Science.gov

Sample records for medium chain triglycerides

  1. Medium chain triglycerides and hepatic encephalopathy

    PubMed Central

    Morgan, M. Hilary; Bolton, C. H.; Morris, J. S.; Read, A. E.

    1974-01-01

    The oral administration of short (C6) and medium (C8 and (C10) chain triglycerides produced no clinical or electroencephalographic changes in patients with cirrhosis of the liver. Arterial ammonia levels were also monitored in these patients and showed no significant change after medium chain triglycerides. It was concluded that medium chain triglycerides, known to be of potential value in the treatment of malabsorption in patients with cirrhosis, are not clinically contraindicated, even in patients with evidence of hepatic encephalopathy. PMID:4841275

  2. Medium-chain triglyceride (MCT) ketogenic therapy.

    PubMed

    Liu, Yeou-mei Christiana

    2008-11-01

    The medium-chain triglyceride diet (MCTD) is a variant of the classic 4:1 ketogenic diet (KD) introduced in 1971 by Huttenlocher as an attempt to improve the palatability of the KD by allowing more carbohydrates yet preserving ketosis. Although initially found to be equally effective as the classic KD, use of the MCTD declined because of frequent gastrointestinal side effects such as cramps, diarrhea, and vomiting. Recently, we have used the MCTD in more than 50 patients. We have found excellent seizure control, similar to the classic KD, and with careful monitoring, we have encountered minimal side effects. The MCTD should remain a viable dietary option for children with refractory epilepsy who have large appetites, can tolerate more calories, or cannot accept the restrictions of the classic KD.

  3. Medium Chain Triglycerides in Paediatric Practice

    PubMed Central

    Gracey, Michael; Burke, Valerie; Anderson, Charlotte M.

    1970-01-01

    Medium chain triglycerides (MCT) bypass the steps necessary for the absorption of long chain fats (LCT), and so have theoretical grounds for their use in various disease states, particularly malabsorptive disorders. In childhood, MCT have particular advantages since they allow restriction of dietary long chain fats without limiting the intake of protein necessary for growth while providing adequate calories. In malabsorptive states, MCT have been used mostly in cystic fibrosis, where they may reduce steatorrhoea. However, the long-term growth patterns of these children are dependent on the extent and severity of their chest disease. MCT may be a useful source of calories for those with anorexia due to infection or liver disease and in babies recovering from meconium ileus. The decrease in offensive stools, flatus, and abdominal discomfort improves well-being and social acceptability which is important for many schoolchildren and adolescents. Rectal prolapse may be helped. Where there is loss of the small intestinal absorptive surface, particularly after massive small bowel resection, MCT can help to maintain weight and nutrition. They may also be a useful supplementary nutritional measure in patients severely affected with coeliac disease while awaiting response to a gluten-free diet, and in patients with regional enteritis. In children with liver disease, MCT provide a ready source of calories while avoiding the loss of fat in their stools. Infants with neonatal hepatitis or biliary atresia remain well nourished, and some older children with liver disease grow more rapidly and have fewer and less offensive stools and less abdominal discomfort. Where an abnormal number of faecal organisms colonize the small intestine (`contaminated small bowel syndrome' or `blind loop syndrome') intraluminal bile salts become deconjugated and cause steatorrhoea. A combination of antibiotic and surgical treatment is usually indicated, but MCT can be used to improve nutrition before

  4. Medium chain triglycerides (MCT) formulas in paediatric and allergological practice

    PubMed Central

    Łoś-Rycharska, Ewa; Kieraszewicz, Zuzanna

    2016-01-01

    Fats constitute the most significant nutritional source of energy. Their proper use by the body conditions a number of complex mechanisms of digestion, absorption, distribution, and metabolism. These mechanisms are facilitated by fats made of medium chain fatty acids; therefore, they are an easy and quick source of energy. Thus, an increased supply of medium chain triglycerides (MCT) is particularly important in patients with disturbances of digestion and absorption such as disturbed bile secretion, classic coeliac disease, short bowel syndrome, inflammatory diseases of the intestines, disturbed outflow of lymph, some metabolic disease, and severe food allergies, as well as in prematurely born neonates. Use of preparations containing an additive of MCT is limited, especially if they are to be used for a longer period of time. With a large quantity of MCT in a diet, there is a risk of deficiency of necessary unsaturated fatty acids and some fat-soluble vitamins. The caloricity of MTC compared to long-chain triglycerides is lower, and formulas with MCT are characterised by higher osmolality. Medium chain triglycerides is not recommended as an additive to standard formulas for healthy children. The use of MCT should be limited to strictly specified medical indications. PMID:28053676

  5. Anticoccidial efficacy of medium-chain triglycerides (MCT) in calves.

    PubMed

    Sato, Hiroshi; Nitanai, Atushi; Kurosawa, Takashi; Oikawa, Shin

    2004-12-01

    Anticoccidial efficacy of dietary fat was evaluated in calves with coccidial infection (Eimeria spp., including E. bovis and E. zuernii). Medium-chain triglycerides (MCT)--natural edible fats composed of caprylic (C8), capric (C10), and lauric (C12) acids -- were given orally with milk to 5 calves and with 10% glucose solution to 3 older, weaned calves by using the reticular groove reflex. After 3 to 11 days of MCT feeding, all Eimeria spp. oocysts had disappeared from the feces of all calves. MCT had no adverse effects on appetite or on fecal pH, ammonia, lactic acid, or volatile fatty acid levels. MCT feeding for coccidial control in calves has minimal side-effects and has benefits in terms of residue-free food production.

  6. A comparison of medium-chain and long-chain triglycerides in surgical patients.

    PubMed

    Jiang, Z M; Zhang, S Y; Wang, X R; Yang, N F; Zhu, Y; Wilmore, D

    1993-02-01

    Available lipid emulsions made from soybean or safflower oil are classified as long-chain triglycerides (LCT). In contrast, medium-chain triglyceride (MCT) emulsions have different physical properties and are metabolized by other biochemical pathways. To compare the differences between these two fat emulsions, the authors studied 12 surgical patients and 6 volunteers. These subjects were randomly assigned to receive parenteral nutrition with MCT or LCT emulsion. Measurement of arterial and venous concentration differences across the forearm demonstrated that muscle utilization was significantly improved with MCT administration. There was also a trend toward improved nitrogen balance in the MCT group, and less weight loss in the postoperative period also was observed in this group. During the fat clearance test, the serum ketone concentrations were significantly higher in the MCT than the LCT group. The improvement in nitrogen retention may be associated with increasing ketone and insulin levels. Fat emulsions containing 50% MCT are safe for use in parenteral nutrition and may provide an alternate fuel that improves protein metabolism.

  7. A comparison of medium-chain and long-chain triglycerides in surgical patients.

    PubMed Central

    Jiang, Z M; Zhang, S Y; Wang, X R; Yang, N F; Zhu, Y; Wilmore, D

    1993-01-01

    Available lipid emulsions made from soybean or safflower oil are classified as long-chain triglycerides (LCT). In contrast, medium-chain triglyceride (MCT) emulsions have different physical properties and are metabolized by other biochemical pathways. To compare the differences between these two fat emulsions, the authors studied 12 surgical patients and 6 volunteers. These subjects were randomly assigned to receive parenteral nutrition with MCT or LCT emulsion. Measurement of arterial and venous concentration differences across the forearm demonstrated that muscle utilization was significantly improved with MCT administration. There was also a trend toward improved nitrogen balance in the MCT group, and less weight loss in the postoperative period also was observed in this group. During the fat clearance test, the serum ketone concentrations were significantly higher in the MCT than the LCT group. The improvement in nitrogen retention may be associated with increasing ketone and insulin levels. Fat emulsions containing 50% MCT are safe for use in parenteral nutrition and may provide an alternate fuel that improves protein metabolism. PMID:8439215

  8. Stimulation of insulin secretion by medium-chain triglycerides in patients with cirrhosis 1

    PubMed Central

    McCullough, Frank S.; Tzagournis, Manuel; Greenberger, Norton J.; Linscheer, Willem G.

    1971-01-01

    Oral medium-chain triglycerides were given to 10 normal volunteers, 12 cirrhotics (group I) without and 28 cirrhotics (group II) with abnormal portal systemic communications (ascites, splenomegaly, oesophageal varices, or surgically-created portacaval shunts). After 30 ml of medium-chain triglyceride oil there was no appreciable change in serum glucose levels in any of the three groups nor in serum insulin levels in the normals and in cirrhotics in group I. However, there was a significant increase in serum insulin levels in the cirrhotic patients in group II. It is suggested that the rise in serum insulin levels after medium-chain triglycerides noted in the cirrhotics with shunts is due to shunting of insulin-containing portal blood around the liver (anatomical shunts) and to a diminished hepatic cell mass capable of extracting insulin (functional shunt). This differential response of serum insulin levels to medium-chain triglycerides may prove to be of value in detecting the presence of abnormal portal systemic communications in cirrhotic patients. PMID:5548559

  9. Stimulation of insulin secretion by medium-chain triglycerides in patients with cirrhosis.

    PubMed

    McCullough, F S; Tzagournis, M; Greenberger, N J; Linscheer, W G

    1971-02-01

    Oral medium-chain triglycerides were given to 10 normal volunteers, 12 cirrhotics (group I) without and 28 cirrhotics (group II) with abnormal portal systemic communications (ascites, splenomegaly, oesophageal varices, or surgically-created portacaval shunts). After 30 ml of medium-chain triglyceride oil there was no appreciable change in serum glucose levels in any of the three groups nor in serum insulin levels in the normals and in cirrhotics in group I. However, there was a significant increase in serum insulin levels in the cirrhotic patients in group II. It is suggested that the rise in serum insulin levels after medium-chain triglycerides noted in the cirrhotics with shunts is due to shunting of insulin-containing portal blood around the liver (anatomical shunts) and to a diminished hepatic cell mass capable of extracting insulin (functional shunt). This differential response of serum insulin levels to medium-chain triglycerides may prove to be of value in detecting the presence of abnormal portal systemic communications in cirrhotic patients.

  10. Effects of a single oral load of medium-chain triglyceride on serum lipid and insulin levels in man.

    PubMed

    Tamir, I; Grant, D B; Fosbrooke, A S; Segall, M M; Lloyd, J K

    1968-09-01

    Analysis of serum free fatty acids by gas-liquid chromatography showed high proportions (27-57%) of octanoic acid for up to 4 hr after the ingestion of a single oral load of medium-chain triglyceride (approximately 1 g/kg body weight) in four volunteers. The effects of a medium-chain triglyceride load on the concentrations of plasma free long-chain fatty acids, plasma glucose, serum insulin, and serum triglyceride were observed and compared with the effects of a glucose load. A rapid fall in the free long-chain fatty acids followed both loads but only a small rise in serum insulin was observed after medium-chain triglyceride. The fall in free long-chain fatty acids following ingestion of medium-chain triglyceride cannot therefore be caused mainly by the release of insulin and may be due to a direct action on adipose tissue. No medium-chain fatty acids were detected in the serum triglyceride after ingestion of medium-chain triglyceride, but there was a small but significant increase in the percentage of hexadecenoic acid in this fraction.

  11. The metabolic consequences of infusing emulsions containing medium chain triglycerides for parenteral nutrition: a comparative study with conventional lipid.

    PubMed Central

    Dennison, A. R.; Ball, M.; Crowe, P. J.; White, K.; Hands, L.; Watkins, R. M.; Kettlewell, M.

    1986-01-01

    In order to test the hypothesis that medium chain triglycerides (MCT's) are a safe and potentially superior energy source during parenteral nutrition 13 patients were entered into a randomised cross over trial. They received either a long chain triglyceride emulsion (LCT) or a 50% medium chain (MCT)/50% LCT mixture as part of their energy supply. Nitrogen balance was significantly better when MCT/LCT was infused and the greater levels of plasma ketones and lower plasma triglyceride levels suggested that MCT was more readily metabolised in these patients. Routine haematology, biochemistry and liver function tests gave no indication of harmful side effects from MCT. PMID:3089123

  12. Effects of Medium-Chain Triglycerides, Long-Chain Triglycerides, or 2-Monododecanoin on Fatty Acid Composition in the Portal Vein, Intestinal Lymph, and Systemic Circulation in Rats

    PubMed Central

    Nancy You, Yi-Qian; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R.

    2011-01-01

    Background Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. Methods The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. Results MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. Conclusions The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine. PMID:18407910

  13. Medium-chain triglycerides for parenteral nutrition: kinetic profile in humans.

    PubMed

    Mingrone, G; De Gaetano, A; Greco, A V; Capristo, E; Castagneto, M; Gasbarrini, G

    1995-01-01

    Medium-chain triglycerides (MCTs) have been introduced as lipid substrates in parenteral nutrition because of their rapid and complete oxidation. Although there are many clinical studies on the use of MCTs in parenteral nutrition there are only a few studies on their kinetics; most of these studies used indirect methods (such as light scattering) to determine MCT concentrations in plasma. We determined the hydrolysis rate of MCTs to medium-chain fatty acids (MCFAs) and the disposition rate of MCFAs in nine healthy volunteers who received an intravenous bolus of MCTs as 10% MCT + 10% long-chain triglyceride solution. MCTs and MCFAs were analyzed by gas-liquid chromatography. One linear compartment model was used and its parameters were numerically estimated. The first-order transformation constant of the hydrolysis step from MCT to MCFA was 0.0964 +/- 0.0152 min-1(for 8- and 10-carbon pooled together); the rate constant for tissue MCFA uptake from plasma was 0.0725 +/- 0.0230 min-1. The apparent volumes of distribution were about 4.5 L for MCT and 19 L for MCFA in a typical 70-kg subject. The plasma half-life of MCT was 11 min and that of MCFA was 17 min. The limiting step in the clinical use of MCTs seems to be tissue uptake of MCFAs.

  14. Selective deuteration for molecular insights into the digestion of medium chain triglycerides.

    PubMed

    Salentinig, Stefan; Yepuri, Nageshwar Rao; Hawley, Adrian; Boyd, Ben J; Gilbert, Elliot; Darwish, Tamim A

    2015-09-01

    Medium chain triglycerides (MCTs) are a unique form of dietary fat that have a wide range of health benefits. They are molecules with a glycerol backbone esterified with medium chain (6-12 carbon atoms) fatty acids on the two outer (sn-1 and sn-3) and the middle (sn-2) positions. During lipid digestion in the gastrointestinal tract, pancreatic lipase stereoselectively hydrolyses the ester bonds of these triglycerides on the sn-1 and sn-3 positions resulting in sn-2 monoglyceride and fatty acids as major products. However, the sn-2 monoglycerides are thermodynamically less stable than their sn-1/3 counterparts. Isomerization or fatty acid migration from the sn-2 monoglyceride to sn-1/3 monoglyceride may occur spontaneously and would lead to glycerol and fatty acid as final products. Here, tricaprin (C10) with selectively deuterated fatty acid chains was used for the first time to monitor chain migration and the stereoselectivity of the pancreatic lipase-catalyzed hydrolysis of ester bonds. The intermediate and final digestion products were studied using NMR and mass spectrometry under biologically relevant conditions. The hydrolysis of the sn-2 monocaprin to glycerol and capric acid did not occur within biologically relevant timescales and fatty acid migration occurs only in limited amounts as a result of the presence of undigested diglyceride species over long periods of time in the digestion medium. The slow kinetics for the exchange of the sn-2 fatty acid chain and the stereoselectivity of pancreatic lipase on MCTs is relevant for industrial processes that involve enzymatic interesterification and the production of high-value products such as specific structured triacylglycerols, confectionery fats and nutritional products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Transesterification reaction between medium- and long-chain fatty acid triglycerides using surfactant-modified lipase.

    PubMed

    Mogi, K; Nakajima, M; Mukataka, S

    2000-03-05

    Transesterification between medium-chain fatty acid triglycerides (MCT) and long-chain fatty acid triglycerides (LCT) in a nonsolvent system was investigated using surfactant modified lipase which is a complex of lipase, Rhizopus japonicus and surfactant, sorbitan monostearate. 74% conversion of was obtained after a 48-h reaction period, and the triglyceride composition was well described by the 1, 3-random 2-random stochastic model. The transesterification reaction between MCT and LCT closely followed the simple kinetic model, and the change in MCT and LCT contents could be simulated using one parameter. The effects of the water activity (A(w)) of modified lipase, the water content of the reaction system and the reaction temperature on the reaction rate were studied. A modified lipase A(w) of 0.35 and a water content of the reaction system at 0.09 wt % showed the highest activity. Inactivation did not occur below 60 degrees C, however, the activity decreased at temperatures over 70 degrees C. Copyright 2000 John Wiley & Sons, Inc.

  16. Randomized clinical trial of new intravenous lipid (SMOFlipid 20%) versus medium-chain triglycerides/long-chain triglycerides in adult patients undergoing gastrointestinal surgery.

    PubMed

    Wu, Ming-Hsun; Wang, Ming-Yang; Yang, Chin-Yao; Kuo, Min-Liang; Lin, Ming-Tsan

    2014-09-01

    SMOFlipid 20% is intravenous lipid emulsion (ILE) containing long-chain triglycerides (LCT), medium-chain triglycerides (MCT), olive oil, and fish oil as a mixed emulsion containing α-tocopherol. The aim was to assess the efficacy of this new ILE in gastrointestinal surgery compared with MCT/LCT. In this prospective study, 40 patients were randomized to SMOFlipid 20% or MCT/LCT (Lipovenoes 20%) group. Clinical and biochemistry data were collected. Inflammatory markers (CRP, IL-6, IL-10, TNF-α, TGF-β1) and oxidative stress (ROS and superoxide) were measured. Thirty-five patients (17 males and 18 females) with a mean age of 57 years completed the study. The patients' demographic characteristics (age, gender, height, body weight, and BMI) were similar without significant differences between groups. The increment of triglyceride on day 6 from baseline was significantly lower in SMOFlipid group than in Lipovenoes MCT/LCT group. Inflammatory markers, as well as superoxide radical and total oxygen radical were not different between groups. Despite the comparable effect on inflammatory response, because of its well-balanced fatty acid pattern, relatively low n-6:n-3 ratio, and high vitamin E content, SMOFlipid had a better triglyceride-lowering effect as compared with MCT/LCT in adult patients undergoing gastrointestinal surgery. © 2013 American Society for Parenteral and Enteral Nutrition.

  17. Oxidative stabilization of mixed mayonnaises made with linseed oil and saturated medium-chain triglyceride oil.

    PubMed

    Raudsepp, Piret; Brüggemann, Dagmar A; Lenferink, Aufried; Otto, Cees; Andersen, Mogens L

    2014-01-01

    Mayonnaises, made with either saturated medium chain triglyceride (MCT) oil or unsaturated purified linseed oil (LSO), were mixed. Raman confocal microspectrometry demonstrated that lipid droplets in mixed mayonnaise remained intact containing either MCT oil or LSO. Peroxide formation during storage was lower in mixed mayonnaise compared to LSO mayonnaise, while in mixed oil mayonnaise the level of peroxides was constantly low. Mixed oil mayonnaise had a lower rate of oxygen consumption than mixed mayonnaise, LSO mayonnaise having the highest rate. The decay of water-soluble nitroxyl radicals showed radicals are formed in the aqueous phase with the same rate independent of the lipids. This was also reflected in decay of α-tocopherol during storage being similar in MCT and LSO mayonnaises, but being stable in mixed oil mayonnaise and mixed mayonnaise. Results suggest that other effects than simply diluting unsaturated triglycerides with saturated triglycerides is causing the oxidative stabilization observed for mixed mayonnaise and mixed oil mayonnaise. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Dietary medium-chain triglycerides attenuate hepatic lipid deposition in growing rats with protein malnutrition.

    PubMed

    Kuwahata, Masashi; Kubota, Hiroyo; Amano, Saki; Yokoyama, Meiko; Shimamura, Yasuhiro; Ito, Shunsuke; Ogawa, Aki; Kobayashi, Yukiko; Miyamoto, Ken-ichi; Kido, Yasuhiro

    2011-01-01

    The objective of this study was to investigate the effects of dietary medium-chain triglycerides (MCT) on hepatic lipid accumulation in growing rats with protein malnutrition. Weaning rats were fed either a low-protein diet (3%, LP) or control protein diet (20%, CP), in combination with or without MCT. The four groups were as follows: CP-MCT, CP+MCT, LP-MCT, and LP+MCT. Rats in the CP-MCT, CP+MCT and LP+MCT groups were pair-fed their respective diets based on the amount of diet consumed by the LP-MCT group. Rats were fed each experimental diet for 30 d. Four weeks later, the respiratory quotient was higher in the LP-MCT group than those in the other groups during the fasting period. Hepatic triglyceride content increased in the LP groups compared with the CP groups. Hepatic triglyceride content in the LP+MCT group, however, was significantly decreased compared with that in the LP-MCT group. Levels of carnitine palmitoyltransferase (CPT) 1a mRNA and CPT2 mRNA were significantly decreased in the livers of the LP-MCT group, as compared with corresponding mRNA levels of the other groups. These results suggest that ingestion of a low-protein diet caused fatty liver in growing rats. However, when rats were fed the low-protein diet with MCT, hepatic triglyceride deposition was attenuated, and mRNA levels encoding CPT1a and CPT2 were preserved at the levels of rats fed control protein diets.

  19. Safety of medium-chain triglycerides used as an intraocular tamponading agent in an experimental vitrectomy model rabbit.

    PubMed

    Auriol, Sylvain; Mahieu, Laurence; Brousset, Pierre; Malecaze, François; Mathis, Véronique

    2013-01-01

    To evaluate safety of medium-chain triglycerides used as a possible intraocular tamponading agent. A 20-gauge pars plana vitrectomy was performed in the right eye of 28 rabbits. An ophthalmologic examination was performed every week until rabbits were killed. At days 7, 30, 60, and 90, rabbits were killed and the treated eyes were examined macroscopically and prepared for histologic examination. Principal outcome was retinal toxicity evaluated by light and electron microscopy, and secondary outcomes were the presence of medium-chain triglyceride emulsification, inflammatory reactions, and the development of cataract. Histologic examination did not reveal any retinal toxicity. Two cases of moderate emulsification were observed, but in these cases, emulsification was caused by the perioperative injection of the agent and did not increase during the postoperative period. We noted 13 cases of inflammatory reaction in vitreous cavity and no case of inflammatory reaction in anterior chamber. Two eyes developed cataract as a result of perioperative trauma to the lens with the vitreous cutter and not secondary to the presence of medium-chain triglycerides in the vitreous cavity. Medium-chain triglycerides did not induce morphologic evidence of retinal toxicity. The results suggest that medium-chain triglycerides could be a promising alternative intraocular tamponading agent for the treatment of retinal detachments.

  20. Biobased Fat Mimicking Molecular Structuring Agents for Medium-Chain Triglycerides (MCTs) and Other Edible Oils.

    PubMed

    Silverman, Julian R; John, George

    2015-12-09

    To develop sustainable value-added materials from biomass, novel small-molecule sugar ester gelators were synthesized using biocatalysis. The facile one-step regiospecific coupling of the pro-antioxidant raspberry ketone glucoside and unsaturated or saturated long- and medium-chain fatty acids provides a simple approach to tailor the structure and self-assembly of the amphiphilic product. These low molecular weight molecules demonstrated the ability to self-assemble in a variety of solvents and exhibited supergelation, with a minimum gelation concentration of 0.25 wt %, in numerous organic solvents, as well as in a range of natural edible oils, specifically a relatively unstudied group of liquids: natural medium-chain triglyceride oils, notably coconut oil. Spectroscopic analysis details the gelator structure as well as the intermolecular noncovalent interactions, which allow for gelation. X-ray diffraction studies indicate fatty acid chain packing of gelators is similar to that of natural fats, signifying the crystalline nature may lead to desirable textural properties and mouthfeel.

  1. Dietary substitution of medium-chain triglycerides improves insulin-mediated glucose metabolism in NIDDM subjects.

    PubMed

    Eckel, R H; Hanson, A S; Chen, A Y; Berman, J N; Yost, T J; Brass, E P

    1992-05-01

    Dietary medium-chain triglycerides (MCT) may improve insulin-mediated glucose metabolism. To examine this possibility, 10 non-insulin-dependent diabetes mellitus (NIDDM) patients, 4 hypertriglyceridemic, and 6 normotriglyceridemic nondiabetic control subjects were examined with a 5-day cross-over design, in which the short-term metabolic effects of a 40% fat diet containing 77.5% of fat calories as MCT were compared with an isocaloric long-chain triglyceride-containing diet. In diabetic patients, MCT failed to alter fasting serum glucose concentrations but reduced preprandial glycemic excursions by 45% (F = 7.9, P less than 0.01). On MCT, the amount of glucose needed to maintain euglycemia during an intravenous insulin infusion was increased in diabetic subjects by 30%, in hypertriglyceridemic subjects by 30%, and in normotriglyceridemic control subjects by 17%. MCT increased mean +/- SE insulin-mediated glucose disposal (4.52 +/- 0.56 vs. 2.89 +/- 0.21 mg.kg-1.min-1; n = 3, P less than 0.05) but failed to alter basal glucose metabolism or insulin-mediated suppression of hepatic glucose output. Metabolic responses to MCT were observed independent of sulfonylurea therapy or severity of fasting hyperglycemia. No change in fasting serum insulin or triglyceride concentrations were seen with MCT administration. Although MCT increased mean fasting serum beta-hydroxybutyrate levels from 0.10 +/- 0.03 to 0.26 +/- 0.06 mM (P less than 0.05) in normotriglyceridemic nondiabetic subjects, no change was seen in diabetic patients. Thus, MCT-containing diets increased insulin-mediated glucose metabolism in both diabetic patients and nondiabetic subjects. In diabetic subjects, this effect appears to be mediated by increases in insulin-mediated glucose disposal.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Impact of medium and long chain triglycerides consumption on appetite and food intake in overweight men.

    PubMed

    St-Onge, M-P; Mayrsohn, B; O'Keeffe, M; Kissileff, H R; Choudhury, A R; Laferrère, B

    2014-10-01

    Medium chain triglycerides (MCT) enhance thermogenesis and may reduce food intake relative to long chain triglycerides (LCT). The goal of this study was to establish the effects of MCT on appetite and food intake and determine whether differences were due to differences in hormone concentrations. Two randomized, crossover studies were conducted in which overweight men consumed 20 g of MCT or corn oil (LCT) at breakfast. Blood samples were obtained over 3 h. In Study 1 (n=10), an ad lib lunch was served after 3 h. In Study 2 (n=7), a preload containing 10 g of test oil was given at 3 h and lunch was served 1 h later. Linear mixed model analyses were performed to determine the effects of MCT and LCT oil on change in hormones and metabolites from fasting, adjusting for body weight. Correlations were computed between differences in hormones just before the test meals and differences in intakes after the two oils for Study 1 only. Food intake at the lunch test meal after the MCT preload (Study 2) was (mean±s.e.m.) 532±389 kcal vs 804±486 kcal after LCT (P<0.05). MCT consumption resulted in a lower rise in triglycerides (P=0.014) and glucose (P=0.066) and a higher rise in peptide YY (PYY, P=0.017) and leptin (P=0.036) compared with LCT (combined data). Correlations between differences in hormone levels (glucagon-like peptide (GLP-1), PYY) and differences in food intake were in the opposite direction to expectations. MCT consumption reduced food intake acutely but this does not seem to be mediated by changes in GLP-1, PYY and insulin.

  3. Impact of medium and long chain triglycerides consumption on appetite and food intake in overweight men

    PubMed Central

    St-Onge, Marie-Pierre; Mayrsohn, Brian; O’Keeffe, Majella; Kissileff, Harry R.; Choudhury, Arindam Roy; Laferrère, Blandine

    2014-01-01

    Background Medium chain triglycerides (MCT) enhance thermogenesis and may reduce food intake relative to long chain triglycerides (LCT). The goal of this study was to establish the effects of MCT on appetite and food intake and determine whether differences were due to differences in hormone concentrations. Methods Two randomized, crossover studies were conducted in which overweight men consumed 20 g of MCT or corn oil (LCT) at breakfast. Blood samples were obtained over 3 h. In Study 1 (n=10), an ad lib lunch was served after 3 h. In Study 2 (n=7), a pre-load containing 10 g of test oil was given at 3 h and lunch was served 1 h later. Linear mixed model analyses were performed to determine the effects of MCT and LCT oil on change in hormones and metabolites from fasting, adjusting for body weight. Correlations were computed between differences in hormones just before the test meals and differences in intakes after the two oils for Study 1 only. Results Food intake at the lunch test meal after the MCT pre-load (Study 2) was (mean ± SEM) 532 ± 389 kcal vs. 804 ± 486 kcal after LCT (P < 0.05). MCT consumption resulted in a lower rise in triglycerides (P = 0.014) and glucose (P = 0.066) and a higher rise in peptide YY (P = 0.017) and leptin (P = 0.036) compared to LCT (combined data). Correlations between differences in hormone levels (GLP-1, PYY) and differences in food intake were in the opposite direction to expectations. Conclusions MCT consumption reduced food intake acutely but this does not seem to be mediated by changes in GLP-1, PYY, and insulin. PMID:25074387

  4. Efficacy of medium-chain triglycerides compared with long-chain triglycerides in total parenteral nutrition in patients with digestive tract cancer undergoing surgery.

    PubMed

    Chen, Fang-Ming; Wang, Jaw-Yuan; Sun, Li-Chu; Juang, Rue-Fen; Huang, Tsung-Jen; Hsieh, Jan-Sing

    2005-11-01

    The objectives of this prospective, randomized study were to evaluate the efficacy and tolerability of the short-term use of medium-chain triglyceride/long-chain triglyceride (MCT/LCT) fat emulsions, and to compare the hematologic and biochemical effects of MCT/LCT fat emulsions with LCT fat emulsions in gastrointestinal (GI) tract cancer patients following surgery. Thirty patients with GI tract cancer requiring total parenteral nutrition (TPN) were equally randomized to receive MCT/LCT or LCT emulsions for 7 days. After 7 days, no sign of complications directly related to administration of fat emulsions was observed and there were no marked differences in anthropometry, length of hospital stay, and surgical complication rates between the two groups. However, MCT/LCT significantly improved plasma prealbumin concentration (p = 0.005). Changes in complements C3 and C4, total lymphocyte count, and immunoglobulins after TPN were not significantly different between the groups. Serum triglyceride and cholesterol levels remained constant. The serum insulin level in the MCT/LCT group was higher than in the LCT group (p = 0.048). Our data revealed that MCT/LCT fat emulsions significantly enhanced nutritional status in patients with GI tract cancer, indicated by higher prealbumin levels, which might be partially due to the higher circulating insulin levels in the MCT/LCT group.

  5. Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides

    PubMed Central

    McDonald, Tanya S; Tan, Kah Ni; Hodson, Mark P; Borges, Karin

    2014-01-01

    Medium chain triglycerides (MCTs) are used to treat neurologic disorders with metabolic impairments, including childhood epilepsy and early Alzheimer's disease. However, the metabolic effects of MCTs in the brain are still unclear. Here, we studied the effects of feeding even and uneven MCTs on brain glucose metabolism in the mouse. Adult mice were fed 35% (calories) of trioctanoin or triheptanoin (the triglycerides of octanoate or heptanoate, respectively) or a matching control diet for 3 weeks. Enzymatic assays and targeted metabolomics by liquid chromatography tandem mass spectrometry were used to quantify metabolites in extracts from the hippocampal formations (HFs). Both oils increased the levels of β-hydroxybutyrate, but no other significant metabolic alterations were observed after triheptanoin feeding. The levels of glucose 6-phosphate and fructose 6-phosphate were increased in the HF of mice fed trioctanoin, whereas levels of metabolites further downstream in the glycolytic pathway and the pentose phosphate pathway were reduced. This indicates that trioctanoin reduces glucose utilization because of a decrease in phosphofructokinase activity. Trioctanoin and triheptanoin showed similar anticonvulsant effects in the 6 Hz seizure model, but it remains unknown to what extent the anticonvulsant mechanism(s) are shared. In conclusion, triheptanoin unlike trioctanoin appears to not alter glucose metabolism in the healthy brain. PMID:24169853

  6. Nanostructured Montmorillonite Clay for Controlling the Lipase-Mediated Digestion of Medium Chain Triglycerides.

    PubMed

    Dening, Tahnee J; Joyce, Paul; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-12-07

    Biocompatible lipid hybrid particles composed of montmorillonite and medium chain triglycerides were engineered for the first time by spray drying oil-in-water emulsions stabilized by montmorillonite platelets to form montmorillonite-lipid hybrid (MLH) microparticles containing up to 75% w/w lipid. In vitro lipolysis studies under simulated intestinal conditions indicated that the specific porous nanoarchitecture and surface chemistry of MLH particles significantly increased the rate (>10-fold) and extent of lipase-mediated digestion compared to that of coarse and homogenized submicrometer triglyceride emulsions. Proton nuclear magnetic resonance studies verified the rapid and enhanced production of fatty acids for MLH particles; these are electrostatically repelled by the negatively charged montmorillonite platelet faces and avoid the "interfacial poisoning" caused by incomplete digestion that retards lipid droplet digestion. MLH particles are a novel biomaterial and encapsulation system that optimize lipase enzyme efficiency and have excellent potential as a smart delivery system for lipophilic biomolecules owing to their exceptional physicochemical and biologically active properties. These particles can be readily fabricated with varying lipid loads and thus may be tailored to optimize the solubilization of specific bioactive molecules requiring reformulation.

  7. Sensations induced by medium and long chain triglycerides: role of gastric tone and hormones

    PubMed Central

    Barbera, R; Peracchi, M; Brighenti, F; Cesana, B; Bianchi, P; Basilisco, G

    2000-01-01

    BACKGROUND—The relative roles of gastric relaxation and the neuroendocrine signals released by the small intestine in the perception of nutrient induced sensations are controversial. The different effects of long chain (LCT) and medium chain (MCT) triglyceride ingestion on perception, gastric relaxation, and hormonal release may help to elucidate the mechanisms underlying nutrient induced sensations.
AIMS—To compare the effects of intraduodenal LCT and MCT infusions on perception, gastric tone, and plasma gut hormone levels in healthy subjects.
SUBJECTS—Nine fasting healthy volunteers.
METHODS—The subjects received duodenal infusions of saline followed by LCTs and MCTs in a randomised order on two different days. The sensations were rated on a visual analogue scale. Gastric tone was measured using a barostat, and plasma gut hormone levels by radioimmunoassay.
RESULTS—LCT infusion increased satiation scores, reduced gastric tone, and increased the levels of plasma cholecystokinin, gastric inhibitory polypeptide, neurotensin, and pancreatic polypeptide. MCT infusion reduced gastric tone but did not significantly affect perception or plasma gut hormone levels. LCTs produced greater gastric relaxation than MCTs.
CONCLUSIONS—The satiation induced by intraduodenal LCT infusion seems to involve changes in gastric tone and plasma gut hormone levels. The gastric relaxation induced by MCT infusion, together with the absence of any significant change in satiation scores and plasma hormone levels, suggests that, at least up to a certain level, gastric relaxation is not sufficient to induce satiation and that nutrient induced gastric relaxation may occur through cholecystokinin independent mechanisms.


Keywords: gastric tone; triglyceride; hormones; satiation; cholecystokinin; nutrients PMID:10601051

  8. Comparison of the fat elimination between long-chain triglycerides and medium-chain triglycerides in rats with ischemic acute renal failure.

    PubMed

    Ge, Yuqiang; Xu, Yuanzhao; Liao, Lutan

    2002-01-01

    To guide the administration of fat emulsion in the nutritional support of acute renal failure (ARF), pharmacokinetic analysis with an one-compartment open model after bolus intravenous injection was performed to compare the elimination kinetics of long-chain triglycerides (LCT) and medium-chain triglycerides (MCT) in ischemic acute renal failure rats. Sprague-Dawley rats were randomized into four groups, namely LCT normal group, LCT ARF group, MCT normal group and MCT ARF group. The model of ischemic acute renal failure was induced by clamping the left renal artery for 60 min and contralateral nephrectomy. All the rats were fasted with water ad libitum for 10 h before 0.3 g/kg body weight of 10% Intralipid (LCT) or 10% Lipofundin (MCT: LCT = 50:50) was injected as a bolus to them via the tail vein. The serum triglyceride concentration was determined at 2, 10, 40, 70, 100, 130 and 160 min after intravenous injection for kinetic analysis. The results showed that the elimination rate constant (ke) of LCT ARF group was significantly decreased, while the half life period (t1/2) of it was significantly longer than those of LCT normal group. The ke and t1/2 of MCT showed no statistical difference between normal and ARF groups. In the normal group the ke of LCT was significantly decreased compared with MCT whereas the t1/2 was significantly prolonged. In the ARF group the ke of LCT was much less than that of MCT while the t1/2 was much longer. The serum insulin levels of both MCT groups were significantly higher than those of LCT groups. These results indicate that MCT will be eliminated more rapidly than LCT in ARF rats. MCT may also increase the secretion of insulin. In conclusion, MCT may be more favorable than LCT in the nutritional management of ARF.

  9. Meta-Analysis of Structured Triglyceride versus Physical Mixture Medium- and Long-Chain Triglycerides for PN in Liver Resection Patients

    PubMed Central

    Zhao, Yajie

    2017-01-01

    Background The use of total parenteral nutrition can affect liver function, causing a series of problems such as cholestasis. The aim of this meta-analysis was to compare structured triglyceride- (STG-) based lipid emulsions with physical medium-chain triglyceride (MCT)/long-chain triglyceride (LCT) mixtures in patients who had undergone liver surgery to identify any differences between these two types of parenteral nutrition. Methods We searched the databases of PubMed, the Cochrane Library, Web of Science, EMBASE, and Chinese Biomedicine Database from January 2007 to March 2017 and included studies that compared STG-based lipid emulsions with physical MCT/LCT mixtures for surgical patients with liver disease. Conclusion The STG was more beneficial than physical MCT/LCT on recovery of liver function and immune function. Therefore, STGs may represent a promising alternative to other types of lipid emulsions for hepatic surgery patients. PMID:28932742

  10. Meta-Analysis of Structured Triglyceride versus Physical Mixture Medium- and Long-Chain Triglycerides for PN in Liver Resection Patients.

    PubMed

    Zhao, Yajie; Wang, Chengfeng

    2017-01-01

    The use of total parenteral nutrition can affect liver function, causing a series of problems such as cholestasis. The aim of this meta-analysis was to compare structured triglyceride- (STG-) based lipid emulsions with physical medium-chain triglyceride (MCT)/long-chain triglyceride (LCT) mixtures in patients who had undergone liver surgery to identify any differences between these two types of parenteral nutrition. We searched the databases of PubMed, the Cochrane Library, Web of Science, EMBASE, and Chinese Biomedicine Database from January 2007 to March 2017 and included studies that compared STG-based lipid emulsions with physical MCT/LCT mixtures for surgical patients with liver disease. The STG was more beneficial than physical MCT/LCT on recovery of liver function and immune function. Therefore, STGs may represent a promising alternative to other types of lipid emulsions for hepatic surgery patients.

  11. The effect of massage with medium-chain triglyceride oil on weight gain in premature neonates.

    PubMed

    Saeadi, Reza; Ghorbani, Zahra; Shapouri Moghaddam, Abbas

    2015-01-01

    Prematurity and poor weight gaining are important causes for neonatal hospitalization. The present study aimed to investigate the role of medium-chain triglyceride (MCT) oil via massage therapy as a supplementary nutritional method on the weight gain of Neonatal Intensive Care Units (NICU)-hospitalized neonates. This randomized clinical trial performed among 121 stable premature neonates hospitalized in the NICU of Qaem Educational Hospital, Mashhad, Iran. They were randomly divided into three groups: oil-massage, massage alone and control groups. These groups were compared on the basis of weight gain during a one-week interval. The three groups were matched for sex, mean gestational age, birth weight, head circumference, delivery, and feeding type (P>0.05). The mean weight gain on the 7th day in the oil massage group was 105±1.3gr and 52±0.1gr in the massage group; whereas 54±1.3gr weight loss was observed in the control group. Significant differences were observed between the oil-massage group and the other two groups, respectively (P=0.002 and P=0.000). The findings of this study suggest that transcutaneous feeding with MCT oil massage therapy in premature neonates can result in accelerated weight gain in this age group with no risk of NEC.

  12. Ketosis resistance in fibrocalculous pancreatic diabetes: II. Hepatic ketogenesis after oral medium-chain triglycerides.

    PubMed

    Yajnik, C S; Sardesai, B S; Bhat, D S; Naik, S S; Raut, K N; Shelgikar, K M; Orskov, H; Alberti, K G; Hockaday, T D

    1997-01-01

    A majority of patients with fibrocalculous pancreatic diabetes (FCPD) do not become ketotic even in adverse conditions. It is not clear whether this ketosis resistance is due to reduced fatty acid release from adipose tissue or to impaired hepatic ketogenesis. We tested hepatic ketogenesis in FCPD patients using a ketogenic challenge of oral medium-chain triglycerides (MCTs) and compared it with that in matched insulin-dependent diabetes mellitus (IDDM) patients and healthy controls. After oral MCTs, FCPD patients showed only a mild increase in blood 3-hydroxybutyrate (3-HB) concentrations (median: fasting, 0.13 mmol/L; peak, 0.52) compared with IDDM patients (fasting, 0.44; peak, 3.39) and controls (fasting, 0.04; peak, 0.75). Plasma nonesterified fatty acid (NEFA) concentrations were comparable in the two diabetic groups (FCPD: fasting, 0.50 mmol/L; peak, 0.79; IDDM: fasting, 0.91; peak, 1.04). Plasma C-peptide concentrations were low and comparable in the two diabetic groups. Plasma glucagon concentrations were higher in IDDM patients in the fasting state, but declined to levels comparable to those in FCPD patients after oral MCTs. Plasma carnitine concentrations were comparable in the two groups of patients. It is concluded that the failure to stimulate ketogenesis under these conditions could be partly due to inhibition of a step beyond fatty acid entry into the mitochondria.

  13. Influence of medium-chain triglycerides on expansion and rheological properties of extruded corn starch.

    PubMed

    Horvat, Mario; Emin, M Azad; Hochstein, Bernhard; Willenbacher, Norbert; Schuchmann, Heike Petra

    2013-04-02

    Enhancement of product properties of extruded starch based products can be achieved by incorporating health promoting oil into the matrix. In order to achieve a preferably high expansion with a homogeneous pore structure, the expansion mechanisms have to be understood. In our study, we applied a customized twin-screw extruder set up to feed medium-chain triglycerides after complete gelatinization of corn starch, minimizing its effect on the starch gelatinization. Despite the fact, that the addition of up to 3.5% oil showed no influence on the extrusion parameters, we observed a three-fold increase in sectional expansion. Longitudinal expansion was less affected by the oil content. Rheological properties of the gelatinized starch were measured using an inline slit die rheometer. In addition to shear viscosity, we presented a method to determine the Bagley pressure, which reflects the elongational properties of a fluid. We were able to observe an increase in the Bagley pressure from about 25 bar up to 35-37 bar due to the addition of oil.

  14. Effectiveness of Medium Chain Triglyceride Ketogenic Diet in Thai Children with Intractable Epilepsy.

    PubMed

    Chomtho, Krisnachai; Suteerojntrakool, Orapa; Chomtho, Sirinuch

    2016-02-01

    To determine the efficacy, side effects and feasibility of Medium chain triglyceride (MCT) ketogenic diet (KD) in Thai children with intractable epilepsy. Children with intractable epilepsy were recruited. Baseline seizure frequency was recorded over 4 weeks before starting MCT KD. Average seizure frequency was assessed at 1 month and 3 months, compared to the baseline using Wilcoxon Signed Rank Test. Side effects and feasibility were also assessed by blood tests and an interview. Sixteen subjects were recruited with mean seizure frequency of 0.35-52.5 per day. After treatment, there was a significant reduction in seizure frequency, ranging from 12% to 100% (p = 0.002 at 1 month, and 0.001 at 3 months). 64.3% of the subjects achieved more than 50% seizure reduction at 3 months and 28.6% of the patients were seizure-free. Common adverse effects were initial weight loss (37.5%) and nausea (25%). 87.5% of subjects and parents were satisfied with the MCT KD with 2 cases dropping-out due to diarrhea and non-compliance. MCT ketogenic diet is effective and feasible in Thai children with intractable epilepsy. Despite modification against Asian culinary culture, the tolerability and maintenance rate was still satisfactory. A larger study is required.

  15. Dietary medium-chain triglycerides prevent chemically induced experimental colitis in rats.

    PubMed

    Kono, Hiroshi; Fujii, Hideki; Ishii, Kenichi; Hosomura, Naohiro; Ogiku, Masahito

    2010-03-01

    The effects of dietary medium-chain triglycerides (MCTs) on experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) were investigated in rats. Male Wistar rats were given an intracolonic injection of TNBS and were then fed liquid diets containing MCTs or corn oil (AIN93) as controls. Serum and tissue samples were collected 1 week after TNBS enema. The severity of colitis was evaluated pathologically, and tissue myeloperoxidase (MPO) activity was measured. Furthermore, messenger RNA (mRNA) and protein levels for inflammatory cytokines and a chemokine were assessed by reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. In another set of experiments, the protein expression of Toll-like receptor (TLR)-4 in the colon was measured 1 week after feeding of liquid diets. To investigate the effects of MCTs on macrophages, RAW246.7 macrophages were incubated with media containing albumin conjugated with MCT or linoleic acid, which is the major component of corn oil. Then, the production of tumor necrosis factor-alpha (TNF-alpha) was measured. Dietary MCTs blunted significantly the protein levels of TLR-4 in the colon. Furthermore, the expression of TLR-4 was significantly blunted in RAW264.7 cells incubated with MCTs compared with cells incubated with linoleic acid. Induction of interleukin 1beta (IL-1beta), TNF-alpha, and macrophage inflammatory protein-2 (MIP-2) in the colon was attenuated by dietary MCT. Furthermore, MPO activities in the colonic tissue were significantly blunted in animals fed the MCT diets compared with those fed the control diets. As a result, dietary MCTs improved chemically induced colitis significantly. MCTs most likely are useful for the therapy of inflammatory bowel disease as an anti-inflammatory immunomodulating nutrient.

  16. Creatine, arginine alpha-ketoglutarate, amino acids, and medium-chain triglycerides and endurance and performance.

    PubMed

    Little, Jonathan P; Forbes, Scott C; Candow, Darren G; Cornish, Stephen M; Chilibeck, Philip D

    2008-10-01

    Creatine (Cr) supplementation increases muscle mass, strength, and power. Arginine a-ketoglutarate (A-AKG) is a precursor for nitric oxide production and has the potential to improve blood flow and nutrient delivery (i.e., Cr) to muscles. This study compared a commercial dietary supplement of Cr, A-AKG, glutamine, taurine, branched-chain amino acids, and medium-chain triglycerides with Cr alone or placebo on exercise performance and body composition. Thirty-five men (approximately 23 yr) were randomized to Cr + A-AKG (0.1 g . kg(-1) . d(-1) Cr + 0.075 g . kg(-1) . d(-1)A-AKG, n = 12), Cr (0.1 g . kg(-1) . d(-1), n = 11), or placebo (1 g . kg(-1) . d(-1) sucrose, n = 12) for 10 d. Body composition, muscle endurance (bench press), and peak and average power (Wingate tests) were measured before and after supplementation. Bench-press repetitions over 3 sets increased with Cr + A-AKG (30.9 +/- 6.6 +/- 34.9 +/- 8.7 reps; p < .01) and Cr (27.6 +/- 5.9 +/- 31.0 +/- 7.6 reps; p < .01), with no change for placebo (26.8 +/- 5.0 +/- 27.1 +/- 6.3 reps). Peak power significantly increased in Cr + A-AKG (741 +/- 112 +/- 794 +/- 92 W; p < .01), with no changes in Cr (722 +/- 138 +/- 730 +/- 144 W) and placebo (696 +/- 63 +/- 705 +/- 77 W). There were no differences in average power between groups over time. Only the Cr-only group increased total body mass (79.9 +/- 13.0 +/- 81.1 +/- 13.8 kg; p < .01), with no significant changes in lean-tissue or fat mass. These results suggest that Cr alone and in combination with A-AKG improves upper body muscle endurance, and Cr + A-AKG supplementation improves peak power output on repeated Wingate tests.

  17. Triheptanoin - a medium chain triglyceride with odd chain fatty acids: a new anaplerotic anticonvulsant treatment?

    PubMed Central

    Borges, Karin; Sonnewald, Ursula

    2012-01-01

    The triglyceride of heptanoate (C7 fatty acid), triheptanoin, is a tasteless oil used to treat rare metabolic disorders in USA and France. Heptanoate is metabolized by β-oxidation to provide propionyl-CoA, which after carboxylation can produce succinyl-CoA, resulting in anaplerosis – the refilling of the tricarboxylic acid cycle. Heptanoate is also metabolized by the liver to the “C5 ketones”, β-ketopentanoate and/or β-hydroxypentanoate, which are released into the blood and thought to enter the brain via monocarboxylate transporters. Oral triheptanoin has recently been discovered to be reproducibly anticonvulsant in acute and chronic mouse seizures models. However, current knowledge on alterations of brain metabolism after triheptanoin administration and anaplerosis via propionyl-CoA carboxylation in the brain is limited. This review outlines triheptanoin’s unique anticonvulsant profile and its clinical potential for the treatment of medically refractory epilepsy. Anaplerosis as a therapeutic approach for the treatment of epilepsy is discussed. More research is needed to elucidate the anticonvulsant mechanism of triheptanoin and to reveal its clinical potential for the treatment of epilepsy and other disorders of the brain. PMID:21855298

  18. Use of a long-chain triglyceride-restricted/medium-chain triglyceride-supplemented diet in a case of malonyl-CoA decarboxylase deficiency with cardiomyopathy.

    PubMed

    Footitt, E J; Stafford, J; Dixon, M; Burch, M; Jakobs, C; Salomons, G S; Cleary, M A

    2010-12-01

    Malonyl coenzyme A (CoA) decarboxylase (EC 4.1.1.9, MCD) deficiency, or malonic aciduria, is a rare inborn error of metabolism characterised by a variable phenotype of developmental delay, seizures, cardiomyopathy and acidosis. There is no consensus for dietary treatment in this condition. This case describes the effect of a long-chain triglyceride (LCT)-restricted/medium-chain triglyceride (MCT)-supplemented diet upon the progress of an affected child. A full-term Asian girl of birth weight 3590 g was screened for malonic aciduria after birth due to a positive family history. She had elevated urine malonic and methylmalonic acids and was presumably homozygous for a deleterious mutation in the MLYCD gene. Her echocardiography showed mild cardiomyopathy at 0.5 months of age, but heart function was good. She was treated with carnitine 100 mg/kg per day and continued a high-energy formula feed, as her growth was slow. At 3 months of age, echocardiography showed deteriorating cardiac function with a fractional shortening of 18%. She started an angiotensin-converting enzyme (ACE) inhibitor (Captopril). Over the next few months, her diet was altered to comprise 1.9% energy from LCT, 25% from MCT and the remainder carbohydrate. Cardiac function improved and was optimal at 23 months of age, with a fractional shortening of 28% and good systolic function. During a period of low MCT intake, her cardiac function was noted to deteriorate. This reversed and stabilised following reinstatement of the diet. This case of malonic aciduria with cardiomyopathy demonstrates improvement in cardiac function attributable to LCT-restricted/MCT-supplemented diet.

  19. The Effect of Lipid Emulsion on Pharmacokinetics of Bupivacaine in Rats: Long-Chain Triglyceride Versus Long- and Medium-Chain Triglyceride.

    PubMed

    Tang, Wan; Wang, Quanguang; Shi, Kejian; Dong, Jiaojiao; Lin, Shengxian; Zhao, Shishi; Wu, Cong; Xia, Yun; Papadimos, Thomas J; Xu, Xuzhong

    2016-11-01

    Lipid infusions have been proposed to treat local anesthetic-induced cardiac toxicity. This study compared the effects of long-chain triglyceride (LCT) emulsions with those of long- and medium-chain triglyceride (LCT/MCT) emulsions on the pharmacokinetics of bupivacaine in a rat model. After administration of intravenous infusion of bupivacaine at 2 mg·kg·min for 5 minutes in Sprague-Dawley (SD) rats, either Intralipid 20%, an LCT emulsion (LCT group, n = 6), or Lipovenoes 20%, an LCT/MCT emulsion (LCT/MCT group, n = 6), was infused at 2mg·kg·min for 5 minutes. The concentrations of total plasma bupivacaine and bupivacaine that were not bound by lipid (lipid unbound) were measured by a liquid chromatography-tandem mass spectrometric method. A 2-compartmental analysis was performed to calculate the lipid-bound percentage of bupivacaine and its pharmacokinetics. In the LCT group, the clearance (15 ± 2 vs 10 ± 1 mL·min·kg, P = .003) was higher; the volume of distribution (0.57 ± 0.10 vs 0.36 ± 0.11 L·kg, P = .007) and K21 (0.0100 ± 0.0018 vs 0.0070 ± 0.0020 min, P = .021, P' = .032) were larger; and the area under the blood concentration-time curve 0 - t; (605 ± 82 vs 867 ± 110 mgL·min, P =.001) and the area under the blood concentration-time curve (0 - ∞) (697 ± 111 vs 991 ± 121 mgL·min, P =.001) were less, when compared with the LCT/MCT group. LCT emulsions are more effective than LCT/MCT emulsions in the metabolism of bupivacaine through demonstration of a superior pharmacokinetic profile.

  20. Coconut oil has less satiating properties than medium chain triglyceride oil.

    PubMed

    Kinsella, R; Maher, T; Clegg, M E

    2017-10-01

    It is well established that the consumption of medium-chain triglycerides (MCT) can increase satiety and reduce food intake. Many media articles promote the use of coconut oil for weight loss advocating similar health benefits to that of MCT. The aim of this study was to examine the effect of MCT oil compared to coconut oil and control oil on food intake and satiety. Following an overnight fast, participants consumed a test breakfast smoothie containing 205kcal of either (i) MCT oil (ii) coconut oil or (iii) vegetable oil (control) on three separate test days. Participants recorded appetite ratings on visual analogue scales and were presented with an ad libitum lunch meal of preselected sandwiches 180min after consumption of the breakfast. The results showed a significant difference in energy and macronutrient intakes at the ad libitum meal between the three oils with the MCT oil reducing food intake compared to the coconut and control oil. Differences in food intake throughout the day were found for energy and fat, with the control having increased food intake compared to the MCT and coconut. The MCT also increased fullness over the three hours after breakfast compared to the control and coconut oils. The coconut oil was also reported as being less palatable than the MCT oil. The results of this study confirm the differences that exist between MCT and coconut oil such that coconut oil cannot be promoted as having similar effects to MCT oil on food intake and satiety. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  1. The addition of medium-chain triglycerides to a purified fish oil-based diet alters inflammatory profiles in mice.

    PubMed

    Carlson, Sarah J; Nandivada, Prathima; Chang, Melissa I; Mitchell, Paul D; O'Loughlin, Alison; Cowan, Eileen; Gura, Kathleen M; Nose, Vania; Bistrian, Bruce R; Puder, Mark

    2015-02-01

    Parenteral nutrition associated liver disease (PNALD) is a deadly complication of long term parenteral nutrition (PN) use in infants. Fish oil-based lipid emulsion has been shown in recent years to effectively treat PNALD. Alternative fat sources free of essential fatty acids have recently been investigated for health benefits related to decreased inflammatory response. We hypothesized that the addition of medium-chain triglycerides (MCT) to a purified fish oil-based diet would decrease the response to inflammatory challenge in mice, while allowing for sufficient growth and development. Six groups of ten adult male C57/Bl6 mice were pair-fed different dietary treatments for a period of twelve weeks, varying only in fat source (percent calories by weight): 10.84% soybean oil (SOY), 10% coconut oil (HCO), 10% medium-chain triglycerides (MCT), 3% purified fish oil (PFO), 3% purified fish oil with 3% medium-chain triglycerides (50:50 MCT:PFO) and 3% purified fish oil with 7.59% medium-chain triglycerides (70:30 MCT:PFO). An endotoxin challenge was administered to half of the animals in each group at the completion of dietary treatment. All groups demonstrated normal growth throughout the study period. Groups fed MCT and HCO diets demonstrated biochemical essential fatty acid deficiency and decreased IL-6 and TNF-α response to endotoxin challenge. Groups containing PFO had increased inflammatory response to endotoxin challenge, and the addition of MCT to PFO mitigated this inflammatory response. These results suggest that the addition of MCT to PFO formulations may decrease the host response to inflammatory challenge, which may pose potential for optimized PN formulations. Inclusion of MCT in lipid emulsions given with PN formulations may be of use in therapeutic interventions for disease states resulting from chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The Addition of Medium-Chain Triglycerides to a Purified Fish Oil Based Diet Alters Inflammatory Profiles in Mice

    PubMed Central

    Carlson, SJ; Nandivada, P; Chang, MI; Mitchell, PD; O’Loughlin, A; Cowan, E; Gura, KM; Nose, V; Bistrian, B; Puder, M

    2014-01-01

    Objective Parenteral nutrition associated liver disease (PNALD) is a deadly complication of long term parenteral nutrition (PN) use in infants. Fish oil-based lipid emulsion has been shown in recent years to effectively treat PNALD. Alternative fat sources free of essential fatty acids have recently been investigated for health benefits related to decreased inflammatory response. We hypothesized that the addition of medium-chain triglycerides (MCT) to a purified fish oil-based diet would decrease the response to inflammatory challenge in mice, while allowing for sufficient growth and development. Materials/Methods Six groups of ten adult male C57/Bl6 mice were pair-fed different dietary treatments for a period of twelve weeks, varying only in fat source (percent calories by weight): 10.84% soybean oil (SOY), 10% coconut oil (HCO), 10% medium-chain triglycerides (MCT), 3% purified fish oil (PFO), 3% purified fish oil with 3% medium-chain triglycerides (50:50 MCT:PFO) and 3% purified fish oil with 7.59% medium-chain triglycerides (70:30 MCT:PFO). An endotoxin challenge was administered to half of the animals in each group at the completion of dietary treatment. Results All groups demonstrated normal growth throughout the study period. Groups fed MCT and HCO diets demonstrated biochemical essential fatty acid deficiency and decreased IL-6 and TNF-α response to endotoxin challenge. Groups containing PFO had increased inflammatory response to endotoxin challenge, and the addition of MCT to PFO mitigated this inflammatory response. Conclusion These results suggest that the addition of MCT to PFO formulations may decrease the host response to inflammatory challenge, which may pose potential for optimized PN formulations. Inclusion of MCT in lipid emulsions given with PN formulations may be of use in therapeutic interventions for disease states resulting from chronic inflammation. PMID:25458829

  3. Evaluation of even- and odd-chain medium-chain triglycerides as energy sources for neonatal piglets

    SciTech Connect

    Odle, J.

    1989-01-01

    Medium-chain triglycerides (MCT) were evaluated as a supplemental energy source for the newborn piglet. In three experiments, piglets were force-fed 12 mi of MCT, varying in fatty acid (FA) composition. Blood fatty acid and ketone body concentrations peaked 1-2 h after force feeding then returned to baseline by 4 h, illustrating rapid digestion, absorption and oxidation. Peak 3-OH-butyrate concentrations never exceeded 80 {mu}M which is dramatically lower than observed in rats (>2 mM). Improved clinical energy status was also documented by elevated blood glucose concentration and lower nitrogen excretion than observed in fasted controls. Piglets showed an improvement in ability to utilize MCT between 6 and 18 h of age based on a two fold increase in blood concentration of FA and 3-OH-butyrate but no further change between 18 and 48 h. Peak plasma FA concentration decreased progressively as triglyceride-FA chain length increased from C7 (2.1 mM) to C10 (0.4 mM). In two subsequent experiments, hepatocyte metabolism of FA was studied. Hepatocytes oxidized (1-{sup 14}C)- C7 or C9 (1 mM) greater than 40% faster and consumed oxygen 7% faster than cells given C8 or C10. L-carnitine (1 mM) was without effect. Theoretical calculations from FA flux accounted for 95-140% of observed O{sub 2} consumption, indicating the FA were the major fuel source for the cells. Hepatocytes from 2 d pigs oxidized FA 48% faster than cells from 6 h pigs, but this was likely due to an increased metabolic rate observed in the older animals. No differences were detected in ability of small (700-950 g) pigs to oxidize FA relative to large (1,050-1,800 g) littermates. In a final in vivo experiment, pigs were continuously infused with 10 {mu}Ci of (1-{sup 14}C)-C7,C8, C9 or C10 via a catheter passed through the umbilical artery to the heart at a rate of 20, 50 or 100 mole FA/min for 5 h.

  4. Characterisation and quantification of medium chain and long chain triglycerides and their in vitro digestion products, by HPTLC coupled with in situ densitometric analysis.

    PubMed

    Sek, L; Porter, C J; Charman, W N

    2001-06-01

    The development of new and simple high performance thin layer chromatography (HPTLC) assays for the quantification of medium chain triglycerides (MCT, tricaprylin) and long chain triglycerides (LCT, triolein) and their lipolytic products, bile salts (BS) and phospholipids (PL) are described. Different classes of lipids (PL, BS, fatty acids, monoglycerides, diglycerides, and triglycerides) were separated on a single silica gel 60 HPTLC plate by Automated Multiple Development (AMD) methods using a Camag AMD 2. Post-chromatographic staining of long chain lipids (triolein, diolein, monoolein, and oleic acid), PL and BS with a solution of copper sulphate-phosphoric acid and medium chain lipids (tricaprylin, dicaprylin, monocaprylin, and caprylic acid) with a solution of ammonium molybdate-perchloric acid allowed visualisation of the lipids. Lipids were quantified by in situ spectrodensitometric measurements using a Camag TLC scanner 3. The intra- and inter-assay accuracy was between 83 and 115% and the assay was precise to within a CV of less than 20% over a range of 0.1-1 and 5-50 microg for long chain lipids and medium chain lipids, respectively. The methods have been employed to study the kinetics of triolein and tricaprylin lipolysis in an in vitro lipid digestion model commonly used to assess the digestibility of novel oral lipid-based formulations.

  5. Odd-numbered medium-chain triglycerides (trinonanoin) in total parenteral nutrition: effects on parameters of fat metabolism in rabbits.

    PubMed

    Linseisen, J; Wolfram, G

    1993-01-01

    Odd-numbered medium-chain triglycerides (MCTs) might combine the advantages of "usual" MCTs applied in clinical nutrition with lower ketogenic action and the release of three carbon units. To test subacute toxicity, trinonanoin/long-chain triglyceride (LCT) (7/3 wt/wt) fat emulsions were given to rabbits (n = 8) for 11 days (7 h/d) within a total parenteral nutrition regimen at a dose of 46.5% of total daily energy. Comparisons were made with rabbits receiving equicaloric amounts of MCT/LCT (7/3, wt/wt) or pure LCT fat emulsions, as well as with orally fed controls. The trinonanoin/LCT emulsion was well tolerated by all animals. Body weight changes showed no statistically significant differences between groups. The enzymatic determination of triglycerides, non-esterified fatty acids, and free glycerol concentrations in plasma samples revealed similar results for both MCT groups. However, ketone body concentrations (3-hydroxybutyrate) were significantly lower after trinonanoin/LCT emulsion administration. In the trinonanoin/LCT group, the plasma concentrations of propionic acid as well as of other short-chain fatty acids continuously increased; on days 10 and 11, elevated amounts of propionic acid were also detected in the urine. The histologic examination of the gut mucosa revealed no distinct differences between groups. On the basis of the presented data, the trinonanoin/LCT emulsion showed no inferiority to "usual" MCT/LCT emulsions. The lower ketogenic effect as well as the marked increase in plasma short-chain fatty acid concentrations may encourage further testing of this substrate for total parenteral nutrition.

  6. Effects of dietary medium-chain triglycerides on plasma lipids and lipoprotein distribution and food aversion in cats.

    PubMed

    Trevizan, Luciano; de Mello Kessler, Alexandre; Bigley, Karen E; Anderson, Wendy H; Waldron, Mark K; Bauer, John E

    2010-04-01

    To determine possible diet aversion and lipid and lipoprotein alterations in cats fed diets containing medium-chain triglycerides (MCTs). 19 clinically normal adult female cats. Cats were assigned to 2 groups (low MCT diet [n = 10] and high MCT diet [9]) and fed the diets for 9 weeks according to metabolic body weight (100 kcal of metabolizable energy [ME] x kg(-0.67)/d). Daily consumption records and weekly body weight and body condition score (BCS) were used to adjust amounts fed and calculate daily ME factors for each cat to maintain ideal BCS. Blood samples were obtained after withholding food on days 0, 14, 28, and 56 for measurement of plasma triglyceride and total cholesterol concentrations and lipoprotein-cholesterol distributions. Repeated-measures ANOVA and Tukey multiple comparison tests were performed. No diet differences were found for food consumption, body weight, BCS, and ME factors. A significant increase in plasma triglyceride concentration was detected for the high MCT diet; however, values were within the reference ranges. No diet effects were observed for total cholesterol concentrations or lipoprotein-cholesterol distributions, although increases over time were observed. Inclusion of MCT in diets of cats did not result in feed refusal and had minimal effects on lipid metabolism. Such diets may be useful for both clinically normal cats and cats with metabolic disorders. The MCT oils are an example of a bioactive dietary lipid that may benefit feline metabolism and can serve as a useful functional food ingredient for cats.

  7. Long-term effect of medium-chain triglyceride on hepatic enzymes catalyzing lipogenesis and cholesterogenesis in rats.

    PubMed

    Takase, S; Morimoto, A; Nakanishi, M; Muto, Y

    1977-01-01

    This study was conducted to investigate the long-term effect of dietary medium-chain triglyceride (MCT) as compared with that of corn oil feeding on lipid metabolism in rats. Both serum cholesterol and triglyceride levels in MCT-fed rats showed significant decrease during the experimental period of eight weeks, although liver cholesterol and triglyceride contents were not distinguishable between the two groups. Significant elevation of the activity of lipogenic enzymes, such as fatty acid synthetase (FAS) and malic enzyme (ME) of the liver, was observed in MCT-fed rats without any fat accumulation of the liver (fatty liver). The increase of lipogenic enzyme activity was accompanied by a significant reduction of essential fatty acids (EFA) such as 18:2 (omega6) and 20:4 (omega6) in total liver lipid. In contrast, hepatic beta-hydroxy-beta-methylglutaryl CoA(HMG-CoA) reductase activity was significantly decreased in MCT-fed rats, that would play an important role in achieving hypocholesterolemia. From these results obtained in a long-term experiment, it is concluded that exogenous MCT depresses the key enzyme catalyzing cholesterol synthesis with a concomitant elevation of lipogenic enzyme activity in the rat liver.

  8. Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice.

    PubMed

    Li, Jianing; Wang, Yu; Tang, Lihua; de Villiers, Willem J S; Cohen, Donald; Woodward, Jerold; Finkelman, Fred D; Eckhardt, Erik R M

    2013-02-01

    The prevalence of peanut allergies is increasing. Peanuts and many other allergen sources contain significant amounts of triglycerides, which affect absorption of antigens but have unknown effects on sensitization and anaphylaxis. We recently reported that dietary medium-chain triglycerides (MCTs), which bypass mesenteric lymph and directly enter portal blood, reduce intestinal antigen absorption into blood compared with long-chain triglycerides (LCTs), which stimulate mesenteric lymph flow and are absorbed in chylomicrons through mesenteric lymph. We sought to test how dietary MCTs affect food allergy. C3H/HeJ mice were fed peanut butter protein in MCT, LCT (peanut oil), or LCT plus an inhibitor of chylomicron formation (Pluronic L81). Peanut-specific antibodies in plasma, responses of the mice to antigen challenges, and intestinal epithelial cytokine expression were subsequently measured. MCT suppressed antigen absorption into blood but stimulated absorption into Peyer patches. A single gavage of peanut protein with MCT, as well as prolonged feeding in MCT-based diets, caused spontaneous allergic sensitization. MCT-sensitized mice experienced IgG-dependent anaphylaxis on systemic challenge and IgE-dependent anaphylaxis on oral challenge. MCT feeding stimulated jejunal-epithelial thymic stromal lymphopoietin, Il25, and Il33 expression compared with that seen after LCT feeding and promoted T(H)2 cytokine responses in splenocytes. Moreover, oral challenges of sensitized mice with antigen in MCT significantly aggravated anaphylaxis compared with challenges with the LCT. Importantly, the effects of MCTs could be mimicked by adding Pluronic L81 to LCTs, and in vitro assays indicated that chylomicrons prevent basophil activation. Dietary MCTs promote allergic sensitization and anaphylaxis by affecting antigen absorption and availability and by stimulating T(H)2 responses. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All

  9. Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice

    PubMed Central

    Li, Jianing; Wang, Yu; Tang, Lihua; de Villiers, Willem JS; Cohen, Donald; Woodward, Jerold; Finkelman, Fred D; Eckhardt, Erik RM

    2012-01-01

    BACKGROUND The prevalence of peanut allergies is rising. Peanuts and many other allergen sources contain significant amounts of triglycerides, which affect absorption of antigens but have unknown effects on sensitization and anaphylaxis. We recently reported that dietary medium-chain triglycerides (MCT), which bypass mesenteric lymph and directly enter portal blood, reduce intestinal antigen absorption into blood compared to long-chain triglycerides (LCT), which stimulate mesenteric lymph flow and are absorbed in chylomicrons via mesenteric lymph. OBJECTIVE Test how dietary MCT affect food allergy. METHODS C3H/HeJ mice were fed peanut butter protein in MCT, LCT (peanut oil), or LCT plus an inhibitor of chylomicron formation (Pluronic L81; “PL81”). Peanut-specific antibodies in plasma, responses of the mice to antigen challenges, and intestinal epithelial cytokine expression were subsequently measured. RESULTS MCT suppressed antigen absorption into blood, but stimulated absorption into Peyer's patches. A single gavage of peanut protein with MCT as well as prolonged feeding in MCT-based diets caused spontaneous allergic sensitization. MCT-sensitized mice experienced IgG-dependent anaphylaxis upon systemic challenge and IgE-dependent anaphylaxis upon oral challenge. MCT feeding stimulated jejunal-epithelial TSLP, IL-25 and IL-33 expression compared to LCT, and promoted Th2 cytokine responses in splenocytes. Moreover, oral challenges of sensitized mice with antigen in MCT significantly aggravated anaphylaxis compared to challenges with LCT. Importantly, effects of MCT could be mimicked by adding PL81 to LCT, and in vitro assays indicated that chylomicrons prevent basophil activation. CONCLUSION Dietary MCT promote allergic sensitization and anaphylaxis by affecting antigen absorption and availability and by stimulating Th2 responses. PMID:23182172

  10. Role of Medium Chain Triglycerides (Axona®) in the Treatment of Mild to Moderate Alzheimer's Disease.

    PubMed

    Sharma, Alok; Bemis, Marc; Desilets, Alicia R

    2014-08-01

    Treatment of Alzheimer's disease (AD) with acetylcholinesterase inhibitors or N-methyl-D-aspartate (NMDA) receptor antagonists provides symptomatic relief but do not prevent its progression. Thus, additional approaches aimed at slowing the progression of the disease have been investigated. Reports detailing reduced brain glucose metabolism in the early stages of AD led to the hypothesis that alternate energy sources aimed at increasing neuronal metabolism may protect neurons and thus benefit patients with AD. Medium-chain triglycerides (MCTs) are metabolized to ketone bodies that serve as an alternative source of energy for neurons. Data from clinical trials suggest that MCTs improve cognition in patients with mild to moderate AD in apolipoprotein E4-negative patients. Adverse events observed were mild and included minor gastrointestinal problems such as diarrhea, dyspepsia, and flatulence. However, since genomic profiles are not routinely conducted in patients with AD in a clinical setting, the role of MCTs in clinical practice seems to be minimal.

  11. Influence of the dietary intake of medium chain triglycerides on body composition, energy expenditure and satiety: a systematic review.

    PubMed

    Rego Costa, A C; Rosado, E L; Soares-Mota, M

    2012-01-01

    Increased prevalence of obesity is associated with the growth of chronic degenerative diseases. One of the main factors associated with this increase is the change in nutritional status of individuals. Medium chain triglycerides (MCT) are rapidly metabolized and less stored in the adipose tissue, being a possible tool for weight control. In order to analyze the influence of consumption of this lipid on satiety, body composition and energy expenditure (EE), a literature review was performed of controlled clinical studies reported in PUBMED and ELSEVIER between the years 2000 and 2010. Fourteen articles were selected presenting short and long-term intervention. Among these, six showed a decrease in body mass of individuals, with consequent loss of weight. Only one showed a positive effect on satiation and four showed an increase in EE. Thus the results are inconclusive and there is a need for further controlled studies with standardized amounts of MCT, so that its use can become an alternative for obesity nutritional treatment.

  12. Medium-chain triglycerides impair lipid metabolism and induce hepatic steatosis in very long-chain acyl-CoA dehydrogenase (VLCAD)-deficient mice.

    PubMed

    Tucci, Sara; Primassin, Sonja; Ter Veld, Frank; Spiekerkoetter, Ute

    2010-09-01

    A medium-chain-triglyceride (MCT)-based diet is mainstay of treatment in very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), a long-chain fatty acid beta-oxidation defect. Beneficial effects have been reported with an MCT-bolus prior to exercise. Little is known about the impact of a long-term MCT diet on hepatic lipid metabolism. Here we investigate the effects of MCT-supplementation on liver and blood lipids in the murine model of VLCADD. Wild-type (WT) and VLCAD-knock-out (KO) mice were fed (1) a long-chain triglyceride (LCT)-diet over 5weeks, (2) an MCT diet over 5 weeks and (3) an LCT diet plus MCT-bolus. Blood and liver lipid content were determined. Expression of genes regulating lipogenesis was analyzed by RT-PCR. Under the LCT diet, VLCAD-KO mice accumulated significantly higher blood cholesterol concentrations compared to WT mice. The MCT-diet induced severe hepatic steatosis, significantly higher serum free fatty acids and impaired hepatic lipid mobilization in VLCAD-KO mice. Expression at mRNA level of hepatic lipogenic genes was up-regulated. The long-term MCT diet stimulates lipogenesis and impairs hepatic lipid metabolism in VLCAD-KO mice. These results suggest a critical reconsideration of a long-term MCT-modified diet in human VLCADD. In contrast, MCT in situations of increased energy demand appears to be a safer treatment alternative.

  13. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides.

    PubMed

    Wang, Dongmei; Mitchell, Ellen S

    2016-01-01

    Brain glucose hypometabolism is a common feature of Alzheimer's disease (AD). Previous studies have shown that cognition is improved by providing AD patients with an alternate energy source: ketones derived from either ketogenic diet or supplementation with medium chain triglycerides (MCT). Recently, data on the neuroprotective capacity of MCT-derived medium chain fatty acids (MCFA) suggest 8-carbon and 10-carbon MCFA may have cognition-enhancing properties which are not related to ketone production. We investigated the effect of 8 week treatment with MCT8, MCT10 or sunflower oil supplementation (5% by weight of chow diet) in 21 month old Wistar rats. Both MCT diets increased ketones plasma similarly compared to control diet, but MCT diets did not increase ketones in the brain. Treatment with MCT10, but not MCT8, significantly improved novel object recognition memory compared to control diet, while social recognition increased in both MCT groups. MCT8 and MCT10 diets decreased weight compared to control diet, where MCFA plasma levels were higher in MCT10 groups than in MCT8 groups. Both MCT diets increased IRS-1 (612) phosphorylation and decreased S6K phosphorylation (240/244) but only MCT10 increased Akt phosphorylation (473). MCT8 supplementation increased synaptophysin, but not PSD-95, in contrast MCT10 had no effect on either synaptic marker. Expression of Ube3a, which controls synaptic stability, was increased by both MCT diets. Cortex transcription via qPCR showed that immediate early genes related to synaptic plasticity (arc, plk3, junb, egr2, nr4a1) were downregulated by both MCT diets while MCT8 additionally down-regulated fosb and egr1 but upregulated grin1 and gba2. These results demonstrate that treatment of 8- and 10-carbon length MCTs in aged rats have slight differential effects on synaptic stability, protein synthesis and behavior that may be independent of brain ketone levels.

  14. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides

    PubMed Central

    Wang, Dongmei; Mitchell, Ellen S.

    2016-01-01

    Brain glucose hypometabolism is a common feature of Alzheimer’s disease (AD). Previous studies have shown that cognition is improved by providing AD patients with an alternate energy source: ketones derived from either ketogenic diet or supplementation with medium chain triglycerides (MCT). Recently, data on the neuroprotective capacity of MCT-derived medium chain fatty acids (MCFA) suggest 8-carbon and 10-carbon MCFA may have cognition-enhancing properties which are not related to ketone production. We investigated the effect of 8 week treatment with MCT8, MCT10 or sunflower oil supplementation (5% by weight of chow diet) in 21 month old Wistar rats. Both MCT diets increased ketones plasma similarly compared to control diet, but MCT diets did not increase ketones in the brain. Treatment with MCT10, but not MCT8, significantly improved novel object recognition memory compared to control diet, while social recognition increased in both MCT groups. MCT8 and MCT10 diets decreased weight compared to control diet, where MCFA plasma levels were higher in MCT10 groups than in MCT8 groups. Both MCT diets increased IRS-1 (612) phosphorylation and decreased S6K phosphorylation (240/244) but only MCT10 increased Akt phosphorylation (473). MCT8 supplementation increased synaptophysin, but not PSD-95, in contrast MCT10 had no effect on either synaptic marker. Expression of Ube3a, which controls synaptic stability, was increased by both MCT diets. Cortex transcription via qPCR showed that immediate early genes related to synaptic plasticity (arc, plk3, junb, egr2, nr4a1) were downregulated by both MCT diets while MCT8 additionally down-regulated fosb and egr1 but upregulated grin1 and gba2. These results demonstrate that treatment of 8- and 10-carbon length MCTs in aged rats have slight differential effects on synaptic stability, protein synthesis and behavior that may be independent of brain ketone levels. PMID:27517611

  15. Pre-exercise medium-chain triglyceride application prevents acylcarnitine accumulation in skeletal muscle from very-long-chain acyl-CoA-dehydrogenase-deficient mice.

    PubMed

    Primassin, Sonja; Tucci, Sara; Herebian, Diran; Seibt, Annette; Hoffmann, Lars; ter Veld, Frank; Spiekerkoetter, Ute

    2010-06-01

    Dietary modification with medium-chain triglyceride (MCT) supplementation is one crucial way of treating children with long-chain fatty acid oxidation disorders. Recently, supplementation prior to exercise has been reported to prevent muscular pain and rhabdomyolysis. Systematic studies to determine when MCT supplementation is most beneficial have not yet been undertaken. We studied the effects of an MCT-based diet compared with MCT administration only prior to exercise in very-long-chain acyl-CoA dehydrogenase (VLCAD) knockout (KO) mice. VLCAD KO mice were fed an MCT-based diet in same amounts as normal mouse diet containing long-chain triglycerides (LCT) and were exercised on a treadmill. Mice fed a normal LCT diet received MCT only prior to exercise. Acylcarnitine concentration, free carnitine concentration, and acyl-coenzyme A (CoA) oxidation capacity in skeletal muscle as well as hepatic lipid accumulation were determined. Long-chain acylcarnitines significantly increased in VLCAD-deficient skeletal muscle with an MCT diet compared with an LCT diet with MCT bolus prior to exercise, whereas an MCT bolus treatment significantly decreased long-chain acylcarnitines after exercise compared with an LCT diet. C8-carnitine was significantly increased in skeletal muscle after MCT bolus treatment and exercise compared with LCT and long-term MCT treatment. Increased hepatic lipid accumulation was observed in long-term MCT-treated KO mice. MCT seems most beneficial when given in a single dose directly prior to exercise to prevent acylcarnitine accumulation. In contrast, continuous MCT treatment produces a higher skeletal muscle content of long-chain acylcarnitines after exercise and increases hepatic lipid storage in VLCAD KO mice.

  16. Enteral diets enriched with medium-chain triglycerides and N-3 fatty acids prevent chemically induced experimental colitis in rats.

    PubMed

    Kono, Hiroshi; Fujii, Hideki; Ogiku, Masahito; Tsuchiya, Masato; Ishii, Kenichi; Hara, Michio

    2010-11-01

    The specific purpose of this study was to evaluate the significant effects of medium-chain triglycerides (MCTs) and N-3 fatty acids on chemically induced experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) in rats. Male Wistar rats were fed liquid diets enriched with N-6 fatty acid (control diets), N-3 fatty acid (MCT- diets), and N-3 fatty acid and MCT (MCT+ diets) for 2 weeks and then were given an intracolonic injection of TNBS. Serum and tissue samples were collected 5 days after ethanol or TNBS enema. The severity of colitis was evaluated pathologically, and tissue myeloperoxidase activity was measured in colonic tissues. Furthermore, protein levels for inflammatory cytokines and a chemokine were assessed by an enzyme-linked immunosorbent assay in colonic tissues. Induction of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β in the colon by TNBS enema was markedly attenuated by the MCT+ diet among the 3 diets studied. Furthermore, the induction of chemokines macrophage inflammatory protein-2 and monocyte chemotactic protein-1 also was blunted significantly in animals fed the MCT+ diets. As a result, MPO activities in the colonic tissue also were blunted significantly in animals fed the MCT+ diets compared with those fed the control diets or the MCT- diets. Furthermore, the MCT+ diet improved chemically induced colitis significantly among the 3 diets studied. Diets enriched with both MCTs and N-3 fatty acids may be effective for the therapy of inflammatory bowel disease as antiinflammatory immunomodulating nutrients.

  17. Gut Microbiota and Metabolic Health: The Potential Beneficial Effects of a Medium Chain Triglyceride Diet in Obese Individuals.

    PubMed

    Rial, Sabri Ahmed; Karelis, Antony D; Bergeron, Karl-F; Mounier, Catherine

    2016-05-12

    Obesity and associated metabolic complications, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D), are in constant increase around the world. While most obese patients show several metabolic and biometric abnormalities and comorbidities, a subgroup of patients representing 3% to 57% of obese adults, depending on the diagnosis criteria, remains metabolically healthy. Among many other factors, the gut microbiota is now identified as a determining factor in the pathogenesis of metabolically unhealthy obese (MUHO) individuals and in obesity-related diseases such as endotoxemia, intestinal and systemic inflammation, as well as insulin resistance. Interestingly, recent studies suggest that an optimal healthy-like gut microbiota structure may contribute to the metabolically healthy obese (MHO) phenotype. Here, we describe how dietary medium chain triglycerides (MCT), previously found to promote lipid catabolism, energy expenditure and weight loss, can ameliorate metabolic health via their capacity to improve both intestinal ecosystem and permeability. MCT-enriched diets could therefore be used to manage metabolic diseases through modification of gut microbiota.

  18. [Protein-losing enteropathy with systemic lupus erythematosus effectively treated with octreotide and medium chain triglyceride diet: A case report].

    PubMed

    Kubo, Makoto; Uchida, Kousuke; Nakashima, Tadaaki; Oda, Seiko; Nakamura, Tomomi; Hashimoto, Shinichi; Watada, Toshiko; Nakamura, Hiroshi; Araki, Jun; Matsuzaki, Masunori; Yano, Masafumi

    2015-01-01

    In January 2009, a 62-year-old man presented with diarrhea, leg edema, and thrombopenia and was admitted to our hospital. The past medical history revealed Sjögren's syndrome and autoimmune hepatitis for which he had been administered prednisolone. On admission, a laboratory examination revealed massive hypoalbuminemia and high levels of C-reactive protein and platelet-associated IgG. Anti-double stranded DNA and anti-Sm antibodies were negative. Analysis of the bone marrow aspirate and Tc-99m albumin scintigraphy findings suggested autoimmune thrombocytopenic purpura (AITP) and protein-losing enteropathy (PLE), respectively. We diagnosed him as SLE, because past immunoserological testing had showed positivity for anti-double stranded DNA antibody and LE cells. Methylprednisolone pulse therapy and intravenous immunoglobulin therapy were ineffective. Rituximab was ineffective against PLE but was effective against AITP. Cyclosporine and Cyclophosphamide were ineffective against PLE. Subcutaneous injection of 200-μg octreotide daily and a medium chain triglyceride (MCT) diet was effective against PLE, and the patient's condition dramatically improved. The effectiveness of octreotide treatment and an MCT diet in the treatment of PLE with SLE is discussed.

  19. Medium chain triglyceride (MCT) rich, paclitaxel loaded self nanoemulsifying preconcentrate (PSNP): a safe and efficacious alternative to Taxol.

    PubMed

    Patel, Ketan; Patil, Anand; Mehta, Miten; Gota, Vikram; Vavia, Pradeep

    2013-12-01

    The current work was aimed to develop Medium Chain Triglyceride (MCT) rich self nanoemulsifying preconcentrate of paclitaxel (PTX) for parenteral delivery. Very high concentrations of Cremophor EL and ethanol in Taxol have rendered patients to severe side effects. Years of extensive research on development of cost effective and safer vehicle for PTX, have failed to provide a promising replacement for Taxol. MCT was selected as oil owing to its parenteral acceptability, high solubilization capacity and multiple therapeutic benefits in cancer cachexia. PTX precipitation kinetics and reported toxicity profile of Kolliphor HS15 has favored its selection for PTX Self Nanoemulsifying Preconcentrate (PSNP). Presence of 30% free PEG in Kolliphor HS15 (PEG-15-hydroxystearate) restricts its miscibility with MCT, imposing significant challenge in development of MCT rich self nanoemulsifying preconcentrate. Removal of PEG layer from oil-surfactant mixture facilitated the formulation of PSNP with 51% w/w MCT. PSNP exhibited better precipitation kinetic profile, higher PTX loading with negligible hemolysis and histamine release compared to Taxol. PSNP was bioequivalent to Taxol, though V(d) and MRT was significantly higher than Taxol. PSNP showed distinctly better profile in inhibiting tumor growth and maintaining body weight with significantly higher % survival. Thus, PSNP can be a safer vehicle with potential clinical benefits.

  20. Gut Microbiota and Metabolic Health: The Potential Beneficial Effects of a Medium Chain Triglyceride Diet in Obese Individuals

    PubMed Central

    Rial, Sabri Ahmed; Karelis, Antony D.; Bergeron, Karl-F.; Mounier, Catherine

    2016-01-01

    Obesity and associated metabolic complications, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D), are in constant increase around the world. While most obese patients show several metabolic and biometric abnormalities and comorbidities, a subgroup of patients representing 3% to 57% of obese adults, depending on the diagnosis criteria, remains metabolically healthy. Among many other factors, the gut microbiota is now identified as a determining factor in the pathogenesis of metabolically unhealthy obese (MUHO) individuals and in obesity-related diseases such as endotoxemia, intestinal and systemic inflammation, as well as insulin resistance. Interestingly, recent studies suggest that an optimal healthy-like gut microbiota structure may contribute to the metabolically healthy obese (MHO) phenotype. Here, we describe how dietary medium chain triglycerides (MCT), previously found to promote lipid catabolism, energy expenditure and weight loss, can ameliorate metabolic health via their capacity to improve both intestinal ecosystem and permeability. MCT-enriched diets could therefore be used to manage metabolic diseases through modification of gut microbiota. PMID:27187452

  1. Possible role of insulin status in the increased lipogenic enzyme activity by dietary medium-chain triglyceride in rat liver.

    PubMed

    Takase, S; Hosoya, N

    1987-06-01

    The possible role of insulin status in the increase in liver lipogenic enzyme activities upon feeding medium-chain triglyceride (MCT) was investigated with streptozotocin-induced diabetic rats and insulin-treated diabetic rats. Rats were fed synthetic diets that contained either 2% corn oil (control), fat free, 13% MCT +2% corn oil, or 13% lard +2% corn oil, respectively. Feeding the MCT diet for 3 days increased serum ketone bodies in both the normal and diabetic rats. Insulin levels of MCT-fed rats tended to be higher than in normal animals. MCT feeding caused an enhancement of fatty acid synthetase (FAS) and malic enzyme (ME) in the liver of normal rats, whereas diabetic rats failed to register an increase in those activities due to MCT feeding. Administration of insulin to diabetic rats resulted in a recovery of the level of those enzyme activities to about the same degree as in each of the normal rat groups. It was interesting that diabetic MCT-fed rats with insulin treatment maintained higher enzyme activities in comparison to the lard and control groups. These results suggest that the increase in lipogenic enzyme activities caused by dietary MCT is presumably dependent on differences in insulin status.

  2. Effect of medium/ω-6 long chain triglyceride-based emulsion on leucocyte death and inflammatory gene expression

    PubMed Central

    Cury-Boaventura, M F; Gorjão, R; Martins de Lima, T; Fiamoncini, J; Godoy, A B P; Deschamphs, F C; Soriano, F G; Curi, R

    2011-01-01

    Lipid emulsion (LE) containing medium/ω-6 long chain triglyceride-based emulsion (MCT/ω-6 LCT LE) has been recommended in the place of ω-6 LCT-based emulsion to prevent impairment of immune function. The impact of MCT/ω-6 LCT LE on lymphocyte and neutrophil death and expression of genes related to inflammation was investigated. Seven volunteers were recruited and infusion of MCT/ω-6 LCT LE was performed for 6 h. Four volunteers received saline and no change was found. Blood samples were collected before, immediately afterwards and 18 h after LE infusion. Lymphocytes and neutrophils were studied immediately after isolation and after 24 and 48 h in culture. The following determinations were carried out: plasma-free fatty acids, triacylglycerol and cholesterol concentrations, plasma fatty acid composition, neutral lipid accumulation in lymphocytes and neutrophils, signs of lymphocyte and neutrophil death and lymphocyte expression of genes related to inflammation. MCT/ω-6 LCT LE induced lymphocyte and neutrophil death. The mechanism for MCT/ω-6 LCT LE-dependent induction of leucocyte death may involve changes in neutral lipid content and modulation of expression of genes related to cell death, proteolysis, cell signalling, inflammatory response, oxidative stress and transcription. PMID:21682721

  3. Dietary or enteral medium-chain triglyceride usage in a Chinese general hospital.

    PubMed

    Li, Rongrong; Ma, Jiangfeng; Yu, Kang; Wang, Lilin

    2015-01-01

    目的:中链甘油三酯(Median chain triglycerides,MCTs)由于其摄入、吸收、代谢方面的特殊作用而广受关注,但目前其在中国住院患者的膳食及肠内临床应用尚无报道且现状不明。本文首次报告MCTs临床应用现状,以期进一步阐明其应用的指征和规范。方法:回顾性分析纳入北京协和医院2012年1月至2013年12月两年间应用MCTs进行膳食及肠内营养干预的住院患者46例次及其治疗2周后临床情况变化。所有患者的治疗指征及治疗结局均进行循证评价。同时,随机选取77名临床医师进行问卷调查,进一步阐明临床医师对MCTs营养治疗的认知度。结果:46例次接受MCTs营养干预的患者临床表现及MCTs应用指征各异,其中包括21例胃肠消化功能障碍(15例治疗2周后好转),15例淋巴循环障碍(7例好转),5例血脂异常(3例好转),4例胰腺外分泌功能不全(2例好转)以及1例癫痫发作(未好转)患者。病例的MCTs治疗指征均进行循证评价。针对医师的问卷调查显示,尽管应用MCTs治疗的患者例数正在逐渐增加,临床医师对MCTs的理化特点、应用指征以及MCTs治疗机制的认知仍存在普遍不足。结论:MCTs治疗可改善胃肠道吸收不良、胰腺外分泌功能不全、小肠淋巴管扩张以及血脂异常患者的临床表现,但目前尚需针对较大样本人群、具有足够随访时间的临床随机对照试验以进一步评价其疗效。同时更多的MCTs知识宣教应在临床医师中进行普及以提高临床医务人员对其的认知程度。.

  4. A mixed (long- and medium-chain) triglyceride lipid emulsion extracts local anesthetic from human serum in vitro more effectively than a long-chain emulsion.

    PubMed

    Ruan, Weiming; French, Deborah; Wong, Alicia; Drasner, Kenneth; Wu, Alan H B

    2012-02-01

    Lipid emulsion infusion reverses cardiac toxicity of local anesthetics. The predominant effect is likely creation of a "lipid sink." This in vitro study determined the extent to which Intralipid® (Fresenius Kabi, Uppsala, Sweden) and Lipofundin® (B. Braun Melsungen AG, Melsungen, Germany) sequester anesthetics from serum, and whether it varies with pH. Bupivacaine, ropivacaine, and mepivacaine were added to human drug-free serum (pH 7.4) at 10 μg/ml. The lipid emulsions were added, and the mixture shaken and incubated at 37°C. Lipid was removed by ultracentrifugation and drug remaining in the serum measured. Additional experiments were performed using 100 μg/ml bupivacaine and at pH 6.9. Lipofundin® extracted all three anesthetics to a greater extent than Intralipid® (34.7% vs..22.3% for bupivacaine, 25.8% vs..16.5% for ropivacaine, and 7.3% vs..4.7% for mepivacaine). By increasing either concentration of bupivacaine or lipid, there was an increase in drug extraction from serum. Adjusting the pH to 6.9 had no statistically significant effect on the percentage of bupivacaine sequestered. Bupivacaine, ropivacaine, and mepivacaine were sequestered to an extent consistent with their octanol:water partition constants (logP). In contrast with previous studies of extraction of lipids from buffer solutions, an emulsion containing 50% each of medium- and long-chain triglycerides extracted local anesthetics to a greater extent from human serum than one containing exclusively long-chain triglycerides, calling into question recent advanced cardiac life support guidelines for resuscitation from anesthetic toxicity that specify use of a long-chain triglyceride. The current data also do not support recent recommendations to delay administration until pH is normalized.

  5. Developmental toxicity study in rats and rabbits administered an emulsion containing medium chain triglycerides as an alternative caloric source.

    PubMed

    Henwood, S; Wilson, D; White, R; Trimbo, S

    1997-12-01

    Triglyceride-containing lipid emulsions have been designed as caloric sources that can be administered intravenously to patients that cannot meet their nutritional needs by conventional parenteral therapies. In their study, we evaluate the developmental toxicity of a 20% lipid emulsion that contains a 3:1 ratio of medium chain triglyceride (MCT) to one long chain containing lipid emulsion (LCT). This emulsion was administered by intravenous infusion to rats and rabbits at dosages of 1 and 4.28 g lipid/kg body weight (g lipid/kg) at dose volumes of 5 and 21.4 mL/kg, respectively, once daily during organogenesis to assess the potential developmental toxicity of the test article. The control group received 0.9% saline at a dose volume of 21.4 mL/kg. Animals were observed for clinical signs of toxicity and adverse effects on body weights and feed consumption. On Day 20 (rats) or Day 29 (rabbits), females were necropsied and examined for maternal and embryo/fetal toxicity. Fetuses were removed, weighed, and examined for external, soft tissue, and skeletal abnormalities. Dosages of 4.28 g lipid/kg resulted in lower feed consumption for rats and rabbits, an expected finding based on the high-caloric nature of the test article. Potentially test article-related gross necropsy findings, including enlarged lymph nodes and spleen, small thymus, and enlarged renal pelvis, for rats given 4.28 g lipid/kg were present at a low incidence. There were no adverse effects on fetal parameters for rats even in the presence of some maternal toxicity. However, embryo and fetal toxicity (i.e., resorptions) and skeletal abnormalities were present for rabbits given 4.28 g lipid/kg. Under the conditions of this study, the no-observable-effect level for developmental toxicity was greater than or equal to 4.28 g lipid/kg for rats and greater than or equal to 1 g lipid/kg but less than 4.28 g lipid/kg for rabbits.

  6. Effects of medium-chain triglycerides on weight loss and body composition: a meta-analysis of randomized controlled trials.

    PubMed

    Mumme, Karen; Stonehouse, Welma

    2015-02-01

    Medium-chain triglycerides (MCTs) may result in negative energy balance and weight loss through increased energy expenditure and lipid oxidation. However, results from human intervention studies investigating the weight reducing potential of MCTs, have been mixed. To conduct a systematic review and meta-analysis of randomized controlled trials comparing the effects of MCTs, specifically C8:0 and C10:0, to long-chain triglycerides (LCTs) on weight loss and body composition in adults. Changes in blood lipid levels were secondary outcomes. Randomized controlled trials >3 weeks' duration conducted in healthy adults were identified searching Web of Knowledge, Discover, PubMed, Scopus, New Zealand Science, and Cochrane CENTRAL until March 2014 with no language restriction. Identified trials were assessed for bias. Mean differences were pooled and analyzed using inverse variance models with fixed effects. Heterogeneity between studies was calculated using I(2) statistic. An I(2)>50% or P<0.10 indicated heterogeneity. Thirteen trials (n=749) were identified. Compared with LCTs, MCTs decreased body weight (-0.51 kg [95% CI-0.80 to -0.23 kg]; P<0.001; I(2)=35%); waist circumference (-1.46 cm [95% CI -2.04 to -0.87 cm]; P<0.001; I(2)=0%), hip circumference (-0.79 cm [95% CI -1.27 to -0.30 cm]; P=0.002; I(2)=0%), total body fat (standard mean difference -0.39 [95% CI -0.57 to -0.22]; P<0.001; I(2)=0%), total subcutaneous fat (standard mean difference -0.46 [95% CI -0.64 to -0.27]; P<0.001; I(2)=20%), and visceral fat (standard mean difference -0.55 [95% CI -0.75 to -0.34]; P<0.001; I(2)=0%). No differences were seen in blood lipid levels. Many trials lacked sufficient information for a complete quality assessment, and commercial bias was detected. Although heterogeneity was absent, study designs varied with regard to duration, dose, and control of energy intake. Replacement of LCTs with MCTs in the diet could potentially induce modest reductions in body weight and composition

  7. Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice.

    PubMed

    Wlaź, Piotr; Socała, Katarzyna; Nieoczym, Dorota; Łuszczki, Jarogniew J; Zarnowska, Iwona; Zarnowski, Tomasz; Czuczwar, Stanisław J; Gasior, Maciej

    2012-03-01

    The purpose of the present study was to evaluate the acute anticonvulsant effects of caprylic acid (CA), the main constituent of the medium-chain triglyceride ketogenic diet (MCT KD), in seizure tests typically used in screening for potential antiepileptic drugs in mice. Pharmacodynamic and pharmacokinetic interactions between CA and valproate (VPA) were also investigated. CA (p.o.) and VPA (i.p.) were administered 30 min before testing. Acute effects on motor coordination were assessed in the chimney test. Total plasma and brain concentrations of CA and VPA, when administered alone or in combination, were determined by high performance liquid chromatography. CA (10-30 mmol/kg) increased the threshold for i.v. pentylenetetrazole-induced myoclonic and clonic convulsions, but not tonic convulsions. CA (5-30 mmol/kg) increased the threshold for 6-Hz psychomotor seizures but was ineffective in the maximal electroshock seizure threshold test. CA (10-60 mmol/kg p.o.) impaired motor performance in the chimney test (TD(50) value, 58.4 mmol/kg). Increasing doses of CA (5-30 mmol/kg) produced proportional increases in plasma and brain exposure with constant brain/plasma partitioning. CA increased anticonvulsant potency of VPA in the maximal electroshock seizure and 6-Hz seizure tests. Co-administration of CA and VPA had no effect on brain and plasma concentrations of either compound. In summary, CA exerts acute anticonvulsant effects and potentiates the anticonvulsant effect of VPA at doses that result in plasma exposures comparable to those reported in epileptic patients on the MCT KD. Thus, this acute anticonvulsant property of CA may benefit and add to the overall clinical efficacy of the MCT KD.

  8. Importance of nutritional status in recovery from acute cholecystitis: benefit from enteral nutrition supplementation including medium chain triglycerides.

    PubMed

    Nomura, Yukinobu; Inui, Kazuo; Yoshino, Junji; Wakabayashi, Takao; Okushima, Kazumu; Kobayashi, Takashi; Miyoshi, Hironao; Nakamura, Yuta

    2007-09-01

    This study was undertaken to clarify the importance of nutritional status in patients with acute cholecystitis, and also evaluate whether they benefited from enteral nutrition supplementation, including medium-chain triglycerides (MCT), during the convalescent stage. Patients with acute cholecystitis admitted to our hospital between April 1994 and March 2002 were classified into a poor nutrition group (n=40; total serum protein<5.0 g/dl) or a fair nutrition group (n=71; >5.0 g/dl). Patients with poor nutrition were significantly more elderly than those with fair nutrition, and had significantly higher serum C-reactive protein (CRP) concentrations. The two groups did not differ significantly with respect to other laboratory data, gender distribution, or medical treatment. We supplemented ordinary meals with enteral nutrition including MCT in 16 patients during the convalescent stage (MCT group). We compared their length of hospital stay and days required to recovery to pre-admission functional status for activities of daily living (ADL) with the same intervals in 16 patients without supplementation (non-MCT group) selected to match for age, gender, and fair or poor nutritional status from among 111 patients. Hospitalizations were significantly longer in the poor nutrition group (43.0+/-2.2 days) than in the fair nutrition group (27.0+/-8.2 days). Significantly more days were required to recover ADL status in the poor nutrition group (12.0+/-7.2 days) than in the fair group (9.4+/-5.2 days). Hospitalizations were significantly shorter in the MCT group (20.1+/-15 days) than in the non-MCT group (35.4+/-12.8 days). Significantly fewer days were required to recover ADL status in the MCT group (10.9+/-7 days) than in the non-MCT group (13.1+/-6.8 days). Administration of enteral nutrition including MCT during convalescence from acute cholecystitis thus appears to promote functional recovery shorten hospital stay.

  9. Medium-chain triglycerides and conjugated linoleic acids in beverage form increase satiety and reduce food intake in humans.

    PubMed

    Coleman, Hannah; Quinn, Paul; Clegg, Miriam E

    2016-06-01

    Both developed and developing countries are seeing increasing trends of obesity in people young and old. It is thought that satiety may play a role in the prevention of obesity by increasing satiety and reducing energy intake. We hypothesized that medium-chain triglycerides (MCT) would increase satiety and decrease food intake compared with conjugated linoleic acid (CLA) and a control oil. Nineteen healthy participants were tested on 3 separate occasions, where they consumed a beverage test breakfast containing (1) vegetable oil (control), (2) CLA, or (3) MCT. Participants self-requested an ad libitum sandwich buffet lunch. Time between meals, satiety from visual analog scales, energy intake at lunch, and intake for the rest of the day using weighed food diaries were measured. The results indicated that the time until a meal request was significantly different between the 3 meals (P=.016); however, there were no differences in intakes at the ad libitum lunch (P>.05). The CLA breakfast generated the greatest delay in meal time request. There was a difference between the control lipid compared with both the CLA and MCT for energy intake over the remainder of the test day and for total energy intake on the test day (P<.001 for both), with the CLA and MCT resulting in a lower intake than the control throughout the day. There were no significant differences in satiety from visual analog scale scores (P>.05). Both CLA and MCT increased satiety and reduced energy intake, indicating a potential role in aiding the maintenance of energy balance. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Protein sparing during general anesthesia with a propofol solution containing medium-chain triglycerides for gastrectomy: comparison with sevoflurane anesthesia.

    PubMed

    Nagao, Yoshiaki; Tatara, Tsuneo; Fujita, Kimihiko; Sugi, Takashi; Kotani, Joji; Hirose, Munetaka

    2013-06-01

    Despite the importance of the inhibition of catabolic response to surgery, the effects of different anesthetic techniques on the catabolic response in surgical patients are controversial. This study compared the endocrine-metabolic responses and protein catabolism during gastrectomy in patients who received either sevoflurane or propofol anesthesia with remifentanil. Thirty-seven patients (American Society of Anesthesiologists status I-III) aged 20-79 years undergoing elective gastrectomy were randomly assigned to receive sevoflurane anesthesia with remifentanil (n = 19) or intravenous propofol anesthesia (Propofol-Lipuro(®) 1 %; B. Braun, Melshungen AG, Germany) with remifentanil (n = 18). Urine samples were collected every 1 h after skin incision (0 h) and the urinary 3-methylhistidine:creatinine ratio (3-MH/Cr ratio) was used as a marker of protein catabolism. Respiratory quotient was measured during a 1 h period following skin incision. The 3-MH/Cr ratio significantly increased at 1-2 and 2-3 h compared to 0 and 0-1 h in both groups, but the propofol group exhibited a lower 3-MH/Cr ratio (nmol/μmol) than the sevoflurane group at 1-2 h (15.7 vs. 18.2, P = 0.012) and 2-3 h (15.9 vs. 18.1, P = 0.025). A difference was observed in the respiratory quotient between the sevoflurane and propofol groups (0.726 vs. 0.707, P = 0.003). A lower 3-MH/Cr ratio and a lower respiratory quotient during propofol anesthesia, compared to those exhibited during sevoflurane anesthesia, suggest that protein sparing probably occurs through the utilization of medium-chain triglycerides contained in the fat emulsion of propofol solution as a fuel source.

  11. Sexual dimorphism of lipid metabolism in very long-chain acyl-CoA dehydrogenase deficient (VLCAD-/-) mice in response to medium-chain triglycerides (MCT).

    PubMed

    Tucci, Sara; Flögel, Ulrich; Spiekerkoetter, Ute

    2015-07-01

    Medium-chain triglycerides (MCT) are widely applied in the treatment of long-chain fatty acid oxidation disorders. Previously it was shown that long-term MCT supplementation strongly affects lipid metabolism in mice. We here investigate sex-specific effects in mice with very-long-chain-acyl-CoA dehydrogenase (VLCAD) deficiency in response to a long-term MCT modified diet. We quantified blood lipids, acylcarnitines, glucose, insulin and free fatty acids, as well as tissue triglycerides in the liver and skeletal muscle under a control and an MCT diet over 1 year. In addition, visceral and hepatic fat content and muscular intramyocellular lipids (IMCL) were assessed by in vivo(1)H magnetic resonance spectroscopy (MRS) techniques. The long-term application of an MCT diet induced a marked alteration of glucose homeostasis. However, only VLCAD-/- female mice developed a severe metabolic syndrome characterized by marked insulin resistance, dyslipidemia, severe hepatic and visceral steatosis, whereas VLCAD-/- males seemed to be protected and only presented with milder insulin resistance. Moreover, the highly saturated MCT diet is associated with a decreased hepatic stearoyl-CoA desaturase 1 (SCD1) activity in females aggravating the harmful effects of a saturated MCT diet. Long-term MCT supplementation deeply affects lipid metabolism in a sexual dimorphic manner resulting in a severe metabolic syndrome only in female mice. These findings are striking since the first signs of insulin resistance already occur in female VLCAD-/- mice during their reproductive period. How these metabolic adaptations are finally regulated needs to be determined. More important, the relevance of these findings for humans under these dietary modifications needs to be investigated.

  12. Clinical evaluation of a new formulation of propofol in a medium-chain and long-chain triglycerides emulsion in dogs.

    PubMed

    Redondo García, J I

    2007-08-01

    Propofol formulated in a mixed medium-chain and long-chain triglycerides emulsion has been recently introduced for clinical use as an alternative to the conventional long-chain triglycerides formulation. This prospective multicentric study evaluated the clinical effectiveness and the complications associated with the use of this new formulation of propofol in dogs. Forty-six Spanish veterinary clinics participated in this study. A total of 541 anaesthesias (118 ASA I, 290 ASA II, 101 ASA III and 32 ASA IV) performed for various diagnostic and therapeutic purposes were evaluated. The anaesthetic protocol was not controlled, with the exception that propofol had to be used at least for induction of anaesthesia. The induction dose of propofol and the incidence of anaesthetic complications throughout the procedure were recorded. A chi-square test compared the incidence of complications according to the maintenance agent used (propofol vs. inhalatory anaesthesia), anaesthetic risk (ASA classification) and the reason for the anaesthesia. The patients premedicated with alpha2 agonists needed lower doses (mean +/- SD, 2.9 +/- 1.3 mg/kg i.v.) than the animals premedicated with phenothiazines (3.9 +/- 1.4 mg/kg i.v.) or benzodiazepines (4.0 +/- 1.4 mg/kg i.v.). The most frequent complications were difficult endotracheal intubation (1.3%), postinduction apnoea (11.3%), cyanosis (0.6%), bradypnoea (2.6%), tachypnoea (2.8%), bradycardia (2%), tachycardia (2.6%), hypotension (0.2%), shock (0.2%), vomiting (4.6%), epileptiform seizures (2.8%), premature awakening (7.4%) and delayed recovery (0.9%). There were no cases of pain on injection or aspiration pneumonia. Three dogs died (0.55%), one during induction and two during recovery from anaesthesia. This study demonstrates that the new formulation of propofol is an useful and effective drug to induce general anaesthesia in dogs.

  13. Blood clearance and tissue uptake of intravenous lipid emulsions containing long-chain and medium-chain triglycerides and fish oil in a mouse model.

    PubMed

    Treskova, E; Carpentier, Y A; Ramakrishnan, R; Al-Haideri, M; Seo, T; Deckelbaum, R J

    1999-01-01

    Increasing interest in using different triglycerides (TGs) for specific clinical applications raised the question as to how the emulsion TG composition would affect blood clearance and emulsion delivery to hepatic and extrahepatic tissues. Emulsions used were long-chain soy oil TG (long-chain triglyceride [LCT]), LCT/ medium-chain triglyceride (MCT; 1:1, wt/wt), LCT/MCT/C/omega-3 (5:4:1, wt/wt) and pure fish oil (omega-3 TG) labeled with non-degradable 3H-cholesteryl oleoyl ether (3H-CE) as a particle marker. Mice (C57BL/6J) were injected with four different commercial emulsions at a nonsaturating dose of 0.4 mg TG/20 to 25 g per mouse to obtain 1st order kinetics. Blood was sampled at 0.5, 2, 5, 10, 15, and 25 minutes, and the fractional catabolic rate was determined by fitting a straight line to the logarithm of the blood 3H-CE radioactivity. Retention of 3H-CE for each tissue at 25 minutes reflected organ uptake of the emulsion. Blood clearance of pure omega-3 TG (10.40% +/- 0.54% pools/h; mean +/- SE) was significantly slower than that of LCT, LCT/MCT, and LCT/MCT/omega-3 emulsion (18.9 +/- 0.6 pools/h, 17.0 +/- 0.96 pools/h, 16.5 +/- 1.08 pools/h, respectively) (p < .01). Based on 3H-CE uptake, LCT, LCT/MCT, and omega-3 TG emulsions showed similar delivery to liver (39% +/- 3.9%, 46% +/- 3.6%, 34% +/- 3.2%). Liver uptake of LCT/MCT/omega-3, (23% +/- 2.2%) was less than LCT/MCT (46% +/-3.6%, p < .0001) and LCT (39% +/- 3.9%, p = .002). Results indicate slow blood clearance of pure omega-3 TG emulsion from the blood compared with emulsion in which omega-3 TG was mixed with LCT and MCT. Earlier data showed that omega-3 TG are poorly hydrolyzed in extracellular media and therefore are delivered to tissues as part of the core of emulsion remnants. Thus, our data suggest that the incorporation of omega-3 TG with LCT/MCT will result in greater delivery of omega-3 fatty acids to extrahepatic tissue, which could be important in modulating immune and other responses.

  14. Effect of Medium-chain Triglyceride (MCT) on Growth Performance, Nutrient Digestibility, Blood Characteristics in Weanling Pigs.

    PubMed

    Hong, S M; Hwang, J H; Kim, I H

    2012-07-01

    One hundred and twenty weanling pigs in experiment 1 (Exp. 1) (6.91±0.99 kg; 21 d of age) and Exp. 2 (10.20±1.09 kg; 28 d of age) were used in two 42-d and 35-d experiments to evaluate the effect of medium-chain-triglyceride (MCT) on growth performance, apparent total tract digestibility (ATTD) of nutrients and blood profile. In both of Exp. 1 and Exp. 2, the same dietary treatments were utilized as follows : i) negative control (NC), ii) positive control (PC), NC+antibiotics (40 mg/kg Tiamulin, 110 mg/kg Tylosin, and 10 mg/kg Enramycin, iii) MCT3, NC+0.32% (phase 1, 2 and 3) MCT, and iv) MCT5, NC+0.55% (phase 1), 0.32% (phase 2 and 3) MCT. In Exp. 1, the pigs fed MCT5 diets had higher (p<0.05) ADG compared to NC treatment during the first 2 wk. From d 15 to 28, the ATTD of energy was improved (p<0.05) by MCT3 compared to the PC treatment. No effect has been observed on the blood profiles [red blood cell (RBC), white blood cell (WBC), immunoglobulin-G (IgG), lymphocyte concentration] measured in this study. In Exp. 2, the ADG were increased (p<0.05) by the MCT5 treatment than the PC treatment from d 0 to 14. Pigs fed PC treatment diet had lower ADFI (p<0.05) and better FCR (p<0.05) than NC treatment, whereas no differences were shown between MCT treatments and NC or PC treatment from d 15 to 35 and overall phase. The ATTD of DM and nitrogen were improved (p<0.05) by the effect of MCT5 related to the NC and PC treatment at the end of 2nd and 5th wk. The pigs fed MCT3 had higher (p<0.05) energy digestibility than PC treatment. No effects were seen in the blood profiles we measured (WBC, RBC, lymphocyte and immunoglobulin-G). In conclusion, the addition of MCT in the weanling pigs diet can improve the ADG and digestibility during the earlier period (first 2 wks), but had little effect on the blood characteristics.

  15. Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice.

    PubMed

    Geng, Shanshan; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Liang, Zhaofeng; Xie, Wei; Zhu, Jianyun; Huang, Cong; Zhu, Mingming; Wu, Rui; Zhong, Caiyun

    2016-04-01

    The aim of the present study was to investigate the in vivo effects of dietary medium-chain triglyceride (MCT) on inflammation and insulin resistance as well as the underlying potential molecular mechanisms in high fat diet-induced obese mice. Male C57BL/6J mice (n = 24) were fed one of the following three diets for a period of 12 weeks: (1) a modified AIN-76 diet with 5 % corn oil (normal diet); (2) a high-fat control diet (17 % w/w lard and 3 % w/w corn oil, HFC); (3) an isocaloric high-fat diet supplemented with MCT (17 % w/w MCT and 3 % w/w corn oil, HF-MCT). Glucose metabolism was evaluated by fasting blood glucose levels and intraperitoneal glucose tolerance test. Insulin sensitivity was evaluated by fasting serum insulin levels and the index of homeostasis model assessment-insulin resistance. The levels of serum interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α were measured by ELISA, and hepatic activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was determined using western blot analysis. Compared to HFC diet, consumption of HF-MCT did not induce body weight gain and white adipose tissue accumulation in mice. HFC-induced increases in serum fasting glucose and insulin levels as well as glucose intolerance were prevented by HF-MCT diet. Meanwhile, HF-MCT resulted in significantly lower serum IL-6 level and higher IL-10 level, and lower expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein in liver tissues when compared to HFC. In addition, HF-MCT attenuated HFC-triggered hepatic activation of NF-κB and p38 MAPK. Our study demonstrated that MCT was efficacious in suppressing body fat accumulation, insulin resistance, inflammatory response, and NF-κB and p38 MAPK activation in high fat diet-fed mice. These data suggest that MCT may exert beneficial effects against high fat diet-induced insulin resistance and inflammation.

  16. Effect of Medium-chain Triglyceride (MCT) on Growth Performance, Nutrient Digestibility, Blood Characteristics in Weanling Pigs

    PubMed Central

    Hong, S. M.; Hwang, J. H.; Kim, I. H.

    2012-01-01

    One hundred and twenty weanling pigs in experiment 1 (Exp. 1) (6.91±0.99 kg; 21 d of age) and Exp. 2 (10.20±1.09 kg; 28 d of age) were used in two 42-d and 35-d experiments to evaluate the effect of medium-chain-triglyceride (MCT) on growth performance, apparent total tract digestibility (ATTD) of nutrients and blood profile. In both of Exp. 1 and Exp. 2, the same dietary treatments were utilized as follows : i) negative control (NC), ii) positive control (PC), NC+antibiotics (40 mg/kg Tiamulin, 110 mg/kg Tylosin, and 10 mg/kg Enramycin, iii) MCT3, NC+0.32% (phase 1, 2 and 3) MCT, and iv) MCT5, NC+0.55% (phase 1), 0.32% (phase 2 and 3) MCT. In Exp. 1, the pigs fed MCT5 diets had higher (p<0.05) ADG compared to NC treatment during the first 2 wk. From d 15 to 28, the ATTD of energy was improved (p<0.05) by MCT3 compared to the PC treatment. No effect has been observed on the blood profiles [red blood cell (RBC), white blood cell (WBC), immunoglobulin-G (IgG), lymphocyte concentration] measured in this study. In Exp. 2, the ADG were increased (p<0.05) by the MCT5 treatment than the PC treatment from d 0 to 14. Pigs fed PC treatment diet had lower ADFI (p<0.05) and better FCR (p<0.05) than NC treatment, whereas no differences were shown between MCT treatments and NC or PC treatment from d 15 to 35 and overall phase. The ATTD of DM and nitrogen were improved (p<0.05) by the effect of MCT5 related to the NC and PC treatment at the end of 2nd and 5th wk. The pigs fed MCT3 had higher (p<0.05) energy digestibility than PC treatment. No effects were seen in the blood profiles we measured (WBC, RBC, lymphocyte and immunoglobulin-G). In conclusion, the addition of MCT in the weanling pigs diet can improve the ADG and digestibility during the earlier period (first 2 wks), but had little effect on the blood characteristics. PMID:25049656

  17. Medium-chain triglyceride supplementation exacerbates peritonitis-induced septic shock in rats: role on cell membrane remodeling.

    PubMed

    Boisramé-Helms, Julie; Said, Amissi; Burban, Mélanie; Delabranche, Xavier; Stiel, Laure; Zobairi, Fatiha; Hasselmann, Michel; Schini-Kerth, Valérie; Toti, Florence; Meziani, Ferhat

    2014-12-01

    Lipid emulsions for parenteral nutrition interfere with immunity and may alter the cell plasma membrane and microparticle release, thus modulating their biological effects. Our aim was to evaluate the effect of two lipid emulsions for parenteral nutrition containing either a mixture of long- and medium-chain triglycerides (LCTs and MCTs) or LCTs only, to assess their role on microparticle release and acute inflammation during septic shock in rats. Septic rats (cecal ligation and puncture) and sham rats were infused with 5% dextrose or a lipid emulsion during 22 h. After 18 h, rats were resuscitated during 4 h and hemodynamic parameters monitored. Circulating microparticles and their phenotype were measured by prothrombinase assay; heart and aorta were collected for Western blotting and electron paramagnetic resonance measurements. No significant effect of lipid emulsions was observed in sham rats. In septic rats, norepinephrine requirements were increased in MCT/LCT-infused rats compared with 5% dextrose- or LCT-infused rats (2.7 ± 0.2 vs. 1.9 ± 0.8 and 1.2 ± 0.3 μg/kg per minute, respectively; P < 0.05) with increased procoagulant microparticle generation (38.6 ± 5.8 vs. 18.8 ± 3.1 and 19.2 ± 3.0 nM equivalent phosphatidylserine [Eq PhtdSer]; P < 0.05), leukocyte- (17.4 ± 3.5 vs. 7.7 ± 1.8 and 6.0 ± 1.1 nM Eq PhtdSer; P < 0.05), platelet- (13.9 ± 2.5 vs. 4.4 ± 0.7 and 5.4 ± 1.3 nM Eq PhtdSer; P < 0.05), and endothelial-derived microparticles (16.9 ± 3.6 vs. 6.4 ± 1.4 and 5.6 ± 0.8 nM Eq PhtdSer; P < 0.05). The mixture of MCTs/LCTs significantly increased cardiac and vascular nitric oxide and superoxide anion production, phosphorylated IκB, and cyclooxygenase 2 expression compared with the lipid emulsion containing only LCTs. Compared with 5% dextrose, MCT/LCT supplementation during septic shock in rats induced deleterious effects with increased inflammation and cell activation, associated to vascular hyporeactivity. During septic shock, LCT

  18. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of non-alcoholic fatty liver disease

    USDA-ARS?s Scientific Manuscript database

    Metabolic syndrome is often accompanied by development of hepatic steatosis and less frequently by nonalcoholic fatty liver disease (NAFLD) leading to nonalcoholic steatohepatitis (NASH). Replacement of corn oil with medium chain triacylglycerols (MCT) in the diets of alcohol-fed rats has been show...

  19. Increased norepinephrine by medium-chain triglyceride attributable to lipolysis in white and brown adipose tissue of C57BL/6J mice.

    PubMed

    Liu, Ying-hua; Zhang, Yong; Xu, Qing; Yu, Xiao-ming; Zhang, Xin-sheng; Wang, Jin; Xue, Chao; Yang, Xue-yan; Zhang, Rong-xin; Xue, Chang-yong

    2012-01-01

    A further investigation of the lipolysis induced by medium-chain triglyceride (MCT) was conducted on C57BL/6J mice fed with a diet containing 2% MCT or 2% long-chain triglyceride (LCT). Blood norepinephrine, body fat and blood lipid variables, and the protein or mRNA expression of the genes relevant to lipolysis were measured and analyzed in the white and brown adipose tissue (WAT, BAT). Decreased body fat and improved blood lipid profiles attributable to MCT were confirmed. A higher level of blood norepinephrine was observed with the MCT diet. The adipose triglyceride lipase (ATGL) activity and its mRNA expression, the expression of protein and mRNA of the beta 3 adrenergic receptor (β3-AR) in both WAT and BAT, and the hormone-sensitive lipase (HSL) activity and its mRNA expression in BAT were significantly increased in the mice with MCT feeding. The lipolysis induced by MCT might be partially mediated by increasing norepinephrine, thereafter signaling the up-regulation of β3-AR, ATGL, and HSL in WAT and BAT.

  20. The diverse nature of saturated fats and the case of medium-chain triglycerides: how one recommendation may not fit all.

    PubMed

    Bhavsar, Nilam; St-Onge, Marie-Pierre

    2016-03-01

    The adverse cardiovascular health effects of saturated fats have been debated recently since the publication of studies reporting no increase in cardiovascular risk with saturated fat intakes. We purport that this may be because of the varied nature of saturated fats, which range in length from 2 to over 20 carbon atoms, and review evidence surrounding the cardiovascular health effects of medium-chain triglycerides (MCT). MCTs are saturated fats of shorter chain length than other, more readily consumed saturated fats. Studies have reported that consumption of MCT may lead to improvements in body composition without adversely affecting cardio-metabolic risk factors. There may also be synergistic actions between MCT and n-3 polyunsaturated fats that may lead to improvements in cardiovascular health. It is clinically relevant to distinguish between sources of saturated fats for cardiovascular health. Medium, and possibly shorter chain, saturated fats behave differently than long-chain saturated fats and should not be judged similarly when it comes to their cardio-metabolic health effects. Given their neutral, and potentially beneficial cardiovascular health effects, they should not be categorized together.

  1. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity

    PubMed Central

    McCarty, Mark F; DiNicolantonio, James J

    2016-01-01

    Recently, medium-chain triglycerides (MCTs) containing a large fraction of lauric acid (LA) (C12)—about 30%—have been introduced commercially for use in salad oils and in cooking applications. As compared to the long-chain fatty acids found in other cooking oils, the medium-chain fats in MCTs are far less likely to be stored in adipose tissue, do not give rise to ‘ectopic fat’ metabolites that promote insulin resistance and inflammation, and may be less likely to activate macrophages. When ingested, medium-chain fatty acids are rapidly oxidised in hepatic mitochondria; the resulting glut of acetyl-coenzyme A drives ketone body production and also provokes a thermogenic response. Hence, studies in animals and humans indicate that MCT ingestion is less obesogenic than comparable intakes of longer chain oils. Although LA tends to raise serum cholesterol, it has a more substantial impact on high density lipoprotein (HDL) than low density lipoprotein (LDL) in this regard, such that the ratio of total cholesterol to HDL cholesterol decreases. LA constitutes about 50% of the fatty acid content of coconut oil; south Asian and Oceanic societies which use coconut oil as their primary source of dietary fat tend to be at low cardiovascular risk. Since ketone bodies can exert neuroprotective effects, the moderate ketosis induced by regular MCT ingestion may have neuroprotective potential. As compared to traditional MCTs featuring C6–C10, laurate-rich MCTs are more feasible for use in moderate-temperature frying and tend to produce a lower but more sustained pattern of blood ketone elevation owing to the more gradual hepatic oxidation of ingested laurate. PMID:27547436

  2. Triglyceride with medium-chain fatty acids increases the activity and expression of hormone-sensitive lipase in white adipose tissue of C57BL/6J mice.

    PubMed

    Liu, Yinghua; Xue, Changyong; Zhang, Yong; Xu, Qing; Yu, Xiaoming; Zhang, Xinsheng; Wang, Jin; Zhang, Rongxin; Gong, Xue; Guo, Changjiang

    2011-01-01

    We have previously shown that medium-chain triglyceride (MCT) resulted in significantly less body fat mass than long-chain triglyceride (LCT) did in hypertriglyceridimic subjects. The possible mechanism for this was investigated by measuring and analyzing changes in the body fat, blood lipid profile, enzymatic level and activity of hormone-sensitive lipase (HSL) and its mRNA expression, and levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in white adipose tissue (WAT) of C57BL/6J mice fed for 16 weeks on an MCT or LCT diet. MCT induced lower body weight and body fat, and an improved blood lipid profile than LCT did. The enzymatic level and activity of HSL and its mRNA expression, and the levels of cAMP and PKA were significantly higher in WAT of mice fed with the MCT diet. No significant differences in the levels of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in WAT were apparent between the effects of MCT and LCT. It is concluded that lipolysis by the increased level and activity of HSL, which was induced by the activation of cAMP-dependent PKA in WAT, was partially responsible for the lower fat accumulation in C57BL/6J mice fed with MCT.

  3. Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and a comparison with other ketogenic diets.

    PubMed

    Liu, Yeou-mei Christiana; Wang, Huei-Shyong

    2013-01-01

    The ketogenic diet (KD) is one of the most effective therapies for drug-resistant epilepsy. The efficacy of the medium-chain triglyceride KD (MCTKD) is as excellent as the classic KD (CKD), which has been documented in several subsequent retrospective, prospective, and randomized studies. MCT oil is more ketogenic than long-chain triglycerides. Therefore, the MCTKD allows more carbohydrate and protein food, which makes the diet more palatable than the CKD. The MCTKD is not based on diet ratios as is the CKD, but uses a percentage of calories from MCT oil to create ketones. There has also been literature which documents the associated gastrointestinal side effects from the MCTKD, such as diarrhea, vomiting, bloating, and cramps. Therefore, the MCTKD has been an underutilized diet therapy for intractable epilepsy among children.The author has used up to >70% MCTKD diet to maximize seizure control with gastrointestinal side effects optimally controlled. As long as health care professionals carefully manage MCTKD, many more patients with epilepsy who are not appropriate for CKD or modified Atkins diet or low glycemic index treatment will benefit from this treatment. A comparison between the MCTKD and other KDs is also discussed.

  4. Medium- and long-chain triglycerides labeled with 13C: a comparison of oxidation after oral or parenteral administration in humans.

    PubMed

    Metges, C C; Wolfram, G

    1991-01-01

    The special physical properties of medium-chain triglycerides (MCT) result in some substantial differences in their metabolism compared to that of long-chain triglycerides (LCT). Administering MCT is of importance in enteral nutrition of patients with disturbances of fat digestion or lipoprotein lipase deficiency. Their use in parenteral nutrition is also of interest. The purpose of this study was to compare the rate of conversion of MCT and LCT to CO2 after parenteral or oral administration in humans. At 1-wk intervals, a liquid formula diet (418 kJ/h for 8 h) was given to five healthy volunteers following an overnight fast. Two hours after starting this, they were given either 100 mg [13C]trioctanoate or [13C]trioleate orally or parenterally. Excess 13C in breath carbon dioxide was analyzed by mass-spectrometry, and oxidation rates over 7.5 h were calculated. Oxidation rates for [13C]trioctanoate were on the average 34.7% after enteral and 31.0% after parenteral administration, and for [13C]trioleate, 25.3 and 24.9%, respectively (p less than 0.05, trioctanoate vs. trioleate). The results show that the oxidation of trioctanoate in healthy humans is greater both after oral and parenteral administration and increases more rapidly than that of [13C]trioleate.

  5. Evaluation of Resveratrol, Green Tea Extract, Curcumin, Oxaloacetic Acid, and Medium-Chain Triglyceride Oil on Life Span of Genetically Heterogeneous Mice

    PubMed Central

    Miller, Richard A.; Astle, Clinton M.; Baur, Joseph A.; de Cabo, Rafael; Fernandez, Elizabeth; Guo, Wen; Javors, Martin; Kirkland, James L.; Nelson, James F.; Sinclair, David A.; Teter, Bruce; Williams, David; Zaveri, Nurulain; Nadon, Nancy L.; Harrison, David E.

    2013-01-01

    The National Institute on Aging Interventions Testing Program (ITP) was established to evaluate agents that are hypothesized to increase life span and/or health span in genetically heterogeneous mice. Each compound is tested in parallel at three test sites. It is the goal of the ITP to publish all results, negative or positive. We report here on the results of lifelong treatment of mice, beginning at 4 months of age, with each of five agents, that is, green tea extract (GTE), curcumin, oxaloacetic acid, medium-chain triglyceride oil, and resveratrol, on the life span of genetically heterogeneous mice. Each agent was administered beginning at 4 months of age. None of these five agents had a statistically significant effect on life span of male or female mice, by log-rank test, at the concentrations tested, although a secondary analysis suggested that GTE might diminish the risk of midlife deaths in females only. PMID:22451473

  6. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of non-alcoholic fatty liver disease.

    PubMed

    Ronis, Martin J J; Baumgardner, January N; Sharma, Neha; Vantrease, Jamie; Ferguson, Matthew; Tong, Yudong; Wu, Xianli; Cleves, Mario A; Badger, Thomas M

    2013-02-01

    Metabolic syndrome is often accompanied by development of hepatic steatosis and less frequently by non-alcoholic fatty liver disease (NAFLD) leading to non-alcoholic steatohepatitis (NASH). Replacement of corn oil with medium chain triacylglycerols (MCT) in the diets of alcohol-fed rats has been shown to protect against steatosis and alcoholic liver injury. The current study was designed to determine if a similar beneficial effect of MCT occurs in a rat model of NAFLD. Groups of male rats were isocalorically overfed diets containing 10%, 35% or 70% total energy as corn oil or a 70% fat diet in which corn oil was replaced with increasing concentrations of saturated fat (18:82, beef tallow:MCT oil) from 20% to 65% for 21 days using total enteral nutrition (TEN). As dietary content of corn oil increased, hepatic steatosis and serum alanine amino transferases were elevated (P < 0.05). This was accompanied by greater expression of cytochrome P450 enzyme CYP2E1 (P < 0.05) and higher concentrations of polyunsaturated 18:2 and 20:4 fatty acids (FA) in the hepatic lipid fractions (P < 0.05). Keeping the total dietary fat at 70%, but increasing the proportion of MCT-enriched saturated fat resulted in a dose-dependent reduction in steatosis and necrosis without affecting CYP2E1 induction. There was no incorporation of C8-C10 FAs into liver lipids, but increasing the ratio of MCT to corn oil: reduced liver lipid 18:2 and 20:4 concentrations; reduced membrane susceptibility to radical attack; stimulated FA β- and ω-oxidation as a result of activation of peroxisomal proliferator activated receptor (PPAR)α, and appeared to increase mitochondrial respiration through complex III. These data suggest that replacing unsaturated fats like corn oil with MCT oil in the diet could be utilized as a potential treatment for NAFLD.

  7. Effects of a medium chain triglyceride oil mixture and alpha-lipoic acid diet on body composition, antioxidant status, and plasma lipid levels in the Golden Syrian hamster.

    PubMed

    Wollin, Stephanie D; Wang, Yanwen; Kubow, Stan; Jones, Peter J H

    2004-07-01

    The objective of this study was to examine the effects of the antioxidant alpha-lipoic acid (ALP) versus a medium chain triglyceride oil mixture (MCTo), which was designed to increase energy expenditure and to improve lipid profiles containing medium chain triglycerides, phytosterols, and omega-3 fatty acids in the form of flaxseed oil. A total of 48 hamsters were fed a) hypercholesterolemic (HC) control, b) HC MCTo, c) HC ALP, or d) HC MCTo/ALP diet for 4 weeks. No differences were observed on food intake, body weight, total body water, lean and fat mass, and tissue thiobarbituric acid reactive substances (TBARS). ALP alone had no effect on total cholesterol (TC); however, MCTo feeding increased TC with (P < 0.03) and without (P < 0.003) ALP when compared with control. ALP increased HDL levels compared with control (P < 0.04) and MCTo/ALP (P < 0.007) groups. MCTo, with (P < 0.0001) or without (P < 0.006) ALP, increased non-HDL cholesterol levels versus control. The non-HDL:HDL cholesterol ratio was decreased by ALP compared with MCTo (45%) and MCTo/ALP (68%) (P < 0.0001), a similar trend was seen when compared with the HC control (22%) group (P < 0.14). Triglyceride levels were not altered by any dietary treatment. Liver and heart tissue reduced glutathione (GSH) was increased (P < 0.05) by all three treatments when compared with control. Both tissues showed an increase (P < 0.05) in oxidized glutathione (GSSG) when fed ALP as compared with other treatments. Hamsters fed ALP had a lower (P < 0.05) GSH/GSSG ratio compared with other treatment groups. In conclusion, MCTo feeding does not elicit beneficial effects on circulating plasma lipids and measures of body composition. In addition, our results do not clearly support an improvement in oxidative status through supplementation of ALP. However, our results do support the existence of beneficial effects of ALP on circulating lipoprotein content in the hamster.

  8. The effects of feeding medium-chain triglycerides on the growth, insulin responsiveness, and body composition of Holstein calves from birth to 85 kg of body weight.

    PubMed

    Mills, J K; Ross, D A; Van Amburgh, M E

    2010-09-01

    The objective of this study was to determine the effects of feeding calves isocaloric, isonitrogenous diets that varied in the amount and type of fatty acids on growth, response to an insulin challenge, and body composition. Thirty-six calves were assigned to a randomized block design with 3 dietary treatments, 10 calves per treatment, and a baseline group of 6 calves. Three different milk-replacer-based diets were designed to deliver less than 2% of the lipid as medium-chain triglycerides (control; diet contained no added medium-chain triglycerides), 32% medium-chain triglycerides primarily as caprylate (CAP oil), and 32% of fatty acids primarily as laurate from coconut oil (CCO). Calves were offered 0.28 Mcal of intake energy/kg of body weight (BW)0.75 from d 1 to 7 and 0.32 Mcal of intake energy/kg of BW0.75 adjusted weekly for BW from d 8 to harvest. Dry matter, intake energy, crude protein, and fat intakes were 53.7 kg, 281.8 Mcal, 14.6 kg, and 13.0 kg; 56.6 kg, 297.2 Mcal, 15.8 kg, and 14.2 kg; and 53.8 kg, 280.4 Mcal, 15.4 kg, and 13.3 kg for the control, CAP oil, and CCO treatments, respectively. Dry matter, energy, protein, and fat intakes did not differ among treatments. At approximately 65 kg of BW, 5 calves per treatment were given an insulin challenge. After the challenge the decrease in plasma glucose concentration was greater for the calves fed the CAP oil diet compared with those fed the control and CCO diets. Calves were harvested at approximately 88 kg of BW. Empty body gains were 0.92, 0.79, and 0.87 kg/d for control-, CAP oil-, and CCO-fed calves, respectively, and the gains of the CAP oil-fed calves were less than those of the control-fed calves. Empty body crude protein, ash, and water were not different among treatments. Empty body retained energy and fat tended to be 5.6 and 8.7% greater for calves consuming the CCO diet than for those fed the control diet. The livers of calves consuming the CCO diet were 330 g heavier and contained 15% more

  9. Benefits of use, and tolerance of, medium-chain triglyceride medical food in the management of Japanese patients with Alzheimer's disease: a prospective, open-label pilot study.

    PubMed

    Ohnuma, Tohru; Toda, Aiko; Kimoto, Ayako; Takebayashi, Yuto; Higashiyama, Ryoko; Tagata, Yuko; Ito, Masanobu; Ota, Tsuneyoshi; Shibata, Nobuto; Arai, Heii

    2016-01-01

    This is the first clinical trial of this type in Japan, designed to analyze two important aspects of Alzheimer's disease (AD) management using medium-chain triglycerides. Axona was administered for 3 months (40 g of powder containing 20 g of caprylic triglycerides). We used an indurating, four-step dose-titration method (from 10 to 40 g per day) for 7 days before the trial, and examined the tolerance and adverse effects of this intervention. We also investigated its effect on cognitive function in mild-to-moderate AD patients. This was a clinical intervention in 22 Japanese patients with sporadic AD at a mild-to-moderate stage (ten females, 12 males), mean age (± standard deviation) 63.9 (±8.5) years, Mini-Mental State Examination (MMSE) score, 10-25, seven patients were ApoE4-positive. During Axona administration, we examined changes in cognitive function by obtaining MMSE and AD assessment-scale scores. Intolerance and serum ketone concentrations were also examined. The tolerance of Axona was good, without severe gastrointestinal adverse effects. Axona did not improve cognitive function in our sample of AD patients, even in those patients without the ApoE4 allele. However, some ApoE4-negative patients with baseline MMSE score ≥14 showed improvement in their cognitive functions. The modified dose-titration method, starting with a low dose of Axona, decreased gastrointestinal adverse effects in Japanese patients. Axona might be effective for some relatively mildly affected patients with AD (with cognitive function MMSE score of ≥14 and lacking the ApoE4 allele).

  10. Short-Term Use of Parenteral Nutrition With a Lipid Emulsion Containing a Mixture of Soybean Oil, Olive Oil, Medium-Chain Triglycerides, and Fish Oil

    PubMed Central

    Devlieger, Hugo; Jochum, Frank; Allegaert, Karel

    2012-01-01

    Background: For premature neonates needing parenteral nutrition (PN), a balanced lipid supply is crucial. The authors hypothesized that a lipid emulsion containing medium-chain triglycerides (MCTs) and soybean, olive, and fish oils would be as safe and well tolerated as a soybean emulsion while beneficially influencing the fatty acid profile. Methods: Double-blind, controlled study in 53 neonates (<34 weeks’ gestation) randomized to receive at least 7 days of PN containing either an emulsion of MCTs and soybean, olive, and fish oils or a soybean oil emulsion. Target lipid dosage was 1.0 g fat/kg body weight [BW]/d on days 1–3, 2 g/kg BW/d on day 4, 3 g/kg BW/d on day 5, and 3.5 g/kg BW/d on days 6–14. Results: Test emulsion vs control, mean ± SD: baseline triglyceride concentrations were 0.52 ± 0.16 vs 0.54 ± 0.19 mmol/L and increased similarly in both groups to 0.69 ± 0.38 vs 0.67 ± 0.36 on day 8 of treatment (P = .781 for change). A significantly higher decrease in total and direct bilirubin vs baseline was seen in the test group compared with the control group P < .05 between groups). In plasma and red blood cell phospholipids, eicosapentaenoic acid and docosahexaenoic acid were higher, and the n-6/n-3 fatty acid ratio was lower in the test group (P < .05 vs control). Conclusions: The lipid emulsion, based on a mixture of MCTs and soybean, olive, and fish oils, was safe and well tolerated by preterm infants while beneficially modulating the fatty acid profile. PMID:22237883

  11. Medium-chain triglyceride as an alternative of in-feed colistin sulfate to improve growth performance and intestinal microbial environment in newly weaned pigs.

    PubMed

    Yen, Hung-Che; Lai, Wei-Kang; Lin, Chuan-Shun; Chiang, Shu-Hsing

    2015-01-01

    Five hundred and twenty-eight newly weaned pigs were given four treatments, with eight replicates per treatment. Sixteen to 18 pigs were assigned per replicate and were fed diets supplemented with 0 or 3% medium-chain triglyceride (MCT) and 0 or 40 ppm colistin sulfate (CS) in a 2 × 2 factorial arrangement for 2 weeks. The results showed that dietary supplementation with MCT improved the gain-to-feed ratio during days 3-7 and in the overall period (P < 0.05). Dietary supplementation with MCT decreased coliforms counts (C) in colon and rectum content (P < 0.05). Dietary supplementation with CS decreased C and lactic acid bacteria plus C counts (L + C) in cecum (P < 0.05), and C, L + C (P < 0.01) and ratio of L and C (P < 0.05) in colon and rectum contents. The lack of interactions between MCT and CS indicates different modes of action and additive effects between the two supplementations. In conclusion, supplementation with MCT in diet with or without CS could improve the intestinal microbial environment and the feed utilization efficiency of newly weaned pigs. © 2014 Japanese Society of Animal Science.

  12. Medium-chain triglycerides and monounsaturated fatty acids potentiate the beneficial effects of fish oil on selected cardiovascular risk factors in rats.

    PubMed

    Kondreddy, Vijay Kumar Reddy; Anikisetty, Maheswaraiah; Naidu, Kamatham Akhilender

    2016-02-01

    Fish oil (FO) rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to reduce the risk of cardiovascular diseases (CVDs). Little information is known regarding the influence of lipid composition in the background diet on the modulatory effect of FO supplementation on CVDs. The present study was designed to investigate the influence of various background dietary lipids and FO on selected cardiovascular risk factors in rats. Adult Wistar rats were fed semisynthetic diet with FO at 1.0% or 2.0% along with other lipids, namely, medium-chain triacylglycerols (MCTs), monounsaturated fatty acids (MUFAs), n-6 polyunsaturated fatty acids (PUFAs) and n-3 PUFAs, for 5 weeks. Some of the potent CVD risk factors were estimated in the rats. FO at 1.0% and 2.0% has significantly reduced serum lipid peroxides, total cholesterol, triglycerides (TAGs), tumor necrosis factor-α, interleukin-6 and C-reactive protein; liver and adipose TAG and cholesterol levels in MCT, MUFA and n-6 PUFA diet groups. Notably, these alterations were comparatively higher in 1.0% FO-substituted MCT and MUFA diet groups. Interestingly, feeding of FO along with n-3 PUFAs did not show additive effect in attenuation of these factors. Serum liver EPA and DHA levels were remarkably elevated in rats fed FO-enriched MCT or MUFA diets. Our results suggest that MCTs or MUFAs in the background diet might promote the beneficial effects of FO on CVDs.

  13. Treatment with lactose (galactose)-restricted and medium-chain triglyceride-supplemented formula for neonatal intrahepatic cholestasis caused by citrin deficiency.

    PubMed

    Hayasaka, K; Numakura, C; Toyota, K; Kimura, T

    2012-01-01

    Citrin plays a role in the transfer of NADH-reducing equivalent from cytosol to mitochondria as part of the malate-aspartate shuttle in liver. Citrin deficiency may cause an impairment of glycolysis due to an increase in the cytosolic NADH/NAD ratio leading to an energy shortage in the liver. Mutations of the SLC25A13 gene are responsible for neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2). Most patients with NICCD show a resolution of symptoms within the first year of life, but some patients present with severe symptoms and require liver transplantation. We treated four patients including three siblings with NICCD by lactose (galactose)-restricted and medium-chain triglyceride (MCT)-supplemented formula. This formula rapidly improved the clinical condition and laboratory findings. Early treatment was more effective and did not require long-term administration. Lactose (galactose)-restriction can avoid further increase in the cytosolic NADH/NAD ratio in the liver and MCT supplementation can provide energy to hepatic cells by producing an excess of acetyl-CoA in mitochondria. Early treatment with lactose (galactose)-restricted and MCT-supplemented formula is recommended for patients with NICCD and possibly for patients with CTLN2.

  14. Medium Chain Triglyceride Oil Consumption as Part of a Weight Loss Diet Does Not Lead to an Adverse Metabolic Profile When Compared to Olive Oil

    PubMed Central

    St-Onge, Marie-Pierre; Bosarge, Aubrey; Goree, Laura Lee T.; Darnell, Betty

    2010-01-01

    Objective Medium chain triglyceride (MCT) consumption may have a beneficial impact on weight management, however, some studies point to a negative impact of MCT oil consumption on cardiovascular disease risk. This study examined the effects of MCT oil consumption, as part of a weight loss diet, on metabolic risk profile compared to olive oil. Design Thirty-one men and women, age 19–50 y and body mass index 27–33 kg/m2, completed this randomized, controlled, 16-week weight loss program. Oils were consumed at a level of ~12% of the subjects’ prescribed energy intakes in the form of muffins and liquid oil. Results After controlling for body weight, there was a significant effect of time on fasting serum glucose (P = 0.0177) and total cholesterol (P = 0.0386) concentrations, and on diastolic blood pressure (P = 0.0413), with reductions in these variables occurring over time; there was no time-by-diet interaction for any of the parameters studied. Two of the 3 subjects in the MCT oil group with evidence of the metabolic syndrome at baseline did not have metabolic syndrome at endpoint. In the olive oil group, 6 subjects had the metabolic syndrome at baseline; 2 subjects no longer had metabolic syndrome at endpoint, 1 person developed metabolic syndrome, and 4 subjects did not have any change in their metabolic syndrome status. Conclusions Our results suggest that MCT oil can be incorporated into a weight loss program without fear of adversely affecting metabolic risk factors. Distinction should be made regarding chain length when it comes to discussing the effects of saturated fats on metabolic risk factors. PMID:18845704

  15. Fat-soluble vitamins and plasma and erythrocyte membrane fatty acids in chylothorax pediatric patients receiving a medium-chain triglyceride-rich diet.

    PubMed

    Densupsoontorn, Narumon; Jirapinyo, Pipop; Tirapongporn, Hathaichanok; Wongarn, Renu; Chotipanang, Kwanjai; Phuangphan, Phakkanan; Chongviriyaphan, Nalinee

    2014-11-01

    Post-operative chylothorax can be cured by a medium-chain triglyceride (MCT)-rich diet. However, there is concern that an MCT-rich diet results in clinical and biochemical deficiencies in fat-soluble vitamins and fatty acids. We compared fat-soluble vitamins status and fatty acids status before and after administration of an MCT-rich diet. Nine children with congenital heart disease developed chylothorax after cardiac surgery. Blood samples were drawn from each subject twice, first prior to administration of an MCT-rich diet and secondly when the chylothorax was clinically cured and the MCT diet discontinued. Both blood samples were analyzed for retinol and 25-hydroxy vitamin D concentrations, the ratio of α-tocopherol to total lipids (α-TE/TL), coagulogram, and the fatty acid composition in plasma and erythrocyte membrane phospholipids. In spite of a decrease in the α-TE/TL ratio (3.78 ± 0.89 vs 2.36 ± 0.44 mg/g, p<0.05), this decrease did not reach the deficiency cut-off level. Linoleic acid in both plasma and erythrocyte membrane lipids decreased significantly (25.25 ± 8.06 vs 14.25 ± 2.88%, and 11.19 ± 2.15 vs 6.89 ± 2.45%, respectively). Administration of an MCT-rich diet for treatment of postoperative chylothorax caused a reduction in vitamin E status and linoleic acid, but without any symptoms of deficiency.

  16. Effectiveness of Medium-Chain Triglyceride Oil Therapy in Two Japanese Citrin-Deficient Siblings: Evaluation Using Oral Glucose Tolerance Tests.

    PubMed

    Otsuka, Hiroki; Sasai, Hideo; Abdelkreem, Elsayed; Kawamoto, Norio; Kawamoto, Minako; Kamiya, Toshiya; Tanimoto, Yasuo; Kikuchi, Atsuo; Kure, Shigeo; Numakura, Chikahiko; Hayasaka, Kiyoshi; Fukao, Toshiyuki

    2016-12-01

    Citrin deficiency, an inherited defect of the liver-type mitochondrial aspartate/glutamate carrier isoform (citrin), may cause impairment of glycolysis because of an increase in the cytosolic NADH/NAD(+) ratio. We report a Japanese boy whose main complaint was recurrent hypoglycemic episodes. He was suspected as having citrin deficiency because of his peculiar preference for protein- and fat-rich food. His young sister also had a similar food preference. Both siblings were diagnosed with citrin deficiency by genetic analysis. The brother and sister underwent an oral glucose tolerance test (OGTT) at 10 and 7 yr of age, respectively. Blood glucose, ammonia, lactic acid, pyruvic acid, and insulin levels were monitored before starting the test, and then every 30 min. During this test, they maintained blood glucose levels until 180 min. At 210 min, they experienced vomiting, feeling ill, and decreased blood glucose levels (2.9 and 2.8 mmol/l in the brother and sister, respectively). The sister and brother recovered uneventfully by intravenous glucose injection. In a second OGTT, 4 months after medium-chain triglyceride (MCT) oil supplementation, they had no major symptoms and normal glucose levels were maintained, even after 240 min. Additionally, after MCT oil therapy, their food preference slightly changed as they started eating more carbohydrates. Our OGTT data suggest excess carbohydrate intake has adverse consequences in patients with citrin deficiency, including hypoglycemia after a few hours. MCT oil therapy may be effective in preventing such hypoglycemia and improving metabolic derangement, even during the so-called apparently healthy period.

  17. Neuronal decanoic acid oxidation is markedly lower than that of octanoic acid: A mechanistic insight into the medium-chain triglyceride ketogenic diet.

    PubMed

    Khabbush, Aziza; Orford, Michael; Tsai, Yi-Chen; Rutherford, Tricia; O'Donnell, Maura; Eaton, Simon; Heales, Simon J R

    2017-08-01

    The medium-chain triglyceride (MCT) ketogenic diet contains both octanoic (C8) and decanoic (C10) acids. The diet is an effective treatment for pharmacoresistant epilepsy. Although the exact mechanism for its efficacy is not known, it is emerging that C10, but not C8, interacts with targets that can explain antiseizure effects, for example, peroxisome proliferator-activated receptor-γ (eliciting mitochondrial biogenesis and increased antioxidant status) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. For such effects to occur, significant concentrations of C10 are likely to be required in the brain. To investigate how this might occur, we measured the β-oxidation rate of (13) C-labeled C8 and C10 in neuronal SH-SY5Y cells using isotope-ratio mass spectrometry. The effects of carnitine palmitoyltransferase I (CPT1) inhibition, with the CPT1 inhibitor etomoxir, on C8 and C10 β-oxidation were also investigated. Both fatty acids were catabolized, as judged by (13) CO2 release. However, C10 was β-oxidized at a significantly lower rate, 20% that of C8. This difference was explained by a clear dependence of C10 on CPT1 activity, which is low in neurons, whereas 66% of C8 β-oxidation was independent of CPT1. In addition, C10 β-oxidation was decreased further in the presence of C8. It is concluded that, because CPT1 is poorly expressed in the brain, C10 is relatively spared from β-oxidation and can accumulate. This is further facilitated by the presence of C8 in the MCT ketogenic diet, which has a sparing effect upon C10 β-oxidation. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  18. Effectiveness of Enteral Versus Oral Nutrition With a Medium-Chain Triglyceride Formula to Prevent Malnutrition and Growth Impairment in Infants With Biliary Atresia.

    PubMed

    Macías-Rosales, Rocío; Larrosa-Haro, Alfredo; Ortíz-Gabriel, Genaro; Trujillo-Hernández, Benjamín

    2016-01-01

    The aim of this study was to compare the effectiveness of oral (PO) versus enteral nutrition (EN) medium-chain triglyceride (MCT) containing-formula to prevent malnutrition and growth impairment in infants with biliary atresia (BA) waiting for a liver transplant. A total of 15 infants, 3 to 9 months old with BA were included. They were randomly assigned to either PO or EN. For 12 weeks, both groups received an MCT formula fortified with glucose polymers and corn oil to reach a caloric density between 0.8 and 1 kcal/mL. The formula given to the PO group was administered ad libitum and that given via EN was infused through a nasogastric tube to reach 140% of the energy intake recommended by the Dietary Recommended Intake guidelines. Protein intake was adjusted to 4 to 5 g/kg present weight. Outcome variables were growth and nutritional status evaluated periodically by anthropometric indicators. Biochemical and hematological variables were evaluated through the study. Baseline clinical, nutritional, biochemical, and hematological variables showed no differences between the study groups. Baseline length/age was <-2 SD in 10 of the 15 patients; in the PO group, it fell <-3 SD, whereas in the EN group, it remained stable. Head circumference z score dropped 0.6 SD in the PO group, whereas in the EN group it remained stable. Triceps skinfold values improved in the infants taking EN, P < 0.001. The frequency of adverse effects--respiratory infection and diarrhea--was higher in the EN group. No biochemical or hematological differences were observed between the study groups throughout the study. A 12-week EN trial with an MCT-fortified formula prevented malnutrition and growth impairment in infants with BA waiting for a liver transplant.

  19. Humid Heat Autoclaving of Hybrid Nanoparticles Achieved by Decreased Nanoparticle Concentration and Improved Nanoparticle Stability Using Medium Chain Triglycerides as a Modifier.

    PubMed

    Gou, Jingxin; Chao, Yanhui; Liang, Yuheng; Zhang, Ning; He, Haibing; Yin, Tian; Zhang, Yu; Xu, Hui; Tang, Xing

    2016-09-01

    Humid heat autoclaving is a facile technique widely used in the sterilization of injections, but the high temperature employed would destroy nanoparticles composed of biodegradable polymers. The aim of this study was to investigate whether incorporation of medium chain triglycerides (MCT) could stabilize nanoparticles composed of poly (ethylene glycol)-b-polycaprolactone (PEG-b-PCL) during autoclaving (121°C, 10 min). Polymeric nanoparticles with different MCT contents were prepared by dialysis. Block copolymer degradation was studied by GPC. The critical aggregation concentrations of nanoparticles at different temperatures were determined using pyrene fluorescence. The size, morphology and weight averaged molecular weight of pristine/autoclaved nanoparticles were studied using DLS, TEM and SLS, respectively. Drug loading content and release profile were determined using RP-HPLC. The protecting effect of MCT on nanoparticles was dependent on the amount of MCT incorporated. Nanoparticles with high MCT contents, which assumed an emulsion-like morphology, showed reduced block copolymer degradation and particle disassociation after incubation at 100°C for 24 h. Nanoparticles with high MCT content showed the lowest critical aggregation concentration (CAC) under either room temperature or 60°C and the lowest particle concentration among all samples. And the particle size, drug loading content, physical stability and release profile of nanoparticles with high MCT contents remained nearly unchanged after autoclaving. Incorporation of high amount of MCT changed the morphology of PEG-b-PCL based nanoparticles to an emulsion-like structure and the nanoparticles prepared could withstand autoclaving due to improved particle stability and decreased particle concentration caused by MCT incorporation.

  20. Effect of a combination of medium chain triglycerides, linoleic acid, soy lecithin and vitamins A and E on wound healing in rats.

    PubMed

    Magalhães, Maria Sonia Felício; Fechine, Francisco Vagnaldo; Macedo, Rafael Nogueira de; Monteiro, Diego Levi Silveira; Oliveira, Cecília Carvalho; Brito, Gerly Anne de Castro; Moraes, Maria Elisabate Amaral de; Moraes, Manoel Odorico de

    2008-01-01

    The aim of the study was to determine the effect of a combination of medium chain triglycerides (caprylic, capric, caproic and lauric acids), linoleic acid (essential fatty acid), vitamins A and E and soy lecithin, through a morphometric study, on the wound healing kinetics of experimental cutaneous ulcers. A total of 45 male Wistar rats were used, in which a skin flap of total thickness with an area of 4 cm2 was removed. The animals were divided randomly into 3 groups of 15 rats each, Control, Reference and Test groups, which were treated topically with 0.9% NaCl, a preparation of clostebol combined with neomycin sulfate and the test formulation, respectively. The wound areas were measured by digital planimetry at days zero, 3, 7 and 12 postoperative. Based on the wound area, we determined the degree of tissue repair and mean rate of repair at different time intervals. At day 3, an expansion of the wound area was observed in the Reference group and slight contraction in the Control and Test groups. On the subsequent days, the healing process, according to the degree of repair, proceeded in a linear manner, such that, at day 12, the healed area reached 77.95% of the initial ulcerated region in the Control group, 78.40% in the Reference group and 83.49% in the Test group, showing no significant differences. The overall mean rate of repair was equally similar at 12 days of treatment: 25.79 mm2/dia in the Control group, 25.42 mm2/dia in the Reference group and 27.38 mm2/dia in the Test group. The test preparation, applied topically on the experimentally induced cutaneous ulcers in rats, did not accelerate the process of tissue repair by secondary union.

  1. Medium-Chain Triglycerides in Combination with Leucine and Vitamin D Increase Muscle Strength and Function in Frail Elderly Adults in a Randomized Controlled Trial.

    PubMed

    Abe, Sakiko; Ezaki, Osamu; Suzuki, Motohisa

    2016-05-01

    Sarcopenia, the loss of skeletal muscle mass, strength, and function, is common in elderly individuals but difficult to treat. A combination of nutrients was investigated to treat sarcopenia in very frail elderly adults. We enrolled 38 elderly nursing home residents (11 men and 27 women with a mean ± SD age of 86.6 ± 4.8 y) in a 3-mo randomized, controlled, single-blind, parallel group trial. The participants were randomly allocated to 3 groups. The first group received a daily l-leucine (1.2 g) and cholecalciferol (20 μg)-enriched supplement with 6 g medium-chain triglycerides (TGs) (MCTs) (LD + MCT); the second group received the same leucine and cholecalciferol-enriched supplement with 6 g long-chain TGs (LD + LCT); and the third group did not receive any supplements (control). The supplement and oils were taken at dinner, and changes in muscle mass, strength, and function were monitored. The increase in body weight in the LD + MCT (1.1 ± 1.0 kg) and LD + LCT (0.8 ± 1.1 kg) groups was greater than that in the control group (-0.5 ± 0.9 kg) (P < 0.05). After 3 mo, participants in the LD + MCT group had a 13.1% increase in right-hand grip strength (1.2 ± 1.0 kg, P < 0.01), a 12.5% increase in walking speed (0.078 ± 0.080 m/s, P < 0.05), a 68.2% increase in a 10-s leg open-and-close test performance (2.31 ± 1.68 n/10 s, P < 0.001), and a 28.2% increase in peak expiratory flow (53 ± 59 L/min, P < 0.01). No significant improvements in muscle mass, strength, or function were observed in the LD + LCT or control groups. The combined supplementation of MCTs (6 g), leucine-rich amino acids, and cholecalciferol at dinner may improve muscle strength and function in frail elderly individuals. This trial was registered at the University Hospital Medical Information Network Clinical Trials Registry as UMIN000017567. © 2016 American Society for Nutrition.

  2. Effects of parenteral infusion with medium-chain triglycerides and safflower oil emulsions on hepatic lipids, plasma amino acids and inflammatory mediators in septic rats.

    PubMed

    Yeh, S; Chao, C; Lin, M; Chen, W

    2000-04-01

    This study was designed to investigate the effects of preinfusion with total parenteral nutrition (TPN) using medium-chain triglycerides (MCT) versus safflower oil (SO) emulsion as fat sources on hepatic lipids, plasma amino acid profiles, and inflammatory-related mediators in septic rats. Normal rats, with internal jugular catheters, were divided into two groups and received TPN. TPN provided 300kcal/kg/day with 40% of the non-protein energy provided as fat. All TPN solutions were isonitrogenous and identical in nutrient composition except for the fat emulsion, which was made of SO or a mixture of MCT and soybean oil (9:1) (MO). After receiving TPN for 6 days, each group of rats was further divided into control and sepsis subgroups. Sepsis was induced by cecal ligation and puncture, whereas control rats received sham operation. All rats were classified into four groups as follows: MCT control group (MOC, n= 8), MCT sepsis group (MOS, n= 8), safflower oil control group (SOC, n= 8), and safflower oil sepsis group (SOS, n= 11). The results of the study demonstrated that the MOS group had lower hepatic lipids than did the SOS group. Plasma leucine and isoleucine levels were significantly lower in the SOS than in the SOC group, but no differences in these two amino acids were observed between the MOC and MOS groups. Plasma arginine levels were significantly lower in septic groups than in those without sepsis despite whether MCT or safflower oil was infused. Plasma glutamine and alanine levels, however, did not differ between septic and non-septic groups either in the SO or MO groups. No differences in interleukin-1b, interleukin-6, tumor necrosis factor-alpha, and leukotriene B(4)concentrations in peritoneal lavage fluid were observed between the two septic groups. These results suggest that catabolic reaction is septic rats preinfused MCT is not as obvious as those preinfused safflower oil. Compared with safflower oil, TPN with MCT administration has better effects on

  3. Feeding healthy beagles medium-chain triglycerides, fish oil, and carnitine offsets age-related changes in serum fatty acids and carnitine metabolites.

    PubMed

    Hall, Jean A; Jewell, Dennis E

    2012-01-01

    The purpose of this study was to determine if feeding dogs medium-chain triglycerides (MCT), fish oil, and L-carnitine enriched foods offsets age-associated changes in serum fatty acids (FA) and carnitine metabolites. Forty-one healthy Beagles, mean age 9.9 years (range 3.1 to 14.8), were fed control or one of two treatment foods for 6 months. All foods were complete and balanced and met the nutrient requirements for adult dogs, and had similar concentrations of moisture, protein, and fat (approx. 7.4%, 14.0%, and 18.1%, respectively). The treatment diets both contained added L-carnitine (300 mg/kg) and 0.6% (treatment food 1) or 1.5% (treatment food 2) added fish oil. Treatment food 2 also had increased MCT from coconut oil, added corn oil, and reduced animal fat. Composition of serum FA was determined by gas chromatography of FA methyl esters. Metabolomic profiles of serum samples were determined from extracted supernatants that were split and run on GC/MS and LC/MS/MS platforms, for identification and relative quantification of small metabolites. Body composition was determined by dual energy x-ray absorptiometry. Among dog groups, there was no change in total-lean-body weight, or in serum total protein and serum albumin concentrations, based on time or dietary treatment. Serum concentrations of carnitine metabolites were decreased in geriatric (>7 years) vs. mature adult (≤ 7 years) dogs, and supplementation with L-carnitine attenuated the effects of aging. The ratio of PUFA to SFA was significantly greater in mature dogs at baseline (P ≤ 0.05). Serum concentrations of eicosapentaenoic and docosahexaenoic FA increased in a dose-dependent manner. Dogs consuming treatment food 2 also had increased serum concentrations of lauric and myristic FA, and decreased concentrations of SFA, MUFA, and arachidonate (all P ≤ 0.05) and their PUFA to SFA ratio increased. In summary, dietary MCT, fish oil, and L-carnitine counterbalanced the effects of aging on circulating

  4. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides

    PubMed Central

    Otto, Christoph; Kaemmerer, Ulrike; Illert, Bertram; Muehling, Bettina; Pfetzer, Nadja; Wittig, Rainer; Voelker, Hans Ullrich; Thiede, Arnulf; Coy, Johannes F

    2008-01-01

    Background Among the most prominent metabolic alterations in cancer cells are the increase in glucose consumption and the conversion of glucose to lactic acid via the reduction of pyruvate even in the presence of oxygen. This phenomenon, known as aerobic glycolysis or the Warburg effect, may provide a rationale for therapeutic strategies that inhibit tumour growth by administration of a ketogenic diet with average protein but low in carbohydrates and high in fat enriched with omega-3 fatty acids and medium-chain triglycerides (MCT). Methods Twenty-four female NMRI nude mice were injected subcutaneously with tumour cells of the gastric adenocarcinoma cell line 23132/87. The animals were then randomly split into two feeding groups and fed either a ketogenic diet (KD group; n = 12) or a standard diet (SD group; n = 12) ad libitum. Experiments were ended upon attainment of the target tumor volume of 600 mm3 to 700 mm3. The two diets were compared based on tumour growth and survival time (interval between tumour cell injection and attainment of target tumour volume). Results The ketogenic diet was well accepted by the KD mice. The tumour growth in the KD group was significantly delayed compared to that in the SD group. Tumours in the KD group reached the target tumour volume at 34.2 ± 8.5 days versus only 23.3 ± 3.9 days in the SD group. After day 20, tumours in the KD group grew faster although the differences in mean tumour growth continued significantly. Importantly, they revealed significantly larger necrotic areas than tumours of the SD group and the areas with vital tumour cells appear to have had fewer vessels than tumours of the SD group. Viable tumour cells in the border zone surrounding the necrotic areas of tumours of both groups exhibited a glycolytic phenotype with expression of glucose transporter-1 and transketolase-like 1 enzyme. Conclusion Application of an unrestricted ketogenic diet enriched with omega-3 fatty acids and MCT delayed tumour growth in

  5. Feeding Healthy Beagles Medium-Chain Triglycerides, Fish Oil, and Carnitine Offsets Age-Related Changes in Serum Fatty Acids and Carnitine Metabolites

    PubMed Central

    Hall, Jean A.; Jewell, Dennis E.

    2012-01-01

    The purpose of this study was to determine if feeding dogs medium-chain triglycerides (MCT), fish oil, and L-carnitine enriched foods offsets age-associated changes in serum fatty acids (FA) and carnitine metabolites. Forty-one healthy Beagles, mean age 9.9 years (range 3.1 to 14.8), were fed control or one of two treatment foods for 6 months. All foods were complete and balanced and met the nutrient requirements for adult dogs, and had similar concentrations of moisture, protein, and fat (approx. 7.4%, 14.0%, and 18.1%, respectively). The treatment diets both contained added L-carnitine (300 mg/kg) and 0.6% (treatment food 1) or 1.5% (treatment food 2) added fish oil. Treatment food 2 also had increased MCT from coconut oil, added corn oil, and reduced animal fat. Composition of serum FA was determined by gas chromatography of FA methyl esters. Metabolomic profiles of serum samples were determined from extracted supernatants that were split and run on GC/MS and LC/MS/MS platforms, for identification and relative quantification of small metabolites. Body composition was determined by dual energy x-ray absorptiometry. Among dog groups, there was no change in total-lean-body weight, or in serum total protein and serum albumin concentrations, based on time or dietary treatment. Serum concentrations of carnitine metabolites were decreased in geriatric (>7 years) vs. mature adult (≤7 years) dogs, and supplementation with L-carnitine attenuated the effects of aging. The ratio of PUFA to SFA was significantly greater in mature dogs at baseline (P≤0.05). Serum concentrations of eicosapentaenoic and docosahexaenoic FA increased in a dose-dependent manner. Dogs consuming treatment food 2 also had increased serum concentrations of lauric and myristic FA, and decreased concentrations of SFA, MUFA, and arachidonate (all P≤0.05) and their PUFA to SFA ratio increased. In summary, dietary MCT, fish oil, and L-carnitine counterbalanced the effects of aging on circulating

  6. [Effect of high amounts of medium chain triglyceride and protein enteral nutrition on nutritional status in patients after major abdominal operation].

    PubMed

    Wang, Xin-ying; Pan, Shi-hai; Liu, Xin-xin; Wu, Guo-hao; Wang, Ya-nong; Liu, Yu-xiu; Li, Ning; Li, Jie-shou

    2007-07-01

    To investigate the effect of Nutrition MCT and Nutrition MF enteral nutrition on nutritional status of patients after major abdominal operation. In a double- blinded and randomized cross- cover study, Nutrition MCT and Nutrition MF enteral nutrition were fed in patients when the gut function restored after operation. The total calorie was 104.6 kJ(25 kcal) x kg(-1) x d(-1) and the period of full dose of enteral nutrition was 5 days. The blood samples were collected before operation,before enteral nutrition and the sixth day after full dose of enteral nutrition for the measurement of pre- albumin, total protein,albumin, transferrin and triglyceride. The urine, stool and drainage fluid were collected to analyze nitrogen balance. The plasma protein and fat were obviously dropped in patients after abdominal operation and improved after the enteral nutrition support in two groups. However, the pre- albumin level increased more in patients of Nutrition MCT than Nutrition MF. Nutrition MCT can obviously improve the nutritional status of patients after major abdominal operation.

  7. Benefits of use, and tolerance of, medium-chain triglyceride medical food in the management of Japanese patients with Alzheimer’s disease: a prospective, open-label pilot study

    PubMed Central

    Ohnuma, Tohru; Toda, Aiko; Kimoto, Ayako; Takebayashi, Yuto; Higashiyama, Ryoko; Tagata, Yuko; Ito, Masanobu; Ota, Tsuneyoshi; Shibata, Nobuto; Arai, Heii

    2016-01-01

    Objectives This is the first clinical trial of this type in Japan, designed to analyze two important aspects of Alzheimer’s disease (AD) management using medium-chain triglycerides. Axona was administered for 3 months (40 g of powder containing 20 g of caprylic triglycerides). We used an indurating, four-step dose-titration method (from 10 to 40 g per day) for 7 days before the trial, and examined the tolerance and adverse effects of this intervention. We also investigated its effect on cognitive function in mild-to-moderate AD patients. Patients and methods This was a clinical intervention in 22 Japanese patients with sporadic AD at a mild-to-moderate stage (ten females, 12 males), mean age (± standard deviation) 63.9 (±8.5) years, Mini-Mental State Examination (MMSE) score, 10–25, seven patients were ApoE4-positive. During Axona administration, we examined changes in cognitive function by obtaining MMSE and AD assessment-scale scores. Intolerance and serum ketone concentrations were also examined. Results The tolerance of Axona was good, without severe gastrointestinal adverse effects. Axona did not improve cognitive function in our sample of AD patients, even in those patients without the ApoE4 allele. However, some ApoE4-negative patients with baseline MMSE score ≥14 showed improvement in their cognitive functions. Conclusion The modified dose-titration method, starting with a low dose of Axona, decreased gastrointestinal adverse effects in Japanese patients. Axona might be effective for some relatively mildly affected patients with AD (with cognitive function MMSE score of ≥14 and lacking the ApoE4 allele). PMID:26811674

  8. Short-term use of parenteral nutrition with a lipid emulsion containing a mixture of soybean oil, olive oil, medium-chain triglycerides, and fish oil: a randomized double-blind study in preterm infants.

    PubMed

    Rayyan, Maissa; Devlieger, Hugo; Jochum, Frank; Allegaert, Karel

    2012-01-01

    For premature neonates needing parenteral nutrition (PN), a balanced lipid supply is crucial. The authors hypothesized that a lipid emulsion containing medium-chain triglycerides (MCTs) and soybean, olive, and fish oils would be as safe and well tolerated as a soybean emulsion while beneficially influencing the fatty acid profile. Double-blind, controlled study in 53 neonates (<34 weeks' gestation) randomized to receive at least 7 days of PN containing either an emulsion of MCTs and soybean, olive, and fish oils or a soybean oil emulsion. Target lipid dosage was 1.0 g fat/kg body weight [BW]/d on days 1-3, 2 g/kg BW/d on day 4, 3 g/kg BW/d on day 5, and 3.5 g/kg BW/d on days 6-14. Test emulsion vs control, mean ± SD: baseline triglyceride concentrations were 0.52 ± 0.16 vs 0.54 ± 0.19 mmol/L and increased similarly in both groups to 0.69 ± 0.38 vs 0.67 ± 0.36 on day 8 of treatment (P = .781 for change). A significantly higher decrease in total and direct bilirubin vs baseline was seen in the test group compared with the control group P < .05 between groups). In plasma and red blood cell phospholipids, eicosapentaenoic acid and docosahexaenoic acid were higher, and the n-6/n-3 fatty acid ratio was lower in the test group (P < .05 vs control). The lipid emulsion, based on a mixture of MCTs and soybean, olive, and fish oils, was safe and well tolerated by preterm infants while beneficially modulating the fatty acid profile.

  9. Liver Disease, Systemic Inflammation, and Growth Using a Mixed Parenteral Lipid Emulsion, Containing Soybean Oil, Fish Oil, and Medium Chain Triglycerides, Compared With Soybean Oil in Parenteral Nutrition-Fed Neonatal Piglets.

    PubMed

    Turner, Justine M; Josephson, Jessica; Field, Catherine J; Wizzard, Pamela R; Ball, Ronald O; Pencharz, Paul B; Wales, Paul W

    2016-09-01

    The optimal parenteral lipid emulsion for neonates should reduce the risk of intestinal failure-associated liver disease and inflammation, while supporting growth and development. This could be best achieved by balanced content of ω-6 and ω-3 polyunsaturated fatty acids (PUFAs). Using a neonatal piglet model of parenteral nutrition (PN), we compared a 100% soy oil-based emulsion (ω-6:ω-3 PUFA: 7:1) with a mixed lipid emulsion comprising 30% soy oil, 30% medium-chain triglycerides, 25% olive oil, and 15% fish oil (ω-6:ω-3 PUFA: approximately 2.5:1) with regard to liver disease, inflammation, and fatty acid content in plasma and brain. Neonatal piglets, 3-6 days old, underwent jugular catheter insertion for isonitrogenous, isocaloric PN delivery over 14 days. The IL group (n = 8) was treated with Intralipid; the ML group (n = 10) was treated with the mixed lipid (SMOFlipid). Bile flow, liver chemistry, C-reactive protein (CRP), and PUFA content in plasma phospholipids and brain were compared. Compared with the IL group, ML-treated piglets had increased bile flow (P = .008) and lower total bilirubin (P = .001) and CRP (P = .023) concentrations. The ω-6 long-chain PUFA content was lower in plasma and brain for the ML group. The key ω-3 long-chain PUFA for neonatal development, docosahexaenoic acid (DHA), was not different between groups. The mixed lipid, having less ω-6 PUFA and more ω-3 PUFA, was able to prevent liver disease and reduce systemic inflammation in PN-fed neonatal piglets. However, this lipid did not increase plasma or brain DHA status, which would be desirable for neonatal developmental outcomes. © 2015 American Society for Parenteral and Enteral Nutrition.

  10. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in healthy geriatric cats fed reduced protein foods enriched with fish oil, L-carnitine, and medium-chain triglycerides.

    PubMed

    Hall, J A; Yerramilli, M; Obare, E; Yerramilli, M; Yu, S; Jewell, D E

    2014-12-01

    The purpose of this study was to determine whether feeding cats reduced protein and phosphorus foods with added fish oil, L-carnitine, and medium-chain triglycerides (MCT) altered serum biomarkers of renal function. Thirty-two healthy cats, mean age 14.0 (8.3-19.6) years, were fed control food or one of two experimental foods for 6 months. All foods had similar concentrations of moisture, protein, and fat (approximately 8.0%, 26.5%, and 20.0%, respectively). Both experimental foods contained added fish oil (1.5%) and L-carnitine (500 mg/kg). Experimental-food 2 also contained increased MCT (10.5% from coconut oil), 1.5% added corn oil, and reduced animal fat. Glomerular filtration rate (GFR), serum biochemistries, renal function biomarkers including serum creatinine (sCr) and symmetrical dimethylarginine (SDMA), and plasma metabolomic profiles were measured at baseline, and at 1.5, 3, and 6 months. Body composition was determined by dual-energy X-ray absorptiometry. Although both experimental foods altered plasma fatty acids, carnitine and related metabolites, and lysophospholipid concentrations, there were no changes in renal function biomarkers. There was, however, a benefit in using SDMA versus sCr to assess renal function in older cats with less total lean mass. Compared with cats <12 years, those >15 years had lower total lean mass (P < 0.01), lower GFR (P = 0.04), and lower sCr concentrations (P < 0.01). However, SDMA concentrations (P < 0.01) were higher in older cats. This study shows that in cats, serum SDMA concentration is more highly correlated with GFR than sCr concentration, and, unlike sCr, which declines with age because of muscle wasting, SDMA increases as GFR declines with age.

  11. A new intravenous fat emulsion containing soybean oil, medium-chain triglycerides, olive oil, and fish oil: a single-center, double-blind randomized study on efficacy and safety in pediatric patients receiving home parenteral nutrition.

    PubMed

    Goulet, Olivier; Antébi, Helena; Wolf, Claude; Talbotec, Cécile; Alcindor, Louis-Gérald; Corriol, Odile; Lamor, Michèle; Colomb-Jung, Virginie

    2010-01-01

    SMOFlipid 20% is an intravenous lipid emulsion (ILE) containing soybean oil, medium-chain triglycerides, olive oil, and fish oil developed to provide energy, essential fatty acids (FAs), and long-chain ω-3 FAs as a mixed emulsion containing α-tocopherol. The aim was to assess the efficacy and safety of this new ILE in pediatric patients receiving home parenteral nutrition (HPN) compared with soybean oil emulsion (SOE). This single-center, randomized, double-blind study included 28 children on HPN allocated to receive either SMOFlipid 20% (n = 15) or a standard SOE (Intralipid 20%, n = 13). ILE was administered 4 to 5 times per week (goal dose, 2.0 g/kg/d) within a parenteral nutrition regimen. Assessments, including safety and efficacy parameters, were performed on day 0 and after the last study infusion (day 29). Lipid peroxidation was determined by measurement of thiobarbituric acid reactive substances (TBARS). There were no significant differences in laboratory safety parameters, including liver enzymes, between the groups on day 29. The mean ± standard deviation changes in the total bilirubin concentration between the initial and final values (day 29 to day 0) were significantly different between groups: SMOFlipid group -1.5 ± 2.4 µmol/L vs SOE group 2.3 ± 3.5 µmol/L, P < .01; 95% confidence interval [CI], -6.2 to -1.4). In plasma and red blood cell (RBC) phospholipids, the ω-3 FAs C20:5ω-3 (eicosapentaenoic acid) and + C22:6ω-3 (docosahexaenoic acid) increased significantly in the SMOFlipid group on day 29. The ω-3:ω-6 FA ratio was significantly elevated with SMOFlipid 20% compared with SOE group (plasma, day 29: 0.15 ± 0.06 vs 0.07 ± 0.02, P < .01, 95% CI, 0.04-0.11; and RBC, day 29: 0.23 ± 0.07 vs 0.14 ± 0.04, P < .01, 95% CI, 0.04-0.13). Plasma α-tocopherol concentration increased significantly more with SMOFlipid 20% (15.7 ± 15.9 vs 5.4 ± 15.2 µmol/L, P < .05; 95% CI, -2.1 to 22.6). The low-density lipoprotein-TBARS concentrations were

  12. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride

    PubMed Central

    Roe, Charles R.; Sweetman, Lawrence; Roe, Diane S.; David, France; Brunengraber, Henri

    2002-01-01

    The current dietary treatment of long-chain fatty acid oxidation defects (high carbohydrate with medium-even-chain triglycerides and reduced amounts of long-chain fats) fails, in many cases, to prevent cardiomyopathy, rhabdomyolysis, and muscle weakness. We hypothesized that the apparent defect in energy production results from a depletion of the catalytic intermediates of the citric acid cycle via leakage through cell membranes (cataplerosis). We further hypothesized that replacing dietary medium-even-chain fatty acids (precursors of acetyl-CoA) by medium-odd-chain fatty acids (precursors of acetyl-CoA and anaplerotic propionyl-CoA) would restore energy production and improve cardiac and skeletal muscle function. We fed subjects with long-chain defects a controlled diet in which the fat component was switched from medium-even-chain triglycerides to triheptanoin. In three patients with very-long-chain acyl-CoA dehydrogenase deficiency, this treatment led rapidly to clinical improvement that included the permanent disappearance of chronic cardiomyopathy, rhabdomyolysis, and muscle weakness (for more than 2 years in one child), and of rhabdomyolysis and weakness in the others. There was no evidence of propionyl overload in these patients. The treatment has been well tolerated for up to 26 months and opens new avenues for the management of patients with mitochondrial fat oxidation disorders. PMID:12122118

  13. Triglycerides

    MedlinePlus

    Triglycerides are a type of fat found in your blood. Too much of this type of fat ... especially in women. A blood test measures your triglycerides along with your cholesterol. Normal triglyceride levels are ...

  14. [The medium chain fat acids. Content in food. Physiology, characteristics of metabolism and application in clinical practice].

    PubMed

    Arkhipovskiĭ, A V; Titov, V N

    2013-06-01

    It is rational, according to biology laws and purposes for which cells use fatty acids, to distinguish between saturated (without double bonds in chain), monoene (with one bond), unsaturated (with 2 and 3 double bonds) and polyene (with 4, 5 and 6 double bonds) acids. The saturated and monoene fatty acids are mainly the substratum for oxygenation and working out of energy by cells. The unsaturated fatty acids are the substratum for formation of membranes. The polyene fatty acids are the predecessors of synthesis of eicosanoids and aminophosphotides. With subject to characteristics of metabolism and transfer in vivo, the fatty acids are subdivided into short chain C4 - C8 and medium chain C-10 - C-14 fatty acids. The etherification occurs with glycerin into "short" triglycerides which are not bounded with apoproteins. The long chain fatty acids form "long" triglycerides which in enterocytes are structured by apoprotein B-48 into composition of chylomicrons. It is possible to validly consider that difference in outflow from enterocytes to veins of portal system (which includes veins of omentum) of medium chain fatty acids in the form of short triglycerides can directly input into pathogenesis of syndrome of isolated omental obesity and metabolic syndrome. The another input into the mentioned conditions is the secretion through ductus thoracicus into large veins of greater systemic circulation of long chain fatty acids in the form of triglycerides in the content of chylomicrons. The omental obesity is the only specific symptom of metabolic syndrome.

  15. Medium-chain fatty acids undergo elongation before {beta}-oxidation in fibroblasts

    SciTech Connect

    Jones, Patricia M. . E-mail: Patti.Jones@childrens.com; Butt, Yasmeen; Messmer, Bette; Boriak, Richard; Bennett, Michael J.

    2006-07-21

    Although mitochondrial fatty acid {beta}-oxidation (FAO) is considered to be well understood, further elucidation of the pathway continues through evaluation of patients with FAO defects. The FAO pathway can be examined by measuring the 3-hydroxy-fatty acid (3-OHFA) intermediates. We present a unique finding in the study of this pathway: the addition of medium-chain fatty acids to the culture media of fibroblasts results in generation of 3-OHFAs which are two carbons longer than the precursor substrate. Cultured skin fibroblasts from normal and LCHAD-deficient individuals were grown in media supplemented with various chain-length fatty acids. The cell-free medium was analyzed for 3-OHFAs by stable-isotope dilution gas-chromatography/mass-spectrometry. Our finding suggests that a novel carbon chain-length elongation process precedes the oxidation of medium-chain fatty acids. This previously undescribed metabolic step may have important implications for the metabolism of medium-chain triglycerides, components in the dietary treatment of a number of disorders.

  16. Medium-chain fatty acids: functional lipids for the prevention and treatment of the metabolic syndrome.

    PubMed

    Nagao, Koji; Yanagita, Teruyoshi

    2010-03-01

    Metabolic syndrome is a cluster of metabolic disorders, such as abdominal obesity, dyslipidemia, hypertension and impaired fasting glucose, that contribute to increased cardiovascular morbidity and mortality. Although the pathogenesis of metabolic syndrome is complicated and the precise mechanisms have not been elucidated, dietary lipids have been recognized as contributory factors in the development and the prevention of cardiovascular risk clustering. This review explores the physiological functions and molecular actions of medium-chain fatty acids (MCFAs) and medium-chain triglycerides (MCTs) in the development of metabolic syndrome. Experimental studies demonstrate that dietary MCFAs/MCTs suppress fat deposition through enhanced thermogenesis and fat oxidation in animal and human subjects. Additionally, several reports suggest that MCFAs/MCTs offer the therapeutic advantage of preserving insulin sensitivity in animal models and patients with type 2 diabetes.

  17. Seizure control by ketogenic diet-associated medium chain fatty acids.

    PubMed

    Chang, Pishan; Terbach, Nicole; Plant, Nick; Chen, Philip E; Walker, Matthew C; Williams, Robin S B

    2013-06-01

    The medium chain triglyceride (MCT) ketogenic diet is used extensively for treating refractory childhood epilepsy. This diet increases the plasma levels of medium straight chain fatty acids. A role for these and related fatty acids in seizure control has not been established. We compared the potency of an established epilepsy treatment, Valproate (VPA), with a range of MCT diet-associated fatty acids (and related branched compounds), using in vitro seizure and in vivo epilepsy models, and assessed side effect potential in vitro for one aspect of teratogenicity, for liver toxicology and in vivo for sedation, and for a neuroprotective effect. We identify specific medium chain fatty acids (both prescribed in the MCT diet, and related compounds branched on the fourth carbon) that provide significantly enhanced in vitro seizure control compared to VPA. The activity of these compounds on seizure control is independent of histone deacetylase inhibitory activity (associated with the teratogenicity of VPA), and does not correlate with liver cell toxicity. In vivo, these compounds were more potent in epilepsy control (perforant pathway stimulation induced status epilepticus), showed less sedation and enhanced neuroprotection compared to VPA. Our data therefore implicates medium chain fatty acids in the mechanism of the MCT ketogenic diet, and highlights a related new family of compounds that are more potent than VPA in seizure control with a reduced potential for side effects. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.

  18. [THE DETECTION OF CONTENT OF DIAGNOSTICALLY SIGNIFICANT FATTY ACIDS AND INDIVIDUAL TRIGLYCERIDES IN BIOLOGICAL MEDIUMS BASED ON INFRARED SPECTROMETRY].

    PubMed

    Kalinin, A V; Krasheninnikov, V N; Sviridov, A P; Titov, V N

    2015-11-01

    The content of clinically important fatty acids and individual triglycerides in food and biological mediums are traditionally detected by gas and fluid chromatography in various methodical modifications. The techniques are hard-to-get in laboratories of clinical biochemistry. The study was carried out to develop procedures and equipment for operative quantitative detection of concentration of fatty acids, primarily palmitic saturated fatty acid and oleic mono unsaturated fatty acid. Also detection was applied to sums ofpolyenoic (eicosapentaenoic and docosahexaenoic acid) fatty acids in biological mediums (cod-liver oil, tissues, blood plasma) using spectrometers of short-range infrared band of different types: with Fourier transform, diffraction and combined scattering. The evidences of reliable and reproducible quantitative detection offatty acids were received on the basis of technique of calibration (regression) by projection on latent structures using standard samples of mixtures of oils and fats. The evaluation is implemented concerning possibility of separate detection of content of palmitic and oleic triglycerides in mediums with presence of water The choice of technical conditions and mode of application of certain types of infrared spectrometers and techniques of their calibration is substantiated

  19. Relationship between plasma free fatty acid, intramyocellular triglycerides and long-chain acylcarnitines in resting humans

    PubMed Central

    Kanaley, Jill A; Shadid, Samyah; Sheehan, Michael T; Guo, ZengKui; Jensen, Michael D

    2009-01-01

    We hypothesized that plasma non-esterified fatty acids (NEFA) are trafficked directly to intramyocellular long-chain acylcarnitines (imLCAC) rather than transiting intramyocellular triglycerides (imTG) on the way to resting muscle fatty acid oxidation. Overnight fasted adults (n= 61) received intravenous infusions of [U-13C]palmitate (0400–0830 h) and [U-13C]oleate (0800–1400 h) labelling plasma NEFA, imTG, imLCAC and im-non-esterified FA (imNEFA). Two muscle biopsies (0830 and 1400 h) were performed following 6 h, overlapping, sequential palmitate/oleate tracer infusions. Enrichment of plasma palmitate was ∼15 times greater than enrichment of imTG, imNEFA-palmitate and im-palmitoyl-carnitine. Fatty acid enrichment in LCAC was correlated with imTG and imNEFA; there was a significant correlation between imTG concentrations and imLCAC concentrations in women (r= 0.51, P= 0.005), but not men (r= 0.30, P= 0.11). We estimated that ∼11% of NEFA were stored in imTG. imTG NEFA storage was correlated only with NEFA concentrations (r= 0.52, P= 0.004) in women and with (r= 0.45, P= 0.02) in men. At rest, plasma NEFA are trafficked largely to imTG before they enter LCAC oxidative pools; thus, imTG are an important, central pool that regulates the delivery of fatty acids to the intracellular environment. Factors relating to plasma NEFA storage into imTG differ in men and women. PMID:19858228

  20. Importance of medium chain fatty acids in animal nutrition

    NASA Astrophysics Data System (ADS)

    Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R.

    2017-09-01

    Fats in animal and human nutrition are a common subject of research. These studies most often pay attention to particular fat groups (saturated, unsaturated, polyunsaturated fats or fats grouped by the length of their fatty acid chains into short, medium or long chain fatty acids). Medium chain fatty acids (MCFAs) have two main sources: milk and coconut oil. To date, research has shown these acids have positive effects on health, production, feed digestibility and lower body and muscle fats in broilers and swine. MCFAs possess antibacterial, anticoccidial and antiviral effects. Also, it has been proven that these acids act synergistically if they are used together with organic acids, essential oils, or probiotics. Nowadays, commercial MCFA products are available for use in animal nutrition as feed additives.

  1. Carbon chain abundance in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Hudgins, D. M.; Bauschlicher, C. W. Jr; Langhoff, S. R.

    1999-01-01

    Thanks to the mid-IR sensitivities of the ISO and IRTS orbiting spectrometers it is now possible to search the diffuse interstellar medium for heretofore inaccessible molecular emission. In view of the recent strong case for the presence of C(7-) (Kirkwood et al. 1998, Tulej et al. 1998),and the fact that carbon chains possess prominent infrared active modes in a very clean portion of the interstellar spectrum, we have analyzed the IRTS spectrum of the diffuse interstellar medium for the infrared signatures of these species. Theoretical and experimental infrared band frequencies and absolute intensities of many different carbon chain species are presented. These include cyanopolyynes, neutral and anionic linear carbon molecules, and neutral and ionized, even-numbered, hydrogenated carbon chains. We show that--as a family--these species have abundances in the diffuse ISM on the order of 10(-10) with respect to hydrogen, values consistent with their abundances in dense molecular clouds. Assuming an average length of 10 C atoms per C-chain implies that roughly a millionth of the cosmically available carbon is in the form of carbon chains and that carbon chains can account for a few percent of the visible to near-IR diffuse interstellar band (DIB) total equivalent width (not DIB number).

  2. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective

    PubMed Central

    Schönfeld, Peter; Wojtczak, Lech

    2016-01-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. PMID:27080715

  3. Synthesis of medium chain length fatty acid ethyl esters in engineered Escherichia coli using endogenously produced medium chain fatty acids.

    PubMed

    Fan, Liping; Liu, Junfeng; Nie, Kaili; Liu, Luo; Wang, Fang; Tan, Tianwei; Deng, Li

    2013-07-10

    Microbial biosynthesis of fatty acid-derived biofuels from renewable carbon sources has attracted significant attention in recent years. Free fatty acids (FFAs) can be used as precursors for the production of micro-diesel. The expression of codon optimized two plants (Umbellularia californica and Cinnamomum camphora) medium-chain acyl-acyl carrier protein (ACP) thioesterase genes (ucFatB and ccFatB) in Escherichia coli resulted in a very high level of extractable medium-chain-specific hydrolytic activity and caused large accumulation of medium-chain free fatty acids. By heterologous co-expression of acyl-coenzyme A:diacylglycerol acyltransferase from Acinetobacter baylyi ADP1, specific plant thioesterases in E. coli, with supplementation of exogenous ethanol, resulted in drastic changes in fatty acid ethyl esters (FAEEs) composition ranging from 12:0 to 18:1. Through an optimized microbial shake-flask fermentation of two modified E. coli strains, yielded FFAs and FAEEs in the concentration of approximately 500 mg L(-1)/250 mg L(-1) and 2.01 mg g(-1)/1.99 mg g(-1), respectively. The optimal ethanol level for FAEEs yield in the two recombinant strains was reached at the 3% ethanol concentration, which was about 5.4-fold and 1.93-fold higher than that of 1% ethanol concentration. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Long-chain triglycerides-based self-nanoemulsifying oily formulations (SNEOFs) of darunavir with improved lymphatic targeting potential.

    PubMed

    Garg, Babita; Beg, Sarwar; Kaur, Ranjot; Kumar, Rajendra; Katare, Om Prakash; Singh, Bhupinder

    2017-09-05

    The current studies entail systematic development of SNEOFs containing long-chain triglycerides for improving lymphatic targeting of darunavir for complete inhibition of HIV progression. As per QbD-oriented approach for formulation development, the QTPP was defined and CQAs were earmarked. Preformulation equilibrium solubility and phase diagram studies, and risk assessment through FMEA studies identified Lauroglycol 90, Tween 80 and Transcutol HP as the lipid, emulgent and cosolvent, respectively, for formulating SNEOFs of darunavir. Systematic optimisation of SNEOFs was conducted using IV-optimal mixture design, and the optimised formulation was chosen through numerical desirability function. Characterisation of optimised SNEOFs exhibited globule size of 50 nm,  >85% drug release within 15 min and >75% permeation within 45 min. In vivo lymph cannulation and in situ intestinal perfusion studies indicated significant improvement in the drug absorption parameters from SNEOFs via intestinal lymphatic pathways, owing primarily to the presence of long-chain triglycerides. Also, in vivo pharmacokinetic studies in rat corroborated significant improvement in rate and extent of drug absorption into plasma vis-à-vis pure drug. In a nutshell, these studies indicate significant improvement in the biopharmaceutical attributes of a robust and stable SNEOFs formulation of darunavir for holistic management of viral loads in lymph and blood.

  5. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by INEOS Chlor Americas

    EPA Pesticide Factsheets

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  6. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by Dover Chemical

    EPA Pesticide Factsheets

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  7. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by Qualice, LLC

    EPA Pesticide Factsheets

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  8. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: diagnosis by acylcarnitine analysis in blood.

    PubMed Central

    Van Hove, J L; Zhang, W; Kahler, S G; Roe, C R; Chen, Y T; Terada, N; Chace, D H; Iafolla, A K; Ding, J H; Millington, D S

    1993-01-01

    Medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency is a disorder of fatty acid catabolism, with autosomal recessive inheritance. The disease is characterized by episodic illness associated with potentially fatal hypoglycemia and has a relatively high frequency. A rapid and reliable method for the diagnosis of MCAD deficiency is highly desirable. Analysis of specific acylcarnitines was performed by isotope-dilution tandem mass spectrometry on plasma or whole blood samples from 62 patients with MCAD deficiency. Acylcarnitines were also analyzed in 42 unaffected relatives of patients with MCAD deficiency and in other groups of patients having elevated plasma C8 acylcarnitine, consisting of 32 receiving valproic acid, 9 receiving medium-chain triglyceride supplement, 4 having multiple acyl-coenzyme A dehydrogenase deficiency, and 8 others with various etiologies. Criteria for the unequivocal diagnosis of MCAD deficiency by acylcarnitine analysis are an elevated C8-acylcarnitine concentration (> 0.3 microM), a ratio of C8/C10 acylcarnitines of > 5, and lack of elevated species of chain length > C10. These criteria were not influenced by clinical state, carnitine treatment, or underlying genetic mutation, and no false-positive or false-negative results were obtained. The same criteria were also successfully applied to profiles from neonatal blood spots retrieved from the original Guthrie cards of eight patients. Diagnosis of MCAD deficiency can therefore be made reliably through the analysis of acylcarnitines in blood, including presymptomatic neonatal recognition. Tandem mass spectrometry is a convenient method for fast and accurate determination of all relevant acylcarnitine species. PMID:8488845

  9. Elimination of lipofundin S during the intravenous fat tolerance test in patients with low, medium, and high fasting triglyceride concentrations.

    PubMed

    Leonhardt, W; Julius, U; Schulze, J; Hanefeld, M; Haller, H

    1985-01-01

    The intravenous fat tolerance test with Lipofundin S (0.5 ml of 20% emulsion/kg body weight) was performed in 22 male nondiabetic patients. According to their fasting triglycerides (TG), the patients were arranged into three groups: low (less than 2.8 mmol/liter), medium (2.8-5.7 mmol/liter), and high (greater than 5.7 mmol/liter) concentrations. Fractional elimination rates of injected Lipofundin S decreased from 11.08 in low TG to 4.57%/min in high TG; they were positively correlated with fasting levels of high-density lipoprotein cholesterol but negatively with those of TG. The same pattern of correlations was observed with fractional catabolic rates of endogenous TG as measured after injection of tritium-labeled glycerol. The intravenous Lipofundin S load effected transient TG and free fatty acid elevations which were delayed in high TG. The elimination mechanisms of injected Lipofundin S and of endogenous TG are compared.

  10. Chain length affects pancreatic lipase activity and the extent and pH-time profile of triglyceride lipolysis.

    PubMed

    Benito-Gallo, Paloma; Franceschetto, Alessandro; Wong, Jonathan C M; Marlow, Maria; Zann, Vanessa; Scholes, Peter; Gershkovich, Pavel

    2015-06-01

    Triglycerides (TG) are one of the most common excipients used in oral lipid-based formulations. The chain length of the TG plays an important role in the oral bioavailability of the co-administered drug. Fatty acid (FA) chain-length specificity of porcine pancreatic lipase was studied by means of an in vitro lipolysis model under bio-relevant conditions at pH 6.80. In order to determine the total extent of lipolysis, back-titration experiments at pH 11.50 were performed. Results suggest that there is a specific chain length range (C2-C8) for which pancreatic lipase shows higher activity. This specificity could result from a combination of physicochemical properties of TGs, 2-monoglycerides (2-MGs) and FAs, namely the droplet size of the TGs, the solubility of 2-MGs within mixed micelles, and the relative stability of the FAs as leaving groups in the hydrolysis reaction. During experimentation, it was evident that an optimisation of lipolysis conditions was needed for tighter control over pH levels so as to better mimic in vivo conditions. 1M NaOH, 3.5 mL/min maximum dosing rate, and 3 μL/min minimum dosing rate were the optimised set of conditions that allowed better pH control, as well as the differentiation of the lipolysis of different lipid loads. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Carbon and Acyl Chain Flux during Stress-induced Triglyceride Accumulation by Stable Isotopic Labeling of the Polar Microalga Coccomyxa subellipsoidea C169.

    PubMed

    Allen, James W; DiRusso, Concetta C; Black, Paul N

    2017-01-06

    Deriving biofuels and other lipoid products from algae is a promising future technology directly addressing global issues of atmospheric CO2 balance. To better understand the metabolism of triglyceride synthesis in algae, we examined their metabolic origins in the model species, Coccomyxa subellipsoidea C169, using stable isotopic labeling. Labeling patterns arising from [U-(13)C]glucose, (13)CO2, or D2O supplementation were analyzed by GC-MS and/or LC-MS over time courses during nitrogen starvation to address the roles of catabolic carbon recycling, acyl chain redistribution, and de novo fatty acid (FA) synthesis during the expansion of the lipid bodies. The metabolic origin of stress-induced triglyceride was found to be a continuous 8:2 ratio between de novo synthesized FA and acyl chain transfer from pre-stressed membrane lipids with little input from lipid remodeling. Membrane lipids were continually synthesized with associated acyl chain editing during nitrogen stress, in contrast to an overall decrease in total membrane lipid. The incorporation rates of de novo synthesized FA into lipid classes were measured over a time course of nitrogen starvation. The synthesis of triglycerides, phospholipids, and galactolipids followed a two-stage pattern where nitrogen starvation resulted in a 2.5-fold increase followed by a gradual decline. Acyl chain flux into membrane lipids was dominant in the first stage followed by triglycerides. These data indicate that the level of metabolic control that determines acyl chain flux between membrane lipids and triglycerides during nitrogen stress relies primarily on the Kennedy pathway and de novo FA synthesis with limited, defined input from acyl editing reactions.

  12. Inverse Problem for Electromagnetic Propagation in a Dielectric Medium using Markov Chain Monte Carlo Method (Preprint)

    DTIC Science & Technology

    2012-08-01

    AFRL-RX-WP-TP-2012-0397 INVERSE PROBLEM FOR ELECTROMAGNETIC PROPAGATION IN A DIELECTRIC MEDIUM USING MARKOV CHAIN MONTE CARLO METHOD ...SUBTITLE INVERSE PROBLEM FOR ELECTROMAGNETIC PROPAGATION IN A DIELECTRIC MEDIUM USING MARKOV CHAIN MONTE CARLO METHOD (PREPRINT) 5a. CONTRACT...a stochastic inverse methodology arising in electromagnetic imaging. Nondestructive testing using guided microwaves covers a wide range of

  13. Genetics Home Reference: medium-chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... down (metabolize) a group of fats called medium-chain fatty acids. These fatty acids are found in foods and the body's fat tissues. Fatty acids are a major source of energy for the heart and muscles. During periods of fasting, ... of this enzyme, medium-chain fatty acids are not metabolized properly. As a ...

  14. Site-specific saturation mutagenesis on residues 132 and 450 of Candida rugosa LIP2 enhances catalytic efficiency and alters substrate specificity in various chain lengths of triglycerides and esters.

    PubMed

    Yen, Chih-Chung; Malmis, Conmar C; Lee, Guan-Chiun; Lee, Li-Chiun; Shaw, Jei-Fu

    2010-10-27

    The catalytic versatility of recombinant Candida rugosa LIP2 has been known to have potential applications in industry. In this study, site-specific saturation mutagenesis on residues L132 and G450 of recombinant LIP2 has been employed to investigate the impact of both residues on substrate specificity of LIP2. Point mutations on L132 and G450 were done separately using mutagenic degenerate primer sets containing 32 codons to generate two libraries of mutants in Pichia pastoris . Replacements of amino acid on these mutants were identified as L132A, L132I, G450S, and G450A. In lipase activity assay, L132A and L132I mutants showed a shift of preference from short- to medium-chain triglyceride, whereas G450S and G450A mutants retained preferences as compared to wild-type LIP2. Among mutants, G450A has the highest activity on tributyrin. However, hydrolysis of p-nitrophenyl (p-NP) esters with L132A, L132I, and G450S did not show differences of preferences over medium- to long-chain esters except in G450A, which prefers only medium-chain ester as compared to wild-type LIP2. All mutants showed an enhanced catalytic activity and higher optimal temperature and pH stability as compared to wild-type LIP2.

  15. Medium-chain fatty acid nanoliposomes for easy energy supply.

    PubMed

    Liu, Wei; Liu, Wei-Lin; Liu, Cheng-Mei; Liu, Jian-Hua; Yang, Shui-Bing; Zheng, Hui-Juan; Lei, Han-Wu; Ruan, Roger; Li, Ti; Tu, Zong-Cai; Song, Xin-Yong

    2011-06-01

    Developing a nanoliposome delivery system for an easy energy supply of medium-chain fatty acids (MCFAs) to improve oral doses and bioavailability. Bangham's method and high-pressure microfluidization were used to prepare MCFA liposomes. The easy energy-supply property of MCFA nanoliposomes was estimated by the anti-fatigue experiments of mice including a weight-loaded swimming test and its corresponding parameters (serum urea nitrogen, blood lactic acid, and hepatic glycogen). For comparison, nanoliposomes without MCFAs and MCFAs not entrapped in nanoliposomes were used throughout. Compared with crude MCFA liposomes according to Bangham's method, the MCFA nanoliposomes made by high-pressure microfluidization exhibited great advantages in their characteristics, with a small average diameter (76.2 ± 34.7 nm), narrow size distribution (polydispersity index 0.207), high ζ-potential (-50.51 mV), great entrapment efficiency (70.5%) and drug loading (9.4%), and good stability. The high-dose group and the MCFA group (680 mg/kg) showed a longer weight-loaded swimming time (104 ± 29 min, P = 0.087, and 108 ± 11 min, P = 0.047, respectively) and significantly higher hepatic glycogen (16.40 ± 1.45 mg/g, P < 0.001 and 17.27 ± 2.13 mg/g, P < 0.001, respectively) than the control group (59 ± 11 min and 8.79 ± 2.76 mg/g, respectively). Moreover, serum urea nitrogen (891.5 ± 113.4 mg/L, P = 0.024, and 876.6 ± 70.8 mg/L, P = 0.015, respectively) and blood lactic acid (6.05 ± 1.40 mmol/L, P = 0.001, and 5.95 ± 1.27 mmol/L, P < 0.001, respectively) in the high-dose group and the group with an equivalent MCFA dose were significantly lower than those in the control group (1153.6 ± 102.5 mg/L and 12.53 ± 1.86 mmol/L, respectively). Similar to MCFAs, MCFA nanoliposomes prepared by high-pressure microfluidization showed a strong easy energy-supply property, which suggested that MCFA nanoliposomes could be a potential drug candidate for an easy energy supply. Copyright © 2011

  16. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    PubMed

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

  17. Pharmacokinetics and pharmacodynamics of a new reformulated microemulsion and the long-chain triglyceride emulsion of propofol in beagle dogs

    PubMed Central

    Lee, S-H; Ghim, J-L; Song, M-H; Choi, H-G; Choi, B-M; Lee, H-M; Lee, E-K; Roh, Y-J; Noh, G-J

    2009-01-01

    Background and purpose: Microemulsion propofol was developed to eliminate lipid solvent-related adverse events of long-chain triglyceride emulsion (LCT) propofol. We compared dose proportionality, pharmacokinetic and pharmacodynamic characteristics of both formulations. Experimental approach: The study was a randomized, two-period and crossover design with 7-day wash-out period. Microemulsion and LCT propofol were administered by zero-order infusion (0.75, 1.00 and 1.25 mg·kg−1·min−1) for 20 min in 30 beagle dogs (male/female = 5/5 for each rate). Arterial samples were collected at preset intervals. The electroencephalographic approximate entropy (ApEn) was used as a measure of propofol effect. Dose proportionality, pharmacokinetic and pharmacodynamic bioequivalence were evaluated by non-compartmental analyses. Population analysis was performed using nonlinear mixed effects modelling. Key results: Both formulations showed dose proportionality at the applied dose range. The ratios of geometric means of AUClast and AUCinf between both formulations were acceptable for bioequivalence, whereas that of Cmax was not. The pharmacodynamic bioequivalence was indicated by the arithmetic means of AAC (areas above the ApEn time curves) and E0 (baseline ApEn)–Emax (maximally decreased ApEn) between both formulations. The pharmacokinetics of both formulations were best described by three compartment models. Body weight was a significant covariate for V1 of both formulations and sex for k21 of microemulsion propofol. The blood-brain equilibration rate constants (ke0, min−1) were 0.476 and 0.696 for microemulsion and LCT propofol respectively. Conclusions and implications: Microemulsion propofol was pharmacodynamically bioequivalent to LCT propofol although pharmacokinetic bioequivalence was incomplete, and demonstrated linear pharmacokinetics at the applied dose ranges. PMID:19925493

  18. Comparison of triglycerides and phospholipids as supplemental sources of dietary long-chain polyunsaturated fatty acids in piglets.

    PubMed

    Mathews, Susan A; Oliver, William T; Phillips, Oulayvanh T; Odle, Jack; Diersen-Schade, Deborah A; Harrell, Robert J

    2002-10-01

    Addition of arachidonic acid (AA) and docosahexaenoic acid (DHA) to infant formula promotes visual and neural development. This study was designed to determine whether the source of dietary long-chain polyunsaturated fatty acids (LCPUFA) affected overall animal health and safety. Piglets consumed ad libitum from 1 to 16 d of age a skim milk-based formula with different fat sources added to provide 50% of the metabolizable energy. Treatment groups were as follows: control (CNTL; no added LCPUFA), egg phospholipid (PL), algal/fungal triglyceride (TG) oils, TG plus PL (soy lecithin source) added to match phospholipid treatment (TG + PL) and essential fatty acid deficient (EFAD). Formulas with LCPUFA provided 0.6 and 0.3 g/100 g total fatty acids as AA and DHA, respectively. CNTL piglets had 40% longer ileal villi than PL piglets (P < 0.03), but the TG group was not different from the CNTL group. Gross liver histology did not differ among any of the formula-fed groups (P > 0.1). Apparent dry matter digestibility was 10% greater in CNTL, TG and TG + PL groups compared with PL piglets (P < 0.002). No differences in alanine aminotransferase were detected among treatments, but aspartate aminotransferase was elevated (P < 0.03) in PL piglets compared with TG + PL piglets. Total plasma AA concentration was greater in the TG group compared with CNTL piglets (P < 0.05). Total plasma DHA concentrations were greater in TG piglets compared with PL (P < 0.06) or CNTL (P < 0.02) piglets. These data demonstrate that the algal/fungal TG sources of DHA and AA may be a more appropriate supplement for infant formulas than the egg PL source based on piglet plasma fatty acid profiles and apparent dry matter digestibilities.

  19. Effect of long-chain triglyceride lipid emulsion on bupivacaine-induced changes in electrophysiological parameters of rabbit Purkinje cells.

    PubMed

    Lemoine, Sandrine; Rouet, René; Manrique, Alain; Hanouz, Jean-Luc

    2014-10-01

    Lipid emulsions are used in the reversal of local anesthetic toxicity. The aim of this study was to investigate the cellular electrophysiological effects of long-chain triglyceride lipid emulsion (LCTE) on cardiac action potential characteristics and conduction disturbances induced by bupivacaine. Purkinje fibers were dissected from the left ventricle of New Zealand white rabbit hearts and superfused with either Tyrode's solution during 30 min (control group), with bupivacaine 10(-6) M, 10(-5) M, and 5.10(-5) M alone, or in the presence of LCTE 0.5%, in addition, LCTE at 0.1%, 0.5%, and 1% was perfused alone. Electrophysiological parameters were recorded using the conventional microelectrode technique (37 °C, 1 Hz frequency). Bupivacaine 5.10(-5) M-induced conduction blocks (8/8 preparations): LCTE 0.5% suppressed the bupivacaine 5.10(-5) M-induced conduction blocks (1/8 preparations). Exposure to bupivacaine 10(-6) M, 10(-5) M, and 5.10(-5) M resulted in a significant decrease in the maximal rate of depolarization (Vmax) (respectively, 25%, 55%, 75%; P < 0.002 vs. control group). In the presence of LCTE 0.5%, bupivacaine 10(-6) M did not significantly decreased Vmax (13%; P = 0.10 vs. control group). The decrease in Vmax resulting from bupivacaine 10(-5) M alone was significantly less in the presence of LCTE 0.5% (P < 0.01 vs. bupivacaine 10(-5) M alone). Exposure to bupivacaine 10(-6) M, 10(-5) M, and 5.10(-5) M alone or in the presence of LCTE 0.5% resulted in a significant decrease in action potential duration measured at 50% and 90% repolarization (APD50 and APD90; P < 0.01 vs. control group). LCTE inhibited the Purkinje fibers conduction blocks induced by bupivacaine. Moreover, LCTE 0.5% attenuates the decrease in Vmax induced by bupivacaine 10(-6) M and 10(-5) M.

  20. Triglyceride level

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003493.htm Triglyceride level To use the sharing features on this page, please enable JavaScript. The triglyceride level is a blood test to measure the ...

  1. PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver.

    PubMed

    Demers, Annie; Samami, Samaneh; Lauzier, Benjamin; Des Rosiers, Christine; Ngo Sock, Emilienne Tudor; Ong, Huy; Mayer, Gaetan

    2015-12-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor thereby elevating plasma low-density lipoprotein cholesterol levels and the risk of coronary heart disease. Thus, the use of PCSK9 inhibitors holds great promise to prevent heart disease. Previous work found that PCSK9 is involved in triglyceride metabolism, independently of its action on low-density lipoprotein receptor, and that other yet unidentified receptors could mediate this effect. Therefore, we assessed whether PCSK9 enhances the degradation of CD36, a major receptor involved in transport of long-chain fatty acids and triglyceride storage. Overexpressed or recombinant PCSK9 induced CD36 degradation in cell lines and primary adipocytes and reduced the uptake of the palmitate analog Bodipy FL C16 and oxidized low-density lipoprotein in 3T3-L1 adipocytes and hepatic HepG2 cells, respectively. Surface plasmon resonance, coimmunoprecipitation, confocal immunofluorescence microscopy, and protein degradation pathway inhibitors revealed that PCSK9 directly interacts with CD36 and targets the receptor to lysosomes through a mechanism involving the proteasome. Importantly, the level of CD36 protein was increased by >3-fold upon small interfering RNA knockdown of endogenous PCSK9 in hepatic cells and similarly increased in the liver and visceral adipose tissue of Pcsk9(-/-) mice. In Pcsk9(-/-) mice, increased hepatic CD36 was correlated with an amplified uptake of fatty acid and accumulation of triglycerides and lipid droplets. Our results demonstrate an important role of PCSK9 in modulating the function of CD36 and triglyceride metabolism. PCSK9-mediated CD36 degradation may serve to limit fatty acid uptake and triglyceride accumulation in tissues, such as the liver. © 2015 American Heart Association, Inc.

  2. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants

    SciTech Connect

    Voelker, T.A.; Worrell, A.C.; Anderson, L.; Bleibaum, J.; Fan, C.; Hawkins, D.J.; Radke, S.E.; Davies, H.M. )

    1992-07-03

    Medium-chain fatty acids (FAs), found in storage lipids of certain plants, are an important renewable resource. Seeds of undomesticated California bay accumulate laurate (12:0), and a 12:0-acyl-carrier protein thioesterase (BTE) has been purified from this tissue. Sequencing of BTE enabled the cloning of a complementary DNA coding for a plastid-targeted preprotein. Expression of the complementary DNA in the seeds of Arabidopsis thaliana resulted in BTE activity, and medium chains accumulated at the expense of long-chain ({ge}16) FAs. Laurate became the most abundant FA species and was deposited in the storage triacylglycerols. These results demonstrate a mechanism for medium-chain FA synthesis in plants.

  3. Static and Dynamic Wetting Behavior of Triglycerides on Solid Surfaces.

    PubMed

    Michalski; Saramago

    2000-07-15

    Triglyceride wetting properties on solid surfaces of different hydro-phobicities were investigated using three different methods, namely, the sessile drop method for static contact angle measurements, the Wilhelmy method for dynamic contact angle measurements, and the captive bubble method to investigate thin triglyceride film stability. For solid surfaces having a surface free energy higher than the surface tension of triglycerides (tributyrin, tricaprylin, and triolein), a qualitative correlation was observed between wetting and solid/triglyceride relative hydrophobicities. On surfaces presenting extreme hydrophobic or hydrophilic properties, medium-chain triglycerides had a behavior similar to that of long-chain unsaturated ones. On a high-energy surface (glass), tricaprylin showed an autophobic effect subsequent to molecular adsorption in trident conformation on the solid, observed with the three methods. Thin triglyceride films between an air bubble and a solid surface were stable for a short time, for solids with a surface free energy larger than the triglyceride surface tension. If the solid surface had a lower surface free energy, the thin film collapsed after a time interval which increased with triglyceride viscosity. Copyright 2000 Academic Press.

  4. Fish Oil Supplementation Alters the Plasma Lipidomic Profile and Increases Long-Chain PUFAs of Phospholipids and Triglycerides in Healthy Subjects

    PubMed Central

    Ottestad, Inger; Hassani, Sahar; Borge, Grethe I.; Kohler, Achim; Vogt, Gjermund; Hyötyläinen, Tuulia; Orešič, Matej; Brønner, Kirsti W.; Holven, Kirsten B.; Ulven, Stine M.; Myhrstad, Mari C. W.

    2012-01-01

    Background While beneficial health effects of fish and fish oil consumption are well documented, the incorporation of n-3 polyunsaturated fatty acids in plasma lipid classes is not completely understood. The aim of this study was to investigate the effect of fish oil supplementation on the plasma lipidomic profile in healthy subjects. Methodology/Principal Findings In a double-blinded randomized controlled parallel-group study, healthy subjects received capsules containing either 8 g/d of fish oil (FO) (1.6 g/d EPA+DHA) (n = 16) or 8 g/d of high oleic sunflower oil (HOSO) (n = 17) for seven weeks. During the first three weeks of intervention, the subjects completed a fully controlled diet period. BMI and total serum triglycerides, total-, LDL- and HDL-cholesterol were unchanged during the intervention period. Lipidomic analyses were performed using Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (QTOFMS), where 568 lipids were detected and 260 identified. Both t-tests and Multi-Block Partial Least Square Regression (MBPLSR) analysis were performed for analysing differences between the intervention groups. The intervention groups were well separated by the lipidomic data after three weeks of intervention. Several lipid classes such as phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, sphingomyelin, phosphatidylserine, phosphatidylglycerol, and triglycerides contributed strongly to this separation. Twenty-three lipids were significantly decreased (FDR<0.05) in the FO group after three weeks compared with the HOSO group, whereas fifty-one were increased including selected phospholipids and triglycerides of long-chain polyunsaturated fatty acids. After seven weeks of intervention the two intervention groups showed similar grouping. Conclusions/Significance In healthy subjects, fish oil supplementation alters lipid metabolism and increases the proportion of

  5. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing.

  6. OPPT workplan assessments for medium and long chain ...

    EPA Pesticide Factsheets

    MCCPs (C14 – C17) and the C18-20 LCCPs are liquid mixtures of chlorinated alkanes. Short chain chlorinated paraffins (SCCPs, C10-C13) have been the focus of coordinated global action (including by US EPA as an action plan chemical), and MCCPs and LCCPs are alternatives to SCCPs for many applications. In the United States, these substances are typically used in oils and metal working fluids to impart stability during high temperature/pressure operations; in plastics/ rubber (PVC) compounding, paints, coatings, adhesives, and sealants as plasticizers and flame retardants. Other assessments have generally found these chemicals to be highly persistent, and some of the congeners are expected to be highly bioaccumulative. MCCPs and LCCPs have been found in all types of environmental media far from their sources, as well as observed in indoor air and house dust, food, fish, human breast milk, and cow’s milk. The assessment will focus on MCCPs (C14-C17) and certain LCCPs (C18-C20) that have received the most international regulatory attention. Based on the screening assessments regarding persistence and bioaccumulation, this assessment will consider PBT aspects of MCCPs and LCCPs, primarily focusing on releases to the environment from the processing and use from metal working fluids and plastics/rubber (PVC) compounding. EPA anticipates issuing draft risk assessments for public review and comment as they are completed. At the conclusion of the review process, if

  7. Reduction of serum free fatty acids and triglycerides by liver-targeted expression of long chain acyl-CoA synthetase 3.

    PubMed

    Wu, Minhao; Cao, Aiqin; Dong, Bin; Liu, Jingwen

    2011-05-01

    ACSL3 is a member of the long chain acyl-CoA synthetase (ACSL) family that consists of 5 isozymes responsible for cellular fatty acid metabolism in various tissues in an isozyme-specific manner. Our previous studies have demonstrated that expression of ACSL3 mRNA and protein in liver was specifically increased after feeding hamsters with a fat- and cholesterol-enriched diet, providing the first in vivo evidence for the regulated expression of ACSL3 in liver tissue. The aim of the current study was to further investigate the role of ACSL3 in regulating hepatic lipid metabolism in vitro and in vivo. We utilized an adenoviral-mediated gene delivery approach to exogenously express hamster ACSL3 in hamster liver as well as in HepG2 cells. Transduction of HepG2 cells with Ad-hamACSL3 adenovirus elevated total cellular ACSL enzyme activity, which was accompanied by a significant reduction of cellular contents of triglycerides and total phospholipids. Immunostaining and confocal microscopy studies revealed that ACSL3 was localized to endoplasmic reticulum and mitochondria. In vivo, infection of hamsters with Ad-hamACSL3 led to sustained expression of ACSL3 mRNA and protein in liver two weeks after infection. Importantly, compared with Ad-GFP control virus infected hamsters, we observed significantly lower free fatty acids and triglycerides plus modest reduction of phospholipids in the serum of Ad-hamACSL3 infected animals. Furthermore, triglyceride levels were significantly reduced in Ad-hamACSL3 infected hamster liver. Altogether, these results provide important and physiologically relevant evidence that strengthens the link between ACSL3 expression and hepatic reduction of triglycerides and fatty acids.

  8. Decreased liver triglyceride content in adult rats exposed to protein restriction during gestation and lactation: role of hepatic triglyceride utilization

    PubMed Central

    Qasem, Rani J.; Li, Jing; Tang, Hee Man; Browne, Veron; Mendez, Claudia; Yablonski, Elizabeth; Pontiggia, Laura; D’mello, Anil P.

    2015-01-01

    We have previously demonstrated that protein restriction throughout gestation and lactation reduced liver triglyceride content in adult rat offspring. The mechanism(s) mediating the decrease in liver triglyceride content are not understood. The objective of the current study was to use a new group of pregnant animals and their offspring and determine the contribution of increased triglyceride utilization via the hepatic fatty acid oxidation and triglyceride secretory pathways to the reduction in liver triglyceride content. Pregnant Sprague-Dawley rats received either a control or a low protein diet throughout pregnancy and lactation. Pups were weaned onto laboratory chow on day 28 and sacrificed on day 65. Liver triglyceride content was reduced in male, but not female, low protein offspring both in the fed and fasted states. The reduction was accompanied by a trend towards higher liver carnitine palmitoyltransferase-1a activity suggesting increased fatty acid transport into the mitochondrial matrix. However, medium chain acyl CoA dehydrogenase activity within the mitochondrial matrix, expression of nuclear peroxisome proliferator activated receptor-α, and plasma levels of β-hydroxybutyrate were similar between low protein and control offspring indicating a lack of change in fatty acid oxidation. Hepatic triglyceride secretion, assessed by blocking peripheral triglyceride utilization and measuring serum triglyceride accumulation rate, and the activity of microsomal transfer protein were similar between low protein and control offspring. Since enhanced triglyceride utilization is not a significant contributor, the decrease in liver triglyceride content in male low protein offspring is likely due to alterations in liver fatty acid transport or triglyceride biosynthesis. PMID:25641378

  9. Safety evaluation of a medium- and long-chain triacylglycerol oil produced from medium-chain triacylglycerols and edible vegetable oil.

    PubMed

    Matulka, R A; Noguchi, O; Nosaka, N

    2006-09-01

    To reduce the incorporation of dietary lipids into adipose tissue, modified fats and oils have been developed, such as medium-chain triacylglycerols (MCT). Typical dietary lipids from vegetable oils, termed long-chain triacylglycerols (LCT), are degraded by salivary, intestinal and pancreatic lipases into two fatty acids and a monoacyl glycerol; whereas, MCT are degraded by the same enzymes into three fatty acids and the simple glycerol backbone. Medium-chain fatty acids (MCFA) are readily absorbed from the small intestine directly into the bloodstream and transported to the liver for hepatic metabolism, while long-chain fatty acids (LCFA) are incorporated into chylomicrons and enter the lymphatic system. MCFA are readily broken down to carbon dioxide and two-carbon fragments, while LCFA are re-esterified to triacylglycerols and either metabolized for energy or stored in adipose tissue. Therefore, consumption of MCT decreases the incorporation of fatty acids into adipose tissue. However, MCT have technological disadvantages precluding their use in many food applications. A possible resolution is the manufacture and use of a triacylglycerol containing both LCT and MCT, termed medium- and long-chain triacylglycerol (MLCT). This manuscript describes studies performed for the safety evaluation of a MLCT oil enzymatically produced from MCT and edible vegetable oil (containing LCT), by a transesterification process. The approximate fatty acid composition of this MLCT consists of caprylic acid (9.7%), capric acid (3.3%), palmitic acid (3.8%), stearic acid (1.7%), oleic acid (51.2%), linoleic acid (18.4%), linolenic acid (9.0%), and other fatty acids (2.9%). The approximate percentages of long (L) and medium (M) fatty acids in the triacylglyerols are as follows: L, L, L (55.1%), L, L, M (35.2%), L, M, M (9.1%), and M, M, M (0.6%). The studies included: (1) acute study in rats (LD50>5000 mg/kg); (2) 6 week repeat-dose safety study via dietary administration to rats (NOAEL

  10. An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435.

    PubMed

    Sánchez, Daniel Alberto; Tonetto, Gabriela Marta; Ferreira, María Luján

    2016-02-20

    In this work, the ethanolysis of triglycerides catalyzed by immobilized lipase was studied, focusing on the secondary reaction of acyl migration. The catalytic tests were performed in a solvent-free reaction medium using Novozym 435 as biocatalyst. The selected experimental variables were biocatalyst loading (5-20mg), reaction time (30-90min), and chain length of the fatty acids in triglycerides with and without unsaturation (short (triacetin), medium (tricaprylin) and long (tripalmitin/triolein)). The formation of 2-monoglyceride by ethanolysis of triglycerides was favored by long reaction times and large biocatalyst loading with saturated short- to medium-chain triglycerides. In the case of long-chain triglycerides, the formation of this monoglyceride was widely limited by acyl migration. In turn, acyl migration increased the yield of ethyl esters and minimized the content of monoglycerides and diglycerides. Thus, the enzymatic synthesis of biodiesel was favored by long-chain triglycerides (which favor the acyl migration), long reaction times and large biocatalyst loading. The conversion of acylglycerides made from long-chain fatty acids with unsaturation was relatively low due to limitations in their access to the active site of the lipase.

  11. Regulated expression of the rat medium chain hydrolase gene in transgenic rape seed.

    PubMed

    Safford, R; Moran, M T; De Silva, J; Robinson, S J; Moscow, S; Jarman, C D; Slabas, A R

    1993-07-01

    Medium chain hydrolase (MCH) is an enzyme which regulates the chain length of fatty acid synthesis specifically in the mammary gland of the rat. During lactation, MCH interacts with fatty acid synthase (FAS) to cause premature release of acyl chains, thus providing medium chain fatty acids for synthesis of milk fat. In this study we have investigated the ability of rat MCH to interact with the phylogenetically more distant FAS structure present in plant systems and to cause a perturbation of fatty acid synthesis. In in vitro experiments, addition of purified MCH to rapeseed homogenates was found to cause a significant perturbation of fatty acid synthesis towards medium chain length products. The rat MCH gene was expressed in transgenic oilseed rape using a seed specific rape acyl carrier protein (ACP) promoter and a rape ACP plastid targeting sequence. Western analysis showed MCH protein to be present in transgenic seed and for its expression to be developmentally regulated in concert with storage lipid synthesis. The chimaeric preprotein was correctly processed and immunogold labelling studies confirmed MCH to be localized within plastid organelles. However, fatty acid analysis of oil from MCH-expressing rape seed showed no significant differences to that from control seed.

  12. Characterization of enzymatically prepared sugar medium-chain fatty acid monoesters.

    PubMed

    Zhang, Xi; Wei, Wei; Cao, Xi; Feng, Fengqin

    2015-06-01

    Sugar medium-chain fatty acid esters are a new type of biodegradable, non-toxic, non-irritant and non-ionic surfactant with proven antimicrobial activity. Various sugar medium-chain fatty monoesters were prepared enzymatically using Lipozyme TLIM in organic solvent. Properties such as surface tension, antimicrobial activity, and ability to foam, emulsify and stabilize emulsions at room temperature were evaluated to conduct systematic studies on the structure-function relationships of these compounds. Results showed that all monoesters displayed good surface activity properties. In particular, sucrose monolaurate was the most excellent surfactant among 12 monoesters. Sugar monoesters containing C8 to C12 alkyl chains showed a broad spectrum of increasing antimicrobial activity. All tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than Escherichia coli O157:H7 (Gram-negative bacterium). Methyl α-d-glycoside monoesters were the most effective, whereas raffinose monoesters possessed poor antimicrobial activity. Generally, the length of fatty acid chain (hydrophobic group) and sugar groups (hydrophilic group) for sugar medium-chain fatty acid monoesters both affected the surface properties and antimicrobial activities. © 2014 Society of Chemical Industry.

  13. Pathway Compartmentalization in Peroxisome of Saccharomyces cerevisiae to Produce Versatile Medium Chain Fatty Alcohols.

    PubMed

    Sheng, Jiayuan; Stevens, Joseph; Feng, Xueyang

    2016-05-27

    Fatty alcohols are value-added chemicals and important components of a variety of industries, which have a >3 billion-dollar global market annually. Long chain fatty alcohols (>C12) are mainly used in surfactants, lubricants, detergents, pharmaceuticals and cosmetics while medium chain fatty alcohols (C6-C12) could be used as diesel-like biofuels. Microbial production of fatty alcohols from renewable feedstock stands as a promising strategy to enable sustainable supply of fatty alcohols. In this study, we report, for the first time, that medium chain fatty alcohols could be produced in yeast via targeted expression of a fatty acyl-CoA reductase (TaFAR) in the peroxisome of Saccharomyces cerevisiae. By tagging TaFAR enzyme with peroxisomal targeting signal peptides, the TaFAR could be compartmentalized into the matrix of the peroxisome to hijack the medium chain fatty acyl-CoA generated from the beta-oxidation pathway and convert them to versatile medium chain fatty alcohols (C10 &C12). The overexpression of genes encoding PEX7 and acetyl-CoA carboxylase further improved fatty alcohol production by 1.4-fold. After medium optimization in fed-batch fermentation using glucose as the sole carbon source, fatty alcohols were produced at 1.3 g/L, including 6.9% 1-decanol, 27.5% 1-dodecanol, 2.9% 1-tetradecanol and 62.7% 1-hexadecanol. This work revealed that peroxisome could be engineered as a compartmentalized organelle for producing fatty acid-derived chemicals in S. cerevisiae.

  14. Pathway Compartmentalization in Peroxisome of Saccharomyces cerevisiae to Produce Versatile Medium Chain Fatty Alcohols

    PubMed Central

    Sheng, Jiayuan; Stevens, Joseph; Feng, Xueyang

    2016-01-01

    Fatty alcohols are value-added chemicals and important components of a variety of industries, which have a >3 billion-dollar global market annually. Long chain fatty alcohols (>C12) are mainly used in surfactants, lubricants, detergents, pharmaceuticals and cosmetics while medium chain fatty alcohols (C6–C12) could be used as diesel-like biofuels. Microbial production of fatty alcohols from renewable feedstock stands as a promising strategy to enable sustainable supply of fatty alcohols. In this study, we report, for the first time, that medium chain fatty alcohols could be produced in yeast via targeted expression of a fatty acyl-CoA reductase (TaFAR) in the peroxisome of Saccharomyces cerevisiae. By tagging TaFAR enzyme with peroxisomal targeting signal peptides, the TaFAR could be compartmentalized into the matrix of the peroxisome to hijack the medium chain fatty acyl-CoA generated from the beta-oxidation pathway and convert them to versatile medium chain fatty alcohols (C10 & C12). The overexpression of genes encoding PEX7 and acetyl-CoA carboxylase further improved fatty alcohol production by 1.4-fold. After medium optimization in fed-batch fermentation using glucose as the sole carbon source, fatty alcohols were produced at 1.3 g/L, including 6.9% 1-decanol, 27.5% 1-dodecanol, 2.9% 1-tetradecanol and 62.7% 1-hexadecanol. This work revealed that peroxisome could be engineered as a compartmentalized organelle for producing fatty acid-derived chemicals in S. cerevisiae. PMID:27230732

  15. Triglycerides Test

    MedlinePlus

    ... Cholesterol ; LDL Cholesterol ; Direct LDL Cholesterol ; VLDL Cholesterol ; Lipid Profile ; Cardiac Risk Assessment All content on Lab Tests ... tests for triglycerides are usually part of a lipid profile that is used to help identify an individual's ...

  16. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms

    PubMed Central

    Huang, Chifu B.; Altimova, Yelena; Myers, Taylor M.; Ebersole, Jeffrey L.

    2011-01-01

    Objectives This study assessed the antibacterial activity of short-, medium-, and long-chain fatty acids against various oral microorganisms. Methods The short-chain fatty acids [formic acid (C1), acetic acid (C2), propionic acid (C3), butyric acid (C4), isobutyric acid (C4), isovaleric acid (C5), hexanoic acid (C6)], medium-chain fatty acids [octanoic acid (C8), capric acid (C10), lauric acid (12)], and long-chain fatty acids [myristic acid (C14), palmitic acid (C16)], were investigated for antimicrobial activity against Streptococcus mutans, S. gordonii, S. sanguis, Candida albicans, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis. Results The data demonstrated that the fatty acids exhibited patterns of inhibition against oral bacteria with some specificity that appeared related more to the bacterial species that the general structural characteristics of the microorganism. As a group the fatty acids were much less effective against C. albicans than the oral bacteria, with effectiveness limited to hexanoic, octanoic, and lauric acids. Formic acid, capric, and lauric acids were broadly inhibitory for the bacteria. Interestingly, fatty acids that are produced at metabolic end-products by a number of these bacteria, were specifically inactive against the producing species, while substantially inhibiting the growth of other oral microorganisms. Conclusions The results indicate that the antimicrobial activity of short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs) could influence the microbial ecology in the oral cavity via at least 2 potential pathways. First, the agents delivered exogenously as therapeutic adjuncts could be packaged to enhance a microbial-regulatory environment in the subgingival sulcus. Second, it would be the intrinsic nature of these fatty acid inhibitors in contributing to the characteristics of the microbial biofilms, their evolution, and emergence of

  17. Safety assessment of medium- and long-chain triacylglycerols containing 30% (w/w) medium-chain fatty acids in mice and rats.

    PubMed

    Zhou, Shengmin; Wang, Yueqiang; Jiang, Yuanrong; Yu, Liangli Lucy

    2017-02-16

    A novel medium- and long-chain triacylglycerols (MLCT), with 30% (w/w) medium-chain fatty acids (MCFA) was evaluated for its safety as a dietary fat in mice and rats. The subacute oral toxicity study showed that the maximum tolerated dose exceeded 54.33 g/kg body weight (kg bw)/day. In the 90-day feeding study, no dose-related adverse effects were observed in rats administered diets formulated with different levels of MLCT (2.0, 4.0, and 8.0 g/kg bw/day) as compared to the rapeseed oil control diet. Further safety assessment in pregnant rats did not reveal any significant difference relative to the control at a treatment level up to 8.0 g MLCT/kg bw/day. The results from this study indicated the safe use of MLCT with high contents of MCFA in food products for improving human health.

  18. Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter.

    PubMed

    Grootscholten, T I M; Steinbusch, K J J; Hamelers, H V M; Buisman, C J N

    2013-05-01

    The objective of this investigation was to further increase the medium chain fatty acid (MCFA) production rate by reducing the hydraulic retention time (HRT) in an upflow anaerobic filter. The results showed that the volumetric MCFA production rate was increased to 57.4 g MCFA l(-1) d(-1), more than 3 times higher than previous work. Despite the lower MCFA concentrations at 4h HRT, the MCFA selectivity remained above 80%. Extra carbon dioxide additions and higher yeast extract concentrations were required to increase the MCFA production rate. More research related to substrates and (micro)nutrients in mixed culture continuous reactors needs to be performed to reduce yeast extract use in chain elongation.

  19. Synthesis of medium-chain length capsinoids from coconut oil catalyzed by Candida rugosa lipases.

    PubMed

    Trbojević Ivić, Jovana; Milosavić, Nenad; Dimitrijević, Aleksandra; Gavrović Jankulović, Marija; Bezbradica, Dejan; Kolarski, Dušan; Veličković, Dušan

    2017-03-01

    A commercial preparation of Candida rugosa lipases (CRL) was tested for the production of capsinoids by esterification of vanillyl alcohol (VA) with free fatty acids (FA) and coconut oil (CO) as acyl donors. Screening of FA chain length indicated that C8-C12 FA (the most common FA found in CO triglycerides) are the best acyl-donors, yielding 80-85% of their specific capsinoids. Hence, when CO, which is rich in these FA, was used as the substrate, a mixture of capsinoids (vanillyl caprylate, vanillyl decanoate and vanillyl laurate) was obtained. The findings presented here suggest that our experimental method can be applied for the enrichment of CO with capsinoids, thus giving it additional health promoting properties.

  20. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of nonalcoholic fatty liver disease

    USDA-ARS?s Scientific Manuscript database

    Obesity is often associated with a cluster of increased health risks collectively known as "Metabolic Syndrome" (MS). MS is often accompanied by development of fatty liver. Sometimes fatty liver results in damage leading to reduced liver function, and need for a transplant. This condition is known...

  1. Characterization of fluorocarbon-in-water emulsions with added triglyceride.

    PubMed

    Weers, Jeffry G; Arlauskas, Rebecca A; Tarara, Thomas E; Pelura, Timothy J

    2004-08-31

    Fluorocarbon-in-water emulsions are being explored clinically as synthetic oxygen carriers in general surgery. Stabilizing fluorocarbon emulsions against coarsening is critical in maintaining the biocompatibility of the formulation following intravenous administration. It has been purported that the addition of a small percentage of long-chain triglyceride results in stabilization of fluorocarbon emulsions via formation of a three-phase emulsion. In a three-phase emulsion, the triglyceride forms a layer around the dispersed fluorocarbon, thereby improving the adhesion of the phospholipid surfactant to the dispersed phase. In the present study, we examined the effect of triglyceride addition on the physicochemical characteristics of the resulting complex dispersion. In particular, we examined the particle composition and stability of the dispersed particles using a method which first fractionates (classifies) the different particles prior to sizing (i.e., sedimentation field-flow fractionation). It was determined that the addition of a long-chain triglyceride (soybean oil) results in oil demixing and two distinct populations of emulsion droplets. The presence of the two types of emulsion droplets is not observed via light scattering techniques, since the triglyceride droplets dominate the scattering due to a large difference in the refractive index between the particles and the medium as compared to fluorocarbon droplets. The growth of the fractionated fluorocarbon emulsion droplets was followed over time, and it was found that there was no difference in growth rates with and without added triglyceride. In contrast, addition of medium-chain-triglyceride (MCT) oils results in a single population of emulsion droplets (i.e., a three-phase emulsion). These emulsions are not stable to droplet coalescence, however, as significant penetration of MCT into the phospholipid lipid interfacial layer results in a negative increment in the monolayer spontaneous curvature, thereby

  2. Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics

    PubMed

    Witholt; Kessler

    1999-06-01

    Medium chain length (mcl) poly(hydroxyalkanoic acids) (PHAs) are polyesters accumulated by fluorescent Pseudomonads and other bacteria. Work on the genetics of mcl-PHA formation has led to polymer synthesis in recombinant bacteria and plants. Several high and medium cost applications are now emerging. With optimized bacterial mcl-PHA synthesis on inexpensive agro-substrates and the development of plant-based mcl-PHAs in the next decade, the production economics of these bioplastics will ultimately permit their sustainable production for bulk applications.

  3. Determination of free medium-chain fatty acids in beer by stir bar sorptive extraction.

    PubMed

    Horák, Tomás; Culík, Jirí; Jurková, Marie; Cejka, Pavel; Kellner, Vladimír

    2008-07-04

    Free medium-chain fatty acids in beer originate from raw materials, mainly from the fermentation activity of yeasts, and can influence beer taste, vitality of yeasts and also the foam stability of beer. This study presents the development of the method for the determination of free fatty medium-chain acids including caproic acid, caprylic acid, capric acid and lauric acid in beer or wort using stir bar sorptive extraction (SBSE). The combination of this extraction technique with solvent back extraction of the extracted analytes and subsequent gas chromatographic analysis with flame ionization detection was used for the determination of these compounds. The influences of different solvent back solutions, sampling time, solvent back extraction times and different contents of ethanol were studied. The method had high repeatability (RSD <6.7%), good linearity (the correlation coefficients were higher than 0.9963 for quadratic curves over the concentration range 0.5-8.0mg/l) and recoveries 57-89%.

  4. Exceptionally elevated triglyceride in severe lipemia retinalis

    PubMed Central

    Yin, Han Y; Warman, Roberto; Suh, Edward H; Cheng, Anny MS

    2016-01-01

    Purpose To report a case of successful treatment for severe lipemia retinalis with extreme severe hypertriglyceridemia (sHTG). Design Observational case report. Observations A 6-week-old infant with severe lipemia retinalis manifested diffuse creamy retinal vessels complicated with vulvar xanthomas. Extreme sHTG with 185-folds of the normal level was reported. Chromosome microarray and lipid gene sequencing confirmed a homozygous lipoprotein lipase gene coding mutation. Results Under strict adherence to a high medium-chain triglycerides formula and discontinuation of breast milk, the lipemia retinalis and vulval lesions resolved along with a stable plasma lipid level throughout the follow-up period of 6 months. Conclusion Strict adherence to a low-fat diet without breast milk appears to be effective in treating infants with severe lipemia retinalis associated with exceptionally high triglycerides. PMID:27799830

  5. A Review of Supply Chain Collaboration Practices for Small and Medium-sized Manufacturers

    NASA Astrophysics Data System (ADS)

    Wee, SY; Thoo, AC; Z, Sulaiman; FM, Muharam

    2016-05-01

    For the decades, organizations have endeavored to look for external sources for opportunities to achieve efficient and responsive supply chain with their partners especially for small and medium manufacturers (SMM). In this scenario, supply chain collaboration (SCC) is an interaction between supply chain members with the purpose of utilizes the knowledge and resources of customers and suppliers, and integrates the flows of products and information in order to achieve a common goal and obtain mutual benefit. The essential SCC dimensions for SMMs comprised of information sharing, joint knowledge creation, joint decision making, goal congruence and incentive sharing. The successful implementation of SCC can give SMMs an edge over their competitors. This paper aims to introduce a review of SCC practices for SMM. Overall, the findings provide managerial insights for the SMM in SCC implementation owing to resource scarcity and the need to draw SCC in order to ensure a sustainable competitive advantage.

  6. An Increased Dietary Supply of Medium-Chain Fatty Acids during Early Weaning in Rodents Prevents Excessive Fat Accumulation in Adulthood.

    PubMed

    van de Heijning, Bert J M; Oosting, Annemarie; Kegler, Diane; van der Beek, Eline M

    2017-06-20

    Medium-chain fatty acids (MCFA) are a directly and readily absorbed source of energy. Exposure early-in-life to increased MCFA levels might affect development and impact (lipid) metabolism later in life. We tested whether an increased MCFA intake early-in-life positively affects adult body composition and metabolic status when challenged by a western-style diet (WSD). Male offspring of C57Bl/6j mice and Wistar rats were fed a control diet (CTRL; 10 w% fat, 14% MCFA) or a medium-chain triglycerides (MCT) diet with 20% MCFA until postnatal (PN) day 42, whereupon animals were fed a WSD (10 w% fat) until PN day 98. Body composition was monitored by Dual Energy X-ray Absorptiometry (DEXA). In rats, glucose homeostasis was assessed by glucose tolerance test (GTT) and insulin tolerance test (ITT); in mice, the HOmeostasis Model Assessment of Insulin Resistance (HOMA-IR) was calculated. At autopsy on PN day 98, plasma lipid profiles, glucose, insulin, and adipokines were measured; organs and fat pads were collected and the adipocyte size distribution was analysed. Milk analysis in mice showed that the maternal MCT diet was not translated into milk, and pups were thus only exposed to high MCT levels from early weaning onward: PN day 16 until 42. Mice exposed to MCT showed 28% less fat accumulation vs. CTRL during WSD. The average adipocyte cell size, fasting plasma triglycerides (TG), and leptin levels were reduced in MCT mice. In rats, no effects were found on the adult body composition, but the adipocyte cell size distribution shifted towards smaller adipocytes. Particularly mice showed positive effects on glucose homeostasis and insulin sensitivity. Increased MCFA intake early-in-life protected against the detrimental effects of an obesogenic diet in adulthood.

  7. Calculation of Physicochemical Properties for Short- and Medium-Chain Chlorinated Paraffins

    NASA Astrophysics Data System (ADS)

    Glüge, Juliane; Bogdal, Christian; Scheringer, Martin; Buser, Andreas M.; Hungerbühler, Konrad

    2013-06-01

    Short- and medium-chain chlorinated paraffins are potential PBT chemicals (persistent, bioaccumulative, toxic) and short-chain chlorinated paraffins are under review for inclusion in the UNEP Stockholm Convention on Persistent Organic Pollutants. Despite their high production volume of more than one million metric tonnes per year, only few data on their physicochemical properties are available. We calculated subcooled-liquid vapor pressure, subcooled-liquid solubility in water and octanol, Henry's law constant for water and octanol, as well as the octanol-water partition coefficient with the property calculation methods COSMOtherm, SPARC, and EPI Suite™, and compared the results to experimental data from the literature. For all properties, good or very good agreement between calculated and measured data was obtained for COSMOtherm; results from SPARC were in good agreement with the measured data except for subcooled-liquid water solubility, whereas EPI Suite™ showed the largest discrepancies for all properties. After critical evaluation of the three property calculation methods, a final set of recommended property data for short- and medium-chain chlorinated paraffins was derived. The calculated property data show interesting relationships with chlorine content and carbon chain length. Increasing chlorine content does not cause pronounced changes in water solubility and octanol-water partition coefficient (KOW) as long as it is below 55%. Increasing carbon chain length leads to strong increases in KOW and corresponding decreases in subcooled-liquid water solubility. The present data set can be used in further studies to assess the environmental fate and human exposure of this relevant compound class.

  8. Chiral two- and three-nucleon forces along medium-mass isotope chains

    NASA Astrophysics Data System (ADS)

    Somà, V.; Cipollone, A.; Barbieri, C.; Navrátil, P.; Duguet, T.

    2014-06-01

    Ab initio calculations have shown that chiral two- and three-nucleon interactions correctly reproduce binding energy systematics and neutron drip lines of oxygen and nearby isotopes. Exploiting the novel Gorkov-Green's function approach applicable to genuinely open-shell nuclei, we present the first ab initio investigation of Ar, K, Ca, Sc, and Ti isotopic chains. In doing so, stringent tests of internucleon interaction models are provided in the medium-mass region of the nuclear chart. Leading chiral three-nucleon interactions are shown to be mandatory to reproduce the trend of binding energies throughout these chains and to obtain a good description of two-neutron separation energies. At the same time, nuclei in this mass region are systematically overbound by about 40 MeV. While the fundamental N =20 and 28 magic numbers do emerge from basic internucleon interactions, the former is shown to be significantly overestimated, which points to deficiencies of state-of-the-art chiral potentials. The present results demonstrate that ab initio many-body calculations can now access entire medium-mass isotopic chains including degenerate open-shell nuclei and provide a critical testing ground for modern theories of nuclear interactions.

  9. Phosphatidylcholine enrichment with medium chain fatty acids by immobilized phospholipase A(1) -catalyzed acidolysis.

    PubMed

    Ochoa, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; García, Hugo S; Vernon-Carter, Eduardo J

    2013-01-01

    Phospholipids are a biologically and industrially important class of compounds whose physical properties can be improved for diverse applications by substitution of medium-chain fatty acids for their native fatty acid chains. In this study, phosphatidylcholine (PC) was enriched with medium-chain fatty acids (MCFAs) by acidolysis with phospholipase A(1) (PLA(1) ) immobilized on Duolite A568. Response surface methodology was employed to evaluate the effects of the molar ratio of substrates (PC to free MCFAs), enzyme loading, and reaction temperature on the incorporation of free MCFAs into PC and on PC recovery. Enzyme loading and molar ratio of substrates contributed positively, but temperature negatively, to the incorporation of free MCFAs into PC. Increases in enzyme loading and the molar ratio of PC to free MCFAs led to increased incorporation of the latter into the former, but increased temperature had the opposite effect. By contrast, an increase in enzyme loading led to decreased PC recovery. Increased temperature had also a negative effect on PC recovery. Optimal conditions for maximum incorporation and PC recovery were molar ratio of PC to free MCFAs of 1:16, enzyme loading of 16%, and 50°C. Under these conditions, the incorporation of free MCFAs was 41% and the PC recovery was 53%. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  10. Seizure control by derivatives of medium chain fatty acids associated with the ketogenic diet show novel branching-point structure for enhanced potency.

    PubMed

    Chang, Pishan; Zuckermann, Alexandra M E; Williams, Sophie; Close, Adam J; Cano-Jaimez, Marife; McEvoy, James P; Spencer, John; Walker, Matthew C; Williams, Robin S B

    2015-01-01

    The medium chain triglyceride (MCT) ketogenic diet is a major treatment of drug-resistant epilepsy but is problematic, particularly in adults, because of poor tolerability. Branched derivatives of octanoic acid (OA), a medium chain fat provided in the diet have been suggested as potential new treatments for drug-resistant epilepsy, but the structural basis of this functionality has not been determined. Here we investigate structural variants of branched medium chain fatty acids as new seizure-control treatments. We initially employ a series of methyl-branched OA derivatives, and using the GABAA receptor antagonist pentylenetetrazol to induce seizure-like activity in rat hippocampal slices, we show a strong, branch-point-specific activity that improves upon the related epilepsy treatment valproic acid. Using low magnesium conditions to induce glutamate excitotoxicity in rat primary hippocampal neuronal cultures for the assessment of neuroprotection, we also show a structural dependence identical to that for seizure control, suggesting a related mechanism of action for these compounds in both seizure control and neuroprotection. In contrast, the effect of these compounds on histone deacetylase (HDAC) inhibition, associated with teratogenicity, shows no correlation with therapeutic efficacy. Furthermore, small structural modifications of the starting compounds provide active compounds without HDAC inhibitory effects. Finally, using multiple in vivo seizure models, we identify potent lead candidates for the treatment of epilepsy. This study therefore identifies a novel family of fatty acids, related to the MCT ketogenic diet, that show promise as new treatments for epilepsy control and possibly other MCT ketogenic diet-responding conditions, such as Alzheimer disease.

  11. Effect of Dietary Medium-Chain Triacylglycerol on Serum Albumin and Nitrogen Balance in Malnourished Rats

    PubMed Central

    Kojima, Keiichi; Ogawa, Akiko; Nakamura, Reiko; Kasai, Michio

    2008-01-01

    The present study was examined the therapeutic effect of medium-chain triacylglycerol (MCT) in protein-energy malnutrition (PEM). Wistar rats were fed low protein diet containing 70 g/kg of long-chain triacylglycerol (LCT) or MCT for 31 days. The serum albumin concentration in rats fed MCT diet (2.88 ± 0.04 g/dl) were significantly higher compared with those fed LCT diet (2.72 ± 0.04 g/dl) at day 31. Nitrogen balance was higher in rats fed MCT diet (54.1 ± 2.3 mg/day) compared with those fed LCT diet (45.4 ± 2.4 mg/day) during d 10–12. These results suggest that MCT effectively elevates serum albumin concentration and improves nitrogen balance in malnourished rats. PMID:18231629

  12. A search for microorganisms producing medium-chain alkanes from aldehydes.

    PubMed

    Ito, Masakazu; Kambe, Hiromi; Kishino, Shigenobu; Muramatsu, Masayoshi; Ogawa, Jun

    2017-08-28

    Microorganisms with medium-chain alkane-producing activity are promising for the bio-production of drop-in fuel. In this study, we screened for microorganisms producing tridecane from tetradecanal. The activity of aldehyde decarbonylation was found in a wide range of microbes. In particular, the genus Klebsiella in the Enterobacteriaceae family was found to have a high ability to produce alkanes from aldehydes via enzyme catalyzed reaction. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. MRI in medium-chain acyl-coenzyme a dehydrogenase deficiency: neuroimaging during the first month.

    PubMed

    Talamanca, Lorenzo Figà; Pasquini, Luca; Napolitano, Antonio; Longo, Daniela

    2017-08-28

    Medium-chain acyl-coenzyme A dehydrogenase (MCAD) is the most common genetic disorder of fatty acid oxidation, which presents before the age of 2 with the onset of acute hypoketotic hypoglycemia, and is typically precipitated by stress. We report serial brain magnetic resonance imaging (MRI) changes, including MR spectroscopy (MRS) and diffusion weighted imaging (DWI), in a patient with a classical MCAD presentation, compared with five healthy controls. Through this unique case we analyze the evolution of radiological findings during the first month of illness and we highlight the pivotal role of MRI, especially DWI, in the early diagnosis of the decompensated state of the disease.

  14. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli.

    PubMed

    Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo

    2017-09-01

    The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase.

    PubMed

    Rui, Zhe; Li, Xin; Zhu, Xuejun; Liu, Joyce; Domigan, Bonnie; Barr, Ian; Cate, Jamie H D; Zhang, Wenjun

    2014-12-23

    Aliphatic medium-chain 1-alkenes (MCAEs, ∼10 carbons) are "drop-in" compatible next-generation fuels and precursors to commodity chemicals. Mass production of MCAEs from renewable resources holds promise for mitigating dependence on fossil hydrocarbons. An MCAE, such as 1-undecene, is naturally produced by Pseudomonas as a semivolatile metabolite through an unknown biosynthetic pathway. We describe here the discovery of a single gene conserved in Pseudomonas responsible for 1-undecene biosynthesis. The encoded enzyme is able to convert medium-chain fatty acids (C10-C14) into their corresponding terminal olefins using an oxygen-activating, nonheme iron-dependent mechanism. Both biochemical and X-ray crystal structural analyses suggest an unusual mechanism of β-hydrogen abstraction during fatty acid substrate activation. Our discovery unveils previously unidentified chemistry in the nonheme Fe(II) enzyme family, provides an opportunity to explore the biology of 1-undecene in Pseudomonas, and paves the way for tailored bioconversion of renewable raw materials to MCAE-based biofuels and chemical commodities.

  16. Biodegradation of a medium-chain-length polyhydroxyalkanoate in tropical river water.

    PubMed

    Ho, Yen-Him; Gan, Seng-Neon; Tan, Irene K P

    2002-01-01

    The medium-chain-length polyhydroxyalkanoate (PHA(MCL)) produced by Pseudomonas putida PGA1 using saponified palm kernel oil as the carbon source could degrade readily in water taken from Kayu Ara River in Selangor, Malaysia. A weight loss of 71.3% of the PHA film occurred in 86 d. The pH of the river water medium fell from 7.5 (at d 0) to 4.7 (at d 86), and there was a net release of CO2. In sterilized river water, the PHA film also lost weight and the pH of the water fell, but to lesser extents. The C8 monomer of the PHA was completely removed after 6 d of immersion in the river water, while the proportions of the other monomers (C10, C12, and C14) were reversed from that of the undegraded PHA. By contrast, the monomer composition of the PHA immersed in sterilized river water did not change significantly from that of the undegraded PHA. Scanning electron microscopy showed physical signs of degradation on the PHA film immersed in the river water, but the film immersed in sterilized river water was relatively unblemished. The results thus indicate that the PHA(MCL) was degraded in tropical river water by biologic as well as nonbiologic means. A significant finding is that shorter-chain monomers were selectively removed throughout the entire PHA molecule, and this suggests enzymatic action.

  17. Enhanced Bioavailability of Curcumin Nanoemulsions Stabilized with Phosphatidylcholine Modified with Medium Chain Fatty Acids.

    PubMed

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Soto-Rodríguez, Ida; Sanchez-Otero, Maria Guadalupe; Vernon-Carter, Eduardo J; García, Hugo S

    2017-01-01

    Curcumin is a natural, oil-soluble polyphenolic compound with potent anticancer, anti-inflammatory, and antioxidant activities. In its free form, it is very poorly absorbed in the gut due to its very low solubility. The use of nanoemulsions as carrier is a feasible way for improving curcumin bioavailability. To this end, the choice of emulsifying agent for stabilizing the nanoemulsions is of the upmost importance for achieving a desired functionality. Phosphatidylcholine (PC) and phosphatidycholine enriched (PCE) with medium chain fatty acids (42.5 mol %) in combination with glycerol as co-surfactant, were used for preparing oil-in water nanoemulsions coded as NEPC and NEPCE, respectively. NEPCE displayed significantly smaller mean droplet size (30 nm), equal entrapment efficiency (100%), better droplet stability and suffered lower encapsulation efficiency loss (3%) during storage time (120 days, 4ºC) than NEPC. Bioavailability, measured in terms of area under the curve of curcumin concentration versus time, and maximum curcumin plasma concentration, was in general terms significantly higher for NEPCE than for NEPC, and for curcumin coarse aqueous suspension (CCS). Also, NEPCE produced significantly higher curcumin concentrations in liver and lung than NEPC and CCS. These data support the role of phosphatidylcholine enriched with medium chain fatty acids to increase the bioavailability of nanoemulsions for therapeutic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Structured Mono- and Diacylglycerols with a High Content of Medium Chain Fatty Acids.

    PubMed

    Esperón-Rojas, Alaina A; Baeza-Jiménez, R; Cano-Sarmiento, Cynthia; García, Hugo S

    2017-09-01

    In the present work, direct enzyme-catalysed esterification of medium chain fatty acids (MCFA) from three different sources (Medium chain triacylglycerols, MCT; saponified MCT and a mixture of free MCFA) was evaluated to obtain structured mono- and diacylglycerols. The esterifications were carried out mixing the different sources of MCFA with glycerol at two weight ratios (1:1 and 4:1, w/w), using three immobilized lipases: Novozym 435, Lipozyme RM IM and Lipozyme TL IM; different reaction times (t = 0, 15, 30, 60, 120 min); enzyme loadings (5, 10 or 15% with respect to the total weight of substrates). The extent of esterification was determined by gas chromatography (GC) analysis of the acylglycerols produced. The highest incorporation of free MCFA into glycerol was obtained for a 1:1 (w/w) glycerol to free MCFA ratio, 5% of Novozym 435, at 50°C, 300 rpm, 10% of molecular sieves and a commercial MCFA mixture as starting material. Under these conditions, incorporation of at least 90% of MCFA into glycerol was achieved after 30 min of reaction.

  19. Medium-chain fatty acids but not L-carnitine accelerate the kinetics of [14C]triacylglycerol utilization by colostrum-deprived newborn pigs.

    PubMed

    Heo, Kinam N; Lin, Xi; Han, In K; Odle, Jack

    2002-07-01

    The effect of L-carnitine on in vivo fatty acid utilization was determined using colostrum-deprived newborn piglets fed emulsified triglycerides (TG) composed of [1-14C]octanoate (tri-8:0) or [1-14C]octadecanoate (tri-18:1). A soy protein-based liquid diet devoid of L-carnitine was fed piglets for 1 d to allow development of fatty acid-metabolizing enzymes and intestinal fat digestion and absorption before assessment of in vivo fat utilization. The radiolabeled TG were fed in isoenergetic amounts (97.7 kJ/kg(0.75)), with or without L-carnitine (1 mmol/kg(0.75)) as 30% (v/v) emulsions, using polyoxyethylene sorbitan monooleate as an emulsifier. Expired CO(2) was quantified and specific radioactivity (Bq/micromol) was determined at 20-min intervals over 24 h. The rate (mmol ATP.kg(-0.75).min(-1)) and extent (mol ATP/kg(0.75)) of TG oxidative utilization (i.e., composite of digestion, absorption and oxidation) were calculated from the kinetics of 14CO(2) expiration. The maximal rate and extent of tri-8:0 oxidation were three and fourfold greater than those of tri-18:1, respectively (P < 0.001), and tri-18:1 delayed the time to reach 10 and 50% of maximal oxidation rate by 1.2 and 1.9 h (P < 0.01, respectively), regardless of supplemental carnitine. Collectively, these findings quantify the accelerated oxidation of medium-chain vs. long-chain triglycerides, but fail to support a need for supplemental carnitine to maximize fat oxidation in colostrum-deprived piglets.

  20. Low levels of short- and medium-chain acylcarnitines in HIV-infected patients.

    PubMed

    Waagsbø, Bjørn; Svardal, Asbjørn; Ueland, Thor; Landrø, Linn; Øktedalen, Olav; Berge, Rolf K; Flo, Trude H; Aukrust, Pål; Damås, Jan K

    2016-05-01

    Carnitine plays an essential role in fatty acid metabolism, exerts substantial antioxidant action and regulates immune functions. We hypothesized that a disturbed carnitine metabolism could be involved in progression of HIV infection. Plasma levels of L-carnitine, its precursors, and short-, medium- and long-chain acylcarnitines were analysed with HPLC/mass spectrometry in HIV-infected patients with various disease severities including patients who acquired Mycobacterium avium complex (MAC) infection. In vitro, we examined the MAC-purified protein derivate (PPD)-induced release of TNF-α and IFN-γ in peripheral blood mononuclear cells (PBMCs) from patients with either high or low plasma levels of acylcarnitines. Plasma levels of the short-chain (e.g. propionyl-carnitine) and medium-chain (e.g. octanoyl-carnitine) acylcarnitines were reduced in patients with advanced HIV infection. These acylcarnitines gradually decreased in rapid progressors, while minimal changes were observed in the nonprogressors. Plasma levels of propionyl-carnitine and octanoyl-carnitine significantly increased during antiretroviral therapy (ART). However, ART did not restore levels to those observed in healthy controls. Depletion of propionyl-carnitine and octanoyl-carnitine was observed prior to MAC infection, and the release of TNF-α and IFN-γ from PBMC was decreased after stimulation with MAC-PPD in samples from HIV-infected patients with low levels of propionyl-carnitine or octanoyl-carnitine. Our findings suggest an association between disturbed acylcarnitine metabolism, immune dysregulation and disease progression in HIV-infected patients. Low levels of propionyl-carnitine and octanoyl-carnitine were associated with increased susceptibility to MAC infection in HIV patients with advanced disease. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  1. Decrease of food intake in rats after ingestion of medium-chain triacylglycerol.

    PubMed

    Ooyama, Katsuhiko; Kojima, Keiichi; Aoyama, Toshiaki; Takeuchi, Hiroyuki

    2009-01-01

    Previous studies have demonstrated that fatty acid oxidation in the liver may affect food intake. This study examined the influence of preloading of medium-chain triacylglycerol (MCT) on food intake in comparison with long-chain triacylglycerol (LCT). Male rats were fasted for 18 h and then administered LCT or MCT emulsion orally. Each group of rats was allowed to rest for 30 min, and then food intake during 1 h was measured. Food intake in the MCT group was significantly lower than that in the LCT group. To examine the influence of hepatic oxidation, the MCT+MA group was injected intraperitoneally with mercaptoacetate (MA), an inhibitor of fatty acid oxidation, 2 h before ingestion of MCT emulsion. Then, 30 min after ingestion of LCT or MCT emulsion, food intake was measured for 1 h. Food intake in the MCT group was significantly lower than that in the LCT group, but there was no significant difference between the MCT+MA group and the LCT group. Food intake in the MCT+MA group was significantly higher than that in the MCT group. The hepatic ATP content after MCT ingestion was significantly higher than that after LCT ingestion, but there was no significant difference between the MCT+MA group and the LCT group. The hepatic ATP content after MCT+MA ingestion was significantly lower than that after MCT ingestion. These results suggest that ingestion of medium-chain fatty acid (MCFA) increases the liver ATP content in fasted rats, consequently decreasing food intake.

  2. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica.

    PubMed

    Gao, Cuijuan; Qi, Qingsheng; Madzak, Catherine; Lin, Carol Sze Ki

    2015-09-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are a large class of biopolymers that have attracted extensive attention as renewable and biodegradable bio-plastics. They are naturally synthesized via fatty acid de novo biosynthesis pathway or β-oxidation pathway from Pseudomonads. The unconventional yeast Yarrowia lipolytica has excellent lipid/fatty acid catabolism and anabolism capacity depending of the mode of culture. Nevertheless, it cannot naturally synthesize PHA, as it does not express an intrinsic PHA synthase. Here, we constructed a genetically modified strain of Y. lipolytica by heterologously expressing PhaC1 gene from P. aeruginosa PAO1 with a PTS1 peroxisomal signal. When in single copy, the codon optimized PhaC1 allowed the synthesis of 0.205 % DCW of PHA after 72 h cultivation in YNBD medium containing 0.1 % oleic acid. By using a multi-copy integration strategy, PHA content increased to 2.84 % DCW when the concentration of oleic acid in YNBD was 1.0 %. Furthermore, when the recombinant yeast was grown in the medium containing triolein, PHA accumulated up to 5.0 % DCW with as high as 21.9 g/L DCW, which represented 1.11 g/L in the culture. Our results demonstrated the potential use of Y. lipolytica as a promising microbial cell factory for PHA production using food waste, which contains lipids and other essential nutrients.

  3. ACX3, a Novel Medium-Chain Acyl-Coenzyme A Oxidase from Arabidopsis

    PubMed Central

    Froman, Byron E.; Edwards, Patricia C.; Bursch, Adam G.; Dehesh, Katayoon

    2000-01-01

    In a database search for homologs of acyl-coenzyme A oxidases (ACX) in Arabidopsis, we identified a partial genomic sequence encoding an apparently novel member of this gene family. Using this sequence information we then isolated the corresponding full-length cDNA from etiolated Arabidopsis cotyledons and have characterized the encoded recombinant protein. The polypeptide contains 675 amino acids. The 34 residues at the amino terminus have sequence similarity to the peroxisomal targeting signal 2 of glyoxysomal proteins, including the R-[I/Q/L]-X5-HL-XL-X15-22-C consensus sequence, suggesting a possible microsomal localization. Affinity purification of the encoded recombinant protein expressed in Escherichia coli followed by enzymatic assay, showed that this enzyme is active on C8:0- to C14:0-coenzyme A with maximal activity on C12:0-coenzyme A, indicating that it has medium-chain-specific activity. These data indicate that the protein reported here is different from previously characterized classes of ACX1, ACX2, and short-chain ACX (SACX), both in sequence and substrate chain-length specificity profile. We therefore, designate this new gene AtACX3. The temporal and spatial expression patterns of AtACX3 during development and in various tissues were similar to those of the AtSACX and other genes expressed in glyoxysomes. Currently available database information indicates that AtACX3 is present as a single copy gene. PMID:10859203

  4. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum

    PubMed Central

    Heinrich, Daniel; Raberg, Matthias; Fricke, Philipp; Kenny, Shane T.; Morales-Gamez, Laura; Babu, Ramesh P.; O'Connor, Kevin E.

    2016-01-01

    ABSTRACT The purple nonsulfur alphaproteobacterium Rhodospirillum rubrum S1 was genetically engineered to synthesize a heteropolymer of mainly 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid [P(3HD-co-3HO)] from CO- and CO2-containing artificial synthesis gas (syngas). For this, genes from Pseudomonas putida KT2440 coding for a 3-hydroxyacyl acyl carrier protein (ACP) thioesterase (phaG), a medium-chain-length (MCL) fatty acid coenzyme A (CoA) ligase (PP_0763), and an MCL polyhydroxyalkanoate (PHA) synthase (phaC1) were cloned and expressed under the control of the CO-inducible promoter PcooF from R. rubrum S1 in a PHA-negative mutant of R. rubrum. P(3HD-co-3HO) was accumulated to up to 7.1% (wt/wt) of the cell dry weight by a recombinant mutant strain utilizing exclusively the provided gaseous feedstock syngas. In addition to an increased synthesis of these medium-chain-length PHAs (PHAMCL), enhanced gene expression through the PcooF promoter also led to an increased molar fraction of 3HO in the synthesized copolymer compared with the Plac promoter, which regulated expression on the original vector. The recombinant strains were able to partially degrade the polymer, and the deletion of phaZ2, which codes for a PHA depolymerase most likely involved in intracellular PHA degradation, did not reduce mobilization of the accumulated polymer significantly. However, an amino acid exchange in the active site of PhaZ2 led to a slight increase in PHAMCL accumulation. The accumulated polymer was isolated; it exhibited a molecular mass of 124.3 kDa and a melting point of 49.6°C. With the metabolically engineered strains presented in this proof-of-principle study, we demonstrated the synthesis of elastomeric second-generation biopolymers from renewable feedstocks not competing with human nutrition. IMPORTANCE Polyhydroxyalkanoates (PHAs) are natural biodegradable polymers (biopolymers) showing properties similar to those of commonly produced petroleum-based nondegradable

  5. Effect of salicylic acid and diclofenac on the medium-chain and long-chain acyl-CoA formation in the liver and brain of mouse.

    PubMed

    Kasuya, Fumiyo; Kazumi, Maya; Tatsuki, Takao; Suzuki, Risa

    2009-07-01

    Medium-chain and long-chain acyl-CoA esters are key metabolites in fatty acid metabolism. Effects of salicylic acid on the in vivo formation of acyl-CoAs in mouse liver and brain were investigated. Further, inhibition of the medium-chain and long-chain acyl-CoA synthetases by salicylic acid and diclofenac was determined in mouse liver and brain mitochondria. Acyl-CoA esters were analyzed by liquid chromatography-tandem mass spectrometry. The amounts of medium-chain acyl-CoAs (C(6), C(8) and C(10)) were less than long-chain acyl-CoAs (C(16:0), C(18:0), C(18:1) and C(20:4)) in both liver and brain. The administration of salicylic acid decreased the levels of both the medium-chain (C(6), C(8) and C(10)) and long-chain acyl-CoAs (C(16:0), C(18:0), C(18:1) and C(20:4)) in liver. In brain, however, only long-chain acyl-CoAs were decreased. The level of salicylyl-CoA detected in brain was about 12% of that in liver. Salicylic acid had a strong inhibitory activity (IC(50) = 0.1 mm) for the liver mitochondrial formation of hexanoyl-CoA from hexanoic acid, whereas diclofenac was weak (IC(50) = 4.4 mm). In contrast, diclofenac (IC(50) = 1.4 mm) inhibited the liver mitochondrial long-chain acyl-CoA synthetases more potently than salicylic acid (IC(50) = 25.5 mm). Similar inhibitory activities for the acyl-CoA synthetases were obtained in the case of the brain and liver mitochondria, except for the weak inhibition of brain medium-chain acyl-CoA synthetases by salicylic acid (IC(50) = 1.8 mm). These findings suggest that salicylic acid and diclofenac exhibit different mechanisms of inhibition of fatty acid metabolism depending on the length of the acyl chain and tissues, and they may contribute to the further understanding of the toxic effects associated with these drugs.

  6. Understanding Supply Chain Management Practices for Small and Medium-Sized Enterprises

    NASA Astrophysics Data System (ADS)

    Thoo, AC; Sulaiman, Z.; Choi, SL; Kohar, UHA

    2017-06-01

    Small and medium enterprises (SMEs) are a major source of dynamism, innovation and flexibility for emerging and developing countries, as well as for the economies of the most industrialised nations. However, the survival and growth of SMEs can be difficult in the current competitive business environment and global marketplace. It can be a real challenge to deliver the right product and service at the most opportune time and at the lowest possible cost to the right customer. The challenge stresses the importance of managing cross-boundary relationships between business partners. For gaining a competitive advantage, supply chain management (SCM) is an effective tool to SMEs. Therefore, this paper aims to review the tenet of SCM, its benefits and practices to SMEs.

  7. Medium-chain sugar amphiphiles: a new family of healthy vegetable oil structuring agents.

    PubMed

    Jadhav, Swapnil R; Hwang, Hyeondo; Huang, Qingrong; John, George

    2013-12-11

    Vegetable oils are frequently structured to enhance their organoleptic and mechanical properties. This is usually achieved by increasing the net amount of saturated and/or trans fatty acids in the oil. With the risk of coronary heart diseases associated with these fatty acids, the food industry is looking for better alternatives. In this context, the medium-chain dialkanoates of low-calorie sugars (sugar alcohol dioctanoates) are investigated as a healthy alternative structuring agent. Precursors of sugar amphiphiles, being FDA-approved GRAS materials, exhibited high cell viability at a concentration ~50 μg/mL. They readily formed nanoscale multilayered structures in an oil matrix to form a coherent network at low concentrations (1-3 wt %/v), which immobilized a wide range of oils (canola, soybean, and grapeseed oils). The structuring efficiency of sugar amphiphiles was computed in terms of mechanical, thermal, and structural properties and found to be a function of its type and concentration.

  8. Microextraction method of medium and long chain fatty acids from milk.

    PubMed

    Añorve-Morga, Javier; Castañeda-Ovando, Araceli; Cepeda-Saez, Alberto; Archibold, Armando Durant; Jaimez-Ordaz, Judith; Contreras-López, Elizabeth; González-Olivares, Luis Guillermo; Rodríguez-Rodríguez, José Luis

    2015-04-01

    The aim of this research was to develop a method for microextraction and quantification of long and medium chain fatty acids from milk. The proposed method was carried out on three steps: (1) lipids extraction from 10 μL of whole or skimmed milk containing omega-3 fatty acids (FAs) during 12, 24, 48, 72 and 96 h, in 2 mL chloroform: methanol mixture (2:1); (2) acid methylation of FAs; and (3) quantification of FAs methyl esters by gas chromatography. Using this method, the percentage recovery of FAs was higher (67% for whole and 85% for skimmed milk) compared with AOAC method 905.02 recovery (49% and 83%, respectively). Good reproducibility and repeatability (<3%) were obtained. The method developed can be useful for researching and in routine quality control. Additionally, it is simpler, faster and cheaper than the reference procedure since it requires minimum sample and solvents volume as well as fewer steps.

  9. Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle.

    PubMed

    Montgomery, Magdalene K; Osborne, Brenna; Brown, Simon H J; Small, Lewin; Mitchell, Todd W; Cooney, Gregory J; Turner, Nigel

    2013-12-01

    Dietary intake of long-chain fatty acids (LCFAs) plays a causative role in insulin resistance and risk of diabetes. Whereas LCFAs promote lipid accumulation and insulin resistance, diets rich in medium-chain fatty acids (MCFAs) have been associated with increased oxidative metabolism and reduced adiposity, with few deleterious effects on insulin action. The molecular mechanisms underlying these differences between dietary fat subtypes are poorly understood. To investigate this further, we treated C2C12 myotubes with various LCFAs (16:0, 18:1n9, and 18:2n6) and MCFAs (10:0 and 12:0), as well as fed mice diets rich in LCFAs or MCFAs, and investigated fatty acid-induced changes in mitochondrial metabolism and oxidative stress. MCFA-treated cells displayed less lipid accumulation, increased mitochondrial oxidative capacity, and less oxidative stress than LCFA-treated cells. These changes were associated with improved insulin action in MCFA-treated myotubes. MCFA-fed mice exhibited increased energy expenditure, reduced adiposity, and better glucose tolerance compared with LCFA-fed mice. Dietary MCFAs increased respiration in isolated mitochondria, with a simultaneous reduction in reactive oxygen species generation, and subsequently low oxidative damage. Collectively our findings indicate that in contrast to LCFAs, MCFAs increase the intrinsic respiratory capacity of mitochondria without increasing oxidative stress. These effects potentially contribute to the beneficial metabolic actions of dietary MCFAs.

  10. Production of medium-chain triacylglycerols from corn oil: optimization by response surface methodology.

    PubMed

    Oztürk, Tarik; Ustun, Guldem; Aksoy, H Ayse

    2010-10-01

    Structured lipids (SLs) having long-chain fatty acids at sn-2 and medium-chain caprylic acid (CA, 8:0) at their sn-1,3-positions from corn oil (CO) were obtained and optimized by response surface methodology (RSM) with a three-level, three-factor face-centered cube design. Compositions of triacylglycerol species (TAGs) in SLs were also investigated by reverse-phase high performance liquid chromatography. Lipozyme TL IM from Thermomyces lanuginosa was used for the acidolysis of CO with CA in n-hexane. The effects of substrate molar ratio, enzyme amount, and reaction time on CA incorporation into CO were optimized. The optimum conditions were 13.2% (wt.) enzyme, 3.9:1 caprylic acid/corn oil molar ratio, and 3.1 h reaction time. At optimum conditions, 21.5 +/- 0.8 mol.% caprylic acid containing SLs was obtained. This product was characterized by 50% of triacylglycerol species with equivalent carbon number (ECN) C30, C32, C36, and C38, and 50% of triacylglycerol species with ECN C42, C44, and C46.

  11. Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle[S

    PubMed Central

    Montgomery, Magdalene K.; Osborne, Brenna; Brown, Simon H. J.; Small, Lewin; Mitchell, Todd W.; Cooney, Gregory J.; Turner, Nigel

    2013-01-01

    Dietary intake of long-chain fatty acids (LCFAs) plays a causative role in insulin resistance and risk of diabetes. Whereas LCFAs promote lipid accumulation and insulin resistance, diets rich in medium-chain fatty acids (MCFAs) have been associated with increased oxidative metabolism and reduced adiposity, with few deleterious effects on insulin action. The molecular mechanisms underlying these differences between dietary fat subtypes are poorly understood. To investigate this further, we treated C2C12 myotubes with various LCFAs (16:0, 18:1n9, and 18:2n6) and MCFAs (10:0 and 12:0), as well as fed mice diets rich in LCFAs or MCFAs, and investigated fatty acid-induced changes in mitochondrial metabolism and oxidative stress. MCFA-treated cells displayed less lipid accumulation, increased mitochondrial oxidative capacity, and less oxidative stress than LCFA-treated cells. These changes were associated with improved insulin action in MCFA-treated myotubes. MCFA-fed mice exhibited increased energy expenditure, reduced adiposity, and better glucose tolerance compared with LCFA-fed mice. Dietary MCFAs increased respiration in isolated mitochondria, with a simultaneous reduction in reactive oxygen species generation, and subsequently low oxidative damage. Collectively our findings indicate that in contrast to LCFAs, MCFAs increase the intrinsic respiratory capacity of mitochondria without increasing oxidative stress. These effects potentially contribute to the beneficial metabolic actions of dietary MCFAs. PMID:24078708

  12. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa

    PubMed Central

    Dalal, Jyoti; Vasani, Naresh; Lopez, Harry O.; Sederoff, Heike W.

    2017-01-01

    With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs) consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt.) was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0) and myristate (C14:0) were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0), from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production. PMID:28212406

  13. Characterization of a Novel Subgroup of Extracellular Medium-Chain-Length Polyhydroxyalkanoate Depolymerases from Actinobacteria

    PubMed Central

    Gangoiti, Joana; Santos, Marta; Prieto, María Auxiliadora; de la Mata, Isabel; Llama, María J.

    2012-01-01

    Nineteen medium-chain-length (mcl) poly(3-hydroxyalkanoate) (PHA)-degrading microorganisms were isolated from natural sources. From them, seven Gram-positive and three Gram-negative bacteria were identified. The ability of these microorganisms to hydrolyze other biodegradable plastics, such as short-chain-length (scl) PHA, poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), and poly(l-lactide) (PLA), has been studied. On the basis of the great ability to degrade different polyesters, Streptomyces roseolus SL3 was selected, and its extracellular depolymerase was biochemically characterized. The enzyme consisted of one polypeptide chain of 28 kDa with a pI value of 5.2. Its maximum activity was observed at pH 9.5 with chromogenic substrates. The purified enzyme hydrolyzed mcl PHA and PCL but not scl PHA, PES, and PLA. Moreover, the mcl PHA depolymerase can hydrolyze various substrates for esterases, such as tributyrin and p-nitrophenyl (pNP)-alkanoates, with its maximum activity being measured with pNP-octanoate. Interestingly, when poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate [11%]) was used as the substrate, the main hydrolysis product was the monomer (R)-3-hydroxyoctanoate. In addition, the genes of several Actinobacteria strains, including S. roseolus SL3, were identified on the basis of the peptide de novo sequencing of the Streptomyces venezuelae SO1 mcl PHA depolymerase by tandem mass spectrometry. These enzymes did not show significant similarity to mcl PHA depolymerases characterized previously. Our results suggest that these distinct enzymes might represent a new subgroup of mcl PHA depolymerases. PMID:22865072

  14. Role of medium- and short-chain L-3-hydroxyacyl-CoA dehydrogenase in the regulation of body weight and thermogenesis.

    PubMed

    Schulz, Nadja; Himmelbauer, Heinz; Rath, Michaela; van Weeghel, Michel; Houten, Sander; Kulik, Wim; Suhre, Karsten; Scherneck, Stephan; Vogel, Heike; Kluge, Reinhart; Wiedmer, Petra; Joost, Hans-Georg; Schürmann, Annette

    2011-12-01

    Dysregulation of fatty acid oxidation plays a pivotal role in the pathophysiology of obesity and insulin resistance. Medium- and short-chain-3-hydroxyacyl-coenzyme A (CoA) dehydrogenase (SCHAD) (gene name, hadh) catalyze the third reaction of the mitochondrial β-oxidation cascade, the oxidation of 3-hydroxyacyl-CoA to 3-ketoacyl-CoA, for medium- and short-chain fatty acids. We identified hadh as a putative obesity gene by comparison of two genome-wide scans, a quantitative trait locus analysis previously performed in the polygenic obese New Zealand obese mouse and an earlier described small interfering RNA-mediated mutagenesis in Caenorhabditis elegans. In the present study, we show that mice lacking SCHAD (hadh(-/-)) displayed a lower body weight and a reduced fat mass in comparison with hadh(+/+) mice under high-fat diet conditions, presumably due to an impaired fuel efficiency, the loss of acylcarnitines via the urine, and increased body temperature. Food intake, total energy expenditure, and locomotor activity were not altered in knockout mice. Hadh(-/-) mice exhibited normal fat tolerance at 20 C. However, during cold exposure, knockout mice were unable to clear triglycerides from the plasma and to maintain their normal body temperature, indicating that SCHAD plays an important role in adaptive thermogenesis. Blood glucose concentrations in the fasted and postprandial state were significantly lower in hadh(-/-) mice, whereas insulin levels were elevated. Accordingly, insulin secretion in response to glucose and glucose plus palmitate was elevated in isolated islets of knockout mice. Therefore, our data indicate that SCHAD is involved in thermogenesis, in the maintenance of body weight, and in the regulation of nutrient-stimulated insulin secretion.

  15. Role of Medium- and Short-Chain L-3-Hydroxyacyl-CoA Dehydrogenase in the Regulation of Body Weight and Thermogenesis

    PubMed Central

    Schulz, Nadja; Himmelbauer, Heinz; Rath, Michaela; van Weeghel, Michel; Houten, Sander; Kulik, Wim; Suhre, Karsten; Scherneck, Stephan; Vogel, Heike; Kluge, Reinhart; Wiedmer, Petra; Joost, Hans-Georg

    2011-01-01

    Dysregulation of fatty acid oxidation plays a pivotal role in the pathophysiology of obesity and insulin resistance. Medium- and short-chain-3-hydroxyacyl-coenzyme A (CoA) dehydrogenase (SCHAD) (gene name, hadh) catalyze the third reaction of the mitochondrial β-oxidation cascade, the oxidation of 3-hydroxyacyl-CoA to 3-ketoacyl-CoA, for medium- and short-chain fatty acids. We identified hadh as a putative obesity gene by comparison of two genome-wide scans, a quantitative trait locus analysis previously performed in the polygenic obese New Zealand obese mouse and an earlier described small interfering RNA-mediated mutagenesis in Caenorhabditis elegans. In the present study, we show that mice lacking SCHAD (hadh−/−) displayed a lower body weight and a reduced fat mass in comparison with hadh+/+ mice under high-fat diet conditions, presumably due to an impaired fuel efficiency, the loss of acylcarnitines via the urine, and increased body temperature. Food intake, total energy expenditure, and locomotor activity were not altered in knockout mice. Hadh−/− mice exhibited normal fat tolerance at 20 C. However, during cold exposure, knockout mice were unable to clear triglycerides from the plasma and to maintain their normal body temperature, indicating that SCHAD plays an important role in adaptive thermogenesis. Blood glucose concentrations in the fasted and postprandial state were significantly lower in hadh−/− mice, whereas insulin levels were elevated. Accordingly, insulin secretion in response to glucose and glucose plus palmitate was elevated in isolated islets of knockout mice. Therefore, our data indicate that SCHAD is involved in thermogenesis, in the maintenance of body weight, and in the regulation of nutrient-stimulated insulin secretion. PMID:21990309

  16. Degradation of medium-chain-length polyhydroxyalkanoates in tropical forest and mangrove soils.

    PubMed

    Lim, Siew-Ping; Gan, Seng-Neon; Tan, Irene K P

    2005-07-01

    Bacterial polyhydroxyalkanoates (PHAs) are perceived to be a suitable alternative to petrochemical plastics because they have similar material properties, are environmentally degradable, and are produced from renewable resources. In this study, the in situ degradation of medium-chain-length PHA (PHAMCL) films in tropical forest and mangrove soils was assessed. The PHAMCL was produced by Pseudomonas putida PGA1 using saponified palm kernel oil (SPKO) as the carbon source. After 112 d of burial, there was 16.7% reduction in gross weight of the films buried in acidic forest soil (FS), 3.0% in the ones buried in alkaline forest soil by the side of a stream (FSst) and 4.5% in those buried in mangrove soil (MS). There was a slight decrease in molecular weight for the films buried in FS but not for the films buried in FSst and in MS. However, no changes were observed for the melting temperature, glass transition temperature, monomer compositions, structure, and functional group analyses of the films from any of the burial sites during the test period. This means that the integral properties of the films were maintained during that period and degradation was by surface erosion. Scanning electron microscopy of the films from the three sites revealed holes on the film surfaces which could be attributed to attack by microorganisms and bigger organisms such as detritivores. For comparison purposes, films of polyhydroxybutyrate (PHB), a short-chain-length PHA, and polyethylene (PE) were buried together with the PHAMCL films in all three sites. The PHB films disintegrated completely in MS and lost 73.5% of their initial weight in FSst, but only 4.6% in FS suggesting that water movement played a major role in breaking up the brittle PHB films. The PE films did not register any weight loss in any of the test sites.

  17. Mouse serum paraoxonase-1 lactonase activity is specific for medium-chain length fatty acid lactones.

    PubMed

    Connelly, Philip W; Picardo, Clive M; Potter, Philip M; Teiber, John F; Maguire, Graham F; Ng, Dominic S

    2011-01-01

    Recent studies suggest that paraoxonase-1 (PON1), complexed with high-density lipoproteins, is the major lactonase in the circulation. Using 5-hydroxy eicosatetraenoate δ-lactone (5-HETEL) as the substrate, we observed lactonase activity in serum from Pon1-/- mice. However, 6-12 carbon fatty acid γ- and δ-lactones were not hydrolyzed in serum from Pon1-/- mice. Serum from both wild-type and Pon1-/- mice contained a lactonase activity towards 5-HETEL and 3-oxo-dodecanoyl-homoserine lactone that was resistant to inactivation by EDTA. This lactonase activity was sensitive to the serine esterase inhibitor phenyl methyl sulfonyl fluoride and co-eluted with carboxylesterase activity by size-exclusion chromatography. Analysis of serum from the Es1e mouse strain, which has a deficiency in the carboxylesterase, ES-1, proved that this activity was due to ES-1. PON1 activity predominated at early time points (30 s), whereas both PON1 and ES-1 contributed equally at later time points (15 min). When both PON1 and ES-1 were inhibited, 5-HETEL was stable in mouse serum. Thus, while long-chain fatty acid lactones are substrates for PON1, they can be hydrolyzed by ES-1 at neutral pH. In contrast, medium-chain length fatty acid lactones are stable in mouse serum in the absence of PON1, suggesting that PON1 plays a specific role in the metabolism of these compounds. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Medium-chain acyl-CoA dehydrogenase deficiency in children with non-ketotic hypoglycemia and low carnitine levels.

    PubMed

    Stanley, C A; Hale, D E; Coates, P M; Hall, C L; Corkey, B E; Yang, W; Kelley, R I; Gonzales, E L; Williamson, J R; Baker, L

    1983-11-01

    Three children in two families presented in early childhood with episodes of illness associated with fasting which resembled Reye's syndrome: coma, hypoglycemia, hyperammonemia, and fatty liver. One child died with cerebral edema during an episode. Clinical studies revealed an absence of ketosis on fasting (plasma beta-hydroxybutyrate less than 0.4 mmole/liter) despite elevated levels of free fatty acids (2.6-4.2 mmole/liter) which suggested that hepatic fatty acid oxidation was impaired. Urinary dicarboxylic acids were elevated during illness or fasting. Total carnitine levels were low in plasma (18-25 mumole/liter), liver (200-500 nmole/g), and muscle (500-800 nmole/g); however, treatment with L-carnitine failed to correct the defect in ketogenesis. Studies on ketone production from fatty acid substrates by liver tissue in vitro showed normal rates from short-chain fatty acids, but very low rates from all medium and long-chain fatty acid substrates. These results suggested that the defect was in the mid-portion of the intramitochondrial beta-oxidation pathway at the medium-chain acyl-CoA dehydrogenase step. A new assay for the electron transfer flavoprotein-linked acyl-CoA dehydrogenases was used to test this hypothesis. This assay follows the decrease in electron transfer flavoprotein fluorescence as it is reduced by acyl-CoA-acyl-CoA dehydrogenase complex. Results with octanoyl-CoA as substrate indicated that patients had less than 2.5% normal activity of medium-chain acyl-CoA dehydrogenase. The activities of short-chain and isovaleryl acyl-CoA dehydrogenases were normal; the activity of long-chain acyl-CoA dehydrogenase was one-third normal. These results define a previously unrecognized inherited metabolic disorder of fatty acid oxidation due to deficiency of medium-chain acyl-CoA dehydrogenase.

  19. Complete Genome of Pseudomonas mendocina NK-01, Which Synthesizes Medium-Chain-Length Polyhydroxyalkanoates and Alginate Oligosaccharides▿

    PubMed Central

    Guo, Wenbin; Wang, Yuanyuan; Song, Cunjiang; Yang, Chao; Li, Qiang; Li, Baobin; Su, Wenping; Sun, Xiumei; Song, Dongfang; Yang, Xiaojuan; Wang, Shufang

    2011-01-01

    Pseudomonas mendocina NK-01 can synthesize medium-chain-length polyhydroxyalkanoate (PHAMCL) and alginate oligosaccharides (AO) simultaneously from glucose under conditions of limited nitrogen. Here, we report the complete sequence of the 5.4-Mbp genome of Pseudomonas mendocina NK-01, which was isolated from farmland soil in Tianjin, China. PMID:21551299

  20. A medium-chain fatty acid as an alternative energy source in mouse preimplantation development.

    PubMed

    Yamada, Mitsutoshi; Takanashi, Kazumi; Hamatani, Toshio; Hirayama, Akiyoshi; Akutsu, Hidenori; Fukunaga, Tomoko; Ogawa, Seiji; Sugawara, Kana; Shinoda, Kosaku; Soga, Tomoyoshi; Umezawa, Akihiro; Kuji, Naoaki; Yoshimura, Yasunori; Tomita, Masaru

    2012-01-01

    To further optimize the culturing of preimplantation embryos, we undertook metabolomic analysis of relevant culture media using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We detected 28 metabolites: 23 embryo-excreted metabolites including 16 amino acids and 5 media-derived metabolites (e.g., octanoate, a medium-chain fatty acid (MCFA)). Due to the lack of information on MCFAs in mammalian preimplantation development, this study examined octanoate as a potential alternative energy source for preimplantation embryo cultures. No embryos survived in culture media lacking FAs, pyruvate, and glucose, but supplementation of octanoate rescued the embryonic development. Immunoblotting showed significant expression of acyl-CoA dehydrogenase and hydroxyacyl-CoA dehydrogenase, important enzymes for ß-oxidation of MCFAs, in preimplantation embryo. Furthermore, CE-TOFMS traced [1-(13)C(8)] octanoate added to the culture media into intermediate metabolites of the TCA cycle via ß-oxidation in mitochondria. These results are the first demonstration that octanoate could provide an efficient alternative energy source throughout preimplantation development.

  1. Insights into Medium-chain Acyl-CoA Dehydrogenase Structure by Molecular Dynamics Simulations.

    PubMed

    Bonito, Cátia A; Leandro, Paula; Ventura, Fátima V; Guedes, Rita C

    2016-08-01

    The medium-chain acyl-CoA dehydrogenase (MCAD) is a mitochondrial enzyme that catalyzes the first step of mitochondrial fatty acid β-oxidation (mFAO) pathway. Its deficiency is the most common genetic disorder of mFAO. Many of the MCAD disease-causing variants, including the most common p.K304E variant, show loss of function due to protein misfolding. Herein, we used molecular dynamics simulations to provide insights into the structural stability and dynamic behavior of MCAD wild-type (MCADwt) and validate a structure that would allow reliable new studies on its variants. Our results revealed that in both proteins the flavin adenine dinucleotide (FAD) has an important structural role on the tetramer stability and also in maintaining the volume of the enzyme catalytic pockets. We confirmed that the presence of substrate changes the dynamics of the catalytic pockets and increases FAD affinity. A comparison between the porcine MCADwt (pMCADwt) and human MCADwt (hMCADwt) structures revealed that both proteins are essentially similar and that the reversion of the double mutant E376G/T255E of hMCAD enzyme does not affect the structure of the protein neither its behavior in simulation. Our validated hMCADwt structure is crucial for complementing and accelerating the experimental studies aiming for the discovery and development of potential stabilizers of MCAD variants as candidates for the treatment of MCAD deficiency (MCADD).

  2. Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily

    PubMed Central

    Baker, Patrick J.; Britton, K. Linda; Fisher, Martin; Esclapez, Julia; Pire, Carmen; Bonete, Maria Jose; Ferrer, Juan; Rice, David W.

    2009-01-01

    Despite being the subject of intensive investigations, many aspects of the mechanism of the zinc-dependent medium chain alcohol dehydrogenase (MDR) superfamily remain contentious. We have determined the high-resolution structures of a series of binary and ternary complexes of glucose dehydrogenase, an MDR enzyme from Haloferax mediterranei. In stark contrast to the textbook MDR mechanism in which the zinc ion is proposed to remain stationary and attached to a common set of protein ligands, analysis of these structures reveals that in each complex, there are dramatic differences in the nature of the zinc ligation. These changes arise as a direct consequence of linked movements of the zinc ion, a zinc-bound bound water molecule, and the substrate during progression through the reaction. These results provide evidence for the molecular basis of proton traffic during catalysis, a structural explanation for pentacoordinate zinc ion intermediates, a unifying view for the observed patterns of metal ligation in the MDR family, and highlight the importance of dynamic fluctuations at the metal center in changing the electrostatic potential in the active site, thereby influencing the proton traffic and hydride transfer events. PMID:19131516

  3. Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily.

    PubMed

    Baker, Patrick J; Britton, K Linda; Fisher, Martin; Esclapez, Julia; Pire, Carmen; Bonete, Maria Jose; Ferrer, Juan; Rice, David W

    2009-01-20

    Despite being the subject of intensive investigations, many aspects of the mechanism of the zinc-dependent medium chain alcohol dehydrogenase (MDR) superfamily remain contentious. We have determined the high-resolution structures of a series of binary and ternary complexes of glucose dehydrogenase, an MDR enzyme from Haloferax mediterranei. In stark contrast to the textbook MDR mechanism in which the zinc ion is proposed to remain stationary and attached to a common set of protein ligands, analysis of these structures reveals that in each complex, there are dramatic differences in the nature of the zinc ligation. These changes arise as a direct consequence of linked movements of the zinc ion, a zinc-bound bound water molecule, and the substrate during progression through the reaction. These results provide evidence for the molecular basis of proton traffic during catalysis, a structural explanation for pentacoordinate zinc ion intermediates, a unifying view for the observed patterns of metal ligation in the MDR family, and highlight the importance of dynamic fluctuations at the metal center in changing the electrostatic potential in the active site, thereby influencing the proton traffic and hydride transfer events.

  4. Preparation of palm olein enriched with medium chain fatty acids by lipase acidolysis.

    PubMed

    Chnadhapuram, Mounika; Sunkireddy, Yella Reddy

    2012-05-01

    Medium chain (MC) fatty acids, caprylic (C8:0) and capric (C10:0) were incorporated into palm olein by 1,3-specific lipase acidolysis, up to 36% and 43%, respectively, when added as mixtures or individually after 24h. It was found that these acids were incorporated into palm olein at the expense of palmitic and oleic acids, the former being larger in quantity and reduction of 18:2 was negligible. The modified palm olein products showed reduction in higher molecular weight triacylglycerols (TGs) and increase in concentration of lower molecular weight TGs compared to those of palm olein. Fatty acids at sn-2 position in modified products were: C10:0, 4%; C16:0, 13%; C18:1, 66%; and C18:2, 15.4%. DSC results showed that the onset of melting and solids fat content were considerably reduced in modified palm olein products and no solids were found even at and below 10°C and also the onset of crystallisation was considerably lowered. The cloud point was reduced and iodine value dropped from 55.4 to 38 in modified palm olein. Thus, nutritionally superior palm olein was prepared by introducing MC fatty acids with reduced palmitic acid through lipase acidolysis.

  5. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on Clostridium difficile.

    PubMed

    Shilling, Michael; Matt, Laurie; Rubin, Evelyn; Visitacion, Mark Paul; Haller, Nairmeen A; Grey, Scott F; Woolverton, Christopher J

    2013-12-01

    Clostridium difficile is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide; in addition, the proliferation of antibiotic-resistant C. difficile is becoming a significant problem. Virgin coconut oil (VCO) has been shown previously to have the antimicrobial activity. This study evaluates the lipid components of VCO for the control of C. difficile. VCO and its most active individual fatty acids were tested to evaluate their antimicrobial effect on C. difficile in vitro. The data indicate that exposure to lauric acid (C12) was the most inhibitory to growth (P<.001), as determined by a reduction in colony-forming units per milliliter. Capric acid (C10) and caprylic acid (C8) were inhibitory to growth, but to a lesser degree. VCO did not inhibit the growth of C. difficile; however, growth was inhibited when bacterial cells were exposed to 0.15-1.2% lipolyzed coconut oil. Transmission electron microscopy (TEM) showed the disruption of both the cell membrane and the cytoplasm of cells exposed to 2 mg/mL of lauric acid. Changes in bacterial cell membrane integrity were additionally confirmed for VCO and select fatty acids using Live/Dead staining. This study demonstrates the growth inhibition of C. difficile mediated by medium-chain fatty acids derived from VCO.

  6. Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids

    PubMed Central

    Reynolds, Kyle B.; Taylor, Matthew C.; Zhou, Xue-Rong; Vanhercke, Thomas; Wood, Craig C.; Blanchard, Christopher L.; Singh, Surinder P.; Petrie, James R.

    2015-01-01

    Various research groups are investigating the production of oil in non-seed biomass such as leaves. Recently, high levels of oil accumulation have been achieved in plant biomass using a combination of biotechnological approaches which also resulted in significant changes to the fatty acid composition of the leaf oil. In this study, we were interested to determine whether medium-chain fatty acids (MCFA) could be accumulated in leaf oil. MCFA are an ideal feedstock for biodiesel and a range of oleochemical products including lubricants, coatings, and detergents. In this study, we explore the synthesis, accumulation, and glycerolipid head-group distribution of MCFA in leaves of Nicotiana benthamiana after transient transgenic expression of C12:0-, C14:0-, and C16:0-ACP thioesterase genes. We demonstrate that the production of these MCFA in leaf is increased by the co-expression of the WRINKLED1 (WRI1) transcription factor, with the lysophosphatidic acid acyltransferase (LPAAT) from Cocos nucifera being required for the assembly of tri-MCFA TAG species. We also demonstrate that the newly-produced MCFA are incorporated into the triacylglycerol of leaves in which WRI1 + diacylglycerol acyltransferase1 (DGAT1) genes are co-expressed for increased oil accumulation. PMID:25852716

  7. Preparation and Characterization of Nanoliposomes Entrapping Medium-Chain Fatty Acids and Vitamin C by Lyophilization

    PubMed Central

    Yang, Shuibing; Liu, Chengmei; Liu, Wei; Yu, Haixia; Zheng, Huijuan; Zhou, Wei; Hu, Yaqin

    2013-01-01

    The complex nanoliposomes encapsulating both a hydrophilic drug vitamin C (vit C) and hydrophobic drug medium-chain fatty acids (MCFAs) was prepared by combining double emulsion method with dynamic high pressure microfluidization. The complex nanoliposomes was further freeze-dried under −86 °C for 48 h with sucrose at the sucrose/lipids ratio of 2:1(w/w) in order to enhance its stability. The freeze-dried complex nanoliposomes under the suitable conditions exhibited high entrapment efficiency of MCFAs (44.26 ± 3.34)%, relatively high entrapment efficiency of vit C (62.25 ± 3.43)%, low average size diameter (110.4 ± 7.28) nm and good storage stability at 4 °C for 60 days with slight changes in mean particle diameter and drug entrapment efficiencies. The results of transmission electron microscopy of freeze-dried complex nanoliposomes also showed that the freeze-dried samples with sucrose were stable without great increase in their particle sizes and without destroying their spherical shape. The results indicated that sucrose presented well protection effects in MCFAs-vit C complex nanoliposomes, suggesting the possibility of further usage in commercial liposomes. PMID:24084723

  8. Role of Conserved Glycine in Zinc-dependent Medium Chain Dehydrogenase/Reductase Superfamily*

    PubMed Central

    Tiwari, Manish Kumar; Singh, Raushan Kumar; Singh, Ranjitha; Jeya, Marimuthu; Zhao, Huimin; Lee, Jung-Kul

    2012-01-01

    The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (Kd) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes. PMID:22500022

  9. Medium chain acyl-CoA dehydrogenase deficiency detected among Hispanics by New Jersey newborn screening.

    PubMed

    Anderson, Sharon; Botti, Christina; Li, Bo; Millonig, James H; Lyon, Elaine; Millson, Alison; Karabin, Suzanne S M; Brooks, Susan Sklower

    2012-09-01

    In the follow-up of New Jersey newborn screens suggestive of medium chain acyl-CoA dehydrogenase deficiency (MCADD) during a 30-month period, we identified five patients of Hispanic American ethnicity. With information provided by the New Jersey Department of Health and Human Services Newborn Screening program we calculated an overall cumulative incidence of approximately 7.20/100,000 for MCADD; 7.58/100,000 among Hispanic Americans and 7.08/100,000 among non-Hispanic Americans. Among the five Hispanic American infants who screened positive, a common variant (c.443G>A [p.R148K]) was identified which accounted for 30% of the alleles; c.799G>A (p.G267R) and c.985A>G (p.K329E) each accounted for an additional 20%; and a novel variant c.302G>A (p.G101E) was identified in one patient. Although treated prospectively during interim illnesses to prevent unwanted sequelae; till date, none of the patients carrying the c.443G>A variant have been symptomatic.

  10. Production of medium chain fatty acid rich mustard oil using packed bed bioreactor.

    PubMed

    Sengupta, Avery; Roy, Susmita; Mukherjee, Sohini; Ghosh, Mahua

    2015-01-01

    A comparative study was done on the production of different medium chain fatty acid (MCFA) rich mustard oil using a stirred tank batchreactor (STBR) and packed bed bio reactor (PBBR) using three commercially available immobilised lipases viz. Thermomyces lanuginosus, Candida antarctica and Rhizomucor meihe. Three different MCFAs capric, caprylic and lauric acids were incorporated in the mustard oil. Reaction parameters, such as substrate molar ratio, reaction temperature and enzyme concentration were standardized in the STBR and maintained in the PBBR. To provide equal time of residence between the substrate and enzyme in both the reactors for the same amount of substrates, the substrate flow rate in the PBBR was maintainedat 0.27 ml/min. Gas liquid chromatography was used to monitor the incorporation of MCFA in mustard oil. The study showed that the PBBR was more efficient than the STBR in the synthesis of structured lipids with less migration of acyl groups. The physico-chemical parameters of the product along with fatty acid composition in all positions and sn-2 positions were also determined.

  11. Retrospective study of the medium-chain acyl-CoA dehydrogenase deficiency in Portugal.

    PubMed

    Ventura, F V; Leandro, P; Luz, A; Rivera, I A; Silva, M F B; Ramos, R; Rocha, H; Lopes, A; Fonseca, H; Gaspar, A; Diogo, L; Martins, E; Leão-Teles, E; Vilarinho, L; Tavares de Almeida, I

    2014-06-01

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the commonest genetic defect of mitochondrial fatty acid β-oxidation. About 60% of MCADD patients are homozygous for the c.985A>G (p.Lys329Glu) mutation in the ACADM gene (G985 allele). Herein, we present the first report on the molecular and biochemical spectrum of Portuguese MCADD population. From the 109 patients studied, 83 were diagnosed after inclusion of MCADD in the national newborn screening, 8 following the onset of symptoms and 18 through segregation studies. Gypsy ancestry was identified in 85/109 patients. The G985 allele was found in homozygosity in 102/109 patients, in compound heterozygosity in 6/109 and was absent in one patient. Segregation studies in the Gypsy families showed that 93/123 relatives were carriers of the G985 allele, suggesting its high prevalence in this ethnic group. Additionally, three new substitutions-c.218A>G (p.Tyr73Cys), c.503A>T (p.Asp168Val) and c.1205G>T (p.Gly402Val)-were identified. Despite the particularity of the MCADD population investigated, the G985 allele was found in linkage disequilibrium with H1(112) haplotype. Furthermore, two novel haplotypes, H5(212) and H6(122) were revealed.

  12. The application of medium-chain fatty acids: edible oil with a suppressing effect on body fat accumulation.

    PubMed

    Takeuchi, Hiroyuki; Sekine, Seiji; Kojima, Keiichi; Aoyama, Toshiaki

    2008-01-01

    The bulk of fatty acids found in our diets consists of long-chain fatty acids (LCFA), which are molecules containing 12 or more carbon atoms. In contrast, medium-chain fatty acids (MCFA) are composed of 8-10 carbon atoms, and are found in palm kernel oil, among other types of foods. MCFA have attracted attention as being part of a healthy diet, because they are absorbed directly into the portal vein, transported rapidly to the liver for beta-oxidation, and thus increase diet-induced thermogenesis. In contrast, long-chain triacylglycerols are absorbed via the intestinal lymphatic ducts and transported by chylomicrons through the thoracic duct into the systemic circulation. Because medium-chain triacylglycerols (MCT) containing solely MCFA have a few disadvantages when used for deep frying, we have developed a new kind of triacylglycerol product: medium- and long-chain triacylglycerol (MLCT). MLCT is produced by lipase-catalyzed enzymatic transesterification. Long-term clinical trials have demonstrated that MLCT and MCT result in less body fat accumulation in humans. MLCT oil has been approved as FOSHU (Food for Specified Health Use) for use as cooking oil with a suppressing effect on body fat accumulation.

  13. Health benefits, enzymatic production, and application of medium- and long-chain triacylglycerol (MLCT) in food industries: a review.

    PubMed

    Lee, Yee-Ying; Tang, Teck-Kim; Lai, Oi-Ming

    2012-08-01

    Medium- and long-chain triacylglycerol (MLCT) is a modified lipid containing medium- chain (C6-C12) and long-chain fatty acids (C14-C24) in the same triacylglycerol (TAG) molecule. It can be produced either through enzymatic (with 1,3 specific or nonspecific enzyme) or chemical methods. The specialty of this structured lipid is that it is metabolized differently compared to conventional fats and oils, which can lead to a reduction of fat accumulation in the body. Therefore, it can be used for obesity management. It also contains nutritional properties that can be used to treat metabolic problems. This review will discuss on the health benefits of MLCT, its production methods especially via enzymatic processes and its applications in food industries.

  14. Production of medium-chain-length poly(3-hydroxyalkanoates) from gluconate by recombinant Escherichia coli.

    PubMed

    Klinke, S; Ren, Q; Witholt, B; Kessler, B

    1999-02-01

    It was shown recently that recombinant Escherichia coli, defective in the beta-oxidation cycle and harboring a medium-chain-length (MCL) poly(3-hydroxyalkanoate) (PHA) polymerase-encoding gene of Pseudomonas, is able to produce MCL PHA from fatty acids but not from sugars or gluconate (S. Langenbach, B. H. A. Rehm, and A. Steinbüchel, FEMS Microbiol. Lett. 150:303-309, 1997; Q. Ren, Ph.D. thesis, ETH Zürich, Zürich, Switzerland, 1997). In this study, we report the formation of MCL PHA from gluconate by recombinant E. coli. By introduction of genes coding for an MCL PHA polymerase and the cytosolic thioesterase I ('thioesterase I) into E. coli JMU193, we were able to engineer a pathway for the synthesis of MCL PHA from gluconate. We used two expression systems, i.e., the bad promoter and alk promoter, for the 'thioesterase I- and PHA polymerase-encoding genes, respectively, which enabled us to modulate their expression independently over a range of inducer concentrations, which resulted in a maximum MCL PHA accumulation of 2.3% of cell dry weight from gluconate. We found that the amount of PHA and the 'thioesterase I activity are directly correlated. Moreover, the polymer accumulated in the recombinant E. coli consisted mainly of 3-hydroxyoctanoate monomers. On the basis of our data, we propose an MCL PHA biosynthesis pathway scheme for recombinant E. coli JMU193, harboring PHA polymerase and 'thioesterase I, when grown on gluconate, which involves both de novo fatty acid synthesis and beta-oxidation.

  15. A reconfigured Kennedy pathway which promotes efficient accumulation of medium chain fatty acids in leaf oils.

    PubMed

    Reynolds, Kyle B; Taylor, Matthew C; Cullerne, Darren P; Blanchard, Christopher L; Wood, Craig C; Singh, Surinder P; Petrie, James R

    2017-03-16

    Medium chain fatty acids (MCFA, C6-14 fatty acids) are an ideal feedstock for biodiesel and broader oleochemicals. In recent decades, several studies have used transgenic engineering to produce MCFA in seeds oils, though these modifications result in unbalance membrane lipid profiles that impair oil yields and agronomic performance. Given the ability to engineer non-seed organs to produce oils, we have previously demonstrated that MCFA profiles can be produced in leaves, but this also results in unbalanced membrane lipid profiles and undesirable chlorosis and cell death. Here we demonstrate that the introduction of a diacylglycerol acyltransferase from oil palm, EgDGAT1, was necessary to channel nascent MCFA directly into leaf oils and therefore bypassing MCFA residing in membrane lipids. This pathway resulted in increased flux towards MCFA rich leaf oils, reduced MCFA in leaf membrane lipids and, crucially, the alleviation of chlorosis. Deep sequencing of African oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera) generated candidate genes of interest, which were then tested for their ability to improve oil accumulation. Thioesterases were explored for the production of lauric acid (C12:0) and myristic (C14:0). The thioesterases from Umbellularia californica and Cinnamomum camphora produced a total of 52% C12:0 and 40% C14:0, respectively, in transient leaf assays. This study demonstrated that the introduction of a complete acyl-CoA dependent pathway for the synthesis of MFCA-rich oils avoided disturbing membrane homeostasis and cell death phenotypes. This study outlines a transgenic strategy for the engineering of biomass crops with high levels of MCFA rich leaf oils. This article is protected by copyright. All rights reserved.

  16. [Medium-chain acyl-CoA dehydrogenase deficiency: contribution of molecular biology].

    PubMed

    Cartier, N; Lepetit, N; Rocchiccioli, F; Bougnères, P F

    1994-03-01

    Medium-chain acyl-CoA dehydrogenase deficiency is the most frequent cause of defective congenital fatty acid oxidation. Its molecular characterization is now possible. Case n. 1. A girl, 15 month-old, was admitted because she suffered from fever and vomiting, requiring the administration of aspirin. One day later, she showed signs of drowsiness and hypotonia; her blood glucose concentration was 0.3 g/l. She was given intravenous glucose and this episode rapidly passed. Case n. 2. A boy, brother of the preceding patient, was routinely investigated; he was never symptomatic. Case n. 3. A boy, sibling of the two preceding children, was admitted at the age of 18 months because he had gone into a coma during a febrile episode. His blood glucose concentration was 0.15 g/l. This episode was rapidly resolved by a glucose infusion. His fasting blood concentrations of glucose, non esterified fatty acids. beta-hydroxybutyrate, lactate and pyruvate were normal as were his blood carnitine and ammonia, but he showed elevated urinary excretion of dicarboxylic acids. Genomic DNA was extracted from peripheral leukocytes of the three sibs and their parents. The A-->G mutation at nucleotide 985 of the MCAD gene was detected by amplification and creation of a restriction site (ACRS). The implicated segment of this gene was amplified by PCR. ACRS showed that the symptomatic children were homozygous for the A-->G mutation, whereas their parents were heterozygous. The third asymptomatic child did not carry the mutation. Molecular biology techniques are appropriate for diagnosing this potentially lethal disease and their use for screening is important for disease prevention.

  17. Screening for medium chain acyl-CoA dehydrogenase deficiency using electrospray ionisation tandem mass spectrometry

    PubMed Central

    Clayton, P.; Doig, M.; Ghafari, S.; Meaney, C.; Taylor, C.; Leonard, J.; Morris, M.; Johnson, A.

    1998-01-01

    OBJECTIVE—To establish criteria for the diagnosis of medium chain acyl-CoA dehydrogenase (MCAD) deficiency in the UK population using a method in which carnitine species eluted from blood spots are butylated and analysed by electrospray ionisation tandem mass spectrometry (ESI-MS/MS).
DESIGN—Four groups were studied: (1) 35 children, aged 4 days to 16.2 years, with proven MCAD deficiency (mostly homozygous for the A985G mutation, none receiving carnitine supplements); (2) 2168control children; (3) 482 neonates; and (4) 15 MCAD heterozygotes.
RESULTS—All patients with MCAD deficiency had an octanoylcarnitine concentration ([C8-Cn]) > 0.38 µM and no accumulation of carnitine species > C10 or < C6. Among the patients with MCAD deficiency, the [C8-Cn] was significantly lower in children > 10 weeks old and in children with carnitine depletion (free carnitine < 20 µM). Neonatal blood spots from patients with MCAD deficiency had a [C8-Cn] > 1.5 µM, whereas in heterozygotes and other normal neonates the [C8-Cn] was < 1.0 µM. In contrast, the blood spot [C8-Cn] in eight of 27 patients with MCAD deficiency > 10 weeks old fell within the same range as five of 15 MCAD heterozygotes (0.38-1.0 µM). However, the free carnitine concentrations were reduced (< 20 µM) in the patients with MCAD deficiency but normal in the heterozygotes.
CONCLUSIONS—Criteria for the diagnosis of MCAD deficiency using ESI-MS/MS must take account of age and carnitine depletion. If screening is undertaken at 7-10 days, the number of false positive and negative results should be negligible. Because there have been no instances of death or neurological damage following diagnosis of MCAD deficiency in our patient group, a strong case can be made for neonatal screening for MCAD deficiency in the UK.

 PMID:9797589

  18. Preparation and evaluation of easy energy supply property of medium-chain fatty acids liposomes.

    PubMed

    Liu, Weilin; Liu, Wei; Liu, Chengmei; Liu, Jianhua; Zheng, Huijuan; Yang, Shuibing; Su, Jiahong

    2011-01-01

    To develop an easy-energy-supply agent, medium-chain fatty acids (MCFAs) liposomes were prepared by thin-layer dispersion, freeze-thawing and dynamic high pressure microfluidization (DHPM)-freeze-thawing methods. Results showed that MCFAs nanoliposomes obtained by the novel method (DHPM-freeze-thawing) exhibited a smaller size (72.6 ± 4.9 nm), narrower size distribution (PDI = 0.175 ± 0.005), higher zeta potential (-41.27 ± 1.16 mV) and entrapment efficiency (45.9 ± 6.0%) compared to the other two methods. In the weight-loaded swimming test of the mice, the high-dose group of MCFAs nanoliposomes indicated a significantly longer swimming time (105 ± 31 min, p < 0.05), a lower serum urea nitrogen (839.5 ± 111.9 mg/L, p < 0.05) and blood lactic acid (5.7 ± 1.0 mmol/L, p ≤ 0.001), and a higher hepatic glycogen (15.0 ± 3.6 mg/g, p ≤ 0.001) than those of the control group (53 ± 13 min, 1153.6 ± 102.5 mg/L, 12.5 ± 1.9 mmol/L and 8.8 ± 3.3 mg/g, respectively). However, no significant difference was found between the high-dose group and MCFAs group. The results suggested that MCFAs nanoliposomes could be used as a potential easy-energy-supply agent.

  19. Production and characterization of medium-chain-length polyhydroxyalkanoates by Pseudomonas mosselii TO7.

    PubMed

    Chen, Yi-Jr; Huang, Yan-Chia; Lee, Chia-Yin

    2014-08-01

    The polyhydroxyalkanoate (PHA) production and growth of Pseudomonas mosselii TO7, a newly isolated Pseudomonas species from the wastewater of a vegetable oil manufacturing facility, was analyzed. Phenotypic analysis and phylogenetic analysis of the 16S rRNA gene revealed that it is closely related to Pseudomonas mosselii. In the presence of palm kernel and soybean oils, P. mosselii TO7 produced up to 50% cell dry weight (CDW) medium-chain-length (MCL) PHAs comprising high poly(3-hydroxyoctanoate) (P(3HO)) content; P(3HO) content increased to 45% CDW when grown in octanoate using a single-step culture process. The PHA monomer was identified by (13)C nuclear magnetic resonance spectroscopy. The average molecular weight and polydispersity index of PHA were 218.30 ± 31.73 and 2.21 ± 0.18, respectively. The PHA produced by P. mosselii TO7 in the presence of palm kernel oil had two melting temperature (Tm) values of 37.2°C and 55.7°C with melting enthalpy (ΔHm) values of 51.09 J g(-1) and 26.57 J g(-1), respectively. Inhibition analyses using acrylic and 2-bromooctanoic acids revealed β-oxidation as the primary pathway for MCL-PHA biosynthesis using octanoic acid. Moreover, Pseudomonas putida GPp104 PHA(-), harboring the PHA synthase genes of P. mosselii (phaC1pm and phaC2pm) was used for heterologous expression, which demonstrated that phaC1pm is the main PHA synthesis enzyme, and 3-hydroxyoctanoyl-CoA is its major substrate. This was the first report of a P. mosselii TO7 isolate producing high-yield P(3HO) through utilization of plant oils.

  20. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida

    PubMed Central

    2014-01-01

    Background Pseudomnas putida is a natural producer of medium chain length polyhydroxyalkanoates (mcl-PHA), a polymeric precursor of bioplastics. A two-fold increase of mcl-PHA production via inactivation of the glucose dehydrogenase gene gcd, limiting the metabolic flux towards side products like gluconate was achieved before. Here, we investigated the overproduction of enzymes catalyzing limiting steps of mcl-PHA precursor formation. Results A genome-based in silico model for P. putida KT2440 metabolism was employed to identify potential genetic targets to be engineered for the improvement of mcl-PHA production using glucose as sole carbon source. Here, overproduction of pyruvate dehydrogenase subunit AcoA in the P. putida KT2440 wild type and the Δgcd mutant strains led to an increase of PHA production. In controlled bioreactor batch fermentations PHA production was increased by 33% in the acoA overexpressing wild type and 121% in the acoA overexpressing Δgcd strain in comparison to P. putida KT2440. Overexpression of pgl-encoding 6-phosphoglucolactonase did not influence PHA production. Transcriptome analyses of engineered PHA producing P. putida in comparison to its parental strains revealed the induction of genes encoding glucose 6-phosphate dehydrogenase and pyruvate dehydrogenase. In addition, NADPH seems to be quantitatively consumed for efficient PHA synthesis, since a direct relationship between low levels of NADPH and high concentrations of the biopolymer were observed. In contrast, intracellular levels of NADH were found increased in PHA producing organisms. Conclusion Production of mcl-PHAs was enhanced in P. putida when grown on glucose via overproduction of a pyruvate dehydrogenase subunit (AcoA) in combination with a deletion of the glucose dehydrogenase (gcd) gene as predicted by in silico elementary flux mode analysis. PMID:24948031

  1. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD.

    PubMed

    De Preter, Vicky; Machiels, Kathleen; Joossens, Marie; Arijs, Ingrid; Matthys, Christophe; Vermeire, Severine; Rutgeerts, Paul; Verbeke, Kristin

    2015-03-01

    Bacteria play a role in the onset and perpetuation of intestinal inflammation in IBD. Compositional alterations may also change the metabolic capacities of the gut bacteria. To examine the metabolic activity of the microbiota of patients with Crohn's disease (CD), UC or pouchitis compared with healthy controls (HC) and determine whether eventual differences might be related to the pathogenesis of the disease. Faecal samples were obtained from 40 HC, 83 patients with CD, 68 with UC and 13 with pouchitis. Disease activity was assessed in CD using the Harvey-Bradshaw Index, in UC using the UC Disease Activity Index and in pouchitis using the Pouchitis Disease Activity Index. Metabolite profiles were analysed using gas chromatography-mass spectrometry. The number of metabolites identified in HC (54) was significantly higher than in patients with CD (44, p<0.001), UC (47, p=0.042) and pouchitis (43, p=0.036). Multivariate discriminant analysis predicted HC, CD, UC and pouchitis group membership with high sensitivity and specificity. The levels of medium-chain fatty acids (MCFAs: pentanoate, hexanoate, heptanoate, octanoate and nonanoate), and of some protein fermentation metabolites, were significantly decreased in patients with CD, UC and pouchitis. Hexanoate levels were inversely correlated to disease activity in CD (correlation coefficient=-0.157, p=0.046), whereas a significant positive correlation was found between styrene levels and disease activity in UC (correlation coefficient=0.338, p=0.001). Faecal metabolic profiling in patients with IBD relative to healthy controls identified MCFAs as important metabolic biomarkers of disease-related changes. NCT 01666717. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Impact of maternal dietary n-3 and n-6 fatty acids on milk medium-chain fatty acids and the implications for neonatal liver metabolism.

    PubMed

    Novak, Elizabeth M; Innis, Sheila M

    2011-11-01

    Levels of n-6, n-3, and medium-chain fatty acids (MCFA) in milk are highly variable. Higher carbohydrate intakes are associated with increased mammary gland MCFA synthesis, but the role of unsaturated fatty acids for milk MCFA secretion is unclear. This study addressed whether n-6 and n-3 fatty acids, which are known to inhibit hepatic fatty acid synthesis, influence MCFA in rat and human milk and the implications of varying MCFA, n-6, and n-3 fatty acids in rat milk for metabolic regulation in the neonatal liver. Rats were fed a low-fat diet or one of six higher-fat diets, varying in 16:0, 18:1n-9, 18:2n-6, 18:3n-3, and long-chain (LC) n-3 fatty acids. Higher maternal dietary 18:2n-6 or 18:3n-3 did not influence milk MCFA, but lower maternal plasma triglycerides, due to either a low-fat or a high-fat high-LC n-3 diet led to higher milk MCFA. MCFA levels were inversely associated with 18:1n-9, 18:2n-6, and 18:3n-3 in human milk, likely reflecting the association between dietary total fat and unsaturated fatty acids. High LC n-3 fatty acid in rat milk was associated with lower hepatic Pklr, Acly, Fasn, and Scd1 and higher Hmgcs2 in the milk-fed rat neonate, with no effect of milk 18:1n-9, 18:2n-6, or MCFA. These studies show that the dietary fatty acid composition does not impact MCFA secretion in milk, but the fatty acid composition of milk, particularly the LC n-3 fatty acid, is relevant to hepatic metabolic regulation in the milk-fed neonate.

  3. Understanding triglyceride levels related to intravenous fat administration.

    PubMed

    Weaver, Karen

    2014-01-01

    Lipid is an essential macronutrient in parenteral nutrition (PN) support. intravenous (IV) lipid provides essential fatty acids and a concentrated calorie source. Preterm infants are at risk for essential fatty deficiency early in life. Lipid administration is associated with some risks, and there are guidelines for administration to minimize complications. Lipid emulsions in the United States are derived from soybean oil. Outside of the United States, lipid emulsions made from fish oil or combinations of fish, soybean, olive, and medium-chain triglycerides (MCTs) are under investigation for improved tolerance, lower plasma lipid levels, and improved fatty acid profiles, all of which are considered beneficial. Triglyceride levels are an important measurement to assess patient tolerance.

  4. Triglyceride-induced diabetes mellitus in congenital generalized lipodystrophy.

    PubMed

    Montenegro, Renan Magalhães; Montenegro, Ana Paula Dias Rangel; Fernandes, Maria Inez Machado; de Moraes, Renata Ribeiro; Elias, Jorge; Gouveia, Leonor Maria Ferreira Braz; Muglia, Valdair Francisco; Foss, Milton Cesar; Moreira, Ayrton Custódio; Martinelli, Carlos Eduardo

    2002-04-01

    High levels of triglycerides and free fatty acids have been implicated in the pathogenesis of type 2 diabetes mellitus (DM). Congenital generalized lipodystrophy (CGL) is an autosomal recessive syndrome characterized by intense whole body reduction of subcutaneous fat. Its clinical manifestations appear during the first years of life. However, DM is usually a late event. We report a patient with CGL, diagnosed at 4 months of age, who has severe hypertriglyceridemia (serum triglyceride 12.34 mmol/l and cholesterol 3.90 mmol/l), muscular hypertrophy, hepatomegaly and DM (fasting glycemia 25.9 mmol/l). Hepatic biopsy revealed steatosis and fibrosis. A modified normolipidic (composed of medium chain triglycerides) normocaloric normoproteic milky diet and insulin therapy were instituted. After 1 month treatment a reduction of serum glucose and triglyceride levels (4.13 mmol/I and 7.7 mmol/l, respectively) was noted, with later normalization, which led to the discontinuation of insulin therapy. The patient has been maintaining good control with diet alone, presenting normal serum lipid levels (triglycerides 1.07 mmol/l, total cholesterol 2.71 mmol/l) and the following glycemic profile at OGTT: 0' 4.4 mmol/l; 30' 7.0 mmol/l; 60' 3.8 mmol/l; 90' 5.3 mmol/l, and 120' 5.2 mmol/l. The disappearance of hepatic steatosis was evidenced by a biopsy obtained 1 year after the beginning of treatment. In conolusion, this report suggests that the DM occurring in CGL can be precipitated by high triglyceride levels.

  5. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder.

    PubMed

    van der Walle, G A; Buisman, G J; Weusthuis, R A; Eggink, G

    1999-01-01

    Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of unsaturated alkyl side chains incorporated into the PHA resins resulted in oxidative drying PHA paints having excellent coating properties. The homogeneously pigmented PHA coatings yielded high-gloss, smooth and strong films upon curing and showed an excellent flexibility, a good adhesion to different substrates, cohesive film properties and resistance to chipping.

  6. Medium-chain fatty acid nanoliposomes suppress body fat accumulation in mice.

    PubMed

    Liu, Wei-Lin; Liu, Wei; Liu, Cheng-Mei; Yang, Shui-Bing; Liu, Jian-Hua; Zheng, Hui-Juan; Su, Kun-Ming

    2011-11-01

    Medium-chain fatty acids (MCFA) are widely used in diets for patients with obesity. To develop a delivery system for suppressing dietary fat accumulation into adipose tissue, MCFA were encapsulated in nanoliposomes (NL), which can overcome the drawbacks of MCFA and keep their properties unchanged. In the present study, crude liposomes were first produced by the thin-layer dispersion method, and then dynamic high-pressure microfluidisation (DHPM) and DHPM combined with freeze-thawing methods were used to prepare MCFA NL (NL-1 and NL-2, respectively). NL-1 exhibited smaller average size (77.6 (SD 4.3) nm), higher zeta potential (- 40.8 (SD 1.7) mV) and entrapment efficiency (73.3 (SD 16.1) %) and better stability, while NL-2 showed narrower distribution (polydispersion index 0.193 (SD 0.016)). The body fat reduction property of NL-1 and NL-2 were evaluated by short-term (2 weeks) and long-term (6 weeks) experiments of mice. In contrast to the MCFA group, the NL groups had overcome the poor palatability of MCFA because the normal diet of mice was maintained. The body fat and total cholesterol (TCH) of NL-1 (1.54 (SD 0.30) g, P = 0.039 and 2.33 (SD 0.44) mmol/l, P = 0.021, respectively) and NL-2 (1.58 (SD 0.69) g, P = 0.041 and 2.29 (SD 0.38) mmol/l, P = 0.015, respectively) significantly decreased when compared with the control group (2.11 (SD 0.82) g and 2.99 (SD 0.48) mmol/l, respectively). The TAG concentration of the NL-1 group (0.55 (SD 0.14) mmol/l) was remarkably lower (P = 0.045) than the control group (0.94 (SD 0.37) mmol/l). No significant difference in weight and fat gain, TCH and TAG was detected between the MCFA NL and MCFA groups. Therefore, MCFA NL could be potential nutritional candidates for obesity to suppress body fat accumulation.

  7. Medium-chain chlorinated paraffins (MCCPs): a review of bioaccumulation potential in the aquatic environment.

    PubMed

    Thompson, Roy; Vaughan, Martin

    2014-01-01

    Chlorinated paraffins (CPs) are high molecular weight organochlorine compounds that have been used in a variety of industrial applications for many years. Medium-chain chlorinated paraffins (MCCPs) (CAS 85535-85-9; Alkanes, C14-17 , chloro) are currently under investigation as potential persistent bioaccumulative toxic (PBT) compounds. In this article, the bioaccumulation potential of MCCPs is assessed using a tiered framework proposed after a recent Society of Environmental Toxicology and Chemistry (SETAC) Pellston Workshop in 2008. The framework proposes the use of physicochemical properties and modeling assessment, bioconcentration/bioaccumulation (BCF/BAF) assessment, biomagnification (BMF) assessment, and trophic magnification factor (TMF) assessment. It is hoped that use of this framework could harmonize and improve the efficiency and effectiveness of the chemical substance evaluation screening process for PBT properties. When applied to MCCPs, the following conclusions were made: empirical physiochemical data is available negating the use of models; laboratory BCFs range from 1000 to 15 000 (growth-corrected lipid normalized values) for 2 MCCP structures; field BAFs were an order of magnitude higher than the trigger criterion for "B status possible"; although results may not meet acceptance criteria for field studies, laboratory-derived BMFs for a number of C14-17 chlorinated alkanes were less than the trigger value of 1 (based on whole-body concentrations) whereas field-derived BMFs were less than 1 (based on lipid corrected values [generally used for field data] excluding one measure for sculpin, [Cottus cognatus]-Diporeia that was based on only one detectable sample); and finally, TMFs were less than the trigger criterion value of 1, which are considered the most convincing evidence for bioaccumulative properties of a compound and the "Gold Standard" measure of bioaccumulation. This article also discusses the uncertainties surrounding the published data

  8. Enhancement of medium-chain-length polyhydroxyalkanoates biosynthesis from glucose by metabolic engineering in Pseudomonas mendocina.

    PubMed

    Wang, Yuanyuan; Zhao, Fengjie; Fan, Xu; Wang, Shufang; Song, Cunjiang

    2016-02-01

    To enhance the biosynthesis of medium-chain-length polyhydroxyalkanoates (PHAMCL) from glucose in Pseudomonas mendocina NK-01, metabolic engineering strategies were used to block or enhance related pathways. Pseudomonas mendocina NK-01 produces PHAMCL from glucose. Besides the alginate oligosaccharide biosynthetic pathway proved by our previous study, UDP-D-glucose and dTDP-L-rhamnose biosynthetic pathways were identified. These might compete for glucose with the PHAMCL biosynthesis. First, the alg operon, galU and rmlC gene were deleted one by one, resulting in NK-U-1(∆alg), NK-U-2 (∆alg∆galU), NK-U-3(alg∆galU∆rmlC). After fermentation for 36 h, the cell dry weight (CDW) and PHAMCL production of these strains were determined. Compared with NK-U: 1) NK-U-1 produced elevated CDW (from 3.19 ± 0.16 to 3.5 ± 0.11 g/l) and equal PHAMCL (from 0.78 ± 0.06 to 0.79 ± 0.07 g/l); 2) NK-U-2 produced more CDW (from 3.19 ± 0.16 to 3.55 ± 0.23 g/l) and PHAMCL (from 0.78 ± 0.06 to 1.05 ± 0.07 g/l); 3) CDW and PHAMCL dramatically decreased in NK-U-3 (1.53 ± 0.21 and 0.41 ± 0.09 g/l, respectively). Additionally, the phaG gene was overexpressed in strain NK-U-2. Although CDW of NK-U-2/phaG decreased to 1.29 ± 0.2 g/l, PHA titer (%CDW) significantly increased from 24.5 % up to 51.2 %. The PHAMCL biosynthetic pathway was enhanced by blocking branched metabolic pathways in combination with overexpressing phaG gene.

  9. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: Implications for the mechanisms of lipase action

    SciTech Connect

    Deckelbaum, R.J. ); Hamilton, J.A.; Butbul, E.; Gutman, A. ); Moser, A. ); Bengtsson-Olivecrona, G.; Olivecrona, T. ); Carpentier, Y.A. )

    1990-02-06

    To explore how enzyme affinities and enzyme activities regulate hydrolysis of water-insoluble substrates, the authors compared hydrolysis of phospholipid-stabilized emulsions of medium-chain (MCT) versus long-chain triacylglycerols (LCT). Because substrate solubility at the emulsion surface might modulate rates of hydrolysis, the ability of egg yolk phosphatidylcholine to solubilize MCT was examined by NMR spectroscopy. Chemical shift measurements showed that 11 mol % of ({sup 13}C)carbonyl enriched trioctanoin was incorporated into phospholipid vesicles as a surface component. Line widths of trioctanoin surface peaks were half that of LCT, and relaxation times, T{sub 1}, were also shorter for trioctanoin, showing greater mobility for MCT in phospholipid. In assessing the effects of these differences in solubility on lipolysis, they found that both purified bovine milk lipoprotein lipase and human hepatic lipase hydrolyzed MCT at rates at least 2-fold higher than for LCT. Differences in affinity were also demonstrated in mixed incubations where increasing amounts of LCT emulsion resulted in decreased hydrolysis of MCT emulsions. These results suggest that despite lower enzyme affinity for MCT emulsions, shorter chain triacylglycerols are more readily hydrolyzed by lipoprotein and hepatic lipases than long-chain triacylglycerols because of greater MCT solubility and mobility at the emulsion-water interface.

  10. Medium-Chain Enriched Diacylglycerol (MCE-DAG) Oil Decreases Body Fat Mass in Mice by Increasing Lipolysis and Thermogenesis in Adipose Tissue.

    PubMed

    Kim, Haeun; Choe, Jee-Hwan; Choi, Jong Hun; Kim, Hun Jung; Park, Soo Hyun; Lee, Moon Won; Kim, Wooki; Go, Gwang-Woong

    2017-08-01

    Medium chain fatty acid (MCFA) escapes the formation of chylomicrons in the small intestine, resulting in energy expenditure through beta-oxidation. Diacylglycerol (DAG) is susceptible to oxidation rather than being stored in the adipose tissue. This study was conducted to verify the effect of MCE-DAG oil on body fat mass in vivo. Male C57BL/6 mice were randomly assigned to four groups (n = 12) as follows: (1) normal diet (18% kcal from fat), (2) canola oil as a control (40% kcal from canola oil), (3) MCE-DAG10 (10% kcal from MCE-DAG + 30% kcal from canola oil), and (4) MCE-DAG20 (20% kcal from MCE-DAG + 20% kcal from canola oil). The body weight and fat mass of MCE-DAG20 group mice were decreased relative to those of control mice (P < 0.05 and P < 0.001, respectively). Serum triacylglycerol (TAG) was decreased in both MCE-DAG10 and MCE-DAG20 groups (P < 0.01 and P < 0.05, respectively). Hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) were increased in the MCE-DAG20 group relative to the control in white adipose tissue (WAT) (P < 0.05). Uncoupling protein 1 (UCP1) was also increased in the MCE-DAG20 group relative to the control in brown adipose tissue (BAT) (P < 0.05). In summary, MCE-DAG reduced body fat mass likely by stimulating lipolysis in WAT and thermogenesis in BAT.

  11. Crystal structures of medium-chain acyl-CoA dehydrogenase from pig liver mitochondria with and without substrate.

    PubMed Central

    Kim, J J; Wang, M; Paschke, R

    1993-01-01

    The three-dimensional structure of medium-chain acyl-CoA dehydrogenase from pig mitochondria in the native form and that of a complex of the enzyme and a substrate (product) have been solved and refined by x-ray crystallographic methods at 2.4-A resolution to R factors of 0.172 and 0.173, respectively. The overall polypeptide folding and the quaternary structure of the tetramer are essentially unchanged upon binding of the ligand, octanoyl (octenoyl)-CoA. The ligand binds to the enzyme at the rectus (re) face of the FAD in the crevice between the two alpha-helix domains and the beta-sheet domain of the enzyme. The fatty acyl chain of the thioester substrate is buried inside of the polypeptide and the 3'-AMP moiety is close to the surface of the tetrameric enzyme molecule. The alkyl chain displaces the tightly bound water molecules found in the native enzyme and the carbonyl oxygen of the thioester interacts with the ribityl 2'-hydroxyl group of the FAD and the main-chain carbonyl oxygen of Glu-376. The C alpha--C beta of the fatty acyl moiety lies between the flavin and the gamma-carboxylate of Glu-376, supporting the role of Glu-376 as the base that abstracts the alpha proton in the alpha--beta dehydrogenation reaction catalyzed by the enzyme. Trp-166 and Met-165 are located at the sinister (si) side of the flavin ring at the surface of the enzyme, suggesting that they might be involved in the interactions with electron transferring flavoprotein. Lys-304, the prevalent mutation site found in patients with medium-chain acyl-CoA dehydrogenase deficiency, is located approximately 20 A away from the active site of the enzyme. Images Fig. 1 Fig. 2 Fig. 3 PMID:8356049

  12. Analytical solution to the diffusion, sorption and decay chain equation in a saturated porous medium between two reservoirs.

    PubMed

    Guzman, Juan; Maximov, Serguei; Escarela-Perez, Rafael; López-García, Irvin; Moranchel, Mario

    2015-01-01

    The diffusion and distribution coefficients are important parameters in the design of barrier systems used in radioactive repositories. These coefficients can be determined using a two-reservoir configuration, where a saturated porous medium is allocated between two reservoirs filled by stagnant water. One of the reservoirs contains a high concentration of radioisotopes. The goal of this work is to obtain an analytical solution for the concentration of all radioisotopes in the decay chain of a two-reservoir configuration. The analytical solution must be obtained by taking into account the diffusion and sorption processes. Concepts such as overvalued concentration, diffusion and decay factors are employed to this end. It is analytically proven that a factor of the solution is identical for all chains (considering a time scaling factor), if certain parameters do not change. In addition, it is proven that the concentration sensitivity, due to the distribution coefficient variation, depends of the porous medium thickness, which is practically insensitive for small porous medium thicknesses. The analytical solution for the radioisotope concentration is compared with experimental and numerical results available in literature.

  13. Growth Performance, Plasma Fatty Acids, Villous Height and Crypt Depth of Preweaning Piglets Fed with Medium Chain Triacylglycerol

    PubMed Central

    Chwen, Loh Teck; Foo, Hooi Ling; Thanh, Nguyen Tien; Choe, D. W.

    2013-01-01

    A study was conducted to investigate the effects of feeding medium chain triacylglycerol (MCT) on growth performance, plasma fatty acids, villus height and crypt depth in preweaning piglets. A total of 150 new born piglets were randomly assigned into one of three treatments: i) Control (no MCT); ii) MCT with milk (MCT+milk); iii) MCT without milk (MCT+fasting). Body weight, plasma fatty acid profiles, villus height and crypt depth were measured. Final BW for the Control and MCT+fasting was lower (p<0.05) than MCT+milk. The piglets fed with MCT regardless of milk provision or fasting had greater medium chain fatty acids (MCFA) than the Control. In contrast, the Control had greater long chain fatty acid (LCFA) and unsaturated fatty acid (USFA) than the MCT piglets. The piglets fed with MCT regardless of milk provision or fasting had higher villus height for the duodenum and jejunum after 6 h of feeding. Similar observations were found in piglets fed with MCT after 6 and 8 days of treatment. This study showed that feeding MCT to the piglets before weaning improved growth performance, with a greater concentration of MCT in blood plasma as energy source and a greater height of villus in duodenum, jejunum and ileum. PMID:25049841

  14. Distinct and Redundant Functions of μ1 Medium Chains of the AP-1 Clathrin-Associated Protein Complex in the Nematode Caenorhabditis elegans

    PubMed Central

    Shim, Jaegal; Sternberg, Paul W.; Lee, Junho

    2000-01-01

    In the nematode Caenorhabditis elegans, there exist two μ1 medium chains of the AP-1 clathrin-associated protein complex. Mutations of unc-101, the gene that encodes one of the μ1 chains, cause pleiotropic effects (Lee et al., 1994). In this report, we identified and analyzed the second μ1 chain gene, apm-1. Unlike the mammalian homologs, the two medium chains are expressed ubiquitously throughout development. RNA interference (RNAi) experiments with apm-1 showed that apm-1 and unc-101 were redundant in embryogenesis and in vulval development. Consistent with this, a hybrid protein containing APM-1, when overexpressed, rescued the phenotype of an unc-101 mutant. However, single disruptions of apm-1 or unc-101 have distinct phenotypes, indicating that the two medium chains may have distinct functions. RNAi of any one of the small or large chains of AP-1 complex (ς1, β1, or γ) showed a phenotype identical to that caused by the simultaneous disruption of unc-101 and apm-1, but not that by single disruption of either gene. This suggests that the two medium chains may share large and small chains in the AP-1 complexes. Thus, apm-1 and unc-101 encode two highly related μ1 chains that share redundant and distinct functions within AP-1 clathrin-associated protein complexes of the same tissue. PMID:10930467

  15. Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Pseudomonas alcaligenes LB19.

    PubMed

    Kim, Do Young; Nam, Jin Sik; Rhee, Young Ha

    2002-01-01

    An extracellular medium-chain-length poly(3-hydroxyalkanoate) (MCL-PHA) depolymerase from an isolate, Pseudomonas alcaligenes LB19, was purified to electrophoretic homogeneity by hydrophobic interaction chromatography using Octyl-Sepharose CL-4B and gel permeation chromatography using Sephadex G-150. The molecular mass of the enzyme, which consisted of a single polypeptide chain, was approximately 27.6 kDa. The pI value of the enzyme was estimated to be 5.7, and its maximum activity was observed at pH 9.0 and 45 degreesC. The enzyme was significantly inactivated by EDTA and phenylmethylsulfonyl fluoride (PMSF) but insensitive to dithiothreitol. It was also markedly inhibited by 0.1% Tween 80 and 0.05% Triton X-100. The purified enzyme could hydrolyze various types of bacterial aliphatic and aromatic MCL-PHAs but not poly(3-hydroxybutyrate), polycaprolactone, and poly(L-lactide). Biodegradation rates of the aromatic MCL-PHAs were significantly lower than those of the aliphatic MCL-PHAs, regardless of the compositions and types of aromatic substituents. It was able to hydrolyze medium-chain-length p-nitrophenylalkanoates more efficiently than the shorter-chain forms. The main hydrolysis products of poly(3-hydroxynonanoate) were identified as monomer units. The results demonstrated in this study suggest that the MCL-PHA depolymerase from P. alcaligenes LB19 is a distinct enzyme, which are different from those of other MCL-PHA degrading bacteria in its quaternary structure, pI value, sensitivity to EDTA and PMSF, and hydrolysis products of MCL-PHA.

  16. Olive Oil-Based Lipid Emulsions Do Not Influence Platelet Receptor Expression in Comparison to Medium and Long Chain Triglycerides In vitro.

    PubMed

    Stoetzer, Carsten; Nickel, Katja; Weißig, Annette; Großheim, Marieke; Scheinichen, Dirk; Doll, Thorben; Jüttner, Björn

    2016-11-01

    Lipid emulsions influence platelet aggregation and receptor expression. However, the effect on platelet function is not fully explained. Therefore, the aim of this study was to examine the influence of the lipids Lipofundin(®), Lipidem(®) and ClinOleic(®) on surface expressions of P-selectin, GPIb and GPIIb/IIIa on platelets in vitro. Whole blood was incubated in two different concentrations (0.06 and 0.6 mg/ml) of LCT/MCT, n-3/LCT/MCT and LCT-MUFA for 30 min, followed by activation with TRAP-6 or ADP for flow-cytometric assay. Rates of P-selectin, GPIb and GPIIb/IIIa expression were analyzed. There was a significant increase in GPIIb/IIIa- and P-selectin-expression after incubation with LCT/MCT and n-3/LCT/MCT at the concentration of 0.6 mg/ml, without and after stimulation with TRAP-6 and ADP. GPIb was significantly decreased. Accordingly, LCT-MUFA had no effect on receptor expression of platelets in vitro. We demonstrated that LCT-MUFA did not activate receptor expression of platelets whereas LCT/MCT significantly increased platelet aggregation in vitro. This finding should be noted for parenteral nutrition of intensive care patients and, in the future, might provide further insight into the pathogenic pathways of acute thromboembolic events. However, prospectively designed clinical studies are needed to support our results.

  17. Comparing Growth Rates after Hospital Discharge of Preterm Infants Fed with Either Post-Discharge Formula or High-Protein, Medium-Chain Triglyceride Containing Formula.

    PubMed

    Ekcharoen, Chanikarn; Tantibhaedhyangkul, Ruangvith

    2015-12-01

    To evaluate whether a high energy, high-protein, MCT-containing formula (HPMCT) is as appropriate as a post-discharge formula (PDF) for feeding preterm infants after hospital discharge by comparing growth, adverse effects, and cost per gram of bodyweight gain. The present study was a randomized controlled trial. The calculated sample size was 20 infants for each intervention group. After the consent procedure, preterm infants who had postconceptional age (PCA) 35⁺¹ to 36⁺⁰ weeks and weight between 1,800 and 3,000 g at hospital discharge were randomly enrolled to receive either PDF or HPMCT starting from the discharge day. Intervention period lasted at least 28 days and until the infant's weight was at least 3,000 g or PCA was at least 40⁺⁰ weeks. Body weight, length, and head circumference were measured on days 0, 14, 28, 56, and 84 after hospital discharge. Formula intakes and adverse symptoms (abdominal distension, diarrhea, and constipation) were recorded by parents before each visit in diaries provided by the study group. Cost was calculated from estimated actual formula intakes. There were six and five infants enrolled into PDF and HPMCT group, respectively. Demographic data were not different between the two groups. There were no significant differences of growth rates in both groups at days 28, 56, and 84 after hospital discharge. Adverse effects and costs were not different either. PDF and HPMCT might be comparably appropriate for feeding catching-up preterm infants after hospital discharge, as noted from growth rates, adverse effects, and costs. However, further studies involving biochemical and neurodevelopmental evaluation, with long-term follow-up in larger populations are needed to clearly compare both formulas.

  18. Characterization of medium-chain triacylglycerol (MCT)-enriched seed oil from Cinnamomum camphora (Lauraceae) and its oxidative stability.

    PubMed

    Hu, Jiang-Ning; Zhang, Bing; Zhu, Xue-Mei; Li, Jing; Fan, Ya-Wei; Liu, Rong; Tang, Liang; Lee, Ki-Teak; Deng, Ze-Yuan

    2011-05-11

    Medium-chain triacylglycerol (MCT)-enriched oil was extracted by supercritical fluid extraction of carbon dioxide (SFE-CO(2)) from Cinnamomum camphora seeds. The SFE-CO(2) process was optimized using the Box-Behnken design (BBD). The maximum oil yield (42.82%) was obtained under the optimal SFE-CO(2) conditions: extraction pressure, 21.16 MPa; extraction temperature, 45.67 °C; and extraction time, 2.38 h. Subsequently, the physicochemical characteristics, fatty acid composition, triacylglycerol (TAG) composition, tocopherol content, and DSC profile as well as oxidative stabilities of C. camphora seed oil (CCSO) were studied. Results showed that CCSO contained two major medium-chain fatty acids, capric acid (53.27%) and lauric acid (39.93%). The predominant TAG species in CCSO was LaCC/CLaC (ECN 32, 79.29%). Meanwhile, it can be found that CCSO had much higher oxidative stabilities than coconut oil due to the higher content of tocopherols in CCSO (α-tocopherol, 8.67 ± 0.51 mg/100 g; γ-tocopherol, 22.6 ± 1.02 mg/100 g; δ-tocopherol, 8.38 ± 0.47 mg/100 g). Conclusively, CCSO with such a high level of MCTs and high oxidative stabilities could be potentially applied in special food for specific persons such as weak patients and overweight persons because oils enriched in MCTs can be rapidly absorbed into body to provide energy without fat accumulation.

  19. In Vitro Evidence of Anti-Inflammatory and Anti-Obesity Effects of Medium-Chain Fatty Acid-Diacylglycerols.

    PubMed

    Yu, Seungmin; Choi, Jong Hun; Kim, Hun Jung; Park, Soo Hyun; Go, Gwang-Woong; Kim, Wooki

    2017-09-28

    Dietary approaches using structured lipids, including medium-chain fatty acids and diacylglycerols, have been adopted for the prevention of obesity-induced chronic inflammation. In an extension to previous studies, medium-chain fatty acid-diacylglycerol enriched dietary oil (MCDG) was prepared by interesterification of canola oil and mediumchain fatty acid-triacylglycerols. The consequent MCDG product was applied to RAW264.7 macrophages followed by the assessment of multiple inflammatory responses. Compared with conventionally used canola and olive oil controls, MCDG suppressed macrophage phagocytosis, as assessed by the uptake of microsphere beads. Furthermore, the production of IL-6 and TNF-α, transcription of COX-2 and iNOS, and expression of CD80 on cell surfaces were downregulated by MCDG in LPS-stimulated macrophages. Subsequently, differentiated 3T3-L1 adipocytes were evaluated for proinflammatory cytokine production and lipid accumulation. IL-6 production was marginally affected and lipid accumulation was inhibited by MCDG. Taken together, these results suggest that MCDG has potential as an alternative oil for cooking in order to prevent obesity-induced inflammation.

  20. Medium Chain Acylcarnitines Dominate the Metabolite Pattern in Humans under Moderate Intensity Exercise and Support Lipid Oxidation

    PubMed Central

    Simon, Perikles; Fritsche, Jens; Machann, Jürgen; Schick, Fritz; Wang, Jiangshan; Hoene, Miriam; Schleicher, Erwin D.; Häring, Hans-Ulrich; Xu, Guowang; Niess, Andreas M.

    2010-01-01

    Background Exercise is an extreme physiological challenge for skeletal muscle energy metabolism and has notable health benefits. We aimed to identify and characterize metabolites, which are components of the regulatory network mediating the beneficial metabolic adaptation to exercise. Methodology and Principal Findings First, we investigated plasma from healthy human subjects who completed two independent running studies under moderate, predominantly aerobic conditions. Samples obtained prior to and immediately after running and then 3 and 24 h into the recovery phase were analyzed by a non-targeted (NT-) metabolomics approach applying liquid chromatography-qTOF-mass spectrometry. Under these conditions medium and long chain acylcarnitines were found to be the most discriminant plasma biomarkers of moderately intense exercise. Immediately after a 60 min (at 93% VIAT) or a 120 min run (at 70% VIAT) a pronounced, transient increase dominated by octanoyl-, decanoyl-, and dodecanoyl-carnitine was observed. The release of acylcarnitines as intermediates of partial β-oxidation was verified in skeletal muscle cell culture experiments by probing 13C-palmitate metabolism. Further investigations in primary human myotubes and mouse muscle tissue revealed that octanoyl-, decanoyl-, and dodecanoyl-carnitine were able to support the oxidation of palmitate, proving more effective than L-carnitine. Conclusions Medium chain acylcarnitines were identified and characterized by a functional metabolomics approach as the dominating biomarkers during a moderately intense exercise bout possessing the power to support fat oxidation. This physiological production and efflux of acylcarnitines might exert beneficial biological functions in muscle tissue. PMID:20634953

  1. Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442.

    PubMed

    Cai, Lei; Yuan, Mei-Qing; Liu, Feng; Jian, Jia; Chen, Guo-Qiang

    2009-04-01

    Pseudomonas putida KT2442 is a medium-chain-length polyhydroxyalkanoates (PHA) producer. One of the main shortages in the production of PHA has been the intracellular PHA degradation caused by its endogenous PHA depolymerase. The aim of this study was to improve PHA production via removing the PHA degradation mechanism. PHA depolymerase phaZ knockout mutant P. putida KTMQ01 was successfully constructed, which accumulated 86 wt% medium-chain-length PHA (mcl PHA) when cultured in mineral medium containing sodium octanoate as the carbon source compared with P. putida KT2442 which produced only 66 wt% of its cell dry weight (CDW). P. putida KTMQ01 cultured over a five-day period on sodium octanoate produced 4.5 g L(-1)-4.0 g L(-1) CDW containing approximately 80 wt% PHA without degradation. In contrast, P. putida KT2442 was observed with decreasing CDW and PHA from over 4 to less than 2 g L(-1) over the same period of time, indicating the function of PHA depolymerases which reduced the amount of PHA from around 50 wt% to none over the incubation period. RT-PCR analysis showed that phaC2 transcriptional level of P. putida KTMQ01 was higher than that of P. putida KT2442, indicating the possibility of relief on negative control of phaC2 transcription by the deletion of phaZ, which combined with the lack of in vivo PHA degradation, led to more PHA accumulation. P. putida KTMQ01 contained PHA granules with larger sizes and smaller numbers than those of P. putida KT2442.

  2. Triglycerides: A reappraisal.

    PubMed

    Wiesner, Philipp; Watson, Karol E

    2017-08-01

    Elevated cholesterol levels are clearly independently associated with adverse cardiovascular events. Another class of lipid particles, triglycerides, is also abundant in the human body and has been found in atherosclerotic plaques. Recent observational studies have demonstrated an association between elevated triglyceride levels and increased risk for future cardiovascular events. With this knowledge and the discovery of effective agents to lower triglyceride levels, the management of triglycerides is currently undergoing a renaissance. Unfortunately, no randomized, controlled clinical trials have been completed to date, proving that lowering triglycerides will reduce cardiovascular events. In this review we highlight some of the evidence that led to this stage and discuss the current data on pharmacologic intervention of triglyceride levels and the effect on clinical outcomes. Lastly, we want to give the reader insight on what the most recent lipid guidelines state about clinical triglyceride management, mention new pharmacological agents, and highlight the clinical evidence for safe and effective lowering of triglycerides levels with life style modification. Copyright © 2017. Published by Elsevier Inc.

  3. Triglycerides and cardiovascular disease.

    PubMed

    Nordestgaard, Børge G; Varbo, Anette

    2014-08-16

    After the introduction of statins, clinical emphasis first focussed on LDL cholesterol-lowering, then on the potential for raising HDL cholesterol, with less focus on lowering triglycerides. However, the understanding from genetic studies and negative results from randomised trials that low HDL cholesterol might not cause cardiovascular disease as originally thought has now generated renewed interest in raised concentrations of triglycerides. This renewed interest has also been driven by epidemiological and genetic evidence supporting raised triglycerides, remnant cholesterol, or triglyceride-rich lipoproteins as an additional cause of cardiovascular disease and all-cause mortality. Triglycerides can be measured in the non-fasting or fasting states, with concentrations of 2-10 mmol/L conferring increased risk of cardiovascular disease, and concentrations greater than 10 mmol/L conferring increased risk of acute pancreatitis and possibly cardiovascular disease. Although randomised trials showing cardiovascular benefit of triglyceride reduction are scarce, new triglyceride-lowering drugs are being developed, and large-scale trials have been initiated that will hopefully provide conclusive evidence as to whether lowering triglycerides reduces the risk of cardiovascular disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of Long-Chain and Medium-Chain Fatty Acids on Apoptosis and Oxidative Stress in Human Liver Cells with Steatosis.

    PubMed

    Wang, Baogui; Li, Lumin; Fu, Jing; Yu, Ping; Gong, Deming; Zeng, Cheng; Zeng, Zheling

    2016-03-01

    Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity-related metabolic complications, which caused by excess energy intake and physical inactivity apart from genetic defects. The mechanisms that promote disease progression from NAFLD to further liver injury are still unclear. We hypothesize that the progression involved "2nd hit" is strongly influenced by the type of fatty acids in diets. Flow cytometric analysis showed that medium-chain fatty acid (MCFA) markedly decreased the percentage of late apoptotic and necrotic cells compared with long-chain fatty acid (LCFA), and MCFA inhibited the activities of caspase-3 and -9 in human liver cells with steatosis. Western blot analysis found that the levels of inflammatory markers (interleukin [IL]-6, IL-1-β, and tumor necrosis factor-α) were substantially reduced by MCFA compared with LCFA. Proteomic analysis further showed that LCFA inhibited the expression of antioxidant enzymes, and increased the expression of proteins associated with oxidative stress. It was found that LCFA (palmitate), not MCFA induced apoptosis, oxidative stress and chronic inflammatory responses in the hepatic cells with steatosis. In conclusion, reasonable selection of dietary fats has potential to translate therapeutically by ameliorating disease progression in patients with NAFLD.

  5. Bioaccumulation and biomagnification of short and medium chain polychlorinated paraffins in different species of fish from Liaodong Bay, North China.

    PubMed

    Huang, Huiting; Gao, Lirong; Xia, Dan; Qiao, Lin

    2017-09-07

    Chlorinated paraffins (CPs) are highly complex technical mixtures, and the short chain chlorinated paraffins (SCCPs) are classed as persistent and have been included in the Stockholm Convention. However, there have been few studies of SCCPs and medium chain chlorinated paraffins (MCCPs) and their bioaccumulation and biomagnification in different species of fish. The present study investigated the levels, congener group profiles, bioaccumulation, and biomagnification of SCCPs and MCCPs in different species of fish from Liaodong Bay, North China. The ranges for the ΣSCCP and ΣMCCP concentrations were 376.3-8596 ng/g lipid weight (lw) and 22.37-5097 ng/g lw, respectively. The logarithms of bioaccumulation factors of ΣSCCPs ranged from 4.69 to 6.05, implying that SCCPs bioaccumulated in the fish. The trophic magnification factor of ΣSCCPs was 2.57, indicating that SCCPs could biomagnify in fish. Carbon chain length, the numbers of chlorine atoms, and octanol/water partition coefficients of the SCCPs and MCCPs might be important factors affecting the bioaccumulation of these chemicals in fish. The risk posed to human health by consumption of fish containing SCCPs was low. New SCCPs with nine carbons (C9) were detected in fish in this study.

  6. Second-generation functionalized medium-chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications.

    PubMed

    Tortajada, Marta; da Silva, Luiziana Ferreira; Prieto, María Auxiliadora

    2013-03-01

    Polyhydroxyalkanoates (PHAs) are biodegradable biocompatible polyesters, which accumulate as granules in the cytoplasm of many bacteria under unbalanced growth conditions. Medium-chain-length PHAs (mcl-PHAs), characterized by C6-C14 branched monomer chains and typically produced by Pseudomonas species, are promising thermoelastomers, as they can be further modified by introducing functional groups in the side chains. Functionalized PHAs are obtained either by feeding structurally related substrates processed through the beta-oxidation pathway, or using specific strains able to transform sugars or glycerol into unsaturated PHA by de novo fatty-acid biosynthesis. Functionalized mcl-PHAs provide modified mechanical and thermal properties, and consequently have new processing requirements and highly diverse potential applications in emergent fields such as biomedicine. However, process development and sample availability are limited due to the toxicity of some precursors and still low productivity, which hinder investigation. Conversely, improved mutant strains designed through systems biology approaches and cofeeding with low-cost substrates may contribute to the widespread application of these biopolymers. This review focuses on recent developments in the production of functionalized mcl-PHAs, placing particular emphasis on strain and bioprocess design for cost-effective production.

  7. Production of medium chain length fatty alcohols from glucose in Escherichia coli.

    PubMed

    Youngquist, J Tyler; Schumacher, Martin H; Rose, Joshua P; Raines, Thomas C; Politz, Mark C; Copeland, Matthew F; Pfleger, Brian F

    2013-11-01

    Metabolic engineering offers the opportunity to produce a wide range of commodity chemicals that are currently derived from petroleum or other non-renewable resources. Microbial synthesis of fatty alcohols is an attractive process because it can control the distribution of chain lengths and utilize low cost fermentation substrates. Specifically, primary alcohols with chain lengths of 12 to 14 carbons have many uses in the production of detergents, surfactants, and personal care products. The current challenge is to produce these compounds at titers and yields that would make them economically competitive. Here, we demonstrate a metabolic engineering strategy for producing fatty alcohols from glucose. To produce a high level of 1-dodecanol and 1-tetradecanol, an acyl-ACP thioesterase (BTE), an acyl-CoA ligase (FadD), and an acyl-CoA/aldehyde reductase (MAACR) were overexpressed in an engineered strain of Escherichia coli. Yields were improved by balancing expression levels of each gene, using a fed-batch cultivation strategy, and adding a solvent to the culture for extracting the product from cells. Using these strategies, a titer of over 1.6 g/L fatty alcohol with a yield of over 0.13 g fatty alcohol/g carbon source was achieved. These are the highest reported yield of fatty alcohols produced from glucose in E. coli. © 2013 Published by Elsevier Inc.

  8. Production of medium chain length fatty alcohols from glucose in Escherichia coli

    PubMed Central

    Youngquist, J. Tyler; Schumacher, Martin H.; Rose, Joshua P.; Raines, Thomas C.; Politz, Mark C.; Copeland, Matthew F.; Pfleger, Brian F.

    2013-01-01

    Metabolic engineering offers the opportunity to produce a wide range of commodity chemicals that are currently derived from petroleum or other non-renewable resources. Microbial synthesis of fatty alcohols is an attractive process because it can control the distribution of chain lengths and utilize low cost fermentation substrates. Specifically, primary alcohols with chain lengths of 12 to 14 carbons have many uses in the production of detergents, surfactants, and personal care products. The current challenge is to produce these compounds at titers and yields that would make them economically competitive. Here, we demonstrate a metabolic engineering strategy for producing fatty alcohols from glucose. To produce a high level of 1-dodecanol and 1-tetradecanol, an acyl-ACP thioesterase (BTE), an acyl-CoA ligase (FadD), and an acyl-CoA/aldehyde reductase (MAACR) were overexpressed in an engineered strain of Escherichia coli. Yields were improved by balancing expression levels of each gene, using a fed-batch cultivation strategy, and adding a solvent to the culture for extracting the product from cells. Using these strategies, a titer of over 1.6 g/L fatty alcohol with a yield of over 0.13 g fatty alcohol / g carbon source was achieved. These are the highest reported yield of fatty alcohols produced from glucose in E. coli. PMID:24141053

  9. The A985 to G mutation of the medium-chain acyl-CoA dehydrogenase gene and sudden infant death syndrome in Normandy.

    PubMed

    Lecoq, I; Mallet, E; Bonte, J B; Travert, G

    1996-02-01

    Medium-chain acyl-CoA dehydrogenase deficiency is the most common genetic defect of hepatic fatty acid oxidation. Clinical signs are somnolence and lethargy potentially leading to coma. Death occurs during the first attack in about 20% of cases, suggesting sudden infant death syndrome. A point mutation (adenine to guanine at position 985) in exon 11 of the medium-chain acyl-CoA dehydrogenase gene accounts for 90% of medium-chain acyl-CoA dehydrogenase deficiency-causing alleles. Such a high prevalence of a single mutation makes it possible to estimate the incidence of medium-chain acyl-CoA dehydrogenase deficiency in the general population and in sudden infant death syndrome. The study was performed by polymerase chain reaction amplification from blood spots on filter paper in 2000 randomly selected newborns (group I) and in 225 infants dead from sudden infant death syndrome (group II). Among 2000 newborns, 17 were found to be heterozygote for the G985 mutation. In group II, one child was found with a single copy of the G985 mutation. So, the estimated frequency of the G985 mutation in the general population was 1/118 and the incidence of medium-chain acyl-CoA dehydrogenase deficiency was calculated as around 1/45,000 in Normandy.

  10. The n-3 long-chain PUFAs modulate the impact of the GCKR Pro446Leu polymorphism on triglycerides in adolescents[S

    PubMed Central

    Rousseaux, Julien; Duhamel, Alain; Dumont, Julie; Dallongeville, Jean; Molnar, Denes; Widhalm, Kurt; Manios, Yannis; Sjöström, Michael; Kafatos, Anthony; Breidenassel, Christina; Gonzales-Gross, Marcela; Cuenca-Garcia, Magdalena; Censi, Laura; Ascensión, Marcos; De Henauw, Stefaan; Moreno, Luis A.; Meirhaeghe, Aline; Gottrand, Frédéric

    2015-01-01

    Dietary n-3 long-chain PUFAs (LC-PUFAs) are associated with improvement in the parameters of the metabolic syndrome (MetS). Glucokinase regulatory protein (GCKR) is a key protein regulating intracellular glucose disposal. Our aim was to investigate: i) the relationship between the GCKR rs1260326 (Pro446Leu) polymorphism and parameters of the MetS; and ii) a potential influence of n-3 and n-6 LC-PUFA levels on this relationship in the HELENA study (1,155 European adolescents). Linear regression analyses were performed to study the association between rs1260326 and the outcomes of interest. Interactions between rs1260326 and LC-PUFA levels on outcomes were explored. The T allele of rs1260326 was associated with higher serum TG concentrations compared with the C allele. In contrast to n-6 LC-PUFA levels, a significant interaction (P = 0.01) between rs1260326 and total n-3 LC-PUFA levels on serum TG concentrations was observed. After stratification on the n-3 LC-PUFA median values, the association between rs1260326 and TG concentration was significant only in the group with high n-3 LC-PUFA levels. In conclusion, this is the first evidence that n-3 LC-PUFAs may modulate the impact of the GCKR rs1260326 polymorphism on TG concentrations in adolescents. Several molecular mechanisms, in link with glucose uptake, could explain these findings. PMID:26136510

  11. Phase equilibriums, self-assembly and interactions in two-, three- and four medium-chain length component systems.

    PubMed

    Rosenholm, Jarl B

    2014-03-01

    The Scandinavian surface (surfactant) and colloid science owes much of its success to Per Ekwall and Björn Lindman. In this review the main topics shared by their research groups at Åbo Akademi University in Finland and at Lund University in Sweden are described. The nature of surface active substances (cosolvents, co-surfactants and surfactants) and microemulsions are evaluated. It is shown that the properties of medium-chain length surfactants differ dramatically from long-chain surfactants. The phase equilibriums of binary systems are related to the phase equilibriums of ternary and quaternary systems referred to as microemulsions or more recently also as nanoemulsions. A distinction is made between hydrotrope liquids, detergentless microemulsions, surfactant mixture systems and microemulsions. Three component systems are assembled to "true" quaternary microemulsions. An exceptionally comprehensive network of thermodynamic parameters describing molecular site exchange and micelle formation are derived and related mutually. Gibbs free energy, enthalpy, entropy, volume, heat capacity, expansivity and compressibility can be used to illustrate the degree of aggregation cooperativity and to evaluate whether micelle formation is of a first-, second- or intermediate order phase transition. Theoretical simulations and experimental results show that the associate structures of medium-chain length surfactants are quite open and may be deformed due to small aggregation numbers. The self-assembly occurs over a number of distinct steps at a series of experimentally detectable critical concentrations. Despite the low aggregation tendency their phase behavior equals those of long-chain homologs in surfactant mixture and microemulsion systems. A number of models describing the self-assembly are reviewed. Nuclear magnetic resonance (shift, relaxation rate and diffusion), Laser Raman and infrared spectroscopies were chosen as key instruments for molecular interaction

  12. Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas aeruginosa with fatty acids and alternative carbon sources.

    PubMed

    Chan, Pui-Ling; Yu, Vincent; Wai, Lam; Yu, Hoi-Fu

    2006-01-01

    In this study, medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were produced by Pseudomonas aeruginosa using different carbon sources. Decanoic acid induced the highest (9.71% [+/- 0.7]) mcl-PHAs accumulation in bacterial cells at 47 h. The cells preferred to accumulate and degrade the polyhydroxyoctanoate than polyhydroxydecanoate (PHD) during early stage and final stage of the growth, respectively. The production cost of mcl-PHAs can be reduced by using edible oils as the carbon source. The bacteria accumulated 6% (+/- 0.7) of mcl-PHAs in the presence of olive oil. Besides, reused oil was another potential carbon source for the reduction of the production cost of mcl-PHAs. Overall, PHD was the major constituent in the accumulated mcl-PHAs.

  13. Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge

    PubMed Central

    2017-01-01

    To simultaneously quantify and profile the complex mixture of short-, median-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) in Australian sewage sludge, we applied and further validated a recently developed novel instrumental technique, using quadrupole time-of-flight high resolution mass spectrometry running in the negative atmospheric pressure chemical ionization mode (APCI-qTOF-HRMS). Without using an analytical column the cleaned extracts were directly injected into the qTOF-HRMS followed by quantification of the CPs by a mathematical algorithm. The recoveries of the four SCCP, MCCP and LCCP-spiked sewage sludge samples ranged from 86 to 123%. This APCI-qTOF-HRMS method is a fast and promising technique for routinely measuring SCCPs, MCCPs, and LCCPs in sewage sludge. Australian sewage sludge was dominated by MCCPs with concentrations ranging from 542 to 3645 ng/g dry weight (dw). Lower SCCPs concentrations (<57–1421 ng/g dw) were detected in the Australian sewage sludge, which were comparable with the LCCPs concentrations (116–960 ng/g dw). This is the first time that CPs were reported in Australian sewage sludge. The results of this study gives a first impression on the distribution of the SCCPs, MCCPs, and LCCPs in Australia wastewater treatment plants (WWTPs). PMID:28218842

  14. Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge.

    PubMed

    Brandsma, Sicco H; van Mourik, Louise; O'Brien, Jake W; Eaglesham, Geoff; Leonards, Pim E G; de Boer, Jacob; Gallen, Christie; Mueller, Jochen; Gaus, Caroline; Bogdal, Christian

    2017-03-21

    To simultaneously quantify and profile the complex mixture of short-, median-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) in Australian sewage sludge, we applied and further validated a recently developed novel instrumental technique, using quadrupole time-of-flight high resolution mass spectrometry running in the negative atmospheric pressure chemical ionization mode (APCI-qTOF-HRMS). Without using an analytical column the cleaned extracts were directly injected into the qTOF-HRMS followed by quantification of the CPs by a mathematical algorithm. The recoveries of the four SCCP, MCCP and LCCP-spiked sewage sludge samples ranged from 86 to 123%. This APCI-qTOF-HRMS method is a fast and promising technique for routinely measuring SCCPs, MCCPs, and LCCPs in sewage sludge. Australian sewage sludge was dominated by MCCPs with concentrations ranging from 542 to 3645 ng/g dry weight (dw). Lower SCCPs concentrations (<57-1421 ng/g dw) were detected in the Australian sewage sludge, which were comparable with the LCCPs concentrations (116-960 ng/g dw). This is the first time that CPs were reported in Australian sewage sludge. The results of this study gives a first impression on the distribution of the SCCPs, MCCPs, and LCCPs in Australia wastewater treatment plants (WWTPs).

  15. Markov chain formalism for generalized radiative transfer in a plane-parallel medium, accounting for polarization

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Davis, Anthony B.; Diner, David J.

    2016-11-01

    A Markov chain formalism is developed for computing the transport of polarized radiation according to Generalized Radiative Transfer (GRT) theory, which was developed recently to account for unresolved random fluctuations of scattering particle density and can also be applied to unresolved spectral variability of gaseous absorption as an improvement over the standard correlated-k method. Using Gamma distribution to describe the probability density function of the extinction or absorption coefficient, a shape parameter a that quantifies the variability is introduced, defined as the mean extinction or absorption coefficient squared divided by its variance. It controls the decay rate of a power-law transmission that replaces the usual exponential Beer-Lambert-Bouguer law. Exponential transmission, hence classic RT, is recovered when a→∞. The new approach is verified to high accuracy against numerical benchmark results obtained with a custom Monte Carlo method. For a<∞, angular reciprocity is violated to a degree that increases with the spatial variability, as observed for finite portions of real-world cloudy scenes. While the degree of linear polarization in liquid water cloudbows, supernumerary bows, and glories is affected by spatial heterogeneity, the positions in scattering angle of these features are relatively unchanged. As a result, a single-scattering model based on the assumption of subpixel homogeneity can still be used to derive droplet size distributions from polarimetric measurements of extended stratocumulus clouds.

  16. Link between lipid metabolism and voluntary food intake in rainbow trout fed coconut oil rich in medium-chain TAG.

    PubMed

    Figueiredo-Silva, A Cláudia; Kaushik, Sadasivam; Terrier, Frédéric; Schrama, Johan W; Médale, Françoise; Geurden, Inge

    2012-06-01

    We examined the long-term effect of feeding coconut oil (CO; rich in lauric acid, C12) on voluntary food intake and nutrient utilisation in rainbow trout (Oncorhynchus mykiss), with particular attention to the metabolic use (storage or oxidation) of ingested medium-chain TAG. Trout were fed for 15 weeks one of the four isoproteic diets containing fish oil (FO) or CO as fat source (FS), incorporated at 5% (low fat, LF) or 15% (high fat, HF). Fat level or FS did not modify food intake (g/kg(0·8) per d), despite higher intestinal cholecystokinin-T mRNA in trout fed the HF-FO diet. The HF diets relative to the LF ones induced higher growth and adiposity, whereas the replacements of FO by CO resulted in similar growth and adiposity. This, together with the substantial retention of C12 (57% of intake), suggests the relatively low oxidation of ingested C12. The down-regulation of carnitine palmitoyl-transferase-1 (CPT-1) confirms the minor dependency of medium-chain fatty acids (MCFA) on CPT-1 to enter the mitochondria. However, MCFA did not up-regulate mitochondrial oxidation evaluated using hepatic hydroxyacyl-CoA dehydrogenase as a marker, in line with their high retention in body lipids. At a low lipid level, MCFA increased mRNA levels of fatty acid synthase, elongase and stearoyl-CoA desaturase in liver, showing the hepatic activation of fatty acid synthesis pathways by MCFA, reflected by increased 16 : 0, 18 : 0, 16 : 1, 18 : 1 body levels. The high capacity of trout to incorporate and transform C12, rather than to readily oxidise C12, contrasts with data in mammals and may explain the absence of a satiating effect of CO in rainbow trout.

  17. Continuous measurement of galactolipid hydrolysis by pancreatic lipolytic enzymes using the pH-stat technique and a medium chain monogalactosyl diglyceride as substrate.

    PubMed

    Amara, Sawsan; Lafont, Dominique; Fiorentino, Brice; Boullanger, Paul; Carrière, Frédéric; De Caro, Alain

    2009-10-01

    Galactolipids are the main lipids from plants and galactolipases play a major role in their metabolism. These enzymes were however poorly studied so far and only few assays have been developed. A specific and continuous galactolipase assay using synthetic medium chain monogalactosyl diacylglycerol (MGDG) as substrate was developed using the pH-stat technique and recombinant human (rHPLRP2) and guinea pig (rGPLRP2) pancreatic lipase-related protein 2 as model enzymes. PLRP2s are the main enzymes involved in the digestion of galactolipids in the gastrointestinal tract. Monogalactosyl di-octanoylglycerol was mixed with bile salt solutions by sonication to form a micellar substrate before launching the assay. The nature of the bile salt and the bile salt to MGDG ratio were found to significantly affect the rate of MGDG hydrolysis by rHPLRP2 and rGPLRP2. The maximum galactolipase activity of both enzymes was recorded with sodium deoxycholate (NaDC) and at a NaDC to MGDG ratio of 1.33 and at basic pH values (8.0-9.0). The maximum rates of hydrolysis were obtained using a MGDG concentration of 10(-2) M and calcium chloride was found to be not necessary to obtain the maximum of activity. Under these conditions, the maximum turnovers of rGPLRP2 and rHPLRP2 on mixed NaDC/MGDG micelles were found to be 8000+/-500 and 2800+/-60 micromol/min/mg (U/mg), respectively. These activities are in the same order of magnitude as the activities on triglycerides of lipases and they are the highest specific activities ever reported for galactolipases. For the sake of comparison, the hydrolysis of mixed bile salt/MGDG micelles was also tested using other pancreatic lipolytic enzymes and only native and recombinant human carboxyl ester hydrolase were found to display significant but lower activities (240+/-17 and 432+/-62 U/mg, respectively) on MGDG.

  18. Solubilisation of different medium chain esters in zwitterionic surfactant solutions--effects on phase behaviour and structure.

    PubMed

    Barth, A; Prévost, S; Popig, J; Dzionara, M; Hedicke, G; Gradzielski, M

    2011-12-01

    We studied the effect of solubilisation of methyl esters with different chains of medium length into the binary surfactant system tetradecyldimethylamine oxide/water at constant surfactant concentration of 200 mM. As esters we employed valeric, capronic, enanthic, and pelargonic methyl ester, thereby decreasing the polarity. Always a phase sequence L(1)-L(α)-L(1) is observed with increasing ester concentration, where the L(α)-phase increases in extent and goes to much lower temperatures with increasing chain length of the ester. Viscosity measurements show a maximum at intermediate concentrations of additive that is independent of the type of ester. From SANS measurements detailed information about the structural changes occurring during the rod-to-sphere transition in the system of the shortest additive is deduced, which proceeds first through a pronounced rod growth. Interestingly, for the different esters an almost constant value of the volumic solubilisation capacity is observed, in agreement with the relatively constant interfacial tension. For the different esters no effect on the radius and the area requirement at the amphiphilic interface is observed at the solubilisation boundary. The microemulsions present here are spherical aggregates where the ester is partitioned between core and shell. From the SANS and interfacial tension data the effective bending constants of the surfactant monolayers were deduced and they show that the extension of the L(α)-phase is directly related to a corresponding increase in the bending constants of the surfactant/ester monolayers. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor (PPAR) γ Activators and Pan-PPAR Partial Agonists

    PubMed Central

    Ayers, Steven D.; Lin, Jean Z.; Cvoro, Aleksandra; Silveira, Rodrigo L.; Martínez, Leandro; Souza, Paulo C. T.; Saidemberg, Daniel; Deng, Tuo; Amato, Angela Angelica; Togashi, Marie; Hsueh, Willa A.; Phillips, Kevin; Palma, Mário Sérgio; Neves, Francisco A. R.; Skaf, Munir S.; Webb, Paul; Polikarpov, Igor

    2012-01-01

    Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8–C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products. PMID:22649490

  20. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists.

    PubMed

    Liberato, Marcelo Vizoná; Nascimento, Alessandro S; Ayers, Steven D; Lin, Jean Z; Cvoro, Aleksandra; Silveira, Rodrigo L; Martínez, Leandro; Souza, Paulo C T; Saidemberg, Daniel; Deng, Tuo; Amato, Angela Angelica; Togashi, Marie; Hsueh, Willa A; Phillips, Kevin; Palma, Mário Sérgio; Neves, Francisco A R; Skaf, Munir S; Webb, Paul; Polikarpov, Igor

    2012-01-01

    Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products.

  1. Medium- and long-chain triacylglycerols reduce body fat and blood triacylglycerols in hypertriacylglycerolemic, overweight but not obese, Chinese individuals.

    PubMed

    Zhang, Yuehong; Liu, Yinghua; Wang, Jin; Zhang, Rongxin; Jing, Hongjiang; Yu, Xiaoming; Zhang, Yong; Xu, Qin; Zhang, Jieying; Zheng, Zixin; Nosaka, Naohisa; Arai, Chie; Kasai, Michio; Aoyama, Toshiaki; Wu, Jian; Xue, Changyong

    2010-06-01

    In contrast to the consumption of long-chain triacylglycerols (LCT), consumption of medium- and long-chain triacylglycerols (MLCT) reduces the body fat and blood triacylglycerols (TAG) level in hypertriacylglycerolemic Chinese individuals. These responses may be affected by BMI because of obesity-induced insulin resistance. We aimed to compare the effects of consuming MLCT or LCT on reducing body fat and blood TAG level in hypertriacylglycerolemic Chinese subjects with different ranges of BMI. Employing a double-blind, randomized and controlled protocol, 101 hypertriacylglycerolemic subjects (including 67 men and 34 women) were randomly allocated to ingest 25-30 g/day MLCT or LCT oil as the only cooking oil for 8 consecutive weeks. Anthropometric measurements of body weight, BMI, body fat, WC, HC, blood biochemical variables, and subcutaneous fat area and visceral fat area in the abdomen were measured at week 0 and 8. As compared to subjects with BMI 24-28 kg/m(2) in the LCT group, corresponding subjects in the MLCT group showed significantly greater decrease in body weight, BMI, body fat, WC, ratio of WC to HC, total fat area and subcutaneous fat area in the abdomen, as well as blood TAG and LDL-C levels at week 8. Based upon our results, consumption of MLCT oil may reduce body weight, body fat, and blood TAG and LDL-C levels in overweight hypertriacylglycerolemic Chinese subjects but may not induce these changes in normal or obese hypertriacylglycerolemic subjects.

  2. Effects of dietary medium-chain triacylglycerol on mRNA level of gluconeogenic enzymes in malnourished rats.

    PubMed

    Kojima, Keiichi; Kasai, Michio

    2008-12-01

    We have reported previously that dietary medium-chain triacylglycerol (MCT) improved serum albumin concentration and protein balance in malnourished rats. To clarify the mechanisms for this effect of MCT, hepatic messenger RNA levels of gluconeogenic enzymes, pyruvate dehydrogenase (PDH) and alanine aminotransferase (ALT) were measured in rats fed low-protein diets containing either MCT or isocaloric long-chain triacylglycerol (LCT) for 2 wk. The serum albumin concentration in rats fed the MCT diet was significantly higher compared with those fed the LCT diet. Serum free fatty acids and ketone body fraction were higher in rats fed MCT compared with those fed the LCT diet. The hepatic mRNA level of PDH was significantly lower in rats fed MCT than those fed LCT. But, there was no significant difference between the two groups in mRNA of gluconeogenic enzymes or ALT. These results suggest that ketone bodies, which are an alternative energy source and might spare blood glucose, increase by MCT feeding, and the reason for the PEM (protein-energy malnutrition)-improving effect of MCT is not caused by suppression of gluconeogenesis.

  3. Tracking Dietary Sources of Short- and Medium-Chain Chlorinated Paraffins in Marine Mammals through a Subtropical Marine Food Web.

    PubMed

    Zeng, Lixi; Lam, James C W; Chen, Hui; Du, Bibai; Leung, Kenneth M Y; Lam, Paul K S

    2017-09-05

    Our previous study revealed an elevated accumulation of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in marine mammals from Hong Kong waters in the South China Sea. To examine the bioaccumulation potential and biomagnification in these apex predators, we sampled the dietary items of marine mammals and tracked the sources of SCCPs and MCCPs through a marine food web in this region. Sixteen fish species, seven crustacean species, and four mollusk species were collected, and the main prey species were identified for two species of marine mammals. Concentrations of ∑SCCPs and ∑MCCPs in these collected species suggested a moderate pollution level in Hong Kong waters compared to the global range. Lipid content was found to mediate congener-specific bioaccumulation in these marine species. Significantly positive correlations were observed between trophic levels and concentrations of ∑SCCPs or ∑MCCPs (p < 0.05). Trophic magnification factors for ∑SCCPs and ∑MCCPs were 4.29 and 4.79, indicating that both of them have trophic magnification potentials. Elevated biomagnification of SCCPs and MCCPs from prey species to marine mammals was observed. This is the first report of dietary source tracking of SCCPs and MCCPs in marine mammals. The elevated biomagnification between prey and marine mammals raises environmental concerns about these contaminants.

  4. Production of medium-chain-length polyhydroxyalkanoates by activated sludge enriched under periodic feeding with nonanoic acid.

    PubMed

    Lee, Sun Hee; Kim, Jae Hee; Mishra, Debaraj; Ni, Yu-Yang; Rhee, Young Ha

    2011-05-01

    The potential use of activated sludge for the production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) was investigated. The enrichment of bacterial populations capable of producing MCL-PHAs was achieved by periodic feeding with nonanoic acid in a sequencing batch reactor (SBR). Denaturing gradient gel electrophoresis analysis revealed Pseudomonas aeruginosa strains to be predominant in the bacterial community during the SBR process. The composition of PHA synthesized by the enriched biomass from nonanoic acid consisted of a large concentration (>89 mol%) of MCL monomer units and a small amount of short-chain-length monomer units. Under fed-batch fermentation with continuous feeding of nonanoic acid at a flow rate of 0.225 g/L/h and a C/N ratio of 40, a maximum PHA content of 48.6% dry cell weight and a conversion yield (Y(p/s)) of 0.94 g/g were achieved. These results indicate that MCL-PHA production by activated sludge is a promising alternative to typical pure culture approaches. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Preventive Effects of the Dietary Intake of Medium-chain Triacylglycerols on Immobilization-induced Muscle Atrophy in Rats.

    PubMed

    Nishimura, Shuhei; Inai, Makoto; Takagi, Tetsuo; Nonaka, Yudai; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2017-08-01

    Previous studies have shown that medium-chain triacylglycerols (MCTs) exert favorable effects on protein metabolism. This study evaluated the effects of the dietary intake of MCTs on rat skeletal muscle mass and total protein content during casting-induced hindlimb immobilization, which causes substantial protein degradation and muscle atrophy. Rats were fed a standard diet containing long-chain triacylglycerols (LCTs) or MCTs for 3 days and then a unilateral hindlimb was immobilized while they received the same diet. After immobilization for 3, 7, and 14 days, muscle mass and total protein content in immobilized soleus muscle in the LCT-fed rats had markedly decreased compared to the contralateral muscle; however, these losses were partially suppressed in MCT-fed rats. Autophagosomal membrane proteins (LC-I and -II), which are biomarkers of autophagy-lysosome activity, did not differ significantly between the LCT- and MCT-fed rats. In contrast, the immobilization-induced increase in muscle-specific E3 ubiquitin ligase MuRF-1 protein expression in immobilized soleus muscle relative to contralateral muscle was completely blocked in the MCT-fed rats and was significantly lower than that observed in the LCT-fed rats. Collectively, these results indicate that the dietary intake of MCTs at least partly alleviates immobilization-induced muscle atrophy by inhibiting the ubiquitin-proteasome pathway.

  6. Development of paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation

    PubMed Central

    Hong, Soon-Seok; Choi, Ju Yeon; Kim, Jong Oh; Lee, Mi-Kyung; Kim, So Hee; Lim, Soo-Jeong

    2016-01-01

    Studies have highlighted the challenge of developing injectable liposomes as a paclitaxel (PTX) carrier, a challenge attributable to the limitations in liposomal stability caused by PTX loading. Poor stability of PTX-loaded liposomes is caused by PTX-triggered aggregation or fusion of liposomal membranes and is exacerbated in the presence of PEGylated lipid. In the present study, the effect of triglyceride incorporation on the stability of PTX-loaded/PEGylated liposomes was explored. Incorporation of a medium chain triglyceride Captex 300 into saturated phosphatidylcholine (PC)-based liposomes (1,2-dimyristoyl-sn-glycero-3-phosphocholine [DMPC]:cholesterol [CHOL]:N-(Carbonyl-methoxypolyethyleneglycol 2000)-1, 2-distearoyl-sn-glycero-3-phospho-ethanolamine [PE-PEG]), produced a fine, homogeneous, and membrane-filterable PTX-loaded liposomes fulfilling the requirement of an injectable lipid formulation. Triglyceride incorporation also greatly inhibited the time-dependent leakage of PTX from saturated PC-based liposomes, which appears to be mediated by the inhibition of liposome fusion. In contrast, triglyceride incorporation induced the destabilization and PTX leakage of unsaturated PC-based liposomes, indicating the opposite effect of triglyceride depending on the fluidity status of PC constituting the liposomal membrane. PTX release profile and the in vitro and in vivo anticancer efficacy of triglyceride-incorporated DMPC:CHOL:PE-PEG liposomes were similar to Taxol® while the toxicity of liposomal PTX was significantly lower than that of Taxol. Taken together, triglyceride incorporation provided an injectable PTX formulation by functioning as a formulation stabilizer of PEGylated/saturated PC-based liposomes. PMID:27660440

  7. Milk fat responses to dietary supplementation of short- and medium-chain fatty acids in lactating dairy cows.

    PubMed

    Vyas, D; Teter, B B; Erdman, R A

    2012-09-01

    Short-and medium-chain fatty acids (SMCFA), which are synthesized de novo in the mammary gland, are reduced to a much greater extent than the long-chain fatty acids during diet-induced milk fat depression. Our hypothesis was that SMCFA are limiting for milk fat synthesis even under conditions when milk fat is not depressed. Our objective was to test the potential limitation of SMCFA on milk fat synthesis via dietary supplementation. Sixteen lactating Holstein cows (107±18 d in milk) were fed a corn silage-based total mixed ration. Cows were randomly assigned to groups of 4 per pen and supplemented with 1 of 4 dietary fat supplements (600 g/d) supplied in a 4×4 Latin square design with 21-d experimental periods. Treatments consisted of fat supplements containing mixtures of calcium salts of long-chain fatty acids (Megalac; Church & Dwight Co. Inc., Princeton, NJ) and an SMCFA mixture (S; 3.3% C8, 7.6% C10, 9.85% C12, 32.12% C14, and 47.11% C16) that contained 0, 200, 400, and 600 g/d of S substituted for Megalac (S0, S200, S400, and S600, respectively). No treatment effects were observed for dry matter and fat-corrected milk. However, milk yield was decreased with S600. Milk fat increased linearly by 0.17, 0.25, and 0.33 percentage units for the respective S treatments. However, fat yield peaked at S200 and milk protein concentration and yield was significantly decreased at the higher S levels because of a linear trend toward decreased milk yield in the S600 treatment. In conclusion, SMCFA supplementation linearly increased milk fat concentration but decreased milk production at the higher levels of supplementation. The dietary inclusion of SMCFA had no effects on total milk fat yield.

  8. Intake of small-to-medium-chain saturated fatty acids is associated with peripheral leukocyte telomere length in postmenopausal women.

    PubMed

    Song, Yan; You, Nai-Chieh Y; Song, Yiqing; Kang, Mo K; Hou, Lifang; Wallace, Robert; Eaton, Charles B; Tinker, Lesley F; Liu, Simin

    2013-06-01

    Dietary factors, including dietary fat, may affect the biological aging process, as reflected by the shortening of telomere length (TL), by affecting levels of oxidative stress and inflammatory responses. We examined the direct relations of total and types of dietary fats and fat-rich foods to peripheral leukocyte TL. In 4029 apparently healthy postmenopausal women who participated in the Women's Health Initiative, intakes of total fat, individual fatty acids, and fat-rich foods were assessed by a questionnaire. TL was measured by quantitative polymerase chain reaction. Intake of short-to-medium-chain saturated fatty acids (SMSFAs; aliphatic tails of ≤ 12 carbons) was inversely associated with TL. Compared with participants in other quartiles of SMSFA intake, women who were in the highest quartile (median: 1.29% of energy) had shorter TLs [mean: 4.00 kb (95% CI: 3.89, 4.11 kb)], whereas women in the lowest quartile of intake (median: 0.29% of energy) had longer TLs [mean: 4.13 kb (95% CI: 4.03, 4.24 kb); P-trend = 0.046]. Except for lauric acid, all other individual SMSFAs were inversely associated with TL (P < 0.05). In isoenergetic substitution models, the substitution of 1% of energy from SMSFAs with any other energy source was associated with 119 bp longer TLs (95% CI: 21, 216 bp). Intakes of nonskim milk, butter, and whole-milk cheese (major sources of SMSFAs) were all inversely associated with TL. No significant associations were found with long-chain saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids. In conclusion, we found that higher intakes of SMSFAs and SMSFA-rich foods were associated with shorter peripheral leukocyte TL among postmenopausal women. These findings suggest the potential roles of SMSFAs in the rate of biological aging.

  9. High-Throughput Determination and Characterization of Short-, Medium-, and Long- Chain Chlorinated Paraffins in Human Blood.

    PubMed

    Li, Tong; Wan, Yi; Gao, Shixiong; Wang, Beili; Hu, Jianying

    2017-02-22

    The industrial chlorinated paraffins (CPs) are comprised of short-chain (SCCPs), medium chain (MCCPs), and long chain (LCCPs) CPs. Although SCCPs and MCCPs are environmentally ubiquitous, little is known about CPs in humans. This study established a method for simultaneous determination of 261 SCCP, MCCP, and LCCP congener groups in one injection by reversed ultra-high-pressure liquid chromatography coupled with chlorine-enhanced electron spray ionization-quadrupole time-of-flight mass spectrometry. The method yielded good peak shapes, high sensitivities, and low co-eluted interferences for all examined CPs. LCCPs with carbon numbers of 21 to 27 were detected in their standard technical mixtures, and MCCPs and LCCPs impurities were detected in the LCCP and MCCP standard technical mixtures, respectively, causing quantification deviations when these mixtures were used for calibration. After considering these impurities' contribution to the total concentrations, the quantification accuracies for ∑SCCPs, ∑MCCPs, and ∑LCCPs ranged from 95.1±8.4% to 105.6±9.2% in the eight CP technical mixtures. The method was successfully applied to determine CPs in about 6 g human blood samples from a general population, and estimated ∑SCCP, ∑MCCP, and ∑LCCP concentrations to be 370-35,000, 130-3200, and 22-530 ng/g lipid weight (n=50), respectively. A comparison of blood and soil/air CP profiles from the same areas suggested a relatively higher potential for the accumulation of SCCPs, compared with MCCPs, in humans.

  10. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica

    PubMed Central

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics. PMID:26581109

  11. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    PubMed

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.

  12. Analytic study of the chain dark decomposition reaction of iodides - atomic iodine donors - in the active medium of a pulsed chemical oxygen-iodine laser: 2. Limiting parameters of the branching chain dark decomposition reaction of iodides

    SciTech Connect

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, Aleksandr I; Sorokin, Vadim N

    2009-08-31

    The final stages in the development of a branching chain decomposition reaction of iodide in the active medium of a pulsed chemical oxygen-iodine laser (COIL) are analysed. Approximate expressions are derived to calculate the limiting parameters of the chain reaction: the final degree of iodide decomposition, the maximum concentration of excited iodine atoms, the time of its achievement, and concentrations of singlet oxygen and iodide at that moment. The limiting parameters, calculated by using these expressions for a typical composition of the active medium of a pulsed COIL, well coincide with the results of numerical calculations. (active media)

  13. Alcohol and plasma triglycerides.

    PubMed

    Klop, Boudewijn; do Rego, Ana Torres; Cabezas, Manuel Castro

    2013-08-01

    This study reviews recent developments concerning the effects of alcohol on plasma triglycerides. The focus will be on population, intervention and metabolic studies with respect to alcohol and plasma triglycerides. Alcohol consumption and fat ingestion are closely associated and stimulated by each other via hypothalamic signals and by an elevated cephalic response. A J-shaped relationship between alcohol intake and plasma triglycerides has been described. A normal body weight, polyphenols in red wine and specific polymorphisms of the apolipoprotein A-V and apolipoprotein C-III genes may protect against alcohol-associated hypertriglyceridemia. In contrast, obesity exaggerates alcohol-associated hypertriglyceridemia and therefore the risk of pancreatitis. High alcohol intake remains harmful since it is associated with elevated plasma triglycerides, but also with cardiovascular disease, alcoholic fatty liver disease and the development of pancreatitis. Alcohol-induced hypertriglyceridemia is due to increased very-low-density lipoprotein secretion, impaired lipolysis and increased free fatty acid fluxes from adipose tissue to the liver. However, light to moderate alcohol consumption may be associated with decreased plasma triglycerides, probably determined by the type of alcoholic beverage consumed, genetic polymorphisms and lifestyle factors. Nevertheless, patients should be advised to reduce or stop alcohol consumption in case of hypertriglyceridemia.

  14. Bioconversion of Xylan to Triglycerides by Oil-Rich Yeasts

    PubMed Central

    Fall, Ray; Phelps, Patricia; Spindler, Diane

    1984-01-01

    A series of lipid-accumulating yeasts was examined for their potential to saccharify xylan and accumulate triglyceride. Of the genera tested, including Candida, Cryptococcus, Lipomyces, Rhodosporidium, Rhodotorula, and Trichosporon, only Cryptococcus and Trichosporon isolates saccharified xylan. All of the strains could assimilate xylose and accumuate triglyceride under nitrogen-limiting conditions. Strains of Cryptococcus albidus were found to be especially useful for a one-step saccharification of xylan coupled to triglyceride synthesis. Cryptococcus terricolus, a strain constitutive for lipid accumulation, lacked extracellular xylanase, but did assimilate xylose and xylobiose and was able to continuously convert xylan to triglyceride if the culture medium was supplemented with xylanase. PMID:16346541

  15. Process analysis of the conversion of styrene to biomass and medium chain length polyhydroxyalkanoate in a two-phase bioreactor.

    PubMed

    Nikodinovic-Runic, Jasmina; Casey, Eoin; Duane, Gearoid F; Mitic, Dragana; Hume, Aisling R; Kenny, Shane T; O'Connor, Kevin E

    2011-10-01

    The improvement and modeling of a process for the supply of the volatile aromatic hydrocarbon, styrene, to a fermentor for increased biomass production of the medium chain length polyhydroxyalkanoate (mcl-PHA) accumulating bacterium Pseudomonas putida CA-3 was investigated. Fed-batch experiments were undertaken using different methods to provide the styrene. Initial experiments where styrene was supplied as a liquid to the bioreactor had detrimental effects on cell growth and inhibited PHA polymer accumulation. By changing the feed of gaseous styrene to liquid styrene through the air sparger a 5.4-fold increase in cell dry-weight was achieved (total of 10.56 g L(-1)) which corresponds to a fourfold improvement in PHA production (3.36 g L(-1)) compared to previous studies performed in our laboratory (0.82 g L(-1)). In addition this final improved feeding strategy reduced the release of styrene from the fermentor 50-fold compared to initial experiments (0.12 mL total styrene released per 48 h run). An unstructured kinetic model was developed to describe cell growth along with substrate and oxygen utilization. The formation of dispersed gas (air) and liquid (styrene) phases in the medium and the transfer of styrene between the aqueous and dispersed liquid droplet phases was also modeled. The model provided a detailed description of these phase transitions and helped explain how the feeding strategy led to improved process performance in terms of final biomass levels. It also highlighted the key factors to be considered during further process improvement.

  16. Identification and Biochemical Evidence of a Medium-Chain-Length Polyhydroxyalkanoate Depolymerase in the Bdellovibrio bacteriovorus Predatory Hydrolytic Arsenal

    PubMed Central

    Martínez, Virginia; de la Peña, Fernando; García-Hidalgo, Javier; de la Mata, Isabel; García, José Luis

    2012-01-01

    The obligate predator Bdellovibrio bacteriovorus HD100 shows a large set of proteases and other hydrolases as part of its hydrolytic arsenal needed for its predatory life cycle. We present genetic and biochemical evidence that open reading frame (ORF) Bd3709 of B. bacteriovorus HD100 encodes a novel medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase (PhaZBd). The primary structure of PhaZBd suggests that this enzyme belongs to the α/β-hydrolase fold family and has a typical serine hydrolase catalytic triad (serine-histidine-aspartic acid) in agreement with other PHA depolymerases and lipases. PhaZBd has been extracellularly produced using different hypersecretor Tol-pal mutants of Escherichia coli and Pseudomonas putida as recombinant hosts. The recombinant PhaZBd has been characterized, and its biochemical properties have been compared to those of other PHA depolymerases. The enzyme behaves as a serine hydrolase that is inhibited by phenylmethylsulfonyl fluoride. It is also affected by the reducing agent dithiothreitol and nonionic detergents like Tween 80. PhaZBd is an endoexohydrolase that cleaves both large and small PHA molecules, producing mainly dimers but also monomers and trimers. The enzyme specifically degrades mcl-PHA and is inactive toward short-chain-length polyhydroxyalkanoates (scl-PHA) like polyhydroxybutyrate (PHB). These studies shed light on the potentiality of these predators as sources of new biocatalysts, such as an mcl-PHA depolymerase, for the production of enantiopure hydroxyalkanoic acids and oligomers as building blocks for the synthesis of biobased polymers. PMID:22706067

  17. Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri

    USDA-ARS?s Scientific Manuscript database

    Fermentative production of medium-chain (C5-C8) volatile fatty acids by the carboxylate platform has several potential advantages as a route to biofuel precursors. However, its practicality is limited by the relatively slow synthesis of these acids from shorter precursors (C2-C4) that accumulate dur...

  18. Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates.

    PubMed

    Follonier, Stéphanie; Goyder, Miriam S; Silvestri, Anne-Claire; Crelier, Simon; Kalman, Franka; Riesen, Roland; Zinn, Manfred

    2014-11-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are biobased and biodegradable alternatives to petrol-derived polymers, whose break-through has been prevented by high production cost. Therefore we investigated whether wastes from the food industry (nine types of fruit pomace including apricots, cherries and grapes, and waste frying oil) could replace the costly sugars and fatty acids typically used as carbon substrates for the bacterial fermentations. A selection of enzyme preparations was tested for converting the residual polysaccharides from the pomaces into fermentable monosaccharides. From the pomace of apricots, cherries and Solaris grapes, 47, 49 and 106gL(-1) glucose were recovered, respectively. Solaris grapes had the highest sugar content whereas apricots contained the fewest growth inhibitors. These two pomaces were assessed for their suitability to produce mcl-PHA in bioreactor. A 2-step fermentation was established with Pseudomonas resinovorans, hydrolyzed pomace as growth substrate and WFO as mcl-PHA precursor. Solaris grapes proved to be a very promising growth substrate, resulting in the production of 21.3gPHA(Lpomace)(-1) compared to 1.4g PHA (L pomace)(-1) for apricots. Finally, capillary zone electrophoresis analyses allowed monitoring of sugar and organic acid uptake during the fermentation on apricots, which led to the discovery of reverse diauxie in P. resinovorans. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Dietary supplementation with medium-chain TAG has long-lasting cognition-enhancing effects in aged dogs.

    PubMed

    Pan, Yuanlong; Larson, Brian; Araujo, Joseph A; Lau, Winnie; de Rivera, Christina; Santana, Ruben; Gore, Asa; Milgram, Norton W

    2010-06-01

    The present study focused on the hypothesis that dietary supplementation with medium-chain TAG (MCT) will improve cognitive function in aged dogs by providing the brain with energy in the form of ketones. Aged Beagle dogs were subjected to a baseline battery of cognitive tests, which were used to establish cognitively equivalent control or treatment groups. The dogs in the treatment group were maintained on a diet supplemented with 5.5 % MCT. After an initial wash-in period, all the dogs were tested with a battery of cognitive test protocols, which assessed sequentially landmark discrimination learning ability, egocentric visuospatial function and attention. The groups were maintained on the diets for 8 months. The MCT-supplemented group showed significantly better performance in most of the test protocols than the control group. The group differences also varied as a function of task difficulty, with the more difficult task showing greater supplementation effects than the easier tasks. The group given the MCT supplement showed significantly elevated levels of beta-hydroxybutyrate, a ketone body. These results indicate, first, that long-term supplementation with MCT can have cognition-improving effects, and second, that MCT supplementation increases circulating levels of ketones. The results support the hypothesis that brain function of aged dogs can be improved by MCT supplementation, which provides the brain with an alternative energy source.

  20. Effects of weight loss using supplementation with Lactobacillus strains on body fat and medium-chain acylcarnitines in overweight individuals.

    PubMed

    Kim, Minkyung; Kim, Minjoo; Kang, Miso; Yoo, Hye Jin; Kim, Min Sun; Ahn, Young-Tae; Sim, Jae-Hun; Jee, Sun Ha; Lee, Jong Ho

    2017-01-25

    Our previous study showed that supplementation with a combination of Lactobacillus curvatus (L. curvatus) HY7601 and Lactobacillus plantarum (L. plantarum) KY1032 reduced the body weight, body fat percentage, body fat mass and L1 subcutaneous fat area in overweight subjects. We aimed to evaluate whether the changes in adiposity after supplementation with Lactobacillus strains were associated with metabolic intermediates. A randomized, double-blind, placebo-controlled study was conducted on 66 non-diabetic and overweight individuals. Over a 12-week period, the probiotic group consumed 2 g of probiotic powder, whereas the placebo group consumed the same product without the probiotics. To investigate metabolic alterations, we performed plasma metabolomics using ultra-performance liquid chromatography and mass spectrometry (UPLC-LTQ/Orbitrap MS). Probiotic supplementation significantly increased the levels of octenoylcarnitine (C8:1), tetradecenoylcarnitine (C14:1), decanoylcarnitine (C10) and dodecenoylcarnitine (C12:1) compared with the levels from placebo supplementation. In the probiotic group, the changes in the body weight, body fat percentage, body fat mass and L1 subcutaneous fat area were negatively associated with changes in the levels of C8:1, C14:1, C10 and C12:1 acylcarnitines. In overweight individuals, probiotic-induced weight loss and adiposity reduction from the probiotic supplementation were associated with an increase in medium-chain acylcarnitines.

  1. Functional effects of different medium-chain acyl-CoA dehydrogenase genotypes and identification of asymptomatic variants.

    PubMed

    Sturm, Marga; Herebian, Diran; Mueller, Martina; Laryea, Maurice D; Spiekerkoetter, Ute

    2012-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (OMIM 201450) is the most common inherited disorder of fatty acid metabolism presenting with hypoglycaemia, hepatopathy and Reye-like symptoms during catabolism. In the past, the majority of patients carried the prevalent c.985A>G mutation in the ACADM gene. Since the introduction of newborn screening many other mutations with unknown clinical relevance have been identified in asymptomatic newborns. In order to identify functional effects of these mutant genotypes we correlated residual MCAD (OMIM 607008) activities as measured by octanoyl-CoA oxidation in lymphocytes with both genotype and relevant medical reports in 65 newborns harbouring mutant alleles. We identified true disease-causing mutations with residual activities of 0 to 20%. In individuals carrying the c.199T>C or c.127G>A mutation on one allele, residual activities were much higher and in the range of heterozygotes (31%-60%). Therefore, both mutations cannot clearly be associated with a clinical phenotype. This demonstrates a correlation between the octanoyl-CoA oxidation rate in lymphocytes and the clinical outcome. With newborn screening, the natural course of disease is difficult to assess. The octanoyl-CoA oxidation rate, therefore, allows a risk assessment at birth and the identification of new ACADM genotypes associated with asymptomatic disease variants.

  2. Effects of dietary medium-chain fatty acids on performance, carcass characteristics, and some serum parameters of broiler chickens.

    PubMed

    Shokrollahi, B; Yavari, Z; Kordestani, A H

    2014-01-01

    This study aimed to evaluate the effects of dietary medium-chain fatty acids (MCFAs) on the performance, carcass characteristics, and some serum parameters of broiler chickens. A total of 176 one-day-old male broiler chicks (Ross 308) were assigned to four treatments including control treatment (basal diet), 0.1% MCFA, 0.2% MCFA, and 0.3% MCFA treatments according to a completely randomised design. Each treatment consisted of 4 replicates with 11 chicks for each replicate. In MCFA treatments, the amounts of MCFAs were added to basal diet as a substitution of soybean oil. There were not any significant differences in body weight, feed intake, and feed conversion ratio among the treatments in different stages of the experiment. However, MCFA treatments had a lower abdominal fat and a higher breast yield compared to control treatment. Blood glucose, cholesterol, and low-density lipoprotein (LDL)-cholesterol concentrations were significantly decreased, but blood high-density lipoprotein (HDL)-cholesterol concentration was significantly increased in the MCFA treatments compared to the control treatment. These results indicate that dietary MCFA has a positive effect on the health and productivity of broiler chickens.

  3. A medium-chain fatty acid receptor Gpr84 in zebrafish: expression pattern and roles in immune regulation.

    PubMed

    Huang, Qiaoyan; Feng, Dong; Liu, Kai; Wang, Peng; Xiao, Hongyan; Wang, Ying; Zhang, Shicui; Liu, Zhenhui

    2014-08-01

    Gpr84 was recently identified as a receptor for medium-chain fatty acids, but its functions remain to be clarified. We reported the identification of a zebrafish Gpr84 homologue (zGpr84), which has a higher gene expression in the tissues of intestine, heart and liver. During embryogenesis, zGpr84 is maternally expressed and a significant increase is observed at segmentation period, and it is mainly restricted to the head region, pectoral fins, branchial arches, intestine and lateral line neuromast. Fasting or treatment with lipopolysaccharide (LPS) can induce significant up-regulation of zGpr84. We further demonstrated that zGpr84 is involved in the accumulation of lipid droplets in cells. Moreover, undecanoic acid (UA) can amplify LPS induced production of the proinflammatory cytokine IL-12 p40 through zGpr84, supporting the proposal that Gpr84 may play a role in directly linking fatty acid metabolism to immunological regulation. The resulting data in fish lay a foundation for a comprehensive exploration of the functions and evolution of Gpr84.

  4. Elevated Temperature Enhances Short to Medium Chain Acyl Homoserine Lactone Production by Black Band Disease Associated Vibrios.

    PubMed

    Bhedi, Chinmayee D; Prevatte, Carson W; Lookadoo, Maggie S; Waikel, Patricia A; Gillevet, Patrick M; Sikaroodi, Masoumeh; Campagna, Shawn R; Richardson, Laurie L

    2017-01-29

    Black band disease (BBD) of corals is a horizontally migrating, pathogenic, polymicrobial mat community which is active above a temperature threshold of 27.5°C on the reef. Bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of healthy corals, and SML of healthy areas of BBD infected corals were tested for production of short to medium chain acyl homoserine lactones (AHLs) using the Chromobacterium violaceum CV026 reporter strain. Of 110 bacterial isolates tested, 19 produced AHLs and 15 of these were from BBD. Eight AHLs were identified using LC-MS/MS, with 3OHC4 the most commonly produced, followed by C6. AHL-producing isolates exposed to three temperatures (24°, 27°, 30°C) revealed that production of three AHLs (3OHC4, 3OHC5, and 3OHC6) significantly increased at 30°C when compared to 24°C. 16S rRNA gene sequencing revealed that all of the AHL producing BBD isolates were vibrios. Metagenomic data of BBD communities showed the presence of AHL (and autoinducer-2) genes, many of which are known to be associated with vibrios. These findings suggest that quorum sensing may be involved in BBD pathobiology and community structure due to enhanced production of quorum sensing signal molecules (AHLs) above the temperature threshold of this globally distributed coral disease.

  5. Role of medium-chain fatty acids in the emulsification mechanistics of self-micro-emulsifying lipid formulations

    PubMed Central

    Hasan, Naser M.Y.

    2014-01-01

    Purpose The objective of the present study was to design and develop stable o/w microemulsions comprising Miglyol 812, Imwitor 988 and Tagat TO as a non ionic surfactant. This was based on particle size measurements and phase behavior studies. The empirical role of incorporating medium-chain mono/di-glycerides in the lipid matrix in the mechanistic processes of emulsification was also established in various simulating physiological conditions. Methods The efficiency of self-emulsification was evaluated under conditions of varying key compositions in the lipid mixtures; oil, cosurfactant and surfactant. Droplet diameter was measured using laser diffraction and light scattering techniques. Equilibrium phase studies were performed and phase boundaries were determined for the lipid–water systems. Results Microemulsion systems were produced from blends of Miglyol 812, Imwitor 988 and Tagat TO. An optimized formulation consisted of {Miglyol 812/Imwitor 988} and Tagat TO spontaneously self-emulsified in water producing dispersions with droplet diameters of ∼50 nm. Phase equilibrium diagrams have revealed significant enhancement in the water-solubilized region (L2) without any presence of liquid crystalline materials. Conclusions Potential SMEDDS formulations for the bioavailability enhancement of poorly water-soluble compounds were developed by mixing blends of {Miglyol 812/Imwitor 988} and Tagat TO as a non-ionic surfactant. ‘Diffusion and stranding’ appears to be the dominant mechanism of emulsification. PMID:25561872

  6. Dietary Medium Chain Fatty Acid Supplementation Leads to Reduced VLDL Lipolysis and Uptake Rates in Comparison to Linoleic Acid Supplementation

    PubMed Central

    van Schalkwijk, Daniël B.; Pasman, Wilrike J.; Hendriks, Henk F. J.; Verheij, Elwin R.; Rubingh, Carina M.; van Bochove, Kees; Vaes, Wouter H. J.; Adiels, Martin; Freidig, Andreas P.; de Graaf, Albert A.

    2014-01-01

    Dietary medium chain fatty acids (MCFA) and linoleic acid follow different metabolic routes, and linoleic acid activates PPAR receptors. Both these mechanisms may modify lipoprotein and fatty acid metabolism after dietary intervention. Our objective was to investigate how dietary MCFA and linoleic acid supplementation and body fat distribution affect the fasting lipoprotein subclass profile, lipoprotein kinetics, and postprandial fatty acid kinetics. In a randomized double blind cross-over trial, 12 male subjects (age 51±7 years; BMI 28.5±0.8 kg/m2), were divided into 2 groups according to waist-hip ratio. They were supplemented with 60 grams/day MCFA (mainly C8:0, C10:0) or linoleic acid for three weeks, with a wash-out period of six weeks in between. Lipoprotein subclasses were measured using HPLC. Lipoprotein and fatty acid metabolism were studied using a combination of several stable isotope tracers. Lipoprotein and tracer data were analyzed using computational modeling. Lipoprotein subclass concentrations in the VLDL and LDL range were significantly higher after MCFA than after linoleic acid intervention. In addition, LDL subclass concentrations were higher in lower body obese individuals. Differences in VLDL metabolism were found to occur in lipoprotein lipolysis and uptake, not production; MCFAs were elongated intensively, in contrast to linoleic acid. Dietary MCFA supplementation led to a less favorable lipoprotein profile than linoleic acid supplementation. These differences were not due to elevated VLDL production, but rather to lower lipolysis and uptake rates. PMID:25049048

  7. Evaluation of medium-chain-length polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams.

    PubMed

    Fu, Jilagamazhi; Sharma, Umesh; Sparling, Richard; Cicek, Nazim; Levin, David B

    2014-07-01

    Medium-chain-length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46 was analyzed in shake-flask-based batch reactions, using pure chemical-grade glycerol (PG), biodiesel-derived "waste" glycerol (WG), and biodiesel-derived "waste" free fatty acids (WFA). Cell growth, substrate consumption, mcl-PHA accumulation within the cells, and the monomer composition of the synthesized biopolymers were monitored. The patterns of mcl-PHA synthesis in P. putida LS46 cells grown on PG and WG were similar but differed from that of cells grown with WFA. Polymer accumulation in glycerol-based cultures was stimulated by nitrogen limitation and plateaued after 48 h in both PG and WG cultures, with a total accumulation of 17.9% cell dry mass and 16.3% cell dry mass, respectively. In contrast, mcl-PHA synthesis was independent of nitrogen concentration in P. putida LS46 cells cultured with WFA, which accumulated to 29% cell dry mass. In all cases, the mcl-PHAs synthesized consisted primarily of 3-hydroxyoctanoate (C(8)) and 3-hydroxydecanoate (C(10)). WG and WFA supported similar or greater cell growth and mcl-PHA accumulation than PG under the experimental conditions used. These results suggest that biodiesel by-product streams could be used as low-cost carbon sources for sustainable mcl-PHA production.

  8. Comparison of medium-chain-length polyhydroxyalkanoates synthases from Pseudomonas mendocina NK-01 with the same substrate specificity.

    PubMed

    Guo, Wenbin; Duan, Jingjing; Geng, Weitao; Feng, Jun; Wang, Shufang; Song, Cunjiang

    2013-05-06

    The medium-chain-length polyhydroxyalkanoate (PHAMCL) synthase genes phaC1 and phaC2 of Pseudomonas mendocina NK-01 were cloned and inserted into expression plasmid pBBR1MCS-2 to form pBBR1MCS-C1 and pBBR1MCS-C2 which were expressed respectively in the PHAMCL-negative strain P. mendocina C7 whose PHAMCL synthesis operon was defined knock out. P. mendocina C7 derivatives P. mendocina C7C1 and C7C2 carrying pBBR1MCS-C1 and pBBR1MCS-C2 respectively were constructed. Fermentation and gel permeation chromatography (GPC) revealed that P. mendocina C7C1 had higher PHAMCL production rate but its PHAMCL had lower molecular weight than that of P. mendocina C7C2. Gas chromatograph/mass spectrometry (GC/MS) analysis revealed that the two PHAMCL had similarity in monomer composition with 3HD as the favorite monomer i.e. PhaC1 and PhaC2 had the same substrate specificity. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) also revealed that the two PHAMCL had the same physical properties. P. mendocina NK-01was the first reported strain whose PHAMCL synthases PhaC1 and PhaC2 had the same substrate specificity. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Pulsed feeding strategy is more favorable to medium-chain-length polyhydroxyalkanoates production from waste rapeseed oil.

    PubMed

    Możejko, Justyna; Ciesielski, Slawomir

    2014-01-01

    This article presents the results of production and characterization of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using Pseudomonas sp. Gl01. Studies have been carried out to find suitable feeding strategies for mcl-PHAs production and, for the first time, to investigate in-depth the properties of biopolyesters obtained under controlled conditions with waste rapeseed oil as a substrate. Up to 44% mcl-PHAs of cell dry weight was produced at 41 h of biofermentor culture by employing pulsed feeding of waste rapeseed oil. GC analysis showed a polymer composition with monomer length of C6 to C12 with C8 and C10 as the principal monomers. The monomeric structure of the extracted polyesters did not depend on the cultivation time and the feeding strategy. Molecular weight of the mcl-PHAs was found to be ranging from 57 to 154 kDa. Thermal analyses showed the obtained mcl-polyhydroxyalkanaotes to be semi-crystalline biopolymer with promising thermal stability, having a glass transition temperature of -38 to -50°C. © 2014 American Institute of Chemical Engineers.

  10. Megasphaera hexanoica sp. nov., a medium-chain carboxylic acid-producing bacterium isolated from a cow rumen.

    PubMed

    Jeon, Byoung Seung; Kim, Seil; Sang, Byoung-In

    2017-07-01

    Strain MHT, a strictly anaerobic, Gram-stain-negative, non-spore-forming, spherical coccus or coccoid-shaped microorganism, was isolated from a cow rumen during a screen for hexanoic acid-producing bacteria. The microorganism grew at 30-40 °C and pH 5.5-7.5 and exhibited production of various short- and medium-chain carboxylic acids (acetic acid, butyric acid, pentanoic acid, isobutyric acid, isovaleric acid, hexanoic acid, heptanoic acid and octanoic acid), as well as H2 and CO2 as biogas. Phylogenetic analysis based on 16S rRNA gene sequencing demonstrated that MHT represents a member of the genus Megasphaera, with the closest relatives being Megapsphaera indica NMBHI-10T (94.1 % 16S rRNA sequence similarity), Megasphaera elsdenii DSM 20460T (93.8 %) and Megasphaera paucivorans DSM 16981T (93.8 %). The major cellular fatty acids produced by MHT included C12 : 0, C16 : 0, C18 : 1cis 9, and C18 : 0, and the DNA G+C content of the MHT genome is 51.8 mol%. Together, the distinctive phenotypic and phylogenetic characteristics of MHT indicate that this microorganism represents a novel species of the genus Megasphaera, for which the name Megasphaera hexanoica sp. nov. is herein proposed. The type strain of this species is MHT (=KCCM 43214T=JCM 31403T).

  11. Biosynthesis of medium-chain-length poly(3-hydroxyalkanoates) by volatile aromatic hydrocarbons-degrading Pseudomonas fulva TY16.

    PubMed

    Ni, Yu-Yang; Kim, Do Young; Chung, Moon Gyu; Lee, Sun Hee; Park, Ho-Yong; Rhee, Young Ha

    2010-11-01

    Pseudomonas fulva TY16 biosynthesized medium-chain-length poly(3-hydroxyalkanoates) (MCL-PHAs) containing unsaturated 3-hydroxydodecenoate unit (approximately 8-9%) when grown with volatile aromatic compounds including benzene, toluene, and ethylbenzene as sole carbon substrate. In particular, when cultivated using a continuous feeding system designed to supply toluene at a flow rate of 0.42gL(-1)h(-1) into a 7-L jar fermentor, the growth of the organism reached up to approximately 3.87gL(-1) after the 48h fed-batch fermentation, representing an accumulated cellular MCL-PHA of 58.9% by weight. The obtained MCL-PHA was a copolyester primarily consisting of 3-hydroxydecanoate (55.2%) and 3-hydroxyoctanoate (26.8%) with minor constituents being 3-hydroxyhexanoate (3.7%), 3-hydroxydodecenoate (8.2%), and 3-hydroxydodecanoate (6.1%). The present results suggest that P. fulva TY16 is a promising candidate for the biotechnological conversion of toxic petrochemical wastes to valuable biopolymers.

  12. Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships.

    PubMed

    Batovska, Daniela I; Todorova, Iva T; Tsvetkova, Iva V; Najdenski, Hristo M

    2009-01-01

    The antibacterial activity of the medium chain fatty acids and their 1-monoglycerides was evaluated towards several Gram-positive strains belonging to the genera Staphylococcus, Corynebacterium, Bacillus, Listeria and Streptococcus. The 1-monoglycerides were more active than the fatty acids with monolaurin being the most active compound. Interesting effects were observed when the streptococcal strain Streptococcus pyogenes was used as a test microorganism. First, blocking of the hydroxyl groups of the glycerol moiety of monolaurin led to a compound with remarkable antibacterial activity (MIC, 3.9 microg/ml). Secondly, synergistic relationships were observed between monolaurin and monocaprin as well as between monolaurin and the poorly active lauric acid when their two component mixtures were examined. The mixtures in which one of the components was 2-fold more predominant than the other one were much more active than the pure components taken individually. Moreover, the presence of the components in ratio 1:1 was disadvantageous. Synergistic relationships were also found between monolaurin and monomyristin towards Staphylococcus aureus 209 when monomyristin was in the same quantity as monolaurin or in shortage.

  13. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell.

    PubMed

    Hindatu, Y; Annuar, M S M; Subramaniam, R; Gumel, A M

    2017-03-25

    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m(2), which was 15-53% higher than the MFC operated with CC-C (214 mW/m(2)) and pristine CC (119 mW/m(2)) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.

  14. Carboxyl-terminus of Hsc70 interacting protein mediates 2,5-hexanedione-induced neurofilament medium chain degradation.

    PubMed

    Wang, Qingshan; Song, Fuyong; Zhang, Cuili; Zhao, Xiulan; Zhu, Zhenping; Yu, Sufang; Xie, Keqin

    2011-03-15

    Neurofilaments (NFs), the most abundant cytoskeletal components in large neurons and myelinated axons, are the targets of n-hexane-induced neuropathy, in which a specific loss of NFs protein has been frequently observed. However, the precise mechanisms regulating NFs contents are not well understood. The aim of this study was to elucidate the role of ubiquitin-proteasome system (UPS) in NFs degradation. We first demonstrated that the E3 ligase carboxyl-terminus of Hsc70 interacting protein (CHIP), originally identified as a co-chaperone of Hsc70, directly interacted with NFs medium chain (NF-M) and then enhanced NF-M ubiquitination and degradation after 2,5-hexanedione (HD) treatment. Consistent with this result, the application of proteasome inhibitor MG132 partly reversed HD-induced decrease of NF-M. Finally, we found that other components of UPS system (e.g. ubiquitin-activating enzyme E1, CHIP and proteasome) were significantly increased in sciatic nerve of HD-intoxicated rats. In conclusion, this study indicated that the CHIP ubiquitin ligase complex interacted with and repressed NFs by targeting NFs for ubiquitin-mediated proteolysis, which led to reduction of NFs contents in HD-induced neuropathy. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Self-diffusion in molecular liquids: Medium-chain n-alkanes and coenzyme Q10 studied by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Smuda, Christoph; Busch, Sebastian; Gemmecker, Gerd; Unruh, Tobias

    2008-07-01

    A systematic time-of-flight quasielastic neutron scattering (TOF-QENS) study on diffusion of n-alkanes in a melt is presented for the first time. As another example of a medium-chain molecule, coenzyme Q10 is investigated in the same way. The data were evaluated both in the frequency and in the time domain. TOF-QENS data can be satisfactorily described by different models, and it turned out that the determined diffusion coefficients are largely independent of the applied model. The derived diffusion coefficients are compared with values measured by pulsed-field gradient nuclear magnetic resonance (PFG-NMR). With increasing chain length, an increasing difference between the TOF-QENS diffusion coefficient and the PFG-NMR diffusion coefficient is observed. This discrepancy in the diffusion coefficients is most likely due to a change of the diffusion mechanism on a nanometer length scale for molecules of medium-chain length.

  16. Polymerized and functionalized triglycerides

    USDA-ARS?s Scientific Manuscript database

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  17. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    PubMed

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  18. Overexpression and characterization of medium-chain-length polyhydroxyalkanoate granule bound polymerases from Pseudomonas putida GPo1

    PubMed Central

    2009-01-01

    Background Polyhydroxyalkanoates (PHA) are synthesized by many bacteria in the cytoplasm as storage compounds for energy and carbon. The key enzymes for PHA biosynthesis are PHA polymerases, which catalyze the covalent linkage of 3-hydroxyacyl coenzymeA thioesters by transesterification with concomitant release of CoA. Pseudomonas putida GPo1 and many other Pseudomonas species contain two different class II polymerases, encoded by phaC1 and phaC2. Although numerous studies have been carried out on PHA polymerases and they are well characterized at the molecular level, the biochemical properties of the class II polymerases have not been studied in detail. Previously we and other groups purified the polymerases, however, the activities of the purified enzymes were several magnitude lower than the granule-bound enzymes. It is problematic to study the intrinsic properties of these enzymes with such low activities, although they are pure. Results PHA polymerase 1 (PhaC1) and PHA polymerase 2 (PhaC2) from P. putida GPo1 were overexpressed in the PHA-negative host P. putida GPp104 and purified from isolated PHA granules. Only minor activity (two to three orders of magnitude lower than that of the granule bound proteins) could be recovered when the enzymes were purified to homogeneity. Therefore, kinetic properties and substrate ranges were determined for the granule bound polymerases. The polymerases differed significantly with respect to their association with PHA granules, enzyme kinetics and substrate specificity. PhaC2 appeared to bind PHA granules more tightly than PhaC1. When R-3-hydroxyoctanoic acid was used as substrate, the granule-bound PhaC1 exhibited a Km of 125 (± 35) μM and a Vmax of 40.8 (± 6.2) U/mg PhaC1, while a Km of 37 (± 10) μM and a Vmax of 2.7 (± 0.7) U/mg PhaC2 could be derived for the granule-bound PhaC2. Granule-bound PhaC1 showed a strong preference for medium chain length (mcl-) 3-hydroxyacly-CoAs, with highest affinity towards 3

  19. Stimulation of mild, sustained ketonemia by medium-chain triacylglycerols in healthy humans: estimated potential contribution to brain energy metabolism.

    PubMed

    Courchesne-Loyer, Alexandre; Fortier, Mélanie; Tremblay-Mercier, Jennifer; Chouinard-Watkins, Raphaël; Roy, Maggie; Nugent, Scott; Castellano, Christian-Alexandre; Cunnane, Stephen C

    2013-04-01

    In humans consuming a normal diet, we investigated 1) the capacity of a medium-chain triacylglycerol (MCT) supplement to stimulate and sustain ketonemia, 2) ¹³C-β-hydroxybutyrate and ¹³C-trioctanoate metabolism, and 3) the theoretical contribution of the degree of ketonemia achieved to brain energy metabolism. Eight healthy adults (26 ± 1 y old) were given an MCT supplement for 4 wk (4 times/d; total of 20 g/d for 1 wk followed by 30 g/d for 3 wk). Ketones, glucose, triacylglycerols, cholesterol, free fatty acids, and insulin were measured over 8 h during two separate metabolic study days before and after MCT supplementation. Using isotope ratio mass spectroscopy, ¹³C-D-β-hydroxybutyrate and ¹³C-trioctanoate β-oxidation to ¹³CO₂ was measured over 12 h on the pre- and post-MCT metabolic study days. On the post-MCT metabolic study day, plasma ketones (β-hydroxybutyrate plus acetoacetate) peaked at 476 μM, with a mean value throughout the study day of 290 μM. Post-MCT, ¹³C-trioctanoate β-oxidation was significantly lower 1 to 8 h later but higher 10 to 12 h later. MCT supplementation did not significantly alter ¹³C-D-β-hydroxybutyrate oxidation. This MCT supplementation protocol was mildly and safely ketogenic and had no side effects in healthy humans on their regular diet. This degree of ketonemia is estimated to contribute up to 8% to 9% of brain energy metabolism. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Lipids containing medium-chain fatty acids are specific to post-whole genome duplication Saccharomycotina yeasts.

    PubMed

    Froissard, Marine; Canonge, Michel; Pouteaux, Marie; Cintrat, Bernard; Mohand-Oumoussa, Sabrina; Guillouet, Stéphane E; Chardot, Thierry; Jacques, Noémie; Casaregola, Serge

    2015-05-28

    Yeasts belonging to the subphylum Saccharomycotina have been used for centuries in food processing and, more recently, biotechnology. Over the past few decades, these yeasts have also been studied in the interest of their potential to produce oil to replace fossil resources. Developing yeasts for massive oil production requires increasing yield and modifying the profiles of the fatty acids contained in the oil to satisfy specific technical requirements. For example, derivatives of medium-chain fatty acids (MCFAs, containing 6-14 carbons) are used for the production of biodiesels, cleaning products, lubricants and cosmetics. Few studies are available in the literature on the production of MCFAs in yeasts. We analyzed the MCFA content in Saccharomyces cerevisiae grown in various conditions. The results revealed that MCFAs preferentially accumulated when cells were grown on synthetic media with a high C/N ratio at low temperature (23 °C). Upon screening deletion mutant strains for genes encoding lipid droplet-associated proteins, we found two genes, LOA1 and TGL3, involved in MCFA homeostasis. A phylogenetic analysis on 16 Saccharomycotina species showed that fatty acid profiles differed drastically among yeasts. Interestingly, MCFAs are only present in post-whole genome duplication yeast species. In this study, we produced original data on fatty acid diversity in yeasts. We demonstrated that yeasts are amenable to genetic and metabolic engineering to increase their MCFA production. Furthermore, we revealed that yeast lipid biodiversity has not been fully explored, but that yeasts likely harbor as-yet-undiscovered strains or enzymes that can contribute to the production of high-value fatty acids for green chemistry.

  1. Production and clearance of plasma triacylglycerols in ponies fed diets containing either medium-chain triacylglycerols or soya bean oil.

    PubMed

    Hallebeek, J M; Beynen, A C

    2003-06-01

    The hypothesis was tested that feeding ponies a diet containing medium-chain triacylglcyerols (MCT) instead of soya bean oil causes an increase in the production of plasma triacylglycerols, which, under steady-state conditions, is associated with an increased clearance of triacylglycerols. Six ponies were fed rations containing either MCT or an isoenergetic amount of soya bean oil according to a cross-over design. The concentration of MCT in the total dietary dry matter was about 13%. When the ponies were fed the diets for 3 weeks, plasma triacylglycerol concentrations were 0.42 +/- 0.09 and 0.17 +/- 0.03 mmol/l (mean +/- SE, n = 6; p < 0.05) for the MCT and soya bean-oil treatment, respectively. Plasma triacylglycerol production was assessed using the Triton method and clearance with the use of Intralipid(R) infusion. Plasma triacylglycerol production was 2.91 +/- 0.88 and 0.50 +/- 0.14 micromol/l.min (means +/- SE, n = 4; p < 0.05) for the diets containing MCT and soya bean oil, respectively. It is suggested that the calculated rates of triacylglycerol production are underestimated, the deviation being greatest when the ponies were fed the ration of soya bean oil. Triacylglycerol clearance rates were calculated on the basis of group mean values for both the fractional clearance rate and the baseline levels of plasma triacylglycerols; the values were 4.28 and 3.52 micromol/l.min for MCT and soya bean oil feeding, respectively. The mean, absolute clearance rates as based on those found in individual ponies did not show an increase when the diet with MCT was fed. Nevertheless, it is concluded that the data obtained support our hypothesis.

  2. Oral supplementation of medium-chain fatty acids during the dry period supports the neutrophil viability of peripartum dairy cows.

    PubMed

    Piepers, Sofie; De Vliegher, Sarne

    2013-08-01

    A randomised clinical trial was conducted to explore the effect of orally supplemented medium-chain fatty acids (MCFA) to heifers and cows starting 6-8 weeks prior to expected calving date on blood and milk polymorphonuclear neutrophilic leucocyte (PMNL) apoptosis between 1 and 3 d in milk (DIM). The effects of MCFA-supplementation on the likelihood of intramammary infections (IMI) in early lactation, and test-day somatic cell count (SCC) and average daily milk yield (MY) during the first 4 months of lactation were evaluated as well. Twenty-two animals were included of which half were orally supplemented with MCFA starting 6-8 weeks prior to calving and half served as non-supplemented controls. The PMNL viability in both blood and milk was quantified using dual-colour flow cytometry with fluorescein-labelled annexin and propidium iodide. In non-supplemented animals, % blood PMNL apoptosis significantly increased between start of supplementation and early lactation, reflecting a potential reduction in innate immune capacity, whereas this was not true in the MCFA-supplemented animals. Similar results were seen in milk PMNL apoptosis. Overall, the % apoptotic milk PMNL between 1 and 3 DIM was significantly lower in the MCFA-supplemented group compared with the non-supplemented group. There was no substantial effect of oral MCFA-supplementation on the likelihood of quarter IMI nor on the composite test-day milk SCC or average daily MY. In conclusion, oral MCFA-supplementation starting 6-8 weeks before expected calving date supported the blood and milk neutrophil viability in early lactating dairy cows. Still, this was not reflected in an improvement of udder health nor MY in early and later lactation. The results should trigger research to further unravel the mechanisms behind the observed immunomodulating effect, and the potential relevance for the cows' performances throughout lactation.

  3. Combined intervention of medium-chain triacylglycerol diet and exercise reduces body fat mass and enhances energy expenditure in rats.

    PubMed

    Ooyama, Katsuhiko; Wu, Jian; Nosaka, Naohisa; Aoyama, Toshiaki; Kasai, Michio

    2008-04-01

    Previous studies indicated that a medium-chain triacylglycerol (MCT) diet could inhibit body fat accumulation. It is also well established that exercise can reduce fat mass. However, the effects of a combination of MCT diet and exercise on reduction of fat mass have not been studied. Here we examined whether MCT diet and exercise intervention exert cooperative effects on body composition. Rats were assigned to 4 groups: 1. LCT diet, control (LCT-C); 2. MCT diet, control (MCT-C); 3. LCT diet, exercise (LCT-E); 4. MCT diet, exercise (MCT-E). After the 6-wk intervention, visceral fat mass was measured by CT scan and dissection, and energy expenditure was estimated for 24 h. The value of the visceral fat mass showed a significant correlation between CT scan and dissection (r=0.995, p<0.001). Visceral fat mass in the MCT-C group was lower than that in the LCT-C group. Furthermore, the fat-lowering effects were greater in the MCT-E group than that in either intervention alone. Thus significant effects of the MCT diet and exercise on the reduction of visceral fat mass were observed. Energy expenditure was significantly higher in the MCT-E group than in the other groups. Our present findings suggest that combined intervention of MCT diet and exercise has an additive effect on reduction of visceral and subcutaneous fat accumulation, and that this effect may be partially related to increased energy expenditure. However, future studies are necessary to define the relationship between energy expenditure and fat mass accumulation.

  4. A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli.

    PubMed

    Wu, Junjun; Zhang, Xia; Xia, Xiudong; Dong, Mingsheng

    2017-04-07

    Medium-chain fatty acids (MCFAs, 6-10 carbons) are valuable precursors to many industrial biofuels and chemicals, recently engineered reversal of the β-oxidation (r-BOX) cycle has been proposed as a potential platform for efficient synthesis of MCFAs. Previous studies have made many exciting achievements on functionally characterizing four core enzymes of this r-BOX cycle. However, the information about bottleneck nodes in this cycle is elusive. Here, a quantitative assessment of the inherent limitations of this cycle was conducted to capitalize on its potential. The selection of the core β-oxidation reversal enzymes in conjunction with acetyl-CoA synthetase endowed the ability to synthesize about 1g/L MCFAs. Furthermore, a gene dosage experiment was developed to identify two rate-limiting enzymes (acetyl-CoA synthetase and thiolase). The de novo pathway was then separated into two modules at thiolase and MCFA production titer increased to 2.8g/L after evaluating different construct environments. Additionally, the metabolism of host organism was reprogrammed to the desired biochemical product by the clustered regularly interspaced short palindromic repeats interference system, resulted in a final MCFA production of 3.8g/L. These findings described here identified the inherent limitations of r-BOX cycle and further unleashed the lipogenic potential of this cycle, thus paving the way for the development of a bacterial platform for microbial production of high-value oleo-chemicals from low-value carbons in a sustainable and environmentally friendly manner.

  5. Triglycerides: Why Do They Matter?

    MedlinePlus

    ... cholesterol test (sometimes called a lipid panel or lipid profile). You'll have to fast for nine to 12 hours before blood can be drawn for an accurate triglyceride measurement. Triglycerides and cholesterol are separate types of lipids that circulate in your blood. Triglycerides store unused ...

  6. Current status of short- and medium chain polychlorinated n-alkanes in top predatory fish across Canada.

    PubMed

    Saborido Basconcillo, Libia; Backus, Sean M; McGoldrick, Daryl J; Zaruk, Donna; Sverko, Ed; Muir, Derek C G

    2015-05-01

    Short and medium chain polychlorinated n-alkanes (sPCAs and mPCAs) were measured in top predatory fish from nine freshwater bodies across Canada in 2010-2011. Maximum sPCA concentrations were measured in brook trout from Kejimikujik Lake in Nova Scotia (10±8 ng g(-1) wet weight) while the lowest concentrations were found in lake trout from Kusawa Lake in the Yukon (2±3 ng g(-1) wet weight). The presence of sPCAs in fish from these sites is strongly suggestive of long range atmospheric transport, given the absence of known point sources. The highest mPCA concentrations (11-12 ng g(-1) wet weight) were found in lake trout from Lakes Huron, Erie and Ontario. These results showed that fish from sites impacted mostly by atmospheric sources contained higher concentrations of sPCAs than mPCAs while the opposite was observed in sites impacted by industrialization. C12H20Cl6, C12H19Cl7, C14H24Cl6 and C14H23Cl7 were the most abundant homologue groups observed. Lake trout from Lake Huron showed a markedly different sPCA homologue profile, characterized by higher abundances of C11H15Cl9 and C12H17Cl9, indicating local sources. Principal components analysis of sPCA homologues abundances showed that C12H20Cl6, C12H19Cl7, C11H18Cl6, C11H17Cl7 were associated with lakes influenced by atmospheric sources while C11H16Cl8, C12H18Cl8, C11H15Cl9, C12H17Cl9 were associated with sites influenced by urban/industrial sources. Finally, concentrations of sPCAs in Lake Ontario lake trout collected in 2011 decreased 6.6-fold compared to 2001, however no significant differences were observed for mPCAs. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. A Clostridium Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by Tolerance to Medium Chain Fatty Acids Products.

    PubMed

    Andersen, Stephen J; De Groof, Vicky; Khor, Way Cern; Roume, Hugo; Props, Ruben; Coma, Marta; Rabaey, Korneel

    2017-01-01

    A microbial community is engaged in a complex economy of cooperation and competition for carbon and energy. In engineered systems such as anaerobic digestion and fermentation, these relationships are exploited for conversion of a broad range of substrates into products, such as biogas, ethanol, and carboxylic acids. Medium chain fatty acids (MCFAs), for example, hexanoic acid, are valuable, energy dense microbial fermentation products, however, MCFA tend to exhibit microbial toxicity to a broad range of microorganisms at low concentrations. Here, we operated continuous mixed population MCFA fermentations on biorefinery thin stillage to investigate the community response associated with the production and toxicity of MCFA. In this study, an uncultured species from the Clostridium group IV (related to Clostridium sp. BS-1) became enriched in two independent reactors that produced hexanoic acid (up to 8.1 g L(-1)), octanoic acid (up to 3.2 g L(-1)), and trace concentrations of decanoic acid. Decanoic acid is reported here for the first time as a possible product of a Clostridium group IV species. Other significant species in the community, Lactobacillus spp. and Acetobacterium sp., generate intermediates in MCFA production, and their collapse in relative abundance resulted in an overall production decrease. A strong correlation was present between the community composition and both the hexanoic acid concentration (p = 0.026) and total volatile fatty acid concentration (p = 0.003). MCFA suppressed species related to Clostridium sp. CPB-6 and Lactobacillus spp. to a greater extent than others. The proportion of the species related to Clostridium sp. BS-1 over Clostridium sp. CPB-6 had a strong correlation with the concentration of octanoic acid (p = 0.003). The dominance of this species and the increase in MCFA resulted in an overall toxic effect on the mixed community, most significantly on the Lactobacillus spp., which resulted in a decrease in total

  8. Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: regional experience and high incidence of carnitine deficiency

    PubMed Central

    2013-01-01

    Background Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited defect in the mitochondrial fatty acid oxidation pathway, resulting in significant morbidity and mortality in undiagnosed patients. Newborn screening (NBS) has considerably improved MCADD outcome, but the risk of complication remains in some patients. The aim of this study was to evaluate the relationship between genotype, biochemical parameters and clinical data at diagnosis and during follow-up, in order to optimize monitoring of these patients. Methods We carried out a multicenter study in southwest Europe, of MCADD patients detected by NBS. Evaluated NBS data included free carnitine (C0) and the acylcarnitines C8, C10, C10:1 together with C8/C2 and C8/C10 ratios, clinical presentation parameters and genotype, in 45 patients. Follow-up data included C0 levels, duration of carnitine supplementation and occurrence of metabolic crises. Results C8/C2 ratio and C8 were the most accurate biomarkers of MCADD in NBS. We found a high number of patients homozygous for the prevalent c.985A > G mutation (75%). Moreover, in these patients C8, C8/C10 and C8/C2 were higher than in patients with other genotypes, while median value of C0 was significantly lower (23 μmol/L vs 36 μmol/L). The average follow-up period was 43 months. To keep carnitine levels within the normal range, carnitine supplementation was required in 82% of patients, and for a longer period in patients homozygotes for the c.985A>G mutation than in patients with other genotypes (average 31 vs 18 months). Even with treatment, median C0 levels remained lower in homozygous patients than in those with other genotypes (14 μmol/L vs 22 μmol/L). Two patients died and another three suffered a metabolic crisis, all of whom were homozygous for the c.985 A>G mutation. Conclusions Our data show a direct association between homozygosity for c.985A>G and lower carnitine values at diagnosis, and a higher dose of carnitine

  9. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds.

    PubMed

    Kim, Hae Jin; Silva, Jillian E; Iskandarov, Umidjon; Andersson, Mariette; Cahoon, Rebecca E; Mockaitis, Keithanne; Cahoon, Edgar B

    2015-12-01

    Lysophosphatidic acid acyltransferase (LPAT) catalyzes acylation of the sn-2 position on lysophosphatidic acid by an acyl CoA substrate to produce the phosphatidic acid precursor of polar glycerolipids and triacylglycerols (TAGs). In the case of TAGs, this reaction is typically catalyzed by an LPAT2 from microsomal LPAT class A that has high specificity for C18 fatty acids containing Δ9 unsaturation. Because of this specificity, the occurrence of saturated fatty acids in the TAG sn-2 position is infrequent in seed oils. To identify LPATs with variant substrate specificities, deep transcriptomic mining was performed on seeds of two Cuphea species producing TAGs that are highly enriched in saturated C8 and C10 fatty acids. From these analyses, cDNAs for seven previously unreported LPATs were identified, including cDNAs from Cuphea viscosissima (CvLPAT2) and Cuphea avigera var. pulcherrima (CpuLPAT2a) encoding microsomal, seed-specific class A LPAT2s and a cDNA from C. avigera var. pulcherrima (CpuLPATB) encoding a microsomal, seed-specific LPAT from the bacterial-type class B. The activities of these enzymes were characterized in Camelina sativa by seed-specific co-expression with cDNAs for various Cuphea FatB acyl-acyl carrier protein thioesterases (FatB) that produce a variety of saturated medium-chain fatty acids. CvLPAT2 and CpuLPAT2a expression resulted in accumulation of 10:0 fatty acids in the Camelina sativa TAG sn-2 position, indicating a 10:0 CoA specificity that has not been previously described for plant LPATs. CpuLPATB expression generated TAGs with 14:0 at the sn-2 position, but not 10:0. Identification of these LPATs provides tools for understanding the structural basis of LPAT substrate specificity and for generating altered oil functionalities. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  10. A Clostridium Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by Tolerance to Medium Chain Fatty Acids Products

    PubMed Central

    Andersen, Stephen J.; De Groof, Vicky; Khor, Way Cern; Roume, Hugo; Props, Ruben; Coma, Marta; Rabaey, Korneel

    2017-01-01

    A microbial community is engaged in a complex economy of cooperation and competition for carbon and energy. In engineered systems such as anaerobic digestion and fermentation, these relationships are exploited for conversion of a broad range of substrates into products, such as biogas, ethanol, and carboxylic acids. Medium chain fatty acids (MCFAs), for example, hexanoic acid, are valuable, energy dense microbial fermentation products, however, MCFA tend to exhibit microbial toxicity to a broad range of microorganisms at low concentrations. Here, we operated continuous mixed population MCFA fermentations on biorefinery thin stillage to investigate the community response associated with the production and toxicity of MCFA. In this study, an uncultured species from the Clostridium group IV (related to Clostridium sp. BS-1) became enriched in two independent reactors that produced hexanoic acid (up to 8.1 g L−1), octanoic acid (up to 3.2 g L−1), and trace concentrations of decanoic acid. Decanoic acid is reported here for the first time as a possible product of a Clostridium group IV species. Other significant species in the community, Lactobacillus spp. and Acetobacterium sp., generate intermediates in MCFA production, and their collapse in relative abundance resulted in an overall production decrease. A strong correlation was present between the community composition and both the hexanoic acid concentration (p = 0.026) and total volatile fatty acid concentration (p = 0.003). MCFA suppressed species related to Clostridium sp. CPB-6 and Lactobacillus spp. to a greater extent than others. The proportion of the species related to Clostridium sp. BS-1 over Clostridium sp. CPB-6 had a strong correlation with the concentration of octanoic acid (p = 0.003). The dominance of this species and the increase in MCFA resulted in an overall toxic effect on the mixed community, most significantly on the Lactobacillus spp., which resulted in a decrease in total

  11. Molecular characterization of extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase genes from Pseudomonas alcaligenes strains.

    PubMed

    Kim, Do Young; Kim, Hyun Chul; Kim, Sun Young; Rhee, Young Ha

    2005-06-01

    A bacterial strain M4-7 capable of degrading various polyesters, such as poly(epsilon-caprolactone), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxyoctanoate), and poly(3-hydroxy-5-phenylvalerate), was isolated from a marine environment and identified as Pseudomonas alcaligenes. The relative molecular mass of a purified extracellular medium-chain-length poly(3-hydroxyalkanoate) (MCL-PHA) depolymerase (PhaZ(PalM4-7)) from P. alcaligenes M4-7 was 28.0 kDa, as determined by SDS-PAGE. The PhaZ(PalM4-7) was most active in 50 mM glycine-NaOH buffer (pH 9.0) at 35 degrees C. It was insensitive to dithiothreitol, sodium azide, and iodoacetamide, but susceptible to p-hydroxymercuribenzoic acid, N-bromosuccinimide, acetic anhydride, EDTA, diisopropyl fluorophosphate, phenylmethylsulfonyl fluoride, Tween 80, and Triton X-100. In this study, the genes encoding MCL-PHA depolymerase were cloned, sequenced, and characterized from a soil bacterium, P. alcaligenes LB19 (Kim et al., 2002, Biomacromolecules 3, 291-296) as well as P. alcaligenes M4-7. The structural gene (phaZ(PalLB19)) of MCL-PHA depolymerase of P. alcaligenes LB19 consisted of an 837 bp open reading frame (ORF) encoding a protein of 278 amino acids with a deduced M((r)) of 30,188 Da. However, the MCL-PHA depolymerase gene (phaZ(PalM4-7)) of P. alcaligenes M4-7 was composed of an 834 bp ORF encoding a protein of 277 amino acids with a deduced Mr of 30,323 Da. Amino acid sequence analyses showed that, in the two different polypeptides, a substrate-binding domain and a catalytic domain are located in the N-terminus and in the C-terminus, respectively. The PhaZ(PalLB19) and the PhaZ(PalM4-7) commonly share the lipase box, GISSG, in their catalytic domains, and utilize 111Asn and 110Ser residues, respectively, as oxyanions that play an important role in transition-state stabilization of hydrolytic reactions.

  12. A randomised trial of a medium-chain TAG diet as treatment for dogs with idiopathic epilepsy.

    PubMed

    Law, Tsz Hong; Davies, Emma S S; Pan, Yuanlong; Zanghi, Brian; Want, Elizabeth; Volk, Holger A

    2015-11-14

    Despite appropriate antiepileptic drug treatment, approximately one-third of humans and dogs with epilepsy continue experiencing seizures, emphasising the importance for new treatment strategies to improve the quality of life of people or dogs with epilepsy. A 6-month prospective, randomised, double-blinded, placebo-controlled cross-over dietary trial was designed to compare a ketogenic medium-chain TAG diet (MCTD) with a standardised placebo diet in chronically antiepileptic drug-treated dogs with idiopathic epilepsy. Dogs were fed either MCTD or placebo diet for 3 months followed by a subsequent respective switch of diet for a further 3 months. Seizure frequency, clinical and laboratory data were collected and evaluated for twenty-one dogs completing the study. Seizure frequency was significantly lower when dogs were fed the MCTD (2·31/month, 0-9·89/month) in comparison with the placebo diet (2·67/month, 0·33-22·92/month, P=0·020); three dogs achieved seizure freedom, seven additional dogs had ≥50 % reduction in seizure frequency, five had an overall <50 % reduction in seizures (38·87 %, 35·68-43·27 %) and six showed no response. Seizure day frequency were also significantly lower when dogs were fed the MCTD (1·63/month, 0-7·58/month) in comparison with the placebo diet (1·69/month, 0·33-13·82/month, P=0·022). Consumption of the MCTD also resulted in significant elevation of blood β-hydroxybutyrate concentrations in comparison with placebo diet (0·041 (sd 0·004) v. 0·031 (sd 0·016) mmol/l, P=0·028). There were no significant changes in serum concentrations of glucose (P=0·903), phenobarbital (P=0·422), potassium bromide (P=0·404) and weight (P=0·300) between diet groups. In conclusion, the data show antiepileptic properties associated with ketogenic diets and provide evidence for the efficacy of the MCTD used in this study as a therapeutic option for epilepsy treatment.

  13. Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease.

    PubMed

    Zhao, Wei; Varghese, Merina; Vempati, Prashant; Dzhun, Anastasiya; Cheng, Alice; Wang, Jun; Lange, Dale; Bilski, Amanda; Faravelli, Irene; Pasinetti, Giulio Maria

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and finally death. ALS patients suffer from asthenia and their progressive weakness negatively impacts quality of life, limiting their daily activities. They have impaired energy balance linked to lower activity of mitochondrial electron transport chain enzymes in ALS spinal cord, suggesting that improving mitochondrial function may present a therapeutic approach for ALS. When fed a ketogenic diet, the G93A ALS mouse shows a significant increase in serum ketones as well as a significantly slower progression of weakness and lower mortality rate. In this study, we treated SOD1-G93A mice with caprylic triglyceride, a medium chain triglyceride that is metabolized into ketone bodies and can serve as an alternate energy substrate for neuronal metabolism. Treatment with caprylic triglyceride attenuated progression of weakness and protected spinal cord motor neuron loss in SOD1-G93A transgenic animals, significantly improving their performance even though there was no significant benefit regarding the survival of the ALS transgenic animals. We found that caprylic triglyceride significantly promoted the mitochondrial oxygen consumption rate in vivo. Our results demonstrated that caprylic triglyceride alleviates ALS-type motor impairment through restoration of energy metabolism in SOD1-G93A ALS mice, especially during the overt stage of the disease. These data indicate the feasibility of using caprylic acid as an easily administered treatment with a high impact on the quality of life of ALS patients.

  14. Caprylic Triglyceride as a Novel Therapeutic Approach to Effectively Improve the Performance and Attenuate the Symptoms Due to the Motor Neuron Loss in ALS Disease

    PubMed Central

    Zhao, Wei; Varghese, Merina; Vempati, Prashant; Dzhun, Anastasiya; Cheng, Alice; Wang, Jun; Lange, Dale; Bilski, Amanda; Faravelli, Irene; Pasinetti, Giulio Maria

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and finally death. ALS patients suffer from asthenia and their progressive weakness negatively impacts quality of life, limiting their daily activities. They have impaired energy balance linked to lower activity of mitochondrial electron transport chain enzymes in ALS spinal cord, suggesting that improving mitochondrial function may present a therapeutic approach for ALS. When fed a ketogenic diet, the G93A ALS mouse shows a significant increase in serum ketones as well as a significantly slower progression of weakness and lower mortality rate. In this study, we treated SOD1-G93A mice with caprylic triglyceride, a medium chain triglyceride that is metabolized into ketone bodies and can serve as an alternate energy substrate for neuronal metabolism. Treatment with caprylic triglyceride attenuated progression of weakness and protected spinal cord motor neuron loss in SOD1-G93A transgenic animals, significantly improving their performance even though there was no significant benefit regarding the survival of the ALS transgenic animals. We found that caprylic triglyceride significantly promoted the mitochondrial oxygen consumption rate in vivo. Our results demonstrated that caprylic triglyceride alleviates ALS-type motor impairment through restoration of energy metabolism in SOD1-G93A ALS mice, especially during the overt stage of the disease. These data indicate the feasibility of using caprylic acid as an easily administered treatment with a high impact on the quality of life of ALS patients. PMID:23145119

  15. Production of two monomer structures containing medium-chain-length polyhydroxyalkanoates by beta-oxidation-impaired mutant of Pseudomonas putida KT2442.

    PubMed

    Ma, Long; Zhang, Haifeng; Liu, Qian; Chen, Jiong; Zhang, Jing; Chen, Guo-Qiang

    2009-10-01

    Pseudomonas putida KT2442 produces medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acids. When gene encoding 3-hydroxyacyl-CoA dehydrogenase which catalyzes long-chain-3-hydroxyacyl-CoA to 3-ketoacyl-CoA, was partially or completely deleted in P. putida KTOY08, the PHA accumulated was shown to contain only two different monomer structures dominated by a monomer of the same chain length as that of the fatty acids fed and another monomer two carbon atoms shorter. Among the PHA copolymers, P(44% 3HD-co-3HDD) containing 44% 3HD and 56% 3HDD was demonstrated to have a melting temperature T(m), an apparent heat of fusion DeltaH(m) and a Young's modulus E of 75 degrees C, 51 J g(-1) and 2.0 MPa, respectively, the highest among all the MCL PHA studied.

  16. Meta-analysis of structured triglyceride versus other lipid emulsions for parenteral nutrition.

    PubMed

    Zhu, Mengbai; Li, Xueliang

    2013-06-01

    Structured triglyceride (STG) is a new emulsion synthesized from long-chain fatty acids and medium-chain fatty acids bound to the same glycerol backbone. We performed a meta-analysis to examine the safety, efficacy, and tolerability of STG for parenteral nutrition. We searched MEDLINE, EMBASE, and the Chinese Biomedicine Database, with the last search done in May 2012. Only randomized controlled trials in humans published in Chinese or English were included. Search terms included structured triglyceride and structural lipid. Methodologic quality was evaluated using the Jadad Scale. Meta-analysis was conducted using Review Manager 5.0.24 to calculate the weighted mean difference (WMD) and standardized mean difference (SMD) with 95% confidence intervals. Twenty-one studies (833 participants) published in English or Chinese were included in the analysis. STG significantly affected plasma triglycerides (WMD = -0.15; 95% confidence interval [CI], -0.29 to -0.01; P = 0.04), plasma glycerol (WMD = 0.21; 95% CI, 0.01-0.41; P = 0.04), free fatty acids (WMD = 0.21; 95% CI, 0.03-0.39; P = 0.02), nitrogen balance (SMD = 1.13; 95% CI, 0.26-1.99; P = 0.01), AST (WMD = -5.97; 95% CI, -7.17 to -4.76; P < 0.00001), and glucose (WMD = -0.18; 95% CI, -0.30 to -0.06; P = 004), but not respiratory quotient, resting energy expenditure, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transpeptidase, bilirubin, cholesterol, serum creatinine, or vital signs. STG is rapidly metabolized without harming the liver, and positively affects nitrogen balance. STG is at least as safe and effective for parenteral nutrition as other triglycerides.

  17. Normal rates of whole-body fat oxidation and gluconeogenesis after overnight fasting and moderate-intensity exercise in patients with medium-chain acyl-CoA dehydrogenase deficiency.

    PubMed

    Huidekoper, Hidde H; Ackermans, Mariëtte T; Koopman, René; van Loon, Luc J C; Sauerwein, Hans P; Wijburg, Frits A

    2013-09-01

    Impairments in gluconeogenesis have been implicated in the pathophysiology of fasting hypoglycemia in medium-chain acyl-CoA dehydrogenase deficiency. However, whole body glucose and fat metabolism have never been studied in vivo. Stable isotope methodology was applied to compare fat and glucose metabolism between four adult patients with MCADD and four matched controls both at rest and during 1.5 h of moderate-intensity exercise. Additionally, intramyocellular lipid and glycogen content and intramyocellular acylcarnitines were assessed in muscle biopsies collected prior to and immediately after cessation of exercise. At rest, plasma FFA turnover was significantly higher in patients with MCADD, whereas the plasma FFA concentrations did not differ between patients and controls. Blood glucose kinetics did not differ between groups both at rest and during exercise. Palmitate and FFA turnover, total fat and carbohydrate oxidation rates, the use of muscle glycogen and muscle derived triglycerides during exercise did not differ between patients and controls. Plasma FFA oxidation rates were significantly lower in patients at the latter stages of exercise. Free carnitine levels in muscle were lower in patients, whereas no differences were detected in muscle acetylcarnitine levels. Whole-body or skeletal muscle glucose and fat metabolism were not impaired in adult patients with MCADD. This implies that MCADD is not rate limiting for energy production under the conditions studied. In addition, patients with MCADD have a higher FFA turnover rate after overnight fasting, which may stimulate ectopic lipid deposition and, as such, make them more susceptible for developing insulin resistance.

  18. The effects of long- or medium-chain fat diets on glucose tolerance and myocellular content of lipid intermediates in rats.

    PubMed

    De Vogel-van den Bosch, Johan; Hoeks, Joris; Timmers, Silvie; Houten, Sander M; van Dijk, Paul J; Boon, Wendy; Van Beurden, Denis; Schaart, Gert; Kersten, Sander; Voshol, Peter J; Wanders, Ronald J A; Hesselink, Matthijs K; Schrauwen, Patrick

    2011-04-01

    Accumulation of triacylglycerols (TAGs) and acylcarnitines in skeletal muscle upon high-fat (HF) feeding is the resultant of fatty acid uptake and oxidation and is associated with insulin resistance. As medium-chain fatty acids (MCFAs) are preferentially β-oxidized over long-chain fatty acids, we examined the effects of medium-chain TAGs (MCTs) and long-chain TAGs (LCTs) on muscle lipid storage and whole-body glucose tolerance. Rats fed a low-fat (LF), HFLCT, or an isocaloric HFMCT diet displayed a similar body weight gain over 8 weeks of treatment. Only HFLCT increased myocellular TAG (42.3 ± 4.9, 71.9 ± 6.7, and 48.5 ± 6.5 µmol/g for LF, HFLCT, and HFMCT, respectively, P < 0.05) and long-chain acylcarnitine content (P < 0.05). Neither HF diet increased myocellular diacylglycerol (DAG) content. Intraperitoneal (IP) glucose tolerance tests (1.5 g/kg) revealed a significantly decreased glucose tolerance in the HFMCT compared to the HFLCT-fed rats (802 ± 40, 772 ± 18, and 886 ± 18 area under the curve for LF, HFLCT, and HFMCT, respectively, P < 0.05). Finally, no differences in myocellular insulin signaling after bolus insulin injection (10 U/kg) were observed between LF, HFLCT, or HFMCT-fed rats. These results show that accumulation of TAGs and acylcarnitines in skeletal muscle in the absence of body weight gain do not impede myocellular insulin signaling or whole-body glucose intolerance.

  19. Changes in the content of short, medium and long-chain fatty acids in isolated hepatocytes incubated in the presence of magnesium ions and/or ethanol.

    PubMed

    Grochowska-Niedworok, E; Calyniuk, B; Nowakowska-Zajdel, E; Muc-Wierzgon', M

    2013-01-01

    Magnesium is one of the commonly used dietary supplements. Therefore, this study was to evaluate the content of short, medium and long-chain fatty acids and their esters in isolated rat hepatocytes induced by magnesium and/or ethanol. Isolation of hepatocytes was carried out by the Seglen's enzymatic method using collagenase. To thus prepared samples ethanol and/or MgCl2 solution were added, respectively, so that their concentrations were as follows: 150 mM/dm3 ethanol and/or 2 mM/dm3 MgCl2, 4 mM/dm3 MgCl2. The contents of short, medium and long-chain fatty acids and those of ester-bound acids were determined. The statistical evaluation of the experiment was made by comparing the area normalized for the analysed fatty acids in hepatocytes incubated for 5 h in the presence of the test substances. The effect of magnesium ions on the content of fatty acids and their esters in isolated hepatocytes incubated for 5 h depended on their concentration in the medium. A normalizing effect of magnesium ions on ethanol-induced changes in the content of C14-C17, C18-C20 and C21-C24 fatty acids was demonstrated. A normalizing effect of magnesium on ethanol-induced changes in the content of ester-bound fatty acids in hepatocytes was not confirmed.

  20. Medium chain length polyhydroxyalkanoates biosynthesis in Pseudomonas putida mt-2 is enhanced by co-metabolism of glycerol/octanoate or fatty acids mixtures.

    PubMed

    Fontaine, Paul; Mosrati, Ridha; Corroler, David

    2017-05-01

    The synthesis of medium chain length polyhydroxyalkanoates (mcl-PHAs) by Pseudomonas putida mt-2 was investigated under nitrogen-rich then deficient conditions with glycerol/octanoate or long-chain fatty acids (LCFAs) as carbon sources. When mixed, glycerol and octanoate were co-assimilated regardless of nitrogen availability but provided that glycerol uptake has been already triggered under non-limiting nutrient conditions. This concomitant consumption allowed to enhance mcl-PHAs accumulation (up to 57% of cell dry weight (CDW)) under both non-limiting and nitrogen deficient conditions. Octanoate then mostly drove anabolism of the polyester with 3-hydroxyoctanoate (3HO) synthesized as the main monomer (83%). If the preferred PHA precursor octanoate was supplied, glycerol was mainly involved in cell growth and/or maintenance but very little in PHA production even under nitrogen starvation. P. putida cells accumulated higher amounts of mcl-PHAs when grown on mixtures of LCFAs compared to LCFAs supplied as single substrate (25% and 9% of CDW, respectively). However, only a weak enrichment of the polyester was observed after transfer of cells in a fresh nitrogen-free medium containing the same combination of LCFAs. Some typical units within the polyester were related to the LCFAs ratio supplied in the medium indicating that tailor-made monomers could be synthesized. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Gastric pre-processing is an important determinant of the ability of medium-chain lipid solution formulations to enhance oral bioavailability in rats.

    PubMed

    Lee, Kathy Wai Yu; Porter, Christopher J H; Boyd, Ben J

    2013-11-01

    The contribution of dispersion and digestion in the stomach to the bioavailability of poorly water-soluble drugs administered in lipid-based formulations was assessed by comparison of intraduodenal (ID) and peroral (p.o.) administration using cinnarizine (CZ) as a model drug. Differences in the dispersion and digestion in the gastric and intestinal compartments for medium-chain triacylglycerides (MCT) and long-chain triacylglycerides (LCT) were observed, leading to differences in the oral bioavailability of CZ. Bypassing gastric processing using ID administration of lipid solution formulations decreased drug bioavailability regardless of lipid type. Overall, bioavailability from LCT formulations was higher than MCT regardless of route of administration, consistent with past data after p.o. administration and previously reported descriptions of increases in drug precipitation after administration of medium-chain lipid formulations. The larger differences between bioavailability after both p.o. and ID administration for MCT compared with LCT formulations suggest that passage through the stomach is more critical for MCT formulations, and that gastric digestion may be more critical for MCT than LCT formulations. For MCT-based formulations, efficient dispersion and partial digestion in the stomach may be required to allow rapid transfer to intestinal-mixed micelles and absorption in the upper small intestine prior to drug precipitation.

  2. Untargeted mass spectrometric approach in metabolic healthy offspring of patients with type 2 diabetes reveals medium-chain acylcarnitine as potential biomarker for lipid induced glucose intolerance (LGIT).

    PubMed

    Knebel, Birgit; Mack, Susanne; Lehr, Stefan; Barsch, Aiko; Schiller, Martina; Haas, Jutta; Lange, Simone; Fuchser, Jens; Zurek, Gabriela; Müller-Wieland, Dirk; Kotzka, Jorg

    2016-12-01

    Offspring of type 2 diabetes (T2D) patients have increased risk to develop diabetes, due to inherited genetic susceptibility that directly interferes with the individual adaption to environmental conditions. We characterise T2D offspring (OSP) to identify metabolic risk markers for early disease prediction. Plasma of metabolically healthy OSP individuals (n = 43) was investigated after an oral lipid tolerance test (oLTT) by an untargeted mass spectrometric approach for holistic metabolome analyses. Two subgroups of OSP probands can be separated by oLTT, although not differing in general clinical parameters. Analyses of the plasma metabolome revealed mainly medium-chain acylcarnitines and very long-chain fatty acids with differential abundance in the subgroups. The study presented indicates that metabolically healthy OSP of T2D patients differ upon metabolic challenging in serum metabolite composition, especially medium-chain acylcarnitines. The difference suggest that postprandial lipid induced glucose intolerance (LGIT) may serve as a further valuable marker for early diabetes prediction.

  3. Effects of Medium- and Long-Chain Triacylglycerols on Lipid Metabolism and Gut Microbiota Composition in C57BL/6J Mice.

    PubMed

    Zhou, Shengmin; Wang, Yueqiang; Jacoby, Jörg J; Jiang, Yuanrong; Zhang, Yaqiong; Yu, Liangli Lucy

    2017-08-09

    Obesity is related to an increasing risk of chronic diseases. Medium- and long-chain triacylglycerols (MLCT) have been recognized as a promising choice to reduce body weight. In this study, three MLCT with different contents of medium-chain fatty acids (MCFA) (10-30%, w/w) were prepared, and their effects on lipid metabolism and fecal gut microbiota composition of C57BL/6J mice were systematically investigated. MLCT with 30% (w/w) MCFA showed the best performance in decreasing body weight gain as well as optimizing serum lipid parameters and liver triacylglycerol content. The expression levels of genes encoding enzymes for fatty acid degradation increased markedly and expression levels of genes encoding enzymes for de novo fatty acid biosynthesis decreased significantly in the liver of mice treated with MLCT containing 30% (w/w) MCFA. Interestingly, the dietary intake of a high fat diet containing MLCT did significantly decrease the ratio of Firmicutes to Bacteroidetes and down-regulate the relative abundance of Proteobacteria that may attribute to weight loss. Furthermore, we found a notable increase in the total short-chain fatty acid (SCFA) content in feces of mice on a MLCT containing diet. All these results may be concomitantly responsible for the antiobesity effect of MLCT with relatively high contents of MCFA.

  4. Cloning and sequencing of the medium-chain S-acyl fatty acid synthetase thioester hydrolase cDNA from rat mammary gland.

    PubMed Central

    Naggert, J; Williams, B; Cashman, D P; Smith, S

    1987-01-01

    cDNA clones coding for the medium-chain S-acyl fatty acid synthetase thioester hydrolase (thioesterase II) from rat mammary gland were identified in a bacteriophage lambda gt11 library and their nucleotide sequences were determined. The predicted coding region spans 263 amino acid residues and includes a sequence identical with that of a peptide derived from the enzyme active site. The rat thioesterase II cDNA sequence exhibits homology with that of a thioesterase found in duck uropygial glands. Images Fig. 3. PMID:3632637

  5. Production of copolyesters of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by E. coli containing an optimized PHA synthase gene.

    PubMed

    Gao, Xue; Yuan, Xiao-Xi; Shi, Zhen-Yu; Guo, Ying-Ying; Shen, Xiao-Wen; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2012-09-14

    Microbial polyhydroxyalkanoates (PHA) are biopolyesters consisting of diverse monomers. PHA synthase PhaC2Ps cloned from Pseudomonas stutzeri 1317 is able to polymerize short-chain-length (scl) 3-hydroxybutyrate (3HB) monomers and medium-chain-length (mcl) 3-hydroxyalkanoates (3HA) with carbon chain lengths ranging from C6 to C12. However, the scl and mcl PHA production in Escherichia coli expressing PhaC2Ps is limited with very low PHA yield. To improve the production of PHA with a wide range of monomer compositions in E. coli, a series of optimization strategies were applied on the PHA synthase PhaC2Ps. Codon optimization of the gene and mRNA stabilization with a hairpin structure were conducted and the function of the optimized PHA synthase was tested in E. coli. The transcript was more stable after the hairpin structure was introduced, and western blot analysis showed that both codon optimization and hairpin introduction increased the protein expression level. Compared with the wild type PhaC2Ps, the optimized PhaC2Ps increased poly-3-hydroxybutyrate (PHB) production by approximately 16-fold to 30% of the cell dry weight. When grown on dodecanoate, the recombinant E. coli harboring the optimized gene phaC2PsO with a hairpin structure in the 5' untranslated region was able to synthesize 4-fold more PHA consisting of 3HB and medium-chain-length 3HA compared to the recombinant harboring the wild type phaC2Ps. The levels of both PHB and scl-mcl PHA in E. coli were significantly increased by series of optimization strategies applied on PHA synthase PhaC2Ps. These results indicate that strategies including codon optimization and mRNA stabilization are useful for heterologous PHA synthase expression and therefore enhance PHA production.

  6. Production of copolyesters of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by E. coli containing an optimized PHA synthase gene

    PubMed Central

    2012-01-01

    Background Microbial polyhydroxyalkanoates (PHA) are biopolyesters consisting of diverse monomers. PHA synthase PhaC2Ps cloned from Pseudomonas stutzeri 1317 is able to polymerize short-chain-length (scl) 3-hydroxybutyrate (3HB) monomers and medium-chain-length (mcl) 3-hydroxyalkanoates (3HA) with carbon chain lengths ranging from C6 to C12. However, the scl and mcl PHA production in Escherichia coli expressing PhaC2Ps is limited with very low PHA yield. Results To improve the production of PHA with a wide range of monomer compositions in E. coli, a series of optimization strategies were applied on the PHA synthase PhaC2Ps. Codon optimization of the gene and mRNA stabilization with a hairpin structure were conducted and the function of the optimized PHA synthase was tested in E. coli. The transcript was more stable after the hairpin structure was introduced, and western blot analysis showed that both codon optimization and hairpin introduction increased the protein expression level. Compared with the wild type PhaC2Ps, the optimized PhaC2Ps increased poly-3-hydroxybutyrate (PHB) production by approximately 16-fold to 30% of the cell dry weight. When grown on dodecanoate, the recombinant E. coli harboring the optimized gene phaC2PsO with a hairpin structure in the 5’ untranslated region was able to synthesize 4-fold more PHA consisting of 3HB and medium-chain-length 3HA compared to the recombinant harboring the wild type phaC2Ps. Conclusions The levels of both PHB and scl-mcl PHA in E. coli were significantly increased by series of optimization strategies applied on PHA synthase PhaC2Ps. These results indicate that strategies including codon optimization and mRNA stabilization are useful for heterologous PHA synthase expression and therefore enhance PHA production. PMID:22978778

  7. CE: Triglycerides: Do They Matter?

    PubMed

    Scordo, Kristine; Pickett, Kim Anne

    2017-01-01

    : Since the introduction of HMG-CoA reductase inhibitors, also known as statins, as an adjunct to diet in the treatment of hyperlipidemia and the greater emphasis placed on reducing low-density lipoprotein (LDL) cholesterol levels in the prevention of atherosclerosis and cardiovascular disease (CVD), there has been less focus on the value of lowering serum triglyceride levels. Many patients are aware of their "good" and "bad" cholesterol levels, but they may not be aware of their triglyceride level or of the association between high triglycerides and the development of CVD. In recent years, however, in light of the increasing incidences of obesity, insulin resistance, and type 2 diabetes, lowering triglyceride levels has gained renewed interest. In addition to the focus on lowering LDL cholesterol levels in CVD prevention, clinicians need to be aware of the role of triglycerides-their contribution to CVD, and the causes and treatment of hypertriglyceridemia.

  8. Improvement of medium chain fatty acid content and antimicrobial activity of coconut oil via solid-state fermentation using a Malaysian Geotrichum candidum.

    PubMed

    Khoramnia, Anahita; Ebrahimpour, Afshin; Ghanbari, Raheleh; Ajdari, Zahra; Lai, Oi-Ming

    2013-01-01

    Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries.

  9. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes.

    PubMed

    Sternkopf Lillebæk, Eva Maria; Lambert Nielsen, Stine; Scheel Thomasen, Rikke; Færgeman, Nils J; Kallipolitis, Birgitte H

    2017-03-23

    The foodborne pathogen Listeria monocytogenes is the causative agent of the invasive disease listeriosis. Infection by L. monocytogenes involves bacterial crossing of the intestinal barrier and intracellular replication in a variety of host cells. The PrfA protein is the master regulator of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression in the intestinal environment. In the gastrointestinal phase of infection, the bacterium encounters a variety of antimicrobial agents, including medium- and long-chain free fatty acids that are commonly found in our diet and as active components of bile. Here we show that subinhibitory concentrations of specific antimicrobial free fatty acids act to downregulate transcription of PrfA-activated virulence genes. Interestingly, the inhibitory effect is also evident in cells encoding a constitutively active variant of PrfA. Collectively, our data suggest that antimicrobial medium- and long-chain free fatty acids may act as signals to prevent PrfA-mediated activation of virulence genes in environments where PrfA activation is not required, such as in food and the gastrointestinal tract.

  10. Improvement of Medium Chain Fatty Acid Content and Antimicrobial Activity of Coconut Oil via Solid-State Fermentation Using a Malaysian Geotrichum candidum

    PubMed Central

    Khoramnia, Anahita; Ebrahimpour, Afshin; Ghanbari, Raheleh; Ajdari, Zahra; Lai, Oi-Ming

    2013-01-01

    Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries. PMID:23971051

  11. Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli.

    PubMed

    Zhuang, Qianqian; Wang, Qian; Liang, Quanfeng; Qi, Qingsheng

    2014-07-01

    Polyhydroxyalkanoates that contain the medium-chain-length monomers (mcl-PHAs) have a wide range of applications owing to their superior physical and mechanical properties. A challenge to synthesize such mcl-PHAs from unrelated and renewable sources is exploiting the efficient metabolic pathways that lead to the formation of precursor (R)-3-hydroxyacyl-CoA. Here, by engineering the reversed fatty acid β-oxidation cycle, we were able to synthesize mcl-PHAs in Escherichia coli directly from glucose. After deletion of the major thioesterases, the engineered E. coli produced 6.62wt% of cell dry weight mcl-PHA heteropolymers. Furthermore, when a low-substrate-specificity PHA synthase from Pseudomonas stutzeri 1317 was employed, recombinant E. coli synthesized 12.10wt% of cell dry weight scl-mcl PHA copolymers, of which 21.18mol% was 3-hydroxybutyrate and 78.82mol% was medium-chain-length monomers. The reversed fatty acid β-oxidation cycle offered an efficient metabolic pathway for mcl-PHA biosynthesis in E. coli and can be further optimized. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. The antiepileptic drug valproic acid and other medium-chain fatty acids acutely reduce phosphoinositide levels independently of inositol in Dictyostelium.

    PubMed

    Chang, Pishan; Orabi, Benoit; Deranieh, Rania M; Dham, Manik; Hoeller, Oliver; Shimshoni, Jakob A; Yagen, Boris; Bialer, Meir; Greenberg, Miriam L; Walker, Matthew C; Williams, Robin S B

    2012-01-01

    Valproic acid (VPA) is the most widely prescribed epilepsy treatment worldwide, but its mechanism of action remains unclear. Our previous work identified a previously unknown effect of VPA in reducing phosphoinositide production in the simple model Dictyostelium followed by the transfer of data to a mammalian synaptic release model. In our current study, we show that the reduction in phosphoinositide [PtdInsP (also known as PIP) and PtdInsP(2) (also known as PIP(2))] production caused by VPA is acute and dose dependent, and that this effect occurs independently of phosphatidylinositol 3-kinase (PI3K) activity, inositol recycling and inositol synthesis. In characterising the structural requirements for this effect, we also identify a family of medium-chain fatty acids that show increased efficacy compared with VPA. Within the group of active compounds is a little-studied group previously associated with seizure control, and analysis of two of these compounds (nonanoic acid and 4-methyloctanoic acid) shows around a threefold enhanced potency compared with VPA for protection in an in vitro acute rat seizure model. Together, our data show that VPA and a newly identified group of medium-chain fatty acids reduce phosphoinositide levels independently of inositol regulation, and suggest the reinvestigation of these compounds as treatments for epilepsy.

  13. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids.

    PubMed

    Clomburg, James M; Blankschien, Matthew D; Vick, Jacob E; Chou, Alexander; Kim, Seohyoung; Gonzalez, Ramon

    2015-03-01

    An engineered reversal of the β-oxidation cycle was exploited to demonstrate its utility for the synthesis of medium chain (6-10-carbons) ω-hydroxyacids and dicarboxylic acids from glycerol as the only carbon source. A redesigned β-oxidation reversal facilitated the production of medium chain carboxylic acids, which were converted to ω-hydroxyacids and dicarboxylic acids by the action of an engineered ω-oxidation pathway. The selection of a key thiolase (bktB) and thioesterase (ydiI) in combination with previously established core β-oxidation reversal enzymes, as well as the development of chromosomal expression systems for the independent control of pathway enzymes, enabled the generation of C6-C10 carboxylic acids and provided a platform for vector based independent expression of ω-functionalization enzymes. Using this approach, the expression of the Pseudomonas putida alkane monooxygenase system, encoded by alkBGT, in combination with all β-oxidation reversal enzymes resulted in the production of 6-hydroxyhexanoic acid, 8-hydroxyoctanoic acid, and 10-hydroxydecanoic acid. Following identification and characterization of potential alcohol and aldehyde dehydrogenases, chnD and chnE from Acinetobacter sp. strain SE19 were expressed in conjunction with alkBGT to demonstrate the synthesis of the C6-C10 dicarboxylic acids, adipic acid, suberic acid, and sebacic acid. The potential of a β-oxidation cycle with ω-oxidation termination pathways was further demonstrated through the production of greater than 0.8 g/L C6-C10 ω-hydroxyacids or about 0.5 g/L dicarboxylic acids of the same chain lengths from glycerol (an unrelated carbon source) using minimal media.

  14. Spatial and temporal trends of short- and medium-chain chlorinated paraffins in sediments off the urbanized coastal zones in China and Japan: A comparison study.

    PubMed

    Zeng, Lixi; Lam, James C W; Horii, Yuichi; Li, Xiaolin; Chen, Weifang; Qiu, Jian-Wen; Leung, Kenneth M Y; Yamazaki, Eriko; Yamashita, Nobuyoshi; Lam, Paul K S

    2017-05-01

    To examine the impacts of urbanization and industrialization on the coastal environment, and assess the effectiveness of control measures on the contamination by chlorinated paraffins (CPs) in East Asia, surface and core sediments were sampled from the urbanized coastal zones in China and Japan (i.e., Pearl River Delta (PRD), Hong Kong waters and Tokyo Bay) and analyzed for short-chain (SCCPs) and medium-chain CPs (MCCPs). Much higher concentrations of CPs were found in the industrialized PRD than in adjacent Hong Kong waters. Significant correlation between CP concentration and population density in the coastal district of Hong Kong was observed (r(2) = 0.72 for SCCPs and 0.55 for MCCPs, p < 0.05), highlighting the effect of urbanization. By contrast, a relatively lower pollution level of CPs was detected in Tokyo Bay. More long-chain groups within SCCPs in the PRD than in Hong Kong waters and Tokyo Bay implied the effect of industrialization. Comparison of temporal trends between Hong Kong outer harbor with Tokyo Bay shows the striking difference in historical deposition of CPs under different regulatory situations in China and Japan. For the first time, the declining CP concentrations in Tokyo Bay, Japan, attest to the effectiveness of emissions controls.

  15. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids.

    PubMed

    Bowen, Christopher H; Bonin, Jeff; Kogler, Anna; Barba-Ostria, Carlos; Zhang, Fuzhong

    2016-03-18

    In search of sustainable approaches to plastics production, many efforts have been made to engineer microbial conversions of renewable feedstock to short-chain (C2-C8) bifunctional polymer precursors (e.g., succinic acid, cadaverine, 1,4-butanediol). Less attention has been given to medium-chain (C12-C14) monomers such as ω-hydroxy fatty acids (ω-OHFAs) and α,ω-dicarboxylic acids (α,ω-DCAs), which are precursors to high performance polyesters and polyamides. Here we engineer a complete microbial conversion of glucose to C12 and C14 ω-OHFAs and α,ω-DCAs, with precise control of product chain length. Using an expanded bioinformatics approach, we screen a wide range of enzymes across phyla to identify combinations that yield complete conversion of intermediates to product α,ω-DCAs. Finally, through optimization of culture conditions, we enhance production titer of C12 α,ω-DCA to nearly 600 mg/L. Our results indicate potential for this microbial factory to enable commercially relevant, renewable production of C12 α,ω-DCA-a valuable precursor to the high-performance plastic, nylon-6,12.

  16. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production

    PubMed Central

    Zhu, Xiaoyu; Tao, Yong; Liang, Cheng; Li, Xiangzhen; Wei, Na; Zhang, Wenjie; Zhou, Yan; Yang, Yanfei; Bo, Tao

    2015-01-01

    A unique microbiome that metabolizes lactate rather than ethanol for n-caproate production was obtained from a fermentation pit used for the production of Chinese strong-flavour liquor (CSFL). The microbiome was able to produce n-caproate at concentrations as high as 23.41 g/L at a maximum rate of 2.97 g/L/d in batch trials without in-line extraction. Compared with previous work using ethanol as the electron donor, the n-caproate concentration increased by 82.89%. High-throughput sequencing analysis showed that the microbiome was dominated by a Clostridium cluster IV, which accounted for 79.07% of total reads. A new process for n-caproate production was proposed, lactate oxidation coupled to chain elongation, which revealed new insight into the well-studied lactate conversion and carbon chain elongation. In addition, these findings indicated a new synthesis mechanism of n-caproate in CSFL. We believe that this efficient process will provide a promising opportunity for the innovation of waste recovery as well as for n-caproate biosynthesis. PMID:26403516

  17. Biosynthesis and genomic analysis of medium-chain hydrocarbon production by the endophytic fungal isolate Nigrograna mackinonnii E5202H

    PubMed Central

    Shaw, Jeffery J; Spakowicz, Daniel J; Dalal, Rahul S; Davis, Jared H; Lehr, Nina A; Dunican, Brian F; Orellana, Esteban A; Narváez-Trujillo, Alexandra; Strobel, Scott A

    2015-01-01

    An endophytic fungus was isolated that produces a series of volatile natural products, including terpenes and odd chain polyenes. Phylogenetic analysis of the isolate using five loci suggests that it is closely related to Nigrograna mackinnonii CBS 674.75. The main component of the polyene series was purified and identified as (3E,5E,7E)-nona-1,3,5,7-tetraene (NTE), a novel natural product. Non-oxygenated hydrocarbons of this chain length are uncommon and desirable as gasoline-surrogate biofuels. The biosynthetic pathway for NTE production was explored using metabolic labeling and GCMS. Two-carbon incorporation 13C acetate suggests that it is derived from a polyketide synthase (PKS) followed by decarboxylation. There are several known mechanisms for such decarboxylation, though none have been discovered in fungi. Towards identifying the PKS responsible for the production of NTE, the genome of N. mackinnonii E5202H (ATCC SD-6839) was sequenced and assembled. Of the 32 PKSs present in the genome, 17 are predicted to contain sufficient domains for the production of NTE. These results exemplify the capacity of endophytic fungi to produce novel natural products that may have many uses, such as biologically derived fuels and commodity chemicals. PMID:25672844

  18. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    PubMed

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-06-21

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  19. Effects of dietary combinations of organic acids and medium chain fatty acids on the gastrointestinal microbial ecology and bacterial metabolites in the digestive tract of weaning piglets.

    PubMed

    Zentek, J; Ferrara, F; Pieper, R; Tedin, L; Meyer, W; Vahjen, W

    2013-07-01

    Organic short and medium chain fatty acids are used in diets for piglets because they have an impact on the digestive processes and the intestinal microbiota. In this study, 48 pens (2 piglets/pen) were assigned randomly to 4 diets, without additive (control), with organic acids (OA; 0.416% fumaric and 0.328% lactic acid), with medium chain fatty acids (MCFA; 0.15% caprylic and capric acid), and a combination of OA and MCFA, to assess changes in the gastrointestinal microbiota with 12 pens per diet. Eight to nine piglets from each group were euthanized after 4 wk. Organic acids, MCFA, and pH in the digesta were determined and the intestinal microbiota was quantified by real-time PCR. The different diets had no effect on the growth performance. Concentration of added fumaric acid was below the detection limit in the upper small intestine whereas the concentration of lactic acid in the digesta was not affected by the treatments. The added MCFA was recovered in the MCFA treated groups in the stomach, but the concentrations declined in the upper small intestine. Concentration of short chain fatty acids was reduced in the colon digesta in piglets fed diets with OA compared with those fed unsupplemented diets (P = 0.029). The MCFA resulted in a pH reduction of the digesta, likely because of the effect on bacterial acid production. The addition of OA increased cell counts of Bacteroides-Porphyromonas-Prevotella group and clostridial clusters XIVa, I, and IV in the stomach, the clostridial cluster XIVa in the jejunum, and Bacteroides-Porphyromonas-Prevotella in the ileum and reduced counts of Streptococcus spp. in the colon (P < 0.05). The MCFA induced only minor changes in the gastrointestinal microbiota but increased cell counts for the Escherichia-Hafnia-Shigella group in the jejunum and the clostridial cluster XIVa in the colon digesta (P < 0.05). In the colon of piglets fed diets with organic OA, reduced mean cell counts of STb (est-II) positive Escherichia coli were

  20. Heterologous overexpression of glucose dehydrogenase from the halophilic archaeon Haloferax mediterranei, an enzyme of the medium chain dehydrogenase/reductase family.

    PubMed

    Pire, C; Esclapez, J; Ferrer, J; Bonete, M J

    2001-06-25

    The first gene encoding a glucose dehydrogenase (GDH) from a halophilic organism has been sequenced. Amino acid sequence alignments of GDH from Haloferax mediterranei show a high degree of homology with the thermoacidophilic GDHs and with other enzymes from the medium chain dehydrogenase/reductase family. Heterologous overexpression using the mesophilic organism Escherichia coli as the host has been performed and the expression product was obtained as inclusion bodies. To obtain the halophilic enzyme in its native form refolding and reactivation in a saline environment were required. A pure and highly concentrated sample of the enzyme was obtained using a purification procedure based on the protein's halophilicity. This method may be useful as a general procedure for purifying other halophilic proteins from mesophilic hosts.

  1. Production of medium chain saturated fatty acids with enhanced antimicrobial activity from crude coconut fat by solid state cultivation of Yarrowia lipolytica.

    PubMed

    Parfene, Georgiana; Horincar, Vicentiu; Tyagi, Amit Kumar; Malik, Anushree; Bahrim, Gabriela

    2013-02-15

    Fatty acids profiles and antimicrobial activity of crude coconut fat hydrolysates obtained in solid-state cultivation system with a selected yeast strain Yarrowia lipolytica RO13 were performed. A preliminary step regarding extracellular lipase production and solid state enzymatic hydrolysis of crude fat at different water activity and time intervals up to 7 days was also applied. Gas chromatography-mass spectrometry analysis was used for quantification of medium chain saturated fatty acids (MCSFAs) and the results revealed a higher concentration of about 70% lauric acid from total fatty acids. Further, antimicrobial activity of fatty acids against some food-borne pathogens (Salmonella enteritidis, Escherichia coli, Listeria monocytogenes and Bacillus cereus) was evaluated. The minimum inhibitory concentration of the obtained hydrolysates varied from 12.5 to 1.56 ppm, significantly lower than values reported in literature. The results provide substantial evidence for obtaining biopreservative effects by coconut fat enzymatic hydrolysis.

  2. Recognition of medium-chain acyl-CoA dehydrogenase deficiency in asymptomatic siblings of children dying of sudden infant death or Reye-like syndromes.

    PubMed

    Roe, C R; Millington, D S; Maltby, D A; Kinnebrew, P

    1986-01-01

    The medium-chain acyl-CoA dehydrogenase (MCAD) deficiency of mitochondrial beta oxidation has been identified in two asymptomatic siblings in a family in which two previous deaths had been recorded, one attributed to sudden infant death syndrome and the other to Reye syndrome. Recognition of this disorder in one of the deceased and in the surviving siblings was accomplished by detection of a diagnostic metabolite, octanoylcarnitine, using a new mass spectrometric technique. This resulted in early treatment with L-carnitine supplement in the survivors, which should prevent metabolic deterioration. Further studies suggest that breast-feeding may be protective for infants with MCAD deficiency. Families with children who have had Reye syndrome or in which sudden infant death has occurred are at risk for MCAD deficiency. We suggest that survivors and asymptomatic siblings should be tested for this treatable disorder.

  3. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates by a phaZ-knockout strain of Pseudomonas putida KT2440.

    PubMed

    Vo, Minh Tri; Ko, Kenton; Ramsay, Bruce

    2015-04-01

    A medium-chain-length poly-3-hydroxyalkanote (MCL-PHA) depolymerase knockout mutant of Pseudomonas putida KT2440 was produced by double homologous recombination. A carbon-limited shake-flask study confirmed that depolymerase activity was eliminated. Lysis of both mutant and wild-type strains occurred under these conditions. In carbon-limited, fed-batch culture, the yield of unsaturated monomers from unsaturated substrate averaged only 0.62 mol mol(-1) for the phaZ minus strain compared to 0.72 mol mol(-1) for the wild type. The mutant strain also produced more CO2 and less residual biomass from the same amount of carbon substrate. However, most results indicated that elimination of PHA depolymerase activity had little impact on the overall yield of biomass and PHA.

  4. Optimization of Water/Oil/Surfactant System for Preparation of Medium-Chain-Length Poly-3-Hydroxyalkanoates (mcl-PHA)-Incorporated Nanoparticles via Nanoemulsion Templating Technique.

    PubMed

    Ishak, K A; Annuar, M Suffian M; Ahmad, N

    2017-05-13

    Polymeric nanoparticles gain a widespread interest in food and pharmaceutical industries as delivery systems that encapsulate, protect, and release lipophilic compounds such as omega-3 fatty acids, fat-soluble vitamins, carotenoids, carvedilol, cyclosporine, and ketoprofen. In this study, medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA)-incorporated nanoparticle was developed via facile organic solvent-free nanoemulsion templating technique. The water content (W/surfactant-to-oil (S/O)), S/O, and Cremophor EL-to-Span 80 (Cremo/Sp80) ratios were first optimized using response surface methodology (RSM) to obtain nanoemulsion template prior to incorporation of mcl-PHA. Their effects on nanoemulsion formation were investigated. The mcl-PHA-incorporated nanoparticle system showed a good preservation capability of β-carotene and extended storage stability.

  5. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids.

    PubMed

    Briscoe, Celia P; Tadayyon, Mohammad; Andrews, John L; Benson, William G; Chambers, Jon K; Eilert, Michelle M; Ellis, Catherine; Elshourbagy, Nabil A; Goetz, Aaron S; Minnick, Dana T; Murdock, Paul R; Sauls, Howard R; Shabon, Usman; Spinage, Lisa D; Strum, Jay C; Szekeres, Philip G; Tan, Kong B; Way, James M; Ignar, Diane M; Wilson, Shelagh; Muir, Alison I

    2003-03-28

    GPR40 is a member of a subfamily of homologous G protein-coupled receptors that include GPR41 and GPR43 and that have no current function or ligand ascribed. Ligand fishing experiments in HEK293 cells expressing human GPR40 revealed that a range of saturated and unsaturated carboxylic acids with carbon chain lengths greater than six were able to induce an elevation of [Ca(2+)](i), measured using a fluorometric imaging plate reader. 5,8,11-Eicosatriynoic acid was the most potent fatty acid tested, with a pEC(50) of 5.7. G protein coupling of GPR40 was examined in Chinese hamster ovary cells expressing the G alpha(q/i)-responsive Gal4-Elk1 reporter system. Expression of human GPR40 led to a constitutive induction of luciferase activity, which was further increased by exposure of the cells to eicosatriynoic acid. Neither the constitutive nor ligand-mediated luciferase induction was inhibited by pertussis toxin treatment, suggesting that GPR40 was coupled to G alpha(q/11.) Expression analysis by quantitative reverse transcription-PCR showed that GPR40 was specifically expressed in brain and pancreas, with expression in rodent pancreas being localized to insulin-producing beta-cells. These data suggest that some of the physiological effects of fatty acids in pancreatic islets and brain may be mediated through a cell-surface receptor.

  6. Enzymatic interesterification of palm stearin with Cinnamomum camphora seed oil to produce zero-trans medium-chain triacylglycerols-enriched plastic fat.

    PubMed

    Tang, Liang; Hu, Jiang-ning; Zhu, Xue-mei; Luo, Li-ping; Lei, Lin; Deng, Ze-yuan; Lee, Ki-Teak

    2012-04-01

    It is known that Cinnamomum camphora seed oil (CCSO) is rich in medium-chain fatty acids (MCFAs) or medium-chain triacylglycerols (MCTs). The purpose of the present study was to produce zero-trans MCTs-enriched plastic fat from a lipid mixture (500 g) of palm stearin (PS) and CCSO at 3 weight ratios (PS:CCSO 60:40, 70:30, 80:20, wt/wt) by using lipase (Lipozyme TL IM, 10% of total substrate) as a catalyst at 65 °C for 8 h. The major fatty acids of the products were palmitic acid (C16:0, 42.68% to 53.42%), oleic acid (C18:1, 22.41% to 23.46%), and MCFAs (8.67% to 18.73%). Alpha-tocopherol (0.48 to 2.51 mg/100 g), γ-tocopherol (1.70 to 3.88 mg/100 g), and δ-tocopherol (2.08 to 3.95 mg/100 g) were detected in the interesterified products. The physical properties including solid fat content (SFC), slip melting point (SMP), and crystal polymorphism of the products were evaluated for possible application in shortening or margarine. Results showed that the SFCs of interesterified products at 25 °C were 9% (60:40, PS:CCSO), 18.50% (70:30, PS:CCSO), and 29.2% (80:20, PS:CCSO), respectively. The β' crystal form was found in most of the interesterified products. Furthermore, no trans fatty acids were detected in the products. Such zero-trans MCT-enriched fats may have a potential functionality for shortenings and margarines which may become a new type of nutritional plastic fat for daily diet. © 2012 Institute of Food Technologists®

  7. Development of a New Strategy for Production of Medium-Chain-Length Polyhydroxyalkanoates by Recombinant Escherichia coli via Inexpensive Non-Fatty Acid Feedstocks

    PubMed Central

    Wang, Qin; Tappel, Ryan C.; Zhu, Chengjun

    2012-01-01

    Pseudomonas putida KT2440 is capable of producing medium-chain-length polyhydroxyalkanoates (MCL-PHAs) when grown on unrelated carbon sources during nutrient limitation. Transcription levels of genes putatively involved in PHA biosynthesis were assessed by quantitative real-time PCR (qRT-PCR) in P. putida grown on glycerol as a sole carbon source. The results showed that two genes, phaG and the PP0763 gene, were highly upregulated among genes potentially involved in the biosynthesis of MCL-PHAs from unrelated carbon sources. Previous studies have described phaG as a 3-hydroxyacyl-acyl carrier protein (ACP)-coenzyme A (CoA) transferase, and based on homology, the PP0763 gene was predicted to encode a medium-chain-fatty-acid CoA ligase. High expression levels of these genes during PHA production in P. putida led to the hypothesis that these two genes are involved in PHA biosynthesis from non-fatty acid carbon sources, such as glucose and glycerol. The phaGpp and PP0763 genes from P. putida were cloned and coexpressed with the engineered Pseudomonas sp. 61-3 PHA synthase gene phaCl (STQK)ps in recombinant Escherichia coli. Up to 400 mg liter−1 MCL-PHAs was successfully produced from glucose. This study has produced the largest amount of MCL-PHAs reported from non-fatty acid carbon sources in recombinant E. coli to date and opens up the possibility of using inexpensive feedstocks to produce MCL-PHA polymers. PMID:22101037

  8. Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks.

    PubMed

    Wang, Qin; Tappel, Ryan C; Zhu, Chengjun; Nomura, Christopher T

    2012-01-01

    Pseudomonas putida KT2440 is capable of producing medium-chain-length polyhydroxyalkanoates (MCL-PHAs) when grown on unrelated carbon sources during nutrient limitation. Transcription levels of genes putatively involved in PHA biosynthesis were assessed by quantitative real-time PCR (qRT-PCR) in P. putida grown on glycerol as a sole carbon source. The results showed that two genes, phaG and the PP0763 gene, were highly upregulated among genes potentially involved in the biosynthesis of MCL-PHAs from unrelated carbon sources. Previous studies have described phaG as a 3-hydroxyacyl-acyl carrier protein (ACP)-coenzyme A (CoA) transferase, and based on homology, the PP0763 gene was predicted to encode a medium-chain-fatty-acid CoA ligase. High expression levels of these genes during PHA production in P. putida led to the hypothesis that these two genes are involved in PHA biosynthesis from non-fatty acid carbon sources, such as glucose and glycerol. The phaG(pp) and PP0763 genes from P. putida were cloned and coexpressed with the engineered Pseudomonas sp. 61-3 PHA synthase gene phaCl (STQK)(ps) in recombinant Escherichia coli. Up to 400 mg liter(-1) MCL-PHAs was successfully produced from glucose. This study has produced the largest amount of MCL-PHAs reported from non-fatty acid carbon sources in recombinant E. coli to date and opens up the possibility of using inexpensive feedstocks to produce MCL-PHA polymers.

  9. De novo synthesis of milk triglycerides in humans

    PubMed Central

    Mohammad, Mahmoud A.; Sunehag, Agneta L.

    2014-01-01

    Mammary gland (MG) de novo lipogenesis contributes significantly to milk fat in animals but little is known in humans. Objective: To test the hypothesis that the incorporation of 13C carbons from [U-13C]glucose into fatty acids (FA) and glycerol in triglycerides (TG) will be greater: 1) in milk than plasma TG, 2) during a high-carbohydrate (H-CHO) diet than high-fat (H-FAT) diet, and 3) during feeding than fasting. Seven healthy, lactating women were studied on two isocaloric, isonitrogenous diets. On one occasion, subjects received diets containing H-FAT or H-CHO diet for 1 wk. Incorporation of 13C from infused [U-13C]glucose into FA and glycerol was measured using GC-MS and gene expression in RNA isolated from milk fat globule using microarrays. Incorporation of 13C2 into milk FA increased with increased FA chain length from C2:0 to C12:0 but progressively declined in C14:0 and C16:0 and was not detected in FA>C16. During feeding, regardless of diets, enrichment of 13C2 in milk FA and 13C3 in milk glycerol were ∼3- and ∼7-fold higher compared with plasma FA and glycerol, respectively. Following an overnight fast during H-CHO and H-FAT diets, 25 and 6%, respectively, of medium-chain FA (MCFA, C6–C12) in milk were derived from glucose but increased to 75 and 25% with feeding. Expression of genes involved in FA or glycerol synthesis was unchanged regardless of diet or fast/fed conditions. The human MG is capable of de novo lipogenesis of primarily MCFA and glycerol, which is influenced by the macronutrient composition of the maternal diet. PMID:24496312

  10. Thermal stabilization of human albumin by medium- and short-chain n-alkyl fatty acid anions.

    PubMed

    Shrake, Andrew; Frazier, Douglas; Schwarz, Frederick P

    2006-03-01

    A comprehensive study of the thermal stabilization of defatted human albumin monomer by n-alkyl fatty acid anions (FAAs), formate through n-decanoate, was carried out by differential scanning calorimetry (DSC). The concentration of each ligand affording maximum thermal stabilization was determined; n-nonanoate provides the greatest stabilization but is only marginally better than n-octanoate and n-decanoate. The use of reversible thermodynamics and a two-state denaturation model for albumin has been validated. Standard free energies of binding, calculated from increases in free energy of denaturation, for n-butanoate and longer FAAs, are linear with n-alkyl chain length whereas those for formate, acetate, and n-propionate deviate from linearity; those for acetate and n-propionate are even greater than that of n-butanoate, thereby suggesting, in addition to the common class of sites available to all such ligands, the presence of an additional class of lower affinity binding sites available only to these shortest ligands. Competition experiments involving acetate and n-octanoate and involving n-pentanoate and n-octanoate confirmed the binding of acetate to lower affinity sites unavailable to n-octanoate and n-pentanoate. Furthermore, an equation is provided, allowing computation of the transition temperature as a function of the free energy for any reversible process causing a change in thermal stability of a protein undergoing reversible, two-state denaturation. With this equation, modeling the competition experiments by using the binding parameters determined by DSC provides additional support for the class of lower affinity sites, which play a significant role in thermal stabilization of albumin at higher concentrations of these shortest FAAs. Copyright 2005 Wiley Periodicals, Inc.

  11. NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin.

    PubMed

    Jupin, M; Michiels, P J; Girard, F C; Spraul, M; Wijmenga, S S

    2014-02-01

    Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients from healthy individuals. Metabolites and their concentrations are direct reporters of body biochemistry. However, in blood plasma the NMR-detected free-metabolite concentrations are also strongly affected by interactions with the abundant plasma proteins, which have as of yet not been considered much in metabolic profiling. We previously reported that many of the common NMR-detected metabolites in blood plasma bind to human serum albumin (HSA) and many are released by fatty acids present in fatted HSA. HSA is the most abundant plasma protein and main transporter of endogenous and exogenous metabolites. Here, we show by NMR how the two most common fatty acids (FAs) in blood plasma - the long-chain FA, stearate (C18:0) and medium-chain FA, myristate (C14:0) - affect metabolite-HSA interaction. Of the set of 18 common NMR-detected metabolites, many are released by stearate and/or myristate, lactate appearing the most strongly affected. Myristate, but not stearate, reduces HSA-binding of phenylalanine and pyruvate. Citrate signals were NMR invisible in the presence of HSA. Only at high myristate-HSA mole ratios 11:1, is citrate sufficiently released to be detected. Finally, we find that limited dilution of blood-plasma mimics releases HSA-bound metabolites, a finding confirmed in real blood plasma samples. Based on these findings, we provide recommendations for NMR experiments for quantitative metabolite profiling.

  12. Engineering of FRT-lacZ fusion constructs: induction of the Pseudomonas aeruginosa fadAB1 operon by medium and long chain-length fatty acids

    PubMed Central

    Son, Mike S.; Nguyen, David T.; Kang, Yun; Hoang, Tung T.

    2008-01-01

    Without prior knowledge of the promoters of various genes in bacteria, it can be difficult to study gene regulation using reporter-gene fusions. Regulation studies of promoters are ideal at their native locus, which do not require prior knowledge of promoter regions. Based on a previous study with FRT-lacZ-KmR constructs, we constructed two novel FRT-lacZ-GmR plasmids. This allows easy engineering of P. aeruginosa reporter-gene fusions, post-mutant construction with the Flp-FRT system. We demonstrate the usefulness of one of these FRT-lacZ-GmR plasmids to study the regulation of the fadAB1 operon in P. aeruginosa at its native locus. The fadAB1 operon, involved in fatty acid (FA) degradation, was significantly induced in the presence of several medium chain-length fatty acids (MCFA) and, to a lesser degree, long chain-length fatty acids (LCFA). In addition to the previous work on the FRT-lacZ-KmR tools, these new constructs increase the repertoire of tools that can be applied to P. aeruginosa or other species and strains of bacteria where kanamycin resistance may not be appropriate. PMID:18221997

  13. NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin

    NASA Astrophysics Data System (ADS)

    Jupin, M.; Michiels, P. J.; Girard, F. C.; Spraul, M.; Wijmenga, S. S.

    2014-02-01

    Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients from healthy individuals. Metabolites and their concentrations are direct reporters of body biochemistry. However, in blood plasma the NMR-detected free-metabolite concentrations are also strongly affected by interactions with the abundant plasma proteins, which have as of yet not been considered much in metabolic profiling. We previously reported that many of the common NMR-detected metabolites in blood plasma bind to human serum albumin (HSA) and many are released by fatty acids present in fatted HSA. HSA is the most abundant plasma protein and main transporter of endogenous and exogenous metabolites. Here, we show by NMR how the two most common fatty acids (FAs) in blood plasma - the long-chain FA, stearate (C18:0) and medium-chain FA, myristate (C14:0) - affect metabolite-HSA interaction. Of the set of 18 common NMR-detected metabolites, many are released by stearate and/or myristate, lactate appearing the most strongly affected. Myristate, but not stearate, reduces HSA-binding of phenylalanine and pyruvate. Citrate signals were NMR invisible in the presence of HSA. Only at high myristate-HSA mole ratios 11:1, is citrate sufficiently released to be detected. Finally, we find that limited dilution of blood-plasma mimics releases HSA-bound metabolites, a finding confirmed in real blood plasma samples. Based on these findings, we provide recommendations for NMR experiments for quantitative metabolite profiling.

  14. Medium-chain triacylglycerol suppresses the decrease of plasma albumin level through the insulin-Akt-mTOR pathway in the livers of malnourished rats.

    PubMed

    Sekine, Seiji; Terada, Shin; Aoyama, Toshiaki

    2013-01-01

    Recent studies have shown that medium-chain triacylglycerol (MCT) improved serum albumin concentration in elderly people with protein-energy malnutrition (PEM) and in malnourished rats. However, the mechanism for this effect has not been clarified. Dietary MCT promotes insulin secretion from the pancreas, and insulin activates mammalian target of rapamycin (mTOR) complex 1 (mTORC1) via the activation of phosphoinositide 3-kinase (PI3K) and its downstream effecter, Akt. mTORC1 promotes mRNA translation through S6K and 4E-BP1. Therefore, we hypothesized that dietary MCT elevates albumin synthesis through promotion of insulin-Akt-mTOR transduction in the liver. To test this hypothesis, we measured phosphorylated Akt, mTOR and albumin in the livers of malnourished rats. In the present study we examined rats fed low-protein diets containing either MCT or long-chain triacylglycerol (LCT) with energy restriction. The plasma and liver albumin levels were significantly higher in the MCT-fed group than in the LCT-fed group. In addition, plasma insulin concentration, liver phosphorylated Akt/Akt and phosphorylated mTOR/mTOR levels were significantly higher in the MCT-fed group than in the LCT-fed group. These results suggest that one of the mechanisms for the albumin improvement effect of dietary MCT is the promotion of albumin synthesis through the insulin-Akt-mTOR signaling pathway of the liver.

  15. A feeding strategy for incorporation of canola derived medium-chain-length monomers into the PHA produced by wild-type Cupriavidus necator.

    PubMed

    Rathinasabapathy, Arthi; Ramsay, Bruce A; Ramsay, Juliana A; Pérez-Guevara, Fermín

    2014-04-01

    The aim of this study was to increase the density of wild type Cupriavidus necator H16 biomass grown on fructose in order to produce sufficient copolymer of short-chain-length (scl) and medium-chain-length (mcl) polyhydroxyalkanoate (PHA) from canola oil for mechanical testing of the PHA. Initial batch cultivation on fructose was followed by exponential feeding of fructose at a predetermined μ to achieve 44.4 g biomass/l containing only 20 % w/w of polyhydroxybutyrate (PHB) with a Y(x/fructose) of 0.44 g/g. In a third stage, canola oil was added under N-limited conditions to produce 92 g/l of biomass with 48 % w/w scl-mcl PHA. Using known standards, the PHA composition was confirmed by GC-MS analysis as 99.81 % 3-hydroxybutyrate, 0.06 % 3-hydroxyvalerate, 0.09 % 3-hydroxyhexanoate and 0.04 % 3-hydroxyoctanoate. The melting temperature (179 °C), crystallinity (54 %), tensile stress (25.1 Mpa) and Young's modulus (698 Mpa) for a PHB standard decreased to 176 °C, 52 %, 19.1 and 443 Mpa respectively for C. necator PHA produced in the 3-stage process.

  16. Evidence that the major metabolites accumulating in medium-chain acyl-CoA dehydrogenase deficiency disturb mitochondrial energy homeostasis in rat brain.

    PubMed

    Schuck, Patrícia Fernanda; Ferreira, Gustavo da Costa; Tonin, Anelise Miotti; Viegas, Carolina Maso; Busanello, Estela Natacha Brandt; Moura, Alana Pimentel; Zanatta, Angela; Klamt, Fábio; Wajner, Moacir

    2009-11-03

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is an inherited metabolic disorder of fatty acid oxidation in which the affected patients predominantly present high levels of octanoic (OA) and decanoic (DA) acids and their glycine and carnitine by-products in tissues and body fluids. It is clinically characterized by episodic encephalopathic crises with coma and seizures, as well as by progressive neurological involvement, whose pathophysiology is poorly known. In the present work, we investigated the in vitro effects of OA and DA on various parameters of energy homeostasis in mitochondrial preparations from brain of young rats. We found that OA and DA markedly increased state 4 respiration and diminished state 3 respiration as well as the respiratory control ratio, the mitochondrial membrane potential and the matrix NAD(P)H levels. In addition, DA-elicited increase in oxygen consumption in state 4 respiration was partially prevented by atractyloside, indicating the involvement of the adenine nucleotide translocator. OA and DA also reduced ADP/O ratio, CCCP-stimulated respiration and the activities of respiratory chain complexes. The data indicate that the major accumulating fatty acids in MCADD act as uncouplers of oxidative phosphorylation and as metabolic inhibitors. Furthermore, DA, but not OA, provoked a marked mitochondrial swelling and cytochrome c release from mitochondria, reflecting a permeabilization of the inner mitochondrial membrane. Taken together, these data suggest that OA and DA impair brain mitochondrial energy homeostasis that could underlie at least in part the neuropathology of MCADD.

  17. Modulation of medium-chain fatty acid synthesis in Synechococcus sp. PCC 7002 by replacing FabH with a Chaetoceros Ketoacyl-ACP synthase

    DOE PAGES

    Gu, Huiya; Jinkerson, Robert E.; Davies, Fiona K.; ...

    2016-05-26

    The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs) is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis in photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%), with the majority of C14 fatty acids allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novomore » assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes putatively lacking bacterial evolutionary control mechanisms could be used to improve MCFA production in this promising production strain. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase Ill increased MCFA synthesis up to fivefold. In conclusion, the level of increase is dependent on promoter strength and culturing conditions.« less

  18. High performance polymer electrolytes based on main and side chain pyridine aromatic polyethers for high and medium temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Geormezi, M.; Chochos, C. L.; Gourdoupi, N.; Neophytides, S. G.; Kallitsis, J. K.

    Novel aromatic polyether type copolymers bearing side chain polar pyridine rings as well as combination of main and side chain pyridine units have been evaluated as potential polymer electrolytes for proton exchange membrane fuel cells (PEMFCs). The advanced chemical and physicochemical properties of these new polymers with their high oxidative stability, mechanical integrity and high glass transition temperatures (T g's up to 270 °C) and decomposition temperatures (T d's up to 480 °C) make them promising candidates for high and medium temperature proton exchange membranes in fuel cells. These copolymers exhibit adequate proton conductivities up to 0.08 S cm -1 even at moderate phosphoric acid doping levels. An optimized terpolymer chemical structure has been developed, which has been effectively tested as high temperature phosphoric acid imbibed polymer electrolyte. MEA prepared out of the novel terpolymer chemical structure is approaching state of the art fuel cell operating performance (135 mW cm -2 with electrical efficiency 45%) at high temperatures (150-180 °C) despite the low phosphoric acid content (<200 wt%) and the low platinum loading (ca. 0.7 mg cm -2). Durability tests were performed affording stable performance for more than 1000 h.

  19. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes.

    PubMed

    Liu, Huan; Xu, Jing; Liang, Rubing; Liu, Jianhua

    2014-01-01

    A gram-negative aliphatic hydrocarbon-degrading bacterium SJTD-1 isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa by comparative analyses of the 16S rRNA sequence, phenotype, and physiological features. SJTD-1 could efficiently mineralize medium- and long-chain n-alkanes (C12-C30) as its sole carbon source within seven days, showing the most optimal growth on n-hexadecane, followed by n-octadecane, and n-eicosane. In 36 h, 500 mg/L of tetradecane, hexadecane, and octadecane were transformed completely; and 2 g/L n-hexadecane was degraded to undetectable levels within 72 h. Two putative alkane-degrading genes (gene 3623 and gene 4712) were characterized and our results indicated that their gene products were rate-limiting enzymes involved in the synergetic catabolism of C12-C16 alkanes. On the basis of bioinformatics and transcriptional analysis, two P450 monooxygenases, along with a putative AlmA-like oxygenase, were examined. Genetically defective mutants lacking the characteristic alkane hydroxylase failed to degrade n-octadecane, thereby suggesting a different catalytic mechanism for the microbial transformation of alkanes with chain lengths over C18.

  20. Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus sp. PCC 7002 by Replacing FabH with a Chaetoceros Ketoacyl-ACP Synthase

    PubMed Central

    Gu, Huiya; Jinkerson, Robert E.; Davies, Fiona K.; Sisson, Lyle A.; Schneider, Philip E.; Posewitz, Matthew C.

    2016-01-01

    The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs) is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis in photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%), with the majority of C14 fatty acids allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novo assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes putatively lacking bacterial evolutionary control mechanisms could be used to improve MCFA production in this promising production strain. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase III increased MCFA synthesis up to fivefold. The level of increase is dependent on promoter strength and culturing conditions. PMID:27303412

  1. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid

    NASA Astrophysics Data System (ADS)

    Grabska, Justyna; Beć, Krzysztof B.; Ishigaki, Mika; Wójcik, Marek J.; Ozaki, Yukihiro

    2017-10-01

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5 · 10- 4 M in CCl4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000 cm- 1, is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications.

  2. Increasing the Thermal Conductivity of Graphene-Polyamide-6,6 Nanocomposites by Surface-Grafted Polymer Chains: Calculation with Molecular Dynamics and Effective-Medium Approximation.

    PubMed

    Gao, Yangyang; Müller-Plathe, Florian

    2016-02-25

    By employing reverse nonequilibrium molecular dynamics simulations in a full atomistic resolution, the effect of surface-grafted chains on the thermal conductivity of graphene-polyamide-6.6 (PA) nanocomposites has been investigated. The interfacial thermal conductivity perpendicular to the graphene plane is proportional to the grafting density, while it first increases and then saturates with the grafting length. Meanwhile, the intrinsic in-plane thermal conductivity of graphene drops sharply as the grafting density increases. The maximum overall thermal conductivity of nanocomposites appears at an intermediate grafting density because of these two competing effects. The thermal conductivity of the composite parallel to the graphene plane increases with the grafting density and grafting length which is attributed to better interfacial coupling between graphene and PA. There exists an optimal balance between grafting density and grafting length to obtain the highest interfacial and parallel thermal conductivity. Two empirical formulas are suggested, which quantitatively account for the effects of grafting length and density on the interfacial and parallel thermal conductivity. Combined with effective medium approximation, for ungrafted graphene in random orientation, the model overestimates the thermal conductivity at low graphene volume fraction (f < 10%) compared with experiments, while it underestimates it at high graphene volume fraction (f > 10%). For unoriented grafted graphene, the model matches the experimental results well. In short, this work provides some valuable guides to obtain the nanocomposites with high thermal conductivity by grafting chain on the surface of graphene.

  3. Activation and repression of Epstein-Barr Virus and Kaposi's sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids.

    PubMed

    Gorres, Kelly L; Daigle, Derek; Mohanram, Sudharshan; Miller, George

    2014-07-01

    The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. Importance: Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota. Small

  4. Activation and Repression of Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycles by Short- and Medium-Chain Fatty Acids

    PubMed Central

    Gorres, Kelly L.; Daigle, Derek; Mohanram, Sudharshan

    2014-01-01

    ABSTRACT The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. IMPORTANCE Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota

  5. Crystal structure of cutinase covalently inhibited by a triglyceride analogue.

    PubMed Central

    Longhi, S.; Mannesse, M.; Verheij, H. M.; De Haas, G. H.; Egmond, M.; Knoops-Mouthuy, E.; Cambillau, C.

    1997-01-01

    Cutinase from Fusarium solani is a lipolytic enzyme that hydrolyses triglycerides efficiently. All the inhibited forms of lipolytic enzymes described so far are based on the use of small organophosphate and organophosphonate inhibitors, which bear little resemblance to a natural triglyceride substrate. In this article we describe the crystal structure of cutinase covalently inhibited by (R)-1,2-dibutyl-carbamoylglycero-3-O-p-nitrophenylbutyl-phos phonate, a triglyceride analogue mimicking the first tetrahedral intermediate along the reaction pathway. The structure, which has been solved at 2.3 A, reveals that in both the protein molecules of the asymmetric unit the inhibitor is almost completely embedded in the active site crevice. The overall shape of the inhibitor is that of a fork: the two dibutyl-carbamoyl chains point towards the surface of the protein, whereas the butyl chain bound to the phosphorous atom is roughly perpendicular to the sn-1 and sn-2 chains. The sn-3 chain is accommodated in a rather small pocket at the bottom of the active site crevice, thus providing a structural explanation for the preference of cutinase for short acyl chain substrates. PMID:9041628

  6. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    PubMed Central

    Touma, E; Rashed, M; Vianey-Saban, C; Sakr, A; Divry, P; Gregersen, N; Andresen, B

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased long chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence.

 PMID:11124787

  7. Fracture Simulation of Highly Crosslinked Polymer Networks: Triglyceride-Based Adhesives

    NASA Astrophysics Data System (ADS)

    Lorenz, Christian; Stevens, Mark; Wool, Richard

    2003-03-01

    The ACRES program at the U. of Delaware has shown that triglyceride oils derived from plants are a favorable alternative to the traditional adhesives. The triglyceride networks are formed from an initial mixture of styrene monomers, free-radical initiators and triglycerides. We have performed simulations to study the effect of physical composition and physical characteristics of the triglyceride network on the strength of triglyceride network. A coarse-grained, bead-spring model of the triglyceride system is used. The average triglyceride consists of 6 beads per chain, the styrenes are represented as a single bead and the initiators are two bead chains. The polymer network is formed using an off-lattice 3D Monte Carlo simulation, in which the initiators activate the styrene and triglyceride reactive sites and then bonds are randomly formed between the styrene and active triglyceride monomers producing a highly crosslinked polymer network. Molecular dynamics simulations of the network under tensile and shear strains were performed to determine the strength as a function of the network composition. The relationship between the network structure and its strength will also be discussed.

  8. Novel polymeric materials from triglycerides

    USDA-ARS?s Scientific Manuscript database

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  9. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids.

    PubMed

    Zou, Xian-Guo; Hu, Jiang-Ning; Zhao, Man-Li; Zhu, Xue-Mei; Li, Hong-Yan; Liu, Xiao-Ru; Liu, Rong; Deng, Ze-Yuan

    2014-10-29

    In the present study, a human milk fat substitute (HMFS) enriched in medium-chain fatty acids (MCFAs) was synthesized through acidolysis reaction from Cinnamomum camphora seed oil (CCSO) with oleic acid in a solvent-free system. A commercial immobilized lipase, Lipozyme RM IM, from Rhizomucor miehei, was facilitated as a biocatalyst. Effects of different reaction conditions, including substrate molar ratio, enzyme concentration, reaction temperature, and reaction time were investigated using response surface methodology (RSM) to obtain the optimal oleic acid incorporation. After optimization, results showed that the maximal incorporation of oleic acid into HMFS was 59.68%. Compared with CCSO, medium-chain fatty acids at the sn-2 position of HMFS accounted for >70%, whereas oleic acid was occupied predominantly at the sn-1,3 position (78.69%). Meanwhile, triacylglycerol (TAG) components of OCO (23.93%), CCO (14.94%), LaCO (13.58%), OLaO (12.66%), and OOO (11.13%) were determined as the major TAG species in HMFS. The final optimal reaction conditions were carried out as follows: substrate molar ratio (oleic acid/CCSO), 5:1; enzyme concentration, 12.5% (w/w total reactants); reaction temperature, 60 °C; and reaction time, 28 h. The reusability of Lipozyme RM IM in the acidolysis reaction was also evaluated, and it was found that it could be reused up to 9 times without significant loss of activities. Urea inclusion method was used to separate and purify the synthetic product. As the ratio of HMFS/urea increased to 1:2, the acid value lowered to the minimum. In a scale-up experiment, the contents of TAG and total tocopherols in HMFS (modified CCSO) were 77.28% and 12.27 mg/100 g, respectively. All of the physicochemical indices of purified product were within food standards. Therefore, such a MCFA-enriched HMFS produced by using the acidolysis method might have potential application in the infant formula industry.

  10. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440.

    PubMed

    Le Meur, Sylvaine; Zinn, Manfred; Egli, Thomas; Thöny-Meyer, Linda; Ren, Qun

    2012-08-22

    Pseudomonas putida KT2440 is able to synthesize large amounts of medium-chain-length polyhydroxyalkanoates (mcl-PHAs). To reduce the substrate cost, which represents nearly 50% of the total PHA production cost, xylose, a hemicellulose derivate, was tested as the growth carbon source in an engineered P. putida KT2440 strain. The genes encoding xylose isomerase (XylA) and xylulokinase (XylB) from Escherichia coli W3110 were introduced into P. putida KT2440. The recombinant KT2440 exhibited a XylA activity of 1.47 U and a XylB activity of 0.97 U when grown on a defined medium supplemented with xylose. The cells reached a maximum specific growth rate of 0.24 h(-1) and a final cell dry weight (CDW) of 2.5 g L(-1) with a maximal yield of 0.5 g CDW g(-1) xylose. Since no mcl-PHA was accumulated from xylose, mcl-PHA production can be controlled by the addition of fatty acids leading to tailor-made PHA compositions. Sequential feeding strategy was applied using xylose as the growth substrate and octanoic acid as the precursor for mcl-PHA production. In this way, up to 20% w w(-1) of mcl-PHA was obtained. A yield of 0.37 g mcl-PHA per g octanoic acid was achieved under the employed conditions. Sequential feeding of relatively cheap carbohydrates and expensive fatty acids is a practical way to achieve more cost-effective mcl-PHA production. This study is the first reported attempt to produce mcl-PHA by using xylose as the growth substrate. Further process optimizations to achieve higher cell density and higher productivity of mcl-PHA should be investigated. These scientific exercises will undoubtedly contribute to the economic feasibility of mcl-PHA production from renewable feedstock.

  11. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440

    PubMed Central

    2012-01-01

    Background Pseudomonas putida KT2440 is able to synthesize large amounts of medium-chain-length polyhydroxyalkanoates (mcl-PHAs). To reduce the substrate cost, which represents nearly 50% of the total PHA production cost, xylose, a hemicellulose derivate, was tested as the growth carbon source in an engineered P. putida KT2440 strain. Results The genes encoding xylose isomerase (XylA) and xylulokinase (XylB) from Escherichia coli W3110 were introduced into P. putida KT2440. The recombinant KT2440 exhibited a XylA activity of 1.47 U and a XylB activity of 0.97 U when grown on a defined medium supplemented with xylose. The cells reached a maximum specific growth rate of 0.24 h-1 and a final cell dry weight (CDW) of 2.5 g L-1 with a maximal yield of 0.5 g CDW g-1 xylose. Since no mcl-PHA was accumulated from xylose, mcl-PHA production can be controlled by the addition of fatty acids leading to tailor-made PHA compositions. Sequential feeding strategy was applied using xylose as the growth substrate and octanoic acid as the precursor for mcl-PHA production. In this way, up to 20% w w-1 of mcl-PHA was obtained. A yield of 0.37 g mcl-PHA per g octanoic acid was achieved under the employed conditions. Conclusions Sequential feeding of relatively cheap carbohydrates and expensive fatty acids is a practical way to achieve more cost-effective mcl-PHA production. This study is the first reported attempt to produce mcl-PHA by using xylose as the growth substrate. Further process optimizations to achieve higher cell density and higher productivity of mcl-PHA should be investigated. These scientific exercises will undoubtedly contribute to the economic feasibility of mcl-PHA production from renewable feedstock. PMID:22913372

  12. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers.

    PubMed

    Wang, Jianhong; Wang, Xiaoxiao; Li, Juntao; Chen, Yiqiang; Yang, Wenjun; Zhang, Liying

    2015-02-01

    This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (p<0.01). Lipoprotein lipase, hepatic lipase, and total lipase activities were linearly increased as the coconut oil level increased (p<0.01). Abdominal fat weight/eviscerated weight (p = 0.05), intermuscular fat width (p<0.01) and subcutaneous fat thickness (p<0.01) showed a significant quadratic relationship, with the lowest value at R75. These results indicated that replacement of 75% of the soybean oil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers.

  13. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid.

    PubMed

    Grabska, Justyna; Beć, Krzysztof B; Ishigaki, Mika; Wójcik, Marek J; Ozaki, Yukihiro

    2017-10-05

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5·10(-4)M in CCl4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000cm(-1), is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers

    PubMed Central

    Wang, Jianhong; Wang, Xiaoxiao; Li, Juntao; Chen, Yiqiang; Yang, Wenjun; Zhang, Liying

    2015-01-01

    This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (p<0.01). Lipoprotein lipase, hepatic lipase, and total lipase activities were linearly increased as the coconut oil level increased (p<0.01). Abdominal fat weight/eviscerated weight (p = 0.05), intermuscular fat width (p<0.01) and subcutaneous fat thickness (p<0.01) showed a significant quadratic relationship, with the lowest value at R75. These results indicated that replacement of 75% of the soybean oil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers. PMID:25557818

  15. A Diet Rich in Medium-Chain Fatty Acids Improves Systolic Function and Alters the Lipidomic Profile in Patients With Type 2 Diabetes: A Pilot Study

    PubMed Central

    Airhart, Sophia; Cade, W. Todd; Jiang, Hui; Coggan, Andrew R.; Racette, Susan B.; Korenblat, Kevin; Spearie, Catherine Anderson; Waller, Suzanne; O'Connor, Robert; Bashir, Adil; Ory, Daniel S.; Schaffer, Jean E.; Novak, Eric; Farmer, Marsha; Waggoner, Alan D.; Dávila-Román, Víctor G.; Javidan-Nejad, Cylen

    2016-01-01

    Context: Excessive cardiac long-chain fatty acid (LCFA) metabolism/storage causes cardiomyopathy in animal models of type 2 diabetes. Medium-chain fatty acids (MCFAs) are absorbed and oxidized efficiently. Data in animal models of diabetes suggest MCFAs may benefit the heart. Objective: Our objective was to test the effects of an MCFA-rich diet vs an LCFA-rich diet on plasma lipids, cardiac steatosis, and function in patients with type 2 diabetes. Design: This was a double-blind, randomized, 2-week matched-feeding study. Setting: The study included ambulatory patients in the general community. Patients: Sixteen patients, ages 37–65 years, with type 2 diabetes, an ejection fraction greater than 45%, and no other systemic disease were included. Intervention: Fourteen days of a diet rich in MCFAs or LCFAs, containing 38% as fat in total, was undertaken. Main Outcome Measures: Cardiac steatosis and function were the main outcome measures, with lipidomic changes considered a secondary outcome. Results: The relatively load-independent measure of cardiac contractility, S′, improved in the MCFA group (P < .05). Weight-adjusted stroke volume and cardiac output decreased in the LCFA group (both P < .05). The MCFA, but not the LCFA, diet decreased several plasma sphingolipids, ceramide, and acylcarnitines implicated in diabetic cardiomyopathy, and changes in several sphingolipids correlated with improved fasting insulins. Conclusions: Although a diet high in MCFAs does not change cardiac steatosis, our findings suggest that the MCFA-rich diet alters the plasma lipidome and may benefit or at least not harm cardiac function and fasting insulin levels in humans with type 2 diabetes. Larger, long-term studies are needed to further evaluate these effects in less-controlled settings. PMID:26652763

  16. Spatial and temporal variability in air concentrations of short-chain (C10-C13) and medium-chain (C14-C17) chlorinated n-alkanes measured in the U.K. atmosphere.

    PubMed

    Barber, Jonathan L; Sweetman, Andy J; Thomas, Gareth O; Braekevelt, Eric; Stern, Gary A; Jones, Kevin C

    2005-06-15

    Two studies were carried out on short-chain (C10-C13) and medium-chain (C14-C17) polychlorinated n-alkanes (sPCAs and mPCAs) in U.K. air samples. The first study entailed taking 20 24-h air samples with a pair of Hi-Vol air samplers at the Hazelrigg field station, near Lancaster University. These samples were carefully selected to coincide with times when air masses were predicted to have a fairly constant back trajectory for 24 h and to give a broad spectrum of different origins. The second study was a spatial survey of PCAs in the air at 20 outdoor sites in northern England and four indoor locations in Lancaster, using polyurethane foam (PUF) disk passive air samplers. Levels of the sPCAs in the Hi-Vol samples ranged from <185 to 3430 pg m(-3) (average 1130 pg m(-3)) and were higher than those previously measured at this site in 1997. Levels of the mPCAs ranged from <811 to 14500 pg m(-3) (average 3040 pg m(-3)); that is, they were higher than sPCAs. Both sPCA and mPCA air concentrations are of the same order of magnitude as PAH at this site. Back trajectory analysis showed that the history of the air mass in the 48 h prior to sampling had an important effect on the concentrations observed, with overland samples having higher levels than oceanic, implying that the U.K. is probably responsible for most of the PCAs measured in the U.K. atmosphere. Amounts of both sPCAs and mPCAs in the passive air samples followed a rural-urban gradient. PCAs appear to be released from multiple sources around the country, as a result of the diffusive, open industrial and construction use of the technical mixtures.

  17. In Silico and Wet Lab Studies Reveal the Cholesterol Lowering Efficacy of Lauric Acid, a Medium Chain Fat of Coconut Oil.

    PubMed

    Lekshmi Sheela, Devi; Nazeem, Puthiyaveetil Abdulla; Narayanankutty, Arunaksharan; Manalil, Jeksy Jos; Raghavamenon, Achuthan C

    2016-12-01

    The coconut oil (CO) contains 91 % of saturated fatty acids in which 72 % are medium chain fatty acids (MCFAs) like lauric, capric and caprylic acids. In contrast to animal fat, coconut oil has no cholesterol. Despite this fact, CO is sidelined among other vegetable oils due to the health hazards attributed to the saturated fatty acids. Though various medicinal effects of CO have been reported including the hypolipidemic activity, people are still confused in the consumption of this natural oil. In silico analyses and wet lab experiments have been carried out to identify the hypolipidemic properties of MCFAs and phenolic acids in CO by using different protein targets involved in cholesterol synthesis. The molecular docking studies were carried out using CDOCKER protocol in Accelery's Discovery Studio, by taking different proteins like HMG- CoA reductase and cholesterol esterase as targets and the different phytocompounds in coconut as ligands. Molecular docking highlighted the potential of lauric acid in inhibiting the protein targets involved in hyperlipidemics. Further, validation of in silico results was carried out through in vivo studies. The activity of key enzymes HMG- CoA reductase and lipoprotein lipase were found reduced in animals fed with lauric acid and CO.

  18. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement.

    PubMed

    Hu, Kai; Jin, Guo-Jie; Mei, Wen-Chao; Li, Ting; Tao, Yong-Sheng

    2018-01-15

    Medium-chain fatty acid (MCFA) ethyl esters, as yeast secondary metabolites, significantly contribute to the fruity aroma of foods and beverages. To improve the MCFA ethyl ester content of wine, mixed fermentations with Hanseniaspora uvarum Yun268 and Saccharomyces cerevisiae were performed. Final volatiles were analyzed by gas solid phase microextraction-chromatography-mass spectrometry, and aroma characteristics were quantitated by sensory analysis. Results showed that mixed fermentation increased MCFA ethyl ester content by 37% in Cabernet Gernischt wine compared to that obtained by pure fermentation. Partial least-squares regression analysis further revealed that the improved MCFA ethyl esters specifically enhanced the temperate fruity aroma of wine. The enhancement of MCFA ethyl esters was attributed to the increased contents of MCFAs that could be induced by the presence of H. uvarum Yun268 in mixed fermentation. Meanwhile, the timing of yeast inoculations significantly affected the involving biomass of each strain and the dynamics of ethanol accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Experimental evidence for protein oxidative damage and altered antioxidant defense in patients with medium-chain acyl-CoA dehydrogenase deficiency.

    PubMed

    Derks, Terry G J; Touw, Catharina M L; Ribas, Graziela S; Biancini, Giovana B; Vanzin, Camila S; Negretto, Giovanna; Mescka, Caroline P; Reijngoud, Dirk Jan; Smit, G Peter A; Wajner, Moacir; Vargas, Carmen R

    2014-09-01

    The objective of this study was to test whether macromolecule oxidative damage and altered enzymatic antioxidative defenses occur in patients with medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency. We performed a cross-sectional observational study of in vivo parameters of lipid and protein oxidative damage and antioxidant defenses in asymptomatic, nonstressed, MCAD-deficient patients and healthy controls. Patients were subdivided into three groups based on therapy: patients without prescribed supplementation, patients with carnitine supplementation, and patients with carnitine plus riboflavin supplementation. Compared with healthy controls, nonsupplemented MCAD-deficient patients and patients receiving carnitine supplementation displayed decreased plasma sulfhydryl content (indicating protein oxidative damage). Increased erythrocyte superoxide dismutase (SOD) activity in patients receiving carnitine supplementation probably reflects a compensatory mechanism for scavenging reactive species formation. The combination of carnitine plus riboflavin was not associated with oxidative damage. These are the first indications that MCAD-deficient patients experience protein oxidative damage and that combined supplementation of carnitine and riboflavin may prevent these biochemical alterations. Results suggest involvement of free radicals in the pathophysiology of MCAD deficiency. The underlying mechanisms behind the increased SOD activity upon carnitine supplementation need to be determined. Further studies are necessary to determine the clinical relevance of oxidative stress, including the possibility of antioxidant therapy.

  20. Acquired intestinal lymphangiectasia successfully treated with a low-fat and medium-chain triacylglycerol-enriched diet in a patient with liver transplantation.

    PubMed

    Biselli, Maurizio; Andreone, Pietro; Gramenzi, Annagiulia; Cursaro, Carmela; Lorenzini, Stefania; Bonvicini, Fiorenza; Bernardi, Mauro

    2006-05-01

    Intestinal lymphangiectasia is defined as a dilatation of small bowel lymphatic capillaries and a loss of lymph into the bowel lumen. Clinically it is characterized by hypoproteinaemia and oedema. We present here a case of protein-losing enteropathy due to intestinal lymphangiectasia after liver transplantation in a 57-year-old man who was transplanted for hepatitis C virus. Four years after liver transplantation, the patient developed hypoalbuminaemia and ascites associated with recurrence of cirrhosis. The sudden fall in serum albumin led us to look for a cause of reduction other than or in addition to cirrhosis. Duodenal biopsies showed tall villi with dilated lymphatic vessels and widening of the villi caused by oedema, demonstrating intestinal lymphangiectasia. In this case a low-fat diet supplemented with medium-chain triacylglycerols achieved an early clinical improvement with increased serum albumin levels and ascites disappearance. Intestinal lymphangiectasia should be suspected in liver-transplanted patients developing hypoproteinaemia and hypoalbuminaemia after the recurrence of cirrhosis.

  1. Sudden unexpected infant death (SUDI) in a newborn due to medium chain acyl CoA dehydrogenase (MCAD) deficiency with an unusual severe genotype

    PubMed Central

    2012-01-01

    Medium chain acyl CoA dehydrogenase deficiency (MCAD) is the most common inborn error of fatty acid oxidation. This condition may lead to cellular energy shortage and cause severe clinical events such as hypoketotic hypoglycemia, Reye syndrome and sudden death. MCAD deficiency usually presents around three to six months of life, following catabolic stress as intercurrent infections or prolonged fasting, whilst neonatal-onset of the disease is quite rare. We report the case of an apparently healthy newborn who suddenly died at the third day of life, in which the diagnosis of MCAD deficiency was possible through peri-mortem blood-spot acylcarnitine analysis that showed very high concentrations of octanoylcarnitine. Genetic analysis at the ACADM locus confirmed the biochemical findings by demonstrating the presence in homozygosity of the frame-shift c.244dup1 (p.Trp82LeufsX23) mutation, a severe genotype that may explain the unusual and very early fatal outcome in this newborn. This report confirms that inborn errors of fatty acid oxidation represent one of the genetic causes of sudden unexpected deaths in infancy (SUDI) and underlines the importance to include systematically specific metabolic screening in any neonatal unexpected death. PMID:23095120

  2. Dispersion of Short- and Medium-Chain Chlorinated Paraffins (CPs) from a CP Production Plant to the Surrounding Surface Soils and Coniferous Leaves.

    PubMed

    Xu, Jiazhi; Gao, Yuan; Zhang, Haijun; Zhan, Faqiang; Chen, Jiping

    2016-12-06

    Chlorinated paraffin (CP) production is one important emission source for short- and medium-chain CPs (SCCPs and MCCPs) in the environment. In this study, 48 CP congener groups were measured in the surface soils and coniferous leaves collected from the inner and surrounding environment of a CP production plant that has been in operation for more than 30 years to investigate the dispersion and deposition behavior of SCCPs and MCCPs. The average concentrations of the sum of SCCPs and MCCPs in the in-plant coniferous leaves and surface soils were 4548.7 ng g(-1) dry weight (dw) and 3481.8 ng g(-1) dw, which were 2-fold and 10-fold higher than those in the surrounding environment, respectively. The Gaussian air pollution model explained the spatial distribution of CPs in the coniferous leaves, whereas the dispersion of CPs to the surrounding surface soils fits the Boltzmann equation well. Significant fractionation effect was observed for the atmospheric dispersion of CPs from the production plant. CP congener groups with higher octanol-air partitioning coefficients (KOA) were more predominant in the in-plant environment, whereas the ones with lower KOA values had the elevated proportion in the surrounding environment. A radius of approximately 4 km from the CP production plant was influenced by the atmospheric dispersion and deposition of CPs.

  3. Xenobiotic/medium chain fatty acid: CoA ligase - a critical review on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin.

    PubMed

    van der Sluis, Rencia; Erasmus, Elardus

    2016-10-01

    Activation of fatty acids by the acyl-CoA synthetases (ACSs) is the vital first step in fatty acid metabolism. The enzymatic and physiological characterization of the human xenobiotic/medium chain fatty acid: CoA ligases (ACSMs) has been severely neglected even though xenobiotics, such as benzoate and salicylate, are detoxified through this pathway. This review will focus on the nomenclature and substrate specificity of the human ACSM ligases; the biochemical and enzymatic characterization of ACSM1 and ACSM2B; the high sequence homology of the ACSM2 genes (ACSM2A and ACSM2B) as well as what is currently known regarding disease association studies. Several discrepancies exist in the current literature that should be taken note of. For example, the single nucleotide polymorphisms (SNPs) reported to be associated with aspirin metabolism and multiple risk factors of metabolic syndrome are incorrect. Kinetic data on the substrate specificity of the human ACSM ligases are non-existent and currently no data exist on the influence of SNPs on the enzyme activity of these ligases. One of the biggest obstacles currently in the field is that glycine conjugation is continuously studied as a one-step process, which means that key regulatory factors of the two individual steps remain unknown.

  4. Structural and functional properties of a yeast xylitol dehydrogenase, a Zn2+-containing metalloenzyme similar to medium-chain sorbitol dehydrogenases.

    PubMed Central

    Lunzer, R; Mamnun, Y; Haltrich, D; Kulbe, K D; Nidetzky, B

    1998-01-01

    The NAD+-dependent xylitol dehydrogenase from the xylose-assimilating yeast Galactocandida mastotermitis has been purified in high yield (80%) and characterized. Xylitol dehydrogenase is a heteronuclear multimetal protein that forms homotetramers and contains 1 mol of Zn2+ ions and 6 mol of Mg2+ ions per mol of 37.4 kDa protomer. Treatment with chelating agents such as EDTA results in the removal of the Zn2+ ions with a concomitant loss of enzyme activity. The Mg2+ ions are not essential for activity and are removed by chelation or extensive dialysis without affecting the stability of the enzyme. Results of initial velocity studies at steady state for d-sorbitol oxidation and d-fructose reduction together with the characteristic patterns of product inhibition point to a compulsorily ordered Theorell-Chance mechanism of xylitol dehydrogenase in which coenzyme binds first and leaves last. At pH 7.5, the binding of NADH (Ki approximately 10 microM) is approx. 80-fold tighter than that of NAD+. Polyhydroxyalcohols require at least five carbon atoms to be good substrates of xylitol dehydrogenase, and the C-2 (S), C-3 (R) and C-4 (R) configuration is preferred. Therefore xylitol dehydrogenase shares structural and functional properties with medium-chain sorbitol dehydrogenases. PMID:9806889

  5. Nucleotide sequence of medium-chain acyl-CoA dehydrogenase mRNA and its expression in enzyme-deficient human tissue

    SciTech Connect

    Kelly, D.P.; Kim, J.J.; Billadello, J.J.; Hainline, B.E.; Chu, T.W.; Strauss, A.W.

    1987-06-01

    Medium-chain acyl-CoA dehydrogenase is one of three similar enzymes that catalyze the initial step of fatty acid ..beta..-oxidation. Definition of the primary structure of MCAD and the tissue distribution of its mRNA is of biochemical and clinical importance because of the recent recognition of inherited MCAD deficiency in humans. The MCAD mRNA nucleotide sequence was determined from two overlapping cDNA clones isolated from human liver and placental cDNA libraries, respectively. The MCAD mRNA includes a 1263-base-pair coding region and a 738-base-pair 3'-nontranslated region. A partial amino acid sequence (137 residues) determined on peptides derived from MCAD purified from porcine liver confirmed the identity of the cDNA clone. Comparison of the amino acid sequence predicted from the human MCAD cDNA with the partial protein sequence of the porcine MCAD revealed a high degree (88%) of interspecies sequence identity. RNA blot analysis shows that MCAD mRNA is expressed in a variety of rat (2.2 kilobases) and human (2.4 kilobases) tissues. Blot hybridization of RNA prepared from cultured skin fibroblasts from a patient with MCAD deficiency disclosed that mRNA was present and of similar size of MCAD mRNA derived from control fibroblasts. The isolation and characterization of MCAD cDNA is an important step in the definition of the defect underlying its metabolic consequences.

  6. Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates.

    PubMed Central

    Knutzon, D S; Lardizabal, K D; Nelsen, J S; Bleibaum, J L; Davies, H M; Metz, J G

    1995-01-01

    Immature coconut (Cocos nucifera) endosperm contains a 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT) activity that shows a preference for medium-chain-length fatty acyl-coenzyme A substrates (H.M. Davies, D.J. Hawkins, J.S. Nelsen [1995] Phytochemistry 39:989-996). Beginning with solubilized membrane preparations, we have used chromatographic separations to identify a polypeptide with an apparent molecular mass of 29 kD, whose presence in various column fractions correlates with the acyltransferase activity detected in those same fractions. Amino acid sequence data obtained from several peptides generated from this protein were used to isolate a full-length clone from a coconut endosperm cDNA library. Clone pCGN5503 contains a 1325-bp cDNA insert with an open reading frame encoding a 308-amino acid protein with a calculated molecular mass of 34.8 kD. Comparison of the deduced amino acid sequence of pCGN5503 to sequences in the data banks revealed significant homology to other putative LPAAT sequences. Expression of the coconut cDNA in Escherichia coli conferred upon those cells a novel LPAAT activity whose substrate activity profile matched that of the coconut enzyme. PMID:8552723

  7. Medium-chain-length polyhydroxyalkanoates synthesis by Pseudomonas putida KT2440 relA/spoT mutant: bioprocess characterization and transcriptome analysis.

    PubMed

    Mozejko-Ciesielska, Justyna; Dabrowska, Dorota; Szalewska-Palasz, Agnieszka; Ciesielski, Slawomir

    2017-12-01

    Pseudomonas putida KT2440 is a model bacteria used commonly for medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production using various substrates. However, despite many studies conducted on P. putida KT2440 strain, the molecular mechanisms of leading to mcl-PHAs synthesis in reaction to environmental stimuli are still not clear. The rearrangement of the metabolism in response to environmental stress could be controlled by stringent response that modulates the transcription of many genes in order to promote survival under nutritional deprivation conditions. Therefore, in this work we investigated the relation between mcl-PHAs synthesis and stringent response. For this study, a relA/spoT mutant of P. putida KT2440, unable to induce the stringent response, was used. Additionally, the transcriptome of this mutant was analyzed using RNA-seq in order to examine rearrangements of the metabolism during cultivation. The results show that the relA/spoT mutant of P. putida KT2440 is able to accumulate mcl-PHAs in both optimal and nitrogen limiting conditions. Nitrogen starvation did not change the efficiency of mcl-PHAs synthesis in this mutant. The transition from exponential growth to stationary phase caused significant upregulation of genes involved in transport system and nitrogen metabolism. Transcriptional regulators, including rpoS, rpoN and rpoD, did not show changes in transcript abundance when entering the stationary phase, suggesting their limited role in mcl-PHAs accumulation during stationary phase.

  8. Polyester hydrolytic and synthetic activity catalyzed by the medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Streptomyces venezuelae SO1.

    PubMed

    Santos, Marta; Gangoiti, Joana; Keul, Helmut; Möller, Martin; Serra, Juan L; Llama, María J

    2013-01-01

    The extracellular medium-chain-length polyhydroxyalkanote (MCL-PHA) depolymerase from an isolate identified as Streptomyces venezuelae SO1 was purified to electrophoretic homogeneity and characterized. The molecular mass and pI of the purified enzyme were approximately 27 kDa and 5.9, respectively. The depolymerase showed its maximum activity in the alkaline pH range and 50 °C and retained more than 70 % of its initial activity after 8 h at 40 °C. The MCL-PHA depolymerase hydrolyzes various p-nitrophenyl-alkanoates and polycaprolactone but not polylactide, poly-3-hydroxybutyrate, and polyethylene succinate. The enzymatic activity was markedly enhanced by the presence of low concentrations of detergents and organic solvents, being inhibited by dithiothreitol and EDTA. The potential of using the enzyme to produce (R)-3-hydroxyoctanoate in aqueous media or to catalyze ester-forming reactions in anhydrous media was investigated. In this sense, the MCL-PHA depolymerase catalyzes the hydrolysis of poly-3-hydroxyoctanoate to monomeric units and the ring-opening polymerization of β-butyrolactone and lactides, while ε-caprolactone and pentadecalactone were hardly polymerized.

  9. Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl PHAs) from cosmetic co-products by Pseudomonas raguenesii sp. nov., isolated from Tetiaroa, French Polynesia.

    PubMed

    Simon-Colin, C; Alain, K; Raguénès, G; Schmitt, S; Kervarec, N; Gouin, C; Crassous, P; Costa, B; Guezennec, J G

    2009-12-01

    A new bacterium, designated as strain TE9 was isolated from a microbial mat in French Polynesia and was studied for its ability to synthesize medium chain length poly-beta-hydroxyalkanoates (mcl PHAs) during cultivation on cosmetics co-products. The composition of PHAs was analysed by coupled gas chromatography mass spectroscopy (GC/MS), nuclear magnetic resonance (NMR) and Fourier Transform InfraRed (FTIR) spectroscopy. PHAs were composed of C6-C14 3-hydroxyacids monomers, with a predominance of 3-hydroxyoctanoate (3HO), 3-hydroxydecanoate (3HD) and 3-hydroxydodecanoate (3HDD). Differential scanning calorimetry (DSC) experiments allowed the characterization of elastomeric materials with a melting point T(m) near 50 degrees C, enthalpy of fusion DeltaH(m) from 27 to 32 J/g, and glass transition temperature T(g) of -43 degrees C. Molecular weights ranged from 175,000 to 358,000 g/mol. On the basis of the phenotypical features and genotypic investigations, strain TE9 was assigned to the Pseudomonas genus and the name of Pseudomonas raguenesii sp. nov. is proposed.

  10. Medium-chain fatty acids enhanced the excretion of fecal cholesterol and cholic acid in C57BL/6J mice fed a cholesterol-rich diet.

    PubMed

    Xu, Qing; Xue, Changyong; Zhang, Yong; Liu, Yinghua; Wang, Jin; Yu, Xiaoming; Zhang, Xinsheng; Zhang, Rongxin; Yang, Xueyan; Guo, Changjiang

    2013-01-01

    The objective of the present study was to investigate the cholesterol-reducing effect of medium-chain fatty acids (MCFAs) completed by elevated excretion of fecal neutral steroids and/or bile acids. Blood and liver lipid profiles, fecal neutral steroids, bile acids, and mRNA and protein expression of the genes relevant to cholesterol homeostasis were measured and analyzed in C57BL/6J mice fed a cholesterol-rich diet with 2% caprylic acid or capric acid for 12 weeks. Blood total cholesterol and low-density lipoprotein cholesterol (LDL-c) levels were reduced significantly as compared to diet with palmitic acid or stearic acid. Caprylic acid promoted the excretion of fecal neutral steroids, especially cholesterol. The excretion of fecal bile acids, mainly in the form of cholic acid was enhanced and accompanied by elevated expression of mRNA and the protein of hepatic cholesterol 7α-hydroxylase (CYP7A1). These results indicate that MCFAs can reduce blood cholesterol by promoting the excretion of fecal cholesterol and cholic acid.

  11. The effect of LXRα, ChREBP and Elovl6 in liver and white adipose tissue on medium- and long-chain fatty acid diet-induced insulin resistance.

    PubMed

    Sun, He; Jiang, Tao; Wang, Shubao; He, Bing; Zhang, Yongyan; Piao, Dongxu; Yu, Chong; Wu, Na; Han, Ping

    2013-12-01

    We aimed to investigate the effects of LXRα, ChREBP and Elovl6 in the development of insulin resistance-induced by medium- and long-chain fatty acids. Sprague Dawley rats were fed a standard chow diet (Control group) or a high-fat, high sucrose diet with different fat sources (coconut oil, lard, sunflower and fish oil) for 8 weeks. These oils were rich in medium-chain saturated fatty acids (MCFA group), long-chain saturated fatty acids (LCFA group), n-6 and n-3 long-chain polyunsaturated fatty acids (n-6 PUFA and n-3 PUFA groups), respectively, which had different chain lengths and degrees of unsaturation. Hyperinsulinemic-euglycemic clamp with [6-(3)H] glucose infusion was performed in conscious rats to assess hepatic insulin sensitivity. LCFA and n-6 PUFA groups induced hepatic insulin resistance and increased liver X receptor α (LXRα), carbohydrate response element binding protein (ChREBP) and long-chain fatty acid elongase 6 (Elovl6) expression in liver and white adipose tissue (WAT). Furthermore, LCFA and n-6 PUFA groups suppressed Akt serine 473 phosphorylation in liver and WAT. By contrast, in liver and WAT, MCFA and n-3 PUFA groups decreased LXRα, ChREBP and Elovl6 expression and improved insulin signaling and insulin resistance, but Akt serine 473 phosphorylation was not restored by MCFA group in WAT. This study demonstrated that the mechanism of the different effects of medium- and long-chain fatty acids on hepatic insulin resistance involves LXRα, ChREBP and Elovl6 alternations in liver and WAT. It points to a new strategy for ameliorating insulin resistance and diabetes through intervention on Elovl6 or its control genes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. [Tolerance and metabolic results of long-term administration of a mixture of saturated triglycerides by recto-colic route in rabbits].

    PubMed

    Dorier, A; Perret, J P; Bacques, C

    1976-01-01

    Rabbit's and Dog's colonic absorption of triglycerides is shown in previous works. Further, we are studying the possibility to use the rectal route for nutritive substances. This way remains now poorly used and an exceptional therapeutic. However, bringing triglycerides in adequate state would be an energetic, supply, all the more as it is very difficult to provide potent caloric source in parenteral nutrition. This is why we investigate, on the Rabbit, the issues of chronic administration of glycerides by rectal route, on caloric balance and on a biochemical view to seek for in lipid composition of tissues the print of lipids administrated by transanal way. The animals are individually housed in metabolism units feeding a standard diet and drinking ad libitum. The treated subjects are given by transanal way, twice a day, for eight weeds, a sum of 1 g/kg of medium chain triglycerides. The metabolic balance-sheet is daily drawn. The clinic balance-sheet is set on the end, by biological controls to explore the hepatic and renal function (prothrombine ratio, transaminases (SGOT, SGPT), ornithine, carbamyl transferase (OCT), urea, total proteins ratio and electrolyte imbalance. We measure also the concentration of total lipids plasma and tissue (liver, kidney, heart, lungs, perirenal adipose tissue). The triglyceride composition and fatty acid composition of different lipids fractions of control and treated subjects are analyzed by gas-liquid chromatography. The animals support perfectly, without damage, a chronic and massive (1 g/kg/each day) administration of medium chain triglycerides by rectal route. The growth of treated subjects is normal. On the opposite, they adjust their alimentary consumption with the caloric charge of the diet, this is the reason why the reduction is about 12p. 100 with respect to the control animals. The coli-rectal administration of saturated glycerides produces at middle end only qualitative variations of lipids extracts. They essentially

  13. Effect of supplementing coconut or krabok oil, rich in medium-chain fatty acids on ruminal fermentation, protozoa and archaeal population of bulls.

    PubMed

    Panyakaew, P; Boon, N; Goel, G; Yuangklang, C; Schonewille, J Th; Hendriks, W H; Fievez, V

    2013-12-01

    Medium-chain fatty acids (MCFA), for example, capric acid (C10:0), myristic (C14:0) and lauric (C12:0) acid, have been suggested to decrease rumen archaeal abundance and protozoal numbers. This study aimed to compare the effect of MCFA, either supplied through krabok (KO) or coconut (CO) oil, on rumen fermentation, protozoal counts and archaeal abundance, as well as their diversity and functional organization. KO contains similar amounts of C12:0 as CO (420 and 458 g/kg FA, respectively), but has a higher proportion of C14:0 (464 v. 205 g/kg FA, respectively). Treatments contained 35 g supplemental fat per kg DM: a control diet with tallow (T); a diet with supplemental CO; and a diet with supplemental KO. A 4th treatment consisted of a diet with similar amounts of MCFA (i.e. C10:0+C12:0+C14:0) from CO and KO. To ensure isolipidic diets, extra tallow was supplied in the latter treatment (KO+T). Eight fistulated bulls (two bulls per treatment), fed a total mixed ration predominantly based on cassava chips, rice straw, tomato pomace, rice bran and soybean meal (1.5% of BW), were used. Both KO and CO increased the rumen volatile fatty acids, in particular propionate and decreased acetate proportions. Protozoal numbers were reduced through the supplementation of an MCFA source (CO, KO and KO+T), with the strongest reduction by KO. Quantitative real-time polymerase chain reaction assays based on archaeal primers showed a decrease in abundance of Archaea when supplementing with KO and KO+T compared with T and CO. The denaturing gradient gel electrophoresis profiles of the rumen archaeal population did not result in a grouping of treatments. Richness indices were calculated from the number of DGGE bands, whereas community organization was assessed from the Pareto-Lorenz evenness curves on the basis of DGGE band intensities. KO supplementation (KO and KO+T treatments) increased richness and evenness within the archaeal community. Further research including methane

  14. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol.

    PubMed

    Muangwong, Amtiga; Boontip, Thanawat; Pachimsawat, Jittakan; Napathorn, Suchada Chanprateep

    2016-03-17

    Our study aimed to search for novel bacteria capable of producing polyhydroxyalkanoates (PHAs) using crude glycerol residue obtained from biodiesel production in which used cooking oils were the substrates. Newly isolated bacteria from soils in Thailand were screened for the efficient production of PHAs from crude glycerol. The bacterial strains were cultivated on glucose, refined glycerol, crude glycerol, or various cooking oils (canola oil, palm oil, soybean oil, sunflower oil, corn oil, grape seed oil, olive oil, rice bran oil, camellia seed oil) for growth and PHA production. The effects of the total organic carbon (TOC) concentration and the mole ratio of carbon to nitrogen were investigated in batch cultivation. (1)H NMR, two dimensional-(1)H-correlation spectroscopy (2D-(1)H-COSY) and (13)C NMR analyses confirmed four bacterial strains were capable of producing medium-chain-length PHAs (mcl-PHAs), consisting of 3-hydroxyoctanoate (3HO) and 3-hydroxy-5-cis-dodecanoate (3H5DD), from crude glycerol. On the basis of phenotypic features and genotypic investigations, the bacterial strains were assigned as: ASC1, Acinetobacter genus (94.9% similarity); ASC2, Pseudomonas genus (99.2% similarity); ASC3, Enterobacter genus (99.2% similarity); ASC4, Bacillus genus (98.4% similarity). The highest amount of mcl-PHAs, 17.5 ± 0.8 g/L (content 61.8 ± 3.3% wt), with 3HO (14.7 ± 2.2 mol %), 3H5DD (85.3 ± 2.2 mol%), and a total biomass of 32.3 ± 0.3 g/L, was obtained from Pseudomonas sp. ASC2 in batch cultivation after 36 h. The mcl-PHAs recovered had a number-average molecular weight (M N) of 3.6 × 10(4) Da. Homopolymeric 3H5DD was obtained when the cultivation time was prolonged to 96 h. Novel PHA-producing strains were isolated and identified. These bacterial strains are able to produce mcl-PHAs from crude glycerol. The mcl-PHAs produced contained a high percentage of 3H5DD, which suggests their future application as softeners mixed with other biomaterials. The

  15. Evaluation of the use of esterified fatty acid oils enriched in medium-chain fatty acids in weight loss diets for dogs.

    PubMed

    Fragua, V; Barroeta, A C; Manzanilla, E G; Codony, R; Villaverde, C

    2015-04-01

    Esterified fatty acid oils (EAOs) are obtained from esterification of vegetable acid oils with glycerol. These fat sources have the same fatty acid (FA) composition as their respective native oils but new chemical properties. Several studies have confirmed the potential of medium-chain fatty acids (MCFA) to reduce fat mass (FM) in humans and rodents. This study investigates the use of EAOs with different MCFA proportions on food preferences, digestibility and weight loss management in dogs. A basal diet was supplemented with 8% of three different fat sources: C0: soya bean-canola EAO, C20: soya bean-canola (80%) coconut (20%) EAO and C40: soya bean-canola (60%) coconut (40%) EAO. Food preference of these EAOs was tested using a two-pan preference test. Dogs presented a higher daily food intake of C20 and C40 compared to C0 (C20: 155 ± 18.6 g vs. C0: 17 ± 7.0 g, p < 0.001; C40: 117 ± 13.9 g vs. C0: 28 ± 10.5 g, p < 0.05 respectively). Also, the digestibility of the three experimental diets was tested. C20 and C40 showed higher ether extract, total FA and saturated FA digestibilities (p < 0.05) than C0 diet. Lastly, the three diets were investigated in a 14-week weight loss study, following 16 weeks of ad libitum feeding to induce overweight condition. Body weight (BW) reduction was lower (C0: 20.1 ± 2.32%, C20: 14.6 ± 1.43% and C40: 15.7 ± 1.23%, p < 0.05) and FM was higher (FM, 18.7 ± 3.42%, 27.9 ± 3.90% and 28.2 ± 2.88% for C0, C20 and C40, respectively, p < 0.05) for diets C20 and C40 than for C0. Feeding diets with MCFA at these inclusion levels to experimentally overweight dogs during 14 weeks do not result in faster weight loss compared to unsaturated long-chain FA. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  16. The domain-specific and temperature-dependent protein misfolding phenotype of variant medium-chain acyl-CoA dehydrogenase.

    PubMed

    Jank, Johanna M; Maier, Esther M; Reiβ, Dunja D; Haslbeck, Martin; Kemter, Kristina F; Truger, Marietta S; Sommerhoff, Christian P; Ferdinandusse, Sacha; Wanders, Ronald J; Gersting, Søren W; Muntau, Ania C

    2014-01-01

    The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD) caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a molecular loss-of-function phenotype. Here we established a comprehensive experimental setup to analyze the structural consequences of eight ACADM missense mutations (p.Ala52Val, p.Tyr67His, p.Tyr158His, p.Arg206Cys, p.Asp266Gly, p.Lys329Glu, p.Arg334Lys, p.Arg413Ser) identified after newborn screening and linked the corresponding protein misfolding phenotype to the site of side-chain replacement with respect to the domain. With fever being the crucial risk factor for metabolic decompensation of patients with MCADD, special emphasis was put on the analysis of structural and functional derangements related to thermal stress. Based on protein conformation, thermal stability and kinetic stability, the molecular phenotype in MCADD depends on the structural region that is affected by missense-induced conformational changes with the central β-domain being particularly prone to structural derangement and destabilization. Since systematic classification of conformational derangements induced by ACADM mutations may be a helpful tool in assessing the clinical risk of patients, we scored the misfolding phenotype of the variants in comparison to p.Lys329Glu (K304E), the classical severe mutation, and p.Tyr67His (Y42H), discussed to be mild. Experiments assessing the impact of thermal stress revealed that mutations in the ACADM gene lower the temperature threshold at which MCAD loss-of-function occurs. Consequently, increased temperature as it occurs during intercurrent infections, significantly increases the risk of further conformational derangement and loss of function of the MCAD enzyme explaining the life-threatening clinical courses observed during fever episodes. Early and

  17. [Novel nutritional management regimen for very long-chain acyl-CoA dehydrogenase deficiency].

    PubMed

    Haruki, Hiroyo; Kawai, Motoharu; Ogasawara, Jun-Ichi; Koga, Michiaki; Negoro, Kiyoshi; Kanda, Takashi

    2010-03-01

    We report a novel regimen of nutritional management in 22-year-old woman with myopathic form of very-long-chain acyl-CoA dehydrogenase deficiency. This regimen is based on avoidance of fasting by frequent intake of carbohydrates and substitution of medium chain triglyceride for long- and very long-chain fatty acids. Oral intake of medium amount of long-chain fatty acid (300 kcal daily) was allowed, to facilitate compliance and to escape pigmentary retinopathy. After this nutritional management and lifestyle guidance about prevention of fatigue and starvation, the patient was free from severe rhabdomyolysis for more than three years, which had forced her to hospital management nine times in seven years.

  18. Pharyngeal lipase and digestion of dietary triglyceride in man.

    PubMed

    Hamosh, M; Klaeveman, H L; Wolf, R O; Scow, R O

    1975-05-01

    Lipolytic activity was studied in esophageal and gastric aspirates obtained with a nasogastric tube from 14 healthy adult subjects. Samples were collected from esophagus, first at 30-35 cm and then at 40-45 cm from the nose, as the subject, after drinking 15-30 ml of a cream-milk mixture, swallowed small amounts of water. The samples from stomach were taken last and usually contained a small amount of cream-milk mixture. Lipolytic activity was assayed using chylomicron, milk, and corn oil triglyceride as substrate. Esophageal and gastric samples both contained lipolytic activity which hydrolyzed long-chain triglyceride to diglyceride, monoglyceride, and FFTA, had a pH optimum of 5.4, and was not affected by either had a pH optimum of 5.4, and was not affected by either 0.5 M NaCl or 4 mM sodium taurodexycholate. The activity, expressed as nanomoles of chylomicron triglyceride hydrolyzed per milliter per minute, ranged from 0 to 145 in upper esophageal, 5 to 303 in lower esophageal, and 50 to 357 in gastric samples. Only a trace of lipolytic activity was found at pH 5.4 in saliva collected from the parotid, submandibular, and sublingual glands, thus excluding those tissues as a source of the activity found in esophageal and gastric aspirates. The findings suggest that in man glands in or near the pharynx secrete a lipase that acts in the stomach to hydrolyze long-chain triglyceride to partial glycerides and FFA. It is proposed this reaction is the first step in the digestion of dietary fat and that the amphiphilic lipids formed by lipolysis facilitate the emulsification of triglyceride in the stomach.

  19. PMR analysis of unsaturated triglycerides using shift reagents.

    PubMed

    Frost, D J; Keuning, R; Sies, I

    1975-04-01

    The addition of Pr(fod)3 i.e. tris(1,1,1,2,2,3,3-heptafluoro-,7-dimethyl 1-4,6-octanedionato) praseodymium, to trilinolein has been found to induce a difference in the chemical shifts of the absorptions from the acids on the alpha- and beta positions. At 220 MHz this was observed up to 18 carbon atoms along the chain. Decoupling of the alkenyl protons at 100 MHz enabled the absorptions from the skipped methylene groups to be used to determine the position of linoleate and linolenante chains in triglycerides.

  20. Medium-chain TAG attenuate hepatic oxidative damage in intra-uterine growth-retarded weanling piglets by improving the metabolic efficiency of the glutathione redox cycle.

    PubMed

    Zhang, Hao; Chen, Yueping; Li, Yue; Yang, Li; Wang, Jianjun; Wang, Tian

    2014-09-28

    The present study investigated the effects of medium-chain TAG (MCT) on hepatic oxidative damage in weanling piglets with intra-uterine growth retardation (IUGR). At weaning (mean 21 (SD 1·06) d of age), twenty-four IUGR piglets and twenty-four normal-birth weight (NBW) piglets were selected according to their birth weight (BW; IUGR: mean 0·95 (SD 0·04) kg; NBW: mean 1·58 (SD 0·04) kg) and weight at the time of weaning (IUGR: mean 5·26 (SD 0·15) kg; NBW: mean 6·98 (SD 0·19) kg) and fed either a soyabean oil (SO) diet (containing 5% SO) or a MCT diet (containing 1% SO and 4% MCT) for 28 d. IUGR piglets exhibited poor (P<0·05) growth performance, lower (P<0·05) metabolic efficiency of hepatic glutathione (GSH) redox cycle, and increased (P<0·05) levels of reactive oxygen species, apoptosis and necrosis in hepatocytes compared with NBW piglets. The MCT diet increased (P<0·05) the average daily gain and feed efficiency of piglets during the first 4 weeks after weaning. Furthermore, MCT diet-fed piglets had a higher (P<0·05) GSH:oxidised glutathione ratio and increased (P<0·05) activities of glucose-6-phosphate dehydrogenase (G6PD) and GSH reductase. The expression of G6PD was up-regulated (P<0·05) by the MCT diet irrespective of BW. Moreover, malondialdehyde concentrations in the liver and apoptosis and necrosis levels in hepatocytes were decreased (P<0·05) by the MCT diet irrespective of BW. These results indicate that MCT might have auxiliary therapeutic potential to attenuate hepatic oxidative damage in IUGR offspring during early life, thus leading to an improvement in the metabolic efficiency of the hepatic GSH redox cycle.

  1. Acylcarnitine profiles during carnitine loading and fasting tests in a Japanese patient with medium-chain acyl-CoA dehydrogenase deficiency.

    PubMed

    Yokoi, Kyoko; Ito, Tetsuya; Maeda, Yasuhiro; Nakajima, Yoko; Ueta, Akihito; Nomura, Takayasu; Koyama, Norihisa; Kato, Ineko; Suzuki, Satoshi; Kurono, Yukihisa; Sugiyama, Naruji; Togari, Hajime

    2007-12-01

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is rare among Asian individuals, and the clinical course and biochemical findings remain unclear. We report herein a 3-year-old Japanese girl with MCADD. The diagnosis was suggested by acylcarnitine profiles and confirmed by enzyme activity and genetic analysis after clinical presentation. Our described method with high-performance liquid chromatography/tandem mass spectrometry allows quantification of levels of n-octanoylcarnitine (C8-N) and other isomers (e.g. valproylcarnitine). We examined the patient's acylcarnitine profiles in serum and urine samples during carnitine loading and 14-hr fasting tests with/without carnitine supplementation. Under hypocarnitinemia, serum level of C8-N was 0.16 micromol/l and C8-N/decanoylcarnitine (C10) ratio was 1.8, which did not correspond to the diagnostic criteria for MCADD. However, intravenous carnitine loading test (100 mg/kg/day for 3 days and 50 mg/kg/day for 1 day) led to increased serum C8-N levels and urinary excretion was obvious, strongly suggesting MCADD. In the fasting test with carnitine supplementation, marked production of acylcarnitines (C8-N > C2 > C6 > C10) was found, compared to the fasting test without carnitine supplementation. These results indicate that carnitine supplementation may be useful for detoxification of accumulated acylcarnitines even in an asymptomatic state. Moreover, the one-point examination for serum C8-N level and/or C8-N/C10 ratio may make the diagnosis of MCADD difficult, particularly in the presence of significant hypocarnitinemia. To avoid this pitfall, attention should be given to serum levels of free carnitine, and carnitine loading may be demanded in hypocarnitinemia.

  2. Temporal Trends and Pattern Changes of Short- and Medium-Chain Chlorinated Paraffins in Marine Mammals from the South China Sea over the Past Decade.

    PubMed

    Zeng, Lixi; Lam, James C W; Wang, Yawei; Jiang, Guibin; Lam, Paul K S

    2015-10-06

    Temporal trends of short- (SCCPs) and medium-chain chlorinated paraffins (MCCPs) were examined in blubber samples of 50 finless porpoises (Neophocaena phocaenoides) and 25 Indo-Pacific humpback dolphins (Sousa chinensis) collected from the South China Sea between 2004 and 2014. Elevated levels of SCCPs and MCCPs were detected in all blubber samples of both cetacean species. Concentrations of SCCPs ranged from 280 to 3900 ng·g(-1) dry weight (dw) in porpoises and from 430 to 9100 ng·g(-1) dw in dolphins, while concentrations of MCCPs ranged from 320 to 8600 ng·g(-1) dw in porpoises and from 530 to 23 000 ng·g(-1) dw in dolphins. Significantly higher concentrations were present in dolphins than porpoises due to their exposure levels in their living habitats. Strongly linear correlations existed between SCCPs and MCCPs, but there were no significant concentration differences between the genders of the two cetacean species in the same sampling year. Significantly temporal increasing trends of ∑SCCPs and ∑MCCPs have been observed in both porpoise and dolphin samples over the past decade, which reflect the influence of histories of production and usage on the bioaccumulation of CPs in marine mammals in China. An apparent temporal shift trend from SCCPs to MCCPs was also observed in CP accumulation profiles. Complex environmental fractionation from localized sources in the study region via atmospheric transport, oceanic/offshore water transport, and trophic transfer have resulted in different CP accumulation levels and homologue patterns in the two cetacean species. This is the first report of systematic temporal trends of SCCPs and MCCPs in marine mammals.

  3. A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids.

    PubMed

    Fiorini, Dennis; Pacetti, Deborah; Gabbianelli, Rosita; Gabrielli, Serena; Ballini, Roberto

    2015-08-28

    Given the importance of short and medium chain free fatty acids (FFAs) in several fields, this study sought to improve the extraction efficiency of the solid-phase microextraction (SPME) of FFAs by evaluating salting out agents that appear promising for this application. The salts ammonium sulfate ((NH4)2SO4) and sodium dihydrogen phosphate (NaH2PO4) were tried on their own and in combination (3.7/1), in four different total amounts, as salting out agents in the headspace-SPME-gas chromatographic (HS-SPME-GC) analysis of the FFAs from acetic acid (C2) to decanoic acid (C10). Their performance in a model system of an aqueous standard mixture of FFAs at a pH of 3.5 was compared to that of the more commonly used sodium chloride (NaCl) and sodium sulfate (Na2SO4). All of the salts and salt systems evaluated, in proper amount, gave improved results compared to NaCl (saturated), which instead gave interesting results only for the least volatile FFAs C8 and C10. For C2-C6, the salt system that gave the best results compared to NaCl was (NH4)2SO4/NaH2PO4, in the highest of the four amounts evaluated, with factor increases between 1.2 and 4.1-fold, and NaH2PO4, between 1.0 and 4.3-fold. The SPME extraction efficiency given by the mixture (NH4)2SO4/NaH2PO4 was also assessed on biological and food samples, confirming that overall it performed better than NaCl. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Data mining methods for classification of Medium-Chain Acyl-CoA dehydrogenase deficiency (MCADD) using non-derivatized tandem MS neonatal screening data.

    PubMed

    Van den Bulcke, Tim; Vanden Broucke, Paul; Van Hoof, Viviane; Wouters, Kristien; Vanden Broucke, Seppe; Smits, Geert; Smits, Elke; Proesmans, Sam; Van Genechten, Toon; Eyskens, François

    2011-04-01

    Newborn screening programs for severe metabolic disorders using tandem mass spectrometry are widely used. Medium-Chain Acyl-CoA dehydrogenase deficiency (MCADD) is the most prevalent mitochondrial fatty acid oxidation defect (1:15,000 newborns) and it has been proven that early detection of this metabolic disease decreases mortality and improves the outcome. In previous studies, data mining methods on derivatized tandem MS datasets have shown high classification accuracies. However, no machine learning methods currently have been applied to datasets based on non-derivatized screening methods. A dataset with 44,159 blood samples was collected using a non-derivatized screening method as part of a systematic newborn screening by the PCMA screening center (Belgium). Twelve MCADD cases were present in this partially MCADD-enriched dataset. We extended three data mining methods, namely C4.5 decision trees, logistic regression and ridge logistic regression, with a parameter and threshold optimization method and evaluated their applicability as a diagnostic support tool. Within a stratified cross-validation setting, a grid search was performed for each model for a wide range of model parameters, included variables and classification thresholds. The best performing model used ridge logistic regression and achieved a sensitivity of 100%, a specificity of 99.987% and a positive predictive value of 32% (recalibrated for a real population), obtained in a stratified cross-validation setting. These results were further validated on an independent test set. Using a method that combines ridge logistic regression with variable selection and threshold optimization, a significantly improved performance was achieved compared to the current state-of-the-art for derivatized data, while retaining more interpretability and requiring less variables. The results indicate the potential value of data mining methods as a diagnostic support tool.

  5. Transcriptome analysis of Pseudomonas mediterranea and P. corrugata plant pathogens during accumulation of medium-chain-length PHAs by glycerol bioconversion.

    PubMed

    Licciardello, Grazia; Ferraro, Rosario; Russo, Marcella; Strozzi, Francesco; Catara, Antonino F; Bella, Patrizia; Catara, Vittoria

    2017-07-25

    Pseudomonas corrugata and P. mediterranea are soil inhabitant bacteria, generally living as endophytes on symptomless plants and bare soil, but also capable of causing plant diseases. They share a similar genome size and a high proteome similarity. P. corrugata produces many biomolecules which play an important role in bacterial cell survival and fitness. Both species produce different medium-chain-length PHAs (mcl-PHAs) from the bioconversion of glycerol to a transparent film in P. mediterranea and a sticky elastomer in P. corrugata. In this work, using RNA-seq we investigated the transcriptional profiles of both bacteria at the early stationary growth phase with glycerol as the carbon source. Quantitative analysis of P. mediterranea transcripts versus P. corrugata revealed that 1756 genes were differentially expressed. A total of 175 genes were significantly upregulated in P. mediterranea, while 217 were downregulated. The largest group of upregulated genes was related to transport systems and stress response, energy and central metabolism, and carbon metabolism. Expression levels of most genes coding for enzymes related to PHA biosynthesis and central metabolic pathways showed no differences or only slight variations in pyruvate metabolism. The most relevant result was the significantly increased expression in P. mediterranea of genes involved in alginate production, an important exopolysaccharide, which in other Pseudomonas spp. plays a key role as a virulence factor or in stress tolerance and shows many industrial applications. In conclusion, the results provide useful information on the co-production of mcl-PHAs and alginate from glycerol as carbon source by P. mediterranea in the design of new strategies of genetic regulation to improve the yield of bioproducts or bacterial fitness.

  6. Short- and medium-chain chlorinated paraffins in urban soils of Shanghai: spatial distribution, homologue group patterns and ecological risk assessment.

    PubMed

    Wang, Xue-Tong; Wang, Xi-Kui; Zhang, Yuan; Chen, Lei; Sun, Yan-Feng; Li, Mei; Wu, Ming-Hong

    2014-08-15

    Chlorinated paraffins (CPs) are toxic, bioaccumulative, persistent, and ubiquitously present in the environment. Data on the presence of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in urban areas with dense population are still scarce to date. SCCPs and MCCPs were measured in urban soils from Shanghai to comprehensively investigate their levels, spatial distribution, homologue group patterns and ecological risk. The concentrations of CPs in soils varied from ND to 615 ng g(-1) with a median value of 15.7 ng g(-1) for SCCPs and from 1.95 to 188 ng g(-1) with a median value of 7.98 ng g(-1) for MCCPs, respectively. The concentrations of SCCPs in most soils were higher than those of MCCPs. The total CP concentrations in soil samples were between 4.10 and 625 ng g(-1) with a median value of 26.4 ng g(-1). For different functional zones, the median concentrations of soil CPs were found higher in green land including park, greenbelt and campus than those in roadside. The highest concentrations of CPs in soils could be derived from sewage sludge application and wastewater irrigation for green land. Three types of soils were classified by hierarchical cluster analysis (HCA) for SCCPs and MCCPs, the most abundant homologue groups in the bulk of the soil samples were C11Cl5-7 and C13Cl5-7 for SCCPs, and C14Cl7-8 and C15Cl7-8 for MCCPs. Correlation analysis and PCA suggested that SCCPs and MCCPs in soils in the studied area derived from different sources. The preliminary ecological risk assessment indicates that soil CPs at present levels poses no significant ecological risk for soil-dwelling organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains.

    PubMed

    Poblete-Castro, Ignacio; Rodriguez, Andre Luis; Lam, Carolyn Ming Chi; Kessler, Wolfgang

    2014-01-01

    One of the major challenges in metabolic engineering for enhanced synthesis of value-added chemicals is to design and develop new strains that can be translated into well-controlled fermentation processes using bioreactors. The aim of this study was to assess the influence of various fed-batch strategies in the performance of metabolically engineered Pseudomonas putida strains, Δgcd and Δgcd-pgl, for improving production of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glucose as the only carbon source. First we developed a fed-batch process that comprised an initial phase of biomass accumulation based on an exponential feeding carbon-limited strategy. For the mcl-PHA accumulation stage, three induction techniques were tested under nitrogen limitation. The substrate-pulse feeding was more efficient than the constant-feeding approach to promote the accumulation of the desirable product. Nonetheless, the most efficient approach for maximum PHA synthesis was the application of a dissolved-oxygen-stat feeding strategy (DO-stat), where P. putida Δgcd mutant strain showed a final PHA content and specific PHA productivity of 67% and 0.83 g·l(-1)·h(-1), respectively. To our knowledge, this mcl-PHA titer is the highest value that has been ever reported using glucose as the sole carbon and energy source. Our results also highlighted the effect of different fed-batch strategies upon the extent of realization of the intended metabolic modification of the mutant strains.

  8. Marked Synergistic Bactericidal Effects and Mode of Action of Medium-Chain Fatty Acids in Combination with Organic Acids against Escherichia coli O157:H7

    PubMed Central

    Kim, S. A.

    2013-01-01

    The aim of this study was to examine the synergistic bactericidal effects of medium-chain fatty acids (MCFAs; caprylic, capric, and lauric acid) and organic acids (OAs; acetic, lactic, malic, and citric acid) against Escherichia coli O157:H7 and to identify their underlying mechanism(s) of action. E. coli O157:H7 was treated with MCFAs, OAs, or different combinations of MCFAs and OAs. Membrane damage and cell morphology were examined by flow cytometry and transmission electron microscopy, respectively. Combined treatment resulted in an additional log-unit reduction compared with the sum of the reductions obtained after individual treatment. For example, caprylic acid (1.0 mM, or 0.016%) and citric acid (1.0 mM, or 0.012%) alone showed negligible bactericidal effects (0.30- and 0.06-log-unit reductions, respectively); however, a marked synergistic effect (>7.15-log-unit reduction) was observed when the two were combined. Although flow cytometry and microscopic analyses of bacteria treated with individual MCFAs and OAs showed evidence of membrane disruption, the bacteria were still able to form colonies; thus, the cell damage was recoverable. In contrast, cells exposed to combined treatments showed clear membrane disintegration and/or cell death (irreversible damage). The mechanism underlying the antimicrobial effects of combined treatment with MCFAs or OAs may involve disruption of the bacterial membrane, which then facilitates the entry of other antimicrobial compounds into the cytoplasm. The main advantage of combined treatment with very low concentrations of natural antimicrobial compounds is that it is very cost-effective. Thus, this approach may be an alternative to more conventional antimicrobial treatments, such as those currently used in public health, medical centers, and the food industry. PMID:23956396

  9. Medium-chain TAG improve energy metabolism and mitochondrial biogenesis in the liver of intra-uterine growth-retarded and normal-birth-weight weanling piglets.

    PubMed

    Zhang, Hao; Li, Yue; Hou, Xiang; Zhang, Lili; Wang, Tian

    2016-05-01

    We previously reported that medium-chain TAG (MCT) could alleviate hepatic oxidative damage in weanling piglets with intra-uterine growth retardation (IUGR). There is a relationship between oxidative status and energy metabolism, a process involved in substrate availability and glucose flux. Therefore, the aim of this study was to investigate the effects of IUGR and MCT on hepatic energy metabolism and mitochondrial function in weanling piglets. Twenty-four IUGR piglets and twenty-four normal-birth-weight (NBW) piglets were fed a diet of either soyabean oil (SO) or MCT from 21 d of postnatal age to 49 d of postnatal age. Then, the piglets' biochemical parameters and gene expressions related to energy metabolism and mitochondrial function were determined (n 4). Compared with NBW, IUGR decreased the ATP contents and succinate oxidation rates in the liver of piglets, and reduced hepatic mitochondrial citrate synthase (CS) activity (P<0·05). IUGR piglets exhibited reductions in hepatic mitochondrial DNA (mtDNA) contents and gene expressions related to mitochondrial biogenesis compared with NBW piglets (P<0·05). The MCT diet increased plasma ghrelin concentration and hepatic CS and succinate dehydrogenase activities, but decreased hepatic pyruvate kinase activity compared with the SO diet (P<0·05). The MCT-fed piglets showed improved mtDNA contents and PPARγ coactivator-1α expression in the liver (P<0·05). The MCT diet alleviated decreased mRNA abundance of the hepatic PPARα induced by IUGR (P<0·05). It can therefore be postulated that MCT may have beneficial effects in improving energy metabolism and mitochondrial function in weanling piglets.

  10. Triglycerides and heart disease: still a hypothesis?

    PubMed

    Goldberg, Ira J; Eckel, Robert H; McPherson, Ruth

    2011-08-01

    The purpose of this article is to review the basic and clinical science relating plasma triglycerides and cardiovascular disease. Although many aspects of the basic physiology of triglyceride production, its plasma transport, and its tissue uptake have been known for several decades, the relationship of plasma triglyceride levels to vascular disease is uncertain. Are triglyceride-rich lipoproteins, their influence on high-density lipoprotein and low-density lipoprotein, or the underlying diseases that lead to defects in triglyceride metabolism the culprit? Animal models have failed to confirm that anything other than early fatty lesions can be produced by triglyceride-rich lipoproteins. Metabolic products of triglyceride metabolism can be toxic to arterial cells; however, these studies are primarily in vitro. Correlative studies of fasting and postprandial triglycerides and genetic diseases implicate very-low-density lipoprotein and their remnants and chylomicron remnants in atherosclerosis development, but the concomitant alterations in other lipoproteins and other risk factors obscure any conclusions about direct relationships between disease and triglycerides. Genes that regulate triglyceride levels also correlate with vascular disease. Human intervention trials, however, have lacked an appropriately defined population and have produced outcomes without definitive conclusions. The time is more than ripe for new and creative approaches to understanding the relationship of triglycerides and heart disease.

  11. Triglycerides and Heart Disease, Still a Hypothesis?

    PubMed Central

    Goldberg, Ira J.; Eckel, Robert H.; McPherson, Ruth

    2011-01-01

    The purpose of this article is to review the basic and clinical science relating plasma triglycerides and cardiovascular disease. Although many aspects of the basic physiology of triglyceride production, its plasma transport and tissue uptake have been known for several decades, the relationship of plasma triglyceride levels to vascular disease is uncertain. Are triglyceride rich lipoproteins, their influence on HDL and LDL, or the underlying diseases leading to defects in triglyceride metabolism the culprit? Animal models have failed to confirm that anything other than early fatty lesions can be produced by triglyceride-rich lipoproteins. Metabolic products of triglyceride metabolism can be toxic to arterial cells; however, these studies are primarily in vitro. Correlative studies of fasting and postprandial triglycerides and genetic diseases implicate VLDL and their remnants, and chylomicron remnants in atherosclerosis development; but the concomitant alterations in other lipoproteins and other risk factors obscure any conclusions about direct relationships between disease and triglycerides. Genes that regulate triglyceride levels also correlate with vascular disease. Human intervention trials, however, have lacked an appropriately defined population, and have produced outcomes without definitive conclusions. The time is more than ripe for new and creative approaches to understanding the relationship of triglycerides and heart disease. PMID:21527746

  12. Mechanisms of intrahepatic triglyceride accumulation.

    PubMed

    Ress, Claudia; Kaser, Susanne

    2016-01-28

    Hepatic steatosis defined as lipid accumulation in hepatocytes is very frequently found in adults and obese adolescents in the Western World. Etiologically, obesity and associated insulin resistance or excess alcohol intake are the most frequent causes of hepatic steatosis. However, steatosis also often occurs with chronic hepatitis C virus (HCV) infection and is also found in rare but potentially life-threatening liver diseases of pregnancy. Clinical significance and outcome of hepatic triglyceride accumulation are highly dependent on etiology and histological pattern of steatosis. This review summarizes current concepts of pathophysiology of common causes of hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease, chronic HCV infections, drug-induced forms of hepatic steatosis, and acute fatty liver of pregnancy. Regarding the pathophysiology of NAFLD, this work focuses on the close correlation between insulin resistance and hepatic triglyceride accumulation, highlighting the potential harmful effects of systemic insulin resistance on hepatic metabolism of fatty acids on the one side and the role of lipid intermediates on insulin signalling on the other side. Current studies on lipid droplet morphogenesis have identified novel candidate proteins and enzymes in NAFLD.

  13. Mechanisms of intrahepatic triglyceride accumulation

    PubMed Central

    Ress, Claudia; Kaser, Susanne

    2016-01-01

    Hepatic steatosis defined as lipid accumulation in hepatocytes is very frequently found in adults and obese adolescents in the Western World. Etiologically, obesity and associated insulin resistance or excess alcohol intake are the most frequent causes of hepatic steatosis. However, steatosis also often occurs with chronic hepatitis C virus (HCV) infection and is also found in rare but potentially life-threatening liver diseases of pregnancy. Clinical significance and outcome of hepatic triglyceride accumulation are highly dependent on etiology and histological pattern of steatosis. This review summarizes current concepts of pathophysiology of common causes of hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease, chronic HCV infections, drug-induced forms of hepatic steatosis, and acute fatty liver of pregnancy. Regarding the pathophysiology of NAFLD, this work focuses on the close correlation between insulin resistance and hepatic triglyceride accumulation, highlighting the potential harmful effects of systemic insulin resistance on hepatic metabolism of fatty acids on the one side and the role of lipid intermediates on insulin signalling on the other side. Current studies on lipid droplet morphogenesis have identified novel candidate proteins and enzymes in NAFLD. PMID:26819531

  14. Utilization of ascites plasma very low density lipoprotein triglycerides by Ehrlich cells.

    PubMed

    Brenneman, D E; Spector, A A

    1974-07-01

    Much of the lipid present in the ascites plasma in which Ehrlich cells grow is contained in very low density lipoproteins (VLDL). Chemical measurements indicated that triglycerides were taken up by the cells during in vitro incubation with ascites VLDL. When tracer amounts of radioactive triolein were incorporated into the ascites VLDL, the percentage uptakes of glyceryl tri[1-(14)C]oleate and triglycerides measured chemically were similar. The cells also took up [2-(3)H]glyceryl trioleate that was added to VLDL, but the percentage of available (3)H recovered in the cell lipids was 30-40% less than that of (1 4)C from glyceryl tri[1-(1 4)C]oleate. This difference was accounted for by water-soluble (3)H that accumulated in the incubation medium, suggesting that extensive hydrolysis accompanied the uptake of VLDL triglycerides. Radioactive fatty acids derived from the VLDL triglycerides were incorporated into cell phospholipids, glycerides, and free fatty acids, and they also were oxidized to CO(2). Triglyceride utilization increased as the VLDL concentration was raised. These results suggest that one function of the ascites plasma VLDL may be to supply fatty acid to the Ehrlich cells and that the availability of fatty acid to this tumor is determined in part by the ascites plasma VLDL concentration. Although Ehrlich cells incorporate almost no free glycerol into triglycerides, considerable amounts of [2-(3)H]glyceryl trioleate radioactivity were recovered in cell triglycerides. This indicates that at least some VLDL triglycerides were taken up intact. The net uptake of VLDL protein and cholesterol was very small relative to the triglyceride uptake, suggesting that intact triglycerides are transferred from the ascites VLDL to the Ehrlich cells and that hydrolysis occurs after the triglyceride is associated with the cells.

  15. Atmospheric occurrence, homologue patterns and source apportionment of short- and medium-chain chlorinated paraffins in Shanghai, China: Biomonitoring with Masson pine (Pinus massoniana L.) needles.

    PubMed

    Wang, Xue-Tong; Zhou, Jun; Lei, Bing-Li; Zhou, Jing-Ming; Xu, Si-Yue; Hu, Bao-Ping; Wang, De-Qing; Zhang, Dong-Ping; Wu, Ming-Hong

    2016-08-01

    A comprehensive survey was conducted to Masson pine (Pinus massoniana L.) needles widely distributed in Shanghai in order to investigate the levels and homologue group patterns of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs), to identify and quantitatively assess source contributions to the total CPs in pine needle samples. The concentration ranged from not detected (ND) to 13,600ngg(-1) with a geometric mean (GM) value of 63.7ngg(-1) for ΣSCCPs, from 12.4 to 33,500ngg(-1) with a GM value of 677ngg(-1) for ΣMCCPs, and from 14.0 to 45,700ngg(-1) with a GM value of 768ngg(-1) for total CPs. For different sampling units, the pollution levels both for SCCPs and MCCPs in pine needles were in the same orders: Pudong>suburbs>Puxi>Chongming. These significant differences in SCCPs and MCCPs among four sampling units could be associated with difference in industrial activities and to some extent also in population density. All pine needle samples (n=131) were divided into 2 groups by hierarchical cluster analysis (HCA) for SCCPs and MCCPs, the most abundant homologue groups in the bulk of pine needle samples were C11Cl5-7 and C13Cl5-7 for SCCPs, and C14Cl7-8 and C15Cl7-8 for MCCPs. Correlation analysis suggested that SCCPs and MCCPs in pine needles in the studied area may be derived from different sources. Four sources for pine needles were identified by the FA-MLR model; their relative contributions to the total CP burden in pine needles were 18.0% for F1 (attributed to commercial SCCP mixture), 42.2% for F2 (attributed to commercial MCCP mixture), 29.3% for F3 (attributed to LRAT), and 10.5% for F4 (unknown source). CP contamination of atmospheric air by point sources and long-range atmospheric transport in Shanghai should receive more attention by local government. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Quantitative ‘Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids

    PubMed Central

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V.; Zhang, Xiangli; Fristensky, Brian; Cicek, Nazim; Sparling, Richard; Levin, David. B.

    2015-01-01

    Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA). The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. ‘Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the ‘Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1) glycerol transportation; 2) enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA). Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in determining

  17. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate.

    PubMed

    Follonier, Stéphanie; Panke, Sven; Zinn, Manfred

    2011-04-22

    The substitution of plastics based on fossil raw material by biodegradable plastics produced from renewable resources is of crucial importance in a context of oil scarcity and overflowing plastic landfills. One of the most promising organisms for the manufacturing of medium-chain-length polyhydroxyalkanoates (mcl-PHA) is Pseudomonas putida KT2440 which can accumulate large amounts of polymer from cheap substrates such as glucose. Current research focuses on enhancing the strain production capacity and synthesizing polymers with novel material properties. Many of the corresponding protocols for strain engineering rely on the rifampicin-resistant variant, P. putida KT2442. However, it remains unclear whether these two strains can be treated as equivalent in terms of mcl-PHA production, as the underlying antibiotic resistance mechanism involves a modification in the RNA polymerase and thus has ample potential for interfering with global transcription. To assess PHA production in P. putida KT2440 and KT2442, we characterized the growth and PHA accumulation on three categories of substrate: PHA-related (octanoate), PHA-unrelated (gluconate) and poor PHA substrate (citrate). The strains showed clear differences of growth rate on gluconate and citrate (reduction for KT2442 > 3-fold and > 1.5-fold, respectively) but not on octanoate. In addition, P. putida KT2442 PHA-free biomass significantly decreased after nitrogen depletion on gluconate. In an attempt to narrow down the range of possible reasons for this different behavior, the uptake of gluconate and extracellular release of the oxidized product 2-ketogluconate were measured. The results suggested that the reason has to be an inefficient transport or metabolization of 2-ketogluconate while an alteration of gluconate uptake and conversion to 2-ketogluconate could be excluded. The study illustrates that the recruitment of a pleiotropic mutation, whose effects might reach deep into physiological regulation, effectively

  18. The tissue-specific expression and developmental regulation of two nuclear genes encoding rat mitochondrial proteins. Medium chain acyl-CoA dehydrogenase and mitochondrial malate dehydrogenase.

    PubMed

    Kelly, D P; Gordon, J I; Alpers, R; Strauss, A W

    1989-11-15

    To study the regulation of nuclear genes which encode mitochondrial enzymes involved in oxidative metabolism, absolute levels of mRNA encoding rat medium chain acyl-CoA dehydrogenase (MCAD) and rat mitochondrial malate dehydrogenase (mMDH) were determined in developing and adult male rat tissues. MCAD mRNA is expressed in a variety of adult male tissues with highest steady state levels in heart, adrenal, and skeletal muscle and lowest levels in brain, lung, and testes. In comparison, steady state levels of mMDH mRNA in adult male rat tissues were similar to those of MCAD mRNA in heart, small intestine, adrenal, and skeletal muscle but markedly different in brain, stomach, and testes. Thus, the steady-state levels of MCAD and mMDH mRNA are highest in adult tissues with high energy requirements. Dot blot analysis of RNA prepared from late fetal, suckling, and weaning rat heart, liver, and brain demonstrated the presence of MCAD and mMDH mRNA during the fetal period in all three tissues. Both MCAD and mMDH mRNA levels increased 2-2.5-fold at birth followed by a decline during the first postnatal week in heart and liver. The patterns of accumulation of these mRNAs in heart and liver during the weaning and early adult periods were also similar, although the absolute levels were significantly different. Brain MCAD mRNA levels were consistently low (less than 0.1 pg/micrograms total cellular RNA) throughout the developmental stages. However, brain mMDH mRNA levels exhibited a marked increase during the weaning period, reaching a peak concentration which is higher than the level of mMDH mRNA in heart and liver at any point during development. These results indicate that the level of expression of the nuclear genes encoding MCAD and mMDH is tissue-specific and developmentally regulated. The patterns of MCAD and mMDH mRNA accumulation parallel the changes in energy metabolism which occur during development and among adult tissues.

  19. Medium-chain fatty acids reduce serum cholesterol by regulating the metabolism of bile acid in C57BL/6J mice.

    PubMed

    Liu, Yinghua; Zhang, Yong; Zhang, Xinsheng; Xu, Qing; Yang, Xueyan; Xue, Changyong

    2017-01-25

    Hypercholesterolemia is one of the important risk factors of atherosclerosis (AS). The aim of this study is to explore the effect of medium-chain fatty acids (MCFAs) on serum cholesterol levels and their mechanism of action. Hyperlipemia, as a model of abnormal lipid hypermetabolism, was established by using a high fat diet in C57BL/6J mice. Forty eight mice with dyslipidemia were randomly divided into 4 groups, 12 mice per group, including the control group, the 2% caprylic acid (C8:0)-treated group, 2% capric acid (C10:0)-treated group, and 2% oleic acid (C18:1)-treated group. All mice were fed with a high fat diet. After 16 weeks, the mice were anesthetized with chloral hydrate. The mouse portal vein blood, the liver and the start site of the ileum (1 cm) were collected. The body weight of the mice and blood lipid profiles were measured. Gene transcription and the expression level associated with bile acid metabolism in the liver and small intestine were determined by real-time PCR and the western blotting method. The concentrations of bile acid metabolites in bile and feces were analysed. After 16 weeks of treatment, the concentrations of TC and LDL-C in the caprylic acid group were significantly lower than those in the control group (P < 0.05); the transcription and expression level of LXR, CYP7A1, CYP27A1 and ABCG8 in the caprylic acid and capric acid groups were significantly higher than those in the control group in the liver (P < 0.05), however the transcription and expression level of the small heterodimer partner (SHP) were significantly lower than those in the control group (P < 0.05); the transcription and expression level of LXR, ABCG5 and ABCG8 in the caprylic acid, capric acid and oleic acid groups were significantly higher than those in the control group in the small intestine (P < 0.05). The concentrations of total bile acid, mainly cholic acid and cholesterol in bile and feces were significantly higher in the caprylic and capric acid groups than

  20. 221 Newborn-Screened Neonates with Medium-Chain Acyl-Coenzyme A Dehydrogenase Deficiency: Findings from the Inborn Errors of Metabolism Collaborative

    PubMed Central

    Bentler, Kristi; Zhai, Shaohui; Elsbecker, Sara A.; Arnold, Georgianne L.; Burton, Barbara K.; Vockley, Jerry; Cameron, Cynthia A.; Hiner, Sally J.; Edick, Mathew J.; Berry, Susan A.

    2016-01-01

    INTRODUCTION There is limited understanding of relationships between genotype, phenotype and other conditions contributing to health in neonates with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD) identified through newborn screening. METHODS Retrospective analysis of comprehensive data from a cohort of 221 newborn-screened subjects identified as affected with MCADD in the Inborn Errors of Metabolism – Information System (IBEM-IS), a long term follow-up database of the Inborn Errors of Metabolism Collaborative, was performed. RESULTS The average age at notification of first newborn screen results to primary care or metabolic providers was 7.45 days. The average octanoylcarnitine (C8) value on first newborn screen was 11.2 umol/L (median 8.6, range 0.36–43.91). A higher C8 level correlated with an earlier first subspecialty visit. Subjects with low birth weight had significantly lower C8 values. Significantly higher C8 values were found in symptomatic newborns, in newborns with abnormal lab testing in addition to newborn screening and/or diagnostic tests, and in subjects homozygous for the c.985A>G ACADM gene mutation or compound heterozygous for the c.985A>G mutation and deletions or other known highly deleterious mutations. Subjects with neonatal symptoms, or neonatal abnormal labs, or neonatal triggers were more likely to have at least one copy of the severe c.985A>G ACADM gene mutation. C8 and genotype category were significant predictors of the likelihood of having neonatal symptoms. Neonates with select triggers were more likely to have symptoms and laboratory abnormalities. CONCLUSIONS This collaborative study is the first in the United States to describe health associations of a large cohort of newborn-screened neonates identified as affected with MCADD. The IBEM-IS has utility as a platform to better understand the characteristics of individuals with newborn-screened conditions and their follow-up interactions with the health system. PMID

  1. POTENTIAL OF MEAN FORCE CALCULATION FOR THE PROTON AND HYDRIDE TRANSFER REACTIONS CATALYZED BY MEDIUM CHAIN ACYL-COA DEHYDROGENASE: THE EFFECT OF MUTATIONS ON ENZYME CATALYSISa

    PubMed Central

    Bhattacharyya, Sudeep; Ma, Shuhua; Stankovich, Marian T.; Truhlar, Donald G.; Gao, Jiali

    2008-01-01

    Potential of mean force calculations have been performed on the wild-type medium chain acyl-CoA dehydrogenase (MCAD) and two of its mutant forms. Initial simulation and analysis of the active site of the enzyme reveals that an arginine residue (Arg256), conserved in the substrate binding domain of this group of enzymes, exists in two alternate conformations, only one of which makes the enzyme active. This active conformation was used in subsequent computations of the enzymatic reactions. It is known that the catalytic α,β-dehydrogenation of fatty acyl-CoAs consists of two C-H bond dissociation processes: a proton abstraction and a hydride transfer. Energy profiles of the two reaction steps in the wild-type MCAD demonstrate that the reaction proceeds by a stepwise mechanism with a transient species. The activation barriers of the two steps differ by only ∼2 kcal/mol, indicating that both may contribute to the rate-limiting process. Thus this may be a stepwise dissociation mechanism whose relative barriers can be tuned by suitable alterations of the substrate and/or enzyme. Analysis of the structures along the reaction path reveals that Arg256 plays a key role in maintaining the reaction-center hydrogen-bonding network involving the thioester carbonyl group, which stabilizes transition states as well as the intervening transient species. Mutation of this arginine residue to glutamine increases the activation barrier of the hydride transfer reaction by ∼5 kcal/mol, and the present simulations predict a substantial loss of catalytic activity for this mutant. Structural analysis of this mutant reveals that the orientation of the thioester moiety of the substrate has been changed significantly as compared to that in the wild-type enzyme. In contrast, simulation of the active site of the Thr168Ala mutant shows no significant change in the relative orientation of the substrate and the cofactor in the active site; as a result, this mutation has very little effect on

  2. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice.

    PubMed

    Herrema, Hilde; Derks, Terry G J; van Dijk, Theo H; Bloks, Vincent W; Gerding, Albert; Havinga, Rick; Tietge, Uwe J F; Müller, Michael; Smit, G Peter A; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2008-06-01

    Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD(-/-) mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD(-/-) mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1alpha (Pgc-1alpha) and decreased peroxisome proliferator-activated receptor alpha (Ppar alpha) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD(-/-) mice in both conditions, suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD(-/-) mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD(-/-) mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD(-/-) mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD(-/-) mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD(-/-) mice, was mainly due to enhanced peripheral glucose uptake. Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the

  3. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate

    PubMed Central

    2011-01-01

    Background The substitution of plastics based on fossil raw material by biodegradable plastics produced from renewable resources is of crucial importance in a context of oil scarcity and overflowing plastic landfills. One of the most promising organisms for the manufacturing of medium-chain-length polyhydroxyalkanoates (mcl-PHA) is Pseudomonas putida KT2440 which can accumulate large amounts of polymer from cheap substrates such as glucose. Current research focuses on enhancing the strain production capacity and synthesizing polymers with novel material properties. Many of the corresponding protocols for strain engineering rely on the rifampicin-resistant variant, P. putida KT2442. However, it remains unclear whether these two strains can be treated as equivalent in terms of mcl-PHA production, as the underlying antibiotic resistance mechanism involves a modification in the RNA polymerase and thus has ample potential for interfering with global transcription. Results To assess PHA production in P. putida KT2440 and KT2442, we characterized the growth and PHA accumulation on three categories of substrate: PHA-related (octanoate), PHA-unrelated (gluconate) and poor PHA substrate (citrate). The strains showed clear differences of growth rate on gluconate and citrate (reduction for KT2442 > 3-fold and > 1.5-fold, respectively) but not on octanoate. In addition, P. putida KT2442 PHA-free biomass significantly decreased after nitrogen depletion on gluconate. In an attempt to narrow down the range of possible reasons for this different behavior, the uptake of gluconate and extracellular release of the oxidized product 2-ketogluconate were measured. The results suggested that the reason has to be an inefficient transport or metabolization of 2-ketogluconate while an alteration of gluconate uptake and conversion to 2-ketogluconate could be excluded. Conclusions The study illustrates that the recruitment of a pleiotropic mutation, whose effects might reach deep into

  4. Quantitative 'Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids.

    PubMed

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V; Zhang, Xiangli; Fristensky, Brian; Cicek, Nazim; Sparling, Richard; Levin, David B

    2015-01-01

    Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA). The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. 'Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the 'Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1) glycerol transportation; 2) enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA). Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in determining the

  5. 221 newborn-screened neonates with medium-chain acyl-coenzyme A dehydrogenase deficiency: Findings from the Inborn Errors of Metabolism Collaborative.

    PubMed

    Bentler, Kristi; Zhai, Shaohui; Elsbecker, Sara A; Arnold, Georgianne L; Burton, Barbara K; Vockley, Jerry; Cameron, Cynthia A; Hiner, Sally J; Edick, Mathew J; Berry, Susan A

    2016-09-01

    There is limited understanding of relationships between genotype, phenotype and other conditions contributing to health in neonates with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD) identified through newborn screening. Retrospective analysis of comprehensive data from a cohort of 221 newborn-screened subjects identified as affected with MCADD in the Inborn Errors of Metabolism - Information System (IBEM-IS), a long term follow-up database of the Inborn Errors of Metabolism Collaborative, was performed. The average age at notification of first newborn screen results to primary care or metabolic providers was 7.45days. The average octanoylcarnitine (C8) value on first newborn screen was 11.2μmol/L (median 8.6, range 0.36-43.91). A higher C8 level correlated with an earlier first subspecialty visit. Subjects with low birth weight had significantly lower C8 values. Significantly higher C8 values were found in symptomatic newborns, in newborns with abnormal lab testing in addition to newborn screening and/or diagnostic tests, and in subjects homozygous for the c.985A>G ACADM gene mutation or compound heterozygous for the c.985A>G mutation and deletions or other known highly deleterious mutations. Subjects with neonatal symptoms, or neonatal abnormal labs, or neonatal triggers were more likely to have at least one copy of the severe c.985A>G ACADM gene mutation. C8 and genotype category were significant predictors of the likelihood of having neonatal symptoms. Neonates with select triggers were more likely to have symptoms and laboratory abnormalities. This collaborative study is the first in the United States to describe health associations of a large cohort of newborn-screened neonates identified as affected with MCADD. The IBEM-IS has utility as a platform to better understand the characteristics of individuals with newborn-screened conditions and their follow-up interactions with the health system. Copyright © 2016 Elsevier Inc. All rights

  6. Packaged bulk micromachined triglyceride biosensor

    NASA Astrophysics Data System (ADS)

    Mohanasundaram, S. V.; Mercy, S.; Harikrishna, P. V.; Rani, Kailash; Bhattacharya, Enakshi; Chadha, Anju

    2010-02-01

    Estimation of triglyceride concentration is important for the health and food industries. Use of solid state biosensors like Electrolyte Insulator Semiconductor Capacitors (EISCAP) ensures ease in operation with good accuracy and sensitivity when compared to conventional sensors. In this paper we report on packaging of miniaturized EISCAP sensors on silicon. The packaging involves glass to silicon bonding using adhesive. Since this kind of packaging is done at room temperature, it cannot damage the thin dielectric layers on the silicon wafer unlike the high temperature anodic bonding technique and can be used for sensors with immobilized enzyme without denaturing the enzyme. The packaging also involves a teflon capping arrangement which helps in easy handling of the bio-analyte solutions. The capping solves two problems. Firstly, it helps in the immobilization process where it ensures the enzyme immobilization happens only on one pit and secondly it helps with easy transport of the bio-analyte into the sensor pit for measurements.

  7. Serum cholesterol and triglyceride reference ranges of twenty lipoprotein subclasses for healthy Japanese men and women.

    PubMed

    Furusyo, Norihiro; Ai, Masumi; Okazaki, Mitsuyo; Ikezaki, Hiroaki; Ihara, Takeshi; Hayashi, Takeo; Hiramine, Satoshi; Ura, Kazuya; Kohzuma, Takuji; Schaefer, Ernst J; Hayashi, Jun

    2013-12-01

    This epidemiological study was done to generate normal ranges for the cholesterol and triglyceride levels in serum lipoprotein subclasses isolated from healthy adults based on gender and menopausal status. Cholesterol and triglyceride levels in 20 lipoprotein subclasses as separated by high performance liquid chromatography were measured in serum obtained from 825 fasting healthy subjects (267 men, 558 women). For serum cholesterol, 13.7% was found in very low density lipoprotein (VLDL) subclasses, 55.6% in low density lipoprotein (LDL) subclasses, and 30.4% in high density lipoprotein (HDL) subclasses. For serum triglycerides, these values were 52.1%, 27.9%, and 17.4%, respectively. Levels of cholesterol in some VLDL subclasses were inversely correlated with the levels of some HDL subclasses, while for triglycerides, elevated levels in any one subclass were generally strongly associated with elevated levels in all other subclasses. Men had significantly higher large VLDL-cholesterol levels than women (P < 0.05), while women had significantly higher small VLDL-cholesterol levels than men (P < 0.001). Women had significantly higher large LDL- and large and medium HDL-cholesterol levels than men (P < 0.001). Men had significantly higher chylomicron (CM), large and medium VLDL-, and small LDL-triglyceride levels than women (P < 0.001). Women had significantly higher very large and large HDL-triglyceride levels than men (P < 0.01). Postmenopausal women had significantly higher CM, all VLDL, and large, medium and small LDL-cholesterol levels, and significantly higher all VLDL, LDL, and HDL-triglyceride levels than premenopausal women (P < 0.001). Our data document important gender and menopausal status differences in cholesterol and triglyceride subclass levels, as well as significant correlations between values in the various serum lipoprotein subclasses. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Triglyceride Synthesis in Epididymal Adipose Tissue

    PubMed Central

    Bederman, Ilya R.; Foy, Steven; Chandramouli, Visvanathan; Alexander, James C.; Previs, Stephen F.

    2009-01-01

    The obesity epidemic has generated interest in determining the contribution of various pathways to triglyceride synthesis, including an elucidation of the origin of triglyceride fatty acids and triglyceride glycerol. We hypothesized that a dietary intervention would demonstrate the importance of using glucose versus non-glucose carbon sources to synthesize triglycerides in white adipose tissue. C57BL/6J mice were fed either a low fat, high carbohydrate (HC) diet or a high fat, carbohydrate-free (CF) diet and maintained on 2H2O (to determine total triglyceride dynamics) or infused with [6,6-2H]glucose (to quantify the contribution of glucose to triglyceride glycerol). The 2H2O labeling data demonstrate that although de novo lipogenesis contributed ∼80% versus ∼5% to the pool of triglyceride palmitate in HC- versus CF-fed mice, the epididymal adipose tissue synthesized ∼1.5-fold more triglyceride in CF- versus HC-fed mice, i.e. 37 ± 5 versus 25 ± 3 μmol × day–1. The [6,6-2H]glucose labeling data demonstrate that ∼69 and ∼28% of triglyceride glycerol is synthesized from glucose in HC- versus CF-fed mice, respectively. Although these data are consistent with the notion that non-glucose carbon sources (e.g. glyceroneogenesis) can make substantial contributions to the synthesis of triglyceride glycerol (i.e. the absolute synthesis of triglyceride glycerol from non-glucose substrates increased from ∼8 to ∼26 μmol × day–1 in HC- versus CF-fed mice), these observations suggest (i) the importance of nutritional status in affecting flux rates and (ii) the operation of a glycerol-glucose cycle. PMID:19114707

  9. Triglycerides and carotid intima-media thickness in ischemic stroke patients.

    PubMed

    Batluk, Jana; Leonards, Christopher O; Grittner, Ulrike; Lange, Kristin Sophie; Schreiber, Stephan J; Endres, Matthias; Ebinger, Martin

    2015-11-01

    Common carotid artery intima-media thickness (CCA-IMT) is an established marker for atherosclerosis. The role of triglycerides in CCA-IMT remains controversial. We sought to determine if elevated fasting and post-challenge triglycerides are associated with CCA-IMT. All acute ischemic stroke patients who participated in the Berlin "Cream & Sugar" study in the Charité Virchow and Charité Mitte Campuses between January 2009 and January 2014 and underwent carotid artery ultrasound studies were eligible for inclusion. A combined oral glucose and triglyceride tolerance test was performed 3-7 days after first ever ischemic stroke. Patients were classified according to triglyceride metabolism-namely, (1) patients reaching a maximum triglyceride levels 3 h post-challenge ("fast metabolizers," n = 37), (2) patients with increasing triglycerides 4 (medium metabolizers, n = 64), and (3) 5 h post-challenge ("slow metabolizers," n = 44; 13 missing). We included 158 patients (34% female; mean age 63 years, SD 14). Absolute non-fasting triglyceride levels were positively associated with CCA-IMT. A final multiple regression model revealed that older age, more severe strokes, and higher levels of fasting triglycerides were significantly and independently associated with higher mean CCA-IMT. Older age, higher waist-to-hip ratio, and higher levels of thyroid-stimulating hormone were independently associated with higher maximum CCA-IMT. Fasting triglycerides but not post-challenge triglycerides associate with CCA-IMT. An oral fat challenge may not add information on atherosclerotic status in ischemic stroke patients. The Berlin "Cream & Sugar" study is registered with EudraCT (2009-010356-97) and clinicaltrials.gov (NCT 01378468). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Serum triglycerides and risk of cardiovascular disease.

    PubMed

    Boullart, A C I; de Graaf, J; Stalenhoef, A F

    2012-05-01

    Dyslipidemia, especially elevated serum levels of cholesterol, is causally related to cardiovascular disease. The specific role of triglycerides has long been controversial. In this article we discuss the role of serum triglycerides in relation to the risk of cardiovascular disease. First, the (patho)physiology of triglycerides is described, including the definition and a short summary of the primary and secondary causes of hypertriglyceridemia. Furthermore, we will give an overview of the published epidemiological studies concerning hypertriglyceridemia and cardiovascular disease to support the view that triglyceride-rich lipoproteins are an independently associated risk factor. Finally, treatment strategies and treatment targets are discussed. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Triglycerides Revisited to the Serial.

    PubMed

    Viecili, Paulo Ricardo Nazário; da Silva, Brenda; Hirsch, Gabriela E; Porto, Fernando G; Parisi, Mariana M; Castanho, Alison R; Wender, Michele; Klafke, Jonatas Z

    This review discusses the role of triglycerides (TGs) in the normal cardiovascular system as well as in the development and clinical manifestation of cardiovascular diseases. Regulation of TGs at the enzymatic and genetic level, in addition to their possible relevance as preclinical and clinical biomarkers, is discussed, culminating with a description of available and emerging treatments. Due to the high complexity of the subject and the vast amount of material in the literature, the objective of this review was not to exhaust the subject, but rather to compile the information to facilitate and improve the understanding of those interested in this topic. The main publications on the topic were sought out, especially those from the last 5 years. The data in the literature still give reason to believe that there is room for doubt regarding the use of TG as disease biomarkers; however, there is increasing evidence for the role of hypertriglyceridemia on the atherosclerotic inflammatory process, cardiovascular outcomes, and mortality. © 2017 Elsevier Inc. All rights reserved.

  12. Genetic determinants of plasma triglycerides

    PubMed Central

    Johansen, Christopher T.; Kathiresan, Sekar; Hegele, Robert A.

    2011-01-01

    Plasma triglyceride (TG) concentration is reemerging as an important cardiovascular disease risk factor. More complete understanding of the genes and variants that modulate plasma TG should enable development of markers for risk prediction, diagnosis, prognosis, and response to therapies and might help specify new directions for therapeutic interventions. Recent genome-wide association studies (GWAS) have identified both known and novel loci associated with plasma TG concentration. However, genetic variation at these loci explains only ∼10% of overall TG variation within the population. As the GWAS approach may be reaching its limit for discovering genetic determinants of TG, alternative genetic strategies, such as rare variant sequencing studies and evaluation of animal models, may provide complementary information to flesh out knowledge of clinically and biologically important pathways in TG metabolism. Herein, we review genes recently implicated in TG metabolism and describe how some of these genes likely modulate plasma TG concentration. We also discuss lessons regarding plasma TG metabolism learned from various genomic and genetic experimental approaches. Treatment of patients with moderate to severe hypertriglyceridemia with existing therapies is often challenging; thus, gene products and pathways found in recent genetic research studies provide hope for development of more effective clinical strategies. PMID:21041806

  13. Stability of triglyceride liquid films on hydrophilic and hydrophobic glasses.

    PubMed

    Vazquez, Rosa; Nogueira, Rui; Orfão, Marta; Mata, José Luís; Saramago, Benilde

    2006-07-01

    Wetting and dewetting of solid surfaces by oily fluids were investigated in terms of the stability of the liquid film formed between an air bubble and the solid surface. With the objective of understanding how molecules with low polarity but relatively complex molecular structure behave at the solid/liquid interface, three liquid triglycerides with different chain length and saturation were chosen, namely, tributyrin, tricaprylin, and triolein. Tributyrin and tricaprylin exist in milkfat while triolein is present in vegetable oils. The stability of the liquid films may be inferred from the shape of the disjoining pressure isotherms, which represent the dependence of the disjoining pressure on the film thickness. Disjoining pressure isotherms for films of the three triglycerides on hydrophilic and hydrophobic glasses were obtained using a recently developed apparatus, based on the interferometric technique. The experimental curves are compared with the theoretical predictions of London-Hamaker. The deviations between theory and experiment are interpreted in terms of a structural component of the disjoining pressure. All triglycerides form metastable films on both hydrophilic and hydrophobic glasses which means that for disjoining pressures higher than a critical value, pi(c), a wetting transition occurs and the film ruptures. The mechanisms for film rupture are discussed and a correlation between film stability and the apolar (Lifshitz-van der Waals) and the polar components of the spreading coefficient is proposed.

  14. Rheology of Hyperbranched Poly(triglyceride)-Based Thermoplastic Elastomers via RAFT polymerization

    NASA Astrophysics Data System (ADS)

    Yan, Mengguo; Cochran, Eric

    2014-03-01

    In this contribution we discuss how melt- and solid-state properties are influenced by the degree of branching and molecular weight in a family of hyperbranched thermoplastics derived from soybean oil. Acrylated epoxidized triglycerides from soybean oils have been polymerized to hyperbranched thermoplastic elastomers using reversible addition-fragmentation chain transfer (RAFT) polymerization. With the proper choice of chain transfer agent, both homopolymer and block copolymer can be synthesized. By changing the number of acrylic groups per triglycerides, the chain architectures can range from nearly linear to highly branched. We show how the fundamental viscoelastic properties (e.g. entanglement molecular weight, plateau modulus, etc.) are influenced by chain architecture and molecular weight.

  15. Successful treatment of sebaceous adenitis in a rabbit with ciclosporin and triglycerides.

    PubMed

    Jassies-van der Lee, Annette; van Zeeland, Yvonne; Kik, Marja; Schoemaker, Nico

    2009-02-01

    A 4-year-old rabbit was presented with a chronic exfoliative dermatitis and patchy alopecia. General physical examination revealed no abnormalities. Skin scrapings and fungal culture were negative. A blood sample was obtained for a complete blood cell count and biochemical profile, and yielded results that were within normal limits. Radiographic examination of the thorax excluded the presence of a thymoma. Histopathology of the skin showed orthokeratotic hyperkeratosis, absence of sebaceous glands and mural lymphocytic folliculitis, consistent with sebaceous adenitis. Oral treatment was started with ciclosporin dissolved in a medium-chain triglyceride solution (Miglyol 812), combined with essential fatty acids and topical propylene glycol sprays. Within 2 months of treatment, complete regression of skin lesions and regrowth of hair was observed. Serum chemistry values including kidney and liver function tests remained within reference range during the course of treatment. Histopathological examination of control biopsies of the skin showed presence of normal sebaceous glands and active hair follicles. Treatment was changed to a different pharmaceutical formulation of ciclosporin without Miglyol and deterioration of clinical signs was noticed. Using pure Miglyol 812, however, resulted in a gradual improvement of 60%. A nearly complete response was again observed after re-administration of the combination ciclosporin/Miglyol. It is hypothesized that sebaceous adenitis in the rabbit is most likely due to an autoimmune reaction directed at the sebaceous glands and a defect in lipid metabolism. The outcome indicates that a combination of ciclosporin and Miglyol 812 is a promising new treatment for sebaceous adenitis in rabbits.

  16. Increased stearoyl-CoA desaturase index and triglyceride content in the liver of rats after a single bout of swimming exercise.

    PubMed

    Ochiai, Masaru; Matsuo, Tatsuhiro

    2012-01-01

    Up-regulation of stearoyl-CoA desaturase (SCD) is closely related to improved insulin resistance. We investigated whether the SCD indices in tissues were influenced by a single-endurance exercise and low content of dietary medium-chain fatty acid (FA). Wistar rats were fed a long-chain (S) or medium- and long-chain FA (M) diet for 2 weeks. At the end of the experiment, the rats were further assigned to two sub-groups (sedentary, Sed; exercise, Ex). These groups were defined as S-Sed, S-Ex, M-Sed, and M-Ex. The rats in the exercise groups were subjected to swimming exercise for 4 h, and tissue samples were obtained. The exercise significantly increased the triglyceride (TG) content and SCD index only in the liver. In contrast, no such changes were apparent by intake of the M diet. A single bout of endurance exercise increased the hepatic TG content and SCD index which might be effective in protecting against insulin resistance.

  17. The control of fatty acid and triglyceride synthesis in rat epididymal adipose tissue. Roles of coenzyme A derivatives, citrate and l-glycerol 3-phosphate

    PubMed Central

    Denton, R. M.; Halperin, M. L.

    1968-01-01

    1. Methods are described for the extraction and assay of acetyl-CoA and of total acid-soluble and total acid-insoluble CoA derivatives in rat epididymal adipose tissue. 2. The concentration ranges of the CoA derivatives in fat pads incubated in vitro under various conditions were: total acid-soluble CoA, 0·20–0·59mm; total acid-insoluble CoA, 0·08–0·23mm; acetyl-CoA, 0·03–0·14mm. 3. An investigation was made of some postulated mechanisms of control of fatty acid and triglyceride synthesis in rat epididymal fat pads incubated in vitro. The concentrations of intermediates of possible regulatory significance were measured at various rates of fatty acid and triglyceride synthesis produced by the addition to the incubation medium (Krebs bicarbonate buffer containing glucose) of insulin, adrenaline, albumin, palmitate or acetate. 4. The whole-tissue concentrations of glucose 6-phosphate, l-glycerol 3-phosphate, citrate, acetyl-CoA, total acid-soluble CoA and total acid-insoluble CoA were assayed after 30 or 60min. incubation. The rates of fatty acid and triglyceride synthesis, calculated from the incorporation of [U-14C]glucose into fatty acids and glyceride glycerol respectively, and the rates of glucose uptake, lactate plus pyruvate output and glycerol output were measured over a 60min. incubation. 5. The rate of triglyceride synthesis could not be correlated with the concentrations of either l-glycerol 3-phosphate or long-chain fatty acyl-CoA (measured as total acid-insoluble CoA). Factor(s) other than the whole-tissue concentrations of these recognized precursors appear to be involved in the determination of the rate of triglyceride synthesis. 6. No relationship was found between the rate of fatty acid synthesis and the whole-tissue concentrations of the intermediates, citrate or acetyl-CoA, or with the two proposed effectors of acetyl-CoA carboxylase, citrate (as activator) or long-chain fatty acyl-CoA (as inhibitor). The control of fatty acid synthesis

  18. Dietary accumulation and quantitative structure-activity relationships for depuration and biotransformation of short (C{sub 10}), medium (C{sub 14}), and long (C{sub 18}) carbon-chain polychlorinated alkanes by juvenile rainbow trout (Oncorhynchus mykiss)

    SciTech Connect

    Fisk, A.T.; Tomy, G.T.; Cymbalisty, C.D.; Muir, D.C.G.

    2000-06-01

    Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to three [{sup 14}C]-polychlorinated alkanes at nominal concentrations of 1.5 and 15 {micro}g/g for 40 d, followed by 160 d of clean food, to measure bioaccumulation parameters and biotransformation. These PCSs are identical in carbon-chain length and chlorine content to industrial chlorinated paraffin products, although their method of synthesis differs from that of chlorinated paraffin products. Half-lives ranged from 26 to 91 d, biomagnification factors ranged from 0.9 to 2.8, and both exhibited increasing trends with increasing carbon-chain length. Data from this work and others on PCAs were used to determine biotransformation rates and to examine quantitative structure-activity relationships for bioaccumulation and biotransformation. Quantitative structure-activity relationships developed for half-life and biomagnification factor showed positive linear relationships with the number of carbon atoms, or chlorine atoms, of total carbon and chlorine atoms, and log K{sub ow}. The PCA biotransformation rates (per day) ranged from -0.00028 to 8.4 and exhibited negative relationships with the number of carbon atoms, of chlorine atoms, of total carbon and chlorine atoms, and log K{sub ow}. Results suggest that PCAs with a total number of carbon and chlorine atoms between 22 and 30 are slowly, or are not, biotransformed in juvenile rainbow trout. Increasing carbon-chain length and chlorine content result in greater bioaccumulation of PCAs by reducing partition-based (i.e., diffusion) and metabolic (i.e., biotransformation) elimination processes. High bioaccumulation potential and low biotransformation rates of medium (C{sub 14--18}) and long (C{sub 18--30}) carbon-chain PCAs and highly chlorinated PCAs indicate that information is needed regarding the environmental concentrations of these PCAs in aquatic food chains.

  19. Triglycerides and Triglyceride-Rich Lipoproteins in the Causal Pathway of Cardiovascular Disease.

    PubMed

    Budoff, Matthew

    2016-07-01

    Epidemiologic and clinical studies suggest that elevated triglyceride levels are a biomarker of cardiovascular (CV) risk. Consistent with these findings, recent genetic evidence from mutational analyses, genome-wide association studies, and Mendelian randomization studies provide robust evidence that triglycerides and triglyceride-rich lipoproteins are in the causal pathway for atherosclerotic CV disease, indicating that they may play a pathogenic role, much like low-density lipoprotein cholesterol (LDL-C). Although statins are the cornerstone of dyslipidemia management, high triglyceride levels may persist in some patients despite statin therapy. Several triglyceride-lowering agents are available, including fibrates, niacin, and omega-3 fatty acids, of which prescription omega-3 fatty acids have the best tolerability and safety profile. In clinical studies, omega-3 fatty acids have been shown to reduce triglyceride levels, but products containing both eicosapentaenoic acid and docosahexaenoic acid may increase LDL-C levels. Icosapent ethyl, a high-purity eicosapentaenoic acid-only product, does not raise LDL-C levels and also reduces triglyceride, non-high-density lipoprotein cholesterol, and triglyceride-rich lipoprotein levels. In conclusion, omega-3 fatty acids are currently being evaluated in large CV outcome studies in statin-treated patients; these studies should help to elucidate the causative role of triglycerides in atherosclerotic CV disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Comparison of the structures of triacylglycerols from native and transgenic medium-chain fatty acid-enriched rape seed oil by liquid chromatography--atmospheric pressure chemical ionization ion-trap mass spectrometry (LC-APCI-ITMS).

    PubMed

    Beermann, Christopher; Winterling, Nadine; Green, Angelika; Möbius, Michael; Schmitt, Joachim J; Boehm, Günther

    2007-04-01

    The sn position of fatty acids in seed oil lipids affects physiological function in pharmaceutical and dietary applications. In this study the composition of acyl-chain substituents in the sn positions of glycerol backbones in triacylglycerols (TAG) have been compared. TAG from native and transgenic medium-chain fatty acid-enriched rape seed oil were analyzed by reversed-phase high performance liquid chromatography coupled with online atmospheric-pressure chemical ionization ion-trap mass spectrometry. The transformation of summer rape with thioesterase and 3-ketoacyl-[ACP]-synthase genes of Cuphea lanceolata led to increased expression of 1.5% (w/w) caprylic acid (8:0), 6.7% (w/w) capric acid (10:0), 0.9% (w/w) lauric acid (12:0), and 0.2% (w/w) myristic acid (14:0). In contrast, linoleic (18:2n6) and alpha-linolenic acid (18:3n3) levels decreased compared with the original seed oil. The TAG sn position distribution of fatty acids was also modified. The original oil included eleven unique TAG species whereas the transgenic oil contained sixty. Twenty species were common to both oils. The transgenic oil included trioctadecenoyl-glycerol (18:1/18:1/18:1) and trioctadecatrienoyl-glycerol (18:3/18:3/18:3) whereas the native oil included only the latter. The transgenic TAG were dominated by combinations of caprylic, capric, lauric, myrisitic, palmitic (16:0), stearic (18:0), oleic (18:1n9), linoleic, arachidic (20:0), behenic (22:0), and lignoceric acids (24:0), which accounted for 52% of the total fat. In the original TAG palmitic, stearic, oleic, and linoleic acids accounted for 50% of the total fat. Medium-chain triacylglycerols with capric and lauric acids combined with stearic, oleic, linoleic, alpha-linolenic, arachidic, and gondoic acids (20:1n9) accounted for 25% of the transgenic oil. The medium-chain fatty acids were mainly integrated into the sn-1/3 position combined with the essential linoleic and alpha-linolenic acids at the sn-2 position. Eight species