Sample records for medium range structure

  1. Structural properties of medium-range order in CuNiZr alloy

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Hu, Xuechen; Xie, Quan; Li, Yidan; Ren, Lei

    2017-10-01

    The evolution characteristics of icosahedral clusters during the rapid solidification of Cu50Ni10Zr40 alloy at cooling rate of 1011 K s-1 are investigated based on molecular dynamics simulations. The structural properties of the short-range order and medium-range order of Cu50Ni10Zr40 alloy are analyzed by several structural characterization methods. The results reveal that the icosahedral clusters are the dominant short-range order structure, and that they assemble themselves into medium-range order by interpenetrating connections. The different morphologies of medium-range order are found in the system and include chain, triangle, tetrahedral, and their combination structures. The tetrahedral morphologies of medium-range order have excellent structural stability with decreasing temperature. The Zr atoms are favorable to form longer chains, while the Cu atoms are favorable to form shorter chains in the system. Those chains interlocked with each other to improve the structural stability.

  2. Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass

    DOE PAGES

    Gammer, C.; Escher, B.; Ebner, C.; ...

    2017-03-21

    Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less

  3. Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammer, C.; Escher, B.; Ebner, C.

    Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less

  4. Properties of tetrahedral clusters and medium range order in GaN during rapid solidification

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Li, Yidan; Yao, Zhenzhen; Hu, Xuechen; Xie, Quan

    2017-12-01

    The solidification process of liquid gallium nitride has been studied by molecular dynamics simulation using the Stillinger-Weber potential at cooling rate of 10 K/ps. The structural properties of gallium nitride during the rapid cooling process were investigated in detail by the radial distribution functions, Voronoi polyhedron index and the visualization technology. The amorphous structures were formed with many medium range order structures at 200 K. The <4 0 0 0> polyhedron as the main polyhedron was more stable than other polyhedron in GaN during the quenching process. The cubic and hexahedral medium range order structures were formed by the close link between <4 0 0 0> polyhedron. The cubic crystal structures grew up through the crystalline surface by a layer-by-layer method to become more stable structures during the quenching process.

  5. CO.sub.2 laser

    DOEpatents

    Rink, John P.

    1977-01-01

    The disclosure relates to a pulsed gas laser comprising an optical resonant cavity, a CO.sub.2 lasing medium, structure for containing the CO.sub.2 lasing medium within the optical cavity and a device for causing a population inversion in the lasing medium, with a novel improvement comprising structure for causing a laser pulse comprising a wavelength in the near 14 .mu.m and near 16 .mu.m range. The structure for cooling the CO.sub.2 lasing medium to less than about -40.degree. C as well is a structure for pumping the maximum inversion of CO.sub.2 molecules within the lasing medium by minimizing the population in the 010 level.

  6. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    DOE PAGES

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; ...

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less

  7. Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra.

    PubMed

    Giacomazzi, Luigi; Umari, P; Pasquarello, Alfredo

    2005-08-12

    We analyze the principal vibrational spectra of vitreous GeO(2) and derive therefrom structural properties referring to length scales beyond the basic tetrahedral unit. We generate a model structure that yields a neutron structure factor in accord with experiment. The inelastic-neutron, the infrared, and the Raman spectra, calculated within a density-functional approach, also agree with respective experimental spectra. The accord for the Raman spectrum supports a Ge-O-Ge angle distribution centered at 135 degrees. The Raman feature X(2) is found to result from vibrations in three-membered rings, and therefore constitutes a distinctive characteristic of the medium-range structure.

  8. Structural partitioning of complex structures in the medium-frequency range. An application to an automotive vehicle

    NASA Astrophysics Data System (ADS)

    Kassem, M.; Soize, C.; Gagliardini, L.

    2011-02-01

    In a recent work [ Journal of Sound and Vibration 323 (2009) 849-863] the authors presented an energy-density field approach for the vibroacoustic analysis of complex structures in the low and medium frequency ranges. In this approach, a local vibroacoustic energy model as well as a simplification of this model were constructed. In this paper, firstly an extension of the previous theory is performed in order to include the case of general input forces and secondly, a structural partitioning methodology is presented along with a set of tools used for the construction of a partitioning. Finally, an application is presented for an automotive vehicle.

  9. Medium-range, objective predictions of thunderstorm location and severity for aviation

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.; Turner, R. E.

    1981-01-01

    This paper presents a computerized technique for medium-range (12-48h) prediction of both the location and severity of thunderstorms utilizing atmospheric predictions from the National Meteorological Center's limited-area fine-mesh model (LFM). A regional-scale analysis scheme is first used to examine the spatial and temporal distributions of forecasted variables associated with the structure and dynamics of mesoscale systems over an area of approximately 10 to the 6th sq km. The final prediction of thunderstorm location and severity is based upon an objective combination of these regionally analyzed variables. Medium-range thunderstorm predictions are presented for the late afternoon period of April 10, 1979, the day of the Wichita Falls, Texas tornado. Conventional medium-range thunderstorm forecasts, made from observed data, are presented with the case study to demonstrate the possible application of this objective technique in improving 12-48 h thunderstorm forecasts for aviation.

  10. Auroral origin of medium scale gravity waves in neutral composition and temperature

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.

    1979-01-01

    The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smedskjaer, Morten M., E-mail: mos@bio.aau.dk; Bauchy, Mathieu; Mauro, John C.

    The properties of glass are determined not only by temperature, pressure, and composition, but also by their complete thermal and pressure histories. Here, we show that glasses of identical composition produced through thermal annealing and through quenching from elevated pressure can result in samples with identical density and mean interatomic distances, yet different bond angle distributions, medium-range structures, and, thus, macroscopic properties. We demonstrate that hardness is higher when the density increase is obtained through thermal annealing rather than through pressure-quenching. Molecular dynamics simulations reveal that this arises because pressure-quenching has a larger effect on medium-range order, while annealing hasmore » a larger effect on short-range structures (sharper bond angle distribution), which ultimately determine hardness according to bond constraint theory. Our work could open a new avenue towards industrially useful glasses that are identical in terms of composition and density, but with differences in thermodynamic, mechanical, and rheological properties due to unique structural characteristics.« less

  12. Linear solutions to metamaterial volume hologram design using a variational approach.

    PubMed

    Marks, Daniel L; Smith, David R

    2018-04-01

    Multiplex volume holograms are conventionally constructed by the repeated exposure of a photosensitive medium to a sequence of external fields, each field typically being the superposition of a reference wave that reconstructs the hologram and the other being a desired signal wave. Because there are no sources of radiation internal to the hologram, the pattern of material modulation is limited to the solutions to Helmholtz's equation in the medium. If the three-dimensional structure of the medium could be engineered at each point rather than limited to the patterns produced by standing waves, more versatile structures may result that can overcome the typical limitations to hologram dynamic range imposed by sequentially superimposing holograms. Metamaterial structures and other synthetic electromagnetic materials offer the possibility of achieving high medium contrast engineered at the subwavelength scale. By posing the multiplex volume holography problem as a linear medium design problem, we explore the potential improvements that such engineered synthetic media may provide over conventional multiplex volume holograms.

  13. FDTD-based computed terahertz wave propagation in multilayer medium structures

    NASA Astrophysics Data System (ADS)

    Tu, Wan-li; Zhong, Shun-cong; Yao, Hai-zi; Shen, Yao-chun

    2013-08-01

    The terahertz region of the electromagnetic spectrum spans the frequency range of 0.1THz~10THz, which means it sandwiches between the mid-infrared (IR) and the millimeter/ microwave. With the development and commercialization of terahertz pulsed spectroscopy (TPS) and terahertz pulsed imaging (TPI) systems, terahertz technologies have been widely used in the sensing and imaging fields. It allows high quality cross-sectional images from within scattering media to be obtained nondestructively. Characterizing the interaction of terahertz radiation with multilayer medium structures is critical for the development of nondestructive testing technology. Currently, there was much experimental investigation of using TPI for the characterization of terahertz radiation in materials (e.g., pharmaceutical tablet coatings), but there were few theoretical researches on propagation of terahertz radiation in multilayer medium structures. Finite Difference Time Domain (FDTD) algorithm is a proven method for electromagnetic scattering theory, which analyzes continuous electromagnetic problems by employing finite difference and obtains electromagnetic field value at the sampling point to approach the actual continuous solutions. In the present work, we investigated the propagation of terahertz radiation in multilayer medium structures based on FDTD method. The model of multilayer medium structures under the THz frequency plane wave incidence was established, and the reflected radiation properties were recorded and analyzed. The terahertz radiation used was broad-band in the frequency up to 2 THz. A batch of single layer coated pharmaceutical tablets, whose coating thickness in the range of 40~100μm, was computed by FDTD method. We found that the simulation results on pharmaceutical tablet coatings were in good agreement with the experimental results obtained using a commercial system (TPI imaga 2000, TeraView, Cambridge, UK) , demonstrating its usefulness in simulating and analyzing terahertz responses from a multilayered sample.

  14. Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses

    DOE PAGES

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.; ...

    2016-03-05

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr 50Cu 35Al 15 and Zr 50Cu 45Al 5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr 50Cu 35Al 15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, T g, than in Zr 50Cu 45Al 5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr 50Cu 35Al 15more » on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less

  15. Structural changes during a liquid-liquid transition in the deeply undercooled Z r58.5C u15.6N i12.8A l10.3N b2.8 bulk metallic glass forming melt

    NASA Astrophysics Data System (ADS)

    Stolpe, Moritz; Jonas, Isabell; Wei, Shuai; Evenson, Zach; Hembree, William; Yang, Fan; Meyer, Andreas; Busch, Ralf

    2016-01-01

    Using high energy synchrotron x-ray radiation combined with electrostatic levitation, in situ structural analysis of a bulk metallic glass forming liquid is performed from above the liquidus temperature down to the glass transition. The data indicate a liquid-liquid transition (LLT) in the deeply undercooled state at T /Tg˜1.2 which manifests as a maximum in the heat capacity and an abrupt shift in the first peak position of the total structure factor in the absence of a pronounced density change. Analysis of the corresponding real-space data shows that the LLT involves changes in short- and medium-range order. The structural changes on the length scale of medium-range order imply a fragile-strong transition in agreement with experimental viscosity data.

  16. Refraction index sensor based on phase resonances in a subwavelength structure with double period.

    PubMed

    Skigin, Diana C; Lester, Marcelo

    2016-10-01

    In this paper, we numerically demonstrate a refraction index sensor based on phase resonance excitation in a subwavelength-slit structure with a double period. The sensor consists of a metal layer with subwavelength slots arranged in a bi-periodic form, separated from a high refraction index medium. Between the metallic structure and the incident medium, a dielectric waveguide is formed whose refraction index is going to be determined. Variations in the refraction index of the waveguide are detected as shifts in the peaks of transmitted intensity originated by resonant modes supported by the compound metallic structure. At normal incidence, the spectral position of these resonant peaks exhibits a linear or a quadratic dependence with the refraction index, which permits us to obtain the unknown refraction index value with a high precision for a wide range of wavelengths. Since the operating principle of the sensor is due to the morphological resonances of the slits' structure, this device can be scaled to operate in different wavelength ranges while keeping similar characteristics.

  17. Morphology Tuning of Strontium Tungstate Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, S.; George, T.; George, K. C.

    2007-08-22

    Strontium tungstate nanocrystals in two different morphologies are successfully synthesized by controlled precipitation in aqueous and in poly vinyl alcohol (PVA) medium. Structural characterizations are carried out by XRD and SEM. The average particle size calculated for the SrWO4 prepared in the two different solvents ranges 20-24 nm. The SEM pictures show that the surface morphologies of the SrWO4 nanoparticles in aqueous medium resemble mushroom and the SrWO4 nanoparticles in PVA medium resemble cauliflower. Investigations on the room temperature luminescent properties of the strontium tungstate nanoparticles prepared in aqueous and PVA medium shows strong emissions around 425 nm.

  18. GCR Modulation by Small-Scale Features in the Interplanetary Medium

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.; Galametz, M.

    2007-12-01

    In an effort to uncover the properties of structures in the interplanetary medium (IPM) that modulate galactic cosmic rays (GCR) on short time-scales (from hours to days), we study periods of differing conditions in the IPM. We analyze GCR variations from spacecraft both inside and outside the magnetosphere, using the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the observed GCR modulations and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. Our analysis spans time-/size-scale variations ranging from classic Forbush decreases (Fds), to substructure embedded within Fds, to much smaller amplitude and shorter duration variations observed during comparatively benign interplanetary conditions. We compare and contrast the conditions leading to the range of different GCR responses to modulating structures in the IPM.

  19. Impact of medium-range order on the glass transition in liquid Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Entel, P.

    2011-09-01

    We study the thermophysical properties and structure of liquid Ni-Si alloys using molecular dynamics simulations. The liquid Ni-5% and 10%Si alloys crystallize to form the face-centered cubic (Ni) at 900 and 850 K, respectively, and the glass transitions take place in Ni-20% and 25%Si alloys at about 700 K. The temperature-dependent self-diffusion coefficients and viscosities exhibit more pronounced non-Arrhenius behavior with the increase of Si content before phase transitions, indicating the enhanced glass-forming ability. These appearances of thermodynamic properties and phase transitions are found to closely relate to the medium-range order clusters with the defective face-centered cubic structure characterized by both local translational and orientational order. This locally ordered structure tends to be destroyed by the addition of more Si atoms, resulting in a delay of nucleation and even glass transition instead.

  20. Numerical Analysis of Stochastic Dynamical Systems in the Medium-Frequency Range

    DTIC Science & Technology

    2003-02-01

    frequency vibration analysis such as the statistical energy analysis (SEA), the traditional modal analysis (well-suited for high and low: frequency...that the first few structural normal modes primarily constitute the total response. In the higher frequency range, the statistical energy analysis (SEA

  1. Volume and structural relaxation in compressed sodium borate glass.

    PubMed

    Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M

    2016-11-21

    The structure and properties of glass can be modified through compression near the glass transition temperature (T g ), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near T g at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its T g at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using 11 B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B III ) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B IV ), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near T g , but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B III ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.

  2. Turbodrills and innovative PDC bits economically drilled hard formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, R.C.; Massey, K.

    1994-03-28

    The use of turbodrills and polycrystalline diamond compact (PDC) bits with an innovative, tracking cutting structure has improved drilling economics in medium and hard formations in the Gulf of Mexico. Field results have confirmed that turbodrilling with trackset PDC bits reduced drilling costs, compared to offset wells. The combination of turbodrills and trackset bits has been used successfully in a broad range of applications and with various drilling parameters. Formations ranging from medium shales to hard, abrasive sands have been successfully and economically drilled. The tools have been used in both water-based and oil-based muds. Additionally, the turbo-drill and tracksetmore » PDC bit combination has been stable on directional drilling applications. The locking effect of the cutting structure helps keep the bit on course.« less

  3. LASER METHODS IN BIOLOGY: Optical anisotropy of fibrous biological tissues: analysis of the influence of structural properties

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Sinichkin, Yu P.; Ushakova, O. V.

    2007-08-01

    The results of theoretical analysis of the optical anisotropy of multiply scattering fibrillar biological tissues based on the model of an effective anisotropic medium are compared with the experimental in vivo birefringence data for the rat derma obtained earlier in spectral polarisation measurements of rat skin samples in the visible region. The disordered system of parallel dielectric cylinders embedded into an isotropic dielectric medium was considered as a model medium. Simulations were performed taking into account the influence of a partial mutual disordering of the bundles of collagen and elastin fibres in derma on birefringence in samples. The theoretical optical anisotropy averaged over the spectral interval 550-650 nm for the model medium with parameters corresponding to the structural parameters of derma is in good agreement with the results of spectral polarisation measurements of skin samples in the corresponding wavelength range.

  4. Medium-range Performance of the Global NWP Model

    NASA Astrophysics Data System (ADS)

    Kim, J.; Jang, T.; Kim, J.; Kim, Y.

    2017-12-01

    The medium-range performance of the global numerical weather prediction (NWP) model in the Korea Meteorological Administration (KMA) is investigated. The performance is based on the prediction of the extratropical circulation. The mean square error is expressed by sum of spatial variance of discrepancy between forecasts and observations and the square of the mean error (ME). Thus, it is important to investigate the ME effect in order to understand the model performance. The ME is expressed by the subtraction of an anomaly from forecast difference against the real climatology. It is found that the global model suffers from a severe systematic ME in medium-range forecasts. The systematic ME is dominant in the entire troposphere in all months. Such ME can explain at most 25% of root mean square error. We also compare the extratropical ME distribution with that from other NWP centers. NWP models exhibit similar spatial ME structure each other. It is found that the spatial ME pattern is highly correlated to that of an anomaly, implying that the ME varies with seasons. For example, the correlation coefficient between ME and anomaly ranges from -0.51 to -0.85 by months. The pattern of the extratropical circulation also has a high correlation to an anomaly. The global model has trouble in faithfully simulating extratropical cyclones and blockings in the medium-range forecast. In particular, the model has a hard to simulate an anomalous event in medium-range forecasts. If we choose an anomalous period for a test-bed experiment, we will suffer from a large error due to an anomaly.

  5. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. T., E-mail: li48@llnl.gov; Bayu Aji, L. B.; Heo, T. W.

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar{sup +} ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  6. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. T.; Bayu Aji, L. B.; Heo, T. W.

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  7. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE PAGES

    Li, T. T.; Bayu Aji, L. B.; Heo, T. W.; ...

    2016-06-03

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  8. Laser vibration sensing at Fraunhofer IOSB: review and applications

    NASA Astrophysics Data System (ADS)

    Lutzmann, Peter; Göhler, Benjamin; Hill, Chris A.; van Putten, Frank

    2017-03-01

    Laser vibrometry based on coherent detection allows noncontact measurements of small-amplitude vibration characteristics of objects. This technique, commonly using the Doppler effect, offers high potential for short-range civil applications and for medium- or long-range applications in defense and security. Most commercially available laser Doppler vibrometers are for short ranges (up to a few tens of meters) and use a single beam from a low-power HeNe laser source (λ=633 nm). Medium- or long-range applications need higher laser output power, and thus, appropriate vibrometers typically operate at 1.5, 2, or 10.6 μm to meet the laser safety regulations. Spatially resolved vibrational information can be obtained from an object by using scanning laser vibrometers. To reduce measuring time and to measure transient object movements and vibrational mode structures of objects, several approaches to multibeam laser Doppler vibrometry have been developed, and some of them are already commercially available for short ranges. We focus on applications in the field of defense and security, such as target classification and identification, including camouflaged or partly concealed targets, and the detection of buried land mines. Examples of civil medium-range applications are also given.

  9. Energy-density field approach for low- and medium-frequency vibroacoustic analysis of complex structures using a statistical computational model

    NASA Astrophysics Data System (ADS)

    Kassem, M.; Soize, C.; Gagliardini, L.

    2009-06-01

    In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic model is proposed.

  10. Photonic band gap effect and structural color from silver nanoparticle gelatin emulsion

    NASA Astrophysics Data System (ADS)

    Kok, Mang Hin; Ma, Rui; Lee, Jeffrey Chi Wai; Tam, Wing Yim; Chan, C. T.; Sheng, Ping; Cheah, Kok Wai

    2005-10-01

    We have fabricated planar structures of silver nanoparticles in monochromatic gelatin emulsion with a continuous spacing ranging from 0.15-0.40 micron using a two-beam interference of a single laser source. Our planar holograms display a colorful “rainbow” pattern and photonic bandgaps covering the visible and IR ranges. We model the planar silver nanoparticle-gelatin composite system using an effective medium approach and good agreement is obtained between theory and experiment.

  11. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    NASA Astrophysics Data System (ADS)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  12. Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging

    NASA Astrophysics Data System (ADS)

    Giordano, V. M.; Ruta, B.

    2016-01-01

    Understanding and controlling physical aging, that is, the spontaneous temporal evolution of out-of-equilibrium systems, represents one of the greatest tasks in material science. Recent studies have revealed the existence of a complex atomic motion in metallic glasses, with different aging regimes in contrast with the typical continuous aging observed in macroscopic quantities. By combining dynamical and structural synchrotron techniques, here for the first time we directly connect previously identified microscopic structural mechanisms with the peculiar atomic motion, providing a broader unique view of their complexity. We show that the atomic scale is dominated by the interplay between two processes: rearrangements releasing residual stresses related to a cascade mechanism of relaxation, and medium range ordering processes, which do not affect the local density, likely due to localized relaxations of liquid-like regions. As temperature increases, a surprising additional secondary relaxation process sets in, together with a faster medium range ordering, likely precursors of crystallization.

  13. Evolution of short- and medium-range order in the melt-quenching amorphization of Ge 2 Sb 2 Te 5

    DOE PAGES

    Qiao, Chong; Guo, Y. R.; Dong, F.; ...

    2018-01-01

    Five structures (a tetrahedron and 3-, 4-, 5- and 6-fold octahedrons) are shown in the upper panel of the figure. Figures in the lower panel show the fractions of the five structures in Ge- and Sb-centered clusters with temperature.

  14. Short- and medium-range structure of multicomponent bioactive glasses and melts: An assessment of the performances of shell-model and rigid-ion potentials.

    PubMed

    Tilocca, Antonio

    2008-08-28

    Classical and ab initio molecular dynamics (MD) simulations have been carried out to investigate the effect of a different treatment of interatomic forces in modeling the structural properties of multicomponent glasses and melts. The simulated system is a soda-lime phosphosilicate composition with bioactive properties. Because the bioactivity of these materials depends on their medium-range structural features, such as the network connectivity and the Q(n) distribution (where Q(n) is a tetrahedral species bonded to n bridging oxygens) of silicon and phosphorus network formers, it is essential to assess whether, and up to what extent, classical potentials can reproduce these properties. The results indicate that the inclusion of the oxide ion polarization through a shell-model (SM) approach provides a more accurate representation of the medium-range structure compared to rigid-ion (RI) potentials. Insight into the causes of these improvements has been obtained by comparing the melt-and-quench transformation of a small sample of the same system, modeled using Car-Parrinello MD (CPMD), to the classical MD runs with SM and RI potentials. Both classical potentials show some limitations in reproducing the highly distorted structure of the melt denoted by the CPMD runs; however, the inclusion of polarization in the SM potential results in a better and qualitatively correct dynamical balance between the interconversion of Q(n) species during the cooling of the melt. This effect seems to reflect the slower decay of the fraction of structural defects during the cooling with the SM potential. Because these transient defects have a central role in mediating the Q(n) transformations, as previously proposed and confirmed by the current simulations, their presence in the melt is essential to produce an accurate final distribution of Q(n) species in the glass.

  15. Stability of Medium-Bridged Twisted Amides in Aqueous Solutions

    PubMed Central

    Szostak, Michal; Yao, Lei; Aubé, Jeffrey

    2012-01-01

    “Twisted” amides containing non-standard dihedral angles are typically hypersensitive to hydrolysis, a feature that has stringently limited their utility in water. We have synthesized a series of bridged lactams that contain a twisted amide linkage but which exhibit enhanced stability in aqueous environments. Many of these compounds were extracted unchanged from aqueous mixtures ranging from the strongly basic to the strongly acidic. NMR experiments showed that tricyclic lactams undergo reversible hydrolysis at extreme pH ranges, but that a number of compounds in this structure class are indefinitely stable under physiologically relevant pH conditions; one bicyclic example was additionally water-soluble. We examined the effect of structure on the reversibility of amide bond hydrolysis, which we attributed to the transannular nature of the amino acid analogs. These data suggest that medium-bridged lactams of these types should provide useful platforms for studying the behavior of twisted amides in aqueous systems. PMID:19178141

  16. Mathematical model of the heat transfer process taking into account the consequences of nonlocality in structurally sensitive materials

    NASA Astrophysics Data System (ADS)

    Kuvyrkin, G. N.; Savelyeva, I. Y.; Kuvshynnikova, D. A.

    2018-04-01

    Creation of new materials based on nanotechnology is an important direction of modern materials science development. Materials obtained using nanotechnology can possess unique physical-mechanical and thermophysical properties, allowing their effective use in structures exposed to high-intensity thermomechanical effects. An important step in creation and use of new materials is the construction of mathematical models to describe the behavior of these materials in a wide range of changes under external effects. The model of heat conduction of structural-sensitive materials is considered with regard to the medium nonlocality effects. The relations of the mathematical model include an integral term describing the spatial nonlocality of the medium. A difference scheme, which makes it possible to obtain a numerical solution of the problem of nonstationary heat conduction with regard to the influence of the medium nonlocality on space, has been developed. The influence of the model parameters on the temperature distributions is analyzed.

  17. Biobased Fat Mimicking Molecular Structuring Agents for Medium-Chain Triglycerides (MCTs) and Other Edible Oils.

    PubMed

    Silverman, Julian R; John, George

    2015-12-09

    To develop sustainable value-added materials from biomass, novel small-molecule sugar ester gelators were synthesized using biocatalysis. The facile one-step regiospecific coupling of the pro-antioxidant raspberry ketone glucoside and unsaturated or saturated long- and medium-chain fatty acids provides a simple approach to tailor the structure and self-assembly of the amphiphilic product. These low molecular weight molecules demonstrated the ability to self-assemble in a variety of solvents and exhibited supergelation, with a minimum gelation concentration of 0.25 wt %, in numerous organic solvents, as well as in a range of natural edible oils, specifically a relatively unstudied group of liquids: natural medium-chain triglyceride oils, notably coconut oil. Spectroscopic analysis details the gelator structure as well as the intermolecular noncovalent interactions, which allow for gelation. X-ray diffraction studies indicate fatty acid chain packing of gelators is similar to that of natural fats, signifying the crystalline nature may lead to desirable textural properties and mouthfeel.

  18. Reducing the dimensions of acoustic devices using anti-acoustic-null media

    NASA Astrophysics Data System (ADS)

    Li, Borui; Sun, Fei; He, Sailing

    2018-02-01

    An anti-acoustic-null medium (anti-ANM), a special homogeneous medium with anisotropic mass density, is designed by transformation acoustics (TA). Anti-ANM can greatly compress acoustic space along the direction of its main axis, where the size compression ratio is extremely large. This special feature can be utilized to reduce the geometric dimensions of classic acoustic devices. For example, the height of a parabolic acoustic reflector can be greatly reduced. We also design a brass-air structure on the basis of the effective medium theory to materialize the anti-ANM in a broadband frequency range. Numerical simulations verify the performance of the proposed anti-ANM.

  19. Controlling Propagation Properties of Surface Plasmon Polariton at Terahertz Frequency

    NASA Astrophysics Data System (ADS)

    Gupta, Barun

    Despite great scientific exploration since the 1900s, the terahertz range is one of the least explored regions of electromagnetic spectrum today. In the field of plasmonics, texturing and patterning allows for control over electromagnetic waves bound to the interface between a metal and the adjacent dielectric medium. The surface plasmon-polaritons (SPPs) display unique dispersion characteristics that depend upon the plasma frequency of the medium. In the long wavelength regime, where metals are highly conductive, such texturing can create an effective medium that can be characterized by an effective plasma frequency that is determined by the geometrical parameters of the surface structure. The terahertz (THz) spectral range offers unique opportunities to utilize such materials. This thesis describes a number of terahertz plasmonic devices, both passive and active, fabricated using different techniques. As an example, inkjet printing is exploited for fabricating two-dimensional plasmonic devices. In this case, we demonstrated the terahertz plasmonic structures in which the conductivity of the metallic film is varied spatially in order to further control the plasmonic response. Using a commercially available inkjet printers, in which one cartridge is filled with conductive silver ink and a second cartridge is filled with resistive carbon ink, computer generated drawings of plasmonic structures are printed in which the individual printed dots can have differing amounts of the two inks, thereby creating a spatial variation in the conductivity. The inkjet printing technique is limited to the two-dimensional structurers. In order to expand the capability of printing complex terahertz devices, which cannot otherwise be fabricated using standard fabricating techniques, we employed 3D printing techniques. 3D printing techniques using polymers to print out the complex structures. In the realm of active plasmonic devices, a wide range of innovative approaches have been developed utilizing a variety of materials. We discuss the use of SMAs for terahertz (THz) plasmonics that allows for switching between different physical geometries corresponding to different electromagnetic responses.

  20. Galactic neutral hydrogen and the magnetic ISM foreground

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2018-05-01

    The interstellar medium is suffused with magnetic fields, which inform the shape of structures in the diffuse gas. Recent high-dynamic range observations of Galactic neutral hydrogen, combined with novel data analysis techniques, have revealed a deep link between the morphology of neutral gas and the ambient magnetic field. At the same time, an observational revolution is underway in low-frequency radio polarimetry, driven in part by the need to characterize foregrounds to the cosmological 21-cm signal. A new generation of experiments, capable of high angular and Faraday depth resolution, are revealing complex filamentary structures in diffuse polarization. The relationship between filamentary structures observed in radio-polarimetric data and those observed in atomic hydrogen is not yet well understood. Multiwavelength observations will enable new insights into the magnetic interstellar medium across phases.

  1. Theoretical aspects of photonic band gap in 1D nano structure of LN: MgLN periodic layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisodia, Namita, E-mail: namitasisodiya@gmail.com

    2015-06-24

    By using the transfer matrix method, we have analyzed the photonic band gap properties in a periodic layer of LN:MgLN medium. The Width of alternate layers of LN and MgLN is in the range of hundred nanometers. The birefringent and ferroelectric properties of the medium (i.e ordinary, extraordinary refractive indices and electric dipole moment) is given due considerations in the formulation of photonic band gap. Effect of electronic transition dipole moment of the medium on photonic band gap is also taken into account. We find that photonic band gap can be modified by the variation in the ratio of themore » width of two medium. We explain our findings by obtaining numerical values and the effect on the photonic band gap due to variation in the ratio of alternate medium is shown graphically.« less

  2. Low-carbon martensitic steels. Alloying and properties

    NASA Astrophysics Data System (ADS)

    Kleiner, L. M.; Shatsov, A. A.; Larinin, D. M.

    2011-03-01

    Requirements on the structure of a steel with structural strength and a set of characteristics higher than those of medium-carbon steels with a structure of tempered sorbite are formulated. Principles for choosing compositions for process-adaptable low-carbon martensitic steels are presented. The combination of carbon and alloying elements providing high stability of austenite in the ranges of normal and intermediate transformations is determined, which makes it possible to obtain lath martensite in slow cooling.

  3. Medium-high frequency FBG accelerometer with integrative matrix structure.

    PubMed

    Dai, Yutang; Yin, Guanglin; Liu, Bin; Xu, Gang; Karanja, Joseph Muna

    2015-04-10

    To meet the requirements for medium-high frequency vibration monitoring, a new type fiber Bragg grating (FBG) accelerometer with an integrative matrix structure is proposed. Two symmetrical flexible gemels are used as elastic elements, which drive respective inertial mass moving reversely when exciting vibration exists, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, by which the influence of the structural parameters on the sensitivity and eigenfrequency is discussed. Sensitivity higher than 200  pm/g and an eigenfrequency larger than 3000 Hz can be realized separately, but both cannot be achieved simultaneously. Aiming for a broader measuring frequency range, a prototype accelerometer with an eigenfrequency near 3000 Hz is designed, and results from a shake table test are also demonstrated.

  4. Preferential binding effects on protein structure and dynamics revealed by coarse-grained Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Jacobs, D. J.; Farmer, B. L.

    2017-05-01

    The effect of preferential binding of solute molecules within an aqueous solution on the structure and dynamics of the histone H3.1 protein is examined by a coarse-grained Monte Carlo simulation. The knowledge-based residue-residue and hydropathy-index-based residue-solvent interactions are used as input to analyze a number of local and global physical quantities as a function of the residue-solvent interaction strength (f). Results from simulations that treat the aqueous solution as a homogeneous effective solvent medium are compared to when positional fluctuations of the solute molecules are explicitly considered. While the radius of gyration (Rg) of the protein exhibits a non-monotonic dependence on solvent interaction over a wide range of f within an effective medium, an abrupt collapse in Rg occurs in a narrow range of f when solute molecules rapidly bind to a preferential set of sites on the protein. The structure factor S(q) of the protein with wave vector (q) becomes oscillatory in the collapsed state, which reflects segmental correlations caused by spatial fluctuations in solute-protein binding. Spatial fluctuations in solute binding also modify the effective dimension (D) of the protein in fibrous (D ˜ 1.3), random-coil (D ˜ 1.75), and globular (D ˜ 3) conformational ensembles as the interaction strength increases, which differ from an effective medium with respect to the magnitude of D and the length scale.

  5. Medium range order in aluminum-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Yi, Feng

    2011-12-01

    Medium range order (MRO) is the structure order existing between the short range order and long range order in amorphous materials. Fluctuation electron microscopy (FEM) is an effective method to quantify MRO. The FEM signal depends on several effects. In this thesis, I will show how the probe coherence, sample thickness and energy filter affect the FEM signal. We have found that microalloying in Al-based glass has dramatic effect on the primary crystallization temperature and nanocrystal density after annealing treatment. FEM alone cannot uncover the details of MRO in these alloys. Therefore, I resort to modeling to solve the relationship between the variance signal and MRO structure. I improved Stratton and Voyles's analytical model. I also did computer simulation. I explored the effects of thermal disorder and hydrostatic strain on the variance. The extracted size d and volume fraction phi in Al88Y7Fe5, Al88Y6Fe 5Cu1 and Al87Y7Fe5Cu 1 as-spun samples reveals the relationship between MRO in as-quenched sample and thermal behaviors in these alloys. I also did FEM experiments in relaxed Al88Y7Fe 5 samples at various annealing times. MRO structure in these samples does not change. FEM was also done on Al87Y7Fe5Cu 1 to check MRO variation during transient nucleation period. The extracted (d, phi) based on combination of experimental data and simulation shows how MRO changes during this period.

  6. Grain Refinement by Authigenic Inoculation Inherited from the Medium-Range Order Structure of Ni-Cr-W Superalloy

    NASA Astrophysics Data System (ADS)

    Gao, Zhongtang; Hu, Rui; Guo, Wei; Zhang, Chuanwei

    2018-04-01

    The combination of liquidus casting and thermal control solidification furnace was applied to obtain a fine-grained ingot. A rapid quenching method and x-ray diffraction measurement were used to investigate the effect of authigenic inoculation on grain refinement. The structure factor S(Q) of liquid Ni-Cr-W superalloy at 1400 °C (Liquidus temperature) and bright-field image of the microstructures quenched from 1400 °C have been measured by the high-temperature x-ray diffractometer and the transmission electron microscopy (TEM), respectively. The results show that a pre-peak exists on a S(Q) curve at the liquidus temperature. The clusters of atom in rapidly quenched microstructures obtained by isothermal heat treatment at 1400 °C were studied using TEM. Meanwhile, the effect of isothermal different temperatures on rapidly quenched microstructures was studied. The results also show that there are only the globular, equiaxed grains distributed in the solidification structure. These particles are inherited from the medium-range order structure, which is beneficial for grain refinement. The normalized work-hardening rate-strain curve indicates the work-hardening rate of fine grain is higher than that of conventional grain at the same temperature and the same deformation.

  7. Grain Refinement by Authigenic Inoculation Inherited from the Medium-Range Order Structure of Ni-Cr-W Superalloy

    NASA Astrophysics Data System (ADS)

    Gao, Zhongtang; Hu, Rui; Guo, Wei; Zhang, Chuanwei

    2018-05-01

    The combination of liquidus casting and thermal control solidification furnace was applied to obtain a fine-grained ingot. A rapid quenching method and x-ray diffraction measurement were used to investigate the effect of authigenic inoculation on grain refinement. The structure factor S( Q) of liquid Ni -Cr-W superalloy at 1400 °C (Liquidus temperature) and bright-field image of the microstructures quenched from 1400 °C have been measured by the high-temperature x-ray diffractometer and the transmission electron microscopy (TEM), respectively. The results show that a pre-peak exists on a S( Q) curve at the liquidus temperature. The clusters of atom in rapidly quenched microstructures obtained by isothermal heat treatment at 1400 °C were studied using TEM. Meanwhile, the effect of isothermal different temperatures on rapidly quenched microstructures was studied. The results also show that there are only the globular, equiaxed grains distributed in the solidification structure. These particles are inherited from the medium-range order structure, which is beneficial for grain refinement. The normalized work-hardening rate-strain curve indicates the work-hardening rate of fine grain is higher than that of conventional grain at the same temperature and the same deformation.

  8. Order-disorder effects in structure and color relation of photonic-crystal-type nanostructures in butterfly wing scales.

    PubMed

    Márk, Géza I; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P

    2009-11-01

    In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.

  9. Order-disorder effects in structure and color relation of photonic-crystal-type nanostructures in butterfly wing scales

    NASA Astrophysics Data System (ADS)

    Márk, Géza I.; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P.

    2009-11-01

    In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.

  10. A novel inert crystal delivery medium for serial femtosecond crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, Chelsie E.; Basu, Shibom; James, Daniel

    Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less

  11. A novel inert crystal delivery medium for serial femtosecond crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, Chelsie E.; Basu, Shibom; James, Daniel

    Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5Å resolution using 300µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less

  12. A novel inert crystal delivery medium for serial femtosecond crystallography

    DOE PAGES

    Conrad, Chelsie E.; Basu, Shibom; James, Daniel; ...

    2015-06-30

    Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less

  13. Wideband Low-Reflection Inhomogeneous Dielectric Structures

    NASA Astrophysics Data System (ADS)

    Denisova, N. A.; Rezvov, A. V.

    2017-08-01

    We consider reflection of electromagnetic waves from two-layer dielectric films with finite thickness, whose refractive indices vary in the direction of wave propagation, which is perpendicular to the substrate boundary. The profiles of the refractive indices of the structures having low reflection coefficients in a wide frequency range are found. The obtained results are based on exact analytical solutions of the Helmholtz equation for one type of the layered inhomogeneous dielectric medium. The possibility of creating new low-reflection wideband inhomogeneous dielectric structures is demonstrated.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahart, Muhtar; Aihaiti, Dilare; Hemley, Russell J.

    The pressure dependence of the Boson peak (BP) of glycerol, including its behavior across the liquid-glass transition, has been studied under pressure using Raman scattering. A significant increase of the BP frequency was observed with pressure up to 11 GPa at room temperature. The pressure dependence of BP frequency ν BP is proportional to (1+P/P 0) 1/3, where P and P 0 are the pressure and a constant, respectively, the spectra are consistent with a soft potential model. The characteristic length of medium range order is close in size to a cyclic trimer of glycerol molecules, which is predicted asmore » the medium range order of a BP vibration using molecular dynamics simulations. The pressure dependence of a characteristic length of medium range order is nearly constant. The pressure induced structural changes in glycerol can be understood in terms of the shrinkage of voids with cyclic trimers remaining up to at least 11 GPa. Lastly, the pressure dependence of intermolecular O-H stretching mode indicates that the intermolecular hydrogen bond distance gradually decreases below the glass transition pressure of ~5 GPa, while it becomes nearly constant in the glassy state indicating the disappearance of the free volume in the dense glass.« less

  15. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.

    2014-11-01

    Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed C u64.5Z r35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) and Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. By mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.

  16. Measurement and modeling of short and medium range order in amorphous Ta 2O 5 thin films

    DOE PAGES

    Shyam, Badri; Stone, Kevin H.; Bassiri, Riccardo; ...

    2016-08-26

    Here, amorphous films and coatings are rapidly growing in importance. Yet, there is a dearth of high-quality structural data on sub-micron films. Not understanding how these materials assemble at atomic scale limits fundamental insights needed to improve their performance. Here, we use grazing-incidence x-ray total scattering measurements to examine the atomic structure of the top 50–100 nm of Ta 2O 5 films; mirror coatings that show high promise to significantly improve the sensitivity of the next generation of gravitational-wave detectors. Our measurements show noticeable changes well into medium range, not only between crystalline and amorphous, but also between as-deposited, annealedmore » and doped amorphous films. It is a further challenge to quickly translate the structural information into insights into mechanisms of packing and disorder. Here, we illustrate a modeling approach that allows translation of observed structural features to a physically intuitive packing of a primary structural unit based on a kinked Ta-O-Ta backbone. Our modeling illustrates how Ta-O-Ta units link to form longer 1D chains and even 2D ribbons, and how doping and annealing influences formation of 2D order. We also find that all the amorphousTa 2O 5 films studied in here are not just poorly crystalline but appear to lack true 3D order.« less

  17. Molecular dynamics study about the effect of substrate temperature on a-Si:H structure

    NASA Astrophysics Data System (ADS)

    Luo, Yaorong; Gong, Hongyong; Zhou, Naigen; Huang, Haibin; Zhou, Lang

    2018-01-01

    Molecular dynamics simulation of the microstructure of hydrogenated amorphous silicon (a-Si:H) thin film with different substrate temperatures has been performed based on the Tersoff potential. The results showed that: the silicon thin film maintained amorphous structure in the substrate temperature range from 200 to 1000 K; high substrate temperature could smooth the surface. The first neighbour Voronoi polyhedron was dominated by the tetrahedron. When the substrate temperature increased, the content of tetrahedrons increased due to the transition from pentahedrons and hexahedrons to tetrahedrons. The change of the second neighbour Voronoi polyhedron could be classified into two cases: one case with low medium coordination number decreased as temperature increased, while the other one with high medium coordination number showed an opposite change tendency. It indicated that the local paracrystalline structure arrangement of the second neighbour atoms had been enhanced as substrate temperature rose.

  18. Nanometer scale atomic structure of zirconium based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo

    We have studied the nanometer scale structure of bulk metallic glass (BMG) using fluctuation electron microscopy (FEM). The nanometer scale medium range order (MRO) in BMG is of significant interest because of its possible relationship to the properties, but the experimental study of the MRO is difficult because conventional diffraction techniques are not sensitive to the MRO scale. FEM is a quantitative transmission electron microscopy technique which measures the nanoscale structural fluctuation associated with MRO in amorphous materials, and provides information about the size, distribution, and internal structure of MRO. In this work, we developed an improved method for FEM using energy-filtered STEM nanodiffraction with highly coherent probes with size up to 11nm in a state-of-the-art Cs- corrected STEM. We also developed an effective way to eliminate the effect of sample thickness variation to the FEM data by using Z-contrast images as references. To study the detailed structure of MRO, we developed a hybrid reverse Monte Carlo (H-RMC) simulation which combines an empirical atomic potential and the FEM data. H-RMC generated model structures that match the experimental data at short and medium range. In addition, the subtle rotational symmetries in the FEM nanodiffraction patterns were analyzed by angular correlation function to reveal more details of the internal structure of MRO. Our experiments and simulations show that Zr-based BMG contains pseudo-planar, crystal-like MRO as well as icosahedral clusters in its nanoscale structure. We found that some icosahedral clusters may be connected, and that structural relaxation by annealing increases the population of icosahedral clusters.

  19. A lower pH value benefits regeneration of Trichosanthes kirilowii by somatic embryogenesis, involving rhizoid tubers (RTBs), a novel structure.

    PubMed

    Xu, Ke-dong; Chang, Yun-xia; Zhang, Ju; Wang, Pei-long; Wu, Jian-xin; Li, Yan-yan; Wang, Xiao-wen; Wang, Wei; Liu, Kun; Zhang, Yi; Yu, De-shui; Liao, Li-bing; Li, Yi; Ma, Shu-ya; Tan, Guang-xuan; Li, Cheng-wei

    2015-03-06

    A new approach was established for the regeneration of Trichosanthes kirilowii from root, stem, and leaf explants by somatic embryogenesis (SE), involving a previously unreported SE structure, rhizoid tubers (RTBs). During SE, special rhizoids were first induced from root, stem, and leaf explants with average rhizoid numbers of 62.33, 40.17, and 11.53 per explant, respectively, on Murashige and Skoog (MS) medium (pH 4.0) supplemented with 1.0 mg/L 1-naphthaleneacetic acid (NAA) under dark conditions. Further, one RTB was formed from each of the rhizoids on MS medium (pH 4.0) supplemented with 20 mg/L thidiazuron (TDZ) under light conditions. In the suitable range (pH 4.0-9.0), a lower pH value increased the induction of rhizoids and RTBs. Approximately 37.77, 33.47, and 31.07% of in vivo RTBs from root, stem, and leaf explants, respectively, spontaneously developed into multiple plantlets on the same MS medium (supplemented with 20 mg/L TDZ) for induction of RTBs, whereas >95.00% of in vitro RTBs from each kind of explant developed into multiple plantlets on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine (BAP). Morphological and histological analyses revealed that RTB is a novel type of SE structure that develops from the cortex cells of rhizoids.

  20. A Lower pH Value Benefits Regeneration of Trichosanthes kirilowii by Somatic Embryogenesis, Involving Rhizoid Tubers (RTBs), a Novel Structure

    PubMed Central

    Xu, Ke-dong; Chang, Yun-xia; Zhang, Ju; Wang, Pei-long; Wu, Jian-xin; Li, Yan-yan; Wang, Xiao-wen; Wang, Wei; Liu, Kun; Zhang, Yi; Yu, De-shui; Liao, Li-bing; Li, Yi; Ma, Shu-ya; Tan, Guang-xuan; Li, Cheng-wei

    2015-01-01

    A new approach was established for the regeneration of Trichosanthes kirilowii from root, stem, and leaf explants by somatic embryogenesis (SE), involving a previously unreported SE structure, rhizoid tubers (RTBs). During SE, special rhizoids were first induced from root, stem, and leaf explants with average rhizoid numbers of 62.33, 40.17, and 11.53 per explant, respectively, on Murashige and Skoog (MS) medium (pH 4.0) supplemented with 1.0 mg/L 1-naphthaleneacetic acid (NAA) under dark conditions. Further, one RTB was formed from each of the rhizoids on MS medium (pH 4.0) supplemented with 20 mg/L thidiazuron (TDZ) under light conditions. In the suitable range (pH 4.0–9.0), a lower pH value increased the induction of rhizoids and RTBs. Approximately 37.77, 33.47, and 31.07% of in vivo RTBs from root, stem, and leaf explants, respectively, spontaneously developed into multiple plantlets on the same MS medium (supplemented with 20 mg/L TDZ) for induction of RTBs, whereas >95.00% of in vitro RTBs from each kind of explant developed into multiple plantlets on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine (BAP). Morphological and histological analyses revealed that RTB is a novel type of SE structure that develops from the cortex cells of rhizoids. PMID:25744384

  1. New fluorescent symmetrically substituted perylene-3,4,9,10-dianhydride-azohybrid dyes: Synthesis and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Saeed, Aamer; Shabir, Ghulam

    2014-12-01

    Five phenolic azo-dyes (3a-e) were synthesized by diazo coupling of the suitably substituted anilines (1a-e) with phenol at low temperature in alkaline medium. The resulting dyes have low solubility in aqueous medium due to lack of carboxylic or sulfonic solubilizing functionalities. The hybridization of perylene dianhydride with phenolic azo-dyes was achieved by the nucleophilic aromatic substitution (SNAr) reaction of perylene-3,4,9,10-dianhydride 4 with phenolic azo-dyes 3a-e in basic medium. The hybrid dyes exhibit absorption maxima λmax in the range 440-460 nm in aqueous medium due to presence of azo linkage and highly conjugated system of π bonds. Fluorescence spectra of these dyes in water show sharp emission peaks with small band widths. The structures of perylene-azo dyes were confirmed by FTIR and NMR spectroscopy.

  2. The influence of magnetic field on the cold neutral medium mass fraction and its alignment with density structures

    NASA Astrophysics Data System (ADS)

    Villagran, M. A.; Gazol, A.

    2018-06-01

    To contribute to the understanding of the magnetic field's influence on the segregation of cold neutral medium (CNM) in the solar neighbourhood we analyse magnetohydrodynamic simulations that include the main physical characteristics of the local neutral atomic interstellar medium. The simulations have a continuous solenoidal Fourier forcing in a periodic box of 100 pc per side and an initial uniform magnetic field (B_0) with intensities ranging between ˜0.4 and ˜8 μG. Our main results are as follows. (i) The CNM mass fraction diminishes with the increase in magnetic field intensity. (ii) There is a preferred alignment between CNM structures and B in all our B0 range but the preference weakens as B0 increases. It is worth noticing that this preference is also present in two-dimensional projections making an extreme angle (0 or π / 2) with respect to B_0 and it is only lost for the strongest magnetic field when the angle of projection is perpendicular to B_0. (iii) The aforementioned results are prevalent despite the inclusion of self-gravity in our continuously forced simulations with a mean density similar to the average value of the solar neighbourhood. (iv) Given a fixed B0 and slightly higher mean densities, up to double, the effects of self-gravity are still not qualitatively significant.

  3. High second-harmonic generation of antiferromagnetic/ionic-crystal composite medium with negative refraction

    NASA Astrophysics Data System (ADS)

    Song, Yu-Ling; Ta, Jin-Xing; Wang, Xuan-Zhang

    2012-03-01

    Second harmonic generation (SHG) from a short-period structure composed of alternating antiferromagnetic (AF) and ionic-crystal layers is investigated, where the generated harmonic waves are situated in the far-infrared range and attributed to the magnetically nonlinear interaction in AF layers. The presence of a kind of appropriate ionic-crystal layers in the structure can support negative refraction for the pumping wave and positive refraction for the SH wave, so the SHG is greatly amplified in the vicinity of each AF resonant frequency. For the composite structure FeF2/TlBr, we found that the SH output is about 8 times higher than that of the FeF2 bulk in the same frequency range.

  4. Tunable natural nano-arrays: controlling surface properties and light reflectance

    NASA Astrophysics Data System (ADS)

    Watson, Jolanta A.; Myhra, Sverre; Watson, Gregory S.

    2006-01-01

    The general principles of optical design based on the theories of reflection, refraction and diffraction have been rigorously developed and optimized over the last three centuries. Of increasing importance has been the ability to predict and devise new optical technologies designed for specific functions. A key design feature of many of today's optical materials is the control of reflection and light transmittance through the medium. A sudden transition or impedance mismatch from one optical medium to another can result in unwanted reflections from the surface plane. Modification of a surface by creation of a gradual change in refractive index over a significant portion of a wavelength range will result in a reduction in reflection. An alternative surface modification to the multi layered stack coating (gradient index coating) is to produce a surface with structures having a period and height shorter than the light wavelength. These structures act like a pseudo-gradient index coating and can be described by the effective medium theory. Bernhard and Miller some forty years ago were the first to observe such structures found on the surface of insects. These were found in the form of hexagonally close packed nanometre sized protrusions on the corneal surface of certain moths. In this study we report on similar structures which we have found on certain species of cicada wings demonstrating that the reflective/transmission properties of these natural nano-structures can be tuned by controlled removal of the structure height using Atomic Force Microscopy (AFM).

  5. Training as an E-Commerce Enabler.

    ERIC Educational Resources Information Center

    Darch, Helen; Lucas, Trevor

    2002-01-01

    An investigation into lack of skills and awareness as barriers to the use of electronic commerce by 20 small- to medium enterprises within the food industry in Queensland, Australia, found that lack of knowledge and technical skills and structural issues are barriers. A range of training and development strategies are needed. (Contains 20…

  6. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE PAGES

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.; ...

    2018-02-23

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful formore » quantifying fundamental aspects such as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  7. Resonant line transfer in a fog: using Lyman-alpha to probe tiny structures in atomic gas

    NASA Astrophysics Data System (ADS)

    Gronke, Max; Dijkstra, Mark; McCourt, Michael; Peng Oh, S.

    2017-11-01

    Motivated by observational and theoretical work that suggest very small-scale (≲ 1 pc) structure in the circumgalactic medium of galaxies and in other environments, we study Lyman-α (Lyα) radiative transfer in an extremely clumpy medium with many clouds of neutral gas along the line of sight. While previous studies have typically considered radiative transfer through sightlines intercepting ≲ 10 clumps, we explored the limit of a very large number of clumps per sightline (up to fc 1000). Our main finding is that, for covering factors greater than some critical threshold, a multiphase medium behaves similarly to a homogeneous medium in terms of the emergent Lyα spectrum. The value of this threshold depends on both the clump column density and the movement of the clumps. We estimated this threshold analytically and compare our findings to radiative transfer simulations with a range of covering factors, clump column densities, radii, and motions. Our results suggest that (I) the success in fitting observed Lyα spectra using homogeneous "shell models" (and the corresponding failure of multiphase models) hints at the presence of very small-scale structure in neutral gas, which is in agreement within a number of other observations; and (II) the recurrent problems of reproducing realistic line profiles from hydrodynamical simulations may be due to their inability to resolve small-scale structure, which causes simulations to underestimate the effective covering factor of neutral gas clouds. The movie associated to Fig. B.2 is available at http://www.aanda.org

  8. Short and medium range structures of 80GeSe2–20Ga2Se3 chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Petracovschi, Elena; Calvez, Laurent; Cormier, Laurent; Le Coq, David; Du, Jincheng

    2018-05-01

    The short and medium range structures of 80GeSe2–20Ga2Se3 (or Ge23.5Ga11.8Se64.7) chalcogenide glasses have been studied by combining ab initio molecular dynamics (AIMD) simulations and experimental neutron diffraction studies. The structure factor and total correlation function were calculated from glass structures generated from AIMD simulations and compared with neutron diffraction experiments showing reasonable agreement. The atomic structures of ternary chalcogenide glasses were analyzed in detail, and it was found that gallium atoms are four-fold coordinated by selenium (Se) and form [GaSe4] tetrahedra. Germanium atoms on average also have four-fold coordination, among which Se is 3.5 with the remaining being Ge–Ge homo-nuclear bonds. Ga and Ge tetrahedra link together mainly through corner-sharing and some edge-sharing of Se. No homo-nuclear bonds were observed among Ga atoms or between Ge and Ga. In addition, Se–Se homo-nuclear bonds and Se chains with various lengths were observed. A small fraction of Se atom triclusters that bond to three cations of Ge and Ga were also observed, confirming earlier proposals from 77Se solid state nuclear magnetic resonance studies. Furthermore, the electronic structures of ternary chalcogenide glasses were studied in terms of atomic charge and electronic density of states in order to gain insights into the chemical bonding and electronic properties, as well as to provide an explanation of the observed atomic structures in these ternary chalcogenide glasses.

  9. Surface Plasmon Polaritons at the Boundary of a Graphene-Based Thin-Layer Medium

    NASA Astrophysics Data System (ADS)

    Evseev, D. A.; Sementsov, D. I.

    2018-03-01

    Properties of surface plasmon polaritons of the TM type at the interface of an isotropic insulator and a periodic graphene-insulator structure have been investigated. It is established that the presence of graphene in this structure allows one to obtain (in certain frequency ranges) negative effective permittivity and implement the condition for the existence of a surface wave that is practically unabsorbed. The influence of the graphene content in the structure on the characteristics of plasmon polaritons (in particular, the possibility of their significant slowing-down) is demonstrated.

  10. Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain.

    PubMed

    Yi, Deer; Yan, Yingbai; Liu, Haitao; Lu, Si; Jin, Guofan

    2004-04-01

    We propose a novel broadband polarizing beam splitter with a compact sandwich structure that has a subwavelength grating in the quasi-static domain as the filling. The design is based on effective-medium theory an anisotropic thin-film theory, and the performance is investigated with rigorous coupled-wave theory. The design results show that the structure can provide a high polarization extinction ratio in a broad spectral range.

  11. Solute–solute correlations responsible for the prepeak in structure factors of undercooled Al-rich liquids: A molecular dynamics study

    DOE PAGES

    Zhang, Feng; Sun, Yang; Ye, Zhuo; ...

    2015-05-06

    In this study, we have performed molecular dynamics simulations on a typical Al-based alloy Al 90Sm 10. The short-range and medium-range correlations of the system are reliably produced by ab initio calculations, whereas the long-range correlations are obtained with the assistance of a semi-empirical potential well-fitted to ab initio data. Our calculations show that a prepeak in the structure factor of this system emerges well above the melting temperature, and the intensity of the prepeak increases with increasing undercooling of the liquid. These results are in agreement with x-ray diffraction experiments. The interplay between the short-range order of the systemmore » originating from the large affinity between Al and Sm atoms, and the intrinsic repulsion between Sm atoms gives rise to a stronger correlation in the second peak than the first peak in the Sm–Sm partial pair correlation function (PPCF), which in turn produces the prepeak in the structure factor.« less

  12. Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass

    DOE PAGES

    Wen, Tongqi; Sun, Yang; Ye, Beilin; ...

    2018-01-31

    In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less

  13. Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Tongqi; Sun, Yang; Ye, Beilin

    In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less

  14. Cooling rate dependence of structural order in Ni62Nb38 metallic glass

    NASA Astrophysics Data System (ADS)

    Wen, Tongqi; Sun, Yang; Ye, Beilin; Tang, Ling; Yang, Zejin; Ho, Kai-Ming; Wang, Cai-Zhuang; Wang, Nan

    2018-01-01

    Molecular dynamics (MD) simulations are performed to study the structure of Ni62Nb38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni62Nb38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfect icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.

  15. Pressure Dependence of the Boson Peak of Glassy Glycerol

    DOE PAGES

    Ahart, Muhtar; Aihaiti, Dilare; Hemley, Russell J.; ...

    2017-05-31

    The pressure dependence of the Boson peak (BP) of glycerol, including its behavior across the liquid-glass transition, has been studied under pressure using Raman scattering. A significant increase of the BP frequency was observed with pressure up to 11 GPa at room temperature. The pressure dependence of BP frequency ν BP is proportional to (1+P/P 0) 1/3, where P and P 0 are the pressure and a constant, respectively, the spectra are consistent with a soft potential model. The characteristic length of medium range order is close in size to a cyclic trimer of glycerol molecules, which is predicted asmore » the medium range order of a BP vibration using molecular dynamics simulations. The pressure dependence of a characteristic length of medium range order is nearly constant. The pressure induced structural changes in glycerol can be understood in terms of the shrinkage of voids with cyclic trimers remaining up to at least 11 GPa. Lastly, the pressure dependence of intermolecular O-H stretching mode indicates that the intermolecular hydrogen bond distance gradually decreases below the glass transition pressure of ~5 GPa, while it becomes nearly constant in the glassy state indicating the disappearance of the free volume in the dense glass.« less

  16. Self-organization of cosmic radiation pressure instability. II - One-dimensional simulations

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.; Woods, Jorden

    1992-01-01

    The clustering of statistically uniform discrete absorbing particles moving solely under the influence of radiation pressure from uniformly distributed emitters is studied in a simple one-dimensional model. Radiation pressure tends to amplify statistical clustering in the absorbers; the absorbing material is swept into empty bubbles, the biggest bubbles grow bigger almost as they would in a uniform medium, and the smaller ones get crushed and disappear. Numerical simulations of a one-dimensional system are used to support the conjecture that the system is self-organizing. Simple statistics indicate that a wide range of initial conditions produce structure approaching the same self-similar statistical distribution, whose scaling properties follow those of the attractor solution for an isolated bubble. The importance of the process for large-scale structuring of the interstellar medium is briefly discussed.

  17. Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.

    2018-01-01

    The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.

  18. Use of Advanced Spectroscopic Techniques for Predicting the Mechanical Properties of Wood Composites

    Treesearch

    Timothy G. Rials; Stephen S. Kelley; Chi-Leung So

    2002-01-01

    Near infrared (NIR) spectroscopy was used to characterize a set of medium-density fiberboard (MDF) samples. This spectroscopic technique, in combination with projection to latent structures (PLS) modeling, effectively predicted the mechanical strength of MDF samples with a wide range of physical properties. The stiffness, strength, and internal bond properties of the...

  19. The expectation of applying IR guidance in medium range air-to-air missiles

    NASA Astrophysics Data System (ADS)

    Li, Lijuan; Liu, Ke

    2016-10-01

    IR guidance has been widely used in near range dogfight air-to-air missiles while radar guidance is dominant in medium and long range air-to-air missiles. With the development of stealth airplanes and advanced electronic countermeasures, radar missiles have met with great challenges. In this article, the advantages and potential problems of applying IR guidance in medium range air-to-air missiles are analyzed. Approaches are put forward to solve the key technologies including depressing aerodynamic heating, increasing missiles' sensitivity and acquiring target after launch. IR medium range air-to-air missiles are predicted to play important role in modern battle field.

  20. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-01

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2-10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30-50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  1. On the structure of the disordered Bi 2Te 4O 11 phase

    NASA Astrophysics Data System (ADS)

    Masson, O.; Thomas, P.; Durand, O.; Hansen, T.; Champarnaud, J. C.; Mercurio, D.

    2004-06-01

    The structure of the disordered metastable Bi 2Te 4O 11 phase has been investigated using both neutron powder diffraction and reverse Monte Carlo (RMC) modelling. The average structure, of fluorite-type (space group Fm 3¯m ), is characterized by very high Debye-Waller parameters, especially for oxygen. Whereas the cations form a fairly well-defined FCC lattice, the oxygen sublattice is very disordered. It is shown that the local order is similar to that present in the stable monoclinic Bi 2Te 4O 11 phase. Clear differences are observed for the intermediate range order. The present phase is analogous to the "anti-glass" phases reported by Trömel in other tellurium-based mixed oxides. However, whereas Trömel defines anti-glass as having long range order but no short range order, it is shown here that this phase is best described as an intermediate state between the amorphous and crystalline states, i.e. having short and medium range order similar to that of tellurite glasses and a premise of long range order with the cations only.

  2. To the theory of hybrid modes of the discrete spectrum in finite structures with nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Kireeva, Anastassiya I.; Rudenok, Igor P.

    2018-04-01

    The profound research and physical applications of interactions of different types of waves with medium are very important. Particularly the most interesting sphere is for complex environments, which may be characterized by the increasing number of methods. Their objective analysis increased because of great applied significance. For the optical range it comes to considering the structure, the dimensions of the spatial inhomogeneity of which are comparable to the wavelength of the radiation.

  3. Plant regeneration from protoplasts of embryogenic cell suspensions of Coffea arabica L. cv. caturra.

    PubMed

    Acuna, J R; de Pena, M

    1991-09-01

    Coffee plants were regenerated from protoplasts isolated from embryogenic cell suspension cultures derived from somatic embryos of Coffea arabica L. cv. caturra. Yields of viable protoplasts ranged from 1×10(5) to 6×10(5) protoplast/g fresh weight. Protoplast preparations usually contained no contaminating cells, and when present, the number of cells never exceeded 0.1% of the total. Plating efficiencies of protoplast ranged from 1 to 10%. Embryogenic protocolonies obtained after several subcultures in a medium supplemented with 0.5 mg/l each of benzylaminopurine, 2,4-dichlorophenoxyacetic acid and naphtaleneacetic acid, were transferred to a medium lacking plant growth regulators. Well differentiated embryos were formed in selected protocolonies that contained many embryos-like structures. Approximately 70% of the somatic embryos developed into green rooted plantlets which were succesfully transferred to vessels containing sterilized scoria. Plants grown for two months in scoria were finally transferred to greenhouse.

  4. Waves in a plane graphene - dielectric waveguide structure

    NASA Astrophysics Data System (ADS)

    Evseev, Dmitry A.; Eliseeva, Svetlana V.; Sementsov, Dmitry I.

    2017-10-01

    The features of the guided TE modes propagation have been investigated on the basis of computer simulations in a planar structure consisting of a set of alternating layers of dielectric and graphene. Within the framework of the effective medium approximation, the dispersion relations have been received for symmetric and antisymmetric waveguide modes, determined by the frequency range of their existence. The wave field distribution by structure, frequency dependences of the constants of propagation and transverse components of the wave vectors, as well as group and phase velocities of waveguide modes have been obtained, the effect of the graphene part in a structure on the waveguide mode behavior has been shown.

  5. Application of pinch-and-swell structure rheology gauge to determine rock paleo-rheological parameters in Taili, western Liaoning, NE China

    NASA Astrophysics Data System (ADS)

    Sun, Zhengquan; Zeng, Zuoxun; Wu, Linbo; Xu, Shaopeng; Yang, Shuang; Chen, Deli; Wang, Jianxiu

    2017-05-01

    New results, in combination with previously published ones, reveal that when the Stress Exponent of the Competent layer (SEC) ranges from 1 to 10 (1 < n < 10), Pinch-and-Swell structure Rheology Gauge (PSRG) can only be available under the condition that the Viscosity ratio between the Competent layer and its corresponding Matrix layer (VCM) is larger than 10. Therefore, we made the attempt to calculate the viscosity ratio of pinch-and-swell structure of competent layer to the related matrix and stress exponent. Based on this knowledge, we applied this gauge to calculate SECs and VCMs of eight types of pinch-and-swell structures, which are widely developed in the Taili area of the west Liaoning Province in China. Statistical analysis of the SEC resulted in intervals of four types of competent layers, that is, Medium-scale Granitic coarse-to-pegmatitic Veins, Small-scale Augen Granite aplite Veins, Small-scale Granite aplite Veins, and Small-scale Augen Quartz-K-feldspar veins, with intervals of [3.50, 4.63], [2.64, 4.29], [2.70, 3.51], and [2.50, 3.36] respectively. The preferred intervals of VCM of the five types of pinch-and-swell structures, Small-scale Augen Granite aplite Veins + Fine-grained Biotite-Hornblende-plagioclase Gneiss, Medium-scale Granitic coarse-to-pegmatitic Veins + Fine-grained Biotite-Hornblende-plagioclase Gneiss, Small-scale Augen Granite aplite Veins + medium-to-fine-grained granitic gneiss, Medium-scale Granitic coarse-to-pegmatitic Veins + medium-to-fine-grained granitic gneiss, and Small-scale Augen Granite aplite Veins + fine-grained biotite-plagioclase gneiss, are [19.98, 62.51], [15.90, 61.17], [26.72, 93.27], [22.21, 107.26], and [76.33, 309.39] respectively. The similarities between these calculated SEC statistical preferred intervals and the physical experimental results verify the validity of the PSRG. The competent layers of the pinch-and-swell structures were presented in this study as power-law flow with SEC values that increased with the thickness of the layer. Grain-size plays an important role in the rheology of pinch-and-swell structures. The results offer a case for the application of PSRG and determine the key rock rheological parameters of North China Craton for future related studies.

  6. Self-assembly and structural relaxation in a model ionomer melt

    DOE PAGES

    Goswami, Monojoy; Borreguero, Jose M.; Sumpter, Bobby G.

    2015-02-26

    Molecular dynamics simulations are used to understand the self-assembly and structural relaxation in ionomer melts containing less than 10% degree of ionization on the backbone. We study the self-assembly of charged sites and counterions that show structural ordering and agglomeration with a range of structures that can be achieved by changing the dielectric constant of the medium. The intermediate scattering function shows a decoupling of charge and counterion relaxation at longer length scales for only high dielectric constant and at shorter length scales for all dielectric constants. Finally, the slow structural decay of counterions in the strongly correlated ionomer systemmore » closely resembles transport properties of semi-flexible polymers.« less

  7. Coming to America: The Influence of College-Themed Movies on Perceptions of International Students

    ERIC Educational Resources Information Center

    Bourke, Brian

    2013-01-01

    Films represent a powerful medium for shaping and informing perceptions of a wide range of social structures and institutions, including higher education. Colleges and universities in the United States have been the subject or setting of dozens of films. The purpose of this article is to provide an analysis of a small group of films released in…

  8. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful for quantifying fundamental aspects suchmore » as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  9. Cooling rate dependence of structural order in Al90Sm10 metallic glass

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Zhang, Yue; Zhang, Feng; Ye, Zhuo; Ding, Zejun; Wang, Cai-Zhuang; Ho, Kai-Ming

    2016-07-01

    The atomic structure of Al90Sm10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-Tg annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that "3661" cluster is the dominating short-range order in the glass samples. The connection and arrangement of "3661" clusters, which define the medium-range order in the system, are enhanced significantly in the sub-Tg annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu64.5Zr35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al90Sm10, which has only marginal glass formability.

  10. Morphology of primary human venous endothelial cell cultures before and after culture medium exchange.

    PubMed

    Krüger-Genge, A; Fuhrmann, R; Jung, F; Franke, R P

    2015-01-01

    The evaluation of the interaction of human, venous endothelial cells (HUVEC) with body foreign materials on the cellular level cannot be performed in vivo, but is investigated in vitro under standard culture conditions. To maintain the vitality, proliferation and morphology of HUVEC seeded on body foreign substrates over days, the cell culture medium is usually exchanged every second day. It is well known, that alterations in the microenvironment of cells bear the risk of influencing cell morphology and function. In the current study the influence of cell culture medium exchange on HUVEC cytoskeletal microfilament structure and function was investigated. HUVEC in the third passage were seeded on extracellular matrix (ECM) - which was secreted from bovine corneal endothelial cells on glass- until functional confluence was reached. The experiment started 11 days after HUVEC seeding with an exchange of the cell culture medium followed by a staining of the actin microfilaments with phalloidin-rhodamin 1.5 and 5 minutes after medium exchange. The microfilaments were documented by use of an Olympus microscope (IMT-2) equipped with a UV lamp and online connected to a TV chain (Sony XC 50 ST/monochrome) implying an OPTIMAS - Image analysis system. Prostacyclin was analysed in the cell culture supernatant. 1.5 min after culture medium exchange in the functionally confluent cultures a slight disturbance of the actin microfilament structure with a broadening of the marginal filament band, a partial disconnection of cell-cell contacts and the appearance of intercellular fenestrations were observed. 5 minutes after medium exchange a redevelopment of the slightly disturbed microfilament structure with a condensation and narrowing of the marginal filament band was seen. 12 h later a further consolidation of the microfilament structure occurred. In addition, a perturbation of the cultured HUVEC occurred after cell culture medium exchange. The prostacyclin concentration in the supernatant increased significantly after 1.5 min to 466 ± 543 pg·mL-1 (p <  0.001) and after 5 min to 408 ± 458 pg·mL-1 (p <  0.001), while in control cells the prostacyclin concentration did not change remaining in the range of 50 ± 48.9 pg·mL-1. This study revealed that the exchange of the cell culture medium led to a rapid disturbance of the HUVEC with stress fiber formation, disconnection of cell-cell contacts and an altered prostacyclin secretion, which had regressed nearly completely after 12 hours. Therefore, the evaluation of HUVEC on body foreign materials should be performed not earlier than 12 hours after cell culture medium exchange to avoid a misinterpretation of the endothelial cell morphological state. This procedure minimizes the risk of a misinterpretation of the endothelial cell morphology - caused by the culture medium exchange and not by the interaction between biomaterials and HUVEC.

  11. High Fragmentation Steel Production Process

    DTIC Science & Technology

    1984-01-01

    J/ FTA c« ;« MO G SO KM s s P WS W-U Hi ; T 14 434 CASK G S3 K 11 ma WM MM MM ACTS 1 TC*4 U S7« ill GC 135 V M NTA «M FT...relative feed range 2nd digit -relative force range FMd 1 Very Low Fore* t 2 Low 2 3 Medium Low 3 4 Medium 4 5 Medium 5 6 Medium High 6 7 Medium

  12. Elasticity-induced force reversal between active spinning particles in dense passive media

    PubMed Central

    Aragones, J. L.; Steimel, J. P.; Alexander-Katz, A.

    2016-01-01

    The self-organization of active particles is governed by their dynamic effective interactions. Such interactions are controlled by the medium in which such active agents reside. Here we study the interactions between active agents in a dense non-active medium. Our system consists of actuated, spinning, active particles embedded in a dense monolayer of passive, or non-active, particles. We demonstrate that the presence of the passive monolayer alters markedly the properties of the system and results in a reversal of the forces between active spinning particles from repulsive to attractive. The origin of such reversal is due to the coupling between the active stresses and elasticity of the system. This discovery provides a mechanism for the interaction between active agents in complex and structured media, opening up opportunities to tune the interaction range and directionality via the mechanical properties of the medium. PMID:27112961

  13. Structural transition in sputter-deposited amorphous germanium films by aging at ambient temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okugawa, M.; Nakamura, R., E-mail: nakamura@mtr.osakafu-u.ac.jp; Numakura, H.

    The structure of amorphous Ge (a-Ge) films prepared by sputter-deposition and the effects of aging at ambient temperature and pressure were studied by pair-distribution-function (PDF) analysis from electron scattering and molecular dynamics simulations. The PDFs of the as-deposited and aged samples for 3–13 months showed that the major peaks for Ge-Ge bonds decrease in intensity and broaden with aging for up to 7 months. In the PDFs of a-Ge of molecular dynamics simulation obtained by quenching liquid at different rates, the major peak intensities of a slowly cooled model are higher than those of a rapidly cooled model. Analyses onmore » short- and medium-range configurations show that the slowly cooled model includes a certain amount of medium-range ordered (MRO) clusters, while the rapidly cooled model includes liquid-like configurations rather than MRO clusters. The similarity between experimental and computational PDFs implies that as-deposited films are similar in structure to the slowly cooled model, whereas the fully aged films are similar to the rapidly cooled model. It is assumed that as they undergo room-temperature aging, the MRO clusters disintegrate and transform into liquid-like regions in the same matrix. This transition in local configurations is discussed in terms of instability and the non-equilibrium of nanoclusters produced by a vapor-deposition process.« less

  14. Extensive domain motion and electron transfer in the human electron transferring flavoprotein.medium chain Acyl-CoA dehydrogenase complex.

    PubMed

    Toogood, Helen S; van Thiel, Adam; Basran, Jaswir; Sutcliffe, Mike J; Scrutton, Nigel S; Leys, David

    2004-07-30

    The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.

  15. Crystalline, Glassy and Polymeric Electrolytes:. Similarities and Differences in Ionic Transport Mechanisms

    NASA Astrophysics Data System (ADS)

    Souquet, Jean Louis

    2006-06-01

    Ionocovalent crystals or glasses as well as molten salts or salt polymer complexes are currently studied as electrolytes for high energy density batteries. Their large Red/Ox stability range results from their thermodynamic or kinetic characteristics. For all these electrolytes, charge carriers are the consequence of local deviations from electroneutrality, identified as point defects for ionic crystals or partial dissociation in disordered structures. The charge carriers formation derives from a similar activated process. The main difference comes from the migration process, which depends on the dynamic properties of the surrounding medium. When the structural relaxation time is large, an activated process, mainly enthalpic, prevails for charge carriers migration. It is the usual case for ionic crystals or glasses. In the liquid or overcooled liquid states, the structural relaxation time of the medium is shorter that the time required for the activated migration process to occur and a local reorganization of the medium vanishes the energy barrier and provides the free volume necessary to ionic migration. In that case, the migration is mainly an entropic process. The configurational entropy necessary to this process decreases with temperature and vanishes at the so called ideal glass transition temperature which can be estimated by extrapolation of the transport properties or of the thermodynamic characteristics of the medium. However, at the experiment time scale, this configurational entropy disappears at a somewhat higher temperature, the glass transition temperature at which the structural relaxation time corresponds to the measurement time. Some glass forming ionic melts studied in a large temperature scale, over and below the glass transition temperature, evidence the two, enthalpic and entropic, migration mechanisms, allowing the determination of the thermodynamic characteristics of the charge carriers formation and migration. Some recent results indicate that entropic process, associated to long scale deformations, may also exist in crystalline structures.

  16. H I anisotropies associated with radio-polarimetric filaments . Steep power spectra associated with cold gas

    NASA Astrophysics Data System (ADS)

    Kalberla, P. M. W.; Kerp, J.; Haud, U.; Haverkorn, M.

    2017-10-01

    Context. LOFAR detected toward 3C 196 linear polarization structures which were found subsequently to be closely correlated with cold filamentary H I structures. The derived direction-dependent H I power spectra revealed marked anisotropies for narrow ranges in velocity, sharing the orientation of the magnetic field as expected for magneto-hydrodynamical (MHD) turbulence. Aims: Using the Galactic portion of the Effelsberg-Bonn H I Survey (EBHIS) we continue our study of such anisotropies in the H I distribution in direction of two WSRT fields, Horologium and Auriga; both are well known for their prominent radio-polarimetric depolarization canals. At 349 MHz the observed pattern in total intensity is insignificant but polarized intensity and polarization angle show prominent ubiquitous structures with so far unknown origin. Methods: Apodizing the H I survey data by applying a rotational symmetric 50% Tukey window, we derive average and position angle dependent power spectra. We fit power laws and characterize anisotropies in the power distribution. We used a Gaussian analysis to determine relative abundances for the cold and warm neutral medium. Results: For the analyzed radio-polarimetric targets significant anisotropies are detected in the H I power spectra; their position angles are aligned to the prominent depolarization canals, initially detected by WSRT. H I anisotropies are associated with steep power spectra. Steep power spectra, associated with cold gas, are detected also in other fields. Conclusions: Radio-polarimetric depolarization canals are associated with filamentary H I structures that belong to the cold neutral medium (CNM). Anisotropies in the CNM are in this case linked to a steepening of the power-spectrum spectral index, indicating that phase transitions in a turbulent medium occur on all scales. Filamentary H I structures, driven by thermal instabilities, and radio-polarimetric filaments are associated with each other. The magneto-ionic medium that causes the radio-polarimetric filaments is probably wrapped around the H I.

  17. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  18. All-dielectric three-dimensional broadband Eaton lens with large refractive index range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Ming; Yong Tian, Xiao, E-mail: leoxyt@mail.xjtu.edu.cn; Ling Wu, Ling

    2014-03-03

    We proposed a method to realize three-dimensional (3D) gradient index (GRIN) devices requiring large refractive index (RI) range with broadband performance. By combining non-resonant GRIN woodpile photonic crystals structure in the metamaterial regime with a compound liquid medium, a wide RI range (1–6.32) was fulfilled flexibly. As a proof-of-principle for the low-loss and non-dispersive method, a 3D Eaton lens was designed and fabricated based on 3D printing process. Full-wave simulation and experiment validated its omnidirectional wave bending effects in a broad bandwidth covering Ku band (12 GHz–18 GHz)

  19. Shock-wave flow regimes at entry into the diffuser of a hypersonic ramjet engine: Influence of physical properties of the gas medium

    NASA Astrophysics Data System (ADS)

    Tarnavskii, G. A.

    2006-07-01

    The physical aspects of the effective-adiabatic-exponent model making it possible to decompose the total problem on modeling of high-velocity gas flows into individual subproblems (“physicochemical processes” and “ aeromechanics”), which ensures the creation of a universal and efficient computer complex divided into a number of independent units, have been analyzed. Shock-wave structures appearing at entry into the duct of a hypersonic aircraft have been investigated based on this methodology, and the influence of the physical properties of the gas medium in a wide range of variations of the effective adiabatic exponent has been studied.

  20. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putra, Edy Giri Rachman; Patriati, Arum; Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol,more » octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.« less

  1. From Language Learner to Language User in English-Medium Higher Education: Language Development Brokers outside the Language Classroom

    ERIC Educational Resources Information Center

    Blaj-Ward, Lia

    2017-01-01

    This article explores, from within the social constructivist paradigm and drawing on data from twenty-one semi-structured interviews with international postgraduate university students approaching the end of a one-year full-time taught Masters degree in the UK, the range of language development brokers that have had an impact on these students'…

  2. Atomistic simulations of TeO₂-based glasses: interatomic potentials and molecular dynamics.

    PubMed

    Gulenko, Anastasia; Masson, Olivier; Berghout, Abid; Hamani, David; Thomas, Philippe

    2014-07-21

    In this work we present for the first time empirical interatomic potentials that are able to reproduce TeO2-based systems. Using these potentials in classical molecular dynamics simulations, we obtained first results for the pure TeO2 glass structure model. The calculated pair distribution function is in good agreement with the experimental one, which indicates a realistic glass structure model. We investigated the short- and medium-range TeO2 glass structures. The local environment of the Te atom strongly varies, so that the glass structure model has a broad Q polyhedral distribution. The glass network is described as weakly connected with a large number of terminal oxygen atoms.

  3. Atomic-scale structural signature of dynamic heterogeneities in metallic liquids

    NASA Astrophysics Data System (ADS)

    Pasturel, Alain; Jakse, Noel

    2017-08-01

    With sufficiently high cooling rates, liquids will cross their equilibrium melting temperatures and can be maintained in a metastable undercooled state before solidifying. Studies of undercooled liquids reveal several intriguing dynamic phenomena and because explicit connections between liquid structure and liquids dynamics are difficult to identify, it remains a major challenge to capture the underlying structural link to these phenomena. Ab initio molecular dynamics (AIMD) simulations are yet especially powerful in providing atomic-scale details otherwise not accessible in experiments. Through the AIMD-based study of Cr additions in Al-based liquids, we evidence for the first time a close relationship between the decoupling of component diffusion and the emergence of dynamic heterogeneities in the undercooling regime. In addition, we demonstrate that the origin of both phenomena is related to a structural heterogeneity caused by a strong interplay between chemical short-range order (CSRO) and local fivefold topology (ISRO) at the short-range scale in the liquid phase that develops into an icosahedral-based medium-range order (IMRO) upon undercooling. Finally, our findings reveal that this structural signature is also captured in the temperature dependence of partial pair-distribution functions which opens up the route to more elaborated experimental studies.

  4. Cooling rate dependence of structural order in Al 90Sm 10 metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yang; Zhang, Yue; Zhang, Feng

    2016-07-07

    Here, the atomic structure of Al 90Sm 10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-T g annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T g annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu 64.5Zrmore » 35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al 90Sm 10, which has only marginal glass formability.« less

  5. Cooling rate dependence of structural order in Al{sub 90}Sm{sub 10} metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yang; Ames Laboratory, US Department of Energy, Ames, Iowa 50011; Zhang, Yue

    2016-07-07

    The atomic structure of Al{sub 90}Sm{sub 10} metallic glass is studied using molecular dynamics simulations. By performing a long sub-T{sub g} annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T{sub g} annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu{sub 64.5}Zr{sub 35.5},more » the clusters representing the short-range order do not form an interconnected interpenetrating network in Al{sub 90}Sm{sub 10,} which has only marginal glass formability.« less

  6. Production and structural elucidation of exopolysaccharide from endophytic Pestalotiopsis sp. BC55.

    PubMed

    Mahapatra, Subhadip; Banerjee, Debdulal

    2016-01-01

    There is a little information on exopolysaccharide production by endophytic fungi. In this investigation endophytic Pestalotiopsis sp. BC55 was used for optimization of exopolysaccharide production. One variable at a time method and response surface methodology were adopted to find out the best culture conditions and medium compositions for maximum exopolysaccharide production. The organism produced maximum exopolysaccharide (4.320 ± 0.022 g/l EPS) in 250 ml Erlenmeyer flask containing 75 ml potato dextrose broth supplemented with (g%/l) glucose, 7.66; urea, 0.29; CaCl2, 0.05 with medium pH 6.93; after 3.76 days of incubation at 24°C. Exopolysaccharide [EPS (EP-I)] produced by this organism have Mw ∼2×10(5)Da with a melting point range of 122-124°C. Structural elucidation of the EPS (PS-I) was carried out after a series of experiments. Result indicated the presence of only (1→3)-linked β-d-glucopyranosyl moiety. The structure of the repeating unit was established as - →3)-β-d-Glcp-(1→. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of granular media on the vibrational response of a resonant structure: theory and experiment.

    PubMed

    Valenza, John J; Hsu, Chaur-Jian; Johnson, David Linton

    2010-11-01

    The acoustic response of a structure that contains a cavity filled with a loose granular material is analyzed. The inputs to the theory are the effective masses of each subsystem: that of the empty-cavity resonating structure and that of the granular medium within the cavity. This theory accurately predicts the frequencies, widths, and relative amplitudes of the various flexural mode resonances observed with rectangular bars, each having a cavity filled with loose tungsten granules. Inasmuch as the dominant mechanism for damping is due to adsorbed water at the grain-grain contacts, the significant effects of humidity on both the effective mass of the granular medium as well as on the response of the grain-loaded bars are monitored. Here, depending upon the humidity and the preparation protocol, it is possible to observe one, two, or three distinct resonances in a wide frequency range (1-5 kHz) over which the empty bar has but one resonance. These effects are understood in terms of the theoretical framework, which may simplify in terms of perturbation theories.

  8. Structural Evolution of Supercritical CO2 across the Frenkel Line.

    PubMed

    Bolmatov, Dima; Zav'yalov, D; Gao, M; Zhernenkov, Mikhail

    2014-08-21

    Here, we study structural properties of the supercritical carbon dioxide and discover the existence of persistent medium-range order correlations, which make supercritical carbon dioxide nonuniform and heterogeneous on an intermediate length scale. We report on the CO2 heterogeneity shell structure where, in the first shell, both carbon and oxygen atoms experience gas-like-type interactions with short-range order correlations while within the second shell, oxygen atoms essentially exhibit a liquid-like type of interactions due to localization of transverse-like phonon packets. Importantly, we highlight a catalytic role of atoms inside of the nearest-neighbor heterogeneity shell in providing a mechanism for diffusion and proving the existence of an additional thermodynamic boundary in the supercritical carbon dioxide on an intermediate length scale. Finally, we discuss important implications for answering the intriguing question whether Venus may have had CO2 oceans and urge for an experimental detection of this persistent local-order heterogeneity.

  9. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color intensity...

  10. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color intensity...

  11. Design of the advanced regional aircraft, the DART-75

    NASA Technical Reports Server (NTRS)

    Elliott, Steve; Gislason, Jason; Huffstetler, Mark; Mann, Jon; Withers, Ashley; Zimmerman, Mark

    1992-01-01

    This design analysis is intended to show the capabilities of the DART-75, a 75 passenger medium-range regional transport. Included are the detailed descriptions of the structures, performance, stability and control, weight and balance, and engine design. The design should allow for the DART to become the premier regional aircraft of the future due to some advanced features like the canard, semi-composite construction, and advanced engines.

  12. Modelling and measurement of bandgap behaviour in medium-wavelength IR InAs/InAs0.815Sb0.185 strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Letka, Veronica; Keen, James; Craig, Adam; Marshall, Andrew R. J.

    2017-10-01

    InAs/InAs1-xSbx type-II strained-layer superlattices (SLS) are a structure with potential infrared detection applications, owing to its tunable bandgap and suppressed Auger recombination. A series of medium-wavelength infrared (MWIR) InAs/InAs0.815Sb0.185 SLS structures, grown as undoped absorption epilayers on GaAs, were fabricated using molecular beam epitaxy in order to study the dependence of the ground state transitions on temperature and superlattice period thickness. Photoluminescence peaks at 4 K were obtained with the use of a helium-cooled micro-PL system and an InSb detector, and temperature-dependent absorption spectra were measured in the range 77 K - 300 K on a Fourier Transform Infrared (FTIR) spectrometer, equipped with a 1370 K blackbody source and a DTGS detector. An nBn device sample with the absorber structure identical to one of the undoped samples was also grown and processed with the goal of measuring temperature-dependent spectral response. A model for superlattice band alignment was also devised, incorporating the Bir-Pikus transformation results for uniaxial and biaxial strain, and the Einstein oscillator model for bandgap temperature dependence. Absorption coefficients of several 1000 cm-1 throughout the entire MWIR range are found for all samples, and temperature dependence of the bandgaps is extracted and compared to the model. This and photoluminescence data also demonstrate bandgap shifts consistent with the different superlattice periods of the three samples.

  13. The impact of different interstellar medium structures on the dynamical evolution of supernova remnants

    NASA Astrophysics Data System (ADS)

    Wang, Yueyang; Bao, Biwen; Yang, Chuyuan; Zhang, Li

    2018-05-01

    The dynamical properties of supernova remnants (SNRs) evolving with different interstellar medium structures are investigated through performing extensive two-dimensional magnetohydrodynamic (MHD) simulations in the cylindrical symmetry. Three cases of different interstellar medium structures are considered: the uniform medium, the turbulent medium and the cloudy medium. Large-scale density and magnetic fluctuations are calculated and mapped into the computational domain before simulations. The clouds are set by random distribution in advance. The above configuration allows us to study the time-dependent dynamical properties and morphological evolution of the SNR evolving with different ambient structures, along with the development of the instabilities at the contact discontinuity. Our simulation results indicate that remnant morphology deviates from symmetry if the interstellar medium contains clouds or turbulent density fluctuations. In the cloudy medium case, interactions between the shock wave and clouds lead to clouds' fragmentation. The magnetic field can be greatly enhanced by stretching field lines with a combination of instabilities while the width of amplification region is quite different among the three cases. Moreover, both the width of amplification region and the maximum magnetic-field strength are closely related to the clouds' density.

  14. Functionalization of Graphene Oxide and its Composite with Poly(3,4-ethylenedioxythiophene) as Electrode Material for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Minchao; Jamal, Ruxangul; Wang, Yujie; Yang, Lei; Liu, Fangfang; Abdiryim, Tursun

    2015-09-01

    In this study, poly(3,4-ethylenedioxythiophene)/thiophene-grafted graphene oxide (PEDOT/Th-GO) composites from covalently linking of Th-GO with PEDOT chains were prepared via in situ chemical polymerization with different weight percentage of Th-GO ranging between 40 and 70 % in reaction medium. The resulting composite materials were characterized using a various analytical techniques. The structural analysis showed that the composites displayed a higher degree of conjugation and thermal stability than pure PEDOT, and the weight percentage of Th-GO could affect the doping level, amount of undesired conjugated segments, and porous structure of composites. Electrochemical analysis suggested that the highest specific capacitance of 320 F g-1 at a current density of 1 A g-1 with good cycling stability (capacitance retention of 80 % at 1 A g-1 after 1000 cycles) was achieved for the composite prepared from 50 wt% Th-GO content in reaction medium.

  15. A high-resolution X-ray image of Puppis A - Inhomogeneities in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Petre, R.; Kriss, G. A.; Winkler, P. F.; Canizares, C. R.

    1982-01-01

    Eleven HRI exposures from the Einstein Observatory are assembled into an 0.1-4 keV image of the Puppis A supernova remnant which displays a complex morphology that may reflect the structure of the shocked interstellar medium. In addition to showing a density gradient of a factor greater than four across the approximately 30 pc diameter of the remnant perpendicular to the galactic plane, a shell of X-ray emission is seen surrounding the northern half of Puppis A, coincident with the radio shell, whose edge brightness profile indicates direct hot plasma heating by the blast wave rather than evaporation from clouds. The interior structure of the supernova remnant suggests inhomogeneities whose sizes range over 0.1-5 pc, but with moderate density contrast. Although isolated clouds of 10-30/cu cm density are responsible for the two brightest X-ray features, they represent only a small fraction of the Puppis A mass.

  16. Functionalization of Graphene Oxide and its Composite with Poly(3,4-ethylenedioxythiophene) as Electrode Material for Supercapacitors.

    PubMed

    Wang, Minchao; Jamal, Ruxangul; Wang, Yujie; Yang, Lei; Liu, Fangfang; Abdiryim, Tursun

    2015-12-01

    In this study, poly(3,4-ethylenedioxythiophene)/thiophene-grafted graphene oxide (PEDOT/Th-GO) composites from covalently linking of Th-GO with PEDOT chains were prepared via in situ chemical polymerization with different weight percentage of Th-GO ranging between 40 and 70 % in reaction medium. The resulting composite materials were characterized using a various analytical techniques. The structural analysis showed that the composites displayed a higher degree of conjugation and thermal stability than pure PEDOT, and the weight percentage of Th-GO could affect the doping level, amount of undesired conjugated segments, and porous structure of composites. Electrochemical analysis suggested that the highest specific capacitance of 320 F g(-1) at a current density of 1 A g(-1) with good cycling stability (capacitance retention of 80 % at 1 A g(-1) after 1000 cycles) was achieved for the composite prepared from 50 wt% Th-GO content in reaction medium.

  17. The Stormy Life of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Rudnick, Lawrence

    2018-01-01

    Galaxy clusters, the largest gravitationally bound structures, hold the full history of their baryonic evolution, serve as important cosmological tools and allow us to probe unique physical regimes in their diffuse plasmas. With characteristic dynamical timescales of 107-109 years, these diffuse thermal and relativistic media continue to evolve, as dark matter drives major mergers and more gentle continuing accretion. The history of this assembly is encoded in the plasmas, and a wide range of observational and theoretical investigations are aimed at decoding their signatures. X-ray temperature and density variations, low Mach number shocks, and "cold front" discontinuities all illuminate clusters' continued evolution. Radio structures and spectra are passive indicators of merger shocks, while radio galaxy distortions reveal the complex motions in the intracluster medium. Deep in cluster cores, AGNs associated with brightest cluster galaxies provide ongoing energy, and perhaps even stabilize the intracluster medium. In this talk, we will recount this evolving picture of the stormy ICM, and suggest areas of likely advance in the coming years.

  18. Mesoscale influence on long-range transport — evidence from ETEX modelling and observations

    NASA Astrophysics Data System (ADS)

    Sørensen, Jens Havskov; Rasmussen, Alix; Ellermann, Thomas; Lyck, Erik

    During the first European Tracer Experiment (ETEX) tracer gas was released from a site in Brittany, France, and subsequently observed over a range of 2000 km. Hourly measurements were taken at the National Environmental Research Institute (NERI) located at Risø, Denmark, using two measurement techniques. At this location, the observed concentration time series shows a double-peak structure occurring between two and three days after the release. By using the Danish Emergency Response Model of the Atmosphere (DERMA), which is developed at the Danish Meteorological Institute (DMI), simulations of the dispersion of the tracer gas have been performed. Using numerical weather-prediction data from the European Centre for Medium-Range Weather Forecast (ECMWF) by DERMA, the arrival time of the tracer is quite well predicted, so also is the duration of the passage of the plume, but the double-peak structure is not reproduced. However, using higher-resolution data from the DMI version of the HIgh Resolution Limited Area Model (DMI-HIRLAM), DERMA reproduces the observed structure very well. The double-peak structure is caused by the influence of a mesoscale anti-cyclonic eddy on the tracer gas plume about one day earlier.

  19. Channeling of Branched Flow in Weakly Scattering Anisotropic Media.

    PubMed

    Degueldre, Henri; Metzger, Jakob J; Schultheis, Erik; Fleischmann, Ragnar

    2017-01-13

    When waves propagate through weakly scattering but correlated, disordered environments they are randomly focused into pronounced branchlike structures, a phenomenon referred to as branched flow, which has been studied in a wide range of isotropic random media. In many natural environments, however, the fluctuations of the random medium typically show pronounced anisotropies. A prominent example is the focusing of tsunami waves by the anisotropic structure of the ocean floor topography. We study the influence of anisotropy on such natural focusing events and find a strong and nonintuitive dependence on the propagation angle which we explain by semiclassical theory.

  20. Effects of Microstructure Variations on Macroscopic Terahertz Metafilm Properties

    DOE PAGES

    O'Hara, John F.; Smirnova, Evgenya; Azad, Abul K.; ...

    2007-01-01

    The properties of planar, single-layer metamaterials, or metafilms, are studied by varying the structural components of the split-ring resonators used to comprise the overall medium. Measurements and simulations reveal how minor design variations in split-ring resonator structures can result in significant changes in the macroscopic properties of the metafilm. A transmission-line/circuit model is also used to clarify some of the behavior and design limitations of the metafilms. Though our results are illustrated in the terahertz frequency range, the work has broader implications, particularly with respect to filtering, modulation, and switching devices.

  1. Atomic Scale Medium Range Order and Relaxation Dynamics in Metallic Glass

    NASA Astrophysics Data System (ADS)

    Zhang, Pei

    We studied the atomic scale structure of bulk metallic glass (BMG) with the combination of fluctuation electron microscopy (FEM) and hybrid reverse Monte Carlo (HRMC) simulation. Medium range order (MRO), which occupies the length scale between short range order (SRO) and long-range order, plays an important role on the properties of metallic glass, but the characterization of MRO in experiment is difficult because conventional techniques are not sensitive to the structure at MRO scale. Compared with the X-ray and neutron which can measure SRO by two-body correlation functions, FEM is an effective way to detect MRO structure through three and four-body correlation functions, providing information about the size, distribution, and internal structure of MRO combing HRMC modeling. Thickness estimation is necessary in FEM experiment and HRMC calculation, so in Chapter 3, we measured the elastic and inelastic mean free paths of metallic glass alloys based on focused ion beam prepared thin samples with measured thickness gradients. We developed a model based on the Wentzel atomic model to predict the elastic mean free path for other amorphous materials. In Chapter 4, we studied the correlation of MRO and glass forming ability ZrCuAl alloy. Results from Variable resolution fluctuation microscopy show that in Zr50Cu35Al15 the crystal-like clusters shrink but become more ordered, while icosahedral-like clusters grow. Compared with Zr50Cu45Al5, Zr50Cu35Al15 with poorer glass forming ability exhibits more stable crystal-like structure under annealing, indicating that destabilizing crystal-like structures is important to achieve better glass forming ability in this alloy. In Chapter 5, we studied the crystallization and MRO structural in deformed and quenched Ni60Nb40 metallic glass. The deformed Ni60Nb40 contains fewer icosahedral-like Voronoi clusters and more crystal-like and bcc-like Voronoi clusters. The crystal-like and bcc-like medium range order clusters may be the structural origin for its lower crystallization temperature compared with quenched alloy. Dynamics heterogeneity is proposed to be the microscopic origin of the dynamic nature of glass transition. Some experimental evidence and simulation have indicated that different regions of materials indeed relax at fast or slow rate. However, the spatial distribution of relaxation time visualized from the experiment as the direct evidence of heterogeneous dynamics is still challenging. We proposed to measure the structural dynamics of supercooled metallic glasses with electron correlation microscopy (ECM) technique at the nanometer scale. ECM was developed as a way to measure structural relaxation times of liquids with nanometer-scale spatial resolution using the coherent electron scattering equivalent of photon correlation spectroscopy. In chapter 6, we studied the experimental requirements of ECM to obtain reliable results. For example, the trajectory length must be at least 40 times the relaxation time to obtain a well-converged g2( t), and the time per frame must be less than 0.1 time the relaxation time to obtain sufficient sampling. ECM experiment was firstly realized in scanning transmission electron microscopy (STEM) mode and applied to measure the structural relaxation time of Pd based metallic glass. In order to overcome the drift problem and capture the spatial information, we developed ECM experiment in dark field (DF) mode. In Chapter 7, through DF-ECM, we visualized the spatially heterogeneous dynamics by in-situ heating Pt57.5Cu14.7Ni 5.3P22.5 nanowire into supercooled liquid state, and quantify the size of the heterogeneity by four-point correlation function. The thickness effect and temporal evolution of the heterogeneous domain were also discussed. Additionally, a fast near-surface dynamics was discovered, providing an effective mechanism for surface crystallization of liquids by homogeneous nucleation.

  2. An Analytic Approach to Projectile Motion in a Linear Resisting Medium

    ERIC Educational Resources Information Center

    Stewart, Sean M.

    2006-01-01

    The time of flight, range and the angle which maximizes the range of a projectile in a linear resisting medium are expressed in analytic form in terms of the recently defined Lambert W function. From the closed-form solutions a number of results characteristic to the motion of the projectile in a linear resisting medium are analytically confirmed,…

  3. On the morphology of the scattering medium as seen by MST/ST radars

    NASA Technical Reports Server (NTRS)

    Gage, K. S.

    1983-01-01

    Much is learned about the morphology of the small scale structures of the atmosphere from analysis of echoes observed by MST radars. The use of physical models enables a synthesis of diverse observations. Each model contains an implicit assumption about the nature of the irregularity structure of the medium. A comparison is made between the irregularity structure implicit in several models and what is known about the structure of the medium.

  4. Free Vibration Response Comparison of Composite Beams with Fluid Structure Interaction

    DTIC Science & Technology

    2012-09-01

    fluid damping to vibrating structures when in contact with a fluid medium such as water . The added mass effect changes the dynamic responses of the...200 words) The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as an added mass effect...INTENTIONALLY LEFT BLANK v ABSTRACT The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as

  5. Structural origin underlying poor glass forming ability of Al metallic glass

    NASA Astrophysics Data System (ADS)

    Li, F.; Liu, X. J.; Hou, H. Y.; Chen, G.; Chen, G. L.

    2011-07-01

    We performed molecular dynamics simulations to study the glass formation and local atomic structure of rapidly quenched Al. Both potential energy and structural parameters indicate that the glass transition temperature of amorphous Al is as low as 300 K, which may lead to the poor thermal stability of the amorphous Al as it is prone to crystallize even at room temperature. Voronoi polyhedra analysis reveals that the most popular polyhedron is the deformed body-centered cubic (bcc) cluster characterized by the index < 0, 3, 6, 4 > in the amorphous Al, while the icosahedron with the index < 0, 0, 12, 0 > is always predominant in bulk metallic glass formers with excellent glass forming ability (GFA). Moreover, these deformed-bcc short-range orders can make up medium-range orders via the linkage of vertex-, edge-, face-, intercrossed-shared atoms, which are believed to more easily transform into face-centered cubic (fcc) Al nanocrystal compared with the icosahedral clusters in terms of the symmetrical similarity between bcc and fcc structures. This finding could unveil the structural origin of poor GFA of Al-based alloys.

  6. Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: laboratory experiments.

    PubMed

    Hadziioannou, Céline; Larose, Eric; Coutant, Olivier; Roux, Philippe; Campillo, Michel

    2009-06-01

    Previous studies have shown that small changes can be monitored in a scattering medium by observing phase shifts in the coda. Passive monitoring of weak changes through ambient noise correlation has already been applied to seismology, acoustics, and engineering. Usually, this is done under the assumption that a properly reconstructed Green function (GF), as well as stable background noise sources, is necessary. In order to further develop this monitoring technique, a laboratory experiment was performed in the 2.5 MHz range in a gel with scattering inclusions, comparing an active (pulse-echo) form of monitoring to a passive (correlation) one. Present results show that temperature changes in the medium can be observed even if the GF of the medium is not reconstructed. Moreover, this article establishes that the GF reconstruction in the correlations is not a necessary condition: The only condition to monitoring with correlation (passive experiment) is the relative stability of the background noise structure.

  7. Marketing information system online design for craftsmen small medium enterprises (case study: craftsmen ac)

    NASA Astrophysics Data System (ADS)

    Fitriana, Rina; Kurniawan, Wawan; Barlianto, Anung; Adriansyah Putra, Rizki

    2016-02-01

    AC is small and medium enterprises which is engaged in the field of crafts. This SME (Small Medium Enterprise) didn't have an integrated information system for managing sales. This research aims to design a marketing Information system online as applications that built as web base. The integrated system is made to manage sales and expand its market share. This study uses a structured analysis and design in its approach to build systems and also implemented a marketing framework of STP (Segmentation, Targeting, Positioning) and 4P (Price, Product, Place, Promotion) to obtain market analysis. The main market target customer craftsmen AC is women aged 13 years to 35 years. The products produced by AC are shoes, brooch, that are typical of the archipelago. The prices is range from Rp. 2000 until Rp. 400.000. Marketing information system online can be used as a sales transaction document, promoting the goods, and for customer booking products.

  8. Mechanisms of the Wurtzite to Rocksalt Transformation in CdSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Grünwald, Michael; Rabani, Eran; Dellago, Christoph

    2006-06-01

    We study the pressure-driven phase transition from the four-coordinate wurtzite to the six-coordinate rocksalt structure in CdSe nanocrystals with molecular dynamics computer simulations. With an ideal gas as the pressure medium, we apply hydrostatic pressure to spherical and faceted nanocrystals ranging in diameter from 25 to 62 Å. In spherical crystals, the main mechanism of the transformation involves the sliding of (100) planes, but depending on the specific surface structure we also observe a second mechanism proceeding through the flattening of (100) planes. In faceted crystals, the transition proceeds via a five-coordinated hexagonal structure, which is stabilized at intermediate pressures due to dominant surface energetics.

  9. Coupling of free space sub-terahertz waves into dielectric slabs using PC waveguides.

    PubMed

    Ghattan, Z; Hasek, T; Shahabadi, M; Koch, M

    2008-04-28

    The paper presents theoretical and experimental results on photonic crystal structures which work under the self-collimation condition to couple free space waves into dielectric slabs in the sub-terahertz range. Using a standard machining process, two-dimensional photonic crystal structures consisting of a square array of air holes in the dielectric medium are fabricated. One of the structures has two adjacent parallel line-defects that improve the coupling efficiency. This leads to a combination of self-collimation and directional emission of electromagnetic waves. The experimental results are in good agreement with those of the Finite- Element-Method calculations. Experimentally we achieve a coupling efficiency of 63%.

  10. Conformational Effects of UV Light on DNA Origami.

    PubMed

    Chen, Haorong; Li, Ruixin; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2017-02-01

    The responses of DNA origami conformation to UV radiation of different wavelengths and doses are investigated. Short- and medium-wavelength UV light can cause photo-lesions in DNA origami. At moderate doses, the lesions do not cause any visible defects in the origami, nor do they significantly affect the hybridization capability. Instead, they help relieve the internal stress in the origami structure and restore it to the designed conformation. At high doses, staple dissociation increases which causes structural disintegration. Long-wavelength UV does not show any effect on origami conformation by itself. We show that this UV range can be used in conjunction with photoactive molecules for photo-reconfiguration, while avoiding any damage to the DNA structures.

  11. Assessment of community noise for a medium-range airplane with open-rotor engines

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Shur, M. L.; Travin, A. K.; Belyaev, I. V.; Zamtfort, B. S.; Medvedev, Yu. V.

    2017-11-01

    Community noise of a hypothetical medium-range airplane equipped with open-rotor engines is assessed by numerical modeling of the aeroacoustic characteristics of an isolated open rotor with the simplest blade geometry. Various open-rotor configurations are considered at constant thrust, and the lowest-noise configuration is selected. A two-engine medium-range airplane at known thrust of bypass turbofan engines at different segments of the takeoff-landing trajectory is considered, after the replacement of those engines by the open-rotor engines. It is established that a medium-range airplane with two open-rotor engines meets the requirements of Chapter 4 of the ICAO standard with a significant margin. It is shown that airframe noise makes a significant contribution to the total noise of an airplane with open-rotor engines at landing.

  12. Medium range order and structural relaxation in As–Se network glasses through FSDP analysis

    DOE PAGES

    Golovchak, R.; Lucas, P.; Oelgoetz, J.; ...

    2015-01-13

    We performed synchrotron X-ray diffraction and neutron scattering studies on As-Se glasses in two states: as-prepared (rejuvenated) and aged for similar to 27 years. The first sharp diffraction peak (FSDP) obtained from the structure factor data as a function of composition and temperature indicates that the cooperative processes that are responsible for structural relaxation do not affect FSDP. The results are correlated with the composition dependence of the complex heat capacity of the glasses and concentration of different structural fragments in the glass network. Furthermore, the comparison of structural information shows that density fluctuations, which were thought previously to havemore » a significant contribution to FSDP, have much smaller effect than the cation-cation correlations, presence of ordered structural fragments or cage molecules.« less

  13. Characterization of Residual Medium Peptides from Yersinia pestis Cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clowers, Brian H.; Wunschel, David S.; Kreuzer, Helen W.

    2013-04-03

    Using a range of common microbial medium formulations (TSB, BHI, LB, and G-media), two attenuated strains of Y. pestis (KIM D27 (pgm-) and KIMD1 lcr-) were cultivated in triplicate. These cellular suspensions were used to develop a method of extracting residual medium peptides from the final microbial preparation to assess their relative abundance and identity. Across the conditions examined, which included additional cellular washing and different forms of microbial inactivation, residual medium peptides were detected. Despite the range of growth medium sources used and the associated manufacturing processes used in their production, a high degree of peptide similarity was observedmore » for a given medium recipe. These results demonstrate that residual medium peptides are retained using traditional microbial cultivation techniques and may be used to inform forensic investigations with respect to production deduction.« less

  14. The Atomic to Molecular Transition in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2012-01-01

    Study of H2 in UV and IR continues to surprise us with complexity of excitation state, OPR, and role in astrochemistry. Atomic H in molecular clouds is a very powerful tool suggesting that they are not "young" but that it takes millions of years to convert primarily atomic hydrogen clouds to 99.9% molecular form. Laboratory data suggests that H2 formation is efficient over broader range of temperatures than thought to be the case a few years ago, but range is still limited. Issues of complex grain morphology and surface structure make this a very difficult field in which to obtain definitively meaningful results. Ongoing and future observations of CI and CII will improve our understanding of the structure of clouds, their total mass, and how they have evolved and will continue to do so.

  15. Involvement of two specific causes of cell mortality in freeze-thaw cycles with freezing to -196 degrees C.

    PubMed

    Dumont, Frédéric; Marechal, Pierre-André; Gervais, Patrick

    2006-02-01

    The purpose of this study was to examine cell viability after freezing. Two distinct ranges of temperature were identified as corresponding to stages at which yeast cell mortality occurred during freezing to -196 degrees C. The upper temperature range was related to the temperature of crystallization of the medium, which was dependent on the solute concentration; in this range mortality was prevented by high solute concentrations, and the proportion of the medium in the vitreous state was greater than the proportion in the crystallized state. The lower temperature range was related to recrystallization that occurred during thawing. Mortality in this temperature range was increased by a high cooling rate and/or high solute concentration in the freezing medium and a low temperature (less than -70 degrees C). However, a high rate of thawing prevented yeast mortality in this lower temperature range. Overall, it was found that cell viability could be conserved better under freezing conditions by increasing the osmotic pressure of the medium and by using an increased warming rate.

  16. Involvement of Two Specific Causes of Cell Mortality in Freeze-Thaw Cycles with Freezing to −196°C

    PubMed Central

    Dumont, Frédéric; Marechal, Pierre-André; Gervais, Patrick

    2006-01-01

    The purpose of this study was to examine cell viability after freezing. Two distinct ranges of temperature were identified as corresponding to stages at which yeast cell mortality occurred during freezing to −196°C. The upper temperature range was related to the temperature of crystallization of the medium, which was dependent on the solute concentration; in this range mortality was prevented by high solute concentrations, and the proportion of the medium in the vitreous state was greater than the proportion in the crystallized state. The lower temperature range was related to recrystallization that occurred during thawing. Mortality in this temperature range was increased by a high cooling rate and/or high solute concentration in the freezing medium and a low temperature (less than −70°C). However, a high rate of thawing prevented yeast mortality in this lower temperature range. Overall, it was found that cell viability could be conserved better under freezing conditions by increasing the osmotic pressure of the medium and by using an increased warming rate. PMID:16461684

  17. INTERPRETATION OF THE STRUCTURE FUNCTION OF ROTATION MEASURE IN THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Siyao; Zhang, Bing, E-mail: syxu@pku.edu.cn, E-mail: zhang@physics.unlv.edu

    2016-06-20

    The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian and Pogosyan are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when themore » SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent magnetic field in the interstellar medium. We identify the spectral break of RM SFs as the inner scale of a shallow spectrum of electron density fluctuations, which characterizes the typical size of discrete electron density structures in the observed region.« less

  18. Cooling rate effects in sodium silicate glasses: Bridging the gap between molecular dynamics simulations and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xin; Song, Weiying; Yang, Kai; Krishnan, N. M. Anoop; Wang, Bu; Smedskjaer, Morten M.; Mauro, John C.; Sant, Gaurav; Balonis, Magdalena; Bauchy, Mathieu

    2017-08-01

    Although molecular dynamics (MD) simulations are commonly used to predict the structure and properties of glasses, they are intrinsically limited to short time scales, necessitating the use of fast cooling rates. It is therefore challenging to compare results from MD simulations to experimental results for glasses cooled on typical laboratory time scales. Based on MD simulations of a sodium silicate glass with varying cooling rate (from 0.01 to 100 K/ps), here we show that thermal history primarily affects the medium-range order structure, while the short-range order is largely unaffected over the range of cooling rates simulated. This results in a decoupling between the enthalpy and volume relaxation functions, where the enthalpy quickly plateaus as the cooling rate decreases, whereas density exhibits a slower relaxation. Finally, we show that, using the proper extrapolation method, the outcomes of MD simulations can be meaningfully compared to experimental values when extrapolated to slower cooling rates.

  19. Study of cobalt mononitride thin films prepared using DC and high power impulse magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Rachana, E-mail: dr.rachana.gupta@gmail.com; Pandey, Nidhi; Behera, Layanta

    2016-05-23

    In this work we studied cobalt mononitride (CoN) thin films deposited using dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS). A Co target was sputtered using pure N{sub 2} gas alone as the sputtering medium. Obtained long-range structural ordering was studies using x-ray diffraction (XRD), short-range structure using Co L{sub 2,3} and N K absorption edges using soft x-ray absorption spectroscopy (XAS) and the surface morphology using atomic force microscopy (AFM). It was found that HiPIMS deposited films have better long-range ordering, better stoichiometric ratio for mononitride composition and smoother texture as compared to dcMS deposited films.more » In addition, the thermal stability of HiPIMS deposited CoN film seems to be better. On the basis of different type of plasma conditions generated in HiPIMS and dcMS process, obtained results are presented and discussed.« less

  20. Fluid-structure interactions of photo-responsive polymer cantilevers

    NASA Astrophysics Data System (ADS)

    Bin, Jonghoon; Oates, William S.; Yousuff Hussaini, M.

    2013-02-01

    A new class of photomechanical liquid crystal networks (LCNs) has emerged, which generate large bending deformation and fast response times that scale with the resonance of the polymer films. Here, a numerical study is presented that describes the photomechanical structural dynamic behavior of an LCN in a fluid medium; however, the methodology is also applicable to fluid-structure interactions of a broader range of adaptive structures. Here, we simulate the oscillation of photomechanical cantilevers excited by light while simultaneously modeling the effect of the surrounding fluid at different ambient pressures. The photoactuated LCN is modeled as an elastic thin cantilever plate, and gradients in photostrain from the external light are computed from the assumptions of light absorption and photoisomerization through the film thickness. Numerical approximations of the equations governing the plate are based on cubic B-spline shape functions and a second order implicit Newmark central scheme for time integration. For the fluid, three dimensional unsteady incompressible Navier-Stokes equations are solved using the arbitrary Lagrangian-Eulerian (ALE) method, which employs a structured body-fitted curvilinear coordinate system where the solid-fluid interface is a mesh line of the system, and the complicated interface boundary conditions are accommodated in a conventional finite-volume formulation. Numerical examples are given which provide new insight into material behavior in a fluid medium as a function of ambient pressure.

  1. Porous polymer media

    DOEpatents

    Shepodd, Timothy J.

    2002-01-01

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  2. New generation of the health monitoring system SMS 2001

    NASA Astrophysics Data System (ADS)

    Berndt, Rolf-Dietrich; Schwesinger, Peter

    2001-08-01

    The Structure Monitoring System SMS 2001 (applied for patent) represents a modular structured multi-component measurement devise for use under outdoor conditions. Besides usual continuously (static) measurements of e.g. environmental parameters and structure related responses the SMS is able to register also short term dynamic events automatically with measurement frequencies up to 1 kHz. A larger range of electrical sensors is able to be used. On demand a solar based power supply can be realized. The SMS 2001 is adaptable in a wide range, it is space-saving in its geometric structure and can meet very various demands of the users. The system is applicable preferably for small and medium sized concrete and steel structures (besides buildings and bridges also for special cases). It is suitable to support the efficient concept of a controlled life time extension especially in the case of pre-damaged structures. The interactive communication between SMS and the central office is completely remote controlled. Two point or multi-point connections using the internet can be realized. The measurement data are stored in a central data bank. A safe access supported by software modules can be organized in different levels, e.g. for scientific evaluation, service reasons or needs of authorities.

  3. Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications.

    PubMed

    Min, Qiao; Chen, Chengkun; Berini, Pierre; Gordon, Reuven

    2010-08-30

    We show that long-range surface plasmons (LRSPs) are supported in a physically asymmetric thin film structure, consisting of a low refractive index medium on a metal slab, supported by a high refractive index dielectric layer (membrane) over air, as a suspended waveguide. For design purposes, an analytic formulation is derived in 1D yielding a transcendental equation that ensures symmetry of the transverse fields of the LRSP within the metal slab by constraining its thicknesses and that of the membrane. Results from the formulation are in quantitative agreement with transfer matrix calculations for a candidate slab waveguide consisting of an H(2)O-Au-SiO(2)-air structure. Biosensor-relevant figures of merit are compared for the asymmetric and symmetric structures, and it is found that the asymmetric structure actually improves performance, despite higher losses. The finite difference method is also used to analyse metal stripes providing 2D confinement on the structure, and additional constraints for non-radiative LRSP guiding thereon are discussed. These results are promising for sensors that operate with an aqueous solution that would otherwise require a low refractive index-matched substrate for the LRSP.

  4. Hard QCD processes in the nuclear medium

    NASA Astrophysics Data System (ADS)

    Freese, Adam

    The environment inside the atomic nucleus is one of the most fascinating arenas for the study of quantum chromodynamics (QCD). The strongly-interacting nature of the nuclear medium a?ects the nature of both QCD processes and the quark-gluon structure of hadrons, allowing several unique aspects of the strong nuclear force to be investigated in reactions involving nuclear targets. The research presented in this dissertation explores two aspects of nuclear QCD: firstly, the partonic structure of the nucleus itself; and secondly, the use of the nucleus as a micro-laboratory in which QCD processes can be studied. The partonic structure of the nucleus is calculated in this work by deriving and utilizing a convolution formula. The hadronic structure of the nucleus and the quark-gluon structure of its constituent nucleons are taken together to determine the nuclear partonic structure. Light cone descriptions of short range correlations, in terms of both hadronic and partonic structure, are derived and taken into account. Medium modifications of the bound nucleons are accounted for using the color screening model, and QCD evolution is used to connect nuclear partonic structure at vastly di?erent energy scales. The formalism developed for calculating nuclear partonic structure is applied to inclusive dijet production from proton-nucleus collisions at LHC kinematics, and novel predictions are calculated and presented for the dijet cross section. The nucleus is investigated as a micro-laboratory in vector meson photoproduction reactions. In particular, the deuteron is studied in the break-up reaction gammad → Vpn, for both the φ(1020) and J/v vector mesons. The generalized eikonal approximation is utilized, allowing unambiguous separation of the impulse approximation and final state interactions (FSIs). Two peaks or valleys are seen in the angular distribution of the reaction cross section, each of which is due to an FSI between either the proton and neutron, or the produced vector meson and the spectator nucleon. The presence and size of the latter FSI valley/peak contains information about the meson-nucleon interaction, and it is shown that several models of this interaction can be distinguished by measuring the angular distribution for the deuteron breakup reaction.

  5. Specific features of electrical properties of porous biocarbons prepared from beech wood and wood artificial fiberboards

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Orlova, T. S.; Magarino, E. Enrique; Bautista, M. A.; Martínez-Fernández, J.

    2011-02-01

    This paper reports on comparative investigations of the structural and electrical properties of biomorphic carbons prepared from natural beech wood, as well as medium-density and high-density fiberboards, by means of carbonization at different temperatures T carb in the range 650-1000°C. It has been demonstrated using X-ray diffraction analysis that biocarbons prepared from medium-density and high-density fiberboards at all temperatures T carb contain a nanocrystalline graphite component, namely, three-dimensional crystallites 11-14 Å in size. An increase in the carbonization temperature T carb to 1000°C leads to the appearance of a noticeable fraction of two-dimensional graphene particles with the same sizes. The temperature dependences of the electrical resistivity ρ of the biomorphic carbons have been measured and analyzed in the temperature range 1.8-300 K. For all types of carbons under investigation, an increase in the carbonization temperature T carb from 600 to 900°C leads to a change in the electrical resistivity at T = 300 K by five or six orders of magnitude. The dependences ρ( T) for these materials are adequately described by the Mott law for the variable-range hopping conduction. It has been revealed that the temperature dependence of the electrical resistivity exhibits a hysteresis, which has been attributed to thermomechanical stresses in an inhomogeneous structure of the biocarbon prepared at a low carbonization temperature T carb. The crossover to the conductivity characteristic of disordered metal systems is observed at T carb ≳ 1000°C.

  6. Substitution Structures of Large Molecules and Medium Range Correlations in Quantum Chemistry Calculations

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Pate, Brooks

    2017-06-01

    A study of the minimally exciting topic of agreement between experimental and measured rotational constants of molecules was performed on a set of large molecules with 16-18 heavy atoms (carbon and oxygen). The molecules are: nootkatone (C_{15}H_{22}O), cedrol (C_{15}H_{26}O), ambroxide (C_{16}H_{28}O), sclareolide (C_{16}H_{22}O_{2}), and dihydroartemisinic acid (C_{15}H_{24}O_{2}). For this set of molecules we obtained 13C-subsitution structures for six molecules (this includes two conformers of nootkatone). A comparison of theoretical structures and experimental substitution structures was performed in the spirit of the recent work of Grimme and Steinmetz.[1] Our analysis focused the center-of-mass distance of the carbon atoms in the molecules. Four different computational methods were studied: standard DFT (B3LYP), dispersion corrected DFT (B3LYP-D3BJ), hybrid DFT with dispersion correction (B2PLYP-D3), and MP2. A significant difference in these theories is how they handle medium range correlation of electrons that produce dispersion forces. For larger molecules, these dispersion forces produce an overall contraction of the molecule around the center-of-mass. DFT poorly treats this effect and produces structures that are too expanded. MP2 calculations overestimate the correction and produce structures that are too compact. Both dispersion corrected DFT methods produce structures in excellent agreement with experiment. The analysis shows that the difference in computational methods can be described by a linear error in the center-of-mass distance. This makes it possible to correct poorer performing calculations with a single scale factor. We also reexamine the issue of the "Costain error" in substitution structures and show that it is significantly larger in these systems than in the smaller molecules used by Costain to establish the error limits. [1] Stefan Grimme and Marc Steinmetz, "Effects of London dispersion correction in density functional theory on structures of organic molecules in the gas phase", Phys. Chem. Chem. Phys. 15, 16031-16042 (2013).

  7. Geometry and surface controlled formation of nanoparticle helical ribbons

    NASA Astrophysics Data System (ADS)

    Pham, Jonathan; Lawrence, Jimmy; Lee, Dong; Grason, Gregory; Emrick, Todd; Crosby, Alfred

    2013-03-01

    Helical structures are interesting because of their space efficiency, mechanical tunability and everyday uses in both the synthetic and natural world. In general, the mechanisms governing helix formation are limited to bilayer material systems and chiral molecular structures. However, in a special range of dimensions where surface energy dominates (i.e. high surface to volume ratio), geometry rather than specific materials can drive helical formation of thin asymmetric ribbons. In an evaporative assembly technique called flow coating, based from the commonly observed coffee ring effect, we create nanoparticle ribbons possessing non-rectangular nanoscale cross-sections. When released into a liquid medium of water, interfacial tension between the asymmetric ribbon and water balances with the elastic cost of bending to form helices with a preferred radius of curvature and a minimum pitch. We demonstrate that this is a universal mechanism that can be used with a wide range of materials, such as quantum dots, metallic nanoparticles, or polymers. Nanoparticle helical ribbons display excellent structural integrity with spring-like characteristics and can be extended high strains.

  8. Temperature Dependent Rubidium Helium Line Shapes and Fine Structure Mixing Rates

    DTIC Science & Technology

    2015-09-01

    that uses alkali metal vapor as a gain medium and a buffer gas to control the line shape and kinetics. While these systems were first demonstrated in...noble gas interactions with a high degree of accuracy. The physical parameters of interest here include pressure broadening (γ), pressure shift (δ...optical transitions between the two excited states. This collisional partner is a gas mixture that is pumped into the cell. The gases used range from

  9. Temperature Dependent Rubidium-Helium Line Shapes and Fine Structure Mixing Rates

    DTIC Science & Technology

    2015-09-17

    that uses alkali metal vapor as a gain medium and a buffer gas to control the line shape and kinetics. While these systems were first demonstrated in...noble gas interactions with a high degree of accuracy. The physical parameters of interest here include pressure broadening (γ), pressure shift (δ...optical transitions between the two excited states. This collisional partner is a gas mixture that is pumped into the cell. The gases used range from

  10. Thermomechanical Processing of Structural Steels with Dilute Niobium Additions

    NASA Astrophysics Data System (ADS)

    Cui, Z.; Patel, J.; Palmiere, E. J.

    The recrystallisation behaviour of medium carbon steels with dilute Nb addition was investigated by means of plane strain compression tests and the observation of prior austenite microstructures during different deformation conditions. It was found that complete suppression of recrystallisation did not occur in the deformation temperature range investigated. At lower deformation temperatures, partial recrystallisation occurred in the higher Nb sample. This gives the potential to obtain a full suppression of recrystallisation at lower deformation temperatures.

  11. RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zankovich, A. M.; Kovalenko, I. G., E-mail: ilya.g.kovalenko@gmail.com

    2015-02-10

    We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20,more » with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.« less

  12. Development and benchmarking of TASSER(iter) for the iterative improvement of protein structure predictions.

    PubMed

    Lee, Seung Yup; Skolnick, Jeffrey

    2007-07-01

    To improve the accuracy of TASSER models especially in the limit where threading provided template alignments are of poor quality, we have developed the TASSER(iter) algorithm which uses the templates and contact restraints from TASSER generated models for iterative structure refinement. We apply TASSER(iter) to a large benchmark set of 2,773 nonhomologous single domain proteins that are < or = 200 in length and that cover the PDB at the level of 35% pairwise sequence identity. Overall, TASSER(iter) models have a smaller global average RMSD of 5.48 A compared to 5.81 A RMSD of the original TASSER models. Classifying the targets by the level of prediction difficulty (where Easy targets have a good template with a corresponding good threading alignment, Medium targets have a good template but a poor alignment, and Hard targets have an incorrectly identified template), TASSER(iter) (TASSER) models have an average RMSD of 4.15 A (4.35 A) for the Easy set and 9.05 A (9.52 A) for the Hard set. The largest reduction of average RMSD is for the Medium set where the TASSER(iter) models have an average global RMSD of 5.67 A compared to 6.72 A of the TASSER models. Seventy percent of the Medium set TASSER(iter) models have a smaller RMSD than the TASSER models, while 63% of the Easy and 60% of the Hard TASSER models are improved by TASSER(iter). For the foldable cases, where the targets have a RMSD to the native <6.5 A, TASSER(iter) shows obvious improvement over TASSER models: For the Medium set, it improves the success rate from 57.0 to 67.2%, followed by the Hard targets where the success rate improves from 32.0 to 34.8%, with the smallest improvement in the Easy targets from 82.6 to 84.0%. These results suggest that TASSER(iter) can provide more reliable predictions for targets of Medium difficulty, a range that had resisted improvement in the quality of protein structure predictions. 2007 Wiley-Liss, Inc.

  13. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  14. Medium effect on the characteristics of the coupled seismic and electromagnetic signals.

    PubMed

    Huang, Qinghua; Ren, Hengxin; Zhang, Dan; Chen, Y John

    2015-01-01

    Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals.

  15. Medium effect on the characteristics of the coupled seismic and electromagnetic signals

    PubMed Central

    HUANG, Qinghua; REN, Hengxin; ZHANG, Dan; CHEN, Y. John

    2015-01-01

    Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals. PMID:25743062

  16. Post-traumatic stress symptoms and structure among orphan and vulnerable children and adolescents in Zambia.

    PubMed

    Familiar, Itziar; Murray, Laura; Gross, Alden; Skavenski, Stephanie; Jere, Elizabeth; Bass, Judith

    2014-11-01

    Scant information exists on PTSD symptoms and structure in youth from developing countries. We describe the symptom profile and exposure to trauma experiences among 343 orphan and vulnerable children and adolescents from Zambia. We distinguished profiles of post-traumatic stress symptoms using latent class analysis. Average number of trauma-related symptoms (21.6; range 0-38) was similar across sex and age. Latent class model suggested 3 classes varying by level of severity: low (31% of the sample), medium (45% of the sample), and high (24% of the sample) symptomatology. Results suggest that PTSD is a continuously distributed latent trait.

  17. Liquid Structures and Physical Properties -- Ground Based Studies for ISS Experiments

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Bendert, J. C.; Mauro, N. A.

    2012-01-01

    Studies of electrostatically-levitated supercooled liquids have demonstrated strong short- and medium-range ordering in transition metal and alloy liquids, which can influence phase transitions like crystal nucleation and the glass transition. The structure is also related to the liquid properties. Planned ISS experiments will allow a deeper investigation of these results as well as the first investigations of a new type of coupling in crystal nucleation in primary crystallizing liquids, resulting from a linking of the stochastic processes of diffusion with interfacial-attachment. A brief description of the techniques used for ground-based studies and some results relevant to planned ISS investigations are discussed.

  18. Using granular C0-AI2O3 spacer for optimization of functional parameters of the FeMn/Fe20Ni80 magnetoresistive films

    NASA Astrophysics Data System (ADS)

    Gorkovenko, A. N.; Lepalovskij, V. N.; Adanakova, O. A.; Vas'kovskiy, V. O.

    2016-03-01

    In this paper we studied the possibility of tailoring the functional properties of the multilayer magnetoresistive medium with unidirectional anisotropy and the anisotropic magnetoresistance effect (AMR). Objects of the research were composite Co-Al2O3 films and Ta/Fe20Ni80/Fe50Mn50/Fe20Ni80/Co-Al2O3/Fe20Ni80/Ta multilayers structures obtained by magnetron sputtering and selectively subjected vacuum annealing. Structure, magnetic and magnetoresistive properties of the films in the temperature range 77÷440 K were investigated.

  19. First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site.

    PubMed

    Sharafi, Hakimeh; Abdoli, Mahya; Hajfarajollah, Hamidreza; Samie, Nima; Alidoust, Leila; Abbasi, Habib; Fooladi, Jamshid; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2014-07-01

    A biosurfactant-producing thermophile was isolated from the Kahrizak landfill of Tehran and identified as a bacterium belonging to the genus Aneurinibacillus. A thermostable lipopeptide-type biosurfactant was purified from the culture medium of this bacterium and showed stability in the temperature range of 20-90 °C and pH range of 5-10. The produced biosurfactant could reduce the surface tension of water from 72 to 43 mN/m with a CMC of 1.21 mg/mL. The strain growing at a temperature of 45 °C produces a substantial amount of 5 g/L of biosurfactant in the medium supplemented with sunflower oil as the sole carbon source. Response surface methodology was employed to optimize the biosurfactant production using sunflower oil, sodium nitrate, and yeast extract as variables. The optimization resulted in 6.75 g/L biosurfactant production, i.e., 35% improved as compared to the unoptimized condition. Thin-layer chromatography, FTIR spectroscopy, 1H-NMR spectroscopy, and biochemical composition analysis confirmed the lipopeptide structure of the biosurfactant.

  20. Hexagonal and prismatic nanowalled ZnO microboxes.

    PubMed

    Zhao, Fenghua; Lin, Wenjiao; Wu, Mingmei; Xu, Ningsheng; Yang, Xianfeng; Tian, Z Ryan; Su, Qiang

    2006-04-17

    We hereby report hydrothermal syntheses of new microstructures of semiconducting ZnO. Single-crystalline prismatic ZnO microboxes formed by nanowalls and hexagonal hollow microdisks closed by plates with micron-sized inorganic fullerene-like structures have been made in a base-free medium through a one-step hydrothermal synthesis with the help of n-butanol (NB). Structures and morphologies of the products were confirmed by results from powder X-ray diffraction and scanning electron microscopy. NB has been found to play a crucial role in the growth of these hollow structures. It is indicated that these hollow ZnO crystals were grown from redissolution of interiors. These ZnO microboxes exhibit a band emission in the visible range, implying the possession of a high content of defects.

  1. Correlations between dynamics and atomic structures in Cu64.5Zr35.5 metallic glass

    NASA Astrophysics Data System (ADS)

    Wang, C. Z.; Zhang, Y.; Zhang, F.; Mendelev, M. I.; Kramer, M. J.; Ho, K. M.

    2015-03-01

    The atomic structure of Cu-Zr metallic glasses (MGs) has been widely accepted to be heterogeneous and dominated by icosahedral short range order (ISRO). However, the correlations between dynamics and atomic structures in Cu-Zr MGs remain an enigma. Using molecular dynamics (MD) simulations, we investigated the correlations between dynamics and atomic structures in Cu64.5Zr35.5 MG. The atomic structures are characterized using ISRO and the Bergman-type medium range order (BMRO). The simulation and analysis results show that the majority of the mobile atoms are not involved in ISRO or BMRO, indicating that the dynamical heterogeneity has a strong correlation to structural heterogeneity. Moreover, we found that the localized soft vibration modes below 1.0 THz are mostly concentrated on the mobile atoms. The diffusion was studied using the atomic trajectory collected in an extended time interval of 1.2 μs at 700 K in MD simulations. It was found that the long range diffusion in MGs is highly heterogeneous, which is confined to the liquid-like regions and strongly avoids the ISRO and the Bergman-type MRO. All These results clearly demonstrate strong correlations between dynamics (in terms of dynamical heterogeneity and diffusion) and atomic structures in Cu64.5Zr35.5 MGs. This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering under the Contract No. DE-AC02-07CH11358.

  2. Modified PEHPS medium as an alternative for the in vitro culture of Giardia lamblia.

    PubMed

    Vargas-Villarreal, Javier; Mata-Cárdenas, Benito D; Hernández-García, Magda E; Garza-González, Jesús N; De La Garza-Salinas, Laura H; González-Salazar, Francisco

    2014-01-01

    Commercial culture media present interlot variations in biological activity. We have previously designed a homemade and economic culture medium, PEHPS medium, for the axenic cultivation of Entamoeba histolytica and Trichomonas vaginalis. Trophozoites of amoebae and trichomonads grow well in this medium. Furthermore, the medium is stable for several months when stored frozen or refrigerated. The objective of this work was to modify PEHPS medium to support the in vitro growth of Giardia lamblia. Inocula of 5 × 10(3) trophozoites/mL of G. lamblia were incubated at 36.5°C in modified PEHPS or TYI-S-33 medium. Then, the growths of the three Giardia strains in both media were compared. The logarithmic growth phase lasted 72 h; the mean yield of the strains ranged from 10.06 to 11.43 × 10(5) Giardia trophozoites/mL, and the range of duplication time in the three strains was from 5.67 to 6.06 in modified PEHPS medium. These growth characteristics were not significantly different from those obtained with TYI-S-33 medium. We conclude that modified PEHPS medium might be used for the axenic cultivation of G. lamblia.

  3. Physical structure changes of solid medium by steam explosion sterilization.

    PubMed

    Zhao, Zhi-Min; Wang, Lan; Chen, Hong-Zhang

    2016-03-01

    Physical structure changes of solid medium were investigated to reveal effects of steam explosion sterilization on solid-state fermentation (SSF). Results indicated that steam explosion changed the structure of solid medium at both molecular and three-dimensional structural levels, which exposed hydrophilic groups and enlarged pores and cavities. It was interesting to find that pores where capillary water located were the active sites for SSF, due to the close relationship among capillary water relaxation time, specific surface area and fermentation performance. Therefore, steam explosion sterilization increased the effective contact area for microbial cells on solid medium, which contributed to improving SSF performance. Combined with the previous research, mechanisms of SSF improvement by steam explosion sterilization contained both chemical and physical effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Review of Plasmonic Nanocomposite Metamaterial Absorber

    PubMed Central

    Hedayati, Mehdi Keshavarz; Faupel, Franz; Elbahri, Mady

    2014-01-01

    Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface _lasmon). These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on) perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented. PMID:28788511

  5. Ionization of Local Interstellar Gas Based on STIS and FUSE spectra of Nearby Stars

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Linsky, J. L.

    2009-01-01

    The ultraviolet contains many resonance line transitions that are sensitive to a range of ionization stages of ions present in the local interstellar medium (LISM). We couple observations of high resolution ultraviolet spectrographs, STIS and GHRS on the Hubble Space Telescope (HST) and the Far-Ultraviolet Spectroscopic Explorer (FUSE) in order to make a comprehensive survey of the ionization structure of the local interstellar medium. In particular, we focus on the sight line toward G191-B2B, a nearby (69 pc) white dwarf. We present interstellar detections of highly ionized elements (e.g., SiIII, CIII, CIV, etc) and compare them directly to neutral or singly ionized LISM detections (e.g., SiII, CII, etc). The extensive observations of G191-B2B provides an opportunity for a broad study of ionization stages of several elements, while a survey of several sight lines provides a comprehensive look at the ionization structure of the LISM. We acknowledge support for this project through NASA FUSE Grant NNX06AD33G.

  6. Elastic scattering spectroscopy of coagulated brain tissues

    NASA Astrophysics Data System (ADS)

    Ateş, Filiz; Tabakoğlu, Haşim Özgür; Bozkulak, Özgüncem; Canpolat, Murat; Gülsoy, Murat

    2006-02-01

    The goal of this study was to differentiate the parts of lamb brain according to elastic scattering spectroscopy and detect the optical alterations due to coagulation. Cells and tissues are not uniform and have complex structures and shapes. They can be referred to as scattering particles. The process of scattering depends on the light wavelength and on the scattering medium properties; especially on the size and the density of the medium. When elastic scattering spectroscopy (ESS) is employed, the morphological alterations of tissues can be detected using spectral measurements of the elastic scattered light over a wide range of wavelengths. In this study firstly, the slopes of ESS spectra were used to differentiate the parts of lamb brains (brainstem, cerebellum, gray matter, white matter) in vitro in the range of 450 - 750 nm. Secondly, tissues were coagulated at different temperatures (45, 60, and 80 °C) and ESS spectra were taken from native and coagulated tissues. It was observed that as the coagulation temperature increased, the slope of the elastic scattering spectra decreased. Thus, optical properties of tissues were changed with respect to the change in nuclear to cytoplasmic ratio due to the water loss. Results showed that the slopes of ESS spectra in the visible range revealed valuable information about the morphological changes caused by coagulation.

  7. Maximizing the Efficiency of MAGTF Airlift Capacity in WestPac

    DTIC Science & Technology

    2013-03-27

    respectively, cover the realm of medium-long range, medium lift capabilities. The UC -35 and the UC -12 aircraft, for short-medium range, light lift...requirements, are variations similar to the Cessna Citation and Beechcraft King Air respectively. In addition, the upgraded UC -12W model possesses an...airlift are resident to the VMGR and H&HS squadrons, specifically, the KC-130 and the OSA C- 12 and UC -35 aircraft, respectively. Each of these units

  8. 8. A MEDIUM RANGE VIEW, LOOKING NORTH, OF THE UNDERSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. A MEDIUM RANGE VIEW, LOOKING NORTH, OF THE UNDERSIDE OF THE BRIDGE, SHOWING THE PIER, GRAFFITI ON THE DOWNSTREAM SIDE AND THE CAST BRACKETS SUPPORTS. - Cement Plant Road Bridge, Spanning Leatherwood Creek on County Road 50 South, Bedford, Lawrence County, IN

  9. Fine Structure of Anomalously Intense Pulses of PSR J0814+7429 Radio Emission in the Decameter Range

    NASA Astrophysics Data System (ADS)

    Skoryk, A. O.; Ulyanov, O. M.; Zakharenko, V. V.; Shevtsova, A. I.; Vasylieva, I. Y.; Plakhov, M. S.; Kravtsov, I. M.

    2017-06-01

    Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (B0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations. Design/methodology/approach: The scattering measure in the interstellar plasma have been estimated using the spectral and correlation analyses of pulsar data recorded by the UTR-2 radio telescope. Results: Two characteristic time scales of the anomalously intense pulses fine structure of the PSR J0814+7429 radio emission have been found. The strongest pulses of this pulsar in the decameter range can have a duration of about t 2÷3 ms. These pulses are emitted in short series. In some cases, they are emitted over the low-intensity plateau consisting of the “long” subpulse component. Conclusions: The narrowest correlation scale of pulsar J0814+7429 radio emission corresponds to the doubled scattering time constant of the interstellar medium impulse response. Broader scale of the fine structure of its radio emission can be explained by the radiation of a short series of narrow pulses or relatively broad pulses inside this pulsar magnetosphere.

  10. Solution structure of Syrian hamster prion protein rPrP(90-231).

    PubMed

    Liu, H; Farr-Jones, S; Ulyanov, N B; Llinas, M; Marqusee, S; Groth, D; Cohen, F E; Prusiner, S B; James, T L

    1999-04-27

    NMR has been used to refine the structure of Syrian hamster (SHa) prion protein rPrP(90-231), which is commensurate with the infectious protease-resistant core of the scrapie prion protein PrPSc. The structure of rPrP(90-231), refolded to resemble the normal cellular isoform PrPC spectroscopically and immunologically, has been studied using multidimensional NMR; initial results were published [James et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 10086-10091]. We now report refinement with better definition revealing important structural and dynamic features which can be related to biological observations pertinent to prion diseases. Structure refinement was based on 2778 unambiguously assigned nuclear Overhauser effect (NOE) connectivities, 297 ambiguous NOE restraints, and 63 scalar coupling constants (3JHNHa). The structure is represented by an ensemble of 25 best-scoring structures from 100 structures calculated using ARIA/X-PLOR and further refined with restrained molecular dynamics using the AMBER 4.1 force field with an explicit shell of water molecules. The rPrP(90-231) structure features a core domain (residues 125-228), with a backbone atomic root-mean-square deviation (RMSD) of 0.67 A, consisting of three alpha-helices (residues 144-154, 172-193, and 200-227) and two short antiparallel beta-strands (residues 129-131 and 161-163). The N-terminus (residues 90-119) is largely unstructured despite some sparse and weak medium-range NOEs implying the existence of bends or turns. The transition region between the core domain and flexible N-terminus, i.e., residues 113-128, consists of hydrophobic residues or glycines and does not adopt any regular secondary structure in aqueous solution. There are about 30 medium- and long-range NOEs within this hydrophobic cluster, so it clearly manifests structure. Multiple discrete conformations are evident, implying the possible existence of one or more metastable states, which may feature in conversion of PrPC to PrPSc. To obtain a more comprehensive picture of rPrP(90-231), dynamics have been studied using amide hydrogen-deuterium exchange and 15N NMR relaxation times (T1 and T2) and 15N{1H} NOE measurements. Comparison of the structure with previous reports suggests sequence-dependent features that may be reflected in a species barrier to prion disease transmission.

  11. Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grisewood, Matthew J.; Hernández-Lozada, Néstor J.; Thoden, James B.

    Enzyme and metabolic engineering offer the potential to develop biocatalysts for converting natural resources to a wide range of chemicals. To broaden the scope of potential products beyond natural metabolites, methods of engineering enzymes to accept alternative substrates and/or perform novel chemistries must be developed. DNA synthesis can create large libraries of enzyme-coding sequences, but most biochemistries lack a simple assay to screen for promising enzyme variants. Our solution to this challenge is structure-guided mutagenesis, in which optimization algorithms select the best sequences from libraries based on specified criteria (i.e., binding selectivity). We demonstrate this approach by identifying medium-chain (C8–C12)more » acyl-ACP thioesterases through structure-guided mutagenesis. Medium-chain fatty acids, which are products of thioesterase-catalyzed hydrolysis, are limited in natural abundance, compared to long-chain fatty acids; the limited supply leads to high costs of C6–C10 oleochemicals such as fatty alcohols, amines, and esters. Here, we applied computational tools to tune substrate binding of the highly active ‘TesA thioesterase in Escherichia coli. We used the IPRO algorithm to design thioesterase variants with enhanced C12 or C8 specificity, while maintaining high activity. After four rounds of structure-guided mutagenesis, we identified 3 variants with enhanced production of dodecanoic acid (C12) and 27 variants with enhanced production of octanoic acid (C8). The top variants reached up to 49% C12 and 50% C8 while exceeding native levels of total free fatty acids. A comparably sized library created by random mutagenesis failed to identify promising mutants. The chain length-preference of ‘TesA and the best mutant were confirmed in vitro using acyl-CoA substrates. Molecular dynamics simulations, confirmed by resolved crystal structures, of ‘TesA variants suggest that hydrophobic forces govern ‘TesA substrate specificity. Finally, we expect the design rules that we uncovered and the thioesterase variants that we identified will be useful to metabolic engineering projects aimed at sustainable production of medium-chain-length oleochemicals.« less

  12. Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids

    DOE PAGES

    Grisewood, Matthew J.; Hernández-Lozada, Néstor J.; Thoden, James B.; ...

    2017-04-20

    Enzyme and metabolic engineering offer the potential to develop biocatalysts for converting natural resources to a wide range of chemicals. To broaden the scope of potential products beyond natural metabolites, methods of engineering enzymes to accept alternative substrates and/or perform novel chemistries must be developed. DNA synthesis can create large libraries of enzyme-coding sequences, but most biochemistries lack a simple assay to screen for promising enzyme variants. Our solution to this challenge is structure-guided mutagenesis, in which optimization algorithms select the best sequences from libraries based on specified criteria (i.e., binding selectivity). We demonstrate this approach by identifying medium-chain (C8–C12)more » acyl-ACP thioesterases through structure-guided mutagenesis. Medium-chain fatty acids, which are products of thioesterase-catalyzed hydrolysis, are limited in natural abundance, compared to long-chain fatty acids; the limited supply leads to high costs of C6–C10 oleochemicals such as fatty alcohols, amines, and esters. Here, we applied computational tools to tune substrate binding of the highly active ‘TesA thioesterase in Escherichia coli. We used the IPRO algorithm to design thioesterase variants with enhanced C12 or C8 specificity, while maintaining high activity. After four rounds of structure-guided mutagenesis, we identified 3 variants with enhanced production of dodecanoic acid (C12) and 27 variants with enhanced production of octanoic acid (C8). The top variants reached up to 49% C12 and 50% C8 while exceeding native levels of total free fatty acids. A comparably sized library created by random mutagenesis failed to identify promising mutants. The chain length-preference of ‘TesA and the best mutant were confirmed in vitro using acyl-CoA substrates. Molecular dynamics simulations, confirmed by resolved crystal structures, of ‘TesA variants suggest that hydrophobic forces govern ‘TesA substrate specificity. Finally, we expect the design rules that we uncovered and the thioesterase variants that we identified will be useful to metabolic engineering projects aimed at sustainable production of medium-chain-length oleochemicals.« less

  13. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  14. Demonstration of a Three-dimensional Negative Index Medium Operated at Multiple-angle Incidences by Monolithic Metallic Hemispherical Shells

    NASA Astrophysics Data System (ADS)

    Yeh, Ting-Tso; Huang, Tsung-Yu; Tanaka, Takuo; Yen, Ta-Jen

    2017-04-01

    We design and construct a three-dimensional (3D) negative index medium (NIM) composed of gold hemispherical shells to supplant an integration of a split-ring resonator and a discrete plasmonic wire for both negative permeability and permittivity at THz gap. With the proposed highly symmetric gold hemispherical shells, the negative index is preserved at multiple incident angles ranging from 0° to 85° for both TE and TM waves, which is further evidenced by negative phase flows in animated field distributions and outweighs conventional fishnet structures with operating frequency shifts when varying incident angles. Finally, the fabrication of the gold hemispherical shells is facilitated via standard UV lithographic and isotropic wet etching processes and characterized by μ-FTIR. The measurement results agree the simulated ones very well.

  15. The Evolution of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew

    2016-09-01

    The bulk of cosmic matter resides in a dilute reservoir that fills the space between galaxies, the intergalactic medium (IGM). The history of this reservoir is intimately tied to the cosmic histories of structure formation, star formation, and supermassive black hole accretion. Our models for the IGM at intermediate redshifts (2≲z≲5) are a tremendous success, quantitatively explaining the statistics of Lyα absorption of intergalactic hydrogen. However, at both lower and higher redshifts (and around galaxies) much is still unknown about the IGM. We review the theoretical models and measurements that form the basis for the modern understanding of the IGM, and we discuss unsolved puzzles (ranging from the largely unconstrained process of reionization at high z to the missing baryon problem at low z), highlighting the efforts that have the potential to solve them.

  16. A First Look at the Structure of the Wave Pouch during the 2009 PREDICT-GRIP Dry Runs over the Atlantic

    DTIC Science & Technology

    2012-04-01

    for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data and the satellite brightness temperature between 1979 and 2001, Hopsch et al. (2010...Zipser (2009) screened out disturbances lacking cold cloud-top areas in the infrared (IR) satellite data . Despite all of these analyses, the essential...paper we use the analysis and satellite data collected during the 2009 Atlantic hurricane season to examine the kinematic, dynamic, and thermodynamic

  17. DNA-Mediated Electrochemistry

    PubMed Central

    Gorodetsky, Alon A.; Buzzeo, Marisa C.

    2009-01-01

    The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370

  18. Numerical Simulation of the Motion of Aerosol Particles in Open Cell Foam Materials

    NASA Astrophysics Data System (ADS)

    Solovev, S. A.; Soloveva, O. V.; Popkova, O. S.

    2018-03-01

    The motion of aerosol particles in open cell foam material is studied. The porous medium is investigated for a three-dimensional case with detailed simulation of cellular structures within an ordered geometry. Numerical calculations of the motion of particles and their deposition due to inertial and gravitational mechanisms are performed. Deposition efficiency curves for a broad range of particle sizes are constructed. The effect deposition mechanisms have on the efficiency of the porous material as a filter is analyzed.

  19. Tunable blue laser compensates for thermal expansion of the medium in holographic data storage.

    PubMed

    Tanaka, Tomiji; Sako, Kageyasu; Kasegawa, Ryo; Toishi, Mitsuru; Watanabe, Kenjiro

    2007-09-01

    A tunable laser optical source equipped with wavelength and mode-hop monitors was developed to compensate for thermal expansion of the medium in holographic data storage. The laser's tunable range is 402-409 nm, and supplying 90 mA of laser diode current provides an output power greater than 40 mW. The aberration of output light is less than 0.05 lambdarms. The temperature range within which the laser can compensate for thermal expansion of the medium is estimated based on the tunable range, which is +/-13.5 degrees C for glass substrates and +/-17.5 degrees C for amorphous polyolefin substrates.

  20. Thermally Tunable Hydrogels Displaying Angle-Independent Structural Colors.

    PubMed

    Ohtsuka, Yumiko; Seki, Takahiro; Takeoka, Yukikazu

    2015-12-14

    We report the preparation of thermally tunable hydrogels displaying angle-independent structural colors. The porous structures were formed with short-range order using colloidal amorphous array templates and a small amount of carbon black (CB). The resultant porous hydrogels prepared using colloidal amorphous arrays without CB appeared white, whereas the hydrogels with CB revealed bright structural colors. The brightly colored hydrogels rapidly changed hues in a reversible manner, and the hues varied widely depending on the water temperature. Moreover, the structural colors were angle-independent under diffusive lighting because of the isotropic nanostructure generated from the colloidal amorphous arrays. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  1. CASE_ATTI: An Algorithm-Level Testbed for Multi-Sensor Data Fusion

    DTIC Science & Technology

    1995-05-01

    Illumination Radar (STIR) control console, the SPS- 49 long-range radar, the Sea Giraffe medium-range radar and their associated CCS software modules. The...The current A WW sensor suite of the CPF comprises the SPS-49 long range 2-D radar, the Sea Giraffe medium range 2-D radar, the CANEWS ESM and the...and Sea Giraffe . . This represents an original novelty of our simulation environment. Conventional radar simulations such as CARPET are not fully

  2. Numerical analysis of the impact of permeability on trailing-edge noise

    NASA Astrophysics Data System (ADS)

    Koh, Seong Ryong; Meinke, Matthias; Schröder, Wolfgang

    2018-05-01

    The impact of porous surfaces on the near-wall turbulent structures and the generated trailing-edge noise is analyzed for several trailing-edge shapes of finite thickness using a high resolution large-eddy simulation (LES)/computational aeroacoustics (CAA) method. The porous surface of the trailing edge is defined by the porosity and the viscous permeability determined by the solution of a turbulent flat plate boundary layer at a Reynolds number 1280 based on the displacement thickness in the inflow cross section. The volume-averaged approach for the homogeneous porous medium shows that the porous impedance scales linearly with the porosity and exponentially with the mean structure size of a porous medium. The drag induced by the porous surface changes the friction velocity and the permeability Reynolds number ReK which determines the porous impedance Rs scaled by ReK-2/3. The trailing-edge noise is analyzed for three solid and three porous trailing edges. The effect of a finite span is investigated by the spanwise correlation model based on the measured coherence distribution. The acoustic prediction shows a good agreement with measurements of the broadband spectrum and the strong tone generated by a finite trailing-edge thickness. The pressure gradient inside the porous media is redistributed by the Darcy drag defined by the viscous permeability and the porosity. The mean pressure increases in the upstream direction inside the porous medium such that the flow acceleration involved in the acoustic generation is reduced inside the porous medium. The noise reduction by a porous medium reaches 11 dB for the trailing-edge shape which possesses a sharp corner for the solid surface. The porous surface applied to a semi-circular trailing edge achieves a 4 dB noise reduction. The directivity pattern for individual components of the acoustic spectrum shows that the massive noise reduction is determined at the tone. Enhanced wave diffraction by the thick flat plate changes the directivity pattern in the high frequency range.

  3. Fabrication and characterization of biotissue-mimicking phantoms in the THz frequency range

    NASA Astrophysics Data System (ADS)

    Liakhov, E.; Smolyanskaya, O.; Popov, A.; Odlyanitskiy, E.; Balbekin, N.; Khodzitsky, M.

    2016-08-01

    The study revealed the most promising candidates for phantoms mimicking different biological tissues in the terahertz frequency range. Closest to biological tissues in terms of the refractive index appeared to be gelatin-based gels; in terms of the absorption coefficient they were agar-based gels. Gelatin is more stable in time, but requires special storage conditions to limit water evaporation. The dense structure of the agar-based phantom allows its use without mold and risk of damage. However, agar is a nutrient medium for bacteria and its parameters degrade even when the phantom form and water content are retained. Use of liquid suspensions of lecithin and milk powder are found to be extremely limited.

  4. Room temperature photoluminescence in the visible range from silicon nanowires grown by a solid-state reaction

    NASA Astrophysics Data System (ADS)

    Anguita, J. V.; Sharma, P.; Henley, S. J.; Silva, S. R. P.

    2009-11-01

    The solid-liquid-solid method (also known as the solid-state method) is used to produce silicon nanowires at the core of silica nanowires with a support catalyst layer structure of nickel and titanium layers sputtered on oxide-coated silicon wafers. This silane-free process is low cost and large-area compatible. Using electron microscopy and Raman spectroscopy we deduce that the wires have crystalline silicon cores. The nanowires show photoluminescence in the visible range (orange), and we investigate the origin of this band. We further show that the nanowires form a random mesh that acts as an efficient optical trap, giving rise to an optically absorbing medium.

  5. Self-organized, effective medium black silicon antireflection structures for silicon optics in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    Thanks to its high quality and low cost, silicon is the material of choice for optical devices operating in the mid-infrared (MIR; 2 μm to 6 μm wavelength). Unfortunately in this spectral region, the refractive index is comparably high (about 3.5) and leads to severe reflection losses of about 30% per interface. In this work, we demonstrate that self-organized, statistical Black Silicon structures, fabricated by Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE), can be used to effectively suppress interface reflection. More importantly, it is shown that antireflection can be achieved in an image-preserving, non-scattering way. This enables Black Silicon antireflection structures (ARS) for imaging applications in the MIR. It is demonstrated that specular transmittances of 97% can be easily achieved on both flat and curved substrates, e.g. lenses. Moreover, by a combined optical and morphological analysis of a multitude of different Black Silicon ARS, an effective medium criterion for the examined structures is derived that can also be used as a design rule for maximizing sample transmittance in a desired wavelength range. In addition, we show that the mechanical durability of the structures can be greatly enhanced by coating with hard dielectric materials like diamond-like carbon (DLC), hence enabling practical applications. Finally, the distinct advantages of statistical Black Silicon ARS over conventional AR layer stacks are discussed: simple applicability to topological substrates, absence of thermal stress and cost-effectiveness.

  6. Effects of Coke Calcination Level on Pore Structure in Carbon Anodes

    NASA Astrophysics Data System (ADS)

    Fang, Ning; Xue, Jilai; Lang, Guanghui; Bao, Chongai; Gao, Shoulei

    2016-02-01

    Effects of coke calcination levels on pore structure of carbon anodes have been investigated. Bench anodes were prepared by 3 types of cokes with 4 calcination temperatures (800°C, 900°C, 1000°C and 1100°C). The cokes and anodes were characterized using hydrostatic method, air permeability determination, mercury porosimetry, image analysis and confocal microscopy (CSLM). The cokes with different calcination levels are almost the same in LC values (19-20 Å) and real density (1.967-1.985 g/cm3), while the anode containing coke calcined at 900°C has the lowest open porosity and air permeability. Pore size distribution (represented by Anode H sample) can be roughly divided into two ranges: small and medium pores in diameter of 10-400 μm and large pores of 400-580 μm. For the anode containing coke calcined at 800°C, a number of long, narrow pores in the pore size range of 400-580 μm are presented among cokes particles. Formation of these elongated pores may be attributed to coke shrinkages during the anode baking process, which may develop cracking in the anode under cell operations. More small or medium rounded pores with pore size range of 10-400 μm emerge in the anodes with coke calcination temperatures of 900°C, 1000°C and 1100°C, which may be generated due to release of volatiles from the carbon anode during baking. For the anode containing coke calcined at 1100°C, it is found that many rounded pores often closely surround large coke particles, which have potential to form elongated, narrow pores.

  7. Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium.

    PubMed

    Goodarzi, M; Safaei, M R; Oztop, Hakan F; Karimipour, A; Sadeghinezhad, E; Dahari, M; Kazi, S N; Jomhari, N

    2014-01-01

    The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (10⁴) and turbulent flow (10⁸). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible.

  8. Numerical Study of Entropy Generation due to Coupled Laminar and Turbulent Mixed Convection and Thermal Radiation in an Enclosure Filled with a Semitransparent Medium

    PubMed Central

    Goodarzi, M.; Safaei, M. R.; Oztop, Hakan F.; Karimipour, A.; Sadeghinezhad, E.; Dahari, M.; Kazi, S. N.; Jomhari, N.

    2014-01-01

    The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (104) and turbulent flow (108). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible. PMID:24778601

  9. Impact of nitrogen concentration on validamycin A production and related gene transcription in fermentation of Streptomyces hygroscopicus 5008.

    PubMed

    Wei, Zhen-Hua; Bai, Linquan; Deng, Zixin; Zhong, Jian-Jiang

    2012-09-01

    Validamycin A (VAL-A) is an important and widely used agricultural antibiotic. In this study, statistical screening designs were applied to identify significant medium variables for VAL-A production and to find their optimal levels. The optimized medium caused 70% enhancement of VAL-A production. The difference between optimized medium and original medium suggested that low nitrogen source level might attribute to the enhancement of VAL-A production. The addition of different nitrogen sources to the optimized medium inhibited VAL-A production, which confirmed the importance of nitrogen concentration for VAL-A production. Furthermore, differences in structural gene transcription and enzyme activity between the two media were assayed. The results showed that lower nitrogen level in the optimized medium could regulate VAL-A production in gene transcriptional level. Our previous study indicated that the transcription of VAL-A structural genes could be enhanced at elevated temperature. In this work, the increased fermentation temperature from 37 to 42 °C with the optimized medium enhanced VAL-A production by 39%, which testified to the importance of structural gene transcription in VAL-A production. The information is useful for further VAL-A production enhancement.

  10. Clustering algorithm for determining community structure in large networks

    NASA Astrophysics Data System (ADS)

    Pujol, Josep M.; Béjar, Javier; Delgado, Jordi

    2006-07-01

    We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.

  11. Hierarchical structures of amorphous solids characterized by persistent homology

    PubMed Central

    Hiraoka, Yasuaki; Nakamura, Takenobu; Hirata, Akihiko; Escolar, Emerson G.; Matsue, Kaname; Nishiura, Yasumasa

    2016-01-01

    This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods. PMID:27298351

  12. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOEpatents

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  13. Post-traumatic stress symptoms and structure among orphan and vulnerable children and adolescents in Zambia

    PubMed Central

    Familiar, Itziar; Murray, Laura; Gross, Alden; Skavenski, Stephanie; Jere, Elizabeth; Bass, Judith

    2014-01-01

    Background Scant information exists on PTSD symptoms and structure in youth from developing countries. Methods We describe the symptom profile and exposure to trauma experiences among 343 orphan and vulnerable children and adolescents from Zambia. We distinguished profiles of post-traumatic stress symptoms using latent class analysis. Results Average number of trauma-related symptoms (21.6; range 0-38) was similar across sex and age. Latent class model suggested 3 classes varying by level of severity: low (31% of the sample), medium (45% of the sample), and high (24% of the sample) symptomatology. Conclusions Results suggest that PTSD is a continuously distributed latent trait. PMID:25382359

  14. Recent advances in approximation concepts for optimum structural design

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Haftka, Raphael T.

    1991-01-01

    The basic approximation concepts used in structural optimization are reviewed. Some of the most recent developments in that area since the introduction of the concept in the mid-seventies are discussed. The paper distinguishes between local, medium-range, and global approximations; it covers functions approximations and problem approximations. It shows that, although the lack of comparative data established on reference test cases prevents an accurate assessment, there have been significant improvements. The largest number of developments have been in the areas of local function approximations and use of intermediate variable and response quantities. It also appears that some new methodologies are emerging which could greatly benefit from the introduction of new computer architecture.

  15. Linear variability of gait according to socioeconomic status in elderly

    PubMed Central

    2016-01-01

    Aim: To evaluate the linear variability of comfortable gait according to socioeconomic status in community-dwelling elderly. Method: For this cross-sectional observational study 63 self- functioning elderly were categorized according to the socioeconomic level on medium-low (n= 33, age 69.0 ± 5.0 years) and medium-high (n= 30, age 71.0 ± 6.0 years). Each participant was asked to perform comfortable gait speed for 3 min on an 40 meters elliptical circuit, recording in video five strides which were transformed into frames, determining the minimum foot clearance, maximum foot clearance and stride length. The intra-group linear variability was calculated by the coefficient of variation in percent. Results: The trajectory parameters variability is not different according to socioeconomic status with a 30% (range= 15-55%) for the minimum foot clearance and 6% (range= 3-8%) in maximum foot clearance. Meanwhile, the stride length consistently was more variable in the medium-low socioeconomic status for the overall sample (p= 0.004), female (p= 0.041) and male gender (p= 0.007), with values near 4% ​​(range = 2.5-5.0%) in the medium-low and 2% (range = 1.5-3.5%) in the medium-high. Conclusions: The intra-group linear variability is consistently higher and within reference parameters for stride length during comfortable gait for elderly belonging to medium-low socioeconomic status. This might be indicative of greater complexity and consequent motor adaptability. PMID:27546931

  16. A Vertically Flow-Following, Icosahedral Grid Model for Medium-Range and Seasonal Prediction. Part 1: Model Description

    NASA Technical Reports Server (NTRS)

    Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques; hide

    2015-01-01

    A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.

  17. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P.

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferredmore » across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.« less

  18. Medium-range fire weather forecasts

    Treesearch

    J.O. Roads; K. Ueyoshi; S.C. Chen; J. Alpert; F. Fujioka

    1991-01-01

    The forecast skill of theNational Meteorological Center's medium range forecast (MRF) numerical forecasts of fire weather variables is assessed for the period June 1,1988 to May 31,1990. Near-surface virtual temperature, relative humidity, wind speed and a derived fire weather index (FWI) are forecast well by the MRF model. However, forecast relative humidity has...

  19. Worldwide Report, Arms Control.

    DTIC Science & Technology

    1985-07-19

    on measures of substantially reducing medium -range nuclear arms to agreed-upon levels on the basis of reciprocity and in strict conformity with the ...to the United States to reach agreement on the immediate discontinua- tion by the United States of the deployment of medium -range missiles in Europe... by unilaterally imposing a moratorium on the

  20. Epistemic Beliefs about Justification Employed by Physics Students and Faculty in Two Different Problem Contexts

    NASA Astrophysics Data System (ADS)

    Çağlayan Mercan, Fatih

    2012-06-01

    This study examines the epistemic beliefs about justification employed by physics undergraduate and graduate students and faculty in the context of solving a standard classical physics problem and a frontier physics problem. Data were collected by a think-aloud problem solving session followed by a semi-structured interview conducted with 50 participants, 10 participants at freshmen, seniors, masters, PhD, and faculty levels. Seven modes of justification were identified and used for exploring the relationships between each justification mode and problem context, and expertise level. The data showed that justification modes were not mutually exclusive and many respondents combined different modes in their responses in both problem contexts. Success on solving the standard classical physics problem was not related to any of the justification modes and was independent of expertise level. The strength of the association across the problem contexts for the authoritative, rational, and empirical justification modes fell in the medium range and for the modeling justification mode fell in the large range of practical significance. Expertise level was not related with the empirical and religious justification modes. The strength of the association between the expertise level and the authoritative, rational, experiential, and relativistic justification modes fell in the medium range, and the modeling justification mode fell in the large range of practical significance. The results provide support for the importance of context for the epistemic beliefs about justification and are discussed in terms of the implications for teaching and learning science.

  1. Raman spectroscopy of femtosecond multipulse irradiation of vitreous silica: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Shcheblanov, N. S.; Povarnitsyn, M. E.; Mishchik, K. N.; Tanguy, A.

    2018-02-01

    We report an experimental and numerical study of femtosecond multipulse laser-induced densification in vitreous silica (v -SiO2 ) and its signature in Raman spectra. We compare the experimental findings to the recently developed molecular dynamics (MD) approach accounting for bond breaking due to laser irradiation, together with a dynamical matrix approach and bond polarizability model based on first-principles calculations for the estimation of Raman spectra. We observe two stages of the laser-induced densification and Raman spectrum evolution: growth during several hundreds of pulses followed by further saturation. At the medium range, the network connectivity change in v -SiO2 is expressed in reduction of the major ring fractions leading to more compacted structure. With the help of the Sen and Thorpe model, we also study the short-range order transformation and derive the interbonding Si-O-Si angle change from the Raman measurements. Experimental findings are in excellent agreement with our MD simulations and hence support a bond-breaking mechanism of laser-induced densification. Thus, our modeling explains well the laser-induced changes both in the short-range order caused by the appearance of Si coordination defects and medium-range order connected to evolution of the ring distribution. Finally, our findings disclose similarities between sheared, permanently densified, and laser-induced glass and suggest interesting future experiments in order to clarify the impact of the thermomechanical history on glasses under shear, cold and hot compression, and laser-induced densification.

  2. Sulfonamide inhibition studies of two β-carbonic anhydrases from the ascomycete fungus Sordaria macrospora, CAS1 and CAS2.

    PubMed

    Vullo, Daniela; Lehneck, Ronny; Pöggeler, Stefanie; Supuran, Claudiu T

    2018-12-01

    The two β-carbonic anhydrases (CAs, EC 4.2.1.1) recently cloned and purified from the ascomycete fungus Sordaria macrospora, CAS1 and CAS2, were investigated for their inhibition with a panel of 39 aromatic, heterocyclic, and aliphatic sulfonamides and one sulfamate, many of which are clinically used agents. CAS1 was efficiently inhibited by tosylamide, 3-fluorosulfanilamide, and 3-chlorosulfanilamide (K I s in the range of 43.2-79.6 nM), whereas acetazolamide, methazolamide, topiramate, ethoxzolamide, dorzolamide, and brinzolamide were medium potency inhibitors (K I s in the range of 360-445 nM). CAS2 was less sensitive to sulfonamide inhibitors. The best CAS2 inhibitors were 5-amino-1,3,4-thiadiazole-2-sulfonamide (the deacetylated acetazolamide precursor) and 4-hydroxymethyl-benzenesulfonamide, with K I s in the range of 48.1-92.5 nM. Acetazolamide, dorzolamide, ethoxzolamide, topiramate, sulpiride, indisulam, celecoxib, and sulthiame were medium potency CAS2 inhibitors (K I s of 143-857 nM). Many other sulfonamides showed affinities in the high micromolar range or were ineffective as CAS1/2 inhibitors. Small changes in the structure of the inhibitor led to important differences of the activity. As these enzymes may show applications for the removal of anthropically generated polluting gases, finding modulators of their activity may be crucial for designing environmental-friendly CO 2 capture processes.

  3. Critical temperature determination of detectable Cr diffusion enhancement by nanostructure through structural evolution analysis of the oxide films at 25-450 °C on 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Gui, Y.; Meng, X. B.; Zheng, Z. J.; Gao, Y.

    2017-10-01

    The structural evolution of the oxide films at 25-450 °C on nanocrystalline (NC) and coarse crystalline (CC) 304 stainless steels (SS) was investigated. The structure of the oxide film on both NC and CC SSs was observed to undergo transient processes from a bi-layer to a single-layer and then back to a bi-layer when the temperature changed from the low range (25-150 °C) to the medium range (150-300 °C) and subsequently to the high range (300-450 °C), respectively. These formation mechanisms of the oxide films on SS were attributed to the different diffusion properties of Cr and Fe in the three temperature ranges. The thickness of the oxide films was similar between the NC and CC SSs below 300 °C due to their similar Crox/Feox concentration ratios in their oxide films at this temperature. Above 300 °C, Cr diffusion enhancement in the NC matrix led to a higher Crox/Feox ratio and better compactness of the oxide film, which resulted in a slower atomic diffusion rate in the oxide film and a thinner oxide film. Therefore, the temperature of 300 °C was concluded to be the critical temperature of the detectable Cr diffusion enhancement in the NC SS compared to the CC SS.

  4. Structural and chemical orders in N i 64.5 Z r 35.5 metallic glass by molecular dynamics simulation

    DOE PAGES

    Tang, L.; Wen, T. Q.; Wang, N.; ...

    2018-03-06

    The atomic structure of Ni 64.5Zr 35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the X-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types dominant short-range order (SRO) motifs around Ni atoms in the glass sample of Ni 64.5Zr 35.5, i.e., Mixed- Icosahedron(ICO)-Cube, Twined-Cube and icosahedron-like clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the Mixed-ICOCube and Twined-Cube clusters exhibit the characteristics ofmore » the crystalline B2 phase. In conclusion, our simulation results suggest that the weak glass-forming ability (GFA) of Ni 64.5Zr 35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline Mixed-ICO-Cube and Twined-Cube motifs.« less

  5. Structural and chemical orders in N i 64.5 Z r 35.5 metallic glass by molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, L.; Wen, T. Q.; Wang, N.

    The atomic structure of Ni 64.5Zr 35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the X-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types dominant short-range order (SRO) motifs around Ni atoms in the glass sample of Ni 64.5Zr 35.5, i.e., Mixed- Icosahedron(ICO)-Cube, Twined-Cube and icosahedron-like clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the Mixed-ICOCube and Twined-Cube clusters exhibit the characteristics ofmore » the crystalline B2 phase. In conclusion, our simulation results suggest that the weak glass-forming ability (GFA) of Ni 64.5Zr 35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline Mixed-ICO-Cube and Twined-Cube motifs.« less

  6. Architectural design of deep metallic sub-wavelength grating for practical holography display

    NASA Astrophysics Data System (ADS)

    Zhu, WenLiang; Shen, Chuan; Zhang, MingHua; Wei, Sui; Wang, XiangXiang; Wang, Ye

    2017-10-01

    Spatial light modulator (SLM) is the core device of holographic display, which requires a large space-bandwidth product (SBP), especially needing a wide viewing angle. According to the grating theory, the scale of the holographic display unit should be close to the wavelength of light. The transmission resonances of deep metallic sub-wavelength grating structure, which is produced by the surface plasmon and Fabry-Perot (FP) resonance based on metal grating phenomenon of Wood's anomaly, especially the metal-insulator-metal (MIM) structure provides a theoretical and effective technique for enhancing the reflection resonances and can be used for implementing the holographic display unit technology. In this paper, we replace the top electrode layer of the LCOS with a metallic deep sub-wavelength grating structure and change the grating period, slit width and spacer thickness. The simulation results by aid of CST software are given, which demonstrate that the improved device with dielectric medium parameter within liquid crystal refractive rate range (1.4 1.7) can reach 0 to 2π phase modulation in the visible wavelength range. Moreover, it also decrease the difficulty of device processing.

  7. Structural and chemical orders in N i64.5Z r35.5 metallic glass by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Tang, L.; Wen, T. Q.; Wang, N.; Sun, Y.; Zhang, F.; Yang, Z. J.; Ho, K. M.; Wang, C. Z.

    2018-03-01

    The atomic structure of N i64.5Z r35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the x-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types of dominant short-range order (SRO) motifs around Ni atoms in the glass sample of N i64.5Z r35.5 , i.e., mixed-icosahedron(ICO)-cube, intertwined-cube, and icosahedronlike clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the mixed-ICO-cube and intertwined-cube clusters exhibit the characteristics of the crystalline B2 phase. Our simulation results suggest that the weak glass-forming ability (GFA) of N i64.5Z r35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline mixed-ICO-cube and intertwined-cube motifs.

  8. Structural investigation of MF, RF and DC sputtered Mo thin films for backside photovoltaic electrode

    NASA Astrophysics Data System (ADS)

    Małek, Anna K.; Marszałek, Konstanty W.; Rydosz, Artur M.

    2016-12-01

    Recently photovoltaics attracts much attention of research and industry. The multidirectional studies are carried out in order to improve solar cells performance, the innovative materials are still searched and existing materials and technology are optimized. In the multilayer structure of CIGS solar cells molybdenum (Mo) layer is used as a back contact. Mo layers meet all requirements for back side electrode: low resistivity, good adhesion to the substrate, high optical reflection in the visible range, columnar structure for Na ions diffusion, formation of an ohmic contact with the ptype CIGS absorber layer, and high stability during the corrosive selenization process. The high adhesion to the substrate and low resistivity in single Mo layer is difficult to be achieved because both properties depend on the deposition parameters, particularly on working gas pressure. Therefore Mo bilayers are applied as a back contact for CIGS solar cells. In this work the Mo layers were deposited by medium frequency sputtering at different process parameters. The effect of substrate temperature within the range of 50°C-200°C and working gas pressure from 0.7 mTorr to 7 mTorr on crystalline structure of Mo layers was studied.

  9. Flux-limited diffusion in a scattering medium. [such as accretion-disk coronae

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Zylstra, Gregory J.

    1991-01-01

    A diffusion equation (FDT) is presented with a coefficient that reduces to the appropriate limiting form in the streaming and near thermodynamic limits for a moving fluid in which the dominant source of opacity is Thomson scattering. The present results are compared to those obtained with the corresponding equations for an absorptive medium. It is found that FDT for a scattering medium is accurate to better than less than about 17 percent over the range of optical depths of tau in the range of about 0 to 3.

  10. Phase locking of a semiconductor double-quantum-dot single-atom maser

    NASA Astrophysics Data System (ADS)

    Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.

    2017-11-01

    We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.

  11. Dynamic effective properties of heterogeneous geological formations with spherical inclusions under periodic time variations

    NASA Astrophysics Data System (ADS)

    Rabinovich, A.; Dagan, G.; Miloh, T.

    2013-04-01

    In unsteady groundwater flow (or similar processes of heat/electrical conduction), the heterogeneous medium structure is characterized by two random properties, the conductivity K and the specific storativity S. The average head field ⟨H ⟩and the associated effective properties Kef, Sef are determined for a layer with a periodic head drop between boundaries, such that H is periodic in time, and a medium made up of a matrix with a dilute concentration of spherical inclusions. In the common quasi-steady approximation, Kef is equal to the classical steady solution while Sef = SA, the arithmetic mean. We derive expressions for the frequency dependent Kef, Sef, which are generally complex, i.e., dynamic. The main result is the delineation of the ranges of the parameters: dimensionless frequency (ω) and contrasts of conductivity (κ) and storativity (s) between the matrix and the inclusions, for which dynamic effects are significant.

  12. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K

    NASA Astrophysics Data System (ADS)

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-02-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 1014 to 2.7 × 1018 D/cm2. The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I—the linear region of low implantation doses (up to 1 × 1017 D/cm2); II—the nonlinear region of medium implantation doses (1 × 1017 to 8 × 1017 D/cm2); III—the linear region of high implantation doses (8 × 1017 to 2.7 × 1018 D/cm2). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The resulting structure shows stability against the action of deuterium ion implantation. This manifests itself in a nearly complete ceasing of deuterium accumulation from a newly implanted dose (radiation-resistant structure).

  13. Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System.

    PubMed

    Cherifi, Tamazight; Jacques, Mario; Quessy, Sylvain; Fravalo, Philippe

    2017-01-01

    Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA.

  14. Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System

    PubMed Central

    Cherifi, Tamazight; Jacques, Mario; Quessy, Sylvain; Fravalo, Philippe

    2017-01-01

    Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA. PMID:28567031

  15. Photoelectron diffraction from single oriented molecules: Towards ultrafast structure determination of molecules using x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Kazama, Misato; Fujikawa, Takashi; Kishimoto, Naoki; Mizuno, Tomoya; Adachi, Jun-ichi; Yagishita, Akira

    2013-06-01

    We provide a molecular structure determination method, based on multiple-scattering x-ray photoelectron diffraction (XPD) calculations. This method is applied to our XPD data on several molecules having different equilibrium geometries. Then it is confirmed that, by our method, bond lengths and bond angles can be determined with a resolution of less than 0.1 Å and 10∘, respectively. Differently from any other scenario of ultrafast structure determination, we measure the two- or three-dimensional XPD of aligned or oriented molecules in the energy range from 100 to 200 eV with a 4π detection velocity map imaging spectrometer. Thanks to the intense and ultrashort pulse properties of x-ray free-electron lasers, our approach exhibits the most probable method for obtaining ultrafast real-time structural information on small to medium-sized molecules consisting of light elements, i.e., a “molecular movie.”

  16. Atomistic study of the electronic contact resistivity between the half-Heusler alloys (HfCoSb, HfZrCoSb, HfZrNiSn) and the metal Ag

    NASA Astrophysics Data System (ADS)

    He, Yuping; Léonard, François; Spataru, Catalin D.

    2018-06-01

    Half-Heusler (HH) alloys have shown promising thermoelectric properties in the medium- and high-temperature range. To harness these material properties for thermoelectric applications, it is important to realize electrical contacts with low electrical contact resistivity. However, little is known about the detailed structural and electronic properties of such contacts and the expected values of contact resistivity. Here, we employ atomistic ab initio calculations to study electrical contacts in a subclass of HH alloys consisting of the compounds HfCoSb, HfZrCoSb, and HfZrNiSn. By using Ag as a prototypical metal, we show that the termination of the HH material critically determines the presence or absence of strong deformations at the interface. Our study includes contacts to doped materials, and the results indicate that the p -type materials generally form ohmic contacts while the n -type materials have a small Schottky barrier. We calculate the temperature dependence of the contact resistivity in the low- to medium-temperature range and provide quantitative values that set lower limits for these systems.

  17. Role of five-fold symmetry in undercooled Al-Cu binary alloys

    NASA Astrophysics Data System (ADS)

    Pasturel, A.; Jakse, N.

    2018-04-01

    We investigate the role of five-fold symmetry (FFS) in undercooled Al1-xCux liquids (x = 0.3 and 0.4) using ab initio molecular dynamics simulations. We show that the structure factors and pair-correlation functions display characteristic features which are compatible with the occurrence of FFS and the emergence of a medium range order (MRO) below a temperature TX located close to the liquidus temperature. Then, we demonstrate that the formation of MRO is associated with a strong increase in local FFS-motifs which become more and more connected with decreasing temperature. From the temperature dependence of dynamic properties, we find that TX corresponds also to the onset of dynamic phenomena, like the non-Arrhenius temperature dependence of transport properties and the emergence of dynamical heterogeneities (DHs). Finally, we clearly identify a relationship between the fivefold topology at the medium-range scale (IMRO) and the spatial distribution of DHs using isoconfigurational ensemble simulations. This questions the direct role of the connectivity of five-fold-based motifs found in IMRO in nucleation of the parent crystalline ground states, namely, Al2Cu and Al3Cu2, which also display local ordering with a significant degree of FFS.

  18. Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst

    PubMed Central

    Dutta, Indrajit; Carpenter, Michael K; Balogh, Michael P; Ziegelbauer, Joseph M; Moylan, Thomas E; Atwan, Mohammed H; Irish, Nicholas P

    2013-01-01

    A carbon-supported, dealloyed platinum-copper (Pt-Cu) oxygen reduction catalyst was prepared using a multi-step synthetic procedure. Material produced at each step was characterized using high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), electron energy loss spectroscopy (EELS) mapping, x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), and cyclic voltammetry (CV), and its oxygen reduction reaction (ORR) activity was measured by a thin-film rotating disk electrode (TF-RDE) technique. The initial synthetic step, a co-reduction of metal salts, produced a range of poorly crystalline Pt, Cu, and Pt-Cu alloy nanoparticles that nevertheless exhibited good ORR activity. Annealing this material alloyed the metals and increased particle size and crystallinity. TEM shows the annealed catalyst to include particles of various sizes, large (>25 nm), medium (12–25 nm), and small (<12 nm). Most of the small and medium-sized particles exhibited a partial or complete coreshell (Cu-rich core and Pt shell) structure with the smaller particles typically having more complete shells. The appearance of Pt shells after annealing indicates that they are formed by a thermal diffusion mechanism. Although the specific activity of the catalyst material was more than doubled by annealing, the concomitant decrease in Pt surface area resulted in a drop in its mass activity. Subsequent dealloying of the catalyst by acid treatment to partially remove the copper increased the Pt surface area by changing the morphology of the large and some medium particles to a “Swiss cheese” type structure having many voids. The smaller particles retained their core-shell structure. The specific activity of the catalyst material was little reduced by dealloying, but its mass activity was more than doubled due to the increase in surface area. The possible origins of these results are discussed in this report. PMID:23807900

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Rong; Wu, Yongquan, E-mail: yqwu@shu.edu.cn; Xiao, Junjiang

    We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clustersmore » and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms.« less

  20. Chemical aspects of the formation of the solar system

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1978-01-01

    Application of Alfven's theory for the formation of the solar system and the constraints imposed by the chemical composition of space materials are discussed with reference to chemical processes involved in the formation of the solar system. Evidence for the chemical properties of the space medium and the chemical consequences of the postulated physical differentiation processes are outlined, and interpretations based on structure and composition of meteorite material are indicated. A large range of topics, including processes involving chemical differentiation, temperature effects, and isotope fractionation, are examined.

  1. Atlas of the global distribution of atmospheric heating during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Schaack, Todd K.; Johnson, Donald R.

    1991-01-01

    Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.

  2. Acoustic metamaterials with broadband and wide-angle impedance matching

    NASA Astrophysics Data System (ADS)

    Liu, Chenkai; Luo, Jie; Lai, Yun

    2018-04-01

    We propose a general approach to design broadband and wide-angle impedance-matched acoustic metamaterials. Such an unusual acoustic impedance matching characteristic can be well explained by using a spatially dispersive effective medium theory. For demonstrations, we used silicone rubber, which has a huge impedance contrast with water, to design one- and two-dimensional acoustic structures which are almost perfectly impedance matched to water for a wide range of incident angles and in a broad frequency band. Our work opens up an approach to realize extraordinary acoustic impedance matching properties via metamaterial-design techniques.

  3. Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation

    NASA Astrophysics Data System (ADS)

    Shen, Nian-Hai; Zhang, Peng; Koschny, Thomas; Soukoulis, Costas M.

    2016-06-01

    A lossy anisotropic epsilon-near-zero (ENZ) medium may lead to a counterintuitive phenomenon of omnidirectional bending-to-normal refraction [S. Feng, Phys. Rev. Lett. 108, 193904 (2012), 10.1103/PhysRevLett.108.193904], which offers a fabulous strategy for energy collimation and energy harvesting. Here, in the scope of effective medium theory, we systematically investigate two simple metamaterial configurations, i.e., metal-dielectric-layered structures and the wire medium, to explore the possibility of fulfilling the conditions of such an anisotropic lossy ENZ medium by playing with materials' parameters. Both realistic metamaterial structures and their effective medium equivalences have been numerically simulated, and the results are in excellent agreement with each other. Our study provides clear guidance and therefore paves the way towards the search for proper designs of anisotropic metamaterials for a decent effect of energy collimation and wave-front manipulation.

  4. Dark matter annihilation in the circumgalactic medium at high redshifts

    NASA Astrophysics Data System (ADS)

    Schön, S.; Mack, K. J.; Wyithe, J. S. B.

    2018-03-01

    Annihilating dark matter (DM) models offer promising avenues for future DM detection, in particular via modification of astrophysical signals. However, when modelling such potential signals at high redshift, the emergence of both DM and baryonic structure, as well as the complexities of the energy transfer process, needs to be taken into account. In the following paper, we present a detailed energy deposition code and use this to examine the energy transfer efficiency of annihilating DM at high redshift, including the effects on baryonic structure. We employ the PYTHIA code to model neutralino-like DM candidates and their subsequent annihilation products for a range of masses and annihilation channels. We also compare different density profiles and mass-concentration relations for 105-107 M⊙ haloes at redshifts 20 and 40. For these DM halo and particle models, we show radially dependent ionization and heating curves and compare the deposited energy to the haloes' gravitational binding energy. We use the `filtered' annihilation spectra escaping the halo to calculate the heating of the circumgalactic medium and show that the mass of the minimal star-forming object is increased by a factor of 2-3 at redshift 20 and 4-5 at redshift 40 for some DM models.

  5. Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis.

    PubMed

    Jin, Xin; Sun, Pei; Tong, Gangsheng; Zhu, Xinyuan

    2018-02-03

    As a novel kind of polymer with covalently linked core-shell structure, star polymers behave in nanostructure in aqueous medium at all concentration range, as unimolecular micelles at high dilution condition and multi-micelle aggregates in other situations. The unique morphologies endow star polymers with excellent stability and functions, making them a promising platform for bio-application. A variety of functions including imaging and therapeutics can be achieved through rational structure design of star polymers, and the existence of plentiful end-groups on shell offers the opportunity for further modification. In the last decades, star polymers have become an attracting platform on fabrication of novel nano-systems for bio-imaging and diagnosis. Focusing on the specific topology and physicochemical properties of star polymers, we have reviewed recent development of star polymer-based unimolecular micelles and their bio-application in imaging and diagnosis. The main content of this review summarizes the synthesis of integrated architecture of star polymers and their self-assembly behavior in aqueous medium, focusing especially on the recent advances on their bio-imaging application and diagnosis use. Finally, we conclude with remarks and give some outlooks for further exploration in this field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. A Multiphase Model for the Intracluster Medium

    NASA Technical Reports Server (NTRS)

    Nagai, Daisuke; Sulkanen, Martin E.; Evrard, August E.

    1999-01-01

    Constraints on the clustered mass density of the universe derived from the observed population mean intracluster gas fraction of x-ray clusters may be biased by reliance on a single-phase assumption for the thermodynamic structure of the intracluster medium (ICM). We propose a descriptive model for multiphase structure in which a spherically symmetric ICM contains isobaric density perturbations with a radially dependent variance. Fixing the x-ray emission and emission weighted temperature, we explore two independently observable signatures of the model in the parameter space. For bremsstrahlung dominated emission, the central Sunyaev-Zel'dovich (SZ) decrement in the multiphase case is increased over the single-phase case and multiphase x-ray spectra in the range 0.1-20 keV are flatter in the continuum and exhibit stronger low energy emission lines than their single-phase counterpart. We quantify these effects for a fiducial 10e8 K cluster and demonstrate how the combination of SZ and x-ray spectroscopy can be used to identify a preferred location in the plane of the model parameter space. From these parameters the correct value of mean intracluster gas fraction in the multiphase model results, allowing an unbiased estimate of clustered mass density to he recovered.

  7. Theory and computation of optimal low- and medium-thrust transfers

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.

    1993-01-01

    This report presents the formulation of the optimal low- and medium-thrust orbit transfer control problem and methods for numerical solution of the problem. The problem formulation is for final mass maximization and allows for second-harmonic oblateness, atmospheric drag, and three-dimensional, non-coplanar, non-aligned elliptic terminal orbits. We setup some examples to demonstrate the ability of two indirect methods to solve the resulting TPBVP's. The methods demonstrated are the multiple-point shooting method as formulated in H. J. Oberle's subroutine BOUNDSCO, and the minimizing boundary-condition method (MBCM). We find that although both methods can converge solutions, there are trade-offs to using either method. BOUNDSCO has very poor convergence for guesses that do not exhibit the correct switching structure. MBCM, however, converges for a wider range of guesses. However, BOUNDSCO's multi-point structure allows more freedom in quesses by increasing the node points as opposed to only quessing the initial state in MBCM. Finally, we note an additional drawback for BOUNDSCO: the routine does not supply information to the users routines for switching function polarity but only the location of a preset number of switching points.

  8. Effective equations governing an active poroelastic medium

    PubMed Central

    2017-01-01

    In this work, we consider the spatial homogenization of a coupled transport and fluid–structure interaction model, to the end of deriving a system of effective equations describing the flow, elastic deformation and transport in an active poroelastic medium. The ‘active’ nature of the material results from a morphoelastic response to a chemical stimulant, in which the growth time scale is strongly separated from other elastic time scales. The resulting effective model is broadly relevant to the study of biological tissue growth, geophysical flows (e.g. swelling in coals and clays) and a wide range of industrial applications (e.g. absorbant hygiene products). The key contribution of this work is the derivation of a system of homogenized partial differential equations describing macroscale growth, coupled to transport of solute, that explicitly incorporates details of the structure and dynamics of the microscopic system, and, moreover, admits finite growth and deformation at the pore scale. The resulting macroscale model comprises a Biot-type system, augmented with additional terms pertaining to growth, coupled to an advection–reaction–diffusion equation. The resultant system of effective equations is then compared with other recent models under a selection of appropriate simplifying asymptotic limits. PMID:28293138

  9. Short and Medium-Range Order in Liquid Ternary Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 Alloys

    NASA Astrophysics Data System (ADS)

    Roik, Oleksandr S.; Samsonnikov, Oleksiy; Kazimirov, Volodymyr; Sokolskii, Volodymyr

    2010-01-01

    A local short-to-intermediate range order of liquid Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 alloys was examined by X-ray diffraction and the reverse Monte Carlo modelling. The comprehensive analysis of three-dimensional models of the liquid ternary alloys was performed by means of the Voronoi-Delaunay method. The existence of a prepeak on the S(Q) function of the liquid alloys is caused by medium range ordering of 3d-transition metal atoms in dense-packed polytetrahedral clusters at temperatures close to the liquidus. The non-crystalline clusters, represented by aggregates of pentagons that consist of good tetrahedra, and chemical short-range order lead to the formation of the medium range order in the liquid binary Al-Ni, Al-Co and ternary Al-Ni-Co alloys.

  10. Light emission of heavily doped AlGaN structures under optical pumping

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Fateev, N. V.; Osinnykh, I. V.; Malin, T. V.; Zakrevsky, Dm. E.; Zhuravlev, K. S.; Wei, Xin; Li, Jian; Chen, Lianghui

    2018-04-01

    Spectral, temporal and polarization characteristics of spontaneous and stimulated luminescence of Al0.5Ga0.5N/AlN structures grown by molecular beam epitaxy were studied at the optical pulsed pumping with λ = 266 nm. Samples with a high degree of silicon doping were investigated. The vast majority of radiation falls on transitions within the band gap between the levels of defects. As a result, the radiation band embracing the whole visible range of more than 300 THz is observed in both spontaneous radiation and induced luminescence. In spontaneous radiation the band has a smooth spectral intensity distribution over the wavelengths, whereas induced radiation has its sharp peaks corresponding to the mode structure of the planar waveguide. The measured gain of the active medium is g ≈ 70 cm‑1 for a weak signal.

  11. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    DOE PAGES

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less

  12. Direct-patterned optical waveguides on amorphous silicon films

    DOEpatents

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  13. Two-component scattering model and the electron density spectrum

    NASA Astrophysics Data System (ADS)

    Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.

    2010-02-01

    In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.

  14. Acoustic characteristics of the medium with gradient change of impedance

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu; Shi, Jie; Shi, Shengguo; Zhang, Haoyang

    2015-10-01

    The medium with gradient change of acoustic impedance is a new acoustic structure which developed from multiple layer structures. In this paper, the inclusion is introduced and a new set of equations is developed. It can obtain better acoustic properties based on the medium with gradient change of acoustic impedance. Theoretical formulation has been systematically addressed which demonstrates how the idea of utilizing this method. The sound reflection and absorption coefficients were obtained. At last, the validity and the correctness of this method are assessed by simulations. The results show that appropriate design of parameters of the medium can improve underwater acoustic properties.

  15. The structure of epitaxial V2O3 films and their surfaces: A medium energy ion scattering study

    NASA Astrophysics Data System (ADS)

    Window, A. J.; Hentz, A.; Sheppard, D. C.; Parkinson, G. S.; Woodruff, D. P.; Unterberger, W.; Noakes, T. C. Q.; Bailey, P.; Ganduglia-Pirovano, M. V.; Sauer, J.

    2012-11-01

    Medium energy ion scattering, using 100 keV H+ incident ions, has been used to investigate the growth of epitaxial films, up to thicknesses of ~ 200 Å, of V2O3 on both Pd(111) and Au(111). Scattered-ion energy spectra provide a measure of the average film thickness and the variations in this thickness, and show that, with suitable annealing, the crystalline quality is good. Plots of the scattering yield as a function of scattering angle, so-called blocking curves, have been measured for two different incidence directions and have been used to determine the surface structure. Specifically, scattering simulations for a range of different model structures show poor agreement with experiment for half-metal (….V'O3V) and vanadyl (….V'O3V=O) terminations, with and without surface interlayer relaxations. However, good agreement with experiment is found for the modified oxygen-termination structure, first proposed by Kresse et al., in which a subsurface V half-metal layer is moved up into the outermost V buckled metal layer to produce a VO2 overlayer on the underlying V2O3, with an associated layer structure of ….O3VV''V 'O3. This result is consistent with the predictions of thermodynamic equilibrium at the surface under the surface preparation conditions, but is at variance with the conclusions of earlier studies of this system that have favoured the vanadyl termination. The results of these previous studies are re-evaluated in the light of the new result.

  16. Correlation of atomic packing with the boson peak in amorphous alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W. M.; Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; School of Materials Science and Engineering, Southeast University, Nanjing 211189

    2014-09-28

    Boson peaks (BP) have been observed from phonon specific heats in 10 studied amorphous alloys. Two Einstein-type vibration modes were proposed in this work and all data can be fitted well. By measuring and analyzing local atomic structures of studied amorphous alloys and 56 reported amorphous alloys, it is found that (a) the BP originates from local harmonic vibration modes associated with the lengths of short-range order (SRO) and medium-range order (MRO) in amorphous alloys, and (b) the atomic packing in amorphous alloys follows a universal scaling law, i.e., the ratios of SRO and MRO lengths to solvent atomic diametermore » are 3 and 7, respectively, which exact match with length ratios of BP vibration frequencies to Debye frequency for the studied amorphous alloys. This finding provides a new perspective for atomic packing in amorphous materials, and has significant implications for quantitative description of the local atomic orders and understanding the structure-property relationship.« less

  17. Detection of the relationship between peak temperature and extreme precipitation

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, J.; Zhiyong, Y.

    2017-12-01

    Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.

  18. New Possibilities of Substance Identification Based on THz Time Domain Spectroscopy Using a Cascade Mechanism of High Energy Level Excitation

    PubMed Central

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Zakharova, Irina G.; Zagursky, Dmitry Yu.

    2017-01-01

    Using an experiment with thin paper layers and computer simulation, we demonstrate the principal limitations of standard Time Domain Spectroscopy (TDS) based on using a broadband THz pulse for the detection and identification of a substance placed inside a disordered structure. We demonstrate the spectrum broadening of both transmitted and reflected pulses due to the cascade mechanism of the high energy level excitation considering, for example, a three-energy level medium. The pulse spectrum in the range of high frequencies remains undisturbed in the presence of a disordered structure. To avoid false absorption frequencies detection, we apply the spectral dynamics analysis method (SDA-method) together with certain integral correlation criteria (ICC). PMID:29186849

  19. Re-irradiation in lung disease by SBRT: a retrospective, single institutional study.

    PubMed

    Caivano, Donatella; Valeriani, Maurizio; De Matteis, Sara; Bonome, Paolo; Russo, Ivana; De Sanctis, Vitaliana; Minniti, Giuseppe; Osti, Mattia Falchetto

    2018-05-08

    The loco regional relapse is frequent in the lung disease. The aim of this study was to evaluate the outcomes of re-irradiation by SBRT in terms of Local Control (LC) and toxicities. From April 2011 to December 2016, twenty-two patients received a re-irradiation by SBRT. Twenty- seven lesions were treated. The medium BED(10) of re-irradiation was 100.6 Gy (range: 48-151.2 Gy) and the medium EQD2(10) was 93.8 Gy (range: 40-126 Gy). In the previous treatment the medium BED(10) was 97.2 Gy (range: 40-120 Gy), the medium EQD2(10) was 81 Gy (range: 32.5-100 Gy). The median time between the first and the second treatment was 18 months. Local Control was reached in 18 out of 27 (66%) re-irradiated lesions, with rates of 67 and 54% at 1- year and 2- years respectively. The treatment was well tolerated; the maximum recorded toxicity was Grade 3. Re- irradiation by SBRT may represent an option for the treatment of lung disease with good results in terms of LC and toxicity.

  20. Special Features of Structure Formation in Pipes from Medium-Carbon Low-Alloy Steel 32G2F Under Heat Treatment

    NASA Astrophysics Data System (ADS)

    Stepanov, A. I.; Belikov, S. V.; Musikhin, S. A.; Burmasov, S. P.; Popov, A. A.

    2017-03-01

    Special features of formation of structure and properties of seamless pipes from medium-carbon low-alloy steel for oil and gas applications are considered and associated with chemical inhomogeneity of the metal of the pipes.

  1. External store effects on the stability of fighter and interceptor airplanes. [application to military aircraft mission requirements

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Sawyer, W. C.

    1974-01-01

    Some criteria for external carriage of missiles for fighter aircraft intended for aerial combat missions and for fighter-interceptor missions are considered. The mission requirements discussed include the short-range fighter-interceptor, the short-range interceptor, the medium-range interceptor, and the long-range interceptor. Missiles types considered to be compatible with the various point mission designs include the short-range missile, the medium-range missile, and the long-range missile. From the study, it appears that point mission design aircraft can be arranged in such a way that the required external-store arrangement will not impair the stability of the aircraft. An extensive reference list of NASA external store research is included.

  2. Bio-inspired, sub-wavelength surface structures for ultra-broadband, omni-directional anti-reflection in the mid and far IR.

    PubMed

    Gonzalez, Federico Lora; Gordon, Michael J

    2014-06-02

    Quasi-ordered moth-eye arrays were fabricated in Si using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering was explored experimentally and modeled quantitatively using effective medium theory. The highest aspect ratio structures (AR = 9.4) achieved peak transmittance of 98%, with >85% transmission for λ = 7-30 μm. A detailed photon balance was constructed by measuring transmission, forward scattering, specular reflection and diffuse reflection to quantify optical losses due to near-field effects. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior anti-reflective properties compared to unstructured interfaces over a wide angular range (0-60° incidence). The colloidal lithography method presented here is scalable and substrate-independent, providing a general approach to realize moth-eye structures and anti-reflection in many IR-compatible material systems.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr 50Cu 35Al 15 and Zr 50Cu 45Al 5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr 50Cu 35Al 15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, T g, than in Zr 50Cu 45Al 5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr 50Cu 35Al 15more » on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less

  4. Gamma-ray astronomy in the medium energy (10-50 MeV) range

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1977-01-01

    To observe the medium energy component of the intense galactic center gamma-ray emission, two balloon flights of a medium energy gamma-ray spark chamber telescope were flown in Brazil in 1975. The results indicate the emission is higher than previously thought and above the predictions of a theoretical model proposed.

  5. The Identification of the Deformation Stage of a Metal Specimen Based on Acoustic Emission Data Analysis

    PubMed Central

    Zou, Shenao; Yan, Fengying; Yang, Guoan; Sun, Wei

    2017-01-01

    The acoustic emission (AE) signals of metal materials have been widely used to identify the deformation stage of a pressure vessel. In this work, Q235 steel samples with different propagation distances and geometrical structures are stretched to get the corresponding acoustic emission signals. Then the obtained acoustic emission signals are de-noised by empirical mode decomposition (EMD), and then decomposed into two different frequency ranges, i.e., one mainly corresponding to metal deformation and the other mainly corresponding to friction signals. The ratio of signal energy between two frequency ranges is defined as a new acoustic emission characteristic parameter. Differences can be observed at different deformation stages in both magnitude and data distribution range. Compared with other acoustic emission parameters, the proposed parameter is valid in different setups of the propagation medium and the coupled stiffness. PMID:28387703

  6. The impact of star formation feedback on the circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Fielding, Drummond; Quataert, Eliot; McCourt, Michael; Thompson, Todd A.

    2017-04-01

    We use idealized 3D hydrodynamic simulations to study the dynamics and thermal structure of the circumgalactic medium (CGM). Our simulations quantify the role of cooling, stellar feedback driven galactic winds and cosmological gas accretion in setting the properties of the CGM in dark matter haloes ranging from 1011 to 1012 M⊙. Our simulations support a conceptual picture in which the properties of the CGM, and the key physics governing it, change markedly near a critical halo mass of Mcrit ≈ 1011.5 M⊙. As in calculations without stellar feedback, above Mcrit halo gas is supported by thermal pressure created in the virial shock. The thermal properties at small radii are regulated by feedback triggered when tcool/tff ≲ 10 in the hot gas. Below Mcrit, however, there is no thermally supported halo and self-regulation at tcool/tff ˜ 10 does not apply. Instead, the gas is out of hydrostatic equilibrium and largely supported against gravity by bulk flows (turbulence and coherent inflow/outflow) arising from the interaction between cosmological gas inflow and outflowing galactic winds. In these lower mass haloes, the phase structure depends sensitively on the outflows' energy per unit mass and mass-loading, which may allow measurements of the CGM thermal state to constrain the nature of galactic winds. Our simulations account for some of the properties of the multiphase halo gas inferred from quasar absorption line observations, including the presence of significant mass at a wide range of temperatures, and the characteristic O VI and C IV column densities and kinematics. However, we underpredict the neutral hydrogen content of the z ˜ 0 CGM.

  7. A Study on the Relationship between Disaster and Spectral Intensity

    NASA Astrophysics Data System (ADS)

    Yeh, Yeong-Tein; Kao, Ching-Yun

    2010-05-01

    Nowadays, the structural environment is becoming so complicated that an index, which can better assess earthquake damage than the originally defined intensity scale and PGA, is needed. Housner [1] suggested that spectral intensity (SI) can be a risk index of an earthquake. After Housner some earthquake engineers keep on exploring different period range of SI and its application [2-5]. The study of Matsumura [4] shows that SI is a better measure of earthquake intensity for a wide range of frequencies with a good correlation with damage than peak ground acceleration (adequate to structures with shorter natural period) and peak ground velocity (adequate to structures with longer natural period). Recently, Jean [6] investigated earthquake intensity attenuation law and site effect of strong ground motion using earthquake records in Taiwan area. Their results show that SI is a better earthquake damage index than PGA. This study enhanced the SI concept proposed by Jean [6]. The spectral intensity was separated into three periods, short period (acceleration controlled period), medium period (velocity controlled period), and long period (displacement controlled period). The average spectral intensity of short period, medium period, and long period can be an earthquake damage index of low-rise buildings, buildings of medium height, and high-rise buildings. Since average value of a certain data is meaningful when the data has a small variance, the start and end points of the three periods are calculated by statistical method so that the data at each period has minimum variance. Finally, the relationship between disaster and spectral intensity of 1999 Taiwan Chi-Chi earthquake was investigated in this study. [1] Housner, G. W. (1952). "Spectrum intensity of strong-motion earthquakes," in Proc. Sym. Earthq. Blast Eeff. on Stru., EERI, U.C.L.A.. [2] Hidalgo.P. and R. W.Clough (1974). "Earthquake simulator study of a reinforced concrete frame," Report UCB/EERC-74/13, EERC, University of California, Berkeley. [3] Kappos, A. J (1991). "Analytical prediction of the collpase earthquake for R. C. buildings: suggested methodology," Earthq. Eng. Stru. Dyn., 20, 2, pp. 167-176. [4] Matsumura, K. (1992). "On the intensity measure of strong motions related to structural failures," in Proceeding of 10 WCEE, 1, pp. 375-380. [5] Martinez-Rueda, J. E (1998). "Scaling procedure for natural accelerograms based on a system of spectrum intensity scales," Earthq. Spec., 14, 1,. [6] Jean, W. Y., Y. W. Chang, K. L. Wen, and C. H. Loh (2006). "Early estimation of seismic hazard for strong earthquakes in Taiwan," Natural Hazards, vol. 37, pp. 39-53.

  8. Fission fragment excited laser system

    DOEpatents

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  9. Low-redshift Lyman limit systems as diagnostics of cosmological inflows and outflows

    NASA Astrophysics Data System (ADS)

    Hafen, Zachary; Faucher-Giguère, Claude-André; Anglés-Alcázar, Daniel; Kereš, Dušan; Feldmann, Robert; Chan, T. K.; Quataert, Eliot; Murray, Norman; Hopkins, Philip F.

    2017-08-01

    We use cosmological hydrodynamic simulations with stellar feedback from the FIRE (Feedback In Realistic Environments) project to study the physical nature of Lyman limit systems (LLSs) at z ≤ 1. At these low redshifts, LLSs are closely associated with dense gas structures surrounding galaxies, such as galactic winds, dwarf satellites and cool inflows from the intergalactic medium. Our analysis is based on 14 zoom-in simulations covering the halo mass range Mh ≈ 109-1013 M⊙ at z = 0, which we convolve with the dark matter halo mass function to produce cosmological statistics. We find that the majority of cosmologically selected LLSs are associated with haloes in the mass range 1010 ≲ Mh ≲ 1012 M⊙. The incidence and H I column density distribution of simulated absorbers with columns in the range 10^{16.2} ≤ N_{H I} ≤ 2× 10^{20} cm-2 are consistent with observations. High-velocity outflows (with radial velocity exceeding the halo circular velocity by a factor of ≳ 2) tend to have higher metallicities ([X/H] ˜ -0.5) while very low metallicity ([X/H] < -2) LLSs are typically associated with gas infalling from the intergalactic medium. However, most LLSs occupy an intermediate region in metallicity-radial velocity space, for which there is no clear trend between metallicity and radial kinematics. The overall simulated LLS metallicity distribution has a mean (standard deviation) [X/H] = -0.9 (0.4) and does not show significant evidence for bimodality, in contrast to recent observational studies, but consistent with LLSs arising from haloes with a broad range of masses and metallicities.

  10. Gender Variance and Sexual Orientation Among Male Spirit Mediums in Myanmar.

    PubMed

    Coleman, Eli; Allen, Mariette Pathy; Ford, Jessie V

    2018-05-01

    This article describes the gender identity, gender expression, and sexual orientation of male spirit mediums in Myanmar. Our analysis is based on ethnographic work, field observation, and 10 semi-structured interviews. These observations were conducted from 2010 to 2015, mostly in Mandalay, with some fieldwork in Yangon and Bagan. The focus of this investigation was specifically on achout (gender variant individuals) who were spirit mediums (nat kadaw). Semi-structured interviews explored the ways that participants understood their gender identity, gender expression, and sexuality in relation to their work as spirit mediums and broader social life. Myanmar remains quite a homophobic and transphobic culture but is undergoing rapid economic and social change. Therefore, it provides an interesting context to study how safe spaces are produced for sexual/gender minorities amidst broader social change. We find that, through the animistic belief structure, there is a growing space for gender nonconforming people, gender variant, and same-sex-oriented individuals (achout) to neutralize their stigmatized status and attain a level of respect and economic advantage. Their ability to become nat kadaw (mediums of spirits) mitigates or trumps their stigmatized status.

  11. Biodiversity of Exopolysaccharides Produced by Streptococcus thermophilus Strains Is Reflected in Their Production and Their Molecular and Functional Characteristics

    PubMed Central

    Vaningelgem, Frederik; Zamfir, Medana; Mozzi, Fernanda; Adriany, Tom; Vancanneyt, Marc; Swings, Jean; De Vuyst, Luc

    2004-01-01

    Twenty-six lactic acid bacterium strains isolated from European dairy products were identified as Streptococcus thermophilus and characterized by bacterial growth and exopolysaccharide (EPS)-producing capacity in milk and enriched milk medium. In addition, the acidification rates of the different strains were compared with their milk clotting behaviors. The majority of the strains grew better when yeast extract and peptone were added to the milk medium, although the presence of interfering glucomannans was shown, making this medium unsuitable for EPS screening. EPS production was found to be strain dependent, with the majority of the strains producing between 20 and 100 mg of polymer dry mass per liter of fermented milk medium. Furthermore, no straightforward relationship between the apparent viscosity and EPS production could be detected in fermented milk medium. An analysis of the molecular masses of the isolated EPS by gel permeation chromatography revealed a large variety, ranging from 10 to >2,000 kDa. A distinction could be made between high-molecular-mass EPS (>1,000 kDa) and low-molecular-mass EPS (<1,000 kDa). Based on the molecular size of the EPS, three groups of EPS-producing strains were distinguished. Monomer analysis of the EPS by high-performance anion-exchange chromatography with amperometric detection was demonstrated to be a fast and simple method. All of the EPS from the S. thermophilus strains tested were classified into six groups according to their monomer compositions. Apart from galactose and glucose, other monomers, such as (N-acetyl)galactosamine, (N-acetyl)glucosamine, and rhamnose, were also found as repeating unit constituents. Three strains were found to produce EPS containing (N-acetyl)glucosamine, which to our knowledge was never found before in an EPS from S. thermophilus. Furthermore, within each group, differences in monomer ratios were observed, indicating possible novel EPS structures. Finally, large differences between the consistencies of EPS solutions from five different strains were assigned to differences in their molecular masses and structures. PMID:14766570

  12. Astrochemistry: Recent Advances in the Study of Carbon Molecules in Space

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2006-01-01

    Carbon molecules and ions play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are the best-known candidates to account for the infrared emission bands (UIR bands) and PAH spectral features are now being used as probes of the interstellar medium in Galactic and extra-galactic environments. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory Astrochemistry is to reproduce (in a realistic way) the physical conditions that exist in the emission and absorption interstellar zones. An extensive laboratory program has been developed in various laboratories to characterize the physical and chemical properties of PAHs in astrophysical environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. The harsh physical conditions of the interstellar medium - characterized by a low temperature, an absence of collisions and strong ultraviolet radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (of the order of 100 K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase.

  13. Development of a new medium frequency EM device: Mapping soil water content variations using electrical conductivity and dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Kessouri, P.; Buvat, S.; Tabbagh, A.

    2012-12-01

    Both electrical conductivity and dielectric permittivity of soil are influenced by its water content. Dielectric permittivity is usually measured in the high frequency range, using GPR or TDR, where the sensitivity to water content is high. However, its evaluation is limited by a low investigation depth, especially for clay rich soils. Electrical conductivity is closely related not only to soil water content, but also to clay content and soil structure. A simultaneous estimation of these electrical parameters can allow the mapping of soil water content variations for an investigation depth close to 1m. In order to estimate simultaneously both soil electrical conductivity and dielectric permittivity, an electromagnetic device working in the medium frequency range (between 100 kHz and 10 MHz) has been designed. We adopted Slingram geometry for the EM prototype: its PERP configuration (vertical transmission loop Tx and horizontal measuring loop Rx) was defined using 1D ground models. As the required investigation depth is around 1m, the coil spacing was fixed to 1.2m. This prototype works in a frequency range between 1 and 5 MHz. After calibration, we tested the response of prototype to objects with known properties. The first in situ measurements were led on experimental sites with different types of soils and different water content variations (artificially created or natural): sandy alluvium on a plot of INRA (French National Institute for Agricultural Research) in Orléans (Centre, France), a clay-loam soil on an experimental site in Estrée-Mons (Picardie, France) and fractured limestone at the vicinity of Grand (Vosges, France). In the case of the sandy alluvium, the values of dielectric permittivity measured are close to those of HF permittivity and allow the use of existing theoretical models to determine the soil water content. For soils containing higher amount of clay, the coupled information brought by the electrical conductivity and the dielectric permittivity is used. Variations of water content detected by the EM prototype are confirmed by additional DC electrical profiling and direct mass water content measurements along depth. For the clay-loam soil, containing more than 20% of clay, the relative dielectric permittivity values, ranging from 63 to 138, are much higher than those expected in the high frequency range (above 20 MHz, the highest measured permittivity is equal to 81 for water). In the medium frequency range, those values are very likely due to interfacial polarization. This effect, also known as Maxwell-Wagner polarization, should increase with the soil clay content. The first measuring trial is coherent with the gravimetric water content as well as DC electrical profiling measurements. For a clay rich soil, the EM prototype is able to detect water content variations for an investigation depth close to 1m with both electrical conductivity and dielectric permittivity in the medium frequency range. Other field experiments are scheduled to confirm these results on other types of soils.

  14. A new medium for Caenorhabditis elegans toxicology and nanotoxicology studies designed to better reflect natural soil solution conditions.

    PubMed

    Tyne, William; Lofts, Stephen; Spurgeon, David J; Jurkschat, Kerstin; Svendsen, Claus

    2013-08-01

    A new toxicity test medium for Caenorhabditis elegans is presented. The test solution is designed to provide a better representation of natural soil pore water conditions than currently available test media. The medium has a composition that can readily be modified to allow for studies of the influences of a range of environmentally relevant parameters on nematode biology and toxicology. Tests conducted in the new medium confirmed that nematodes' reproduction was possible at a range of solution pH levels, offering the potential to conduct toxicity studies under a variety of conditions. A test to establish silver nanoparticle and dissolved silver nitrate toxicity, a study type not feasible in M9 or agar media due to precipitation and nanoparticle agglomeration, indicated lower silver nanoparticle (median effective concentration [EC50] of 6.5 mg Ag/L) than silver nitrate (EC50 0.28 mg Ag/L) toxicity. Characterization identified stable nanoparticle behavior in the new test medium. Copyright © 2013 SETAC.

  15. A novel "modularized" optical sensor for pH monitoring in biological matrixes.

    PubMed

    Liu, Xun; Zhang, Shang-Qing; Wei, Xing; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua

    2018-06-30

    A novel core-shell structure optical pH sensor is developed with upconversion nanoparticles (UCNPs) serving as the core and silica as the shell, followed by grafting bovineserumalbumin (BSA) as another shell via glutaraldehyde cross-linking. The obtained core-shell-shell structure is shortly termed as UCNPs@SiO 2 @BSA, and its surface provides a platform for loading various pH sensitive dyes, which are alike "modules" to make it feasible for measuring pHs within different pH ranges by simply regulating the type of dyes. Generally, a single pH sensitive dye is adopted to respond within a certain pH range. This study employs bromothymol blue (BTB) and rhodamine B (RhB) to facilitate their responses to pH variations within two ranges, i.e., pH 5.99-8.09 and pH 4.98-6.40, respectively, with detection by ratio-fluorescence protocol. The core-shell-shell structure offers superior sensitivity, which is tens of times more sensitive than those achieved by ratio-fluorescence approaches based on various nanostructures, and favorable stability is achieved in high ionic strength medium. In addition, this sensor exhibits superior photostability under continuous excitation at 980 nm. Thanks to the near infrared excitation in the core-shell-shell structure, it effectively avoids the self-fluorescence from biological samples and thus facilitates accurate sensing of pH in various biological sample matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Characterising the Circum-Galactic Medium of Damped Lyman-α Absorbing Galaxies

    NASA Astrophysics Data System (ADS)

    Augustin, Ramona; Péroux, Céline; Møller, Palle; Kulkarni, Varsha; Rahmani, Hadi; Milliard, Bruno; Pieri, Matthew; York, Donald G.; Vladilo, Giovanni; Aller, Monique; Zwaan, Martin

    2018-05-01

    Gas flows in and out of galaxies through their circumgalactic medium (CGM) are poorly constrained and direct observations of this faint, diffuse medium remain challenging. We use a sample of five z ˜ 1-2 galaxy counterparts to Damped Lyman-α Absorbers (DLAs) to combine data on cold gas, metals and stellar content of the same galaxies. We present new HST/WFC3 imaging of these fields in 3-5 broadband filters and characterise the stellar properties of the host galaxies. By fitting the spectral energy distribution, we measure their stellar masses to be in the range of log(M*/M⊙) ˜ 9.1-10.7. Combining these with IFU observations, we find a large spread of baryon fractions inside the host galaxies, between 7 and 100 percent. Similarly, we find gas fractions between 3 and 56 percent. Given their star formation rates, these objects lie on the expected main sequence of galaxies. Emission line metallicities indicate they are consistent with the mass-metallicity relation for DLAs. We also report an apparent anti-correlation between the stellar masses and N(H I), which could be due to a dust bias effect or lower column density systems tracing more massive galaxies. We present new ALMA observations of one of the targets leading to a molecular gas mass of log(Mmol/M⊙) < 9.89. We also investigate the morphology of the DLA counterparts and find that most of the galaxies show a clumpy structure and suggest ongoing tidal interaction. Thanks to our high spatial resolution HST data, we gain new insights in the structural complexity of the CGM.

  17. Structure formation in a colliding flow: The Herschel view of the Draco nebula

    NASA Astrophysics Data System (ADS)

    Miville-Deschênes, M.-A.; Salomé, Q.; Martin, P. G.; Joncas, G.; Blagrave, K.; Dassas, K.; Abergel, A.; Beelen, A.; Boulanger, F.; Lagache, G.; Lockman, F. J.; Marshall, D. J.

    2017-03-01

    Context. The Draco nebula is a high Galactic latitude interstellar cloud observed at velocities corresponding to the intermediate velocity cloud regime. This nebula shows unusually strong CO emission and remarkably high-contrast small-scale structures for such a diffuse high Galactic latitude cloud. The 21 cm emission of the Draco nebula reveals that it is likely to have been formed by the collision of a cloud entering the disk of the Milky Way. Such physical conditions are ideal to study the formation of cold and dense gas in colliding flows of diffuse and warm gas. Aims: The objective of this study is to better understand the process of structure formation in a colliding flow and to describe the effects of matter entering the disk on the interstellar medium. Methods: We conducted Herschel-SPIRE observations of the Draco nebula. The clumpfind algorithm was used to identify and characterize the small-scale structures of the cloud. Results: The high-resolution SPIRE map reveals the fragmented structure of the interface between the infalling cloud and the Galactic layer. This front is characterized by a Rayleigh-Taylor (RT) instability structure. From the determination of the typical length of the periodic structure (2.2 pc) we estimated the gas kinematic viscosity. This allowed us to estimate the dissipation scale of the warm neutral medium (0.1 pc), which was found to be compatible with that expected if ambipolar diffusion were the main mechanism of turbulent energy dissipation. The statistical properties of the small-scale structures identified with clumpfind are found to be typical of that seen in molecular clouds and hydrodynamical turbulence in general. The density of the gas has a log-normal distribution with an average value of 103 cm-3. The typical size of the structures is 0.1-0.2 pc, but this estimate is limited by the resolution of the observations. The mass of these structures ranges from 0.2 to 20 M⊙ and the distribution of the more massive structures follows a power-law dN/ dlog (M) M-1.4. We identify a mass-size relation with the same exponent as that found in molecular clouds (M L2.3). On the other hand, we found that only 15% of the mass of the cloud is in gravitationally bound structures. Conclusions: We conclude that the collision of diffuse gas from the Galactic halo with the diffuse interstellar medium of the outer layer of the disk is an efficient mechanism for producing dense structures. The increase of pressure induced by the collision is strong enough to trigger the formation of cold neutral medium out of the warm gas. It is likely that ambipolar diffusion is the mechanism dominating the turbulent energy dissipation. In that case the cold structures are a few times larger than the energy dissipation scale. The dense structures of Draco are the result of the interplay between magnetohydrodynamical turbulence and thermal instability as self-gravity is not dominating the dynamics. Interestingly they have properties typical of those found in more classical molecular clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The reduced Herschel data (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A109

  18. Surveying hospital network structure in New York State: how are they structured?

    PubMed

    Nauenberg, E; Brewer, C S

    2000-01-01

    We determine the most common network structures in New York state. The taxonomy employed uses three structural dimensions: integration, complexity, and risk-sharing between organizations. Based on a survey conducted in 1996, the most common type of network (26.4 percent) had medium levels of integration, medium or high levels of complexity, and some risk-sharing. Also common were networks with low levels of integration, low levels of complexity, and no risk-sharing (22.1 percent).

  19. Boson mode, Medium Range Structure and Intermediate Phase (IP) in (Na2O)x(B2O3)1-x glasses

    NASA Astrophysics Data System (ADS)

    Vignarooban, K.; Boolchand, P.; Micoulaut, M.; Malki, M.

    2012-02-01

    Raman scattering of titled glasses are examined using a T64000 Dispersive system. Scattering strengths of the Boson mode (40 cm-1, 70 cm-1) and the Boroxyl ring (BR) mode (808 cm-1) are found to decrease with increasing x at the same rate in the 0 < x < 20% soda range. Apparently, the 2D character of BRs embedded in a 3D network gives rise to the Boson mode.ootnotetextM. Flores-Ruiz and G. Naumis, PRB, 2011. 83: p. 184204 The triad of modes (705, 740, 770 cm-1) near the 808 cm-1 mode are found to display a maximum in scattering strength near x = 37% (705 cm-1), 33% (740 cm-1) and 25% (770 cm-1), suggesting that these are also ring modes of Na-tripentaborate (STPB), Na-diborate (SDB) and Na-triborate (STB) super-structures. Variations in Raman scattering strengths also suggest that STB percolate near x = 20%, the stress transition, while the STPB and SDTB percolate near x = 40%, the rigidity transition. These transitions were inferred from m-DSC experiments that show an intermediate phase in the 20% < x < 40% range in dry and homogeneous glasses.

  20. 76 FR 52886 - Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... be adjusted from one to three large medium or giant BFT for the September, October- November, and... medium or giant BFT (measuring 73 inches (185 cm) curved fork length or greater) per vessel per day/trip... increase or decrease the daily retention limit of large medium and giant BFT over a range of zero to a...

  1. Recipient luminophoric mediums having narrow spectrum luminescent materials and related semiconductor light emitting devices and methods

    DOEpatents

    LeToquin, Ronan P; Tong, Tao; Glass, Robert C

    2014-12-30

    Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.

  2. Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared

    NASA Astrophysics Data System (ADS)

    Lora Gonzalez, Federico

    Controlling the reflection of visible and infrared (IR) light at interfaces is extremely important to increase the power efficiency and performance of optics, electro-optical and (thermo)photovoltaic systems. The eye of the moth has evolved subwavelength protuberances that increase light transmission into the eye tissue and prevent reflection. The subwavelength protuberances effectively grade the refractive index from that of air (n=1) to that of the tissue (n=1.4), making the interface gradual, suppressing reflection. In theory, the moth-eye (ME) structures can be implemented with any material platform to achieve an antireflectance effect by scaling the pitch and size of protuberances for the wavelength range of interest. In this work, a bio-inspired, scalable and substrate-independent surface modification protocol was developed to realize broadband antireflective structures based on the moth-eye principle. Quasi-ordered ME arrays were fabricated in IR relevant materials using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering is explored, with discussion on experimental techniques and effective medium theory (EMT). The highest aspect ratio structures (AR = 9.4) achieved peak single-side transmittance of 98%, with >85% transmission for lambda = 7--30 microns. A detailed photon balance constructed by transmission, forward scattering, specular reflection and diffuse reflection measurements to quantify optical losses due to near-field effects will be discussed. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior antireflective properties compared to unstructured interfaces over a wide angular range (0--60° incidence). Finally, subwavelength ME structures are incorporated on a Si substrate to enhance the absorption of near infrared (NIR) light in PtSi films to increase Schottky-barrier detector efficiency. Absorbance enhancement of 70--200% in the lambda =1--2.5 micron range is demonstrated in crystalline PtSi films grown via electron beam evaporation of Pt and subsequent vacuum annealing. Low total reflectance (<10%) was measured in ME films, demonstrating the efficacy of the moth eye effect. Effective medium theory and transfer matrix calculations show that the large absorption enhancement at short wavelengths is partly due to light trapping, which increases the effective optical path length in PtSi. The demonstrated structures are promising candidates for efficient PtSi/p-Si Schottky barrier diode detectors in the NIR. Results further suggest a general method for relatively low-cost absorption enhancement of backside-illuminated detectors based on a wide variety of infrared absorptive materials. The methods presented here to fabricate quasi-ordered ME structures provide a general platform for creating antireflective structures in many different materials, devices, and bandwidths. Furthermore, understanding the relationship between protuberance shape, height, aspect ratio, etc. and performance (antireflection, scattering loss, etc.) can guide the design of antireflective surfaces for different applications (for example, in certain applications, large amounts of forward scattering is desired, e.g. photovoltaics).

  3. A simple, specific high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin in cell culture medium.

    PubMed

    Li, Ye; Cassone, Vincent M

    2015-09-01

    A simple, specific, high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin was developed for directly measuring melatonin in cell culture medium with 10% FBS. This assay adopts a commercial monoclonal melatonin antibody and melatonin-HRP conjugate, so it can be applied in multiple labs rapidly with low cost compared with commercial RIA and ELISA kits. In addition, the procedure is much simpler with only four steps: 1) sample/conjugate incubation, 2) plate washing, 3) TMB color reaction and 4) reading of results. The standards of the assay cover a wide working range from 100 pg/mL to 10 ng/mL. The sensitivity was 68 pg/mL in cell culture medium with 10% FBS and 26 pg/mL in PBS with as little as 25 μL sample volume. The recovery of melatonin from cell culture medium was 101.0%. The principal cross-reacting compound was 5-methoxytryptophol (0.1%). The variation coefficients of the assay, within and between runs, ranged between 6.68% and 15.76% in cell culture medium. The mean linearity of a series diluted cell culture medium sample was 105% (CV=5%), ranging between 98% and 111%, y=5.5263x+0.0646, R(2)=0.99. The assay enables small research and teaching labs to reliably measure this important neurohormone. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Regularities in Low-Temperature Phosphatization of Silicates

    NASA Astrophysics Data System (ADS)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  5. Cooling rate dependence of simulated Cu{sub 64.5}Zr{sub 35.5} metallic glass structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryltsev, R. E.; Ural Federal University, 19 Mira Str., 620002 Ekaterinburg; L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow

    Using molecular dynamics simulations with embedded atom model potential, we study structural evolution of Cu{sub 64.5}Zr{sub 35.5} alloy during the cooling in a wide range of cooling rates γ ∈ (1.5 ⋅ 10{sup 9}, 10{sup 13}) K/s. Investigating short- and medium-range orders, we show that the structure of Cu{sub 64.5}Zr{sub 35.5} metallic glass essentially depends on cooling rate. In particular, a decrease of the cooling rate leads to an increase of abundances of both the icosahedral-like clusters and Frank-Kasper Z16 polyhedra. The amounts of these clusters in the glassy state drastically increase at the γ{sub min} = 1.5 ⋅ 10{supmore » 9} K/s. Analysing the structure of the glass at γ{sub min}, we observe the formation of nano-sized crystalline grain of Cu{sub 2}Zr intermetallic compound with the structure of Cu{sub 2}Mg Laves phase. The structure of this compound is isomorphous with that for Cu{sub 5}Zr intermetallic compound. Both crystal lattices consist of two types of clusters: Cu-centered 13-atom icosahedral-like cluster and Zr-centered 17-atom Frank-Kasper polyhedron Z16. That suggests the same structural motifs for the metallic glass and intermetallic compounds of Cu–Zr system and explains the drastic increase of the abundances of these clusters observed at γ{sub min}.« less

  6. Tectono-metamorphic evolution of the Chinese Altai, central Asia: new insights from microstructures

    NASA Astrophysics Data System (ADS)

    Jiang, Yingde; Zhang, Jian; Schulmann, Karel; Sun, Min; Zhao, Guochun

    2013-04-01

    The Altai Orogen, extending from Russia, through northeast Kazakhstan and northwest China, to western and southern Mongolia, occupies a pivotal position in understanding the accretionary process of the Central Asian Orogenic Belt and has drawn much attention in recent years. However, its orogenic evolution remains poorly constrained, because previous studies were mainly focused on the geochronological and geochemical signatures and much less work has been done on metamorphic and structural studies. Metamorphic rocks widely occur in the southern Altai Range and have previously been separated into high-T/low-P and medium-P types. Recent studies demonstrated that these two kinds of rocks may have similar protoliths, i.e. early Paleozoic arc-related assemblages, but experienced different metamorphic histories. The development of biotite, garnet, staurolite and kyanite metamorphic zonal sequences in the low- to medium- grade rocks, demonstrate typical medium-pressure metamorphism that has been suggested as a major consequence of the orogenesis. The high-T/low-P metamorphism, represented by the growth of garnet+cordierite+sillimanite+k-feldspar and was accompanied by extensive anatexis, remains its tectonic significance poorly constrained. Field structural investigation in the Chinese Altai reveals that the high-T/low-P metamorphic rocks have major S-L fabrics (defined by the strongly aligned biotite and sillimanite) exactly in the same orientations as those developed in the associated medium-P grade rocks. Geochronological studies constrain the major fabrics in both kinds of rocks developed during mid-Devonian, coeval with the strong magmatism in the region. Micro-structural investigation on both kinds of rocks show similar prograde metamorphic history featured by clockwise P-T path evolution. Phase equilibrium modeling in the MnNCKFMASH system indicates that the development of major fabrics in the medium-P metamorphic rocks mainly recorded the notable increase of pressure and that in the high-T rocks was featured by the significant increase of temperature. The pressure increase could attribute to the progressive crustal thickening that may be correlated to the accretionary regime of the southern Altai in the mid-Devonian and the high temperature conditions most likely imply a significant heat input from the deep depth, consistent with the syn-chronologically emplacement of juvenile magmas on a large scale. Our study indicates the development of high-T metamorphism was genetically linked with that of the medium-P metamorphism and suggests that the crustal thickening during the orogenic process of the Altai region was accompanied by large heat input. This study is supported by Hong Kong Research Grant Council (HKU705311P and HKU704712P), National Science Foundation of China (41273048), IGCP #592 Project "Continental construction in Central Asia" and Research grant of State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (SKLIG-KF-12-06) .

  7. Dynamically tunable electromagnetically induced transparency analogy in terahertz metamaterial

    NASA Astrophysics Data System (ADS)

    Liu, Chenxi; Liu, Peiguo; Bian, Lian; Zhou, Qihui; Li, Gaosheng; Liu, Hanqin

    2018-03-01

    A metamaterial analogy of tunable electromagnetically induced transparency (EIT) is theoretically investigated in terahertz regime. The proposed metamaterial consists of vertical gold strips and horizontal graphene wires, which perform as bright elements and dark elements, respectively. The EIT-like phenomenon can be induced by bright-dark mode coupling on condition of structural lateral displacement. Numerical result reveals that the EIT-like effect remains noticeable with a wide range of incidence polarization angles. Most importantly, by manipulating gate voltages, the EIT window can be dynamically controlled without refabricating the structure. The amplitude modulation depth can reach 81%, 79%, and 68% respectively at three characteristic frequencies as Fermi energy changes in the scope of 0.8-1.0 eV. Furthermore, a sensitivity of 0.95 THz per refractive index unit (RIU) is realized varying the refractive index in the surrounding medium. This structure provides potential applications for detectors, sensors, and modulators.

  8. Study of the hydrostatic pressure dependence of the Raman spectrum of W/WS2 fullerene-like nanosphere with core shell structure

    NASA Astrophysics Data System (ADS)

    Yu, S. D.; Chang, L. X.; Yang, H. B.; Liu, B. B.; Hou, Y. Y.; Wang, L.; Yao, M. G.; Cui, T.; Zou, G. T.

    2007-10-01

    The structural behavior of a W/WS2 fullerene-like nanosphere with a core-shell structure has been studied in the hydrostatic pressure range from atmospheric pressure to 18 GPa by Raman spectroscopy using a methanol-ethanol-water mixture (16:3:1) as the pressure transmitting medium (PTM). We found that it is interesting that the intensity ratio of the LA+TA mode and the A1g mode changes with increasing pressure. We attribute this change to the shape transformation of an inorganic fullerene-like IF-W/WS2 nanosphere under high hydrostatic pressure. By comparing the Raman spectra of an IF-W/WS2 nanosphere released from high pressure with that of the original one, we found that the change in morphology is reversible. This indicates that the spherical shape of the IF-W/WS2 has excellent behavior in resisting compression.

  9. Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales

    NASA Technical Reports Server (NTRS)

    Houghton, Anthony; Timbie, Peter

    1998-01-01

    This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.

  10. Rotation measure synthesis at the 2 m wavelength of the FAN region: unveiling screens and bubbles

    NASA Astrophysics Data System (ADS)

    Iacobelli, M.; Haverkorn, M.; Katgert, P.

    2013-01-01

    Context. Rotation measure synthesis of the Westerbork Synthesis Radio Telescope (WSRT) observations at λ ~ 2 m of the FAN region at l = 137°, b = +7° shows the morphology of structures in the ionized interstellar medium. Aims: We interpret the diffuse polarized synchrotron emission in terms of coherent structures in the interstellar medium and the properties of the interstellar magnetic field. Methods: We performed statistical analysis of the polarization data cube obtained through rotation measure synthesis. For the first time, cross-correlation is applied to identify and characterize polarized structures in Faraday depth space. Complementary information about the medium are derived from Hα emission, properties of nearby pulsars, and optical polarized starlight measurements. Results: We find an overall asymmetric Faraday dispersion function in a Faraday depth range of [-13, +5] rad m-2, which is peaked around -1 rad m-2. Three morphological patterns are recognized, showing structures on scales from degrees down to the beam size. The first structure is a nearby synchrotron emission component with low Faraday depth, filling the entire field of view. The second pattern is a circular polarization structure with enhanced (negative) Faraday depth, which has the same morphology as a low-emission region within the third component. This third component is interpreted as the background in which the circular structure is embedded. At low Faraday depth values, a low gradient across the imaged field is detected, almost aligned with the Galactic plane. Power spectra of polarized structures in Faraday depth space provide evidence of turbulence. Conclusions: A sign reversal in Faraday depth from the nearby component to the circular component indicates a reversal of the magnetic field component along the line of sight, from towards the observer and nearby to away from the observer at large distances. The distance to the nearby, extended component is estimated as ≲100 pc, which suggests that this structure corresponds to the Local Bubble wall. For the circular component, various physical interpretations are discussed. The most likely explanation is that the circular component seems to be the presence of a nearby (~200 pc away) relic Strömgren sphere, associated with an old unidentified white dwarf star and expanding in a low-density environment. Faraday rotation datacubes are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A56

  11. Improving medium-range ensemble streamflow forecasts through statistical post-processing

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo; Wood, Andy; Clark, Elizabeth; Nijssen, Bart; Clark, Martyn; Ramos, Maria-Helena; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    Probabilistic hydrologic forecasts are a powerful source of information for decision-making in water resources operations. A common approach is the hydrologic model-based generation of streamflow forecast ensembles, which can be implemented to account for different sources of uncertainties - e.g., from initial hydrologic conditions (IHCs), weather forecasts, and hydrologic model structure and parameters. In practice, hydrologic ensemble forecasts typically have biases and spread errors stemming from errors in the aforementioned elements, resulting in a degradation of probabilistic properties. In this work, we compare several statistical post-processing techniques applied to medium-range ensemble streamflow forecasts obtained with the System for Hydromet Applications, Research and Prediction (SHARP). SHARP is a fully automated prediction system for the assessment and demonstration of short-term to seasonal streamflow forecasting applications, developed by the National Center for Atmospheric Research, University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. The suite of post-processing techniques includes linear blending, quantile mapping, extended logistic regression, quantile regression, ensemble analogs, and the generalized linear model post-processor (GLMPP). We assess and compare these techniques using multi-year hindcasts in several river basins in the western US. This presentation discusses preliminary findings about the effectiveness of the techniques for improving probabilistic skill, reliability, discrimination, sharpness and resolution.

  12. Recent results from PHOBOS on particle production at high p T

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.

    2009-06-01

    A selection of experimental results from the PHOBOS Collaboration relevant for probing high-energy nuclear collisions with high transverse momentum particles is presented. The inclusive yields of charged particles and comparisons between nuclear and elementary collisions already reveal a large amount of parton energy loss in the hot and dense medium created in heavy ion collisions. Remarkable scaling and factorization features are observed, unifying the data taken at various collision energies, centralities and nuclear sizes. To further analyze the nature of the energy loss, a measurement of pseudorapidity (Δ η) and azimuthal angle (Δ φ) correlations between high transverse momentum charged hadrons ( p T >2.5 GeV/ c) and all associated charged particles is presented at both short-range (small Δ η) and long-range (large Δ η) over a continuous detector acceptance covering -4<Δ η<2. Various near- and away-side features of the correlation structure are discussed as a function of centrality in Au + Au collisions at sqrt{s_{NN}}=200 GeV. The results provide new information about the longitudinal (Δ η) extent of the near-side ‘ridge’ structure, first observed by the STAR Collaboration over a narrower η range. In central Au + Au collisions the ridge structure extends to at least Δ η=4, and its strength completely diminishes as collisions become more peripheral.

  13. Optimization of the Synthesis of Structured Phosphatidylcholine with Medium Chain Fatty Acid.

    PubMed

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Vernon-Carter, Eduardo J; García, Hugo S

    2017-11-01

    Structured phosphatidylcholine was successfully produced by acidolysis between phosphatidylcholine and free medium chain fatty acid, using phospholipase A 1 immobilized on Duolite A568. Response surface methodology was applied to optimize the reaction system using three process parameters: molar ratio of substrates (phosphatidylcholine to free medium chain fatty acid), enzyme loading, and reaction temperature. All parameters evaluated showed linear and quadratic significant effects on the production of modified phosphatidylcholine; molar ratio of substrates contributed positively, but temperature influenced negatively. Increased enzyme loading also led to increased production of modified phosphatidylcholine but only during the first 9 hours of the acidolysis reaction. Optimal conditions obtained from the model were a ratio of phosphatidylcholine to free medium chain fatty acid of 1:15, an enzyme loading of 12%, and a temperature of 45°C. Under these conditions a production of modified phosphatidylcholine of 52.98 % were obtained after 24 h of reaction. The prediction was confirmed from the verification experiments; the production of modified phosphatidylcholine was 53.02%, the total yield of phosphatidylcholine 64.28% and the molar incorporation of medium chain fatty acid was 42.31%. The acidolysis reaction was scaled-up in a batch reactor with a similar production of modified phosphatidylcholine, total yield of phosphatidylcholine and molar incorporation of medium chain fatty acid. Purification by column chromatography of the structured phosphatidylcholine yielded 62.53% of phosphatidylcholine enriched with 42.52% of medium chain fatty acid.

  14. Study on Separation of Structural Isomer with Magneto-Archimedes method

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Mori, T.; Akiyama, Y.; Mishima, F.; Nishijima, S.

    2017-09-01

    Organic compounds are refined by separating their structural isomers, however each separation method has some problems. For example, distillation consumes large energy. In order to solve these problems, new separation method is needed. Considering organic compounds are diamagnetic, we focused on magneto-Archimedes method. With this method, particle mixture dispersed in a paramagnetic medium can be separated in a magnetic field due to the difference of the density and magnetic susceptibility of the particles. In this study, we succeeded in separating isomers of phthalic acid as an example of structural isomer using MnCl2 solution as the paramagnetic medium. In order to use magneto-Archimedes method for separating materials for food or medicine, we proposed harmless medium using oxygen and fluorocarbon instead of MnCl2 aqueous solution. As a result, the possibility of separating every structural isomer was shown.

  15. Textural break foundation wall construction modules

    DOEpatents

    Phillips, Steven J.

    1990-01-01

    Below-grade, textural-break foundation wall structures are provided for inhibiting diffusion and advection of liquids and gases into and out from a surrounding hydrogeologic environment. The foundation wall structure includes a foundation wall having an interior and exterior surface and a porous medium disposed around a portion of the exterior surface. The structure further includes a modular barrier disposed around a portion of the porous medium. The modular barrier is substantially removable from the hydrogeologic environment.

  16. Transcatheter aortic valve implantation: durability of clinical and hemodynamic outcomes beyond 3 years in a large patient cohort.

    PubMed

    Gurvitch, R; Wood, D A; Tay, E L; Leipsic, J; Ye, J; Lichtenstein, S V; Thompson, C R; Carere, R G; Wijesinghe, N; Nietlispach, F; Boone, R H; Lauck, S; Cheung, A; Webb, J G

    2010-09-28

    Although short- and medium-term outcomes after transcatheter aortic valve implantation are encouraging, long-term data on valve function and clinical outcomes are limited. Consecutive high-risk patients who had been declined as surgical candidates because of comorbidities but who underwent successful transcatheter aortic valve implantation with a balloon-expandable valve between January 2005 and December 2006 and survived past 30 days were assessed. Clinical, echocardiographic, and computed tomographic follow-up examinations were performed. Seventy patients who underwent successful procedures and survived longer than 30 days were evaluated at a minimum follow-up of 3 years. At a median follow-up of 3.7 years (interquartile range 3.4 to 4.3 years), survival was 57%. Survival at 1, 2, and 3 years was 81%, 74%, and 61%, respectively. Freedom from reoperation was 98.5% (1 patient with endocarditis). During this early procedural experience, 11 patients died within 30 days, and 8 procedures were unsuccessful. When these patients were included, overall survival was 51%. Transaortic pressure gradients increased from 10.0 mm Hg (interquartile range 8.0 to 12.0 mm Hg) immediately after the procedure to 12.1 mm Hg (interquartile range 8.6 to 16.0 mm Hg) after 3 years (P=0.03). Bioprosthetic valve area decreased from a mean of 1.7±0.4 cm(2) after the procedure to 1.4±0.3 cm(2) after 3 years (P<0.01). Aortic incompetence after implantation was trivial or mild in 84% of cases and remained unchanged or improved over time. There were no cases of structural valvular deterioration, stent fracture, deformation, or valve migration. Transcatheter aortic valve implantation demonstrates good medium- to long-term durability and preserved hemodynamic function, with no evidence of structural failure. The procedure appears to offer an adequate and lasting resolution of aortic stenosis in selected patients.

  17. 75 FR 51182 - Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... one to three large medium or giant BFT for the September, October- November, and December time periods... the daily retention limit of large medium and giant BFT over a range of zero to a maximum of three per... limit of one large medium or giant BFT (measuring 73 inches (185 cm) curved fork length (CFL) or greater...

  18. On the amplification of magnetic fields in cosmic filaments and galaxy clusters

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brüggen, M.; Gheller, C.; Wang, P.

    2014-12-01

    The amplification of primordial magnetic fields via a small-scale turbulent dynamo during structure formation might be able to explain the observed magnetic fields in galaxy clusters. The magnetization of more tenuous large-scale structures such as cosmic filaments is more uncertain, as it is challenging for numerical simulations to achieve the required dynamical range. In this work, we present magnetohydrodynamical cosmological simulations on large uniform grids to study the amplification of primordial seed fields in the intracluster medium (ICM) and in the warm-hot-intergalactic medium (WHIM). In the ICM, we confirm that turbulence caused by structure formation can produce a significant dynamo amplification, even if the amplification is smaller than what is reported in other papers. In the WHIM inside filaments, we do not observe significant dynamo amplification, even though we achieve Reynolds numbers of Re ˜ 200-300. The maximal amplification for large filaments is of the order of ˜100 for the magnetic energy, corresponding to a typical field of a few ˜nG starting from a primordial weak field of 10-10 G (comoving). In order to start a small-scale dynamo, we found that a minimum of ˜102 resolution elements across the virial radius of galaxy clusters was necessary. In filaments we could not find a minimum resolution to set off a dynamo. This stems from the inefficiency of supersonic motions in the WHIM in triggering solenoidal modes and small-scale twisting of magnetic field structures. Magnetic fields this small will make it hard to detect filaments in radio observations.

  19. Surveying the CGM and IGM across 4 orders of magnitude in environmental density

    NASA Astrophysics Data System (ADS)

    Burchett, Joseph

    2017-08-01

    Environment matters when it comes to galaxy evolution, and the mechanisms driving this evolution are reflected in the diffuse gas residing within the large-scale structures enveloping the cosmic galaxy population. QSO absorption lines effectively probe the circumgalactic medium (CGM) and intragroup and intracluster media, and work thus far hints at profound environmental effects on the CGM. However, sample sizes remain small, and a unifying picture of the gas characteristics across diverse environments has yet to emerge. Within the Sloan Digital Sky Survey, we have identified a sample volume containing a remarkable diversity in large-scale environment with an array of voids, >10,000 groups, several filaments, and 5 clusters, including the Coma Supercluster and CfA Great Wall. Leveraging the Hubble Spectroscopic Legacy Archive (HSLA), we propose a study using >360 background QSOs probing this volume to study the effects of large-scale environment on CGM and intergalactic medium (IGM) gas. The z = 0.019-0.028 spectroscopic galaxy sample is uniformly complete to galaxies L > 0.03 L* and, with the HSLA, produces 200 galaxy/sightline pairs within 300-kpc impact parameters across a wide range of environmental densities and structures.Upon quantifying the galaxy environment and identifying/measuring the QSO absorption lines at z = 0.019-0.028, we will pursue the following primary science goals:1. Constrain the CGM/IGM physical conditions across four orders of magnitude in galaxy density2. Compare ionic abundances and ionization states in the CGM of galaxies in filaments vs. voids3. Statistically investigate the IGM/CGM gas properties from structure to structure

  20. The outlook for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Leavens, J. M., Jr.; Schaufele, R. D.; Jones, R. T.; Steiner, J. E.; Beteille, R.; Titcomb, G. A.; Coplin, J. F.; Rowe, B. H.; Lloyd-Jones, D. J.; Overend, W. J.

    1982-01-01

    The technological advances most likely to contribute to advanced aircraft designs and the efficiency, performance, and financial considerations driving the development directions for new aircraft are reviewed. Fuel-efficiency is perceived as the most critical factor for any new aircraft or component design, with most gains expected to come in areas of propulsion, aerodynamics, configurations, structural designs and materials, active controls, digital avionics, laminar flow control, and air-traffic control improvements. Any component area offers an efficiency improvement of 3-12%, with a maximum of 50% possible with a 4000 m range aircraft. Advanced turboprops have potential applications in short and medium haul subsonic aircraft, while a fuel efficient SST may be possible by the year 2000. Further discussion is devoted to the pivoted oblique wing aircraft, lightweight structures, and the necessity for short payback times.

  1. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K.

    PubMed

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-12-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 10(14) to 2.7 × 10(18) D/cm(2). The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I-the linear region of low implantation doses (up to 1 × 10(17) D/cm(2)); II-the nonlinear region of medium implantation doses (1 × 10(17) to 8 × 10(17) D/cm(2)); III-the linear region of high implantation doses (8 × 10(17) to 2.7 × 10(18) D/cm(2)). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The resulting structure shows stability against the action of deuterium ion implantation. This manifests itself in a nearly complete ceasing of deuterium accumulation from a newly implanted dose (radiation-resistant structure).

  2. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam; Panicker, Lata

    2014-12-01

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a `heme' group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV-vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20-30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the `heme' groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  3. [The study of the role of the water medium in the mechanism of action of peptides in low and ultra low doses].

    PubMed

    Grigor'ev, E I; Khavinson, V Kh; Malinin, V V; Grigor'ev, A E; Kochnev, I N; Kudriavtseva, T A

    2003-01-01

    The correlation between the structures and conformations of short peptides KE, EW, AEDG and other, their influence on the dynamic properties of water and dose/biologic effect dependencies in a wide range of concentrations were regarded. Their effects on the dynamic properties of water were studied by temperature dependencies (5-45 degrees C) of infrared spectra of the solutions in the near (5180 cm-1) and far (200 cm-1). In vitro biotesting included the determination of the proliferative activity of thymocytes, a bimodal curve with the second maximum were detected at super-low doses (10(-17)-10(-15) mol/l). Authors propose a hypothesis that for superlow concentrations the formation and distance transmission of a signal from ligand to a target cell without the formation of any ligand-receptor complex take place. An active role in this model belongs to water medium acting according to the solution mechanism.

  4. 3D Organotypic Culture Model to Study Components of ERK Signaling.

    PubMed

    Chioni, Athina-Myrto; Bajwa, Rabia Tayba; Grose, Richard

    2017-01-01

    Organotypic models are 3D in vitro representations of an in vivo environment. Their complexity can range from an epidermal replica to the establishment of a cancer microenvironment. These models have been used for many years, in an attempt to mimic the structure and function of cells and tissues found inside the body. Methods for developing 3D organotypic models differ according to the tissue of interest and the experimental design. For example, cultures may be grown submerged in culture medium and or at an air-liquid interface. Our group is focusing on an air-liquid interface 3D organotypic model. These cultures are grown on a nylon membrane-covered metal grid with the cells embedded in a Collagen-Matrigel gel. This allows cells to grow in an air-liquid interface to enable diffusion and nourishment from the medium below. Subsequently, the organotypic cultures can be used for immunohistochemical staining of various components of ERK signaling, which is a key player in mediating communication between cells and their microenvironment.

  5. Medium chain and behenic acid incorporated structured lipids from sal, mango and kokum fats by lipase acidolysis.

    PubMed

    Bebarta, Biranchi; M, Jhansi; Kotasthane, Pranitha; Sunkireddy, Yella Reddy

    2013-01-15

    Medium chain (MC) and behenic fatty acids were incorporated into kokum, sal and mango fats using 1,3-specific lipase catalysed acidolysis. The incorporation of fatty acids increased with increase in concentration of fatty acids and duration of reaction. The order of incorporation of fatty acids was C22:0>C10:0>C8:0, to the extent of 53%, 42.5%, 35.8%, respectively, after 16 h, using kokum as substrate. The same trend was observed with sal or mango fats as substrates though the percentages incorporated were different. The modified products with higher contents of MC were liquids with no solid fats, even at 0°C, and which showed low cloud point due to an increase in triacylglycerols containing lower chain fatty acids. The modified products after incorporating both MC and C22:0 showed long melting ranges and were suitable for use in bakery, confectionery, etc. as vanaspati substitutes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The Role of Feedback in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Martin, C. L.

    2004-12-01

    Our understanding of galaxy formation is founded on the well-understood principle of gravitational amplification of structure but lacks the astrophysical knowledge needed to predict the properties of galaxies and small scale properties of the intergalactic medium. While gas cooling and galaxy merging are now modeled with reasonable accuracy, the complex process of gas reheating by massive stars and active nuclei is described by simple empirical "feedback" recipes. Chandra and XMM-Newton observations now provide direct imaging of this hot gas in nearby starburst galaxies; and outflow speeds -- of cooler gas entrained in hot galactic winds -- have been measured over a large range of galaxy masses and formation epochs. My talk will describe how these empirical studies help us understand the dynamics of galactic winds and discuss the consequences for the shape of the galaxy luminosity function and the enrichment of the intergalactic medium with metals. Funding from NASA, the Alfred P. Sloan Foundation, and the David and Lucile Packard Foundation made much of this work possible.

  7. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    PubMed

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ram Pressure Stripping of Galaxy JO201

    NASA Astrophysics Data System (ADS)

    Zhong, Greta; Tonnesen, Stephanie; Jaffé, Yara; Bellhouse, Callum; Bianca Poggianti

    2017-01-01

    Despite the discovery of the morphology-density relation more than 30 years ago, the process driving the evolution of spiral galaxies into S0s in clusters is still widely debated. Ram pressure stripping--the removal of a galaxy's interstellar medium by the pressure of the intracluster medium through which it orbits--may help explain galactic evolution and quenching in clusters. MUSE (Multi Unit Spectroscopic Explorer) observational data of galaxy JO201 in cluster Abell 85 reveal it to be a jellyfish galaxy--one with an H-alpha emitting gas tail on only one side. We model the possible orbits for this galaxy, constrained by the cluster mass profile, line of sight velocity, and projected distance from the cluster center. Using Enzo, an adaptive mesh refinement hydrodynamics code, we simulate effects of ram pressure on this galaxy for a range of possible orbits. We present comparisons of both the morphology and velocity structure of our simulated galaxy to the observations of H-alpha emission.

  9. The Parent-Version of the Spence Children's Anxiety Scale (SCAS-P) in Chinese and Italian Community Samples: Validation and Cross-Cultural Comparison.

    PubMed

    Li, Jian-Bin; Delvecchio, Elisa; Di Riso, Daniela; Nie, Yan-Gang; Lis, Adriana

    2016-06-01

    The current study aimed to validate the parent-version of the Spence Children's Anxiety Scale (SCAS-P) among Chinese and Italian community adolescents and to compare adolescents' anxiety symptoms in these two countries. Chinese (N = 456) and Italian (N = 452) adolescents and their parents participated in the study. Results showed that: (1) the six correlated-factor structure was demonstrated and invariant across countries. (2) The reliability of the total scale was good in both samples, whereas reliabilities of subscales were acceptable and moderate in Chinese and Italian samples, respectively. (3) The SCAS-P showed good convergent and divergent validity. (4) Adolescent-parent agreement was from low to medium while mother-father agreement ranged from medium to high. (5) There were cultural and gender differences in levels of parent-report anxiety symptoms. In conclusion, SCAS-P seems to be a promising parent-report instrument to assess Chinese and Italian adolescents' anxiety symptoms.

  10. Carbohydrate structure: the rocky road to automation.

    PubMed

    Agirre, Jon; Davies, Gideon J; Wilson, Keith S; Cowtan, Kevin D

    2017-06-01

    With the introduction of intuitive graphical software, structural biologists who are not experts in crystallography are now able to build complete protein or nucleic acid models rapidly. In contrast, carbohydrates are in a wholly different situation: scant automation exists, with manual building attempts being sometimes toppled by incorrect dictionaries or refinement problems. Sugars are the most stereochemically complex family of biomolecules and, as pyranose rings, have clear conformational preferences. Despite this, all refinement programs may produce high-energy conformations at medium to low resolution, without any support from the electron density. This problem renders the affected structures unusable in glyco-chemical terms. Bringing structural glycobiology up to 'protein standards' will require a total overhaul of the methodology. Time is of the essence, as the community is steadily increasing the production rate of glycoproteins, and electron cryo-microscopy has just started to image them in precisely that resolution range where crystallographic methods falter most. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Synoptic Factors Affecting Structure Predictability of Hurricane Alex (2016)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Aleman, J. J.; Evans, J. L.; Kowaleski, A. M.

    2016-12-01

    On January 7, 2016, a disturbance formed over the western North Atlantic basin. After undergoing tropical transition, the system became the first hurricane of 2016 - and the first North Atlantic hurricane to form in January since 1938. Already an extremely rare hurricane event, Alex then underwent extratropical transition [ET] just north of the Azores Islands. We examine the factors affecting Alex's structural evolution through a new technique called path-clustering. In this way, 51 ensembles from the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (ECMWF-EPS) are grouped based on similarities in the storm's path through the Cyclone Phase Space (CPS). The differing clusters group various possible scenarios of structural development represented in the ensemble forecasts. As a result, it is possible to shed light on the role of the synoptic scale in changing the structure of this hurricane in the midlatitudes through intercomparison of the most "realistic" forecast of the evolution of Alex and the other physically plausible modes of its development.

  12. Simulations of wave propagation and disorder in 3D non-close-packed colloidal photonic crystals with low refractive index contrast.

    PubMed

    Glushko, O; Meisels, R; Kuchar, F

    2010-03-29

    The plane-wave expansion method (PWEM), the multiple-scattering method (MSM) and the 3D finite-difference time-domain method (FDTD) are applied for simulations of propagation of electromagnetic waves through 3D colloidal photonic crystals. The system investigated is not a "usual" artificial opal with close-packed fcc lattice but a dilute bcc structure which occurs due to long-range repulsive interaction between electrically charged colloidal particles during the growth process. The basic optical properties of non-close-packed colloidal PhCs are explored by examining the band structure and reflection spectra for a bcc lattice of silica spheres in an aqueous medium. Finite size effects and correspondence between the Bragg model, band structure and reflection spectra are discussed. The effects of size, positional and missing-spheres disorder are investigated. In addition, by analyzing the results of experimental work we show that the fabricated structures have reduced plane-to-plane distance probably due to the effect of gravity during growth.

  13. Fitting Multimeric Protein Complexes into Electron Microscopy Maps Using 3D Zernike Descriptors

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-01-01

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root mean square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases. PMID:22417139

  14. Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-06-14

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.

  15. Hydraulic characteristics near streamside structures along the Kenai River, Alaska

    USGS Publications Warehouse

    Dorava, Joseph M.

    1995-01-01

    Hydraulic characteristics, water velocity, depth, and flow direction were measured near eight sites along the Kenai River in southcentral Alaska. Each of the eight sites contained a different type of structure: a road-type boat launch, a canal-type boat launch, a floating dock, a rock retaining wall, a pile-supported dock, a jetty, a concrete retaining wall, and a bank stabilization project near the city of Soldotna. Measurements of hydraulic characteristics were made to determine to what extent the structures affected natural or ambient stream hydraulic characteristics. The results will be used by the Alaska Department of Fish and Game to evaluate assumptions used in their Habitat Evaluation Procedure assessment of juvenile chinook salmon habitat along the river and to improve their understanding of stream hydraulics for use in permitting potential projects. The study included structures along the Kenai River from about 12 to 42 miles upstream from the mouth. Hydraulic characteristics were measured during medium-, high-, and low-flow conditions, as measured at the Kenai River at Soldotna: (1) discharge ranged from 6,310 to 6,480 cubic feet per second during medium flow conditions that were near mean annual flow on June 9-10, 1994; (2) discharge ranged from 14,000 to 14,400 cubic feet per second during high flow conditions that were near peak annual flow conditions on August 2-3, 1994; and (3) discharge ranged from 3,470 to 3,660 cubic feet per second during open-water low-flow conditions on May 8-9, 1995. Measurements made at the structures were compared with measurements made at nearby unaffected natural sites. The floating dock, pile-supported dock, road-type boat launch, and concrete retaining wall did not significantly alter the stream channel area. These structures contributed only hydraulic-roughness type changes. The structures occupied a much smaller area than that of the wetted perimeter of the channel and thus typically had little effect on velocity, depth, or flow direction. During this investigation, many of these subtle effects could not be separated from ambient hydraulic conditions. The jetty significantly altered stream channel area and therefore affected stream hydraulics more than the other structures that were investigated. Data indicated that velocity increased from 1.9 to 5.8 feet per second near the point of the jetty during measurements in May, June, and August. Rock wall and jetty structures also divert flow away from near-shore areas in proportion to their projection lengths into the river. For the jetty, the effect on surface flow was observed downstream for a distance of about 10 times the length of the jetty's projection into the river and upstream for about 4 to 5 times the length of the projection. For the rock wall, the diversion of flow was evident for 10 to 15 feet downstream.

  16. Sources and Characteristics of Medium Scale Traveling Ionospheric Disturbances Observed by SuperDARN Radars in the North American Sector

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.

    2015-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of several hundred kilometers, and periods between 15 - 60 min. In SuperDARN radar data, MSTID signatures are manifested as quasi-periodic enhancements of ground backscatter (i.e. skip focusing) which propagate through the radar field-of-view. At high latitudes, SuperDARN observations of MSTIDs have generally been attributed to atmospheric gravity waves (AGWs) launched by auroral sources (e.g. Joule heating). However, recent studies with newer mid-latitude radars have shown MSTIDs are routinely observed in the subauroral ionosphere as well. To develop a more complete picture of MSTID activity, we have surveyed observations from four high latitude and six mid latitude SuperDARN radars located in the North American sector collected between 2011 and 2015 during the months of November to May. Consistent with previous SuperDARN MSTID studies, all radars observed MSTIDs with horizontal wavelengths between ~250 - 500 km and horizontal velocities between ~100 - 250 m/s. The majority of the MSTIDs were observed to propagate in a predominantly southward direction, with bearings ranging from ~135 ̊ - 250 ̊ geographic azimuth. This is highly suggestive of high latitude auroral sources; however, no apparent correlation with geomagnetic or space weather activity could be identified. Rather, comparison of the SuperDARN MSTID time-series data with northern hemisphere geopotential data from the European Center for Medium Range Weather Forecasting (ECMWF) operational model reveals a strong correlation of MSTID activity with dynamics in the polar vortex structure on two primary time scales. First, a seasonal effect manifests as enhanced MSTID activity from November through January, followed by a depressed period from February to May. This appears to correspond with the seasonal development and later decay of the polar vortex. A second, shorter time scale correlation occurs on a 1 to 3 week timescale with MSTID enhancements and depressions again corresponding with strong and weak polar vortex structuring. Collectively, these observations suggest the polar vortex is a more dominant source for MSTIDs observed by SuperDARN radars, rather than auroral sources.

  17. NMR structure of biosynthetic engineered human insulin monomer B31(Lys)-B32(Arg) in water/acetonitrile solution. Comparison with the solution structure of native human insulin monomer.

    PubMed

    Bocian, Wojciech; Borowicz, Piotr; Mikołajczyk, Jerzy; Sitkowski, Jerzy; Tarnowska, Anna; Bednarek, Elzbieta; Głabski, Tadeusz; Tejchman-Małecka, Bozena; Bogiel, Monika; Kozerski, Lech

    2008-10-01

    A solution NMR-derived structure of a new long -acting, B31(Lys)-B32(Arg) (LysArg), engineered human insulin monomer, in H(2)O/CD(3)CN, 65/35 vol %, pH 3.6, is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Smith, et al., Acta Crystallogr D 2003, 59, 474) and with NMR structure of human insulin in the same solvent (Bocian, et al., J Biomol NMR 2008, 40, 55-64). Detailed analysis using PFGSE NMR (Pulsed Field Gradient Spin Echo NMR) in dilution experiments and CSI analysis prove that the structure is monomeric in the concentration range 0.1-3 mM. The presence of long-range interstrand NOEs in a studied structure, relevant to the distances found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Therefore the results suggest that this solvent system is a suitable medium for studying the native conformation of the protein, especially in situations (as found for insulins) in which extensive aggregation renders structure elucidations in water difficult or impossible. Starting from the structures calculated by the program CYANA, two different molecular dynamics (MD) simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER_VC), or including a generalized Born solvent model (AMBER_GB). Here we present another independent evidence to the one presented recently by us (Bocian et al., J Biomol NMR 2008, 40, 55-64), that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. (c) 2008 Wiley Periodicals, Inc.

  18. Natural thermal convection in fractured porous media

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.

    2015-12-01

    In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) < 150 (hence, the fluid is in thermal equilibrium with the medium), cubic boxes and closed-top conditions. Checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4p². 2D convection was verified up to Ra=800. The influence of parameters such as fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50

  19. In-Situ Spectrometry of Neutrons

    NASA Technical Reports Server (NTRS)

    Maurer, Richard H.

    1999-01-01

    High energy charged particles of extra-galactic, galactic and solar origin collide with spacecraft structures in Earth orbit outside the atmosphere and in interplanetary travel beyond the Earth's magnetosphere. These primaries create a number of secondary particles inside the structures that can produce a significant ionizing radiation environment. This radiation is a threat to long term inhabitants or travelers for space missions and produces an increased risk of cancer and DNA damage. The primary high energy cosmic rays and trapped protons collide with common spacecraft materials such as aluminum and silicon and create secondary particles inside structures that are mostly protons and neutrons. Charged protons are readily detected and instruments are already in existence for this task. Neutrons are electrically neutral and therefore much more difficult to measure and detect. These neutrons are reported to contribute 30-60% of the dose inside space structures and cannot be ignored. Currently there is no compact, portable and real time neutron detector instrumentation available for use inside spacecraft or on planetary surfaces where astronauts will live and work. We propose to design and build a portable, low power and robust neutron spectrometer that will measure the neutron spectrum from 10 KeV to 500 MeV with at least 10% energy resolution in the various energy intervals. This instrument will monitor the existing neutron environment both inside spacecraft structures and on planetary surfaces to determine the safest living areas, warn of high fluxes associated with solar storms and assist the NSBRI Radiation Effects Team in making an accurate assessment of increased cancer risk and DNA damage to astronauts. The instrument uses a highly efficient proportional counter Helium 3 tube at the lowest energy intervals where .equivalent damage factors for tissue are the highest (10 KeV-2 MeV). The Helium 3 tube may be shielded with a cadmium absorber to eliminate the much less damaging, but more prevalent, thermal and epithermal neutrons and to make the structure of the spectrum more accurate in the 20 KeV-2 MeV range; or a pair of tubes, one shielded and one unshielded, can be combined so that the difference in their counts yields the thermal neutron contribution. The spectrometer also uses a 5mm lithium drifted bulk silicon solid state detector in the medium energy range of 2-20 Mev and two standard silicon surface barrier detectors separated by tens of millimeters behind a I cm thick polyethylene moderator in a stack or telescope arrangement for the high energy neutrons (>20 MeV). In the medium and high energy regions equivalent damage factors are lower but hits from one or a small number of neutrons may prove to be important. The silicon detector systems for medium and high energy neutrons will discriminate against charged particles by using a plastic cesium iodide scintillator of an appropriate geometry monitored by a silicon PIN photodiode.

  20. Revealing the Structure of a Granular Medium through Ballistic Sound Propagation

    NASA Astrophysics Data System (ADS)

    Lherminier, S.; Planet, R.; Simon, G.; Vanel, L.; Ramos, O.

    2014-08-01

    We study the propagation of sound through a bidimensional granular medium consisting of photoelastic disks, which are packed into different crystalline and disordered structures. Acoustic sensors placed at the boundaries of the system capture the acoustic signal produced by a local and well-controlled mechanical excitation. By compressing the system, we find that the speed of the ballistic part of the acoustic wave behaves as a power law of the applied force with both exponent and prefactor sensitive to the internal geometry of the contact network. This information, which we are able to link to the force-deformation relation of single grains under different contact geometries, provides enough information to reveal the structure of the granular medium.

  1. Fine coal cleaning via the micro-mag process

    DOEpatents

    Klima, Mark S.; Maronde, Carl P.; Killmeyer, Richard P.

    1991-01-01

    A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.

  2. Opacity of iron, nickel, and copper plasmas in the x-ray wavelength range: Theoretical interpretation of 2p-3d absorption spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blenski, T.; Loisel, G.; Poirier, M.

    2011-09-15

    This paper deals with theoretical studies on the 2p-3d absorption in iron, nickel, and copper plasmas related to LULI2000 (Laboratoire pour l'Utilisation des Lasers Intenses, 2000J facility) measurements in which target temperatures were of the order of 20 eV and plasma densities were in the range 0.004-0.01 g/cm{sup 3}. The radiatively heated targets were close to local thermodynamic equilibrium (LTE). The structure of 2p-3d transitions has been studied with the help of the statistical superconfiguration opacity code sco and with the fine-structure atomic physics codes hullac and fac. A new mixed version of the sco code allowing one to treatmore » part of the configurations by detailed calculation based on the Cowan's code rcg has been also used in these comparisons. Special attention was paid to comparisons between theory and experiment concerning the term features which cannot be reproduced by sco. The differences in the spin-orbit splitting and the statistical (thermal) broadening of the 2p-3d transitions have been investigated as a function of the atomic number Z. It appears that at the conditions of the experiment the role of the term and configuration broadening was different in the three analyzed elements, this broadening being sensitive to the atomic number. Some effects of the temperature gradients and possible non-LTE effects have been studied with the help of the radiative-collisional code scric. The sensitivity of the 2p-3d structures with respect to temperature and density in medium-Z plasmas may be helpful for diagnostics of LTE plasmas especially in future experiments on the {Delta}n=0 absorption in medium-Z plasmas for astrophysical applications.« less

  3. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres.

    PubMed

    Cho, Soojeong; Kim, Shin-Hyun

    2015-11-15

    Dopamine-melanin nanospheres are promising materials for photoprotection, structural coloration, and thermoregulation due to their unusual optical and chemical properties. Here, we report the experimental parameters which influence size of dopamine-melanin nanospheres and uniformity. Dopamine precursors are oxidatively polymerized in basic aqueous medium. Therefore, concentration of hydroxide ions significantly influences reaction rate and size of nanospheres. To investigate the effect of hydroxide ions, we adjust three different parameters which affect pH of medium: concentration of sodium hydroxide and dopamine hydrochloride, and reaction temperature. At constant temperature, concentration of hydroxide ions is linearly proportional to initial reaction rates which determine the number of nuclei for nanosphere growth. Temperature alters not only initial reaction rate but also diffusivity of molecules, leading to deviation from the relation between the reaction rate and the number of nuclei. The diameter of dopamine-melanin nanospheres can be readily controlled in a range of 80-490nm through adjusting concentration of dopamine precursor, while maintaining uniform-size distribution and dispersion stability. The synthesized nanospheres are analyzed to confirm the chemical structure, which is composed of approximately 6 indole units. Moreover, surface and chemical properties of the nanospheres are characterized to provide valuable information for surface modification and application. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The effect of double steps heat treatment on the microstructure of nanostructure bainitic medium carbon steels

    NASA Astrophysics Data System (ADS)

    Foughani, Milad; Kolahi, Alireza; Palizdar, Yahya

    2018-01-01

    Nowadays, Nano structure bainitic steel have attracted attention mostly because of its special mechanical properties such as high tensile strength, hardness, appropriate toughness and low manufacturing cost. The main concern for the mass production of this type of steels is prolong austempering process which increases the production costs as well as time. In this research, in order to accelerate the bainitic transformation and decrease the production time, a medium carbon steel has been prepared and two steps austempering process was employed to prevent the bainite laths thickening. The Samples were austenetized at 1000°C for 15 min and were kept in the salt bath between 1 - 12 hours at 290°C in one step and between 1 - 12 hours at the temperature range of 250°C - 300°C in two steps bainite transformation. The obtained micro structures were studied by the optical and scanning electron microscopy (FESEM) and the mechanical properties were investigated by using tensile and hardness tests. The results show that the two steps austempering process and lower carbon concentration lead to lower austempering time as well as the formation of more stable retained austenite and nanostructured bainite lath which results in higher mechanical properties.

  5. Extending medium-range predictability of extreme hydrological events in Europe

    PubMed Central

    Lavers, David A.; Pappenberger, Florian; Zsoter, Ervin

    2014-01-01

    Widespread flooding occurred across northwest Europe during the winter of 2013/14, resulting in large socioeconomic damages. In the historical record, extreme hydrological events have been connected with intense water vapour transport. Here we show that water vapour transport has higher medium-range predictability compared with precipitation in the winter 2013/14 forecasts from the European Centre for Medium-Range Weather Forecasts. Applying the concept of potential predictability, the transport is found to extend the forecast horizon by 3 days in some European regions. Our results suggest that the breakdown in precipitation predictability is due to uncertainty in the horizontal mass convergence location, an essential mechanism for precipitation generation. Furthermore, the predictability increases with larger spatial averages. Given the strong association between precipitation and water vapour transport, especially for extreme events, we conclude that the higher transport predictability could be used as a model diagnostic to increase preparedness for extreme hydrological events. PMID:25387309

  6. Which Is the Optimal Biologically Effective Dose of Stereotactic Body Radiotherapy for Stage I Non-Small-Cell Lung Cancer? A Meta-Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jian; Yang Fujun; Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan

    2011-11-15

    Purpose: To assess the relationship between biologically effective dose (BED) and efficacy of stereotactic body radiation therapy (SBRT) and to explore the optimal BED range for Stage I non-small-cell lung cancer (NSCLC). Methods and Materials: Eligible studies were identified on Medline, Embase, the Cochrane Library, and the proceedings of annual meetings through June 2010. According to the quartile of included studies, BED was divided into four dose groups: low (<83.2 Gy), medium (83.2-106 Gy), medium to high (106-146 Gy), high (>146 Gy). To obtain pooled estimates of overall survival (OS), cancer-specific survival (CSS), and local control rate (LCR), data weremore » combined in a random effect model. Pooled estimates were corrected for the percentage of small tumors (<3 cm). Results: Thirty-four observational studies with a total of 2,587 patients were included in the meta-analysis. Corrected pooled estimates of 2- or 3-year OS in the medium BED (76.1%, 63.5%) or the medium to high BED (68.3%, 63.2%) groups were higher than in the low (62.3%, 51.9%) or high groups (55.9%, 49.5%), respectively (p {<=} 0.004). Corrected 3-year CSS in the medium (79.5%), medium to high (80.6%), and high groups (90.0%) were higher than in the low group (70.1%, p = 0.016, 0.018, 0.001, respectively). Conclusion: The OS for the medium or medium to high BED groups were higher than those for the low or high BED group for SBRT in Stage I NSCLC. The medium or medium to high BED (range, 83.2-146 Gy) for SBRT may currently be more beneficial and reasonable in Stage I NSCLC.« less

  7. Rational Design of Photonic Dust from Nanoporous Anodic Alumina Films: A Versatile Photonic Nanotool for Visual Sensing

    PubMed Central

    Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Ho, Daena; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-01-01

    Herein, we present a systematic study on the development, optimisation and applicability of interferometrically coloured distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs) in the form of films and nanoporous microparticles as visual/colorimetric analytical tools. Firstly, we synthesise a complete palette of NAA-DBRs by galvanostatic pulse anodisation approach, in which the current density is altered in a periodic fashion in order to engineer the effective medium of the resulting photonic films in depth. NAA-DBR photonic films feature vivid colours that can be tuned across the UV-visible-NIR spectrum by structural engineering. Secondly, the effective medium of the resulting photonic films is assessed systematically by visual analysis and reflectometric interference spectroscopy (RIfS) in order to establish the most optimal nanoporous platforms to develop visual/colorimetric tools. Then, we demonstrate the applicability of NAA-DBR photonic films as a chemically selective sensing platform for visual detection of mercury(II) ions. Finally, we generate a new nanomaterial, so-called photonic dust, by breaking down NAA-DBRs films into nanoporous microparticles. The resulting microparticles (μP-NAA-DBRs) display vivid colours and are sensitive towards changes in their effective medium, opening new opportunities for developing advanced photonic nanotools for a broad range of applications. PMID:26245759

  8. Rational Design of Photonic Dust from Nanoporous Anodic Alumina Films: A Versatile Photonic Nanotool for Visual Sensing

    NASA Astrophysics Data System (ADS)

    Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Ho, Daena; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-08-01

    Herein, we present a systematic study on the development, optimisation and applicability of interferometrically coloured distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs) in the form of films and nanoporous microparticles as visual/colorimetric analytical tools. Firstly, we synthesise a complete palette of NAA-DBRs by galvanostatic pulse anodisation approach, in which the current density is altered in a periodic fashion in order to engineer the effective medium of the resulting photonic films in depth. NAA-DBR photonic films feature vivid colours that can be tuned across the UV-visible-NIR spectrum by structural engineering. Secondly, the effective medium of the resulting photonic films is assessed systematically by visual analysis and reflectometric interference spectroscopy (RIfS) in order to establish the most optimal nanoporous platforms to develop visual/colorimetric tools. Then, we demonstrate the applicability of NAA-DBR photonic films as a chemically selective sensing platform for visual detection of mercury(II) ions. Finally, we generate a new nanomaterial, so-called photonic dust, by breaking down NAA-DBRs films into nanoporous microparticles. The resulting microparticles (μP-NAA-DBRs) display vivid colours and are sensitive towards changes in their effective medium, opening new opportunities for developing advanced photonic nanotools for a broad range of applications.

  9. Interstellar holography

    NASA Astrophysics Data System (ADS)

    Walker, M. A.; Koopmans, L. V. E.; Stinebring, D. R.; van Straten, W.

    2008-08-01

    The dynamic spectrum of a radio pulsar is an in-line digital hologram of the ionized interstellar medium. It has previously been demonstrated that such holograms permit image reconstruction, in the sense that one can determine an approximation to the complex electric field values as a function of Doppler shift and delay, but to date the quality of the reconstructions has been poor. Here we report a substantial improvement in the method which we have achieved by simultaneous optimization of the thousands of coefficients that describe the electric field. For our test spectrum of PSRB0834+06 we find that the model provides an accurate representation of the data over the full 63dB dynamic range of the observations: residual differences between model and data are noise like. The advent of interstellar holography enables detailed quantitative investigation of the interstellar radio-wave propagation paths for a given pulsar at each epoch of observation. We illustrate this using our test data which show the scattering material to be structured and highly anisotropic. The temporal response of the medium exhibits a scattering tail which extends to beyond 100μs, and the centroid of the pulse at this frequency and this epoch of observation is delayed by approximately 15μs as a result of multipath propagation in the interstellar medium.

  10. A Modified Constitutive Model for Tensile Flow Behaviors of BR1500HS Ultra-High-Strength Steel at Medium and Low Temperature Regions

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Quan, Guo-Zheng; Pan, Jia; Wang, Xuan; Wu, Dong-Sen; Xia, Yu-Feng

    2018-01-01

    Constitutive model of materials is one of the most requisite mathematical model in the finite element analysis, which describes the relationships of flow behaviors with strain, strain rate and temperature. In order to construct such constitutive relationships of ultra-high-strength BR1500HS steel at medium and low temperature regions, the true stress-strain data over a wide temperature range of 293-873 K and strain rate range of 0.01-10 s-1 were collected from a series of isothermal uniaxial tensile tests. The experimental results show that stress-strain relationships are highly non-linear and susceptible to three parameters involving temperature, strain and strain rate. By considering the impacts of strain rate and temperature on strain hardening, a modified constitutive model based on Johnson-Cook model was proposed to characterize flow behaviors in medium and low temperature ranges. The predictability of the improved model was also evaluated by the relative error (W(%)), correlation coefficient (R) and average absolute relative error (AARE). The R-value and AARE-value for modified constitutive model at medium and low temperature regions are 0.9915 & 1.56 % and 0.9570 & 5.39 %, respectively, which indicates that the modified constitutive model can precisely estimate the flow behaviors for BR1500HS steel in the medium and low temperature regions.

  11. Medium-Energy Particle experiments (MEPs) for the Exploration of energization and Radiation in Geospace (ERG) mission

    NASA Astrophysics Data System (ADS)

    Kasahara, S.; Yokota, S.; Mitani, T.; Asamura, K.; Hirahara, M.; Shibano, Y.; Yamamoto, K.; Takashima, T.

    2017-12-01

    ERG (Exploration of energization and Radiation in Geospace) is the geospace exploration spacecraft, which was launched on 20 December 2016. The mission goal is to unveil the physics behind the drastic radiation belt variability during space storms. One of key observations is the measurement of ions and electrons in the medium-energy range (10-200 keV), since these particles excite EMIC, magnetosonic, and whistler waves, which are theoretically suggested to play significant roles in the relativistic electron acceleration and loss. Medium-Energy Particle experiments - electron analyser (MEP-e) measures the energy and the direction of each incoming electron in the range of 7 to 87 keV. The sensor covers 2π radian disk-like field-of-view with 16 detectors, and the solid angle coverage is achieved by using spacecraft spin motion. The electron energy is independently measured by an electrostatic analyser and avalanche photodiodes, enabling the significant background reduction. Medium-Energy Particle experiments - ion mass analyzer (MEP-i) measures the energy, mass, and charge state of the direction of each incoming ion in the medium-energy range (<10 to >180 keV/q). MEP-i thus provides the velocity distribution functions of medium-energy ions (e.g., protons and oxygens), from which we can obtain significant information on local ion energization and pitch angle scattering in the inner magnetosphere. Heavy ion measurements can also play an important role to restrict global mass transport including the ionosphere and the plasmasheet. Here we show the technical approaches, data output, and highlights of initial observations.

  12. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65 °F−80 °F (18.3 °C−26.7 °C). The heat transfer medium must be a liquid which will not chemically affect the... an accuracy of 1% into the heat transfer medium within 1/8 inch of, but not touching, the sample. (4...

  13. Measurement of the nucleon structure function F 2 in the nuclear medium and evaluation of its moments

    DOE PAGES

    Osipenko, M.

    2010-06-01

    We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W ≈ 2.4 GeV with four-momentum transfers Q 2 ranging from 0.2 to 5 GeV 2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q 2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By usingmore » these, as well as other world data, we evaluated the F 2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q 2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F 2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n < 7, suggesting partial parton deconfinement in nuclear matter. Lastly, we speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.« less

  14. On the Matter Probed by Quasar Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Peroux, Celine

    2010-10-01

    The intergalactic medium (IGM) constitutes a reservoir of baryons from which galaxies form and is, in turn, affected by the processes of galaxy formation. These latter processes are responsible for the reionisation of most of the hydrogen content of the intergalactic medium and later on, for the reionisation of helium with a contribution from quasars. Galactic winds due to massive stars and supernovae pollute the IGM with metals. The mechanical energy released by the collisional excitation due to galaxy and structure formation heats the medium into the Warm-Hot Intergalactic Medium (WHIM). Most of the baryons are probably in this hotter phase, since only a small fraction has been observed in galaxies and the ionised medium so far. In turn, these modifications of the IGM state impact the star formation history by providing a mechanism for global cold gas accretion. Therefore the interactions between galaxies and the intergalactic medium play a major role in the cosmological evolution of structures and the history of baryons, which cannot be solely traced by the starlight from galaxies (representing only 10% of the baryons).

  15. Utilizing of inner porous structure in injection moulds for application of special cooling method

    NASA Astrophysics Data System (ADS)

    Seidl, M.; Bobek, J.; Šafka, J.; Habr, J.; Nováková, I.; Běhálek, L.

    2016-04-01

    The article is focused on impact evaluation of controlled inner structure of production tools and new cooling method on regulation of thermal processes for injection moulding technology. The mould inserts with porous structure were cooled by means of liquid CO2 which is very progressive cooling method and enables very fast and intensive heat transfer among the plastic product, the production tool and cooling medium. The inserts were created using rapid prototype technology (DLSM) and they had a bi-component structure consisting of thin compact surface layer and defined porous inner structure of open cell character where liquid CO2 was flowing through. This analyse includes the evaluation of cooling efficiency for different inner structures and different time profiles for dosing of liquid CO2 into the porous structure. The thermal processes were monitored using thermocouples and IR thermal analyse of product surface and experimental device. Intensive heat removal influenced also the final structure and the shape and dimensional accuracy of the moulded parts that were made of semi-crystalline polymer. The range of final impacts of using intensive cooling method on the plastic parts was defined by DSC and dimensional analyses.

  16. Waves on a Hele-Shaw Cell: Simulations of Acoustic Emissions During Aerofracture

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2016-04-01

    In this work, we develop a numerical model to explain the lab scale experimental setup [1] modeling the aerofractures in a porous medium. The mentioned experimental setup consists in a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. During the experiments, the fluid (pressurized air) is injected into the system with a constant injection pressure from the point opposite to the semi-permeable boundary. At the large enough injection pressures, the fluid also displaces grains (80 μm grain size) and creates channels and fractures towards the semi-permeable boundary. This analogue model is developed in a linear geometry, with confinement and at a lower porosity to study the instabilities developing during the fast motion of a fluid in dense porous materials: fracturing, fingering, and channeling. Different sources of the signal (air vibration in the carved area, changes in the effective stress due to fluid-solid interactions [2]) are separately analyzed and are investigated further using a far field approximation of Lamb waves presented by Goyder & White [3]. In the analysis phase, power spectrum of different timewindows (5 ms) obtained from the recorded signal are computed. Then, the evolution of this power spectrum is compared with the experimental findings. In the power spectrum, it is possible to see some characteristic structure like peaks in specific frequency ranges. These "peaks" are strongly influenced by the size and branching of the channels, compaction of the medium, vibration of air in the pores and the fundamental frequency of the plate. We found that, in the synthetic dataset, the peaks in the low frequency range (f < 20 kHz) diminishes while the medium fractures as suggested in experimental work. 1. Turkaya S, Toussaint R, Eriksen FK, Zecevic M, Daniel G, Flekkøy EG, Måløy KJ. "Bridging aero-fracture evolution with the characteristics of the acoustic emissions in a porous medium." Front. Phys., 3 (2015): 70. doi: 10.3389/fphy.2015.00070 2. Niebling MJ, Toussaint R, Flekkøy EG, Maløy KJ. "Dynamic aerofracture of dense granular packings." Phys Rev E, 86 (2012): 061315. 3. Goyder, H. G. D. and White, R. G. "Vibrational power flow from machines into built-up structures, part I: introduction and approximate analyses of beam and plate-like foundations." Journal of sound and vibration, 68.1 (1980): 59-75.

  17. Use of medium-range weather forecasts for drought mitigation and adaptation under a Mediterranean area

    NASA Astrophysics Data System (ADS)

    Lahlou, Ouiam; Imani, Yasmina; Bennasser Alaoui, Si; Dutra, Emanuel; DiGiuseppe, Francesca; Pappenberger, Florian; Wetterhall, Fredrik

    2014-05-01

    Use of medium-range weather forecasts for drought mitigation and adaptation under a Mediterranean area Authors: Ouiam Lahlou1, Yasmina Imani1, Si Bennasser Alaoui1, Emmanuel Dutra 2, Francesca Di Guiseppe2, Florian Pappenberger2, Fredrik Wetterhall2 1: Institut Agronomique et Vétérinaire Hassan II (IAV Hassan II) 2: European Center for Medium-Range Weather Forecasts (ECMWF) The main pillar of economic development in Morocco is the agricultural sector employing 40% of the active workforce. Agriculture is still mainly dominated by rainfed agriculture which is vulnerable to an increasing frequency and severity of drought events. In rainfed agriculture, there are few interventions possible once crops are planted. Medium to long range weather forecasts could therefore provide valid information for crop selection and sowing time at the onset of the yield season and later to plan mitigation measures during dry-spell episodes. More than 600 daily forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecasting system were analyzed in terms of probabilistic skills scores. Results show that, while daily and weekly accumulated precipitation are poorly predicted there is good skill in the forecast of occurrence and extent of dry periods. The availability of this information to decision makers in the agricultural sector would mean moving from a reactive drought management plan to a proactive one. This is very important, especially for the remote areas where often the needed help comes late. A simulation case-study involving farmers who were made aware of the availability of forecasts for the next seasons, show that medium-range forecasts will allow i) governments and relief agencies to position themselves for more effective and cost-efficient drought interventions, ii) producers to be more aware of their production options and insure their payment rate, iii) Herders, to cope with higher food costs for their cattle iv) farmers to better plan the pre-season agronomic corrections, to schedule the most appropriate timing for the unique complementary irrigation that they can provide to cereals, and to better schedule the harvesting date. Since failing on these mitigation actions due to a lack of forecast availability would be highly priced for the rural Marocco economy, we stress that forecasting drought onset, especially under the high variability of the Mediterranean climate, is of a paramount importance.

  18. Biogenic Hydroxyapatite: A New Material for the Preservation and Restoration of the Built Environment.

    PubMed

    Turner, Ronald J; Renshaw, Joanna C; Hamilton, Andrea

    2017-09-20

    Ordinary Portland cement (OPC) is by weight the world's most produced man-made material and is used in a variety of applications in environments ranging from buildings, to nuclear wasteforms, and within the human body. In this paper, we present for the first time the direct deposition of biogenic hydroxyapatite onto the surface of OPC in a synergistic process which uses the composition of the cement substrate. This hydroxyapatite is very similar to that found in nature, having a similar crystallite size, iron and carbonate substitution, and a semi-crystalline structure. Hydroxyapatites with such a structure are known to be mechanically stronger and more biocompatible than synthetic or biomimetic hydroxyapatites. The formation of this biogenic hydroxyapatite coating therefore has significance in a range of contexts. In medicine, hydroxyapatite coatings are linked to improved biocompatibility of ceramic implant materials. In the built environment, hydroxyapatite coatings have been proposed for the consolidation and protection of sculptural materials such as marble and limestone, with biogenic hydroxyapatites having reduced solubility compared to synthetic apatites. Hydroxyapatites have also been established as effective for the adsorption and remediation of environmental contaminants such as radionuclides and heavy metals. We identify that in addition to providing a biofilm scaffold for nucleation, the metabolic activity of Pseudomonas fluorescens increases the pH of the growth medium to a suitable level for hydroxyapatite formation. The generated ammonia reacts with phosphate in the growth medium, producing ammonium phosphates which are a precursor to the formation of hydroxyapatite under conditions of ambient temperature and pressure. Subsequently, this biogenic deposition process takes place in a simple reaction system under mild chemical conditions and is cheap and easy to apply to fragile biological or architectural surfaces.

  19. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip.

    PubMed

    Bonk, Sebastian M; Stubbe, Marco; Buehler, Sebastian M; Tautorat, Carsten; Baumann, Werner; Klinkenberg, Ernst-Dieter; Gimsa, Jan

    2015-07-30

    We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm(2). Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  20. Comparative density functional study of the complexes [UO2(CO3)3]4- and [(UO2)3(CO3)6]6- in aqueous solution.

    PubMed

    Schlosser, Florian; Moskaleva, Lyudmila V; Kremleva, Alena; Krüger, Sven; Rösch, Notker

    2010-06-28

    With a relativistic all-electron density functional method, we studied two anionic uranium(VI) carbonate complexes that are important for uranium speciation and transport in aqueous medium, the mononuclear tris(carbonato) complex [UO(2)(CO(3))(3)](4-) and the trinuclear hexa(carbonato) complex [(UO(2))(3)(CO(3))(6)](6-). Focusing on the structures in solution, we applied for the first time a full solvation treatment to these complexes. We approximated short-range effects by explicit aqua ligands and described long-range electrostatic interactions via a polarizable continuum model. Structures and vibrational frequencies of "gas-phase" models with explicit aqua ligands agree best with experiment. This is accidental because the continuum model of the solvent to some extent overestimates the electrostatic interactions of these highly anionic systems with the bulk solvent. The calculated free energy change when three mono-nuclear complexes associate to the trinuclear complex, agrees well with experiment and supports the formation of the latter species upon acidification of a uranyl carbonate solution.

  1. On the Integration of Medium Wave Infrared Cameras for Vision-Based Navigation

    DTIC Science & Technology

    2015-03-01

    SWIR Short Wave Infrared VisualSFM Visual Structure from Motion WPAFB Wright Patterson Air Force Base xi ON THE INTEGRATION OF MEDIUM WAVE INFRARED...Structure from Motion Visual Structure from Motion ( VisualSFM ) is an application that performs incremental SfM using images fed into it of a scene [20...too drastically in between frames. When this happens, VisualSFM will begin creating a new model with images that do not fit to the old one. These new

  2. AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-185 AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 23, 2016 16:04:24 UNCLASSIFIED AMRAAM December 2015 SAR March 23, 2016 16:04...2015 SAR March 23, 2016 16:04:24 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM - Program Manager POE

  3. Medium Range Flood Forecasting for Agriculture Damage Reduction

    NASA Astrophysics Data System (ADS)

    Fakhruddin, S. H. M.

    2014-12-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) flood forecasting model has been developed for Bangladesh and Thailand. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range flood forecasts in a way that is not commonly practiced globally today.

  4. Conformation of flexibly linked triterpene dimers by using RDC-enhanced NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lakshmi, Jerripothula K.; Pattnaik, Banita; Kavitha, Rachineni; Mallavadhani, Uppuluri V.; Jagadeesh, Bharatam

    2018-06-01

    Dimers of flexibly linked pentacyclic triterpene ursolic acid (UA) and its related frameworks such as asiatic acid (AA) and oleanolic acid (OA) have recently attracted significant attention due to their enhanced anti-cancer and anti-HCV activity compared to their respective monomers. Determination of conformation/inter-monomer orientation of these molecules is very important to understand their structure-activity relationship and to develop new scaffolds, which, however, is difficult through conventional NOE based solution-state NMR spectroscopy, due to lack of long-range NOEs. In the present work, we report a precise determination of conformation of two 1,2,3-triazole-linked triterpene dimer molecules, UA-AA and UA-OA, by employing one-bond Csbnd H residual dipolar couplings (RDCs) as additional long-range orientational restraints, measured in anisotropic PDMS/CDCl3 solvent medium.

  5. Elastogranular Mechanics: Buckling, Jamming, and Structure Formation.

    PubMed

    Schunter, David J; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P

    2018-02-16

    Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.

  6. Elastogranular Mechanics: Buckling, Jamming, and Structure Formation

    NASA Astrophysics Data System (ADS)

    Schunter, David J.; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P.

    2018-02-01

    Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.

  7. Candidate Herbaceous Plants for Phytoremediation of Energetics on Ranges. Strategic Environmental Research and Development Program

    DTIC Science & Technology

    2007-09-01

    16 Senecio sp. Groundsel yes P medium medium E AK Ft. Greely 6 Sida spinosa Prickly sida A small medium N&S 16 ER D C TR -07-11 11...small C4, CAM N&S Sida spinosa Prickly sida Malvaceae A small medium many considerable C3 N&S 1 Screened for explosives tolerance. 2 A, annual; P...Portulaca oleracea, and h. Sida spinosa. ERDC TR-07-11 16 3 Short-Term Screening for Energetics Tolerance Introduction Short-term screening

  8. Photokinetic Drug Delivery: Light-Enhanced Permeation in an In Vitro Eye Model.

    PubMed

    Godley, Bernard F; Kraft, Edward R; Giannos, Steven A; Zhao, Zhen-Yang; Haag, Anthony M; Wen, Julie W

    2015-12-01

    To investigate light-enhanced molecular movement as a potential technology for drug delivery. To do this, we developed an in vitro eye model while representing similar concentration gradient conditions and compositions found in the eye. The eye model unit was fabricated by inserting a cross-linked type I collagen membrane in a spectrophotometer cuvette with 1% hyaluronic acid as the drug recipient medium. Photokinetic delivery was studied by illuminating 1 mg/mL methotrexate (MTX) placed in the drug donor compartment on top of the membrane, with noncoherent 450 nm light at 8.2 mW from an LED source pulsed at 25 cycles per second, placed in contact with the solution. A modified UV-visual spectrophotometer was employed to rapidly determine the concentration of MTX, at progressive 1 mm distances away from the membrane, within the viscous recipient medium of the model eye after 1 h. A defined, progressive concentration gradient was observed within the nonagitated drug recipient media, diminishing with greater distances from the membrane. Transport of MTX through the membrane was significantly enhanced (ranging from 2 to 3 times, P < 0.05 to P ≤ 0.001) by photokinetic methods compared with control conditions by determining drug concentrations at 4 defined distances from the membrane. According to scanning electron microscopy images, no structural damage or shunts were created on the surface of the cross-linked gelatin membrane. The application of pulsed noncoherent visible light significantly enhances the permeation of MTX through a cross-linked collagen membrane and hyaluronic acid recipient medium without causing structural damage to the membrane.

  9. Isolating "Unknown" Bacteria in the Introductory Microbiology Laboratory: A New Selective Medium for Gram-Positives.

    ERIC Educational Resources Information Center

    McKillip, John L.; Drake, MaryAnne

    1999-01-01

    Describes the development, preparation, and use of a medium that can select against a wide variety of Gram-negative bacteria while still allowing growth and differentiation of a wide range of Gram-positives. (WRM)

  10. Shear Driven Synthesis of Polymeric Micro- and Nanomaterials

    NASA Astrophysics Data System (ADS)

    Tian, Tian

    Polymeric micro- and nanomaterials play a significant role in various current and emerging technologies. A liquid shear based method was developed to fabricate a wide range of polymeric materials, which include fibers, sheets, ribbons, rods and spheres in a scalable, cost-effective and simple way. During the process, droplet shearing, droplet deformation, droplet breaking up and polymer precipitation occur simultaneously. The size and morphology of the resultant structures are determined by the dominating process which is further controlled by the experimental parameters including polymer concentration, polymer molecular weight and antisolvent concentration. Among all of these structures, nanofibers have attracted the latest research interest due to the unique properties. Current leading fiber production approaches in the market possess certain drawbacks. For example, the throughput of electrospinning is limited to around 2.5 kg/hr and the diameter of fiber produced by wet spinning cannot be below micrometer while melt spinning is only applicable to melt-processable polymers. The breakthrough of our liquid shear driven technique for fiber synthesis is that it produces fibers with diameter from 200 nm to several micrometers from a wide range of liquid- processable polymers with high commercial yield (up to 12 kg/hr). Thus in Chapter 2, the optimum parameters range for fiber formation is established and the effects of those parameters on fiber size are investigated. In the original liquid shear method, medium with high viscosity is needed to exert strong shear stress on the droplet and to stretch the droplets to long strand. However, the viscous medium complicates the post sample washing procedure and introduces the potential slippery danger in the working area. Thus a non-viscous medium shearing method is developed in Chapter 3 and it is the first time proposed that the synthesis of PLA or PS nanofibers can be completed in the aqueous ethanol medium. Colloid science usually categorizes emulsion as oil in water (O/W) and water in oil (W/O) dispersions. Oil in oil emulsion can also be formulated from the immiscible organic liquid pairs. Using the phase separation in the PS-cyclohexane system, the emulsion are formed under continuous shearing while the continuous phase is solvent-rich and the disperse phase is polymer-rich. By shearing the emulsions, the fibers sizes are reduced around 10X due to the smaller initial polymer droplet size. The fiber sizes are further reduced to 100 nm which enhances the competitive advantages of liquid shear technique. Controlled drug release combines the advantages of increased therapeutic efficacy, reduced toxicity and lower administration frequency. By dispersing model drugs in the spinning polymer solution, these drugs are successfully encapsulated inside the biodegradable matrix and the encapsulation efficiency is modulated by polymer concentration and fiber size while the release profile of the drug is determined by the degradation rate of the polymer matrix.

  11. Parenteral structured triglyceride emulsion improves nitrogen balance and is cleared faster from the blood in moderately catabolic patients.

    PubMed

    Kruimel, J W; Naber, T H; van der Vliet, J A; Carneheim, C; Katan, M B; Jansen, J B

    2001-01-01

    Most postoperative patients lose net protein mass, which reflects loss of muscle tissue and organ function. Perioperative parenteral nutrition may reduce the loss of protein, but in general, with conventional lipid emulsions a waste of protein still remains. We compared the effects on nitrogen balance of an emulsion containing structured triglycerides, a new type of synthesized triglycerides, with an emulsion of a physical mixture of medium- and long-chain triglycerides as part of parenteral feeding in moderately catabolic patients. The first 5 days after placement of an aortic prosthesis patients received total parenteral nutrition (TPN) providing 0.2 g of nitrogen per kg body weight per day; energy requirement was calculated using Harris and Benedict's equation, adding 300 kcal per day for activity. Twelve patients were treated with the structured triglyceride emulsion and 13 patients with the emulsion of the physical mixture of medium- and long-chain triglycerides. The design was a randomized, double-blind parallel study. In the patients who completed the study, the mean cumulative nitrogen balance over the first 5 postoperative days was -8+/-2 g in 10 patients on the structured triglyceride emulsion and -21+/-4 g in 9 patients on the emulsion of the physical mixture of medium- and long-chain triglycerides; the mean difference was 13 g of nitrogen (95% confidence interval 4 to 22, p = .015) in favor of the structured triglyceride emulsion. On the first postoperative day serum triglyceride and plasma medium-chain free fatty acid levels increased less during infusion of the structured triglyceride emulsion than with the physical mixture emulsion. The parenteral structured triglyceride emulsion improves the nitrogen balance and is cleared faster from the blood, compared with the emulsion of the physical mixture of medium- and long-chain triglycerides, in moderately catabolic patients.

  12. Challenges to Quality of English Medium Instruction Degree Programs in Taiwanese Universities and the Role of Local Accreditors: A Perspective of Non-English-Speaking Asian Country

    ERIC Educational Resources Information Center

    Hou, Angela Yung Chi; Morse, Robert; Chiang, Chung-Lin; Chen, Hui-Jung

    2013-01-01

    As the numbers of international students have grown, higher education institutions in Asia have offered a growing range of English medium instruction (EMI) degree programs. But Asian governments and higher education institutions have not thought deeply about how to ensure quality of English medium instruction degree programs. At the same time,…

  13. Low-speed aerodynamic characteristics of a 13 percent thick medium speed airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1979-01-01

    Wind tunnel tests were conducted to determine the low speed, two dimensional aerodynamic characteristics of a 13percent thick medium speed airfoil designed for general aviation applications. The results were compared with data for the 13 percent thick low speed airfoil. The tests were conducted over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2.0 x 10 to the 6th power to 12.0 x 10 to the 6th power, and an angle of attack frange from about -8 deg to 10 deg. The objective of retaining good high-lift low speed characteristics for an airfoil designed to have good medium speed cruise performance was achieved.

  14. Use of Skype in interviews: the impact of the medium in a study of mental health nurses.

    PubMed

    Oates, Jennifer

    2015-03-01

    To discuss the use of Skype as a medium for undertaking semi-structured interviews. Internet-based research is becoming increasingly popular, as communication using the internet takes a bigger role in our working and personal lives. Technology such as Skype allows research encounters with people across geographical divides. The semi-structured interview is a social encounter with a set of norms and expectations for both parties ( Doody and Noonan 2012 ). Proceedings must take account of the social context of both semi-structured interviews per se, and that of internet mediated communication. The findings of the qualitative phase of a mixed-methods study are compared with other reports comparing the use of Skype with face-to-face and telephone interviews. This paper is a methodological discussion of the use of Skype as an online research methodology. Choosing Skype as a means of interviewing may affect the characteristics of participants and decisions about consent. Rapport, sensitivity and collaboration may be addressed differently in Skype interviews compared with face-to-face interviews. Skype offers researchers the opportunity to reach a geographical spread of participants more safely, cheaply and quickly than face-to-face meetings. Rapport, sensitivity and degrees of collaboration can be achieved using this medium. The use of Skype as a medium for semi-structured interview research is better understood. This paper contributes to the growing body of literature on the use of the internet as a medium for research by nurses.

  15. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium.

    PubMed

    Hibi, Yoshihiko; Kashihara, Ayumi

    2018-03-01

    A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10 -13 to 10 -11  m 2 . The results showed that the Knudsen diffusion coefficient of N 2 (D N2 ) (cm 2 /s) was related to the effective permeability coefficient k e (m 2 ) as D N2  = 7.39 × 10 7 k e 0.767 . Thus, the Knudsen diffusion coefficients of N 2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium

    NASA Astrophysics Data System (ADS)

    Hibi, Yoshihiko; Kashihara, Ayumi

    2018-03-01

    A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium.

  17. Comparison of Two Potassium-Filled Gas-Controlled Heat Pipes

    NASA Astrophysics Data System (ADS)

    Bertiglia, F.; Iacomini, L.; Moro, F.; Merlone, A.

    2015-12-01

    Calibration by comparison of platinum resistance thermometers and thermocouples requires transfer media capable of providing very good short-term temperature uniformity and temperature stability over a wide temperature range. This paper describes and compares the performance of two potassium-filled gas-controlled heat pipes (GCHP) for operation over the range from 420° C to 900° C. One of the heat pipes has been in operation for more than 10 years having been operated at temperature for thousands of hours, while the other was commissioned in 2010 following recently developed improvements to both the design, assembly, and filling processes. It was found that the two devices, despite differences in age, structure, number of wells, and filling processes, realized the same temperatures within the measurement uncertainty. The results show that the potassium-filled GCHP provides a durable and high-quality transfer medium for performing thermometer calibrations with very low uncertainties, over the difficult high-temperature range from 420° C to 900° C.

  18. Real-time demonstration and evaluation of over-the-loop short to medium-range ensemble streamflow forecasting

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Clark, E.; Newman, A. J.; Nijssen, B.; Clark, M. P.; Gangopadhyay, S.; Arnold, J. R.

    2015-12-01

    The US National Weather Service River Forecasting Centers are beginning to operationalize short range to medium range ensemble predictions that have been in development for several years. This practice contrasts with the traditional single-value forecast practice at these lead times not only because the ensemble forecasts offer a basis for quantifying forecast uncertainty, but also because the use of ensembles requires a greater degree of automation in the forecast workflow than is currently used. For instance, individual ensemble member forcings cannot (practically) be manually adjusted, a step not uncommon with the current single-value paradigm, thus the forecaster is required to adopt a more 'over-the-loop' role than before. The relative lack of experience among operational forecasters and forecast users (eg, water managers) in the US with over-the-loop approaches motivates the creation of a real-time demonstration and evaluation platform for exploring the potential of over-the-loop workflows to produce usable ensemble short-to-medium range forecasts, as well as long range predictions. We describe the development and early results of such an effort by a collaboration between NCAR and the two water agencies, the US Army Corps of Engineers and the US Bureau of Reclamation. Focusing on small to medium sized headwater basins around the US, and using multi-decade series of ensemble streamflow hindcasts, we also describe early results, assessing the skill of daily-updating, over-the-loop forecasts driven by a set of ensemble atmospheric outputs from the NCEP GEFS for lead times from 1-15 days.

  19. Structure of gastropod communities at mangrove ecosystem in Lubuk Kertang village, West Berandan District, Langkat Regency, North Sumatera Province

    NASA Astrophysics Data System (ADS)

    Manullang, T.; Bakti, D.; Leidonald, R.

    2018-02-01

    Gastropod was one of the class from mollusca in mangrove ecosystem. Lubuk Kertang Village’s mangrove forest was been converted into tourist areas, agricultural land and settlements. The purpose of this study was to analyze the structure of gastropods at Avicennia lanata, Rhizophora apiculata and Sonneratia alba. This research was conducted at Lubuk Kertang Village in February-March 2017. Gastropod were collected in 1 m × 1 m transect in mangrove. Examples of biota were taken by using shovel, then the biota was inserted into a plastic bag sample, wrote date of sampling and identified. The results showed there were 15 species Gastropods, namely Achatina fulica, Cerithidea alata, Cerithidea cingulata, Cerithidea obtusa, Chicoreus capucinus, Cymatium pileare, Ellobium aurimisdae, Ellobium aurisjudae, Littoraria melanostoma, Littoraria scabra, Murex tribulus, Nerita balteata, Nerita planospira, Pugilina cochlidium, Stramonita gradata, Telescopium telescopium and Terebralia sulcata. Diversity index ranged 1.702 to 2.165 was in medium category, Similarity index ranged 0.676 to 0.799 was in low category and Dominance index ranged 0.142 to 0.282 that categorized was low. The highest gastropod density was 31 individuals/m2 in the Sonneratia alba. The conclusion of the research is the existing mangrove ecosystem in Lubuk Kertang Village in a stable state.

  20. Subwavelength focusing of terahertz waves in silicon hyperbolic metamaterials.

    PubMed

    Kannegulla, Akash; Cheng, Li-Jing

    2016-08-01

    We theoretically demonstrate the subwavelength focusing of terahertz (THz) waves in a hyperbolic metamaterial (HMM) based on a two-dimensional subwavelength silicon pillar array microstructure. The silicon microstructure with a doping concentration of at least 1017  cm-3 offers a hyperbolic dispersion at terahertz frequency range and promises the focusing of terahertz Gaussian beams. The results agree with the simulation based on effective medium theory. The focusing effect can be controlled by the doping concentration, which determines the real part of the out-of-plane permittivity and, therefore, the refraction angles in HMM. The focusing property in the HMM structure allows the propagation of terahertz wave through a subwavelength aperture. The silicon-based HMM structure can be realized using microfabrication technologies and has the potential to advance terahertz imaging with subwavelength resolution.

  1. Absorption of nitro-polycyclic aromatic hydrocarbons by biomembrane models: effect of the medium lipophilicity.

    PubMed

    Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito

    2008-10-01

    To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.

  2. Quenching influence of cell culture medium on photoluminescence and morphological structure of porous silicon

    NASA Astrophysics Data System (ADS)

    Unal, Bayram

    2011-10-01

    In this work, the degradation of visible photoluminescence of porous silicon (PSi) under the influential actions of cell culture medium has been mainly studied in order to comprehend the quenching mechanisms necessitating the cell growth on spongy-like-silicon structures, which could form either micro- and/or nano-dimensional morphologies after stain-etching of the poly- or single-crystalline Si surfaces. Quenching effect of the neuron culture medium on visibly luminescent and non-luminescent porous silicon is found to be quite obvious so that this step of the culture process, especially, over nanostructured silicon is extremely essential for a variety of bionanotechnological applications.

  3. Summer School on Interstellar Processes: Abstracts of contributed papers

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J. (Editor); Thronson, H. A., Jr. (Editor)

    1986-01-01

    The Summer School on Interstellar Processes was held to discuss the current understanding of the interstellar medium and to analyze the basic physical processes underlying interstellar phenomena. Extended abstracts of the contributed papers given at the meeting are presented. Many of the papers concerned the local structure and kinematics of the interstellar medium and focused on such objects as star formation regions, molecular clouds, HII regions, reflection nebulae, planetary nebulae, supernova remnants, and shock waves. Other papers studied the galactic-scale structure of the interstellar medium either in the Milky Way or other galaxies. Some emphasis was given to observations of interstellar grains and

  4. Validation of zero-order feedback strategies for medium range air-to-air interception in a horizontal plane

    NASA Technical Reports Server (NTRS)

    Shinar, J.

    1982-01-01

    A zero order feedback solution of a variable speed interception game between two aircraft in the horizontal plane, obtained by using the method of forced singular perturbation (FSP), is compared with the exact open loop solution. The comparison indicates that for initial distances of separation larger than eight turning radii of the evader, the accuracy of the feedback approximation is better than one percent. The result validates the zero order FSP approximation for medium range air combat analysis.

  5. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.

    2017-10-01

    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  6. Investigation of Activation Cross Sections of the Proton Induced Nuclear Reactions on Natural Iron at Medium Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditroi, F.; Tarkanyi, F.; Csikai, J.

    2005-05-24

    Iron is one of the most important structural materials in every field of science, technology, industry, etc. Its application in a radiating environment requires the knowledge of accurate excitation functions for the possible reactions in question. By using the Thin Layer Activation technique (TLA) the knowledge of such data is also extremely important even in the case of relative measurements to design the irradiation (irradiation energy, beam intensity, duration) and also for radioactive safety estimations. The cross sections are frequently measured at low energies but there are unsatisfactory and unreliable data in the energy range above 40 MeV.

  7. Investigation of Activation Cross Sections of the Proton Induced Nuclear Reactions on Natural Iron at Medium Energies

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Csikai, J.; Uddin, M. S.; Hagiwara, M.; Baba, M.

    2005-05-01

    Iron is one of the most important structural materials in every field of science, technology, industry, etc. Its application in a radiating environment requires the knowledge of accurate excitation functions for the possible reactions in question. By using the Thin Layer Activation technique (TLA) the knowledge of such data is also extremely important even in the case of relative measurements to design the irradiation (irradiation energy, beam intensity, duration) and also for radioactive safety estimations. The cross sections are frequently measured at low energies but there are unsatisfactory and unreliable data in the energy range above 40 MeV.

  8. SEDIGISM: Structure, excitation, and dynamics of the inner Galactic interstellar medium

    NASA Astrophysics Data System (ADS)

    Schuller, F.; Csengeri, T.; Urquhart, J. S.; Duarte-Cabral, A.; Barnes, P. J.; Giannetti, A.; Hernandez, A. K.; Leurini, S.; Mattern, M.; Medina, S.-N. X.; Agurto, C.; Azagra, F.; Anderson, L. D.; Beltrán, M. T.; Beuther, H.; Bontemps, S.; Bronfman, L.; Dobbs, C. L.; Dumke, M.; Finger, R.; Ginsburg, A.; Gonzalez, E.; Henning, T.; Kauffmann, J.; Mac-Auliffe, F.; Menten, K. M.; Montenegro-Montes, F. M.; Moore, T. J. T.; Muller, E.; Parra, R.; Perez-Beaupuits, J.-P.; Pettitt, A.; Russeil, D.; Sánchez-Monge, Á.; Schilke, P.; Schisano, E.; Suri, S.; Testi, L.; Torstensson, K.; Venegas, P.; Wang, K.; Wienen, M.; Wyrowski, F.; Zavagno, A.

    2017-05-01

    Context. The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. Many large-scale surveys of the Galactic plane have been conducted recently, allowing for rapid progress in this field. Nevertheless, a sub-arcminute resolution global view of the large-scale distribution of molecular gas, from the diffuse medium to dense clouds and clumps, and of their relationshipto the spiral structure, is still missing. Aims: We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic plane, in order to complement the many continuum Galactic surveys available with crucial distance and gas-kinematic information. Our aim is to combine this data set with recent infrared to sub-millimetre surveys at similar angular resolutions. Methods: The SEDIGISM survey covers 78 deg2 of the inner Galaxy (-60°≤ℓ≤ 18°, |b|≤ 0.5°) in the J = 2-1 rotational transition of 13CO. This isotopologue of CO is less abundant than 12CO by factors up to 100. Therefore, its emission has low to moderate optical depths, and higher critical density, making it an ideal tracer of the cold, dense interstellar medium. The data have been observed with the SHFI single-pixel instrument at APEX. The observational setup covers the 13CO(2-1) and C18O(2-1) lines, plus several transitions from other molecules. Results: The observations have been completed. Data reduction is in progress, and the final data products will be made available in the near future. Here we give a detailed description of the survey and the dedicated data reduction pipeline. To illustrate the scientific potential of this survey, preliminary results based on a science demonstration field covering -20°≤ℓ ≤ -18.5° are presented. Analysis of the 13CO(2-1) data in this field reveals compact clumps, diffuse clouds, and filamentary structures at a range of heliocentric distances. By combining our data with data in the (1-0) transition of CO isotopologues from the ThrUMMS survey, we are able to compute a 3D realization of the excitation temperature and optical depth in the interstellar medium. Ultimately, this survey will provide a detailed, global view of the inner Galactic interstellar medium at an unprecedented angular resolution of 30''. This publication is based on data acquired with the Atacama Pathfinder EXperiment (APEX) under programmes 092.F-9315(A) and 193.C-0584(A). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.Full Table 5 and Table A.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A124

  9. Structured medium and long chain triglycerides show short-term increases in fat oxidation, but no changes in adiposity in men.

    PubMed

    Roynette, Catherine E; Rudkowska, Iwona; Nakhasi, Dilip K; Jones, Peter J H

    2008-05-01

    Medium chain triglycerides (MCT) have been suggested as modulators of human energy expenditure (EE) and thus may influence total and regional body fat distribution. To investigate in overweight men the effects of structured medium and long chain triglycerides on EE, substrate oxidation and body adiposity, compared to extra virgin olive oil (OO). In a 6 week single-blind crossover study, 23 overweight men were randomly assigned to consume a standard high-fat diet of which 75% total fat was provided as either structured medium and long chain triglycerides referred to as structured oil (StO), or OO. EE and body composition were measured using indirect calorimetry and magnetic resonance imaging, respectively, at weeks 1 and 6 of each phase. Body weight decreased (p<0.01) from baseline to end-point during consumption of both the StO (-1.46+/-0.4k g) and OO (-1.17+/-0.4 kg); however, no significant treatment differences were observed. There were no changes in body composition among treatment groups. No differences between diets for EE measurements were reported. Fat oxidation rates did not differ between oils, but were reduced (p<0.05) in the StO group between baseline (0.0020+/-0.0003 g/kg fat free mass per min) in comparison to after week 6 (0.0013+/-0.0001 g/kg fat free mass per min). No differences in carbohydrate oxidation rate were noted across diets or time. The present structured medium and long chain triglyceride oil increases short-term fat oxidation but fails to modulate body weight or adiposity through a change in EE.

  10. Progress and Challenges in Short to Medium Range Coupled Prediction

    NASA Technical Reports Server (NTRS)

    Brassington, G. B.; Martin, M. J.; Tolman, H. L.; Akella, Santha; Balmeseda, M.; Chambers, C. R. S.; Cummings, J. A.; Drillet, Y.; Jansen, P. A. E. M.; Laloyaux, P.; hide

    2014-01-01

    The availability of GODAE Oceanview-type ocean forecast systems provides the opportunity to develop high-resolution, short- to medium-range coupled prediction systems. Several groups have undertaken the first experiments based on relatively unsophisticated approaches. Progress is being driven at the institutional level targeting a range of applications that represent their respective national interests with clear overlaps and opportunities for information exchange and collaboration. These include general circulation, hurricanes, extra-tropical storms, high-latitude weather and sea-ice forecasting as well as coastal air-sea interaction. In some cases, research has moved beyond case and sensitivity studies to controlled experiments to obtain statistically significant metrics.

  11. Multiscale structural changes of atomic order in severely deformed industrial aluminum

    NASA Astrophysics Data System (ADS)

    Samoilenko, Z. A.; Ivakhnenko, N. N.; Pushenko, E. I.; Pashinskaya, E. G.; Varyukhin, V. N.

    2016-02-01

    The regularities of multiscale structural changes in the atomic order of the aluminum alloy AD-1 after a severe cold plastic deformation by conventional rolling in smooth rolls or in rolls with relief recesses favorable for shear deformation have been investigated. It has been found that there are four types of structural fractions that differ in scale and perfection of atomic order: crystallographic planes with a long-range order; nanoscale fragments of the planes ( D = 100-300 Å) with an incipient long-range order; smaller groups of atoms ( D = 20-30 Å) of amorphized structure; and the least ordered structural fraction of intercluster medium, keeping only a short-range atomic order (2-3 interatomic distances, 10 Å). The presence of diffuse halo bands in the region of intense Debye lines indicates phase transitions of the order → disorder type with the formation of one to three groups of amorphous clusters with the dominance, in the nanometer scale, of the atomic order characteristic of the family of planes (111), (220), and (311) of crystalline aluminum. We have found a dynamic phase transition with the changing crystallographic order of aluminum, with the matrix structure of a face-centered cubic (FCC) lattice, in the form of nanosized local groups of atoms, that is, the deformation clusters of aluminum with a simple cubic K6 lattice. In the case of conventional rolling, the development of large clusters 50-500 Å in size is observed; however, in the use of rolls with relief recesses, the difference in the sizes of the clusters is one half as much: 50-250 Å. Based on the analysis of the integrated intensity of incoherent X-ray scattering by the samples, we have elucidated the nature of the lowest measured density for the sample subjected to conventional rolling, which consists in the volume concentration of disorderly arranged atoms, the highest of the compared structures, which indicates the formation therein of the greatest amount of fluctuation "voids."

  12. Soft-tissue tumor differentiation using 3D power Doppler ultrasonography with echo-contrast medium injection.

    PubMed

    Chiou, Hong-Jen; Chou, Yi-Hong; Chen, Wei-Ming; Chen, Winby; Wang, Hsin-Kai; Chang, Cheng-Yen

    2010-12-01

    We aimed to evaluate the ability of 3-dimensional power Doppler ultrasonography to differentiate soft-tissue masses from blood flow and vascularization with contrast medium. Twenty-five patients (mean age, 44.1 years; range, 12-77 years) with a palpable mass were enrolled in this study. Volume data were acquired using linear and convex 3-dimensional probes and contrast medium injected manually by bolus. Data were stored and traced slice by slice for 12 slices. All patients were scanned by the same senior sonologist. The vascular index (VI), flow index (FI), and vascular-flow index (VFI) were automatically calculated after the tumor was completely traced. All tumors were later confirmed by pathology. The study included 8 benign (mean, 36.5 mL; range, 2.4-124 mL) and 17 malignant (mean, 319.4 mL; range, 9.9-1,179.6 mL) tumors. Before contrast medium injection, mean VI, FI and VFI were, respectively, 3.22, 32.26 and 1.07 in benign tumors, and 1.97, 29.33 and 0.67 in malignant tumors. After contrast medium injection, they were, respectively, 20.85, 37.33 and 8.52 in benign tumors, and 40.12, 41.21 and 17.77 in malignant tumors. The mean differences between with and without contrast injection for VI, FI and VFI were, respectively, 17.63, 5.07 and 7.45 in benign tumors, and 38.15, 11.88 and 16.55 in malignant tumors. Tumor volume, VI, FI and VFI were not significantly different between benign and malignant tumors before and after echo-contrast medium injection. However, VI, FI and VFI under self-differentiation (differences between with and without contrast injection) were significantly different between malignant and benign tumors. Three-dimensional power Doppler ultrasound is a valuable tool for differential diagnosis of soft-tissue tumors, especially with the injection of an echo-contrast medium. Copyright © 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  13. ngVLA Key Science Goal 3: Charting the Assembly, Structure, and Evolution of Galaxies Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Bolatto, Alberto D.; Carilli, Chris; Casey, Caitlin M.; Decarli, Roberto; Murphy, Eric Joseph; Narayanan, Desika; Walter, Fabian; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group

    2018-01-01

    The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Imaging of the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts back to early cosmic epochs will reveal the physical processes responsible for star formation and black hole growth in galaxies over a broad range in redshifts. In the nearby universe, the ngVLA has the capability to survey the structure of the cold, star-forming interstellar medium at parsec-resolution out to the Virgo cluster. A range of molecular tracers will be accessible to map the motion, distribution, and physical and chemical state of the gas as it flows in from the outer disk, assembles into clouds, and experiences feedback due to star formation or accretion into central super-massive black holes. These investigations will crucially complement studies of the star formation and stellar mass histories with the Large UV/Optical/Infrared Surveyor and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.

  14. Anticolchicine cytotoxicity enhanced by Dan Gua-Fang, a Chinese herb prescription in ECV304 in mediums.

    PubMed

    Heng, Xian-Pei; Chen, Ke-Ji; Hong, Zhen-Feng; He, Wei-Dong; Chu, Ke-Dan; Chen, Wen-Lie; Zheng, Hai-Xia; Yang, Liu-Qing; Chen, Ling; Guo, Fang

    2011-02-01

    To study the effect of anticolchicine cytotoxicity of Dan Gua-Fang, a Chinesea Chinese), a Chinese herbal compound prescription on endothelial cells of vein (ECV304) cultivated in mediums of different glucose concentrations as well as the proliferation of those cells in the same conditions, in order to reveal the value of Dan Gua-Fang in preventing and treating endothelial damage caused by hyperglycemia in diabetes mellitus. The research was designed as three stages. The growing state and morphological changes were observed when ECV304 were cultivated in the culture mediums, which have different glucose concentrations with or without Dan Gua-Fang and at the same time with or without colchicine. (1) Dan Gua-Fang at all concentrations reduced the floating cell population of ECV304 cultivated in hyperglycemia mediums. (2) Dan Gua-Fang at all concentrations and hyperglycemia both had a function of promoting "pseudopod-like" structure formation in cultivated ECV304, but the function was not superimposed in mediums containing both hyperglycemia and Dan Gua-Fang. (3) Colchicine reduced and even vanished the "pseudopod-like" structure of the endotheliocyte apparently cultivated in mediums of hyperglycemia or with Dan Gua-Fang. The "pseudopod-like" structure of the endotheliocyte emerged quickly in Dan Gua-Fang groups after colchicine was removed, but it was not the case in hyperglycemia only without Dan Gua-Fang groups. (4) Dan Gua-Fang reduced the mortality of cells cultivated in mediums containing colchicine. The cell revived to its normal state fast after colchicine was removed. Dan Gua-Fang has the functions of promoting the formation of cytoskeleton and fighting against colchicine cytotoxicity.

  15. Mean dyadic Green's function for a two layer random medium

    NASA Technical Reports Server (NTRS)

    Zuniga, M. A.

    1981-01-01

    The mean dyadic Green's function for a two-layer random medium with arbitrary three-dimensional correlation functions has been obtained with the zeroth-order solution to the Dyson equation by applying the nonlinear approximation. The propagation of the coherent wave in the random medium is similar to that in an anisotropic medium with different propagation constants for the characteristic transverse electric and transverse magnetic polarizations. In the limit of a laminar structure, two propagation constants for each polarization are found to exist.

  16. Structural disorder in the decagonal Al-Co-Ni. I. Patterson analysis of diffuse x-ray scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobas, Miroslav; Weber, Thomas; Steurer, Walter

    The three-dimensional (3D) difference Patterson (autocorrelation) function of a disordered quasicrystal (Edagawa phase) has been analyzed. 3D diffuse x-ray diffraction data were collected in situ at 300, 1070, and 1120 K. A method, the punch-and-fill technique, has been developed for separating diffuse scattering and Bragg reflections. Its potential and limits are discussed in detail. The different Patterson maps are interpreted in terms of intercluster correlations as a function of temperature. Both at high and low temperatures, the clusters decorate the vertices of the same quasiperiodic covering. At low temperatures, for the disordered part of the structure, short-range intercluster correlations aremore » present, whereas at higher temperatures, medium-range intercluster correlations are formed. This indicates disorder mainly inside clusters at low temperatures, whereas at higher temperatures disorder takes place inside larger superclusters. Qualitatively, the Patterson maps may be interpreted by intercluster correlations mainly inside pentagonal superclusters below 1120 K, and inside the larger decagonal superclusters at 1120 K. The results of our diffraction study are published in two parts. Part I focuses on the 3D Patterson analysis based on experimental data, Part II reports modeling of structural disorder in decagonal Al-Co-Ni.« less

  17. A cloud/particle model of the interstellar medium - Galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Levinson, F. H.; Roberts, W. W., Jr.

    1981-01-01

    A cloud/particle model for gas flow in galaxies is developed that incorporates cloud-cloud collisions and supernovae as dominant local processes. Cloud-cloud collisions are the main means of dissipation. To counter this dissipation and maintain local dispersion, supernova explosions in the medium administer radial snowplow pushes to all nearby clouds. The causal link between these processes is that cloud-cloud collisions will form stars and that these stars will rapidly become supernovae. The cloud/particle model is tested and used to investigate the gas dynamics and spiral structures in galaxies where these assumptions may be reasonable. Particular attention is given to whether large-scale galactic shock waves, which are thought to underlie the regular well-delineated spiral structure in some galaxies, form and persist in a cloud-supernova dominated interstellar medium; this question is answered in the affirmative.

  18. 'Know before you go': information-seeking behaviour of German patients receiving health services abroad in light of the provisions of Directive 2011/24/EU.

    PubMed

    Panteli, Dimitra; Wagner, Caroline; Verheyen, Frank; Busse, Reinhard

    2015-07-01

    While Directive 2011/24/EU on cross-border patient mobility makes specific provisions in relation to information availability and accessibility, little empirical evidence exists to guide best practice. This paper explores the information-seeking behaviour of German patients who received planned care abroad. A postal survey among German patients treated in other European countries was carried out by Techniker Krankenkasse, a major German sickness fund. The influence of certain predictors on whether patients informed themselves before travelling for care was investigated using multiple logistic regression. Types and sources of information were analysed using descriptive statistics. Information activity was contingent on patients' level of education, type of service, regularity of treatment abroad and awareness of entitlement to cross-border services. Respondents most frequently enquired about elements of reimbursement, entitlement to services and cost-saving, and consulted their sickness fund for information. Differences in both content and medium of choice were observed between patient groups. A structured and inclusive approach to information provision should be adopted. National Contact Points should collaborate with a range of stakeholders, who will vary depending on the health care system; however, patient organizations, health professionals and third-party payers should always be represented. Dynamically monitoring cross-border movements can help determine the range, medium and language of relevant information. © The Author(s) 2015.

  19. Lift producing device exhibiting low drag and reduced ventilation potential and method for producing the same

    NASA Technical Reports Server (NTRS)

    Caldwell, Richard A. (Inventor)

    1991-01-01

    A lift producing device is disclosed which is adapted to be connected to a vehicle to provide lift to the vehicle when the vehicle is moved relative to a first fluid medium having a first density and viscosity and being in contact with a second fluid medium adjacent the vehicle. The second fluid medium has a second fluid density which is different from the first fluid density. The lift producing device comprises opposed first and second major surfaces joined at a longitudinally extending leading edge and at a longitudinally extending trailing edge, with at least a portion of the longitudinally extending leading edge being spaced from the longitudinally extending trailing edge by a predetermined mean chord length. When the vehicle is moved relative to the first fluid medium at a velocity within a range of predetermined velocities, with each of the velocities having a direction inclined from a plane extending through the leading edge and the trailing edge within a predetermined angular range, a region of high pressure is generated in the first fluid medium adjacent the first major surface and a region of low pressure is generated in the first fluid medium adjacent the second major surface. The lift producing device has a cross-sectional shape which will generate a pressure distribution around the device when the vehicle is moved relative to the first fluid medium at a velocity within the range of predetermined velocities such that the first fluid medium exhibits attached laminar flow along the device for a portion of the predetermined mean chord length from the leading edge to the trailing edge and will neither form a laminar separation bubble adjacent the second major surface of the device, nor exhibit turbulent separation adjacent the second major surface for substantially all of the predetermined mean chord length from the leading edge to the trailing edge. The portion along which attached laminar flow is maintained is the longest portion which will still fulfill the flow separation requirements. A method for producing the foil is also disclosed.

  20. Shock probes in a one-dimensional Katz-Lebowitz-Spohn model

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sakuntala; Barma, Mustansir

    2008-06-01

    We consider shock probes in a one-dimensional driven diffusive medium with nearest-neighbor Ising interaction (KLS model). Earlier studies based on an approximate mapping of the present system to an effective zero-range process concluded that the exponents characterizing the decays of several static and dynamical correlation functions of the probes depend continuously on the strength of the Ising interaction. On the contrary, our numerical simulations indicate that over a substantial range of the interaction strength, these exponents remain constant and their values are the same as in the case of no interaction (when the medium executes an ASEP). We demonstrate this by numerical studies of several dynamical correlation functions for two probes and also for a macroscopic number of probes. Our results are consistent with the expectation that the short-ranged correlations induced by the Ising interaction should not affect the large time and large distance properties of the system, implying that scaling forms remain the same as in the medium with no interactions present.

  1. The Shock and Vibration Bulletin. Part 3: Structure Medium Interaction, Case Studies in Dynamics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Structure and medium interactions topics are addressed. Topics include: a failure analysis of underground concrete structures subjected to blast loadings, an optimization design procedure for concrete slabs, and a discussion of the transient response of a cylindrical shell submerged in a fluid. Case studies in dynamics are presented which include an examination of a shock isolation platform for a seasparrow launcher, a discussion of hydrofoil fatigue load environments, and an investigation of the dynamic characteristics of turbine generators and low tuned foundations.

  2. Lowest-energy cage structures of medium-sized ( ZnO )n clusters with n = 15 - 24

    NASA Astrophysics Data System (ADS)

    Tang, Lingli; Sai, Linwei; Zhao, Jijun; Qiu, Ruifeng

    2015-01-01

    Fullerene-like cage structures of medium-sized ( ZnO )n clusters with n = 15 - 24 were generated by spiral algorithm and optimized using density functional theory calculations. Most of these lowest-energy cage structures contain only four-membered and six-membered rings, whereas eight-membered rings were found in the lowest-energy cages of ( ZnO )n (n = 19, 20, 23, 24). Our best cage configurations either reproduce or prevail the previously reported ones. The size-dependent electronic properties were also discussed.

  3. Lowest-energy cage structures of medium-sized (ZnO){sub n} clusters with n = 15 − 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lingli; Sai, Linwei; Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn

    2015-01-22

    Fullerene-like cage structures of medium-sized (ZnO){sub n} clusters with n = 15 − 24 were generated by spiral algorithm and optimized using density functional theory calculations. Most of these lowest-energy cage structures contain only four-membered and six-membered rings, whereas eight-membered rings were found in the lowest-energy cages of (ZnO){sub n} (n = 19, 20, 23, 24). Our best cage configurations either reproduce or prevail the previously reported ones. The size-dependent electronic properties were also discussed.

  4. Strategic Planning for Deepening the All-Around Structural Reform of Education: Issues of Structural Reform in the "National Medium- and Long-Term Educational Reform and Development Guideline (2010-20)"

    ERIC Educational Resources Information Center

    Songhua, Tan; Wang, Catherine Yan

    2012-01-01

    The "National Medium- and Long-Term Educational Reform and Development Guideline (2010-20)" (hereafter abbreviated as the "Guideline") posits that the development of education must be driven by reform and innovation. It devotes six chapters to mapping out the targets, tasks, and major policy measures for reforming the…

  5. Corn steep liquor as a nutritional source for biocementation and its impact on concrete structural properties.

    PubMed

    Joshi, Sumit; Goyal, Shweta; Reddy, M Sudhakara

    2018-05-28

    Microbial-induced carbonate precipitation (MICP) has a potential to improve the durability properties and remediate cracks in concrete. In the present study, the main emphasis is placed upon replacing the expensive laboratory nutrient broth (NB) with corn steep liquor (CSL), an industrial by-product, as an alternate nutrient medium during biocementation. The influence of organic nutrients (carbon and nitrogen content) of CSL and NB on the chemical and structural properties of concrete structures is studied. It has been observed that cement-setting properties were unaffected by CSL organic content, while NB medium influenced it. Carbon and nitrogen content in concrete structures was significantly lower in CSL-treated specimens than in NB-treated specimens. Decreased permeability and increased compressive strength were reported when NB is replaced with CSL in bacteria-treated specimens. The present study results suggest that CSL can be used as a replacement growth medium for MICP technology at commercial scale.

  6. The Ambient and Perturbed Solar Wind: From the Sun to 1 AU

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1997-01-01

    The overall objective of the proposed research was to use numerical solutions of the magnetohydrodynamic (MHD) equations along with comparisons of the computed results with observations to study the following topics: (1) ambient solar wind solutions that extend from the solar surface to 1 astronomical unit (AU), contain closed magnetic structures near the Sun, and are consistent with observed values; (2) magnetic and plasma structures in coronal mass ejections (CMES) as they propagate to the interplanetary medium; (3) relation of MHD shocks to CMEs in the interplanetary medium; (4) interaction of MHD shocks with structures (such as other shocks, corotating interaction regions, current sheets) in the interplanetary plasma; and (5) simulations of observed interplanetary structures. A planned close collaboration with data analysts served to make the model more relevant to the data. The outcome of this research program is an improved understanding of the physical processes occurring in solar-generated disturbances in the interplanetary medium between the Sun and 1 AU.

  7. Molecular Dynamics Study on Nucleation Behavior and Lamellar Mergence of Polyethylene Globule Crystallization

    NASA Astrophysics Data System (ADS)

    Yang, Xiaozhen; Wang, Simiao

    2012-02-01

    The site order parameter (SOP) has been adopted to analyze various order structure formation and distribution during the crystallization of a multi-chain polyethylene globule simulated by molecular dynamics. We found that the nucleation relies on crystallinity fluctuation with increase of amplitude, and the baby nucleus in the fluctuation suddenly appears with different shape and increasing size. In the growth stage, a number of lamellar mergence was observed and their selective behaviors were suggested to be related to the orientation difference between the merging lamellae. We obtained that SOP distribution of all atoms in the system during crystallization appears with two peaks: one for the amorphous phase and the other for the crystalline phase. Mesomorphic structures with medium orders locate between the two peaks as an order promotion pathway. Obtained data show that the medium order structure fluctuates at the growth front and does not always be available; the medium order structure existing at the front is not always good for developing. It is possibly caused by chain entanglement.

  8. Nonequilibrium forces following quenches in active and thermal matter.

    PubMed

    Rohwer, Christian M; Solon, Alexandre; Kardar, Mehran; Krüger, Matthias

    2018-03-01

    Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.

  9. Nonequilibrium forces following quenches in active and thermal matter

    NASA Astrophysics Data System (ADS)

    Rohwer, Christian M.; Solon, Alexandre; Kardar, Mehran; Krüger, Matthias

    2018-03-01

    Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.

  10. Random lasing action in a polydimethylsiloxane wrinkle induced disordered structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Zhenhua; Wu, Leilei; Zhu, Shu

    This paper presents a chip-scale random lasing action utilizing polydimethylsiloxane (PDMS) wrinkles with random periods as disordered medium. Nanoscale wrinkles with long range disorder structures are formed on the oxidized surface of a PDMS slab and confirmed by atomic force microscopy. Light multiply scattered at each PDMS wrinkle-dye interfaces is optically amplified in the presence of pump gain. The shift of laser emission wavelength when pumping at different regions indicates the randomness of the winkle period. In addition, a relatively low threshold of about 27 μJ/mm{sup 2} is realized, which is comparable with traditional optofluidic dye laser. This is due tomore » the unique sinusoidal Bragg-grating-like random structure. Contrast to conventional microfluidic dye laser that inevitably requires the accurate design and implementation of microcavity to provide optical feedback, the convenience in both fabrication and operation makes PDMS wrinkle based random laser a promising underlying element in lab-on-a-chip systems and integrated microfluidic networks.« less

  11. Morphogenetic effects of 2,4-dichlorophenoxyacetic acid on pinto bean (Phaseolus vulgaris L.) leaf explants in vitro.

    PubMed

    Saunders, J W; Hosfield, G L; Levi, A

    1987-02-01

    Roots, callus and/or globular structures were produced on primary leaf and distal cotyledon explants of pinto bean (Phaseolus vulgaris L. cv. UI 114) cultured on semisolid MS medium with a wide range of 2,4-D concentrations (0.01 to 80 mg/L) with either 0 or 1.0 mg/L kinetin. Explants rooted at lower 2,4-D concentrations than at those favoring globule formation on callus, although roots, callus and globules often developed from the same explant. Isolated opaque green globular structures developed when callus initiated on media with 3 or more mg/L 2,4-D was subcultured in liquid MS + 30 mg/L 2,4-D. These structures multiplied with a fresh weight doubling time of 8-9 days in MS + 30 mg/L 2,4-D. Although this multiplicative behavior and opaque color were reminiscent of embryoids reported for other species, no cotyledons or roots were seen.

  12. High-resolution soft X-ray spectra of Scorpius X-1 - The structure of circumsource accreting material

    NASA Technical Reports Server (NTRS)

    Kahn, S. M.; Seward, F. D.; Chlebowski, T.

    1984-01-01

    Four observations of Scorpius X-1 with the Objective Grating Spectrometer of the Einstein Observatory have provided high-resolution spectra (lambda/Delta lambda = approximately 20-50) in the wavelength range 7-46 A. The spectra reveal the presence of absorption structure due to oxygen, nitrogen, and iron, and variable emission structure associated with ionized iron and nitrogen. The strengths of these features suggest that the N/O abundance ratio in the absorbing and line emitting gas is anomalously high, which might indicate that these spectral components are associated with processed material, probably accreting matter transferred from the surface of an evolved companion. Constraints on the inclination of the system, however, imply that this cool, dense, accreting material must be well out of the plane of the binary system. Possible models for the origin and nature of this circumsource medium are discussed. An extensive discussion of the calibration of the Objective Grating Spectrometer and of the analysis of spectra acquired by that instrument is also provided.

  13. CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings

    DOE PAGES

    Schmidt, Joel E.; Xie, Dan; Rea, Thomas; ...

    2015-01-23

    A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [4 25 46 2] mtw building unit and a previously unreported [4 45 2] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected withmore » oval 8-rings (2.9 Å × 5.5 Å opening) through medium-sized cavities (~7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants.« less

  14. Radio Wave Propagation through a Medium Containing Electron Density Fluctuations Described by an Anisotropic Goldreich-Sridhar Spectrum

    NASA Astrophysics Data System (ADS)

    Chandran, B. D. G.; Backer, D. C.

    2002-09-01

    We study the propagation of radio waves through a medium possessing density fluctuations that are elongated along the ambient magnetic field and described by an anisotropic Goldreich-Sridhar power spectrum. We derive general formulae for the wave phase structure function Dφ, visibility, angular broadening, diffraction pattern length scales, and scintillation timescale for arbitrary distributions of turbulence along the line of sight and specialize these formulae to idealized cases. In general, Dφ~(δr)5/3 when the baseline δr is in the inertial range of the turbulent density spectrum, and Dφ~(δr)2 when δr is in the dissipation range, just as for an isotropic Kolmogorov spectrum of fluctuations. When the density structures that dominate the scattering have an axial ratio R>>1 (typically R~103), the axial ratio of the broadened image of a point source in the standard Markov approximation is at most ~R1/2, and this maximum value is obtained in the unrealistic case that the scattering medium is confined to a thin screen in which the magnetic field has a single direction. If the projection of the magnetic field within the screen onto the plane of the sky rotates through an angle Δψ along the line of sight from one side of the screen to the other, and if R-1/2<<Δψ<<1, then the axial ratio of the resulting broadened image of a point source is 2(8/3)3/5/Δψ~=3.6/Δψ. The error in this formula increases with Δψ but reaches only ~15% when Δψ=π. This indicates that a moderate amount of variation in the direction of the magnetic field along the line of sight dramatically decreases the anisotropy of a broadened image. When R>>1, the observed anisotropy will in general be determined by the degree of variation of the field direction along the sight line and not by the degree of density anisotropy. Although this makes it difficult to determine observationally the degree of anisotropy in interstellar density fluctuations, observed anisotropies in broadened images provide general support for anisotropic models of interstellar turbulence. Regions in which the angle γ between the magnetic field and line of sight is small cause enhanced scattering due to the increased coherence of density structures along the line of sight. In the exceedingly rare and probably unrealized case that scattering is dominated by regions in which γ<~(δr/l)1/3, where l is the outer scale (stirring scale) of the turbulence, Dφ~(δr)4/3 for δr in the inertial range. In a companion paper (Backer & Chandran) we discuss the semiannual modulation in the scintillation time of a nearby pulsar for which the field direction variation along the line of sight is expected to be moderately small.

  15. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    NASA Astrophysics Data System (ADS)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields an improvement in gain, or range, and in the ability to be mounted on multiple metallic surfaces.

  16. With medium-chain triglycerides, higher and faster oxygen radical production by stimulated polymorphonuclear leukocytes occurs.

    PubMed

    Kruimel, J W; Naber, A H; Curfs, J H; Wenker, M A; Jansen, J B

    2000-01-01

    Parenteral lipid emulsions are suspected of suppressing the immune function. However, study results are contradictory and mainly concern the conventional long-chain triglyceride emulsions. Polymorphonuclear leukocytes were preincubated with parenteral lipid emulsions. The influence of the lipid emulsions on the production of oxygen radicals by these stimulated leukocytes was studied by measuring chemiluminescence. Three different parenteral lipid emulsions were tested: long-chain triglycerides, a physical mixture of medium- and long-chain triglycerides, and structured triglycerides. Structured triglycerides consist of triglycerides where the medium- and long-chain fatty acids are attached to the same glycerol molecule. Stimulated polymorphonuclear leukocytes preincubated with the physical mixture of medium- and long-chain triglycerides showed higher levels of oxygen radicals (p < .005) and faster production of oxygen radicals (p < .005) compared with polymorphonuclear leukocytes preincubated with long-chain triglycerides or structured triglycerides. Additional studies indicated that differences in results of various lipid emulsions were not caused by differences in emulsifier. The overall production of oxygen radicals was significantly lower after preincubation with the three lipid emulsions compared with controls without lipid emulsion. A physical mixture of medium- and long-chain triglycerides induced faster production of oxygen radicals, resulting in higher levels of oxygen radicals, compared with long-chain triglycerides or structured triglycerides. This can be detrimental in cases where oxygen radicals play either a pathogenic role or a beneficial one, such as when rapid phagocytosis and killing of bacteria is needed. The observed lower production of oxygen radicals by polymorphonuclear leukocytes in the presence of parenteral lipid emulsions may result in immunosuppression by these lipids.

  17. Evidence for chiral symmetry restoration in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Moreau, P.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Bratkovskaya, E. L.

    2017-11-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range √{sNN} = 3- 20GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for particle production. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at √{sNN} = 3- 20GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. Our results provide a microscopic explanation for the horn structure in the excitation function of the K+ /π+ ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to √{sNN} ≈ 7GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance/disappearance of the horn structure is investigated as a function of the system size. We additionally present an analysis of strangeness production in the (T ,μB)-plane (as extracted from the PHSD for central Au+Au collisions) and discuss the perspectives to identify a possible critical point in the phase diagram.

  18. Search efficiency of biased migration towards stationary or moving targets in heterogeneously structured environments

    NASA Astrophysics Data System (ADS)

    Azimzade, Youness; Mashaghi, Alireza

    2017-12-01

    Efficient search acts as a strong selective force in biological systems ranging from cellular populations to predator-prey systems. The search processes commonly involve finding a stationary or mobile target within a heterogeneously structured environment where obstacles limit migration. An open generic question is whether random or directionally biased motions or a combination of both provide an optimal search efficiency and how that depends on the motility and density of targets and obstacles. To address this question, we develop a simple model that involves a random walker searching for its targets in a heterogeneous medium of bond percolation square lattice and used mean first passage time (〈T 〉 ) as an indication of average search time. Our analysis reveals a dual effect of directional bias on the minimum value of 〈T 〉 . For a homogeneous medium, directionality always decreases 〈T 〉 and a pure directional migration (a ballistic motion) serves as the optimized strategy, while for a heterogeneous environment, we find that the optimized strategy involves a combination of directed and random migrations. The relative contribution of these modes is determined by the density of obstacles and motility of targets. Existence of randomness and motility of targets add to the efficiency of search. Our study reveals generic and simple rules that govern search efficiency. Our findings might find application in a number of areas including immunology, cell biology, ecology, and robotics.

  19. Depth and Medium-Scale Spatial Processes Influence Fish Assemblage Structure of Unconsolidated Habitats in a Subtropical Marine Park

    PubMed Central

    Schultz, Arthur L.; Malcolm, Hamish A.; Bucher, Daniel J.; Linklater, Michelle; Smith, Stephen D. A.

    2014-01-01

    Where biological datasets are spatially limited, abiotic surrogates have been advocated to inform objective planning for Marine Protected Areas. However, this approach assumes close correlation between abiotic and biotic patterns. The Solitary Islands Marine Park, northern NSW, Australia, currently uses a habitat classification system (HCS) to assist with planning, but this is based only on data for reefs. We used Baited Remote Underwater Videos (BRUVs) to survey fish assemblages of unconsolidated substrata at different depths, distances from shore, and across an along-shore spatial scale of 10 s of km (2 transects) to examine how well the HCS works for this dominant habitat. We used multivariate regression modelling to examine the importance of these, and other environmental factors (backscatter intensity, fine-scale bathymetric variation and rugosity), in structuring fish assemblages. There were significant differences in fish assemblages across depths, distance from shore, and over the medium spatial scale of the study: together, these factors generated the optimum model in multivariate regression. However, marginal tests suggested that backscatter intensity, which itself is a surrogate for sediment type and hardness, might also influence fish assemblages and needs further investigation. Species richness was significantly different across all factors: however, total MaxN only differed significantly between locations. This study demonstrates that the pre-existing abiotic HCS only partially represents the range of fish assemblages of unconsolidated habitats in the region. PMID:24824998

  20. Learning about the very local interstellar medium from the Voyagers

    NASA Astrophysics Data System (ADS)

    Florinski, V. A.; Guo, X.; Burlaga, L. F.

    2017-12-01

    The outer heliosheath is the region in front of the heliopause affected by the interaction between the solar wind and the flow of interstellar gas. Voyager 1 has been exploring this region for over five years uncovering a number of remarkable phenomena not present elsewhere in space directly accessible by spacecraft. The very local interstellar medium (VLISM) is characterized by remarkably low levels of magnetic fluctuation intensities presenting a nearly scatter free environment for energetic particle propagation. The fluctuations have power law spectra and probably belong to the inertial range of a turbulent cascade fed by a variety of sources, including large and kinetic scale instabilities and the inner heliosheath structures transmitted across the heliopause. While the fluxes of galactic cosmic rays are, on average, very steady in the VLISM, in agreement with theoretical expectations, they also show episodic depletions at the 90 degree pitch angle. These anisotropy events may be associated with the passage of weak compressive magnetic structures resembling shock waves, but with ramp widths orders of magnitude broader than the relevant kinetic plasma scales. The key to understanding the VLISM lies in recognizing the interconnections between the magnetic field data, which has a "local" character, the highly mobile cosmic rays that sample vast regions of space along magnetic field lines, and neutral atom populations measured by IBEX that can reveal kinetic scale physics of energetic ions produced in charge exchange events.

  1. Plasma q -plate for generation and manipulation of intense optical vortices

    NASA Astrophysics Data System (ADS)

    Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.

    2017-11-01

    An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here we propose the design of suitably magnetized plasmas which, functioning as a q -plate, leads to a direct conversion from a high-intensity Gaussian beam into a twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q -plate can work in a large range of frequencies spanning from terahertz to the optical domain.

  2. Sound pressure level gain in an acoustic metamaterial cavity.

    PubMed

    Song, Kyungjun; Kim, Kiwon; Hur, Shin; Kwak, Jun-Hyuk; Park, Jihyun; Yoon, Jong Rak; Kim, Jedo

    2014-12-11

    The inherent attenuation of a homogeneous viscous medium limits radiation propagation, thereby restricting the use of many high-frequency acoustic devices to only short-range applications. Here, we design and experimentally demonstrate an acoustic metamaterial localization cavity which is used for sound pressure level (SPL) gain using double coiled up space like structures thereby increasing the range of detection. This unique behavior occurs within a subwavelength cavity that is 1/10(th) of the wavelength of the incident acoustic wave, which provides up to a 13 dB SPL gain. We show that the amplification results from the Fabry-Perot resonance of the cavity, which has a simultaneously high effective refractive index and effective impedance. We also experimentally verify the SPL amplification in an underwater environment at higher frequencies using a sample with an identical unit cell size. The versatile scalability of the design shows promising applications in many areas, especially in acoustic imaging and underwater communication.

  3. Radiative transfer in multilayered random medium with laminar structure - Green's function approach

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1986-01-01

    For a multilayered random medium with a laminar structure a Green's function approach is introduced to obtain the emitted intensity due to an arbitrary point source. It is then shown that the approach is applicable to both active and passive remote sensing. In active remote sensing, the computed radar backscattering cross section for the multilayered medium includes the effects of both volume multiple scattering and surface multiple scattering at the layer boundaries. In passive remote sensing, the brightness temperature is obtained for arbitrary temperature profiles in the layers. As an illustration the brightness temperature and reflectivity are calculated for a bounded layer and compared with results in the literature.

  4. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid

    NASA Astrophysics Data System (ADS)

    Grabska, Justyna; Beć, Krzysztof B.; Ishigaki, Mika; Wójcik, Marek J.; Ozaki, Yukihiro

    2017-10-01

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5 · 10- 4 M in CCl4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000 cm- 1, is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications.

  5. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid.

    PubMed

    Grabska, Justyna; Beć, Krzysztof B; Ishigaki, Mika; Wójcik, Marek J; Ozaki, Yukihiro

    2017-10-05

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5·10 -4 M in CCl 4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000cm -1 , is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Choline-amino acid ionic liquids: past and recent achievements about the structure and properties of these really "green" chemicals.

    PubMed

    Gontrani, Lorenzo

    2018-06-01

    The structure of choline-amino acid ionic liquids, atoxic task-specific solvents composed of materials originated from renewable feedstocks, is reviewed in this letter. The varied and strong interactions that these liquids are capable of establishing are largely dependent on their structure and confer them outstanding solvating properties with respect to a large number of different solutes. Among the experimental methods capable of yielding structural insight, the energy-dispersive version of X-Ray diffraction, that uses the Bremsstrahlung radiation of the X-Ray tube, is a technique very well suited to investigate these liquid systems. The diffraction spectra of five choline-amino acid ionic liquids, recently measured, are reported and discussed; in particular, the presence or absence of the medium-range order pre-peak is related to the presence of polar groups within the amino acid side chain that destroys the hydrophobic interactions between aliphatic chains. In the final section, a recent example of choline-amino acid ionic liquids as for ancient paper preservation and two other interesting results are discussed at the end.

  7. New computing systems and their impact on structural analysis and design

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1989-01-01

    A review is given of the recent advances in computer technology that are likely to impact structural analysis and design. The computational needs for future structures technology are described. The characteristics of new and projected computing systems are summarized. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed, and a novel partitioning strategy is outlined for maximizing the degree of parallelism. The strategy is designed for computers with a shared memory and a small number of powerful processors (or a small number of clusters of medium-range processors). It is based on approximating the response of the structure by a combination of symmetric and antisymmetric response vectors, each obtained using a fraction of the degrees of freedom of the original finite element model. The strategy was implemented on the CRAY X-MP/4 and the Alliant FX/8 computers. For nonlinear dynamic problems on the CRAY X-MP with four CPUs, it resulted in an order of magnitude reduction in total analysis time, compared with the direct analysis on a single-CPU CRAY X-MP machine.

  8. Bulk sensitive hard x-ray photoemission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C.; Weber, N.

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. Themore » high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.« less

  9. Development of new vibration energy flow analysis software and its applications to vehicle systems

    NASA Astrophysics Data System (ADS)

    Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.

    2005-09-01

    The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.

  10. Cloaks for suppression or enhancement of scattering of diffuse photon density waves

    NASA Astrophysics Data System (ADS)

    Renthlei, Lalruatfela; Ramakrishna, S. Anantha; Wanare, Harshawardhan

    2018-07-01

    Enhancement of wave-like characteristics of heavily damped diffuse photon density waves in a random medium by amplification can induce strongly localised resonances. These resonances can be used to either suppress or enhance scattering from an inhomogeneity in the random medium by cloaking the inhomogeneous region by a shell of random medium with the correct levels of absorption or amplification. A spherical core-shell structure consisting of a shell of a random amplifying medium is shown to enhance or suppress specific resonant modes. A shell with an absorbing random medium is also shown to suppress scattering which can also be used for cloaking the core region.

  11. Asynchronous BCI control using high-frequency SSVEP.

    PubMed

    Diez, Pablo F; Mut, Vicente A; Avila Perona, Enrique M; Laciar Leber, Eric

    2011-07-14

    Steady-State Visual Evoked Potential (SSVEP) is a visual cortical response evoked by repetitive stimuli with a light source flickering at frequencies above 4 Hz and could be classified into three ranges: low (up to 12 Hz), medium (12-30) and high frequency (> 30 Hz). SSVEP-based Brain-Computer Interfaces (BCI) are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range. However, they only evaluate the performance of different methods to extract SSVEP. This research proposed a high-frequency SSVEP-based asynchronous BCI in order to control the navigation of a mobile object on the screen through a scenario and to reach its final destination. This could help impaired people to navigate a robotic wheelchair. There were three different scenarios with different difficulty levels (easy, medium and difficult). The signal processing method is based on Fourier transform and three EEG measurement channels. The research obtained accuracies ranging in classification from 65% to 100% with Information Transfer Rate varying from 9.4 to 45 bits/min. Our proposed method allows all subjects participating in the study to control the mobile object and to reach a final target without prior training.

  12. Coupled granular/continuous medium for thermally stable perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Sonobe, Y.; Weller, D.; Ikeda, Y.; Takano, K.; Schabes, M. E.; Zeltzer, G.; Do, H.; Yen, B. K.; Best, M. E.

    2001-10-01

    We studied coupled granular/continuous (CGC) perpendicular media consisting of a continuous multilayer structure and a granular layer. The addition of Co/Pt multilayers decreased the nucleation field from 200 to -1800 Oe and increased the squareness from 0.9 to 1.0. The moment decay at room temperature was significantly reduced from -4.8% to -0.05% per decade. At elevated temperatures, strong exchange coupling between a granular layer and a continuous layer is needed for thermal stability. The exchange-coupled continuous layer reduces thermal demagnetization as it effectively increases the grain size, tightens the grain distribution, and prevents the reversal of individual grains. Magnetic Force Microscope image showed a larger magnetic cluster size for the CGC structure. Compared to the CoCr 18Pt 12 medium, the CGC medium had 2.3 dB higher output. However, the noise for the CGC medium increased with the recording density, while the noise for the CoCr 18Pt 12 medium remained constant from 4 to 15 kfc/mm. Further optimization and noise reduction are still required for future high density recording.

  13. Phase-resolved reflectance spectroscopy on layered turbid media

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.

    1995-05-01

    In this study, we investigate the influence of layered tissue structures on the phase-resolved reflectance. As a particular example, we consider the affect of the skin, skull, and meninges on noninvasive blood oxygenation determination of the brain. In this case, it's important to know how accurate one can measure the absorption coefficient of the brain through the enclosing layers of different tissues. Experiments were performed on layered gelatin tissue phantoms and the results compared to diffusion theory. It is shown that when a high absorbing medium is placed on top of a low absorbing medium, the absorption coefficient of the lower layer is accessible. In the inverse case, where a low absorbing medium is placed on top of a high absorbing medium, the absorption coefficient of the underlying medium can only be determined if the differences in the absorption coefficient are small, or the top layer is very thin. Investigations on almost absorption and scattering free layers, like the cerebral fluid filled arachnoid, reveal that the determination of the absorption coefficient is barely affected by these kinds of structures.

  14. Breakdown of the Debye approximation for the acoustic modes with nanometric wavelengths in glasses

    PubMed Central

    Monaco, Giulio; Giordano, Valentina M.

    2009-01-01

    On the macroscopic scale, the wavelengths of sound waves in glasses are large enough that the details of the disordered microscopic structure are usually irrelevant, and the medium can be considered as a continuum. On decreasing the wavelength this approximation must of course fail at one point. We show here that this takes place unexpectedly on the mesoscopic scale characteristic of the medium range order of glasses, where it still works well for the corresponding crystalline phases. Specifically, we find that the acoustic excitations with nanometric wavelengths show the clear signature of being strongly scattered, indicating the existence of a cross-over between well-defined acoustic modes for larger wavelengths and ill-defined ones for smaller wavelengths. This cross-over region is accompanied by a softening of the sound velocity that quantitatively accounts for the excess observed in the vibrational density of states of glasses over the Debye level at energies of a few milli-electronvolts. These findings thus highlight the acoustic contribution to the well-known universal low-temperature anomalies found in the specific heat of glasses. PMID:19240211

  15. Analytical model of diffuse reflectance spectrum of skin tissue

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Sobchuk, A. N.

    2014-01-01

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions.

  16. Solar events and their influence on the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Aspects of a workshop on Solar events and their influence on the interplanetary medium, held in September 1986, are reviewed, the goal of which was to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances. The workshop consisted of three working groups: (1) flares, eruptives, and other near-Sun activity; (2) coronal mass ejections; and (3) interplanetary events. Each group discussed topics distributed in advance. The flares-eruptives group members agreed that pre-event energy is stored in stressed/sheared magnetic fields, but could not agree that flares and other eruptive events (e.g., eruptive solar prominences) are aspects of the same physical phenomenon. In the coronal mass ejection group, general agreement was reached on the presence of prominences in CMEs, and that they have a significant three-dimensional structure. Some topics identified for further research were the aftermath of CMEs (streamer deflections, transient coronal holes, possible disconnections), identification of the leading edge of CMEs, and studies of the range and prevalence of CME mass sizes and energies.

  17. Pulse Q-switched Nd:YAG laser ablation grown cinnamon nanomorphologies: Influence of different liquid medium

    NASA Astrophysics Data System (ADS)

    Salim, Ali Aqeel; Bidin, Noriah

    2017-12-01

    Broad range of biomedical applications demands accurate synthesis and characterization of various nanoparticles. We report the characterization of cinnamon nanoparticles (CNPs) grown via simple pulsed laser ablation in liquid (PLAL). The influence of different liquid media (olive oil, ethanol, and citric acid each of volume 4 ml) on the growth morphology, structure and optical properties of CNPs is determined. Q-switched 1064-Nd: YAG laser of 10 ns pulse duration, 1 Hz repetition rate, 532 nm s harmonic generation and laser fluence of 6.37 J/cm2 is used to irradiate the cinnamon targets immersed in those liquids. Samples are characterized using TEM, HRTEM, SAED, FTIR, UV-Vis and Photoluminescence measurements. TEM images revealed the nucleation of CNPs of average size 18.36 nm (in olive oil), 21.48 nm (in ethanol), and 29.56 nm (in citric acid). Morphology of CNPs is demonstrated to be sensitive to the liquid medium. Our simple and innovative method may constitute a basis to produce CNPs of desired size distribution potential for the development of nanobiomedicine.

  18. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Yang, Dan-Qing; Liu, Shi-Lei; Yu, Si-Yuan; Lu, Ming-Hui; Zhu, Jie; Zhang, Shan-Tao; Zhu, Ming-Wei; Guo, Xia-Sheng; Wu, Hao-Dong; Wang, Xin-Long; Chen, Yan-Feng

    2017-02-01

    High-quality broadband ultrasound transducers yield superior imaging performance in biomedical ultrasonography. However, proper design to perfectly bridge the energy between the active piezoelectric material and the target medium over the operating spectrum is still lacking. Here, we demonstrate a new anisotropic cone-structured acoustic metamaterial matching layer that acts as an inhomogeneous material with gradient acoustic impedance along the ultrasound propagation direction. When sandwiched between the piezoelectric material unit and the target medium, the acoustic metamaterial matching layer provides a broadband window to support extraordinary transmission of ultrasound over a wide frequency range. We fabricated the matching layer by etching the peeled silica optical fibre bundles with hydrofluoric acid solution. The experimental measurement of an ultrasound transducer equipped with this acoustic metamaterial matching layer shows that the corresponding -6 dB bandwidth is able to reach over 100%. This new material fully enables new high-end piezoelectric materials in the construction of high-performance ultrasound transducers and probes, leading to considerably improved resolutions in biomedical ultrasonography and compact harmonic imaging systems.

  19. Organic electroluminescent devices having improved light extraction

    DOEpatents

    Shiang, Joseph John [Niskayuna, NY

    2007-07-17

    Organic electroluminescent devices having improved light extraction include a light-scattering medium disposed adjacent thereto. The light-scattering medium has a light scattering anisotropy parameter g in the range from greater than zero to about 0.99, and a scatterance parameter S less than about 0.22 or greater than about 3.

  20. 40 CFR 86.1 - Reference materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles and Engines (OBD-II), IBR approved for § 86.1806... Requirements for 2004 and Subsequent Model-Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles and....1311-94. (2) SAE J1634, Electric Vehicle Energy Consumption and Range Test Procedure, Cancelled October...

  1. Biotransformation of tryptophan by liquid medium culture of Psilocybe coprophila (Basidiomycetes).

    PubMed

    Alarcón, Julio; Foncea, Leyla; Aguila, Sergio; Alderete, Joel B

    2006-01-01

    Chemical reactions performed by fungi have been used as a modern tool in chemistry. In this work, we show the tryptophan biotransformation with Psilocybe coprophila on liquid culture medium. The results prove once more the versatility of fungi in performing a wide range of industrially attractive chemical reactions.

  2. Uncovering English-Medium Instruction: Glocal Issues in Higher Education

    ERIC Educational Resources Information Center

    Margic, Branka Drljaca; Vodopija-Krstanovic, Irena

    2017-01-01

    English-medium instruction (EMI) is a complex educational innovation and a prerequisite for active participation in the process of internationalizing academia. Given its impact on today's universities, it is crucial that EMI should be effectively and responsibly implemented. This book draws on a range of theoretical and empirical insights to…

  3. An Examination of the Effects of Cultural, Climatic, Structural, and Technological Factors on Knowledge Management Effectiveness

    DTIC Science & Technology

    2006-12-15

    ineffective or missing incentive systems (Ruggles, 1998). A study of small and medium sized enterprises found that culture was the second highest rated...communicated by management and shared by the employees throughout the organization. In a study of small and medium sized companies, senior leadership was...operationalized as industry performance , diversification, firm size , structure and risk level (Tanriverdi, 2005). 14 Two recent studies examine KM

  4. Quantitative modeling of coupled piezo-elastodynamic behavior of piezoelectric actuators bonded to an elastic medium for structural health monitoring: a review.

    PubMed

    Huang, Guoliang; Song, Fei; Wang, Xiaodong

    2010-01-01

    Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized.

  5. Porous media heat transfer for injection molding

    DOEpatents

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  6. Liquid crystal-based Mueller matrix spectral imaging polarimetry for parameterizing mineral structural organization.

    PubMed

    Gladish, James C; Duncan, Donald D

    2017-01-20

    Herein, we discuss the remote assessment of the subwavelength organizational structure of a medium. Specifically, we use spectral imaging polarimetry, as the vector nature of polarized light enables it to interact with optical anisotropies within a medium, while the spectral aspect of polarization is sensitive to small-scale structure. The ability to image these effects allows for inference of spatial structural organization parameters. This work describes a methodology for revealing structural organization by exploiting the Stokes/Mueller formalism and by utilizing measurements from a spectral imaging polarimeter constructed from liquid crystal variable retarders and a liquid crystal tunable filter. We provide results to validate the system and then show results from measurements on a mineral sample.

  7. The chiral quark condensate and pion decay constant in nuclear matter at next-to-leading order

    NASA Astrophysics Data System (ADS)

    Lacour, A.; Oller, J. A.; Meißner, U.-G.

    2010-12-01

    Making use of the recently developed chiral power counting for the physics of nuclear matter (Oller et al 2010 J. Phys. G: Nucl. Part. Phys. 37 015106, Lacour et al Ann. Phys. at press), we evaluate the in-medium chiral quark condensate up to next-to-leading order for both symmetric nuclear matter and neutron matter. Our calculation includes the full in-medium iteration of the leading order local and one-pion exchange nucleon-nucleon interactions. Interestingly, we find a cancellation between the contributions stemming from the quark mass dependence of the nucleon mass appearing in the in-medium nucleon-nucleon interactions. Only the contributions originating from the explicit quark mass dependence of the pion mass survive. This cancellation is the reason of previous observations concerning the dominant role of the long-range pion contributions and the suppression of short-range nucleon-nucleon interactions. We find that the linear density contribution to the in-medium chiral quark condensate is only slightly modified for pure neutron matter by the nucleon-nucleon interactions. For symmetric nuclear matter, the in-medium corrections are larger, although smaller compared to other approaches due to the full iteration of the lowest order nucleon-nucleon tree-level amplitudes. Our calculation satisfies the Hellmann-Feynman theorem to the order worked out. Also we address the problem of calculating the leading in-medium corrections to the pion decay constant. We find that there are no extra in-medium corrections that violate the Gell-Mann-Oakes-Renner relation up to next-to-leading order.

  8. Stabilization of fullerene-like boron cages by transition metal encapsulation

    NASA Astrophysics Data System (ADS)

    Lv, Jian; Wang, Yanchao; Zhang, Lijun; Lin, Haiqing; Zhao, Jijun; Ma, Yanming

    2015-06-01

    The stabilization of fullerene-like boron (B) cages in the free-standing form has been long sought after and a challenging problem. Studies that have been carried out for more than a decade have confirmed that the planar or quasi-planar polymorphs are energetically favored ground states over a wide range of small and medium-sized B clusters. Recently, the breakthroughs represented by Nat. Chem., 2014, 6, 727 established that the transition from planar/quasi-planar to cage-like Bn clusters occurs around n = ~38-40, paving the way for understanding the intriguing chemistry of B-fullerene. We herein demonstrate that the transition demarcation, n, can be significantly reduced with the help of transition metal encapsulation. We explore via extensive first-principles swarm-intelligence based structure searches the free energy landscapes of B24 clusters doped by a series of transition metals and find that the low-lying energy regime is generally dominated by cage-like isomers. This is in sharp contrast to that of bare B24 clusters, where the quasi-planar and rather irregular polyhedrons are prevalent. Most strikingly, a highly symmetric B cage with D3h symmetry is discovered in the case of Mo or W encapsulation. The endohedral D3h cages exhibit robust thermodynamic, dynamic and chemical stabilities, which can be rationalized in terms of their unique electronic structure of an 18-electron closed-shell configuration. Our results indicate that transition metal encapsulation is a feasible route for stabilizing medium-sized B cages, offering a useful roadmap for the discovery of more B fullerene analogues as building blocks of nanomaterials.The stabilization of fullerene-like boron (B) cages in the free-standing form has been long sought after and a challenging problem. Studies that have been carried out for more than a decade have confirmed that the planar or quasi-planar polymorphs are energetically favored ground states over a wide range of small and medium-sized B clusters. Recently, the breakthroughs represented by Nat. Chem., 2014, 6, 727 established that the transition from planar/quasi-planar to cage-like Bn clusters occurs around n = ~38-40, paving the way for understanding the intriguing chemistry of B-fullerene. We herein demonstrate that the transition demarcation, n, can be significantly reduced with the help of transition metal encapsulation. We explore via extensive first-principles swarm-intelligence based structure searches the free energy landscapes of B24 clusters doped by a series of transition metals and find that the low-lying energy regime is generally dominated by cage-like isomers. This is in sharp contrast to that of bare B24 clusters, where the quasi-planar and rather irregular polyhedrons are prevalent. Most strikingly, a highly symmetric B cage with D3h symmetry is discovered in the case of Mo or W encapsulation. The endohedral D3h cages exhibit robust thermodynamic, dynamic and chemical stabilities, which can be rationalized in terms of their unique electronic structure of an 18-electron closed-shell configuration. Our results indicate that transition metal encapsulation is a feasible route for stabilizing medium-sized B cages, offering a useful roadmap for the discovery of more B fullerene analogues as building blocks of nanomaterials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01659b

  9. Enhanced hydrogen storage on Li-doped defective graphene with B substitution: A DFT study

    NASA Astrophysics Data System (ADS)

    Zhou, Yanan; Chu, Wei; Jing, Fangli; Zheng, Jian; Sun, Wenjing; Xue, Ying

    2017-07-01

    The characteristics of hydrogen adsorption on Li-doped defective graphene systems were investigated using density functional theory (DFT) calculations. Four types of defective structures were selected. Li atoms were well dispersed on the defective graphene without clustering, evidenced by the binding energy value between Li and defective graphene than that of Li-Lix. Additionally, as the amount of adsorbed H2 molecules increase, the H2 molecules show tilting configuration toward the Li adatom. This is beneficial for more hydrogen adsorption under the electrostatic interaction. On these four stable structures, there were up to three polarized H2 molecules adsorbed on per Li adatom, with the average hydrogen adsorption energy in the range of approximately 0.2-0.4 eV. These results provide new focus on the nature of Li-doped defective graphene with sometimes B substitution medium, which could be considered as a promising candidate for hydrogen storage.

  10. Multidrug Transport Protein NorM from Vibrio cholerae Simultaneously Couples to Sodium- and Proton-Motive Force*

    PubMed Central

    Jin, Yoonhee; Nair, Asha; van Veen, Hendrik W.

    2014-01-01

    Membrane transporters belonging to the multidrug and toxic compound extrusion family mediate the efflux of unrelated pharmaceuticals from the interior of the cell in organisms ranging from bacteria to human. These proteins are thought to fall into two classes that couple substrate efflux to the influx of either Na+ or H+. We studied the energetics of drug extrusion by NorM from Vibrio cholerae in proteoliposomes in which purified NorM protein was functionally reconstituted in an inside-out orientation. We establish that NorM simultaneously couples to the sodium-motive force and proton-motive force, and biochemically identify protein regions and residues that play important roles in Na+ or H+ binding. As the positions of protons are not available in current medium and high-resolution crystal structures of multidrug and toxic compound extrusion transporters, our findings add a previously unrecognized parameter to mechanistic models based of these structures. PMID:24711447

  11. Measuring medium-induced gluons via jet grooming

    NASA Astrophysics Data System (ADS)

    Tywoniuk, Konrad; Mehtar-Tani, Yacine

    2017-11-01

    Jet substructure observables and applications of jet grooming techniques in heavy-ion collisions are still in its infancy and provide new alleys for studying medium modifications of perturbative degrees of freedom. We note that these measurements, given the right transverse momentum range, can be uniquely sensitive to rare medium-induced emissions inside of the jet cone. This corresponds to an infrared enhancement that would, for instance, affect the distribution of the groomed momentum-sharing variable zg measured using the SoftDrop procedure.

  12. Optimized structure and thermochemical properties of flavonoids determined by the CHIH(medium) DFT model chemistry versus experimental techniques

    NASA Astrophysics Data System (ADS)

    Mendoza-Wilson, Ana María.; Lardizabal-Gutiérrez, Daniel; Torres-Moye, Enrique; Fuentes-Cobas, Luis; Balandrán-Quintana, René R.; Camacho-Dávila, Alejandro; Quintero-Ramos, Armando; Glossman-Mitnik, Daniel

    2007-12-01

    The purpose of this work was to evaluate the accuracy of the CHIH(medium)-DFT model chemistry (PBEg/CBSB2 ∗∗//PBEg/CBSB4) in the determination of the optimized structure and thermochemical properties of heterocyclic systems of medium size such as flavonoids, wherefore were selected three of the most abundant flavonoids in vegetable tissues, and which posses the higher antioxidant activity: quercetin, (+)-catechin and cyanidin. As reference systems were employed three cyclic compounds: phenol, catechol and resorcinol. The thermochemical properties evaluated were enthalpy of formation, bond dissociation enthalpy (BDE) and ionization potential (IP), following the scheme of isodesmic reactions. The theoretical results were compared with experimental data generated by X-ray diffraction and calorimetric techniques realized in part by us, whereas other data were taken from the literature. The results obtained in this work reveal that the CHIH(medium)-DFT model chemistry represents an accurate computational tool to calculate structural and thermochemical properties in the studied flavonoid and reference compounds. The average absolute deviation of enthalpy of formation for reference compounds was 3.0 kcal/mol, 2.64 kcal/mol for BDE, and 2.97 kcal/mol for IP.

  13. [Synthesis of amino acids of Bacillus subtilis IMV V-7023 in the medium with glycerophosphates].

    PubMed

    Tserkovniak, L S; Roĭ, A O; Kurdysh, I K

    2009-01-01

    It was shown that under cultivation of Bacillus subtilis IMVV-7023 in the nutrient medium with glycerophosphate biologically active substances are accumulated in the culture liquid. They influence positively the seeds growth and formation of plant germs. The bacteria synthesize amino acids in this medium, their quantitative structure differs from the type of carbon nutrition and cultivation time of the cells.

  14. Omnidirectional narrow optical filters for circularly polarized light in a nanocomposite structurally chiral medium.

    PubMed

    Avendaño, Carlos G; Palomares, Laura O

    2018-04-20

    We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.

  15. Effect of curcumin and Cu 2+/Zn 2+ ions on the fibrillar aggregates formed by the amyloid peptide and other peptides at the organic-aqueous interface

    NASA Astrophysics Data System (ADS)

    Sanghamitra, Nusrat J. M.; Varghese, Neenu; Rao, C. N. R.

    2010-08-01

    Characteristic features of a perilous neuro-degenerative disease such as the Alzhiemer's disease is fibrillar plaque formation by the amyloid (Aβ) peptide. We have modelled the formation and disintegration of fibrils by studying the aggregate structures formed by Aβ structural motif diphenylalanine as well as insulin and bovine serum albumin at the organic-aqueous interface. Even small concentrations of curcumin in the organic medium or Cu 2+ and Zn 2+ ions in the aqueous medium are found to break down the fibrillar structures.

  16. Properties of CGM-Absorbing Galaxies

    NASA Astrophysics Data System (ADS)

    Hamill, Colin; Conway, Matthew; Apala, Elizabeth; Scott, Jennifer

    2018-01-01

    We extend the results of a study of the sightlines of 45 low-redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use photometric data and measured galaxy parameters from SDSS DR12 to examine the distributions of galaxy properties such as virial radius, morphology, and position angle among those that match to absorbers within a specific range of impact parameters. We compare those distributions to galaxies within the same impact parameter range that are not matched to any absorber in the HST/COS spectrum in order to investigate global properties of the circumgalactic medium.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spier, C.E.; Little, D.E.; Trim, S.C.

    We investigated activity patterns of 17 elementary school students aged 10-12, and 19 high school students aged 13-17, in suburban Los Angeles during the oxidant pollution season. Individuals' relationships between ventilation rate (VR) and heart rate (HR) were calibrated' in supervised outdoor walking/jogging. Log VR was consistently proportional to HR; although calibrations' were limited by a restricted range of exercise, and possibly by artifact due to mouthpiece breathing, which may cause overestimation of VR at rest. Each subject then recorded activities in diaries, and recorded HR once per minute by wearing Heart Watches, over 3 days (Saturday-Monday). For each activitymore » the subject estimated a breathing rate--slow (slow walking), medium (fast walking), or fast (running). VR ranges for each breathing rate and activity type were estimated from HR recordings. High-school students' diaries showed their aggregate distribution of waking hours as 68% slow inside, 8% slow outside, 10% medium inside, 9% medium outside, 1.5% fast inside, 1.5% fast outside. Elementary students' distribution was 47% slow inside, 15% slow outside, 20% medium inside, 12% medium outside, 2.5% fast inside, 3.5% fast outside. Sleep occupied 38% of high-school students' and 40% of elementary students' time; HR were generally lower in sleep than in slow waking activity. High school students' mean VR estimates were 13 L/min for slow breathing, 18 for medium, and 23 for fast; elementary students' were 14 slow, 18 medium, and 19 fast. VR distributions were approximately lognormal. Maximum estimated VR were approximately 70 L/min in elementary and approximately 100 L/min in high school students. Compared to adults studied similarly, students reported more medium or fast breathing, and had equal or higher VR estimates during slow and medium breathing despite their smaller size. These results suggest that, relative to body size, young people inhale larger doses of outdoor air pollutants than adults.« less

  18. A New Unusual Ice-induced Sedimentary Structure: the Silt Mushroom

    PubMed Central

    Jianhua, Zhong; Liangtian, Ni; Ningliang, Sun; Chuang, Liu; Bing, Hao; Mengchun, Cao; xin, Chen; Ke, Luo; Shengxin, Liu; Leitong, Huang; Guanqun, Yang; Shaojie, Wang; Feifei, Su; Xuejing, He; Yanqiu, Xue

    2016-01-01

    Upon channel bars or point bars within the lows of the Yellow River, a new sedimentary structure, named ‘silt mushroom’, has been observed. The process of their formation is interpreted to be via the ice process. The name, the silt mushroom comes from their figurative form. This is because they look somewhat similar to mushroom’s in size and shape; being in the range of 1 to 10 cm in diameter, with the medium 3–5 cm, and on average 10 cm in height, occuring generally in groups, and occasionally in isolation in relatively soft silt. They develop in the transition from winter to spring, and are convincingly related to ice processes. Ice-induced silt mushrooms are best examined in association with the many other newly discovered ice-induced sedimentary structures (over 20 kinds). Clearly, up to now, ice processes have been significantly underestimated. With the substantial discovery of the ice-induced silt mushroom, it opens up new questions. This is because its structure mirrors the same sedimentary structures found in rocks, questioning their genesis, and sedimentary environment analysis. This achievement is significant not only in sedimentology, but also in palaeogeography, palaeoclimate, geological engineering, hydraulics and fluviology. PMID:27833155

  19. Joint probabilistic determination of earthquake location and velocity structure: application to local and regional events

    NASA Astrophysics Data System (ADS)

    Beucler, E.; Haugmard, M.; Mocquet, A.

    2016-12-01

    The most widely used inversion schemes to locate earthquakes are based on iterative linearized least-squares algorithms and using an a priori knowledge of the propagation medium. When a small amount of observations is available for moderate events for instance, these methods may lead to large trade-offs between outputs and both the velocity model and the initial set of hypocentral parameters. We present a joint structure-source determination approach using Bayesian inferences. Monte-Carlo continuous samplings, using Markov chains, generate models within a broad range of parameters, distributed according to the unknown posterior distributions. The non-linear exploration of both the seismic structure (velocity and thickness) and the source parameters relies on a fast forward problem using 1-D travel time computations. The a posteriori covariances between parameters (hypocentre depth, origin time and seismic structure among others) are computed and explicitly documented. This method manages to decrease the influence of the surrounding seismic network geometry (sparse and/or azimuthally inhomogeneous) and a too constrained velocity structure by inferring realistic distributions on hypocentral parameters. Our algorithm is successfully used to accurately locate events of the Armorican Massif (western France), which is characterized by moderate and apparently diffuse local seismicity.

  20. Passive monitoring using traffic noise recordings - case study on the Steinachtal Bridge

    NASA Astrophysics Data System (ADS)

    Salvermoser, Johannes; Stähler, Simon; Hadziioannou, Céline

    2015-04-01

    Civil structures age continuously. The early recognition of potentially critical damages is an important economical issue, but also one of public safety. Continuous tracking of small changes in the medium by using passive methods would offer an extension to established active non-destructive testing procedures at relatively low cost. Here we present a case study of structural monitoring using continuous recordings of traffic noise on a 200 meter long reinforced concrete highway bridge in Germany. Over two months of continuos geophone records are used in the frequency range of 2-8 Hz. Using passive image interferometry, evaluation of hourly cross-correlations between recordings at pairs of receivers yield velocity variations in the range of -1.5% to +2.1%. We were able to correlate our outcomes with temperature measurements of the same two month period. The measured velocity changes scale with the temperature variations with on average a dv/v of 0.064% per degree Celsius. This value is in accordance with other studies of concrete response to temperature, confirming that we are able to observe subtle changes with physical origin. It is shown that traffic noise is temporally homogenenous enough to fulfill the requirements of passive image interferometry.

  1. A medium range order structural connection to the configurational heat capacity of borate-silicate mixed glasses.

    PubMed

    Liu, Hao; Smedskjaer, Morten M; Tao, Haizheng; Jensen, Lars R; Zhao, Xiujian; Yue, Yuanzheng

    2016-04-28

    It has been reported that the configurational heat capacity (C(p,conf)) first increases and then becomes saturated with increasing B2O3/SiO2 ratio in borate-silicate mixed glasses. Through Raman spectroscopy measurements, we have, in this work, found an implication for the intermediate range order (IRO) structural connection to the composition dependence of the C(p,conf) of borate-silicate mixed glasses. In the silica-rich compositions, the C(p,conf) rapidly increases with increasing B2O3 content. This is attributed to the increase of the content of the B-O-Si network units ([B2Si2O8](2-)) and 6-membered borate rings with 1 or 2 B(4). In the boron-rich compositions, the C(p,conf) is almost constant, independent of the increase in the B2O3/SiO2 ratio. This is likely attributed to the counteraction between the decrease of the fraction of two types of metaborate groups and the increase of the fraction of other borate superstructural units (particularly 6-membered borate rings). The overall results suggest that the glasses containing more types of superstructural units have a larger C(p,conf).

  2. Research and Analysis on the Localization of a 3-D Single Source in Lossy Medium Using Uniform Circular Array

    PubMed Central

    Xue, Bing; Qu, Xiaodong; Fang, Guangyou; Ji, Yicai

    2017-01-01

    In this paper, the methods and analysis for estimating the location of a three-dimensional (3-D) single source buried in lossy medium are presented with uniform circular array (UCA). The mathematical model of the signal in the lossy medium is proposed. Using information in the covariance matrix obtained by the sensors’ outputs, equations of the source location (azimuth angle, elevation angle, and range) are obtained. Then, the phase and amplitude of the covariance matrix function are used to process the source localization in the lossy medium. By analyzing the characteristics of the proposed methods and the multiple signal classification (MUSIC) method, the computational complexity and the valid scope of these methods are given. From the results, whether the loss is known or not, we can choose the best method for processing the issues (localization in lossless medium or lossy medium). PMID:28574467

  3. 1.8 Astroms Structure of Murine GITR Ligand Dimer Expressed in Drosophila Melanogaster S2 Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, K.; Ramagopal, U; Nathenson, S

    2009-01-01

    Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique 'strand-exchanged' dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with themore » murine GITRL costimulatory system. In this present work, the 1.8 {angstrom} resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical 'strand-exchanged' dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.« less

  4. Forces exerted by a correlated fluid on embedded inclusions.

    PubMed

    Bitbol, Anne-Florence; Fournier, Jean-Baptiste

    2011-06-01

    We investigate the forces exerted on embedded inclusions by a fluid medium with long-range correlations, described by an effective scalar field theory. Such forces are the basis for the medium-mediated Casimir-like force. To study these forces beyond thermal average, it is necessary to define them in each microstate of the medium. Two different definitions of these forces are currently used in the literature. We study the assumptions underlying them. We show that only the definition that uses the stress tensor of the medium gives the sought-after force exerted by the medium on an embedded inclusion. If a second inclusion is embedded in the medium, the thermal average of this force gives the usual Casimir-like force between the two inclusions. The other definition can be used in the different physical case of an object that interacts with the medium without being embedded in it. We show in a simple example that the two definitions yield different results for the variance of the Casimir-like force.

  5. Virtual-source diffusion approximation for enhanced near-field modeling of photon-migration in low-albedo medium.

    PubMed

    Jia, Mengyu; Chen, Xueying; Zhao, Huijuan; Cui, Shanshan; Liu, Ming; Liu, Lingling; Gao, Feng

    2015-01-26

    Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we herein report on an improved explicit model for a semi-infinite geometry, referred to as "Virtual Source" (VS) diffuse approximation (DA), to fit for low-albedo medium and short source-detector separation. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the near-field to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. This parameterized scheme is proved to inherit the mathematical simplicity of the DA approximation while considerably extending its validity in modeling the near-field photon migration in low-albedo medium. The superiority of the proposed VS-DA method to the established ones is demonstrated in comparison with Monte-Carlo simulations over wide ranges of the source-detector separation and the medium optical properties.

  6. 7 CFR 29.3505 - Brown colors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Brown colors. 29.3505 Section 29.3505 Agriculture... Type 95) § 29.3505 Brown colors. A group of colors ranging from a light brown to a dark brown. These colors vary from medium to low saturation and from medium to very low brillance. As used in these...

  7. Selective deuteration for molecular insights into the digestion of medium chain triglycerides.

    PubMed

    Salentinig, Stefan; Yepuri, Nageshwar Rao; Hawley, Adrian; Boyd, Ben J; Gilbert, Elliot; Darwish, Tamim A

    2015-09-01

    Medium chain triglycerides (MCTs) are a unique form of dietary fat that have a wide range of health benefits. They are molecules with a glycerol backbone esterified with medium chain (6-12 carbon atoms) fatty acids on the two outer (sn-1 and sn-3) and the middle (sn-2) positions. During lipid digestion in the gastrointestinal tract, pancreatic lipase stereoselectively hydrolyses the ester bonds of these triglycerides on the sn-1 and sn-3 positions resulting in sn-2 monoglyceride and fatty acids as major products. However, the sn-2 monoglycerides are thermodynamically less stable than their sn-1/3 counterparts. Isomerization or fatty acid migration from the sn-2 monoglyceride to sn-1/3 monoglyceride may occur spontaneously and would lead to glycerol and fatty acid as final products. Here, tricaprin (C10) with selectively deuterated fatty acid chains was used for the first time to monitor chain migration and the stereoselectivity of the pancreatic lipase-catalyzed hydrolysis of ester bonds. The intermediate and final digestion products were studied using NMR and mass spectrometry under biologically relevant conditions. The hydrolysis of the sn-2 monocaprin to glycerol and capric acid did not occur within biologically relevant timescales and fatty acid migration occurs only in limited amounts as a result of the presence of undigested diglyceride species over long periods of time in the digestion medium. The slow kinetics for the exchange of the sn-2 fatty acid chain and the stereoselectivity of pancreatic lipase on MCTs is relevant for industrial processes that involve enzymatic interesterification and the production of high-value products such as specific structured triacylglycerols, confectionery fats and nutritional products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Metal-coated magnetic nanoparticles in an optically active medium: A nonreciprocal metamaterial

    NASA Astrophysics Data System (ADS)

    Christofi, Aristi; Stefanou, Nikolaos

    2018-03-01

    We report on the optical response of a nonreciprocal bianisotropic metamaterial, consisting of spherical, metal-coated magnetic nanoparticles embedded in an optically active medium, thus combining gyrotropy, plasmonic resonances, and chirality in a versatile design. The corresponding effective medium is deduced by an appropriate two-step generalized Maxwell-Garnett homogenization scheme. The associated photonic band structure and transmission spectra are obtained through a six-vector formulation of Maxwell equations, which provides an efficient framework for general bianisotropic structures going beyond existing approaches that involve cumbersome nonlinear eigenvalue problems. Our results, analyzed and discussed in the light of group theory, provide evidence that the proposed metamaterial exhibits some remarkable frequency-tunable properties, such as strong, plasmon-enhanced nonreciprocal polarization azimuth rotation and magnetochiral dichroism.

  9. The Galactic interstellar medium: foregrounds and star formation

    NASA Astrophysics Data System (ADS)

    Miville-Deschênes, Marc-Antoine

    2018-05-01

    This review presents briefly two aspects of Galactic interstellar medium science that seem relevant for studying EoR. First, we give some statistical properties of the Galactic foreground emission in the diffuse regions of the sky. The properties of the emission observed in projection on the plane of the sky are then related to how matter is organised along the line of sight. The diffuse atomic gas is multi-phase, with dense filamentary structures occupying only about 1% of the volume but contributing to about 50% of the emission. The second part of the review presents aspect of structure formation in the Galactic interstellar medium that could be relevant for the subgrid physics used to model the formation of the first stars.

  10. Physical and chemical evolution of reduced organic matter in the ISM

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Blake, David F.

    1995-01-01

    Icy mantles on interstellar grains have been a topic of study in airborne astronomy. Recent laboratory analog studies of the yield of organic residue from UV photolyzed ices have shown that this mechanism can be the most significant source of complex reduced organic matter in the interstellar medium. However, the total yield is a function of the occurrence of heating events that evaporate the ice, i.e. T is greater than 130 K, and the mechanism for such events is debated. Recently, we proposed that the recombination of radicals in the ice does not need high temperature excursions and, instead, occurs during a structural transformation of water ice at temperatures in the range 38 - 68 K.

  11. All-optical photochromic spatial light modulators based on photoinduced electron transfer in rigid matrices

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Perry, Joseph W. (Inventor)

    1991-01-01

    A single material (not a multi-element structure) spatial light modulator may be written to, as well as read out from, using light. The device has tailorable rise and hold times dependent on the composition and concentration of the molecular species used as the active components. The spatial resolution of this device is limited only by light diffraction as in volume holograms. The device may function as a two-dimensional mask (transmission or reflection) or as a three-dimensional volume holographic medium. This device, based on optically-induced electron transfer, is able to perform incoherent to coherent image conversion or wavelength conversion over a wide spectral range (ultraviolet, visible, or near-infrared regions).

  12. Bloch wave deafness and modal conversion at a phononic crystal boundary

    NASA Astrophysics Data System (ADS)

    Laude, Vincent; Moiseyenko, Rayisa P.; Benchabane, Sarah; Declercq, Nico F.

    2011-12-01

    We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.

  13. Compressibility and reversible amorphization of thaumasite Ca3Si(OH)6(CO3)(SO4)·12H2O pressurized in methanol-ethanol-H2O up to 5 GPa

    NASA Astrophysics Data System (ADS)

    Likhacheva, A. Yu.; Dementiev, S. N.; Goryainov, S. V.

    2017-08-01

    The elastic and structure behavior of natural thaumasite compressed in methanol-ethanol-H2O up to 5 GPa was studied by synchrotron powder diffraction with a diamond anvil cell. In the pressure range between 0.0001 and 4.5 GPa, the compression is regular and slightly anisotropic, with a more rigid ab-plane coinciding with the orientation of hydrogen bonds and S-O, C-O bonds in anion groups. The corresponding bulk moduli derived from the third-order Birch-Murnaghan EoS fit are K a = 43(2), K c = 35(2), K T = 39(2) GPa. Rietveld refinements reveal some general features of the structure evolution of thaumasite, which are consistent with the observed elastic anisotropy. The compression within the ab-plane proceeds mainly at the expense of shortening of hydrogen bonds and much lesser decrease of C-O and S-O bonds. In the range of 0.0001-3 GPa the Ca-O polyhedra contract more rapidly along the c-axis as compared to the ab-plane. At about 5 GPa, thaumasite undergoes a reversible transformation to an amorphous phase. The observed behavior differs drastically with that studied previously using helium as the pressure medium, which suggests the effect of He penetration increasing the structure stiffness. Without helium support, the thaumasite structure is preserved only up to 4.5 GPa.

  14. Fiber optic vibration sensor using bifurcated plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  15. Application of a simplified calculation for full-wave microtremor H/ V spectral ratio based on the diffuse field approximation to identify underground velocity structures

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José

    2017-12-01

    Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.

  16. Molecular dynamics study of structure H clathrate hydrates of methane and large guest molecules.

    PubMed

    Susilo, Robin; Alavi, Saman; Ripmeester, John A; Englezos, Peter

    2008-05-21

    Methane storage in structure H (sH) clathrate hydrates is attractive due to the relatively higher stability of sH as compared to structure I methane hydrate. The additional stability is gained without losing a significant amount of gas storage density as happens in the case of structure II (sII) methane clathrate. Our previous work has showed that the selection of a specific large molecule guest substance (LMGS) as the sH hydrate former is critical in obtaining the optimum conditions for crystallization kinetics, hydrate stability, and methane content. In this work, molecular dynamics simulations are employed to provide further insight regarding the dependence of methane occupancy on the type of the LMGS and pressure. Moreover, the preference of methane molecules to occupy the small (5(12)) or medium (4(3)5(6)6(3)) cages and the minimum cage occupancy required to maintain sH clathrate mechanical stability are examined. We found that thermodynamically, methane occupancy depends on pressure but not on the nature of the LMGS. The experimentally observed differences in methane occupancy for different LMGS may be attributed to the differences in crystallization kinetics and/or the nonequilibrium conditions during the formation. It is also predicted that full methane occupancies in both small and medium clathrate cages are preferred at higher pressures but these cages are not fully occupied at lower pressures. It was found that both small and medium cages are equally favored for occupancy by methane guests and at the same methane content, the system suffers a free energy penalty if only one type of cage is occupied. The simulations confirm the instability of the hydrate when the small and medium cages are empty. Hydrate decomposition was observed when less than 40% of the small and medium cages are occupied.

  17. SOFIA/FIFI-LS Observations of Galactic PDRs

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Reedy, Alexander; Colditz, Sebastian; Fadda, Dario; Fischer, Chrisitan; Geis, Norbert; Hönle, Rainer; Iserlohe, Christof; Krabbe, Alfred; Looney, Leslie; Poglitsch, Albrecht; Raab, Walfried; Rebel, Felix; Vacca, William

    2018-01-01

    Photo-dissociation regions or photon-dominated regions (PDRs) are the interfaces between ionized HII-regions and adjacent molecular clouds usually found in massive star-forming regions. As the places where molecular clouds are destroyed by the UV radiation of the forming massive stars, they are the regions where the effects of star formation on the interstellar medium and the energetics and physical properties of the feedback can be best studied.FIFI-LS, SOFIA's far-infrared (FIR) spectrometer, is well suited to observe galactic PDRs and study them in great detail. The bulk of the energy from PDRs is emitted in the wavelength range of FIFI-LS, which ranges from 50 to 200µm. In this wavelength range, there are many strong atomic and ionic fine-structure lines, which can serve as diagnostic tools to trace these species and to determine densities and temperatures of the ionized and neutral medium in PDRs. FIFI-LS's ability to map large bright regions quickly and in two transitions simultaneously allows researchers to analyse the varying conditions in star-forming regions comprehensively.We will show first results of FIFI-LS observations of M42 and M17. M42 with the Orion Bar, a well-known PDR seen edge-on was one of the very first objects observed with FIFI-LS. Subsequently, we have observed M42 in a growing number of transitions. We also have observed the PDR in M17 in several transitions. The PDRs are clearly identified by the complementary spatial extent of the ionized and neutral species. From the ratios of the [OI] (63 and 146µm) and [OIII] (52 and 88µm) line pairs, the [CII] (158µm) line and combinations thereof, physical conditions in the different phases and the transition regions can be derived. We are presenting preliminary results.

  18. Interstellar PAH Analogs in the Laboratory: Comparison with Astronomical Data

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the near-UV and visible range. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. Preliminary conclusions from the comparison of the laboratory data with astronomical observations will also be presented.

  19. Topographical distribution and morphology of NADPH-diaphorase-stained neurons in the human claustrum

    PubMed Central

    Hinova-Palova, Dimka V.; Edelstein, Lawrence; Landzhov, Boycho; Minkov, Minko; Malinova, Lina; Hristov, Stanislav; Denaro, Frank J.; Alexandrov, Alexandar; Kiriakova, Teodora; Brainova, Ilina; Paloff, Adrian; Ovtscharoff, Wladimir

    2014-01-01

    We studied the topographical distribution and morphological characteristics of NADPH-diaphorase-positive neurons and fibers in the human claustrum. These neurons were seen to be heterogeneously distributed throughout the claustrum. Taking into account the size and shape of stained perikarya as well as dendritic and axonal characteristics, Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHd)-positive neurons were categorized by diameter into three types: large, medium and small. Large neurons ranged from 25 to 35 μm in diameter and typically displayed elliptical or multipolar cell bodies. Medium neurons ranged from 20 to 25 μm in diameter and displayed multipolar, bipolar and irregular cell bodies. Small neurons ranged from 14 to 20 μm in diameter and most often displayed oval or elliptical cell bodies. Based on dendritic characteristics, these neurons were divided into spiny and aspiny subtypes. Our findings reveal two populations of NADPHd-positive neurons in the human claustrum—one comprised of large and medium cells consistent with a projection neuron phenotype, the other represented by small cells resembling the interneuron phenotype as defined by previous Golgi impregnation studies. PMID:24904317

  20. Modeling techniques for quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-01

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  1. Modeling techniques for quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-15

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation ofmore » quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.« less

  2. Plum pudding random medium model of biological tissue toward remote microscopy from spectroscopic light scattering

    PubMed Central

    Xu, Min

    2017-01-01

    Biological tissue has a complex structure and exhibits rich spectroscopic behavior. There has been no tissue model until now that has been able to account for the observed spectroscopy of tissue light scattering and its anisotropy. Here we present, for the first time, a plum pudding random medium (PPRM) model for biological tissue which succinctly describes tissue as a superposition of distinctive scattering structures (plum) embedded inside a fractal continuous medium of background refractive index fluctuation (pudding). PPRM faithfully reproduces the wavelength dependence of tissue light scattering and attributes the “anomalous” trend in the anisotropy to the plum and the powerlaw dependence of the reduced scattering coefficient to the fractal scattering pudding. Most importantly, PPRM opens up a novel venue of quantifying the tissue architecture and microscopic structures on average from macroscopic probing of the bulk with scattered light alone without tissue excision. We demonstrate this potential by visualizing the fine microscopic structural alterations in breast tissue (adipose, glandular, fibrocystic, fibroadenoma, and ductal carcinoma) deduced from noncontact spectroscopic measurement. PMID:28663913

  3. Structural aspects of digestion of medium chain triglycerides studied in real time using sSAXS and Cryo-TEM.

    PubMed

    Phan, Stephanie; Hawley, Adrian; Mulet, Xavier; Waddington, Lynne; Prestidge, Clive A; Boyd, Ben J

    2013-12-01

    The purpose of this study was to investigate the colloidal structures formed on digestion of medium chain triglyceride (MCT) with a specific objective of identifying and characterizing a previously reported vesicular phase, which has been linked to supersaturation and anomalous digestion kinetics, and to evaluate the influence of lipid mass and enzyme inhibition on self assembled structure. MCT was digested in vitro and nanostructure was monitored in real time using synchrotron small angle X-ray scattering (sSAXS), and morphology was studied using cryogenic transmission electron microscopy (cryo-TEM). Formation of the putative vesicular phase formed on digestion of MCT was confirmed and its structural attributes were determined. Vesicle formation was dependent on lipid mass and bile salt concentration. The use of enzyme inhibitor for offline analysis of lipolysis samples did influence structural aspects of the digestion medium when compared to real time evaluation. The formation of a vesicular phase was directly linked to the kinetics of lipid digestion. Vesicle formation is linked to lipid mass, or more specifically the ratio of lipid to bile salts present in the digestion mixture. Inhibition of lipase to halt digestion during sampling for offline analysis must be done with caution as structural aspects were shown to differ for the MCT digests with and without inhibitor present.

  4. Variability of dental cone beam CT grey values for density estimations

    PubMed Central

    Pauwels, R; Nackaerts, O; Bellaiche, N; Stamatakis, H; Tsiklakis, K; Walker, A; Bosmans, H; Bogaerts, R; Jacobs, R; Horner, K

    2013-01-01

    Objective The aim of this study was to investigate the use of dental cone beam CT (CBCT) grey values for density estimations by calculating the correlation with multislice CT (MSCT) values and the grey value error after recalibration. Methods A polymethyl methacrylate (PMMA) phantom was developed containing inserts of different density: air, PMMA, hydroxyapatite (HA) 50 mg cm−3, HA 100, HA 200 and aluminium. The phantom was scanned on 13 CBCT devices and 1 MSCT device. Correlation between CBCT grey values and CT numbers was calculated, and the average error of the CBCT values was estimated in the medium-density range after recalibration. Results Pearson correlation coefficients ranged between 0.7014 and 0.9996 in the full-density range and between 0.5620 and 0.9991 in the medium-density range. The average error of CBCT voxel values in the medium-density range was between 35 and 1562. Conclusion Even though most CBCT devices showed a good overall correlation with CT numbers, large errors can be seen when using the grey values in a quantitative way. Although it could be possible to obtain pseudo-Hounsfield units from certain CBCTs, alternative methods of assessing bone tissue should be further investigated. Advances in knowledge The suitability of dental CBCT for density estimations was assessed, involving a large number of devices and protocols. The possibility for grey value calibration was thoroughly investigated. PMID:23255537

  5. [Effect of nutritional stress on autophagy in free-living amoeba].

    PubMed

    Wang, Nan-Ning; Tan, Yu-Zhen; Wang, Hai-Jie

    2010-12-30

    To investigate the change of autophagy and morphological characteristics of the autophagic structures in free-living amoeba under nutritional stress. Free-living amoebae were incubated on the agaric solid medium which had been covered with Escherichia cdi in control group. In the experiment group, amoebae incubated on the agaric solid medium with E. coli were collected and moved to another solid medium without E. coli and incubated for 12 h. The morphological changes of free-living amoeba in the medium without E. coli were viewed with scanning electron microscope. The changes of autophagy and the structural features of the autophagosome precursors, autophagosomes and autophagolysosomes in amoeba were examined with transmission electron microscope, and the cross-section areas of the autophagic structures and cytoplasm were measured with an image analyzer. The autophagosomes in the organism were labeled with monodansylcadaverine (MDC) staining and quantitated using laser scanning confocal microscope. In the control group, free-living amoebae were all in the form of trophozoite. In the experiment group, trophozoites were induced to transform to cysts gradually. In control group, amoeba was full of fragment of E. coli. There was merely little autophagy with fewer autophagic structures in amoeba. When compared with the control group, the autophagic abilities of amoeba were enhanced significantly, number of autophagic structures increased in the experiment group. In addition, the ratio of the cross-sectional areas of the autophagic structures to that of the cytoplasm of amoeba was greater (P < 0.05 or 0.01). There was fragment of E. coli that was not digested in some of the amoebae. In the circumstance of nutritional stress, amoebic trophozoites were induced to transform to cysts gradually. The autophagic ability of free-living amoeba significantly enhanced.

  6. Using Fuel Cells to Increase the Range of Battery Electric Vehicles | News

    Science.gov Websites

    | NREL Using Fuel Cells to Increase the Range of Battery Electric Vehicles Using Fuel Cells to potential cost-effective scenarios for using small fuel cell power units to increase the range of medium fuel for range extension when necessary. By using hydrogen as a range-extending fuel, the BEV can

  7. Stationary and oscillatory convection of binary fluids in a porous medium.

    PubMed

    Augustin, M; Umla, R; Huke, B; Lücke, M

    2010-11-01

    We investigate numerically stationary convection and traveling wave structures of binary fluid mixtures with negative separation ratio in the Rayleigh-Bénard system filled with a porous medium. The bifurcation behavior of these roll structures is elucidated as well as the properties of the velocity, temperature, and concentration fields. Moreover, we discuss lateral averaged currents of temperature and concentration. Finally, we investigate the influence of the Lewis number, of the separation ratio, and of the normalized porosity on the bifurcation branches.

  8. Realization of a complementary medium using dielectric photonic crystals.

    PubMed

    Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong

    2017-12-01

    By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.

  9. Composition, structure and chemistry of interstellar dust

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Allamandola, Louis J.

    1986-01-01

    The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase.

  10. In Situ Infrared Spectroscopy of Oligoaniline Intermediates Created under Alkaline Conditions.

    PubMed

    Šeděnková, Ivana; Stejskal, Jaroslav; Trchová, Miroslava

    2014-12-26

    The progress of the oxidation of aniline with ammonium peroxydisulfate in an alkaline aqueous medium has been monitored in situ by attenuated total reflection (ATR) Fourier transform infrared spectroscopy. The growth of the microspheres and of the film at the ATR crystal surface, as well as the changes proceeding in the surrounding aqueous medium, are reflected in the spectra. The evolution of the spectra and the changes in the molecular structure occurring during aniline oxidation in alkaline medium are discussed with the help of differential spectra. Several processes connected with the various stages of aniline oxidation were distinguished. The progress of hydrolysis of the aniline in water and further an oxidation of aminophenol to benzoquinone imines in the presence of peroxydisulfate in alkaline medium have been detected in the spectra in real time. The precipitated solid oxidation product was analyzed by mass spectrometry. It is composed of oligomers, mainly trimers to octamers, of various molecular structures incorporating in addition to aniline constitutional units also p-benzoquinone or p-benzoquinoneimine moieties.

  11. Terahertz plasmonic lasers with narrow beams and large tunability

    NASA Astrophysics Data System (ADS)

    Jin, Yuan; Wu, Chongzhao; Reno, John L.; Kumar, Sushil

    2017-02-01

    Plasmonic lasers generate coherent long-range or localized surface-plasmon-polaritons (SPPs), where the SPP mode exists at the interface of the metal (or a metallic nanoparticle) and a dielectric. Metallic-cavities sup- porting SPP modes are also utilized for terahertz quantum-cascade lasers (QCLs). Due to subwavelength apertures, plasmonic lasers have highly divergent radiation patterns. Recently, we theoretically and experimentally demonstrated a new technique for implementing distributed-feedback (DFB), which is termed as an antenna- feedback scheme, to establish a hybrid SPP mode in the surrounding medium of a plasmonic laser's cavity with a large wavefront. This technique allows such lasers to radiate in narrow beams without requirement of any specific design considerations for phase-matching. Experimental demonstration is done for terahertz QCLs that show beam-divergence as small as 4-degrees. The antenna-feedback scheme has a characteristic feature in that refractive-index of the laser's surrounding medium affects its radiative frequency in the same vein as refractive- index of the cavity. Hence, any perturbations in the refractive-index of the surrounding medium could lead to large modulation in the laser's emission frequency. Along this line, we report 57 GHz reversible, continuous, and mode-hop-free tuning of such QCLs operating at 78 K based on post-process deposition/etching of a dielectric on an already mounted QCL chip. This is the largest tuning range achieved for terahertz QCLs when operating much above the temperature of liquid-Helium. We review the aforementioned experimental results and discuss methods to increase optical power output from terahertz QCLs with antenna-feedback. Peak power output of 13 mW is realized for a 3.3 THz QCL operating in a Stirling cooler at 54 K. A new dual-slit photonic structure based on antenna-feedback scheme is proposed to further improve output power as well as provide enhanced tunability.

  12. Harvesting microalgae cultures with superabsorbent polymers: desulfurization of Chlamydomonas reinhardtii for hydrogen production.

    PubMed

    Martín del Campo, Julia S; Patiño, Rodrigo

    2013-12-01

    It is presented in this work a new methodology to harvest fresh water microalgae cultures by extracting the culture medium with superabsorbent polymers (SAPs). The microalgae Chlamydomonas reinhardtii were grown in the Sueoka culture medium, harvested with polyacrylic SAPs and re-suspended in the culture medium tris-acetate-potassium without sulfur (TAP-S) to generate hydrogen (H2 ) under anoxic conditions. The H2 production as an alternative fuel is relevant since this gas has high-energy recovery without involving carbon. Before microalgae harvesting, a number of range diameters (1-7 mm) for SAPs spherical particles were tested, and the initial rate (V0 ) and the maximal capacity (Qmax ) were determined for the Sueoka medium absorption. The SAP particles with the diameter range 2.0-2.5 mm performed the best and these were employed for the rest of the experiments. The Sueoka medium has a high salt content and the effect of the ionic strength was also studied for different medium concentrations (0-400%). The SAPs were reused in consecutive absorption/desorption cycles, maintaining their absorption capacity. Although the Sueoka medium reduces the SAPs absorption capacity to 40% compared with deionized water, the use of SAPs was very significant for the desulfurization process of C. reihardtii. The presence of C. reinhardtii at different concentrations does not affect the absorption capacity of the Sueoka culture medium by the SAPs. In order to reduce the time of the process, an increase of the SAPs concentration was tested, being 20 g of SAP per liter of medium, a condition to harvest the microalgae culture in 4 h. There were no evident cell ruptures during the harvesting process and the cells remained alive. Finally, the harvested biomass was re-suspended in TAP-S medium and kept under anaerobic conditions and illumination to produce H2 that was monitored by a PEM fuel cell. The use of SAPs for microalgae harvesting is a feasible non-invasive procedure to obtain high concentrations of functional biomass at low cost; it offers an attractive alternative due to its versatility and simplicity. © 2013 Wiley Periodicals, Inc.

  13. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    NASA Astrophysics Data System (ADS)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-06-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  14. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    NASA Astrophysics Data System (ADS)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-01-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  15. Second harmonic generation from metallo-dielectric multilayered structures in the plasmonic regime.

    PubMed

    Mattiucci, Nadia; D'Aguanno, Giuseppe; Bloemer, Mark J

    2010-11-08

    We present a theoretical study on second harmonic generation from metallo-dielectric multilayered structures in the plasmonic regime. In particular we analyze the behavior of structures made of Ag (silver) and MgF2 (magnesium-fluoride) due to the straightforward procedure to grow these materials with standard sputtering or thermal evaporation techniques. A systematic study is performed which analyzes four different kinds of elementary cells--namely (Ag/MgF2)N, (MgF2/Ag)N, (Ag/MgF2/Ag)N and (MgF2/Ag/MgF2)N--as function of the number of periods (N) and the thickness of the layers. We predict the conversion efficiency to be up to three orders of magnitude greater than the conversion efficiency found in the non-plasmonic regime and we point out the best geometries to achieve these conversion efficiencies. We also underline the role played by the short-range/long-range plasmons and leaky waves in the generation process. We perform a statistical study to demonstrate the robustness of the SH process in the plasmonic regime against the inevitable variations in the thickness of the layers. Finally, we show that a proper choice of the output medium can further improve the conversion efficiency reaching an enhancement of almost five orders of magnitude with respect to the non plasmonic regime.

  16. Implications of Requiring New Production of Older Aircraft Types (less than 75,000 pounds) to Meet Amended Noise Standards.

    DTIC Science & Technology

    1980-06-01

    ratio CF700 engine, do not qualify, but in each case the producer has plans for, or is delivering a model using the TFE731 engine that does qualify. CF700...the size range, namely, the Learjets using the CJ610 engine and the Gulfstream 3 using the Spey. All medium-sized jets using the TFE731 are quieter...very few engines available for aircraft in each size range: the JT15 and CJ610 for small aircraft, the CF700, ATF3, and TFE731 for medium aircraft and

  17. Use of constrained optimization in the conceptual design of a medium-range subsonic transport

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1980-01-01

    Constrained parameter optimization was used to perform the optimal conceptual design of a medium range transport configuration. The impact of choosing a given performance index was studied, and the required income for a 15 percent return on investment was proposed as a figure of merit. A number of design constants and constraint functions were systematically varied to document the sensitivities of the optimal design to a variety of economic and technological assumptions. A comparison was made for each of the parameter variations between the baseline configuration and the optimally redesigned configuration.

  18. Fungal biomineralization of montmorillonite and goethite to short-range-ordered minerals

    NASA Astrophysics Data System (ADS)

    Li, Huan; Hu, Shuijin; Polizzotto, Matthew L.; Chang, Xiaoli; Shen, Qirong; Ran, Wei; Yu, Guanghui

    2016-10-01

    Highly reactive nano-scale minerals, e.g., short-range-ordered minerals (SROs) and other nanoparticles, play an important role in soil carbon (C) retention. Yet, the mechanisms that govern biomineralization from bulk minerals to highly reactive nano-scale minerals remain largely unexplored, which critically hinders our efforts toward managing nano-scale minerals for soil C retention. Here we report the results from a study that explores structural changes during Aspergillus fumigatus Z5 transformation of montmorillonite and goethite to SROs. We examined the morphology and structure of nano-scale minerals, using high-resolution transmission electron microscopy, time-resolved solid-state 27Al and 29Si NMR, and Fe K-edge X-ray absorption fine structure spectroscopy combined with two dimensional correlation spectroscopy (2D COS) analysis. Our results showed that after a 48-h cultivation of montmorillonite and goethite with Z5, new biogenic intracellular and extracellular reactive nano-scale minerals with a size of 3-5 nm became abundant. Analysis of 2D COS further suggested that montmorillonite and goethite were the precursors of the dominant biogenic nano-scale minerals. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectra and their deconvolution results demonstrated that during fungus Z5 growth, carboxylic C (288.4-289.1 eV) was the dominant organic group, accounting for approximately 34% and 59% in the medium and aggregates, respectively. This result suggested that high percentage of the production of organic acids during the growth of Z5 was the driving factor for structural changes during biomineralization. This is, to the best of our knowledge, the first report of the structural characterization of nano-scale minerals by 2D COS, highlighting its potential to elucidate biomineralization pathways and thus identify the precursors of nano-scale minerals.

  19. Investigation of the Klinkenberg effect in a micro/nanoporous medium by direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Weigand, Bernhard

    2018-04-01

    The pressure-driven gas transport characteristics through a porous medium consisting of arrays of discrete elements is investigated by using the direct simulation Monte Carlo (DSMC) method. Different porous structures are considered, accounting for both two- and three-dimensional arrangements of basic microscale and nanoscale elements. The pore scale flow patterns in the porous medium are obtained, and the Knudsen diffusion in the pores is studied in detail for slip and transition flow regimes. A new effective pore size of the porous medium is defined, which is a function of the porosity, the tortuosity, the contraction factor, and the intrinsic permeability of the porous medium. It is found that the Klinkenberg effect in different porous structures can be fully described by the Knudsen number characterized by the effective pore size. The accuracies of some widely used Klinkenberg correlations are evaluated by the present DSMC results. It is also found that the available correlations for apparent permeability, most of which are derived from simple pipe or channel flows, can still be applicative for more complex porous media flows, by using the effective pore size defined in this study.

  20. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    PubMed

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  1. Correlation effects in focused transmission through disordered media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei; Liew, Seng Fatt; Goetschy, Arthur; Cao, Hui; Stone, A. Douglas

    2017-02-01

    By controlling the many degrees of freedom in the incident wavefront, one can manipulate wave propagation in complex structures. Such wavefront-shaping methods have been used extensively for controlling light transmitted into wavelength-scale regions (speckles), a property that is insensitive to correlations in the speckle pattern. Extending coherent control to larger regions is of great interest both scientifically and for applications such as optical communications, photothermal therapy, and the imaging of large objects within or behind a diffusive medium. However, waves diffusing through a disordered medium are known to exhibit non-local intensity correlations, and their effect on coherent control has not been fully understood. Here, we demonstrate the effects of correlations with wavefront-shaping experiments on a scattering sample of zinc oxide microparticles. Long-range correlations substantially increase the dynamic range of coherent control over light transmitted onto larger target regions, far beyond what would be achievable if correlations were negligible. This and other effects of correlations emerge when the number of speckles targeted, M2, exceeds the dimensionless conductance g. Using a filtered random matrix ensemble appropriate for describing coherent diffusion and the lateral spreading in an open geometry, we show analytically that M2/g appears as the controlling parameter in universal scaling laws for several statistical properties of interest--predictions that we quantitatively confirm with experimental data. Our work elucidates the roles of speckle correlations and provides a general theoretical framework for modeling open systems in wavefront-shaping experiments.

  2. The Interstellar Medium of Blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Thuan, Trinh Xuan

    Blue compact dwarf (BCD) galaxies are metal-deficient and thus constitute excellent nearby laboratories for studying how the properties of the interstellar medium (ISM) in galaxies change with metallicity. Our sample consists of 4 BCDs chosen to span the metallicity range from 15 to 12 of the solar metallicity. This sample will extend the metallicity range covered by our Cycle 1 observations (141 to 110 solar). The proposed FUSE observations will allow us to investigate the 1) H_2 content of BCDs as a function of metallicity. No H_2 line has been detected in the 2 very metal-deficient BCDs which have been observed by FUSE so far. Will diffuse H_2 be present in more metal-rich BCDs and with less UV radiation density? 2) the structure of the ISM in BCDs. Analysis of 2 BCDs observed by FUSE in Cycle 1 (IZw18 and Mrk 59) show that in the first, the ISM appears to be relatively homogeneous while in the second, it is very clumpy. What are the factors which determine the gas clumpiness in BCDs 3) the abundances in the ISM. Analysis of the FUSE spectrum of Mrk 59 showed C, N, O, Si, Fe and S absorption lines which allow to derive abundances in the ISM using photoinization models. How do these abundances compare with the abundances derived from the emission-line optical spectra? 4) the evolutionary history and stellar winds in BCDs by detecting the P Cygni profiles of high ionization S VI and O VI lines.

  3. Reflection of processes of non-equilibrium two-phase filtration in oil-saturated hierarchical medium in data of active wave geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Andrey; Khachay, Oleg

    2016-04-01

    The processes of oil extraction from deposit are linked with the movement of multi-phase multi-component media, which are characterized by non-equilibrium and non-linear rheological features. The real behavior of layered systems is defined by the complexity of the rheology of moving fluids and the morphology structure of the porous medium, and also by the great variety of interactions between the fluid and the porous medium [Hasanov and Bulgakova, 2003]. It is necessary to take into account these features in order to informatively describe the filtration processes due to the non-linearity, non-equilibrium and heterogeneity that are features of real systems. In this way, new synergetic events can be revealed (namely, a loss of stability when oscillations occur, and the formation of ordered structures). This allows us to suggest new methods for the control and management of complicated natural systems that are constructed on account of these phenomena. Thus the layered system, from which it is necessary to extract the oil, is a complicated dynamical hierarchical system. A comparison is provided of non-equilibrium effects of the influence of independent hydrodynamic and electromagnetic induction on an oil layer and the medium which it surrounds. It is known that by drainage and steeping the hysteresis effect on curves of the relative phase permeability in dependence on the porous medium's water saturation in some cycles of influence (drainage-steep-drainage) is observed. Using the earlier developed 3D method of induction electromagnetic frequency geometric monitoring, we showed the possibility of defining the physical and structural features of a hierarchical oil layer structure and estimating the water saturation from crack inclusions. This effect allows managing the process of drainage and steeping the oil out of the layer by water displacement. An algorithm was constructed for 2D modeling of sound diffraction on a porous fluid-saturated intrusion of a hierarchical structure located in layer number J of an N-layered elastic medium. The algorithm developed for modeling, and the method of mapping and monitoring of heterogenic highly complicated two-phase medium can be used for managing viscous oil extraction in mining conditions and light oil in sub-horizontal boreholes. The demand for effective economic parameters and fuller extraction of oil and gas from deposits dictates the necessity of developing new geotechnology based on the fundamental achievements in the area of geophysics and geomechanics

  4. Comparison of high, medium and low mobilization forces for increasing range of motion in patients with hip osteoarthritis: A randomized controlled trial.

    PubMed

    Estébanez-de-Miguel, Elena; Fortún-Agud, María; Jimenez-Del-Barrio, Sandra; Caudevilla-Polo, Santos; Bueno-Gracia, Elena; Tricás-Moreno, José Miguel

    2018-05-29

    Manual therapy has been shown to increase range of motion (ROM) in hip osteoarthritis (OA). However, the optimal intensity of force during joint mobilization is not known. To compare the effectiveness of high, medium and low mobilization forces for increasing range of motion (ROM) in patients with hip OA and to analyze the effect size of the mobilization. Randomized controlled trial. Sixty patients with unilateral hip OA were randomized to three groups: low, medium or high force mobilization group. Participants received three treatment sessions of long-axis distraction mobilization (LADM) in open packed position and distraction forces were measured at each treatment. Primary outcomes: passive hip ROM assessed before and after each session. pain recorded with Western Ontario and McMaster Universities (WOMAC) pain subscale before and after the three treatment sessions. Hip ROM increased significantly (p < 0.05) in the high-force mobilization group (flexion: 10.6°, extension: 8.0°, abduction:6.4°, adduction: 3.3°, external rotation: 5.6°, internal rotation: 7.6°). These improvements in hip ROM were statistically significant (p < 0.05) compared to the low-force group. There were no significant changes in the low-force and medium-force groups for hip ROM. No significant differences in hip pain were found between treatment groups. A high force LADM in open packed position significantly increased hip ROM in all planes of motion compared to a medium or low force mobilization in patients with hip OA. A specific intensity of force mobilization appears to be necessary for increasing ROM in hip OA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Prospects of using medium-wave band for radio communication with rescue mobile teams of EMERCOM of Russia

    NASA Astrophysics Data System (ADS)

    Bazhukov, I. F.; Dulkejt, I. V.; Zavyalov, S. A.; Lvova, Yu V.; Lyashuk, A. N.; Puzyrev, P. I.; Rekunov, S. G.; Chaschin, E. A.; Sharapov, S. V.

    2018-01-01

    The results of tests in-situ of the prototype of medium-wave mobile radio station «Noema-SV» in Western Siberia, Omsk region and Vorkuta Arctic Integrated Emergency and Rescue Center of EMERCOM of Russia are presented. Radio paths tests in-situ in the Far North show the possibility of radio communication with rescue mobile teams of EMERCOM of Russia in the medium-wave band within distances of several tens of kilometers of rugged topography. The radio range on a flat terrain increases to several hundreds of kilometers. Shortened medium-wave band antennas developed at OmSTU and employed by rescue mobile teams of EMERCOM of Russia were used in.

  6. Optimization of the Liquid Culture Medium Composition to Obtain the Mycelium of Agaricus bisporus Rich in Essential Minerals.

    PubMed

    Krakowska, Agata; Reczyński, Witold; Muszyńska, Bożena

    2016-09-01

    Agaricus bisporus species (J.E. Lange) Imbach one of the most popular Basidiomycota species was chosen for the research because of its dietary and medicinal value. The presented herein studies included determination of essential mineral accumulation level in the mycelium of A. bisporus, cultivated on liquid cultures in the medium supplemented with addition of the chosen metals' salts. Quantitative analyses of Zn, Cu, Mg, and Fe in liquid cultures made it possible to determine the relationship between accumulation of the selected mineral in A. bisporus mycelium and the culture conditions. Monitoring of the liquid cultures and determination of the elements' concentrations in mycelium of A. bisporus were performed using the flame technique of AAS method. Concentration of Zn in the mycelium, maintained in the medium with the addition of its salt, was in a very wide range from 95.9 to 4462.0 mg/g DW. In the analyzed A. bisporus mycelium, cultured in the medium enriched with copper salt, this metal concentration changed from 89.79 to 7491.50 mg/g DW; considering Mg in liquid cultured mycelium (medium with Mg addition), its concentration has changed from 0.32 to 10.55 mg/g DW. The medium enriched with iron salts has led to bioaccumulation of Fe in mycelia of A. bisporus. Determined Fe concentration was in the range from 0.62 to 161.28 mg/g DW. The proposed method of liquid A. bisporus culturing on medium enriched with the selected macro- and microelements in proper concentrations ratio have led to obtaining maximal growth of biomass, characterized by high efficiency of the mineral accumulation. As a result, a dietary component of increased nutritive value was obtained.

  7. Aureole radiance field about a source in a scattering-absorbing medium.

    PubMed

    Zachor, A S

    1978-06-15

    A technique is described for computing the aureole radiance field about a point source in a medium that absorbs and scatters according to an arbitrary phase function. When applied to an isotropic source in a homogenous medium, the method uses a double-integral transform which is evaluated recursively to obtain the aureole radiances contributed by successive scattering orders, as in the Neumann solution of the radiative transfer equation. The normalized total radiance field distribution and the variation of flux with field of view and range are given for three wavelengths in the uv and one in the visible, for a sea-level model atmosphere assumed to scatter according to a composite of the Rayleigh and modified Henyey-Greenstein phase functions. These results have application to the detection and measurement of uncollimated uv and visible sources at short ranges in the lower atmosphere.

  8. Populations of striatal medium spiny neurons encode vibrotactile frequency in rats: modulation by slow wave oscillations

    PubMed Central

    Hawking, Thomas G.

    2013-01-01

    Dorsolateral striatum (DLS) is implicated in tactile perception and receives strong projections from somatosensory cortex. However, the sensory representations encoded by striatal projection neurons are not well understood. Here we characterized the contribution of DLS to the encoding of vibrotactile information in rats by assessing striatal responses to precise frequency stimuli delivered to a single vibrissa. We applied stimuli in a frequency range (45–90 Hz) that evokes discriminable percepts and carries most of the power of vibrissa vibration elicited by a range of complex fine textures. Both medium spiny neurons and evoked potentials showed tactile responses that were modulated by slow wave oscillations. Furthermore, medium spiny neuron population responses represented stimulus frequency on par with previously reported behavioral benchmarks. Our results suggest that striatum encodes frequency information of vibrotactile stimuli which is dynamically modulated by ongoing brain state. PMID:23114217

  9. Rapid mounting of adult Drosophila structures in Hoyer's medium.

    PubMed

    Stern, David L; Sucena, Elio

    2012-01-01

    The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. This protocol describes a procedure for mounting adult cuticles in Hoyer's medium, a useful mountant for both larval and adult cuticles. The medium digests soft tissues rapidly, leaving the cuticle cleared for observation. In addition, samples can be transferred directly from water to Hoyer's medium. However, specimens mounted in Hoyer's medium degrade over time. For example, the fine denticles on the larval dorsum are best observed soon after mounting; they begin to fade after 1 week, and can disappear completely after several months. More robust features, such as the ventral denticle belts, will persist for a longer period of time. Because adults cannot profitably be mounted whole in Hoyer's medium, some dissection is necessary.

  10. Film as a "Thoughtful" Medium for Teaching History

    ERIC Educational Resources Information Center

    Stoddard, Jeremy D.

    2012-01-01

    This collective case study of teachers and students in two ninth-grade US history classes examines the role that films can play as a "thoughtful" medium for teaching history. Specifically, the study focuses on the nature and range of authentic intellectual work that students are engaged in with film in the classroom (Newmann, F., B.…

  11. 75 FR 11808 - Injurious Wildlife Species; Listing the Boa Constrictor, Four Python Species, and Four Anaconda...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DeSchauensee's anaconda-- were shown to pose a medium risk. None of the large constrictors that were assessed... Brazilian island of Marajo, nearby areas around the mouth of the Amazon River, and several drainages in... risk of establishment ranged from medium (reticulated python, DeSchauensee's anaconda, green anaconda...

  12. Heart rate, multiple body temperature, long-range and long-life telemetry system for free-ranging animals

    NASA Technical Reports Server (NTRS)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.

    1980-01-01

    The design details and rationale for a versatile, long-range, long-life telemetry data acquisition system for heart rates and body temperatures at multiple locations from free-ranging animals are presented. The design comprises an implantable transmitter for short to medium range transmission, a receiver retransmitter collar to be worn for long-range transmission, and a signal conditioner interface circuit to assist in signal discrimination and demodulation of receiver or tape-recorded audio outputs. Implanted electrodes are used to obtain an ECG, from which R-wave characteristics are selected to trigger a short RF pulse. Pulses carrying heart rate information are interrupted periodically by a series of pulse interval modulated RF pulses conveying temperature information sensed at desired locations by thermistors. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as radio frequency interference. The implanted transmitter may be used alone for medium and short-range tracking, or with a receiver-transmitter collar that employs commercial tracking equipment for transmissions of up to 12 km. A system prototype has been tested on a dog.

  13. Thermal inactivation of infectious pancreatic necrosis virus in a peptone-salt medium mimicking the water-soluble phase of hydrolyzed fish by-products.

    PubMed

    Nygaard, Halvor; Modahl, Ingebjørg; Myrmel, Mette

    2012-04-01

    Infectious pancreatic necrosis virus (IPNV) (serotype Sp) was exposed to temperatures between 60 and 90°C in a medium mimicking the water-soluble phase of hydrolyzed fish by-products. D values ranged from 290 to 0.5 min, and the z value was approximately 9.8°C. Addition of formic acid to create a pH 4 medium did not enhance heat inactivation. Predicted inactivation effects at different temperature-time combinations are provided.

  14. Electromagnetic field focusing by a plane multilayer structure with a Veselago medium

    NASA Astrophysics Data System (ADS)

    Fisanov, V. V.

    2011-12-01

    The focusing properties of a system of plane layers of a Veselago medium divided by vacuous intervals are investigated by the coordinate transformation method. The role of real and virtual foci in the mechanism of focusing by a multilayered lens is considered.

  15. Extinction by a Homogeneous Spherical Particle in an Absorbing Medium

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Videen, Gorden; Yang, Ping

    2017-01-01

    We use a recent computer implementation of the first principles theory of electromagnetic scattering to compute far-field extinction by a spherical particle embedded in an absorbing unbounded host. Our results show that the suppressing effect of increasing absorption inside the host medium on the ripple structure of the extinction efficiency factor as a function of the size parameter is similar to the well-known effect of increasing absorption inside a particle embedded in a nonabsorbing host. However, the accompanying effects on the interference structure of the extinction efficiency curves are diametrically opposite. As a result, sufficiently large absorption inside the host medium can cause negative particulate extinction. We offer a simple physical explanation of the phenomenon of negative extinction consistent with the interpretation of the interference structure as being the result of interference of the field transmitted by the particle and the diffracted field due to an incomplete wave front resulting from the blockage of the incident plane wave by the particle's geometrical projection.

  16. Discrete-continuum multiscale model for transport, biomass development and solid restructuring in porous media

    NASA Astrophysics Data System (ADS)

    Ray, Nadja; Rupp, Andreas; Prechtel, Alexander

    2017-09-01

    Upscaling transport in porous media including both biomass development and simultaneous structural changes in the solid matrix is extremely challenging. This is because both affect the medium's porosity as well as mass transport parameters and flow paths. We address this challenge by means of a multiscale model. At the pore scale, the local discontinuous Galerkin (LDG) method is used to solve differential equations describing particularly the bacteria's and the nutrient's development. Likewise, a sticky agent tightening together solid or bio cells is considered. This is combined with a cellular automaton method (CAM) capturing structural changes of the underlying computational domain stemming from biomass development and solid restructuring. Findings from standard homogenization theory are applied to determine the medium's characteristic time- and space-dependent properties. Investigating these results enhances our understanding of the strong interplay between a medium's functional properties and its geometric structure. Finally, integrating such properties as model parameters into models defined on a larger scale enables reflecting the impact of pore scale processes on the larger scale.

  17. Quantitative Modeling of Coupled Piezo-Elastodynamic Behavior of Piezoelectric Actuators Bonded to an Elastic Medium for Structural Health Monitoring: A Review

    PubMed Central

    Huang, Guoliang; Song, Fei; Wang, Xiaodong

    2010-01-01

    Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized. PMID:22319319

  18. A patch-based convolutional neural network for remote sensing image classification.

    PubMed

    Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di

    2017-11-01

    Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ecology and biology of paddlefish in North America: historical perspectives, management approaches, and research priorities

    USGS Publications Warehouse

    Jennings, Cecil A.; Zigler, Stephen J.

    2000-01-01

    Paddlefish (Polyodon spathula, Polyodontidae) are large, mostly-riverine fish that once were abundant in medium- to large-sized river systems throughout much of the central United States. Concern for paddlefish populations has grown from a regional fisheries issue to one of national importance for the United States. In 1989, the U.S. Fish and Wildlife Service (USFWS) was petitioned to list paddlefish as a federally threatened species under the Endangered Species Act. The petition was not granted, primarily because of a lack of empirical data on paddlefish population size, age structure, growth, or harvest rates across the present 22-state range. Nonetheless, concern for paddlefish populations prompted the USFWS to recommend that paddlefish be protected through the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). The addition of paddlefish to Appendix II of CITES, which was approved in March 1992, provides a mechanism to curtail illegal trade in paddlefish and their parts and supports a variety of conservation plans. Paddlefish populations have been negatively affected by overharvest, river modifications, and pollution, but the paddlefish still occupies much of its historic range and most extant populations seem to be stable. Although many facets of paddlefish biology and ecology are well understood, the lack of information on larval and juvenile ecology, mechanisms that determine recruitment, population size and vital rates, interjurisdictional movements, and the effects of anthropogenic activities present significant obstacles for managing paddlefish populations. Questions about the size and structure of local populations, and how such populations are affected by navigation traffic, dams, and pollution are regarded as medium priority areas for future research. The availability of suitable spawning habitat and overall reproductive success in impounded rivers are unknown and represent critical areas for future research. Research on reproductive and recruitment success in impounded rivers have significant implications for managing paddlefish, as rivers are modified further for human use.

  20. High-pressure transformation in the cobalt spinel ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasco, J., E-mail: jbc@posta.unizar.es; Subías, G.; García, J.

    2015-01-15

    We report high pressure angle-dispersive x-ray diffraction measurements on Co{sub x}Fe{sub 3−x}O{sub 4} (x=1, 1.5, 1.75) spinels at room temperature up to 34 GPa. The three samples show a similar structural phase transformation from the cubic spinel structure to an analogous post-spinel phase at around 20 GPa. Spinel and post-spinel phases coexist in a wide pressure range (∼20–25 GPa) and the transformation is irreversible. The equation of state of the three cubic spinel ferrites was determined and our results agree with the data obtained in related oxide spinels showing the role of the pressure-transmitting medium for the accurate determination ofmore » the equation of state. Measurements releasing pressure revealed that the post-spinel phase is stable down to 4 GPa when it decomposes yielding a new phase with poor crystallinity. Later compression does not recover either the spinel or the post-spinel phases. This phase transformation induced by pressure explains the irreversible lost of the ferrimagnetic behavior reported in these spinels. - Graphical abstract: Pressure dependence of the unit cell volume per formula unit for Co{sub 1.5}Fe{sub 1.5}O{sub 4} spinel. Circles and squares stand for spinel and postspinel phases, respectively. Dark (open) symbols: determination upon compression (decompression). - Highlights: • The pressure induces similar phase transformation in Co{sub 3−x}Fe{sub x}O{sub 4} spinels (1≤x≤2). • The postspinel phases decompose after releasing pressure. • The irreversibility of this phase transformation explains the disappearance of magnetism in these spinels after applying pressure. • Accurate equation of state can be obtained up to 10 GPa using an alcohol mixture as pressure transmitting medium. • The equation of state suggests similar elastic properties for these spinels in this composition range.« less

  1. Effect of hydroprocessing severity on characteristics of jet fuel from OSCO 2 and Paraho distillates

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Flores, F. J.; Seng, G. T.

    1981-01-01

    Jet A boiling range fuels and broad-property research fuels were produced by hydroprocessing shale oil distillates, and their properties were measured to characterize the fuels. The distillates were the fraction of whole shale oil boiling below 343 C from TOSCO 2 and Paraho syncrudes. The TOSCO 2 was hydroprocessed at medium severity, and the Paraho was hydroprocessed at high, medium, and low severities. Fuels meeting Jet A requirements except for the freezing point were produced from the medium severity TOSCO 2 and the high severity Paraho. Target properties of a broad property research fuel were met by the medium severity TOSCO 2 and the high severity Paraho except for the freezing point and a high hydrogen content. Medium and low severity Paraho jet fuels did not meet thermal stability and freezing point requirements.

  2. International development and psychometric properties of the Child and Adolescent Trauma Screen (CATS).

    PubMed

    Sachser, Cedric; Berliner, Lucy; Holt, Tonje; Jensen, Tine K; Jungbluth, Nathaniel; Risch, Elizabeth; Rosner, Rita; Goldbeck, Lutz

    2017-03-01

    Systematic screening is a powerful means by which children and adolescents with posttraumatic stress symptoms (PTSS) can be detected. Reliable and valid measures based on current diagnostic criteria are needed. To investigate the internal consistency and construct validity of the Child and Adolescent Trauma Screen (CATS) in three samples of trauma-exposed children in the US (self-reports: n=249; caregiver reports: n=267; pre-school n=190), in Germany (self-reports: n=117; caregiver reports: n=95) and in Norway (self-reports: n=109; caregiver reports: n=62). Internal consistency was calculated using Cronbach's α. Convergent-discriminant validity was investigated using bivariate correlation coefficients with measures of depression, anxiety and externalizing symptoms. CFA was used to investigate the DSM-5 factor structure. In all three language samples the 20 item symptom score of the self-report and the caregiver report proved good to excellent reliability with α ranging between .88 and .94. The convergent-discriminant validity pattern showed medium to strong correlations with measures of depression (r =.62-.82) and anxiety (r =.40-.77) and low to medium correlations with externalizing symptoms (r =-.15-.43) within informants in all language versions. Using CFA the underlying DSM-5 factor structure with four symptom clusters (re-experiencing, avoidance, negative alterations in mood and cognitions, hyperarousal) was supported (n =475 for self-report; n =424 for caregiver reports). The external validation of the CATS with a DSM-5 based semi-structured clinical interview and corresponding determination of cut-points is pending. The CATS has satisfactory psychometric properties. Clinicians may consider the CATS as a screening tool and for symptom monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm.

    PubMed

    Chen, Guangcun; Lin, Huirong; Chen, Xincai

    2016-12-28

    Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a 75 μm thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling Cu₃(PO₄)₂ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were Cu₃(PO₄)₂-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% Cu₃(PO₄)₂, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

  4. How does pea architecture influence light sharing in virtual wheat–pea mixtures? A simulation study based on pea genotypes with contrasting architectures

    PubMed Central

    Barillot, Romain; Combes, Didier; Chevalier, Valérie; Fournier, Christian; Escobar-Gutiérrez, Abraham J.

    2012-01-01

    Background and aims Light interception is a key factor driving the functioning of wheat–pea intercrops. The sharing of light is related to the canopy structure, which results from the architectural parameters of the mixed species. In the present study, we characterized six contrasting pea genotypes and identified architectural parameters whose range of variability leads to various levels of light sharing within virtual wheat–pea mixtures. Methodology Virtual plants were derived from magnetic digitizations performed during the growing cycle in a greenhouse experiment. Plant mock-ups were used as inputs of a radiative transfer model in order to estimate light interception in virtual wheat–pea mixtures. The turbid medium approach, extended to well-mixed canopies, was used as a framework for assessing the effects of leaf area index (LAI) and mean leaf inclination on light sharing. Principal results Three groups of pea genotypes were distinguished: (i) early and leafy cultivars, (ii) late semi-leafless cultivars and (iii) low-development semi-leafless cultivars. Within open canopies, light sharing was well described by the turbid medium approach and was therefore determined by the architectural parameters that composed LAI and foliage inclination. When canopy closure started, the turbid medium approach was unable to properly infer light partitioning because of the vertical structure of the canopy. This was related to the architectural parameters that determine the height of pea genotypes. Light capture was therefore affected by the development of leaflets, number of branches and phytomers, as well as internode length. Conclusions This study provides information on pea architecture and identifies parameters whose variability can be used to drive light sharing within wheat–pea mixtures. These results could be used to build up the architecture of pea ideotypes adapted to multi-specific stands towards light competition. PMID:23240074

  5. Structure and Rotation of the Solar Interior: Initial Results from the MDI Medium-L Program

    NASA Technical Reports Server (NTRS)

    Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Bogart, R. S.; Bush, R. I.; Hoeksema, J. T.; Aloise, J.; Bacon, L.; Burnette, A.; DeForest, C.; hide

    1997-01-01

    The medium-l program of the Michelson Doppler Imager instrument on board SOHO provides continuous observations of oscillation modes of angular degree, l, from 0 to approximately 300. The data for the program are partly processed on board because only about 3% of MDI observations can be transmitted continuously to the ground. The on-board data processing, the main component of which is Gaussian-weighted binning, has been optimized to reduce the negative influence of spatial aliasing of the high-degree oscillation modes. The data processing is completed in a data analysis pipeline at the SOI Stanford Support Center to determine the mean multiplet frequencies and splitting coefficients. The initial results show that the noise in the medium-l oscillation power spectrum is substantially lower than in ground-based measurements. This enables us to detect lower amplitude modes and, thus, to extend the range of measured mode frequencies. This is important for inferring the Sun's internal structure and rotation. The MDI observations also reveal the asymmetry of oscillation spectral lines. The line asymmetries agree with the theory of mode excitation by acoustic sources localized in the upper convective boundary layer. The sound-speed profile inferred from the mean frequencies gives evidence for a sharp variation at the edge of the energy-generating core. The results also confirm the previous finding by the GONG (Gough et al., 1996) that, in a thin layer just beneath the convection zone, helium appears to be less abundant than predicted by theory. Inverting the multiplet frequency splittings from MDI, we detect significant rotational shear in this thin layer. This layer is likely to be the place where the solar dynamo operates. In order to understand how the Sun works, it is extremely important to observe the evolution of this transition layer throughout the 11-year activity cycle.

  6. Numerical investigation of tip clearance cavitation in Kaplan runners

    NASA Astrophysics Data System (ADS)

    Nikiforova, K.; Semenov, G.; Kuznetsov, I.; Spiridonov, E.

    2016-11-01

    There is a gap between the Kaplan runner blade and the shroud that makes for a special kind of cavitation: cavitation in the tip leakage flow. Two types of cavitation caused by the presence of clearance gap are known: tip vortex cavitation that appears at the core of the rolled up vortex on the blade suction side and tip clearance cavitation that appears precisely in the gap between the blade tip edge and the shroud. In the context of this work numerical investigation of the model Kaplan runner has been performed taking into account variable tip clearance for several cavitation regimes. The focus is put on investigation of structure and origination of mechanism of cavitation in the tip leakage flow. Calculations have been performed with the help of 3-D unsteady numerical model for two-phase medium. Modeling of turbulent flow in this work has been carried out using full equations of Navier-Stokes averaged by Reynolds with correction for streamline curvature and system rotation. For description of this medium (liquid-vapor) simplification of Euler approach is used; it is based on the model of interpenetrating continuums, within the bounds of this two- phase medium considered as a quasi-homogeneous mixture with the common velocity field and continuous distribution of density for both phases. As a result, engineering techniques for calculation of cavitation conditioned by existence of tip clearance in model turbine runner have been developed. The detailed visualization of the flow was carried out and vortex structure on the suction side of the blade was reproduced. The range of frequency with maximum value of pulsation was assigned and maximum energy frequency was defined; it is based on spectral analysis of the obtained data. Comparison between numerical computation results and experimental data has been also performed. The location of cavitation zone has a good agreement with experiment for all analyzed regimes.

  7. Cuphea: a new plant source of medium-chain fatty acids.

    PubMed

    Graham, S A

    1989-01-01

    The plant genus Cuphea (family Lythraceae) promises to provide a new source of industrially and nutritionally important medium-chain fatty acids, especially of lauric acid now supplied exclusively by coconut and palm kernel oils from foreign sources. The seed lipids of Cuphea were first discovered in the 1960s to contain high percentages of several medium-chain fatty acids, including caprylic, capric, lauric, and myristic acid. Research is still in the early stages, but it is intensifying toward the goal of developing the genus into a new temperate climate crop for production of specialty oils. Given the diversity of Cuphea seed lipid composition and the wide ecological and distributional range of the genus, it may be possible to tailor crops to produce selected fatty acids on demand under a variety of growing conditions. Cuphea comprises about 260 species, most native to the New World tropics. Its morphology, classification, chromosome numbers, distribution, ecology, and folk uses are presented. Seed structure is described and seed lipid composition for 73 species is summarized. Problems in domestication and agronomic progress are reviewed. Knowledge of the biosynthetic mechanism controlling the lipids produced by Cuphea remains very limited. Future research in this area, and particularly successful employment of gene transfer techniques, may allow genes controlling the mechanism to be transferred to an already established seed oil producer such as rapeseed. Presently, both traditional plant breeding techniques and newer biotechnological methods are directed toward Cuphea oilseed development.

  8. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    PubMed

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Galaxy-wide radio-induced feedback in a radio-quiet quasar

    NASA Astrophysics Data System (ADS)

    Villar-Martín, M.; Emonts, B.; Cabrera Lavers, A.; Tadhunter, C.; Mukherjee, D.; Humphrey, A.; Rodríguez Zaurín, J.; Ramos Almeida, C.; Pérez Torres, M.; Bessiere, P.

    2017-12-01

    We report the discovery of a radio-quiet type 2 quasar (SDSS J165315.06+234943.0 nicknamed the 'Beetle' at z = 0.103) with unambiguous evidence for active galactic nucleus (AGN) radio-induced feedback acting across a total extension of ∼46 kpc and up to ∼26 kpc from the AGN. To the best of our knowledge, this is the first radio-quiet system where radio-induced feedback has been securely identified at ≫several kpc from the AGN. The morphological, ionization and kinematic properties of the extended ionized gas are correlated with the radio structures. We find along the radio axis (a) enhancement of the optical line emission at the location of the radio hotspots (b) turbulent gas kinematics (FWHM ∼ 380-470 km s-1) across the entire spatial range circumscribed by them (c) ionization minima for the turbulent gas at the location of the hot spots, (d) high temperature Te ≳ 1.9 × 104 K at the NE hotspot. Turbulent gas is also found far from the radio axis, ∼25 kpc in the perpendicular direction. We propose a scenario in which the radio structures have perforated the interstellar medium of the galaxy and escaped into the circumgalactic medium. While advancing, they have interacted with in situ gas modifying its properties. Our results show that jets of modest power can be the dominant feedback mechanism acting across huge volumes in radio-quiet systems, including highly accreting luminous AGNs, where radiative mode feedback may be expected.

  10. Development of a structure-validated Family Relationship Questionnaire (FRQ) with Chinese university students.

    PubMed

    Chen, Liuxi; Xu, Kai; Fu, Lingyun; Xu, Shaofang; Gao, Qianqian; Wang, Wei

    2015-01-01

    Consistent results have shown a relationship between the psychological world of children and their perceived parental bonding or family attachment style, but to date there is no single measure covering both styles. The authors designed a statement matrix with 116 items for this purpose and compared it with the Parental Bonding Instrument (PBI) in a study with 718 university students. After exploratory and confirmatory factor analyses, five factors (scales)--namely, Paternal/Maternal Encouragement (5 items each), Paternal/Maternal Abuse (5 items each), Paternal/Maternal Freedom Release (5 items each), General Attachment (5 items), and Paternal/Maternal Dominance (4 items each)--were defined to form a Family Relationship Questionnaire (FRQ). The internal alphas of the factors ranged from .64 to .83, and their congruency coefficients were .93 to .98 in samples regarding father and mother. Women scored significantly higher on FRQ General Attachment and Maternal Encouragement and lower on Paternal Abuse than men did; only children scored significantly higher on Paternal and Maternal Encouragements than children with siblings did. Women also scored significantly higher on PBI Paternal Autonomy Denial; only children scored significantly higher on Paternal and Maternal Cares and Maternal Autonomy Denial. All intercorrelations between FRQ scales were low to medium, and some correlations between FRQ and PBI scales were medium to high. This study demonstrates that the FRQ has a structure of five factors with satisfactory discriminant and convergent validities, which might help to characterize family relationships in healthy and clinical populations.

  11. Optical properties of metal-dielectric based epsilon near zero metamaterials

    NASA Astrophysics Data System (ADS)

    Subramania, Ganapathi; Fischer, Arthur; Luk, Ting

    2014-03-01

    Epsilon(ɛ) near zero(ENZ) materials are metamaterials where the effective dielectric constant(ɛ) is close to zero for a range of wavelengths resulting in zero effective displacement field (D = ɛE) and displacement current. ENZ structures are of great interest in many application areas such as optical nanocircuits, supercoupling, cloaking, emission enhancement etc. Effective ENZ behavior has been demonstrated using cut-off frequency region in a metallic waveguide where the modal index vanishes. Here we demonstrate the fabrication of ENZ metamaterials operating at visible wavelengths (λ ~ 640nm) using an effective medium approach based on a metal-dielectric composites(App. Phys. Let.,101,241107(2012)) that can act as ``bulk'' ENZ material. The structure consists of a multilayer stack composite of alternating nanoscale thickness layers of Ag and TiO2. Optical spectroscopy shows transmission and absorption response is consistent with ENZ behavior and matches well with simulations. We will discuss the criteria necessary in the design and practical implementation of the composite that better approximates a homogenous effective medium including techniques to minimize the effect of optical losses to boost transmission. The potential for hosting gain media in the gratings to address losses and emission control will be discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Value of medium range weather forecasts in the improvement of seasonal hydrologic prediction skill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Shraddhanand; Voisin, Nathalie; Lettenmaier, D. P.

    2012-08-15

    We investigated the contribution of medium range weather forecasts with lead times up to 14 days to seasonal hydrologic prediction skill over the Conterminous United States (CONUS). Three different Ensemble Streamflow Prediction (ESP)-based experiments were performed for the period 1980-2003 using the Variable Infiltration Capacity (VIC) hydrology model to generate forecasts of monthly runoff and soil moisture (SM) at lead-1 (first month of the forecast period) to lead-3. The first experiment (ESP) used a resampling from the retrospective period 1980-2003 and represented full climatological uncertainty for the entire forecast period. In the second and third experiments, the first 14 daysmore » of each ESP ensemble member were replaced by either observations (perfect 14-day forecast) or by a deterministic 14-day weather forecast. We used Spearman rank correlations of forecasts and observations as the forecast skill score. We estimated the potential and actual improvement in baseline skill as the difference between the skill of experiments 2 and 3 relative to ESP, respectively. We found that useful runoff and SM forecast skill at lead-1 to -3 months can be obtained by exploiting medium range weather forecast skill in conjunction with the skill derived by the knowledge of initial hydrologic conditions. Potential improvement in baseline skill by using medium range weather forecasts, for runoff (SM) forecasts generally varies from 0 to 0.8 (0 to 0.5) as measured by differences in correlations, with actual improvement generally from 0 to 0.8 of the potential improvement. With some exceptions, most of the improvement in runoff is for lead-1 forecasts, although some improvement in SM was achieved at lead-2.« less

  13. The Internet's Impact on Policy Evaluation: Information Compression and Credibility

    ERIC Educational Resources Information Center

    Bozeman, Barry

    2004-01-01

    As with all media, the Internet structures and frames information, rewarding some information search and decision behaviors while punishing others and, thereby, strongly influences evaluation research results and possibilities. Now that the Internet is for many evaluators the information medium of choice, the impacts of the medium on evaluation…

  14. Guidelines for Effective Teleconference Presentations in Continuing Medical Education.

    ERIC Educational Resources Information Center

    Raszkowski, Robert R.; Chute, Alan G.

    Designing teleconference programs for the physician learner puts unique demands on the teleconferencing medium. Typically, physicians expect a 1-hour lecture presentation with high information density. To effectively present the medical content material in an audio medium, strategies which structure and organize the content material are necessary.…

  15. Space domain analysis of micro-IDG structure

    NASA Astrophysics Data System (ADS)

    Izzat, Narian; Pennock, Steve R.; Rozzi, Tullio

    1994-06-01

    The Microstrip Loaded Inset Dielectric Waveguide has been proposed as a transmission medium alternative to microstrip, and as a useful antenna medium at X-band and millimetric frequencies. In the present analysis we consider the case where a multi-layer, multi-conductor microstrip circuit may be housed within Inset Dielectric Waveguide.

  16. Trajectory optimization study of a lifting body re-entry vehicle for medium to intermediate range applications

    NASA Astrophysics Data System (ADS)

    Rizvi, S. Tauqeer ul Islam; Linshu, He; ur Rehman, Tawfiq; Rafique, Amer Farhan

    2012-11-01

    A numerical optimization study of lifting body re-entry vehicles is presented for nominal as well as shallow entry conditions for Medium and Intermediate Range applications. Due to the stringent requirement of a high degree of accuracy for conventional vehicles, lifting re-entry can be used to attain the impact at the desired terminal flight path angle and speed and thus can potentially improve accuracy of the re-entry vehicle. The re-entry of a medium range and intermediate range vehicles is characterized by very high negative flight path angle and low re-entry speed as compared to a maneuverable re-entry vehicle or a common aero vehicle intended for an intercontinental range. Highly negative flight path angles at the re-entry impose high dynamic pressure as well as heat loads on the vehicle. The trajectory studies are carried out to maximize the cross range of the re-entry vehicle while imposing a maximum dynamic pressure constraint of 350 KPa with a 3 MW/m2 heat rate limit. The maximum normal acceleration and the total heat load experienced by the vehicle at the stagnation point during the maneuver have been computed for the vehicle for possible future conceptual design studies. It has been found that cross range capability of up to 35 km can be achieved with a lifting-body design within the heat rate and the dynamic pressure boundary at normal entry conditions. For shallow entry angle of -20 degree and intermediate ranges a cross range capability of up to 250 km can be attained for a lifting body design with less than 10 percent loss in overall range. The normal acceleration also remains within limits. The lifting-body results have also been compared with wing-body results at shallow entry condition. An hp-adaptive pseudo-spectral method has been used for constrained trajectory optimization.

  17. Factor structure of the Essen Climate Evaluation Schema measure of social climate in a UK medium-security setting.

    PubMed

    Milsom, Sophia A; Freestone, Mark; Duller, Rachel; Bouman, Marisa; Taylor, Celia

    2014-04-01

    Social climate has an influence on a number of treatment-related factors, including service users' behaviour, staff morale and treatment outcomes. Reliable assessment of social climate is, therefore, beneficial within forensic mental health settings. The Essen Climate Evaluation Schema (EssenCES) has been validated in forensic mental health services in the UK and Germany. Preliminary normative data have been produced for UK high-security national health services and German medium-security and high-security services. We aim to validate the use of the EssenCES scale (English version) and provide preliminary normative data in UK medium-security hospital settings. The EssenCES scale was completed in a medium-security mental health service as part of a service-wide audit. A total of 89 patients and 112 staff completed the EssenCES. The three-factor structure of the EssenCES and its internal construct validity were maintained within the sample. Scores from this medium-security hospital sample were significantly higher than those from earlier high-security hospital data, with three exceptions--'patient cohesion' according to the patients and 'therapeutic hold' according to staff and patients. Our data support the use of the EssenCES scale as a valid measure for assessing social climate within medium-security hospital settings. Significant differences between the means of high-security and medium-security service samples imply that degree of security is a relevant factor affecting the ward climate and that in monitoring quality of secure services, it is likely to be important to apply different scores to reflect standards. Copyright © 2013 John Wiley & Sons, Ltd.

  18. The observed life cycle of a baroclinic instability

    NASA Technical Reports Server (NTRS)

    Randel, W. J.; Stanford, J. L.

    1985-01-01

    Medium-scale waves (zonal wavenumbers 4-7) frequently dominate Southern Hemisphere summer circulation patterns. Randel and Stanford have studied the dynamics of these features, demonstrating that the medium-scale waves result from baroclinic excitation and exhibit well-defined life cycles. This study details the evolution of the medium-scale waves during a particular life cycle. The specific case chosen exhibits a high degree of zonal symmetry, prompting study based upon zonally averaged diagnostics. An analysis of the medium-scale wave energetics reveals a well-defined life cycle of baroclinic growth, maturity, and barotropic decay. Eliassen-Palm flux diagrams detail the daily wave structure and its interaction with the zonally-averaged flow.

  19. Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints.

    PubMed

    Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian

    2017-09-15

    In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding.

  20. Structural, thermal, spectroscopic, and spectral dispersion studies of nanocrystalline methyl red thin films

    NASA Astrophysics Data System (ADS)

    Makhlouf, Mohamed M.; El-Denglawey, Adel

    2018-04-01

    Methyl red (MR) powder is polycrystalline structure as-purchased. The uniform, homogeneous and no cracks nano MR thin films are successfully prepared using thermal evaporation technique. The structural investigation for the pristine, annealed and UV irradiated MR films shows nanorods spread in amorphous medium. The part of as-prepared films exposed to UV light irradiation of wavelength 254 nm and intensity of 2000 µW/cm2 for 1 h, while the other part of films was treated by the annealing temperature at 178 °C for 1 h. The optical properties of MR thin films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the spectral range 200-2000 nm. The optical constants, dispersion parameters, and energy loss and dielectric functions of MR thin films were calculated and showed remarkable dependence on UV irradiation and annealing temperature upon the films of MR. The dependence of absorption coefficient on the photon energy were analyzed and the results showed that MR films undergo direct allowed optical transition for pristine, annealed and irradiated MR films.

Top