical oxygen demand - showed that it could be reused for non-potable uses in buildings. The present study shows that selected aromatic plant species could be successfully used in green roofs in a Mediterranean climate.
Water resource sensitivity from a Mediterranean perspective
NASA Astrophysics Data System (ADS)
Lyon, S. W.; Klein, J.; Archibald, J. A.; Walter, T.
2012-12-01
The water cycle in semiarid environments is intimately connected to plant-water interactions making these regions sensitive to both future climatic changes and landuse alterations. This study explores the sensitivity of water resource availability from a Mediterranean perspective using the Navarino Environmental Observatory (NEO) in Costa Navarino, Greece as a large-scale laboratory for developing and testing the potential resource impacts of various landuse/climatic trajectories. Direct measurements of evapotranspiration were combined with Penman-Monteith estimates to compare water vapor flux variability across the gradient of current management conditions found within the NEO landscape. These range from native, non-managed vegetation to historic, traditionally managed agriculture to modern, actively managed recreational lands. These management conditions greatly impact the vertical flux of water vapor in this semiarid landscape. Our evapotranspiration estimates were placed into a process-based modeling framework to characterize the current state of regional water resource availability and simulate future trajectories (and the associated uncertainties) in response to landuse/climatic changes. This region is quite sensitive with regards to water cycle modifications due to the anthropogenic redistribution of water within and across the landscape. Such sensitivity typifies that expected for much of the Mediterranean region, highlighting the NEO as a potential key location for future observation and investigation.
Siero, F W; Broer, J; Bemelmans, W J; Meyboom-de Jong, B M
2000-10-01
This study compares the effect of two interventions focussed on the promotion of Mediterranean nutrition behavior. The target groups are persons with three risk factors for development of cardiovascular disease. The study region is a socio-economically deprived area in the Netherlands. The first intervention consisted of three meetings in which the positive health effects of a Mediterranean diet were discussed in group sessions. In the additional intervention stage-matched information based on the Transtheoretical Model of behavior change was given. Both intervention groups were compared with a control group, which received only a printed leaflet with the Dutch nutritional guidelines. At baseline the three subgroups were comparable and after 16 weeks both intervention strategies resulted in significant changes in comparison with the control condition. For fish consumption, both strategies resulted in more positive attitudes, social norms, stronger intentions, more progress in stage of change and better nutritional intake. For fruit/vegetables consumption, the effects of both strategies were limited to stage of change and nutritional intake. Additional individually stage-matched tailored letters did not result in more progress on any of the dependent variables. We conclude that substantial nutritional behavior change can be achieved by interactive group education in socio-economically deprived population groups.
Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands
Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E.
2007-01-01
In Mediterranean-type ecosystems (MTEs), fire disturbance influences the distribution of most plant communities, and altered fire regimes may be more important than climate factors in shaping future MTE vegetation dynamics. Models that simulate the high-frequency fire and post-fire response strategies characteristic of these regions will be important tools for evaluating potential landscape change scenarios. However, few existing models have been designed to simulate these properties over long time frames and broad spatial scales. We refined a landscape disturbance and succession (LANDIS) model to operate on an annual time step and to simulate altered fire regimes in a southern California Mediterranean landscape. After developing a comprehensive set of spatial and non-spatial variables and parameters, we calibrated the model to simulate very high fire frequencies and evaluated the simulations under several parameter scenarios representing hypotheses about system dynamics. The goal was to ensure that observed model behavior would simulate the specified fire regime parameters, and that the predictions were reasonable based on current understanding of community dynamics in the region. After calibration, the two dominant plant functional types responded realistically to different fire regime scenarios. Therefore, this model offers a new alternative for simulating altered fire regimes in MTE landscapes. ?? 2007 Elsevier Ltd. All rights reserved.
Keeley, Jon E.; Babr-Keeley, Melanie
1999-01-01
Seeds of 22 species collected from recently burned phrygana were tested for their response to fire-type cues of charred wood and heat-shock. All Cistus species were stimulated by brief heat-shock, as shown in previous studies; however, none responded to charred wood. Only one of the 22 species was stimulated by charred wood, and only in dark-inhibited seeds, and this response did not occur in the light. The lack of charred-wood-induced germination is in contrast to the substantial proportion of species with this germination response reported for mediterranean-type vegetation in California, the Cape region of South Africa, and Western Australia. Phrygana has many species with heat-shock-stimulated germination, primarily in the Fabaceae and Cistaceae. This germination cue is widespread in these two families, thus, the presence of heat-shock-stimulated germination is a result of homologous, rather than covergent, adaptations in mediterranean-climate ecosystems. Germination response to light was not randomly distributed with respect to fire-type response. Heat-shock-stimulated species were almost uniformly light neutral, in contrast to more opportunistic colonizing species with non-refractory seeds, in which half of the species responded positively or negatively to light.
NASA Astrophysics Data System (ADS)
Barba, Josep; Curiel Yuste, Jorge; Poyatos, Rafael; Janssens, Ivan A.; Lloret, Francisco
2014-05-01
There is more and more evidences that the current global warming trend and the increase of frequency and intensity of drought events during the last decades in the Northern hemisphere are currently producing an increment of drought-induced forest die-off events, being the Mediterranean region one of the most affected areas. This drought-induced mortality could lead in a vegetation shift with unpredicted consequences in carbon pools, where soils are the most determinant factor in this carbon balance as they contain over two-thirds of carbon on forest ecosystems. There are several uncertainties related on the interaction between soil, environmental conditions and vegetation shifts that could modify their capability to be net carbon sinks or sources in a warming context. We studied soil respiration and its heterotrophic (RH) and autotrophic (Ra) (split in fine roots [Rr] and mycorrhizal respiration [Rs]) components in a mixed Mediterranean forest where Scots pine (Pinus sylvestris L.) are suffering from drought-induced die-off and replaced by Holm oak (Quercus ilex L.) as the dominant tree species. Soil respiration fluxes and its fractions were measured every two weeks during one year at four stages of the substitution process (non defoliated pines [NDP], defoliated pines [DFP], dead pines [DP] and Holm oak [HO]), using the mesh exclusion method. The aims were (i) to describe soil respiration fluxes in a drought-induced secondary successional process, (ii) to test whether the changes in vegetation affected soil respiration fluxes and (iii) to determine the influence of environmental and abiotic variables on the different soil respiration fractions. Total soil respiration was 10.10±6.17 TC ha-1 y-1, RH represented the 67% of the total, Ra represented the 34% of the total, and Rr and Rs were the 22 and 12%, respectively. Significant differences were found in total soil respiration and RH between NDP and HO, being lower in HO than in NDP (34% in total and 48% in RH). No differences were found in the annual Ra, Rr neither Rs between the different stages of the successional process. Season and the interaction between soil temperature, soil moisture and type of tree were able to explain two thirds of the variability in total soil respiration and RH, whereas no significant relation seemed to show with Ra and its components. RH was more sensitive at environmental variables and changes in vegetation than Ra. Additionally, RH was influenced by season independently of temperature and moisture changes, which could imply a control of phenology on RH and not on Ra. Our results suggested that soil respiration had a degree of resilience under climate-change induced die-off and subsequent secondary succession process, since no differences were found between NDP, DFP and DP. The observed vegetation shift is also implying a reduction of the CO2 emissions from soil to the atmosphere, which could have strong consequences in the carbon balance as drought-induced substitution from Scots pines to Quercus species has been observed in different places in Mediterranean region.
Response of the European Vegetation to the Global Climatic Changes during the Neogene
NASA Astrophysics Data System (ADS)
Popescu, S.; Jimenez-Moreno, G.; Suc, J.; Rabineau, M.
2009-12-01
The beginning of the Neogene coincides with a transient cooler climate event (Mi-1) as response to the intermittent expansion on the EAIS. The Miocene is characterized by warm and humid climate that implied the development of forest environments in Europe. The vegetation was composed mainly by tropical, subtropical and warm-temperate plants, which attempted the maximum of diversity during the Miocene Climate Optimum event (17-15 Ma). Reconstruction of climatic parameters, applied to our pollen records, indicates for the NE Spain, for the Early Miocene a MAT~19°C, a MTW~24.5°C, a MTC~7.5 °C, and MAP = 900 - 1700 mm. Several cooling events (Mi-1 to Mi-7) are responsible for a progressive impoverishment in tropical and subtropical plants, which will be replaced by warm-temperate ones. The most important, Monterey Cooling Event induce the decrease of MAT about 2-4°C implying the disappearance of the Avicennia mangrove from the NW Mediterranean coastline. Warm climate characterized the Serravallian and Tortonian. Paleoclimatic reconstruction for the Late Miocene indicates a MAT=15-24°C, with a strong seasonality correlated with high precipitation values (1100 -1550 mm) in N.Europe and respectively low seasonality and precipitation values (320-680 mm) in SW Europe and N Africa. The West Antarctic glaciations at 6 Ma, probably caused the disappearance of the Avicennia mangrove from S. Mediterranean coastlines. During the Early Pliocene, the climate was relatively warmer with MAT higher of about 1-5°C than today.Increase in humidity characterize the Central and Eastern Europe (MAP higher of about 400 -1000 mm than today), that promoted the development of forest vegetation in this area. The pollen floras from the European Early Pliocene allow a refined geographic specification of the different kinds of reconstructed vegetation. The Late Pliocene is still too much poorly-documented and needs more attention as it represents the key-moment of the progressive transition from the “greenhouse” climatic context to the “icehouse” one. Finally, this is also a crucial time-window because it includes the warming centred at around 3.1 Ma which is generally pointed out as the best past analogue of the present-day warming up. During this time-interval, contrast in vegetation between the North and South European regions exaggerated while the thermic latitudinal gradient increased up to approximately reach the present-day value (0.6°C/° in latitude). The Late Pliocene Optimum Climatic (3.1 Ma) is characterized by MAT higher of 3°C as today. The onset of the North Hemisphere Glaciations which marks the beginning of Pleistocene (2.558 Ma) is well- and completely documented by pollen data from the DSDP Site 380 which, in addition, provides a continuous record of all the glacial-interglacial cycles up to the Present. The transition from 41 to 100 kyr climatic cycles is here particularly well-documented. This long pollen sequence also specifies the chronologic succession of extinctions of thermophilous plants in the Northeastern Mediterranean region.
Predicting altered connectivity of patchy forests under group selection silviculture
Seth W. Bigelow; Sean A. Parks
2010-01-01
Group selection silviculture creates canopy openings that can alter connectivity in patchy forests, thereby affecting wildlife movement and fire behavior. We examined effects of group selection silviculture on percolation (presence of continuously forested routes across a landscape) in Sierra Nevada East-side pine forest in northern California, USA. Four ~ 250 ha...
Frontal dynamics boost primary production in the summer stratified Mediterranean sea
NASA Astrophysics Data System (ADS)
Olita, Antonio; Capet, Arthur; Claret, Mariona; Mahadevan, Amala; Poulain, Pierre Marie; Ribotti, Alberto; Ruiz, Simón; Tintoré, Joaquín; Tovar-Sánchez, Antonio; Pascual, Ananda
2017-06-01
Bio-physical glider measurements from a unique process-oriented experiment in the Eastern Alboran Sea (AlborEx) allowed us to observe the distribution of the deep chlorophyll maximum (DCM) across an intense density front, with a resolution (˜ 400 m) suitable for investigating sub-mesoscale dynamics. This front, at the interface between Atlantic and Mediterranean waters, had a sharp density gradient (Δ ρ ˜ 1 kg/m3 in ˜ 10 km) and showed imprints of (sub-)mesoscale phenomena on tracer distributions. Specifically, the chlorophyll-a concentration within the DCM showed a disrupted pattern along isopycnal surfaces, with patches bearing a relationship to the stratification (buoyancy frequency) at depths between 30 and 60 m. In order to estimate the primary production (PP) rate within the chlorophyll patches observed at the sub-surface, we applied the Morel and Andrè (J Geophys Res 96:685-698 1991) bio-optical model using the photosynthetic active radiation (PAR) from Argo profiles collected simultaneously with glider data. The highest production was located concurrently with domed isopycnals on the fresh side of the front, suggestive that (sub-)mesoscale upwelling is carrying phytoplankton patches from less to more illuminated levels, with a contemporaneous delivering of nutrients. Integrated estimations of PP (1.3 g C m-2d-1) along the glider path are two to four times larger than the estimations obtained from satellite-based algorithms, i.e., derived from the 8-day composite fields extracted over the glider trip path. Despite the differences in spatial and temporal sampling between instruments, the differences in PP estimations are mainly due to the inability of the satellite to measure DCM patches responsible for the high production. The deepest (depth > 60 m) chlorophyll patches are almost unproductive and probably transported passively (subducted) from upper productive layers. Finally, the relationship between primary production and oxygen is also investigated. The logarithm of the primary production in the DCM interior (chlorophyll (Chl) > 0.5 mg/m3) shows a linear negative relationship with the apparent oxygen utilization, confirming that high chlorophyll patches are productive. The slope of this relationship is different for Atlantic, mixed interface waters and Mediterranean waters, suggesting the presence of differences in planktonic communities (whether physiological, population, or community level should be object of further investigation) on the different sides of the front. In addition, the ratio of optical backscatter to Chl is high within the intermediate (mixed) waters, which is suggestive of large phytoplankton cells, and lower within the core of the Atlantic and Mediterranean waters. These observations highlight the relevance of fronts in triggering primary production at DCM level and shaping the characteristic patchiness of the pelagic domain. This gains further relevance considering the inadequacy of optical satellite sensors to observe DCM concentrations at such fine scales.
Dietary intervention for people with mental illness in South Australia.
Bogomolova, Svetlana; Zarnowiecki, Dorota; Wilson, Amy; Fielder, Andrea; Procter, Nicholas; Itsiopoulos, Catherine; O'Dea, Kerin; Strachan, John; Ballestrin, Matt; Champion, Andrew; Parletta, Natalie
2018-02-01
People with serious mental illness (SMI) have a 25-30 year lower life expectancy than the general population due largely to cardiovascular disease (CVD). Mediterranean diet can reduce CVD risk and repeat events by 30-70%. We conducted a pilot feasibility study (HELFIMED) with people who have SMI residing within a Community Rehabilitation Centre in South Australia, aimed at improving participants' diets according to Mediterranean diet principles. During a 3-month intervention, participants were provided with nutrition education, food hampers, and twice-weekly cooking workshops and guided shopping trips. This report presents the results of a mixed method evaluation of the programme using thorough in-depth interviews with participants and support staff (n = 20), contextualized by changes in dietary biomarkers and CVD risk factors. The framework thematic analysis revealed evidence of improvements in participants' knowledge of and intake of the key elements of a Mediterranean-style diet (fruit and vegetables, olive oil, fish, legumes), reduction in poor nutrition habits (soft drinks, energy drinks, take away meals) and development of independent living skills-culinary skills such as food preparation and cooking based on simple recipes, food shopping and budgeting, healthy meal planning and social interaction. These changes were supported by dietary biomarkers, and were associated with reduced CVD risk factors. A Mediterranean diet-based pilot study achieved positive change in dietary behaviours associated with CVD risk for participants with SMI. This supports a need to include dietary education and cooking skills into rehabilitation programmes for people with SMI. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Ramadan major dietary patterns.
Shadman, Zhaleh; Poorsoltan, Nooshin; Akhoundan, Mahdieh; Larijani, Bagher; Soleymanzadeh, Mozhdeh; Akhgar Zhand, Camelia; Seyed Rohani, Zahra Alsadat; Khoshniat Nikoo, Mohsen
2014-09-01
There has been no data on population based dietary patterns during the Ramadan fasting month. The purpose of this study was to detect Ramadan major dietary patterns among those who fast in Tehran. This cross-sectional study included 600 subjects, aged 18-65 with body mass index (BMI) of 18.5-40, who had decided to fast during Ramadan. Anthropometric measurements, usual physical activity level and educational status were collected two weeks before Ramadan. Information on Ramadan dietary intakes was obtained using a food frequency questionnaire and factor analysis was used to identify major dietary patterns. We identified four major dietary patterns: 1) Western-like pattern; high in fast foods, salty snacks, nuts, potato, fish, poultry, chocolates, juices; 2) high cholesterol and high sweet junk food pattern; high in pickles, sweets and condiments, butter and cream, canned fish, visceral meats and eggs; 3) Mediterranean-like pattern; high in vegetables, olive oil, dates, dairy, dried fruits, fruits, red meats, tea and coffee and 4) Ramadan-style pattern; large consumption of Halim, soups, porridges, legumes and whole grains, soft drinks, Zoolbia and Bamieh. Age was positively and inversely associated with Mediterranean-like (P = 0.003; r = 0.17) and Ramadan style (P = 0.1; r = -0.13) dietary pattern, respectively. Pre-Ramadan physical activity level was associated with a Mediterranean-like dietary pattern (P < 0.0001; r = 0.20). This study showed a Ramadan-specific dietary pattern has unique characteristics, which has not yet been identified as a model of dietary pattern. Also, among identified dietary patterns, Mediterranean-like was the healthiest.
NASA Astrophysics Data System (ADS)
Willie, Jacob; Petre, Charles-Albert; Tagg, Nikki; Lens, Luc
2012-11-01
Data from forest herbaceous plants in a site of known species richness in Cameroon were used to test the performance of rarefaction and eight species richness estimators (ACE, ICE, Chao1, Chao2, Jack1, Jack2, Bootstrap and MM). Bias, accuracy, precision and sensitivity to patchiness and sample grain size were the evaluation criteria. An evaluation of the effects of sampling effort and patchiness on diversity estimation is also provided. Stems were identified and counted in linear series of 1-m2 contiguous square plots distributed in six habitat types. Initially, 500 plots were sampled in each habitat type. The sampling process was monitored using rarefaction and a set of richness estimator curves. Curves from the first dataset suggested adequate sampling in riparian forest only. Additional plots ranging from 523 to 2143 were subsequently added in the undersampled habitats until most of the curves stabilized. Jack1 and ICE, the non-parametric richness estimators, performed better, being more accurate and less sensitive to patchiness and sample grain size, and significantly reducing biases that could not be detected by rarefaction and other estimators. This study confirms the usefulness of non-parametric incidence-based estimators, and recommends Jack1 or ICE alongside rarefaction while describing taxon richness and comparing results across areas sampled using similar or different grain sizes. As patchiness varied across habitat types, accurate estimations of diversity did not require the same number of plots. The number of samples needed to fully capture diversity is not necessarily the same across habitats, and can only be known when taxon sampling curves have indicated adequate sampling. Differences in observed species richness between habitats were generally due to differences in patchiness, except between two habitats where they resulted from differences in abundance. We suggest that communities should first be sampled thoroughly using appropriate taxon sampling curves before explaining differences in diversity.
Influence of patchy saturation on seismic dispersion and attenuation in fractured porous media
NASA Astrophysics Data System (ADS)
Jinwei, Zhang; Handong, Huang; Chunhua, Wu; Sheng, Zhang; Gang, Wu; Fang, Chen
2018-04-01
Wave induced fluid flow due to mesoscopic heterogeneity can explain seismic dispersion and attenuation in the seismic frequency band. The mesoscopic heterogeneity mainly contains lithological variations, patchy saturation and mesoscopic fractures. The patchy saturation models which are locally based on Biot theory for porous media have been deeply studied, but the patchy saturation model for fractured porous media is rarely studied. In this paper, we develop a model to describe the poroelastic characteristics in fractured porous media where the background and fractures are filled with different fluids based on two scales of squirt flow. The seismic dispersion and attenuation in fractured porous media occur in two scales, the microscale due to fluid flow between pores and micro-cracks and mesoscale due to fluid flow between background and heterogeneities. We derive the complex stiffness tensor through the solution of stress equivalence and fluid conservation. Two new parameters embodying the fluid effects are introduced into the model compared with the single fluid phase model. The model is consistent with Gassmann-Wood equation at low frequency limit and consistent with the isolated fracture model at high frequency limit. After the frequency dependent stiffness tensor is obtained, the variations of velocities and inverse quality factors with frequency are analyzed through several numerical examples. We investigated three poroelastic cases: medium including pores and micro-cracks, media including pores, micro-cracks and fractures, media including pores and fractures. The frequency dependent characteristics of patchy saturation model are different with those of single fluid model not only in characteristic frequency but also in the magnitude of the attenuation. Finally, we discuss the results obtained and the special case where the fractures are saturated with gas or dry and the background is filled with water. We also compare our results with those of patchy saturation model and double porosity model. The results will contribute to the actual exploration work to a certain extent, such as the fluid identification in fractured reservoirs.
Influence of patchy saturation on seismic dispersion and attenuation in fractured porous media
NASA Astrophysics Data System (ADS)
Zhang, Jinwei; Huang, Handong; Wu, Chunhua; Zhang, Sheng; Wu, Gang; Chen, Fang
2018-07-01
Wave-induced fluid flow due to mesoscopic heterogeneity can explain seismic dispersion and attenuation in the seismic frequency band. The mesoscopic heterogeneity mainly contains lithological variations, patchy saturation and mesoscopic fractures. The patchy saturation models which are locally based on Biot theory for porous media have been deeply studied, but the patchy saturation model for fractured porous media is rarely studied. In this paper, we develop a model to describe the poroelastic characteristics in fractured porous media where the background and fractures are filled with different fluids based on two scales of squirt flow. The seismic dispersion and attenuation in fractured porous media occur in two scales, the microscale due to fluid flow between pores and microcracks and mesoscale due to fluid flow between background and heterogeneities. We derive the complex stiffness tensor through the solution of stress equivalence and fluid conservation. Two new parameters embodying the fluid effects are introduced into the model compared with the single fluid phase model. The model is consistent with Gassmann-Wood equation at low-frequency limit and consistent with the isolated fracture model at high-frequency limit. After the frequency-dependent stiffness tensor is obtained, the variations of velocities and inverse quality factors with frequency are analysed through several numerical examples. We investigated three poroelastic cases: medium including pores and microcracks; media including pores, microcracks and fractures; media including pores and fractures. The frequency-dependent characteristics of patchy saturation model are different with those of single fluid model not only in characteristic frequency but also in the magnitude of the attenuation. Finally, we discuss the results obtained and the special case where the fractures are saturated with gas or dry and the background is filled with water. We also compare our results with those of patchy saturation model and double porosity model. The results will contribute to the actual exploration work to a certain extent, such as the fluid identification in fractured reservoirs.
NASA Astrophysics Data System (ADS)
Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.
2015-08-01
Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one side, their degree of resilience to climate shocks, and on the other side, their adaptation potential when confronted with higher temperatures and changes in water availability.
NASA Astrophysics Data System (ADS)
Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia
2016-08-01
Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.
[Plant communities in the terrestrial-aquatic transition zone in the paramo of Chingaza, Colombia].
Schmidt-Mumm, Udo; Vargas Ríos, Orlando
2012-03-01
Plant communities in the terrestrial-aquatic transition zone in the paramo of Chingaza, Colombia. High Andean paramo ecosystems are an important water resource for many towns, and major cities in this region. The aquatic and wetland vegetation of different paramo lakes, pond, swamps and bogs was studied according to the classical phytosociological approach, which is based on homogenous stands, but excludes any border phenomena or transitional zone. The present research aimed at determining the aquatic and wetland vegetation along different moisture gradients. A total of 89 species in 30 transects were reported, of which Crassula venezuelensis, Carex honplandii, Callitriche nubigena, Eleocharis macrostachya, Ranunculus flagelliformis, R. nubigenus, Eleocharis stenocarpa, Galium ascendens y Alopecurus aequalis were present in more than one third of the transects. Numerical classification and indicator species analysis resulted in the definition of the next 18 communities: 1) Calamagrostis effusa, 2) Sphagnum cuspidatum, 3) Cyperus rufus, 4) Eleocharis stenocarpa, 5) Carex acutata, 6) Poa annua,7) Valeriana sp., 8) Ranunculus flagelliformis, 9) Carex bonplandii, 10) Festuca andicola. 11) Muhlenbergia fustigiata, 12) Elatine paramoana, 13) Isoëtes palmeri, 14) Crassula venezuelensis, 15) Lilaeopsis macloviana, 16) Callitriche nubigena, 17) Potamogeton paramoanus and 18) Potamogeton illinoensis. The ordination of communities reveals the presence of three different aquatic-terrestrial gradients which are related to the life form structure of species that characterized the various communities. We concluded that patchiness and heterogeneity of the vegetation is mainly the result of alterations caused by human activities (burning, cattle raise and material extraction for road and dam construction).
Luo, Yongqing; Zhao, Xueyong; Li, Yuqiang; Wang, Tao
2017-11-01
Vegetation recovery during succession is an important process for ecological restoration of the soil, especially in degraded sandy land. However, the driving mechanisms, such as how a pioneer species competes with other species, is uncertain. In China's Horqin Sandy Land, Artemisia halodendron is an important shrub that is common on semi-fixed dunes, where it replaces Agriophyllum squarrosum during succession, and is an important indicator species of the second stage of dune stabilization. However, how it outcompetes other species is still unclear. In this study, we conducted a seed bank germination experiment using soil from the native habitats of A. halodendron on semi-fixed dunes. We covered the soil with foliage litter of A. halodendron at a range of concentrations. Seed germination and seedling growth were strongly affected by the foliage litter. Seed germination and seedling growth were not harmed by a low concentration (≤50 g m -2 ) of the foliage litter but severely inhibited by high concentrations (≥100 g m -2 ). Strong allelopathy, indicated by decreased germination, increased seedling loss, and decreased plant biomass, appeared during the later stages of germination (after about 20 days of incubation). Our results suggest that as a pioneer shrub during the vegetation succession that occurs during dune stabilization, A. halodendron outcompeted other species through the allelopathic effect of its foliage litter. This helps to explain the patchy distribution and heterogeneity of vegetation communities in the Horqin Sandy Land.