Medium-range fire weather forecasts
J.O. Roads; K. Ueyoshi; S.C. Chen; J. Alpert; F. Fujioka
1991-01-01
The forecast skill of theNational Meteorological Center's medium range forecast (MRF) numerical forecasts of fire weather variables is assessed for the period June 1,1988 to May 31,1990. Near-surface virtual temperature, relative humidity, wind speed and a derived fire weather index (FWI) are forecast well by the MRF model. However, forecast relative humidity has...
Weather Prediction Center (WPC) Home Page
grids, quantitative precipitation, and winter weather outlook probabilities can be found at: http Short Range Products » More Medium Range Products Quantitative Precipitation Forecasts Legacy Page Discussion (Day 1-3) Quantitative Precipitation Forecast Discussion NWS Weather Prediction Center College
Value of medium range weather forecasts in the improvement of seasonal hydrologic prediction skill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Shraddhanand; Voisin, Nathalie; Lettenmaier, D. P.
2012-08-15
We investigated the contribution of medium range weather forecasts with lead times up to 14 days to seasonal hydrologic prediction skill over the Conterminous United States (CONUS). Three different Ensemble Streamflow Prediction (ESP)-based experiments were performed for the period 1980-2003 using the Variable Infiltration Capacity (VIC) hydrology model to generate forecasts of monthly runoff and soil moisture (SM) at lead-1 (first month of the forecast period) to lead-3. The first experiment (ESP) used a resampling from the retrospective period 1980-2003 and represented full climatological uncertainty for the entire forecast period. In the second and third experiments, the first 14 daysmore » of each ESP ensemble member were replaced by either observations (perfect 14-day forecast) or by a deterministic 14-day weather forecast. We used Spearman rank correlations of forecasts and observations as the forecast skill score. We estimated the potential and actual improvement in baseline skill as the difference between the skill of experiments 2 and 3 relative to ESP, respectively. We found that useful runoff and SM forecast skill at lead-1 to -3 months can be obtained by exploiting medium range weather forecast skill in conjunction with the skill derived by the knowledge of initial hydrologic conditions. Potential improvement in baseline skill by using medium range weather forecasts, for runoff (SM) forecasts generally varies from 0 to 0.8 (0 to 0.5) as measured by differences in correlations, with actual improvement generally from 0 to 0.8 of the potential improvement. With some exceptions, most of the improvement in runoff is for lead-1 forecasts, although some improvement in SM was achieved at lead-2.« less
NASA Astrophysics Data System (ADS)
Lahlou, Ouiam; Imani, Yasmina; Bennasser Alaoui, Si; Dutra, Emanuel; DiGiuseppe, Francesca; Pappenberger, Florian; Wetterhall, Fredrik
2014-05-01
Use of medium-range weather forecasts for drought mitigation and adaptation under a Mediterranean area Authors: Ouiam Lahlou1, Yasmina Imani1, Si Bennasser Alaoui1, Emmanuel Dutra 2, Francesca Di Guiseppe2, Florian Pappenberger2, Fredrik Wetterhall2 1: Institut Agronomique et Vétérinaire Hassan II (IAV Hassan II) 2: European Center for Medium-Range Weather Forecasts (ECMWF) The main pillar of economic development in Morocco is the agricultural sector employing 40% of the active workforce. Agriculture is still mainly dominated by rainfed agriculture which is vulnerable to an increasing frequency and severity of drought events. In rainfed agriculture, there are few interventions possible once crops are planted. Medium to long range weather forecasts could therefore provide valid information for crop selection and sowing time at the onset of the yield season and later to plan mitigation measures during dry-spell episodes. More than 600 daily forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecasting system were analyzed in terms of probabilistic skills scores. Results show that, while daily and weekly accumulated precipitation are poorly predicted there is good skill in the forecast of occurrence and extent of dry periods. The availability of this information to decision makers in the agricultural sector would mean moving from a reactive drought management plan to a proactive one. This is very important, especially for the remote areas where often the needed help comes late. A simulation case-study involving farmers who were made aware of the availability of forecasts for the next seasons, show that medium-range forecasts will allow i) governments and relief agencies to position themselves for more effective and cost-efficient drought interventions, ii) producers to be more aware of their production options and insure their payment rate, iii) Herders, to cope with higher food costs for their cattle iv) farmers to better plan the pre-season agronomic corrections, to schedule the most appropriate timing for the unique complementary irrigation that they can provide to cereals, and to better schedule the harvesting date. Since failing on these mitigation actions due to a lack of forecast availability would be highly priced for the rural Marocco economy, we stress that forecasting drought onset, especially under the high variability of the Mediterranean climate, is of a paramount importance.
NASA Astrophysics Data System (ADS)
Subramanian, Aneesh C.; Palmer, Tim N.
2017-06-01
Stochastic schemes to represent model uncertainty in the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system has helped improve its probabilistic forecast skill over the past decade by both improving its reliability and reducing the ensemble mean error. The largest uncertainties in the model arise from the model physics parameterizations. In the tropics, the parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate. Superparameterization is a promising alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model (CRM) embedded within a global climate model (GCM). In this paper, we compare the impact of initial random perturbations in embedded CRMs, within the ECMWF ensemble prediction system, with stochastically perturbed physical tendency (SPPT) scheme as a way to represent model uncertainty in medium-range tropical weather forecasts. We especially focus on forecasts of tropical convection and dynamics during MJO events in October-November 2011. These are well-studied events for MJO dynamics as they were also heavily observed during the DYNAMO field campaign. We show that a multiscale ensemble modeling approach helps improve forecasts of certain aspects of tropical convection during the MJO events, while it also tends to deteriorate certain large-scale dynamic fields with respect to stochastically perturbed physical tendencies approach that is used operationally at ECMWF.
Hegazi, Abdelrahman H; Fathalla, Eiman M; Andersson, Jan T
2014-09-01
Different weathering factors act to change petroleum composition once it is spilled into the environment. n-Alkanes, biomarkers, low-molecular weight polyaromatic hydrocarbons and sulfur heterocycles compositional changing in the environment have been extensively studied by different researchers and many parameters have been used for oil source identification and monitoring of weathering and biological degradation processes. In this work, we studied the fate of medium-molecular weight polycyclic aromatic disulfur heterocycles (PAS2Hs), up to ca. 900Da, of artificially weathered Flotta North Sea crude oil by ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometry. It was found that PAS2Hs in studied crude oil having double bond equivalents (DBE) from 5 to 8 with a mass range from ca 316 to 582Da were less influenced even after six months artificial weathering experiment. However, compounds having DBEs 12, 11 and 10 were depleted after two, four and six months weathering, respectively. In addition, DBE 9 series was more susceptible to weathering than those of DBE 7 and 8. Copyright © 2014 Elsevier Ltd. All rights reserved.
Scientific motivation for ADM/Aeolus mission
NASA Astrophysics Data System (ADS)
Källén, Erland
2018-04-01
The ADM/Aeolus wind lidar mission will provide a global coverage of atmospheric wind profiles. Atmospheric wind observations are required for initiating weather forecast models and for predicting and monitoring long term climate change. Improved knowledge of the global wind field is widely recognised as fundamental to advancing the understanding and prediction of weather and climate. In particular over tropical areas there is a need for better wind data leading to improved medium range (3-10 days) weather forecasts over the whole globe.
NASA Technical Reports Server (NTRS)
Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques;
2015-01-01
A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.
Atlas of the global distribution of atmospheric heating during the global weather experiment
NASA Technical Reports Server (NTRS)
Schaack, Todd K.; Johnson, Donald R.
1991-01-01
Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.
Training the next generation of scientists in Weather Forecasting: new approaches with real models
NASA Astrophysics Data System (ADS)
Carver, Glenn; Váňa, Filip; Siemen, Stephan; Kertesz, Sandor; Keeley, Sarah
2014-05-01
The European Centre for Medium Range Weather Forecasts operationally produce medium range forecasts using what is internationally acknowledged as the world leading global weather forecast model. Future development of this scientifically advanced model relies on a continued availability of experts in the field of meteorological science and with high-level software skills. ECMWF therefore has a vested interest in young scientists and University graduates developing the necessary skills in numerical weather prediction including both scientific and technical aspects. The OpenIFS project at ECMWF maintains a portable version of the ECMWF forecast model (known as IFS) for use in education and research at Universities, National Meteorological Services and other research and education organisations. OpenIFS models can be run on desktop or high performance computers to produce weather forecasts in a similar way to the operational forecasts at ECMWF. ECMWF also provide the Metview desktop application, a modern, graphical, and easy to use tool for analysing and visualising forecasts that is routinely used by scientists and forecasters at ECMWF and other institutions. The combination of Metview with the OpenIFS models has the potential to deliver classroom-friendly tools allowing students to apply their theoretical knowledge to real-world examples using a world-leading weather forecasting model. In this paper we will describe how the OpenIFS model has been used for teaching. We describe the use of Linux based 'virtual machines' pre-packaged on USB sticks that support a technically easy and safe way of providing 'classroom-on-a-stick' learning environments for advanced training in numerical weather prediction. We welcome discussions with interested parties.
Diabatic heating rate estimates from European Centre for Medium-Range Weather Forecasts analyses
NASA Technical Reports Server (NTRS)
Christy, John R.
1991-01-01
Vertically integrated diabatic heating rate estimates (H) calculated from 32 months of European Center for Medium-Range Weather Forecasts daily analyses (May 1985-December 1987) are determined as residuals of the thermodynamic equation in pressure coordinates. Values for global, hemispheric, zonal, and grid point H are given as they vary over the time period examined. The distribution of H is compared with previous results and with outgoing longwave radiation (OLR) measurements. The most significant negative correlations between H and OLR occur for (1) tropical and Northern-Hemisphere mid-latitude oceanic areas and (2) zonal and hemispheric mean values for periods less than 90 days. Largest positive correlations are seen in periods greater than 90 days for the Northern Hemispheric mean and continental areas of North Africa, North America, northern Asia, and Antarctica. The physical basis for these relationships is discussed. An interyear comparison between 1986 and 1987 reveals the ENSO signal.
Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation.
Cassou, Christophe
2008-09-25
Bridging the traditional gap between the spatio-temporal scales of weather and climate is a significant challenge facing the atmospheric community. In particular, progress in both medium-range and seasonal-to-interannual climate prediction relies on our understanding of recurrent weather patterns and the identification of specific causes responsible for their favoured occurrence, persistence or transition. Within this framework, I here present evidence that the main climate intra-seasonal oscillation in the tropics-the Madden-Julian Oscillation (MJO)-controls part of the distribution and sequences of the four daily weather regimes defined over the North Atlantic-European region in winter. North Atlantic Oscillation (NAO) regimes are the most affected, allowing for medium-range predictability of their phase far exceeding the limit of around one week that is usually quoted. The tropical-extratropical lagged relationship is asymmetrical. Positive NAO events mostly respond to a mid-latitude low-frequency wave train initiated by the MJO in the western-central tropical Pacific and propagating eastwards. Precursors for negative NAO events are found in the eastern tropical Pacific-western Atlantic, leading to changes along the North Atlantic storm track. Wave-breaking diagnostics tend to support the MJO preconditioning and the role of transient eddies in setting the phase of the NAO. I present a simple statistical model to quantitatively assess the potential predictability of the daily NAO index or the sign of the NAO regimes when they occur. Forecasts are successful in approximately 70 per cent of the cases based on the knowledge of the previous approximately 12-day MJO phase used as a predictor. This promising skill could be of importance considering the tight link between weather regimes and both mean conditions and the chances of extreme events occurring over Europe. These findings are useful for further stressing the need to better simulate and forecast the tropical coupled ocean-atmosphere dynamics, which is a source of medium-to-long range predictability and is the Achilles' heel of the current seamless prediction suites.
NASA Astrophysics Data System (ADS)
Shukla, S.; Husak, G. J.; Funk, C. C.; Verdin, J. P.
2015-12-01
The USAID's Famine Early Warning Systems Network (FEWS NET) provides seasonal assessments of crop conditions over the Greater Horn of Africa (GHA) and other food insecure regions. These assessments and current livelihood, nutrition, market conditions and conflicts are used to generate food security scenarios that help national, regional and local decision makers target their resources and mitigate socio-economic losses. Among the various tools that FEWS NET uses is the FAO's Water Requirement Satisfaction Index (WRSI). The WRSI is a simple yet powerful crop assessment model that incorporates current moisture conditions (at the time of the issuance of forecast), precipitation scenarios, potential evapotranspiration and crop parameters to categorize crop conditions into different classes ranging from "failure" to "very good". The WRSI tool has been shown to have a good agreement with local crop yields in the GHA region. At present, the precipitation scenarios used to drive the WRSI are based on either a climatological forecast (that assigns equal chances of occurrence to all possible scenarios and has no skill over the forecast period) or a sea-surface temperature anomaly based scenario (which at best have skill at the seasonal scale). In both cases, the scenarios fail to capture the skill that can be attained by initial atmospheric conditions (i.e., medium-range weather forecasts). During the middle of a cropping season, when a week or two of poor rains can have a devastating effect, two weeks worth of skillful precipitation forecasts could improve the skill of the crop scenarios. With this working hypothesis, we examine the value of incorporating medium-range weather forecasts in improving the skill of crop scenarios in the GHA region. We use the NCEP's Global Ensemble Forecast system (GEFS) weather forecasts and examine the skill of crop scenarios generated using the GEFS weather forecasts with respect to the scenarios based solely on the climatological forecast. The period of analysis is from 1985-2010 (over which the reforecasts of GEFS is available) and the focus season is October-November-December. We examine the improvement (if any) in long-term skill, and present results for several recent drought events in the region.
Preliminary evaluation of diabatic heating distribution from FGGE level 3b analysis data
NASA Technical Reports Server (NTRS)
Kasahara, A.; Mizzi, A. P.
1985-01-01
A method is presented for calculating the global distribution of diabatic heating rate. Preliminary results of global heating rate evaluated from the European center for Medium Range Weather Forecasts Level IIIb analysis data is also presented.
Progress and Challenges in Short to Medium Range Coupled Prediction
NASA Technical Reports Server (NTRS)
Brassington, G. B.; Martin, M. J.; Tolman, H. L.; Akella, Santha; Balmeseda, M.; Chambers, C. R. S.; Cummings, J. A.; Drillet, Y.; Jansen, P. A. E. M.; Laloyaux, P.;
2014-01-01
The availability of GODAE Oceanview-type ocean forecast systems provides the opportunity to develop high-resolution, short- to medium-range coupled prediction systems. Several groups have undertaken the first experiments based on relatively unsophisticated approaches. Progress is being driven at the institutional level targeting a range of applications that represent their respective national interests with clear overlaps and opportunities for information exchange and collaboration. These include general circulation, hurricanes, extra-tropical storms, high-latitude weather and sea-ice forecasting as well as coastal air-sea interaction. In some cases, research has moved beyond case and sensitivity studies to controlled experiments to obtain statistically significant metrics.
Broadcast media and the dissemination of weather information
NASA Technical Reports Server (NTRS)
Byrnes, J.
1973-01-01
Although television is the public's most preferred source of weather information, it fails to provide weather reports to those groups who seek the information early in the day and during the day. The result is that many people most often use radio as a source of information, yet preferring the medium of television. The public actively seeks weather information from both radio and TV stations, usually seeking information on current conditions and short range forecasts. forecasts. Nearly all broadcast stations surveyed were eager to air severe weather bulletins quickly and often. Interest in Nowcasting was high among radio and TV broadcasters, with a significant portion indicating a willingness to pay something for the service. However, interest among TV stations in increasing the number of daily reports was small.
An improved snow scheme for the ECMWF land surface model: Description and offline validation
Emanuel Dutra; Gianpaolo Balsamo; Pedro Viterbo; Pedro M. A. Miranda; Anton Beljaars; Christoph Schar; Kelly Elder
2010-01-01
A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and...
Demonstration and Science Experiment (DSX) Space Weather Experiment (SWx)
2009-01-01
environment encountered by medium-earth orbits (MEO). at an altitude range from 6,000 to 15.000 km "’. The discovery of the earth’s radiation...forecast models that enable future space missions in the medium Earth orbit regime to enable better spacecraft designed to withstand the harsh environment...the size of the sensor and to exploit a compact layout. The inside spherical section has an attraction voltage and the outside section has the
NASA Astrophysics Data System (ADS)
Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Fall, G. M.; Feng, X.; Fresch, M. A.; Gourley, J. J.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Smith, M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.; Zhang, Y.
2015-12-01
The National Weather Service (NWS) National Water Center(NWC) is collaborating with the NWS National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) to implement a first-of-its-kind operational instance of the Weather Research and Forecasting (WRF)-Hydro model over the Continental United States (CONUS) and contributing drainage areas on the NWS Weather and Climate Operational Supercomputing System (WCOSS) supercomputer. The system will provide seamless, high-resolution, continuously cycling forecasts of streamflow and other hydrologic outputs of value from both deterministic- and ensemble-type runs. WRF-Hydro will form the core of the NWC national water modeling strategy, supporting NWS hydrologic forecast operations along with emergency response and water management efforts of partner agencies. Input and output from the system will be comprehensively verified via the NWC Water Resource Evaluation Service. Hydrologic events occur on a wide range of temporal scales, from fast acting flash floods, to long-term flow events impacting water supply. In order to capture this range of events, the initial operational WRF-Hydro configuration will feature 1) hourly analysis runs, 2) short-and medium-range deterministic forecasts out to two day and ten day horizons and 3) long-range ensemble forecasts out to 30 days. All three of these configurations are underpinned by a 1km execution of the NoahMP land surface model, with channel routing taking place on 2.67 million NHDPlusV2 catchments covering the CONUS and contributing areas. Additionally, the short- and medium-range forecasts runs will feature surface and sub-surface routing on a 250m grid, while the hourly analyses will feature this same 250m routing in addition to nudging-based assimilation of US Geological Survey (USGS) streamflow observations. A limited number of major reservoirs will be configured within the model to begin to represent the first-order impacts of streamflow regulation.
NASA Astrophysics Data System (ADS)
Nanda, Trushnamayee; Beria, Harsh; Sahoo, Bhabagrahi; Chatterjee, Chandranath
2016-04-01
Increasing frequency of hydrologic extremes in a warming climate call for the development of reliable flood forecasting systems. The unavailability of meteorological parameters in real-time, especially in the developing parts of the world, makes it a challenging task to accurately predict flood, even at short lead times. The satellite-based Tropical Rainfall Measuring Mission (TRMM) provides an alternative to the real-time precipitation data scarcity. Moreover, rainfall forecasts by the numerical weather prediction models such as the medium term forecasts issued by the European Center for Medium range Weather Forecasts (ECMWF) are promising for multistep-ahead flow forecasts. We systematically evaluate these rainfall products over a large catchment in Eastern India (Mahanadi River basin). We found spatially coherent trends, with both the real-time TRMM rainfall and ECMWF rainfall forecast products overestimating low rainfall events and underestimating high rainfall events. However, no significant bias was found for the medium rainfall events. Another key finding was that these rainfall products captured the phase of the storms pretty well, but suffered from consistent under-prediction. The utility of the real-time TRMM and ECMWF forecast products are evaluated by rainfall-runoff modeling using different artificial neural network (ANN)-based models up to 3-days ahead. Keywords: TRMM; ECMWF; forecast; ANN; rainfall-runoff modeling
Wang, Qi; Wang, Rongrong; He, Linyan; Sheng, Xiafang
2017-05-01
Bacteria play important roles in rock weathering, elemental cycling, and soil formation. However, little is known about the weathering potential and population of bacteria inhabiting surfaces of rocks. In this study, we isolated bacteria from the top, middle, and bottom rock samples along a hillside of a rock (trachyte) mountain as well as adjacent soils and characterized rock-weathering behaviors and populations of the bacteria. Per gram of rock or surface soil, 10 6 -10 7 colony forming units were obtained and total 192 bacteria were isolated. Laboratory rock dissolution experiments indicated that the proportions of the highly effective Fe (ranging from 67 to 92 %), Al (ranging from 40 to 48 %), and Cu (ranging from 54 to 81 %) solubilizers were significantly higher in the top rock and soil samples, while the proportion of the highly effective Si (56 %) solubilizers was significantly higher in the middle rock samples. Furthermore, 78, 96, and 6 % of bacteria from the top rocks, soils, and middle rocks, respectively, significantly acidified the culture medium (pH < 4.0) in the rock dissolution process. Most rock-weathering bacteria (79 %) from the rocks were different to those from the soils and most of them (species level) have not been previously reported. Furthermore, location-specific rock-weathering bacterial populations were found and Bacillus species were the most (66 %) frequently isolated rock-weathering bacteria in the rocks based on cultivation methods. Notably, the top rocks and soils had the highest and lowest diversity of rock-weathering bacterial populations, respectively. The results suggested location-related differences in element (Si, Al, Fe, and Cu) releasing effectiveness and communities of rock-weathering bacteria along the hillside of the rock mountain.
Extending medium-range predictability of extreme hydrological events in Europe
Lavers, David A.; Pappenberger, Florian; Zsoter, Ervin
2014-01-01
Widespread flooding occurred across northwest Europe during the winter of 2013/14, resulting in large socioeconomic damages. In the historical record, extreme hydrological events have been connected with intense water vapour transport. Here we show that water vapour transport has higher medium-range predictability compared with precipitation in the winter 2013/14 forecasts from the European Centre for Medium-Range Weather Forecasts. Applying the concept of potential predictability, the transport is found to extend the forecast horizon by 3 days in some European regions. Our results suggest that the breakdown in precipitation predictability is due to uncertainty in the horizontal mass convergence location, an essential mechanism for precipitation generation. Furthermore, the predictability increases with larger spatial averages. Given the strong association between precipitation and water vapour transport, especially for extreme events, we conclude that the higher transport predictability could be used as a model diagnostic to increase preparedness for extreme hydrological events. PMID:25387309
Foreword to the Special Issue on Remote Sensing and Modeling of Surface Properties
USDA-ARS?s Scientific Manuscript database
CURRENTLY, the Numerical Weather Prediction (NWP) community is striving for better ways to extract information on the lower layer using current and future satellite systems to improve short-term to medium-range forecasts. The surface emissivity is highly variable and may cause biases in the forward ...
A Community Terrain-Following Ocean Modeling System (ROMS/TOMS)
2013-09-30
workshop at the Windsor Atlântica Hotel, Rio de Janeiro , Brazil, October 22-25, 2012. As in the past, several tutorials were offered on basic and...from the European Centre For Medium-Range Weather Forecasts (ECMWF) ERA-Interim, 3-hour dataset. River runoff is included along the Alabama
Validation of Operational Multiscale Environment Model With Grid Adaptivity (OMEGA).
1995-12-01
Center for the period of the Chernobyl Nuclear Accident. The physics of the model is tested using National Weather Service Medium Range Forecast data by...Climatology Center for the first three days following the release at the Chernobyl Nuclear Plant. A user-defined source term was developed to simulate
Global Ocean Forecast System (GOFS) Version 2.6. User’s Manual
2010-03-31
odimens.D, which takes the rivers.dat flow levels, inputs an SST and sea surface salinity (SSS) climatology from GDEM , and outputs the orivs_1.D...Center for Medium-range Weather Forecast GB GigaByte GDEM Global Digital Elevation Map GOFS Global Ocean Forecast System HPCMP High Performance
NASA Technical Reports Server (NTRS)
Liu, W. T.; Tang, Wenqing; Wentz, Frank J.
1992-01-01
Global fields of precipitable water W from the special sensor microwave imager were compared with those from the European Center for Medium Range Weather Forecasts (ECMWF) model. They agree over most ocean areas; both data sets capture the two annual cycles examined and the interannual anomalies during an ENSO episode. They show significant differences in the dry air masses over the eastern tropical-subtropical oceans, particularly in the Southern Hemisphere. In these regions, comparisons with radiosonde data indicate that overestimation by the ECMWF model accounts for a large part of the differences. As a check on the W differences, surface-level specific humidity Q derived from W, using a statistical relation, was compared with Q from the ECMWF model. The differences in Q were found to be consistent with the differences in W, indirectly validating the Q-W relation. In both W and Q, SSMI was able to discern clearly the equatorial extension of the tongues of dry air in the eastern tropical ocean, while both ECMWF and climatological fields have reduced spatial gradients and weaker intensity.
Using CloudSat and the A-Train to Estimate Tropical Cyclone Intensity in the Western North Pacific
2014-09-01
CloudSat System Data Flow (from Cooperative Institute for Research in the Atmosphere 2008...radar Department of Defense Data Processing Center European Centre for Medium-Range Weather Forecasts Earth observing system Earth observing... system data and information system Earth sciences systems pathfinder hierarchical data format moderate resolution imaging spectroradiometer moist
The planetary distribution of heat sources and sinks during FGGE
NASA Technical Reports Server (NTRS)
Johnson, D. R.; Wei, M. Y.
1985-01-01
Heating distributions from analysis of the National Meteorological Center and European Center for Medium Range Weather Forecasts data sets; methods used and problems involved in the inference of diabatic heating; the relationship between differential heating and energy transport; and recommendations on the inference of heat soruces and heat sinks for the planetary show are discussed.
NASA Astrophysics Data System (ADS)
Benedetti, A.; Morcrette, J.-J.; Boucher, O.; Dethof, A.; Engelen, R. J.; Fisher, M.; Flentje, H.; Huneeus, N.; Jones, L.; Kaiser, J. W.; Kinne, S.; Mangold, A.; Razinger, M.; Simmons, A. J.; Suttie, M.
2009-07-01
This study presents the new aerosol assimilation system, developed at the European Centre for Medium-Range Weather Forecasts, for the Global and regional Earth-system Monitoring using Satellite and in-situ data (GEMS) project. The aerosol modeling and analysis system is fully integrated in the operational four-dimensional assimilation apparatus. Its purpose is to produce aerosol forecasts and reanalyses of aerosol fields using optical depth data from satellite sensors. This paper is the second of a series which describes the GEMS aerosol effort. It focuses on the theoretical architecture and practical implementation of the aerosol assimilation system. It also provides a discussion of the background errors and observations errors for the aerosol fields, and presents a subset of results from the 2-year reanalysis which has been run for 2003 and 2004 using data from the Moderate Resolution Imaging Spectroradiometer on the Aqua and Terra satellites. Independent data sets are used to show that despite some compromises that have been made for feasibility reasons in regards to the choice of control variable and error characteristics, the analysis is very skillful in drawing to the observations and in improving the forecasts of aerosol optical depth.
NASA Astrophysics Data System (ADS)
Matsangouras, Ioannis T.; Nastos, Panagiotis T.
2014-05-01
Natural hazards pose an increasing threat to society and new innovative techniques or methodologies are necessary to be developed, in order to enhance the risk mitigation process in nowadays. It is commonly accepted that disaster risk reduction is a vital key for future successful economic and social development. The systematic improvement accuracy of extended-range prognosis products, relating with monthly and seasonal predictability, introduced them as a new essential link in risk mitigation procedure. Aiming at decreasing the risk, this paper presents the use of seasonal and monthly forecasting process that was tested over west Greece from September to December, 2013. During that season significant severe weather events occurred, causing significant impact to the local society (severe storms/rainfalls, hail, flash floods, etc). Seasonal and monthly forecasting products from European Centre for Medium-Range Weather Forecasts (ECMWF) depicted, with probabilities stratified by terciles, areas of Greece where significant weather may occur. As atmospheric natural hazard early warning systems are able to deliver warnings up to 72 hours in advance, this study illustrates that extended-range prognosis could be introduced as a new technique in risk mitigation. Seasonal and monthly forecast products could highlight extended areas where severe weather events may occur in one month lead time. In addition, a risk mitigation procedure, that extended prognosis products are adopted, is also presented providing useful time to preparedness process at regional administration level.
Medium-range Performance of the Global NWP Model
NASA Astrophysics Data System (ADS)
Kim, J.; Jang, T.; Kim, J.; Kim, Y.
2017-12-01
The medium-range performance of the global numerical weather prediction (NWP) model in the Korea Meteorological Administration (KMA) is investigated. The performance is based on the prediction of the extratropical circulation. The mean square error is expressed by sum of spatial variance of discrepancy between forecasts and observations and the square of the mean error (ME). Thus, it is important to investigate the ME effect in order to understand the model performance. The ME is expressed by the subtraction of an anomaly from forecast difference against the real climatology. It is found that the global model suffers from a severe systematic ME in medium-range forecasts. The systematic ME is dominant in the entire troposphere in all months. Such ME can explain at most 25% of root mean square error. We also compare the extratropical ME distribution with that from other NWP centers. NWP models exhibit similar spatial ME structure each other. It is found that the spatial ME pattern is highly correlated to that of an anomaly, implying that the ME varies with seasons. For example, the correlation coefficient between ME and anomaly ranges from -0.51 to -0.85 by months. The pattern of the extratropical circulation also has a high correlation to an anomaly. The global model has trouble in faithfully simulating extratropical cyclones and blockings in the medium-range forecast. In particular, the model has a hard to simulate an anomalous event in medium-range forecasts. If we choose an anomalous period for a test-bed experiment, we will suffer from a large error due to an anomaly.
Discrete post-processing of total cloud cover ensemble forecasts
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian
2017-04-01
This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.
Applications of subseasonal-to-seasonal (S2S) predictions
NASA Astrophysics Data System (ADS)
White, Christopher; Lamb, Rob; Carlsen, Henrik; Robertson, Andrew; Klein, Richard; Lazo, Jeffrey; Kumar, Arun; Vitart, Frederic; Coughlan de Perez, Erin; Ray, Andrea; Murray, Virginia; Graham, Richard; Buontempo, Carlo
2017-04-01
While long-range seasonal outlooks have been operational for many years, until recently the extended-range timescale - referred to as 'subseasonal-to-seasonal' (S2S) and which sits between the medium- to long-range forecasting timescales - has received relatively little attention. The S2S timescale has long been seen as a 'predictability desert', yet a new generation of S2S predictions are starting to bridge the gap between weather forecasts and longer-range prediction. Decisions in a range of sectors are made in this extended-range lead time, therefore there is a strong demand for this new generation of predictions. At least ten international weather centres now have some capability for issuing experimental or operational S2S predictions, including the European Centre for Medium-Range Weather Forecasting (ECMWF) and the National Oceanic and Atmospheric Administration (NOAA) that now have operational S2S outputs. International efforts are now underway to identify key sources of predictability, improve forecast skill and operationalise aspects of S2S forecasts, however challenges remain in advancing this new frontier. If S2S predictions are to be utilised effectively, it is important that along with science advances, we learn how to develop, communicate and apply these forecasts appropriately. In this study, we present the potential of the emerging operational S2S forecasts to the wider weather and climate applications community by undertaking the first comprehensive review of sectoral applications of S2S predictions, including public health, disaster preparedness, water management, energy and agriculture. We explore the value of applications-relevant S2S predictions, and highlight the opportunities and challenges facing their uptake. We show how social sciences can be integrated with S2S development - from communication to decision-making and valuation of forecasts - to enhance the benefits of 'climate services' approaches for extended-range forecasting. We highlight the availability of data repositories of near real-time S2S forecasts and hindcasts, including the WWRP-WCRP (http://apps.ecmwf.int/datasets/data/s2s) and North American Multimodel Ensemble (NMME; http://www.cpc.ncep.noaa.gov/products/NMME/data.html) repositories, and discuss how they are promoting the use (and aiding the development) of S2S predictions. While S2S forecasting is at a relatively early stage of development, we conclude that it presents a significant new window of opportunity that can be explored for application-ready capabilities that could allow many sectors the opportunity to systematically plan on a new time horizon.
Stochastic Parameterization: Toward a New View of Weather and Climate Models
Berner, Judith; Achatz, Ulrich; Batté, Lauriane; ...
2017-03-31
The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less
Stochastic Parameterization: Toward a New View of Weather and Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berner, Judith; Achatz, Ulrich; Batté, Lauriane
The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley T.; Chou, Shih-Hung; Jedlovec, Gary J.
2012-01-01
For over 6 years, AIRS radiances have been assimilated operationally into National (e.g. Environmental Modeling Center (EMC)) and International (e.g. European Centre for Medium-Range Weather Forecasts (ECMWF)), operational centers; assimilated in the North American Mesoscale (NAM) since 2008. Due partly to data latency and operational constraints, hyperspectral radiance assimilation has had less impact on the Gridpoint Statistical Interpolation (GSI) system used in the NAM and GFS. Objective of this project is to use AIRS retrieved profiles as a proxy for the AIRS radiances in situations where AIRS radiances are unable to be assimilated in the current operational system by evaluating location and magnitude of analysis increments.
Chemical OSSEs in Global Modeling and Assimilation Office (GMAO)
NASA Technical Reports Server (NTRS)
Pawson, Steven
2008-01-01
This presentation will summarize ongoing 'chemical observing system simulation experiment (OSSE)' work in the Global Modeling and Assimilation Office (GMAO). Weather OSSEs are being studied in detail, with a 'nature run' based on the European Centre for Medium-Range Weather Forecasts (ECMWF) model that can be sampled by a synthesized suite of satellites that reproduces present-day observations. Chemical OSSEs are based largely on the carbon-cycle project and aim to study (1) how well we can reproduce the observed carbon distribution with the Atmospheric Infrared Sounder (AIRS) and Orbiting Carbon Observatory (OCO) sensors and (2) with what accuracy can we deduce surface sources and sinks of carbon species in an assimilation system.
Atlas : A library for numerical weather prediction and climate modelling
NASA Astrophysics Data System (ADS)
Deconinck, Willem; Bauer, Peter; Diamantakis, Michail; Hamrud, Mats; Kühnlein, Christian; Maciel, Pedro; Mengaldo, Gianmarco; Quintino, Tiago; Raoult, Baudouin; Smolarkiewicz, Piotr K.; Wedi, Nils P.
2017-11-01
The algorithms underlying numerical weather prediction (NWP) and climate models that have been developed in the past few decades face an increasing challenge caused by the paradigm shift imposed by hardware vendors towards more energy-efficient devices. In order to provide a sustainable path to exascale High Performance Computing (HPC), applications become increasingly restricted by energy consumption. As a result, the emerging diverse and complex hardware solutions have a large impact on the programming models traditionally used in NWP software, triggering a rethink of design choices for future massively parallel software frameworks. In this paper, we present Atlas, a new software library that is currently being developed at the European Centre for Medium-Range Weather Forecasts (ECMWF), with the scope of handling data structures required for NWP applications in a flexible and massively parallel way. Atlas provides a versatile framework for the future development of efficient NWP and climate applications on emerging HPC architectures. The applications range from full Earth system models, to specific tools required for post-processing weather forecast products. The Atlas library thus constitutes a step towards affordable exascale high-performance simulations by providing the necessary abstractions that facilitate the application in heterogeneous HPC environments by promoting the co-design of NWP algorithms with the underlying hardware.
2013-09-01
potential energy CFSR Climate Forecast System Reanalysis COAMPS Coupled Ocean / Atmosphere Mesoscale Prediction System DA data assimilation DART Data...developing (TCS025) tropical disturbance using the adjoint and tangent linear models for the Coupled Ocean – Atmosphere Mesoscale Prediction System (COAMPS...for Medium-range Weather Forecasts ELDORA ELectra DOppler RAdar EOL Earth Observing Laboratory GPS global positioning system GTS Global
NASA Astrophysics Data System (ADS)
Choi, Hyun-Joo; Choi, Suk-Jin; Koo, Myung-Seo; Kim, Jung-Eun; Kwon, Young Cheol; Hong, Song-You
2017-10-01
The impact of subgrid orographic drag on weather forecasting and simulated climatology over East Asia in boreal summer is examined using two parameterization schemes in a global forecast model. The schemes consider gravity wave drag (GWD) with and without lower-level wave breaking drag (LLWD) and flow-blocking drag (FBD). Simulation results from sensitivity experiments verify that the scheme with LLWD and FBD improves the intensity of a summertime continental high over the northern part of the Korean Peninsula, which is exaggerated with GWD only. This is because the enhanced lower tropospheric drag due to the effects of lower-level wave breaking and flow blocking slows down the wind flowing out of the high-pressure system in the lower troposphere. It is found that the decreased lower-level divergence induces a compensating weakening of middle- to upper-level convergence aloft. Extended experiments for medium-range forecasts for July 2013 and seasonal simulations for June to August of 2013-2015 are also conducted. Statistical skill scores for medium-range forecasting are improved not only in low-level winds but also in surface pressure when both LLWD and FBD are considered. A simulated climatology of summertime monsoon circulation in East Asia is also realistically reproduced.
NASA Astrophysics Data System (ADS)
Medina, Hanoi; Tian, Di; Srivastava, Puneet; Pelosi, Anna; Chirico, Giovanni B.
2018-07-01
Reference evapotranspiration (ET0) plays a fundamental role in agronomic, forestry, and water resources management. Estimating and forecasting ET0 have long been recognized as a major challenge for researchers and practitioners in these communities. This work explored the potential of multiple leading numerical weather predictions (NWPs) for estimating and forecasting summer ET0 at 101 U.S. Regional Climate Reference Network stations over nine climate regions across the contiguous United States (CONUS). Three leading global NWP model forecasts from THORPEX Interactive Grand Global Ensemble (TIGGE) dataset were used in this study, including the single model ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (EC), the National Centers for Environmental Prediction Global Forecast System (NCEP), and the United Kingdom Meteorological Office forecasts (MO), as well as multi-model ensemble forecasts from the combinations of these NWP models. A regression calibration was employed to bias correct the ET0 forecasts. Impact of individual forecast variables on ET0 forecasts were also evaluated. The results showed that the EC forecasts provided the least error and highest skill and reliability, followed by the MO and NCEP forecasts. The multi-model ensembles constructed from the combination of EC and MO forecasts provided slightly better performance than the single model EC forecasts. The regression process greatly improved ET0 forecast performances, particularly for the regions involving stations near the coast, or with a complex orography. The performance of EC forecasts was only slightly influenced by the size of the ensemble members, particularly at short lead times. Even with less ensemble members, EC still performed better than the other two NWPs. Errors in the radiation forecasts, followed by those in the wind, had the most detrimental effects on the ET0 forecast performances.
NASA Astrophysics Data System (ADS)
Boehm, Johannes; Werl, Birgit; Schuh, Harald
2006-02-01
In the analyses of geodetic very long baseline interferometry (VLBI) and GPS data the analytic form used for mapping of the atmosphere delay from zenith to the line of site is most often a three-parameter continued fraction in 1/sin(elevation). Using the 40 years reanalysis (ERA-40) data of the European Centre for Medium-Range Weather Forecasts for the year 2001, the b and c coefficients of the continued fraction form for the hydrostatic mapping functions have been redetermined. Unlike previous mapping functions based on data from numerical weather models (isobaric mapping functions (Niell, 2000) and Vienna mapping functions (VMF) (Boehm and Schuh, 2004)), the new c coefficients are dependent on the day of the year, and unlike the Niell mapping functions (Niell, 1996) they are no longer symmetric with respect to the equator (apart from the opposite phase for the two hemispheres). Compared to VMF, this causes an effect on the VLBI or GPS station heights that is constant and as large as 2 mm at the equator and that varies seasonally between 4 mm and 0 mm at the poles. The updated VMF, based on these new coefficients and called VMF1 hereinafter, yields slightly better baseline length repeatabilities for VLBI data. The hydrostatic and wet mapping functions are applied in various combinations with different kinds of a priori zenith delays in the analyses of all VLBI International VLBI Service for Geodesy and Astrometry (IVS)-R1 and IVS-R4 24-hour sessions of 2002 and 2003; the investigations concentrate on baseline length repeatabilities, as well as on absolute changes of station heights.
Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic
2014-01-01
The finite resolution of general circulation models of the coupled atmosphere–ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere–ocean climate system in operational forecast mode, and the latest seasonal forecasting system—System 4—has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981–2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden–Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid-latitude circulation regimes over the Pacific–North America region. PMID:24842026
Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic
2014-06-28
The finite resolution of general circulation models of the coupled atmosphere-ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere-ocean climate system in operational forecast mode, and the latest seasonal forecasting system--System 4--has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981-2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden-Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid-latitude circulation regimes over the Pacific-North America region.
a Weather Monitoring System for Application to Apple and Corn Production
NASA Astrophysics Data System (ADS)
Stirm, Walter Leroy
Many crop management decisions are based on weather -crop development relationships. Daily weather data is currently used in most crop development research and applied models. Present weather and computer technology now makes possible monitoring of crop development on a realtime basis. This research tests a method of computing crop sensitive temperatures for corn and apple using standard hourly meteorological data. The method also makes use of detailed plant physiological stage measurements to determine timing of vital cultural operations tied to the observed weather conditions. The sensitive temperature method incorporates very short term weather variability accounting for changes in the cloud cover, radiation rates, evaporative cooling and other factors involved in the plant's energy balance. The relationship of plant and weather measurements are also used to determine corn emergence, corn grain drydown rate and fruit harvest duration. The monitoring system also incorporates a crop growth unit forecast technique employing short and medium range temperature forecasts of the National Weather Service. The projections of growth units are made for five and ten days into the future. Predicted growth unit accumulations are compared to historical growth unit accumulations to determine the forecast stage. The sensitive temperature crop monitoring system removes some of the error involved in evaluation of growth units by average daily temperature. Carry over maximum and minimums, extended duration of warm or cool periods within the day and disruption of diurnal temperature curve by passage of fronts are eliminated.
NASA Astrophysics Data System (ADS)
Wood, A. W.; Clark, E.; Newman, A. J.; Nijssen, B.; Clark, M. P.; Gangopadhyay, S.; Arnold, J. R.
2015-12-01
The US National Weather Service River Forecasting Centers are beginning to operationalize short range to medium range ensemble predictions that have been in development for several years. This practice contrasts with the traditional single-value forecast practice at these lead times not only because the ensemble forecasts offer a basis for quantifying forecast uncertainty, but also because the use of ensembles requires a greater degree of automation in the forecast workflow than is currently used. For instance, individual ensemble member forcings cannot (practically) be manually adjusted, a step not uncommon with the current single-value paradigm, thus the forecaster is required to adopt a more 'over-the-loop' role than before. The relative lack of experience among operational forecasters and forecast users (eg, water managers) in the US with over-the-loop approaches motivates the creation of a real-time demonstration and evaluation platform for exploring the potential of over-the-loop workflows to produce usable ensemble short-to-medium range forecasts, as well as long range predictions. We describe the development and early results of such an effort by a collaboration between NCAR and the two water agencies, the US Army Corps of Engineers and the US Bureau of Reclamation. Focusing on small to medium sized headwater basins around the US, and using multi-decade series of ensemble streamflow hindcasts, we also describe early results, assessing the skill of daily-updating, over-the-loop forecasts driven by a set of ensemble atmospheric outputs from the NCEP GEFS for lead times from 1-15 days.
NASA Technical Reports Server (NTRS)
Hoffman, Ross N.
1993-01-01
A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.
Time-Hierarchical Clustering and Visualization of Weather Forecast Ensembles.
Ferstl, Florian; Kanzler, Mathias; Rautenhaus, Marc; Westermann, Rudiger
2017-01-01
We propose a new approach for analyzing the temporal growth of the uncertainty in ensembles of weather forecasts which are started from perturbed but similar initial conditions. As an alternative to traditional approaches in meteorology, which use juxtaposition and animation of spaghetti plots of iso-contours, we make use of contour clustering and provide means to encode forecast dynamics and spread in one single visualization. Based on a given ensemble clustering in a specified time window, we merge clusters in time-reversed order to indicate when and where forecast trajectories start to diverge. We present and compare different visualizations of the resulting time-hierarchical grouping, including space-time surfaces built by connecting cluster representatives over time, and stacked contour variability plots. We demonstrate the effectiveness of our visual encodings with forecast examples of the European Centre for Medium-Range Weather Forecasts, which convey the evolution of specific features in the data as well as the temporally increasing spatial variability.
Temporal variability patterns in solar radiation estimations
NASA Astrophysics Data System (ADS)
Vindel, José M.; Navarro, Ana A.; Valenzuela, Rita X.; Zarzalejo, Luis F.
2016-06-01
In this work, solar radiation estimations obtained from a satellite and a numerical weather prediction model in mainland Spain have been compared. Similar comparisons have been formerly carried out, but in this case, the methodology used is different: the temporal variability of both sources of estimation has been compared with the annual evolution of the radiation associated to the different study climate zones. The methodology is based on obtaining behavior patterns, using a Principal Component Analysis, following the annual evolution of solar radiation estimations. Indeed, the adjustment degree to these patterns in each point (assessed from maps of correlation) may be associated with the annual radiation variation (assessed from the interquartile range), which is associated, in turn, to different climate zones. In addition, the goodness of each estimation source has been assessed comparing it with data obtained from the radiation measurements in ground by pyranometers. For the study, radiation data from Satellite Application Facilities and data corresponding to the reanalysis carried out by the European Centre for Medium-Range Weather Forecasts have been used.
The fluid dynamics of atmospheric clouds
NASA Astrophysics Data System (ADS)
Randall, David A.
2017-11-01
Clouds of many types are of leading-order importance for Earth's weather and climate. This importance is most often discussed in terms of the effects of clouds on radiative transfer, but the fluid dynamics of clouds are at least equally significant. Some very small-scale cloud fluid-dynamical processes have significant consequences on the global scale. These include viscous dissipation near falling rain drops, and ``buoyancy reversal'' associated with the evaporation of liquid water. Major medium-scale cloud fluid-dynamical processes include cumulus convection and convective aggregation. Planetary-scale processes that depend in an essential way on cloud fluid dynamics include the Madden-Julian Oscillation, which is one of the largest and most consequential weather systems on Earth. I will attempt to give a coherent introductory overview of this broad range of phenomena.
Physical abrasion of mafic minerals and basalt grains: application to Martian aeolian deposits
Cornwall, Carin; Bandfield, Joshua L.; Titus, Timothy N.; Schreiber, B. C.; Montgomery, D.R.
2015-01-01
Sediment maturity, or the mineralogical and physical characterization of sediment deposits, has been used to locate sediment source, transport medium and distance, weathering processes, and paleoenvironments on Earth. Mature terrestrial sands are dominated by quartz, which is abundant in source lithologies on Earth and is physically and chemically stable under a wide range of conditions. Immature sands, such as those rich in feldspars or mafic minerals, are composed of grains that are easily physically weathered and highly susceptible to chemical weathering. On Mars, which is predominately mafic in composition, terrestrial standards of sediment maturity are not applicable. In addition, the martian climate today is cold, dry and sediments are likely to be heavily influenced by physical weathering rather than chemical weathering. Due to these large differences in weathering processes and composition, martian sediments require an alternate maturity index. Abrason tests have been conducted on a variety of mafic materials and results suggest that mature martian sediments may be composed of well sorted, well rounded, spherical basalt grains. In addition, any volcanic glass present is likely to persist in a mechanical weathering environment while chemically altered products are likely to be winnowed away. A modified sediment maturity index is proposed that can be used in future studies to constrain sediment source, paleoclimate, mechanisms for sediment production, and surface evolution. This maturity index may also provide details about erosional and sediment transport systems and preservation processes of layered deposits.
Space-based surface wind vectors to aid understanding of air-sea interactions
NASA Technical Reports Server (NTRS)
Atlas, R.; Bloom, S. C.; Hoffman, R. N.; Ardizzone, J. V.; Brin, G.
1991-01-01
A novel and unique ocean-surface wind data-set has been derived by combining the Defense Meteorological Satellite Program Special Sensor Microwave Imager data with additional conventional data. The variational analysis used generates a gridded surface wind analysis that minimizes an objective function measuring the misfit of the analysis to the background, the data, and certain a priori constraints. In the present case, the European Center for Medium-Range Weather Forecasts surface-wind analysis is used as the background.
2012-04-01
for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data and the satellite brightness temperature between 1979 and 2001, Hopsch et al. (2010...Zipser (2009) screened out disturbances lacking cold cloud-top areas in the infrared (IR) satellite data . Despite all of these analyses, the essential...paper we use the analysis and satellite data collected during the 2009 Atlantic hurricane season to examine the kinematic, dynamic, and thermodynamic
1983-05-01
the European Center for Medium Range Weather Forecasts is used to define the storm and to calculate the budgets. Important differences are found...geopotential field at 850, 700 and 500mb on a 120 point grid with 5 degree latitude and longitude spacing that is centered on the storm . The 120 EOF... storm movement and intensity during the past 36 hours. The EOF-based regression equations are verified over an independent sample of 50 storms , and
2010-09-01
Electra Doppler Radar (ELDORA), dropwindsonde capability, a Doppler wind lidar , and the ability to collect flight-level data] flew aircraft research...ELDORA Electra Doppler Radar ECMWF European Center for Medium-range Weather Prediction Forecasts ER Equatorial Rossby ERA-40 ECMWF Reanalysis Data...2006) use Dual Doppler radar and rain gauge data to evaluate the performance of the TRMM TMI V6 rainfall algorithm. They 23 conclude that: “In
Objective Interpolation of Scatterometer Winds
NASA Technical Reports Server (NTRS)
Tang, Wenquing; Liu, W. Timothy
1996-01-01
Global wind fields are produced by successive corrections that use measurements by the European Remote Sensing Satellite (ERS-1) scatterometer. The methodology is described. The wind fields at 10-meter height provided by the European Center for Medium-Range Weather Forecasting (ECMWF) are used to initialize the interpolation process. The interpolated wind field product ERSI is evaluated in terms of its improvement over the initial guess field (ECMWF) and the bin-averaged ERS-1 wind field (ERSB). Spatial and temporal differences between ERSI, ECMWF and ERSB are presented and discussed.
NASA Astrophysics Data System (ADS)
Moore, B. J.; Bosart, L. F.; Keyser, D.
2013-12-01
During late October 2007, the interaction between a deep polar trough and Tropical Cyclone (TC) Kajiki off the eastern Asian coast perturbed the North Pacific jet stream and resulted in the development of a high-amplitude Rossby wave train extending into North America, contributing to three concurrent high-impact weather events in North America: wildfires in southern California associated with strong Santa Ana winds, a cold surge into eastern Mexico, and widespread heavy rainfall (~150 mm) in the south-central United States. Observational analysis indicates that these high-impact weather events were all dynamically linked with the development of a major high-latitude ridge over the eastern North Pacific and western North America and a deep trough over central North America. In this study, global operational ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) obtained from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive are used to characterize the medium-range predictability of the large-scale flow pattern associated with the three events and to diagnose the large-scale atmospheric processes favorable, or unfavorable, for the occurrence of the three events. Examination of the ECMWF forecasts leading up to the time period of the three high-impact weather events (~23-25 October 2007) indicates that ensemble spread (i.e., uncertainty) in the 500-hPa geopotential height field develops in connection with downstream baroclinic development (DBD) across the North Pacific, associated with the interaction between TC Kajiki and the polar trough along the eastern Asian coast, and subsequently moves downstream into North America, yielding considerable uncertainty with respect to the structure, amplitude, and position of the ridge-trough pattern over North America. Ensemble sensitivity analysis conducted for key sensible weather parameters corresponding to the three high-impact weather events, including relative humidity, temperature, and precipitation, demonstrates quantitatively that all three high-impact weather events are closely linked with the development of the ridge-trough pattern over North America. Moreover, results of this analysis indicate that the development of the ridge-trough pattern is modulated by DBD and cyclogenesis upstream over the central and eastern North Pacific. Specifically, ensemble members exhibiting less intense cyclogenesis and a more poleward cyclone track over the central and eastern North Pacific feature the development of a poleward-displaced ridge over the eastern North Pacific and western North America and a cut-off low over the Intermountain West, an unfavorable scenario for the occurrence the three high-impact weather events. Conversely, ensemble members exhibiting more intense cyclogenesis and a less poleward cyclone track feature persistent ridging along the western coast of North America and trough development over central North America, establishing a favorable flow pattern for the three high-impact weather events. Results demonstrate that relatively small initial differences in the large-scale flow pattern over the North Pacific among ensemble members can result in large uncertainty in the forecast downstream flow response over North America.
Establishing NWP capabilities in African Small Island States (SIDs)
NASA Astrophysics Data System (ADS)
Rögnvaldsson, Ólafur
2017-04-01
Íslenskar orkurannsóknir (ÍSOR), in collaboration with Belgingur Ltd. and the United Nations Economic Commission for Africa (UNECA) signed a Letter of Agreement in 2015 regarding collaboration in the "Establishing Operational Capacity for Building, Deploying and Using Numerical Weather and Seasonal Prediction Systems in Small Island States in Africa (SIDs)" project. The specific objectives of the collaboration were the following: - Build capacity of National Meteorological and Hydrology Services (NMHS) staff on the use of the WRF atmospheric model for weather and seasonal forecasting, interpretation of model results, and the use of observations to verify and improve model simulations. - Establish a platform for integrating short to medium range weather forecasts, as well as seasonal forecasts, into already existing infrastructure at NMHS and Regional Climate Centres. - Improve understanding of existing model results and forecast verification, for improving decision-making on the time scale of days to weeks. To meet these challenges the operational Weather On Demand (WOD) forecasting system, developed by Belgingur, is being installed in a number of SIDs countries (Cabo Verde, Guinea-Bissau, and Seychelles), as well as being deployed for the Pan-Africa region, with forecasts being disseminated to collaborating NMHSs.
Cheng, Cheng; Wang, Qi; He, Linyan; Sheng, Xiafang
2017-04-01
Bacteria play important roles in mineral weathering and soil formation. However, little is known about the nutrition-related changes in mineral weathering potential and pattern of bacteria. In this study, mineral weathering behaviors of a novel mineral-weathering bacterium Chitinophaga jiangningensis JN53 were characterized in the presence of three contrasting biotite or potassium feldspar-added media. C. jiangningensis JN53 increased more Fe release from the minerals in the M-BHm (nutrition-poor medium) than in the SSKM (nutrition-rich medium) and BHm (nutrition-moderate medium), while C. jiangningensis JN53 released more Al from the minerals and Si from biotite in the SSKM. Similar Si release from potassium feldspar by C. jiangningensis JN53 was observed in the SSKM, BHm, and M-BHm. K releasing ability of C. jiangningensis JN53 was significantly higher in the biotite-added M-BHm. Highest and lowest growth of C. jiangningensis JN53 was observed in the SSKM and M-BHm, respectively. In the presence of the minerals, C. jiangningensis JN53 mainly produced gluconic acid in the SSKM and acetic acid in the BHm and M-BHm. C. jiangningensis JN53 also produced large amount of succinic acid in the biotite-added SSKM and oxalic acid in the potassium feldspar-added M-BHm. The results showed the growth, production of organic acids, and mineral weathering ability of C. jiangningensis JN53 in the three contrasting nutrition conditions. The results also suggested the change in the mineral weathering behaviors of C. jiangningensis JN53 under different levels of nutrition conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, Judith
This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatorymore » environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.« less
Mesoscale influence on long-range transport — evidence from ETEX modelling and observations
NASA Astrophysics Data System (ADS)
Sørensen, Jens Havskov; Rasmussen, Alix; Ellermann, Thomas; Lyck, Erik
During the first European Tracer Experiment (ETEX) tracer gas was released from a site in Brittany, France, and subsequently observed over a range of 2000 km. Hourly measurements were taken at the National Environmental Research Institute (NERI) located at Risø, Denmark, using two measurement techniques. At this location, the observed concentration time series shows a double-peak structure occurring between two and three days after the release. By using the Danish Emergency Response Model of the Atmosphere (DERMA), which is developed at the Danish Meteorological Institute (DMI), simulations of the dispersion of the tracer gas have been performed. Using numerical weather-prediction data from the European Centre for Medium-Range Weather Forecast (ECMWF) by DERMA, the arrival time of the tracer is quite well predicted, so also is the duration of the passage of the plume, but the double-peak structure is not reproduced. However, using higher-resolution data from the DMI version of the HIgh Resolution Limited Area Model (DMI-HIRLAM), DERMA reproduces the observed structure very well. The double-peak structure is caused by the influence of a mesoscale anti-cyclonic eddy on the tracer gas plume about one day earlier.
Analysis of extreme summers and prior late winter/spring conditions in central Europe
NASA Astrophysics Data System (ADS)
Träger-Chatterjee, C.; Müller, R. W.; Bendix, J.
2013-05-01
Drought and heat waves during summer in mid-latitudes are a serious threat to human health and agriculture and have negative impacts on the infrastructure, such as problems in energy supply. The appearance of such extreme events is expected to increase with the progress of global warming. A better understanding of the development of extremely hot and dry summers and the identification of possible precursors could help improve existing seasonal forecasts in this regard, and could possibly lead to the development of early warning methods. The development of extremely hot and dry summer seasons in central Europe is attributed to a combined effect of the dominance of anticyclonic weather regimes and soil moisture-atmosphere interactions. The atmospheric circulation largely determines the amount of solar irradiation and the amount of precipitation in an area. These two variables are themselves major factors controlling the soil moisture. Thus, solar irradiation and precipitation are used as proxies to analyse extreme sunny and dry late winter/spring and summer seasons for the period 1958-2011 in Germany and adjacent areas. For this purpose, solar irradiation data from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis dataset, as well as remote sensing data are used. Precipitation data are taken from the Global Precipitation Climatology Project. To analyse the atmospheric circulation geopotential data at 850 hPa are also taken from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis datasets. For the years in which extreme summers in terms of high solar irradiation and low precipitation are identified, the previous late winter/spring conditions of solar irradiation and precipitation in Germany and adjacent areas are analysed. Results show that if the El Niño-Southern Oscillation (ENSO) is not very intensely developed, extremely high solar irradiation amounts, together with extremely low precipitation amounts during late winter/spring, might serve as precursor of extremely sunny and dry summer months to be expected.
Warwick, Peter D.; Johnson, Edward A.; Khan, Intizar H.; Kazim, Mohsin A.
1994-01-01
The information presented on this sheet was collected as part of a joint U.S. Geological Survey-Geological Survey of Pakistan program sponsored by the U.S. Agency for International Development. As a project within this program, the coal-bearing Ghazij Formation (Eocene) was investigated in the northeastern part of Balochistan east and south of the provincial capital of Quetta. Strata exposed in this area range in age from Permian to Holocene and crop out as a belt of folded and thrusted rocks that form a southeast-facing orocline. In this region of Pakistan, the Ghazij can usually be divided into three parts. The lower part is the thickest (probably more than 1,000 m) and consists of gray-weathering calcareous mudrock (shale, mudstone, and impure claystone) and a few tabular bodies of fine-to medium-grained calcareous sandstone. The middle part (27-300 m) consists of gray-weathering calcareous mudrock and tabular to lenticular bodies of fine- to medium-grained calcareous sandstone; beds of carbonaceous shale and coal are common (in the Mach area, the middle part of the formation also contains numerous individual beds of muddy limestone). The upper part (as thick as 533 m) contains reddish-weathering calcareous mudrock that contains scattered lenticular bodies of fine-to medium-grained calcareous sandstone. Fossil plant debris is common in mudrock of the lower and middle parts of the Ghazij and bivalves and gastropods are common in the middle part of the formation; the upper part of the Ghazij is usually unfossiliferous. Underlying the Ghazij are the carbonate rocks of the Paleocene Dungan Formation (or its equivalent), and overlying the Ghazij are the mostly carbonate rocks of the Eocene Kirthar Formation (or its equivalent). Both contacts can be conformable or unconformable. All of the pre-Neogene rocks in Balochistan are greatly deformed by the collision of India and Asia. The Ghazij is especially susceptible to regional compressional tectonics because it contains large amounts of shale and is sandwiched between two thick carbonate units. As a result, bedding-plane faults and isoclinal folds are very common. As part of our study of the Ghazij Formation, five stratigraphic sections were measured: one near Pir Ismail Ziarat, one in the Sor Range, two in the vicinity of Mach, and one near Johan. Each area's section is published separately.
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Baker, J. B. H.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.
2016-04-01
Medium-scale traveling ionospheric disturbances (MSTIDs) are wave-like ionospheric perturbations routinely observed by high-frequency radars. We focus on a class of MSTIDs observed during the winter daytime at high latitudes and midlatitudes. The source of these MSTIDs remains uncertain, with the two primary candidates being space weather and lower atmospheric processes. We surveyed observations from four high-latitude and six midlatitude Super Dual Auroral Radar Network radars in the North American sector from November to May 2012 to 2015. The MSTIDs observed have horizontal wavelengths between ˜150 and 650 km and horizontal velocities between ˜75 and 325 m s-1. In local fall and winter seasons the majority of MSTIDs propagated equatorward, with bearings ranging from ˜125° to 225° geographic azimuth. No clear correlation with space weather activity as parameterized by AE and SYM-H could be identified. Rather, MSTID observations were found to have a strong correlation with polar vortex dynamics on two timescales. First, a seasonal timescale follows the annual development and decay of the polar vortex. Second, a shorter 2-4 week timescale again corresponds to synoptic polar vortex variability, including stratospheric warmings. Additionally, statistical analysis shows that MSTIDs are more likely during periods of strong polar vortex. Direct comparison of the MSTID observations with stratospheric zonal winds suggests that a wind filtering mechanism may be responsible for the strong correlation. Collectively, these observations suggest that polar atmospheric processes, rather than space weather activity, are primarily responsible for controlling the occurrence of high-latitude and midlatitude winter daytime MSTIDs.
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.
2016-12-01
Medium-scale traveling ionospheric disturbances (MSTIDs) are wave-like ionospheric perturbations routinely observed by high-frequency radars. We focus on a class of MSTIDs observed during the winter daytime at high latitudes and midlatitudes. The source of these MSTIDs remains uncertain, with the two primary candidates being space weather and lower atmospheric processes. We surveyed observations from four high-latitude and six midlatitude Super Dual Auroral Radar Network radars in the North American sector from November to May 2012 to 2015. The MSTIDs observed have horizontal wavelengths between 150 and 650 km and horizontal velocities between 75 and 325 m/s. In local fall and winter seasons the majority of MSTIDs propagated equatorward, with bearings ranging from 125° to 225° geographic azimuth. No clear correlation with space weather activity as parameterized by AE and SYM-H could be identified. Rather, MSTID observations were found to have a strong correlation with polar vortex dynamics on two timescales. First, a seasonal timescale follows the annual development and decay of the polar vortex. Second, a shorter 2-4 week timescale again corresponds to synoptic polar vortex variability, including stratospheric warmings. Additionally, statistical analysis shows that MSTIDs are more likely during periods of strong polar vortex. Direct comparison of the MSTID observations with stratospheric zonal winds suggests that a wind filtering mechanism may be responsible for the strong correlation. Collectively, these observations suggest that polar atmospheric processes, rather than space weather activity, are primarily responsible for controlling the occurrence of high-latitude and midlatitude winter daytime MSTIDs.
Assessment of marine weather forecasts over the Indian sector of Southern Ocean
NASA Astrophysics Data System (ADS)
Gera, Anitha; Mahapatra, D. K.; Sharma, Kuldeep; Prakash, Satya; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.; Anilkumar, N.
2017-09-01
The Southern Ocean (SO) is one of the important regions where significant processes and feedbacks of the Earth's climate take place. Expeditions to the SO provide useful data for improving global weather/climate simulations and understanding many processes. Some of the uncertainties in these weather/climate models arise during the first few days of simulation/forecast and do not grow much further. NCMRWF issued real-time five day weather forecasts of mean sea level pressure, surface winds, winds at 500 hPa & 850 hPa and rainfall, daily to NCAOR to provide guidance for their expedition to Indian sector of SO during the austral summer of 2014-2015. Evaluation of the skill of these forecasts indicates possible error growth in the atmospheric model at shorter time scales. The error growth is assessed using the model analysis/reanalysis, satellite data and observations made during the expedition. The observed variability of sub-seasonal rainfall associated with mid-latitude systems is seen to exhibit eastward propagations and are well reproduced in the model forecasts. All cyclonic disturbances including the sub-polar lows and tropical cyclones that occurred during this period were well captured in the model forecasts. Overall, this model performs reasonably well over the Indian sector of the SO in medium range time scale.
Six-hourly time series of horizontal troposphere gradients in VLBI analyis
NASA Astrophysics Data System (ADS)
Landskron, Daniel; Hofmeister, Armin; Mayer, David; Böhm, Johannes
2016-04-01
Consideration of horizontal gradients is indispensable for high-precision VLBI and GNSS analysis. As a rule of thumb, all observations below 15 degrees elevation need to be corrected for the influence of azimuthal asymmetry on the delay times, which is mainly a product of the non-spherical shape of the atmosphere and ever-changing weather conditions. Based on the well-known gradient estimation model by Chen and Herring (1997), we developed an augmented gradient model with additional parameters which are determined from ray-traced delays for the complete history of VLBI observations. As input to the ray-tracer, we used operational and re-analysis data from the European Centre for Medium-Range Weather Forecasts. Finally, we applied those a priori gradient parameters to VLBI analysis along with other empirical gradient models and assessed their impact on baseline length repeatabilities as well as on celestial and terrestrial reference frames.
Wake Response to an Ocean-Feedback Mechanism: Madeira Island Case Study
NASA Astrophysics Data System (ADS)
Caldeira, Rui M. A.; Tomé, Ricardo
2013-08-01
We focus on an island wake episode that occurred in the Madeira Archipelago region of the north-east Atlantic at 32.5° N, 17° W. The Weather Research and Forecasting numerical model was used in a (one-way) downscaling mode, considering initial and boundary conditions from the European Centre for Medium-range Weather Forecasts system. The current literature emphasizes adiabatic effects on the dynamical aspects of atmospheric wakes. Changes in mountain height and consequently its relation to the atmospheric inversion layer should explain the shift in wake regimes, from a `strong-wake' to `weak-wake' scenario. Nevertheless, changes in sea-surface temperature variability in the lee of an island can induce similar regime shifts because of exposure to stronger solar radiation. Increase in evaporation contributes to the enhancement of convection and thus to the uplift of the stratified atmospheric layer above the critical height, with subsequent internal gravity wave activity.
NASA Astrophysics Data System (ADS)
Chang, Liang; Liu, Min; Guo, Lixin; He, Xiufeng; Gao, Guoping
2016-10-01
The estimation of atmospheric water vapor with high resolution is important for operational weather forecasting, climate monitoring, atmospheric research, and numerous other applications. The 40 m×40 m and 30 m×30 m differential precipitable water vapor (ΔPWV) maps are generated with C- and L-band synthetic aperture radar interferometry (InSAR) images over Shanghai, China, respectively. The ΔPWV maps are accessed via comparisons with the spatiotemporally synchronized PWV measurements from the European Centre for Medium-Range Weather Forecasts Interim reanalysis at the finest resolution and global positioning system observations, respectively. Results reveal that the ΔPWV maps can be estimated from both C- and L-band InSAR images with an accuracy of better than 2.0 mm, which, therefore, demonstrates the ability of InSAR observations at both C- and L-band to detect the water vapor distribution with high spatial resolution.
NASA Astrophysics Data System (ADS)
Pillosu, F. M.; Jurlina, T.; Baugh, C.; Tsonevsky, I.; Hewson, T.; Prates, F.; Pappenberger, F.; Prudhomme, C.
2017-12-01
During hurricane Harvey the greater east Texas area was affected by extensive flash flooding. Their localised nature meant they were too small for conventional large scale flood forecasting systems to capture. We are testing the use of two real time forecast products from the European Centre for Medium-range Weather Forecasts (ECMWF) in combination with local vulnerability information to provide flash flood forecasting tools at the medium range (up to 7 days ahead). Meteorological forecasts are the total precipitation extreme forecast index (EFI), a measure of how the ensemble forecast probability distribution differs from the model-climate distribution for the chosen location, time of year and forecast lead time; and the shift of tails (SOT) which complements the EFI by quantifying how extreme an event could potentially be. Both products give the likelihood of flash flood generating precipitation. For hurricane Harvey, 3-day EFI and SOT products for the period 26th - 29th August 2017 were used, generated from the twice daily, 18 km, 51 ensemble member ECMWF Integrated Forecast System. After regridding to 1 km resolution the forecasts were combined with vulnerable area data to produce a flash flood hazard risk area. The vulnerability data were floodplains (EU Joint Research Centre), road networks (Texas Department of Transport) and urban areas (Census Bureau geographic database), together reflecting the susceptibility to flash floods from the landscape. The flash flood hazard risk area forecasts were verified using a traditional approach against observed National Weather Service flash flood reports, a total of 153 reported flash floods have been detected in that period. Forecasts performed best for SOT = 5 (hit ratio = 65%, false alarm ratio = 44%) and EFI = 0.7 (hit ratio = 74%, false alarm ratio = 45%) at 72 h lead time. By including the vulnerable areas data, our verification results improved by 5-15%, demonstrating the value of vulnerability information within natural hazard forecasts. This research shows that flash flooding from hurricane Harvey was predictable up to 4 days ahead and that filtering the forecasts to vulnerable areas provides a more focused guidance to civil protection agencies planning their emergency response.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-30
... the extension dependent on weather conditions and availability of large medium and giant BFT to the... vessel. NMFS may increase or decrease the actual allowed daily retention limit of large medium and giant... NMFS implements an increase to the Harpoon category daily incidental retention limit of large medium...
NASA Astrophysics Data System (ADS)
Kayode, J. S.; Adelusi, A. O.; Nawawi, M. N. M.; Bawallah, M.; Olowolafe, T. S.
2016-07-01
This paper presents a geophysical surveying for groundwater identification in a resistive crystalline basement hard rock in Isuada area, Southwestern Nigeria. Very low frequency (VLF) electromagnetic and electrical resistivity geophysical techniques combined with well log were used to characterize the concealed near surface conductive structures suitable for groundwater accumulation. Prior to this work; little was known about the groundwater potential of this area. Qualitative and semi-quantitative interpretations of the data collected along eight traverses at 20 m spacing discovered conductive zones suspected to be fractures, faults, and cracks which were further mapped using Vertical Electrical Sounding (VES) technique. Forty VES stations were utilized using Schlumberger configurations with AB/2 varying from 1 to 100 m. Four layers i.e. the top soil, the weathered layer, the partially weathered/fractured basement and the fresh basement were delineated from the interpreted resistivity curves. The weathered layers constitute the major aquifer unit in the area and are characterized by moderately low resistivity values which ranged between about 52 Ωm and 270 Ωm while the thickness varied from 1 to 35 m. The depth to the basement and the permeable nature of the weathered layer obtained from both the borehole and the hand-dug wells was used to categorize the groundwater potential of the study area into high, medium and low ratings. The groundwater potential map revealed that about 45% of the study area falls within the low groundwater potential rating while about 10% constitutes the medium groundwater potential and the remaining 45% constitutes high groundwater potential. The low resistivity, thick overburden, and fractured bedrock constitute the aquifer units and the series of basement depressions identified from the geoelectric sections as potential conductive zones appropriate for groundwater development.
Search for an astronomical site on the Arabian Peninsula: meteorological and climatological analyses
NASA Astrophysics Data System (ADS)
Sultan, A. H.; Graham, E.
The Arabian Peninsula is the richest in oil but the poorest in A A -Astronomy and Astrophysics- the largest telescope in the region doesn t exceed 45cm To promote A A education and research we propose that all the countries of the region work together to install an optical regional observatory telescope diameter 2 meters on an accessible summit somewhere within the mountains of the Arabian Peninsula The first step is to make a climatological and meteorological study of the highest summits of the region A preliminary study has revealed only one mountain peak above 3000 meters in Saudi Arabia one in Oman but more than thirty in Yemen Of all these summits we have narrowed the selection to six candidate sites on which we are performing detailed meteorological and climatological analyses Our database is composed mainly of Reanalysis datasets from the European Centre for Medium Range Weather Forecasting ECMWF and the National Center for Environmental Protection National Center for Atmospheric Research NCEP-NCAR Reanalysis datasets are reconstructions of all available past weather station data aeroplane sensor data weather balloon data weather ship data and satellite data from the 1950s onwards using sophisticated numerical weather prediction and data assimilation models This paper discusses ECMWF and NCEP-NCAR images of Arabian Peninsula for the following parameters at a monthly mean temporal resolution begin enumerate item Temperature variability at 700hPa item Precipitation item Geopotential height of the
Characteristics of bicyclic sesquiterpanes in crude oils and petroleum products.
Yang, Chun; Wang, Zhendi; Hollebone, Bruce P; Brown, Carl E; Landriault, Mike
2009-05-15
This study presents a quantitative gas chromatography-mass spectrometry analysis of bicyclic sesquiterpanes (BSs) in numerous crude oils and refined petroleum products including light and mid-range distillate fuels, residual fuels, and lubricating oils collected from various sources. Ten commonly recognized bicyclic sesquiterpanes were determined in all the studied crude oils and diesel range fuels with principal dominance of BS3 (C(15)H(28)), BS5 (C(15)H(28)) and BS10 (C(16)H(30)), while they were generally not detected or in trace in light fuel oils like gasoline and kerosene and most lubricating oils. Laboratory distillation of crude oils demonstrated that sesquiterpanes were highly enriched in the medium distillation fractions of approximately 180 to 481 degrees C and were generally absent or very low in the light distillation fraction (boiling point to approximately 180 degrees C) and the heavy residual fraction (>481 degrees C). The effect of evaporative weathering on a series of diagnostic ratios of sesquiterpanes, n-alkanes, and biomarkers was evaluated with two suites of weathered oil samples. The change of abundance of sesquiterpanes was used to determine the extent of weathering of artificially evaporated crude oils and diesel. In addition to the pentacyclic biomarker C(29) and C(30) alphabeta-hopane, C(15) and C(16) sesquiterpanes might be alternative internal marker compounds to provide a direct way to estimate the depletion of oils, particularly diesels, in oil spill investigations. These findings may offer potential applications for both oil identification and oil-source correlation in cases where the tri- to pentacyclic biomarkers are absent due to refining or environmental weathering of oils.
On the role of the transient eddies in maintaining the seasonal mean circulation
NASA Technical Reports Server (NTRS)
White, G. H.; Hoskins, B. J.
1984-01-01
The role of transient eddies in maintaining the observed local seasonal mean atmospheric circulation was investigated by examining the time-averaged momentum balances and omega equation, using seasonal statistics calculated from daily operational analyses by the European Centre for Medium Range Weather Forecasts. While both the Northern and Southern Hemispheres and several seasons were studied, emphasis was placed upon the Northern Hemisphere during December 1981-February 1982. The results showed that transient eddies played a secondary role in the seasonal mean zonal momentum budget and in the forcing of seasonal mean vertical and a geostrophic motion.
WOD - Weather On Demand forecasting system
NASA Astrophysics Data System (ADS)
Rognvaldsson, Olafur; Ragnarsson, Logi; Stanislawska, Karolina
2017-04-01
The backbone of the Belgingur forecasting system (called WOD - Weather On Demand) is the WRF-Chem atmospheric model, with a number of in-house customisations. Initial and boundary data are taken from the Global Forecasting System, operated by the National Oceanic and Atmospheric Administration (NOAA). Operational forecasts use cycling of a number of parameters, mainly deep soil and surface fields. This is done to minimise spin-up effects and to ensure proper book-keeping of hydrological fields such as snow accumulation and runoff, as well as the constituents of various chemical parameters. The WOD system can be used to create conventional short- to medium-range weather forecasts for any location on the globe. The WOD system can also be used for air quality purposes (e.g. dispersion forecasts from volcanic eruptions) and as a tool to provide input to other modelling systems, such as hydrological models. A wide variety of post-processing options are also available, making WOD an ideal tool for creating highly customised output that can be tailored to the specific needs of individual end-users. The most recent addition to the WOD system is an integrated verification system where forecasts can be compared to surface observations from chosen locations. Forecast visualisation, such as weather charts, meteograms, weather icons and tables, is done via number of web components that can be configured to serve the varying needs of different end-users. The WOD system itself can be installed in an automatic way on hardware running a range of Linux based OS. System upgrades can also be done in semi-automatic fashion, i.e. upgrades and/or bug-fixes can be pushed to the end-user hardware without system downtime. Importantly, the WOD system requires only rudimentary knowledge of the WRF modelling, and the Linux operating systems on behalf of the end-user, making it an ideal NWP tool in locations with limited IT infrastructure.
Weather dissemination and public usage
NASA Technical Reports Server (NTRS)
Stacey, M. S.
1973-01-01
The existing public usage of weather information was examined. A survey was conducted to substantiate the general public's needs for dissemination of current (0-12 hours) weather information, needs which, in a previous study, were found to be extensive and urgent. The goal of the study was to discover how the general public obtains weather information, what information they seek and why they seek it, to what use this information is put, and to further ascertain the public's attitudes and beliefs regarding weather reporting and the diffusion of weather information. Major findings from the study include: 1. The public has a real need for weather information in the 0-6 hour bracket. 2. The visual medium is preferred but due to the lack of frequent (0-6 hours) forecasts, the audio media only, i.e., telephone recordings and radio weathercasts, were more frequently used. 3. Weather information usage is sporadic.
NASA Astrophysics Data System (ADS)
Fagan, Mike; Dueben, Peter; Palem, Krishna; Carver, Glenn; Chantry, Matthew; Palmer, Tim; Schlacter, Jeremy
2017-04-01
It has been shown that a mixed precision approach that judiciously replaces double precision with single precision calculations can speed-up global simulations. In particular, a mixed precision variation of the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) showed virtually the same quality model results as the standard double precision version (Vana et al., Single precision in weather forecasting models: An evaluation with the IFS, Monthly Weather Review, in print). In this study, we perform detailed measurements of savings in computing time and energy using a mixed precision variation of the -OpenIFS- model. The mixed precision variation of OpenIFS is analogous to the IFS variation used in Vana et al. We (1) present results for energy measurements for simulations in single and double precision using Intel's RAPL technology, (2) conduct a -scaling- study to quantify the effects that increasing model resolution has on both energy dissipation and computing cycles, (3) analyze the differences between single core and multicore processing, and (4) compare the effects of different compiler technologies on the mixed precision OpenIFS code. In particular, we compare intel icc/ifort with gnu gcc/gfortran.
NASA Astrophysics Data System (ADS)
Harris, L.; Lin, S. J.; Zhou, L.; Chen, J. H.; Benson, R.; Rees, S.
2016-12-01
Limited-area convection-permitting models have proven useful for short-range NWP, but are unable to interact with the larger scales needed for longer lead-time skill. A new global forecast model, fvGFS, has been designed combining a modern nonhydrostatic dynamical core, the GFDL Finite-Volume Cubed-Sphere dynamical core (FV3) with operational GFS physics and initial conditions, and has been shown to provide excellent global skill while improving representation of small-scale phenomena. The nested-grid capability of FV3 allows us to build a regional-to-global variable-resolution model to efficiently refine to 3-km grid spacing over the Continental US. The use of two-way grid nesting allows us to reach these resolutions very efficiently, with the operational requirement easily attainable on current supercomputing systems.Even without a boundary-layer or advanced microphysical scheme appropriate for convection-perrmitting resolutions, the effectiveness of fvGFS can be demonstrated for a variety of weather events. We demonstrate successful proof-of-concept simulations of a variety of phenomena. We show the capability to develop intense hurricanes with realistic fine-scale eyewalls and rainbands. The new model also produces skillful predictions of severe weather outbreaks and of organized mesoscale convective systems. Fine-scale orographic and boundary-layer phenomena are also simulated with excellent fidelity by fvGFS. Further expected improvements are discussed, including the introduction of more sophisticated microphysics and of scale-aware convection schemes.
NASA Astrophysics Data System (ADS)
Yahi, H.; Marticorena, B.; Thiria, S.; Chatenet, B.; Schmechtig, C.; Rajot, J. L.; Crepon, M.
2013-12-01
work aims at assessing the capability of passive remote-sensed measurements such as aerosol optical depth (AOD) to monitor the surface dust concentration during the dry season in the Sahel region (West Africa). We processed continuous measurements of AODs and surface concentrations for the period (2006-2010) in Banizoumbou (Niger) and Cinzana (Mali). In order to account for the influence of meteorological condition on the relationship between PM10 surface concentration and AOD, we decomposed the mesoscale meteorological fields surrounding the stations into five weather types having similar 3-dimensional atmospheric characteristics. This classification was obtained by a clustering method based on nonlinear artificial neural networks, the so-called self-organizing map. The weather types were identified by processing tridimensional fields of meridional and zonal winds and air temperature obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) model output centered on each measurement station. Five similar weather types have been identified at the two stations. Three of them are associated with the Harmattan flux; the other two correspond to northward inflow of the monsoon flow at the beginning or the end of the dry season. An improved relationship has been found between the surface PM10 concentrations and the AOD by using a dedicated statistical relationship for each weather type. The performances of the statistical inversion computed on the test data sets show satisfactory skills for most of the classes, much better than a linear regression. This should permit the inversion of the mineral dust concentration from AODs derived from satellite observations over the Sahel.
Weather forecasting support for AASE-2
NASA Technical Reports Server (NTRS)
Forbes, Gregory S.
1992-01-01
The AFEAS Contract and NASA Grant were awarded to Penn State in order to obtain real-time weather forecasting support for the NASA AASE-II Project, which was conducted between October 1991 and March 1992. Because of the special weather sensitivities of the NASA ER-2 aircraft, AASE-II planners felt that public weather forecasts issued by the National Weather Service would not be adequate for mission planning purposes. A likely consequence of resorting to that medium would have been that scientists would have had to be at work by 4 AM day after day in the hope that the aircraft could fly, only to be frustrated by a great number of 'scrubbed' missions. Thus, the Pennsylvania State University was contracted to provide real-time weather support to the AASE-II mission.
Making large amounts of meteorological plots easily accessible to users
NASA Astrophysics Data System (ADS)
Lamy-Thepaut, Sylvie; Siemen, Stephan; Sahin, Cihan; Raoult, Baudouin
2015-04-01
The European Centre for Medium-Range Weather Forecasts (ECMWF) is an international organisation providing its member organisations with forecasts in the medium time range of 3 to 15 days, and some longer-range forecasts for up to a year ahead, with varying degrees of detail. As part of its mission, ECMWF generates an increasing number of forecast data products for its users. To support the work of forecasters and researchers and to let them make best use of ECMWF forecasts, the Centre also provides tools and interfaces to visualise their products. This allows users to make use of and explore forecasts without having to transfer large amounts of raw data. This is especially true for products based on ECMWF's 50 member ensemble forecast, where some specific processing and visualisation are applied to extract information. Every day, thousands of raw data are being pushed to the ECMWF's interactive web charts application called ecCharts, and thousands of products are processed and pushed to ECMWF's institutional web site ecCharts provides a highly interactive application to display and manipulate recent numerical forecasts to forecasters in national weather services and ECMWF's commercial customers. With ecCharts forecasters are able to explore ECMWF's medium-range forecasts in far greater detail than has previously been possible on the web, and this as soon as the forecast becomes available. All ecCharts's products are also available through a machine-to-machine web map service based on the OGC Web Map Service (WMS) standard. ECMWF institutional web site provides access to a large number of graphical products. It was entirely redesigned last year. It now shares the same infrastructure as ECMWF's ecCharts, and can benefit of some ecCharts functionalities, for example the dashboard. The dashboard initially developed for ecCharts allows users to organise their own collection of products depending on their work flow, and is being further developed. In its first implementation, It presents the user's products in a single interface with fast access to the original product, and possibilities of synchronous animations between them. But its functionalities are being extended to give users the freedom to collect not only ecCharts's 2D maps and graphs, but also other ECMWF Web products such as monthly and seasonal products, scores, and observation monitoring. The dashboard will play a key role to help the user to interpret the large amount of information that ECMWF is providing. This talk will present examples of how the new user interface can organise complex meteorological maps and graphs and show the new possibilities users have gained by using the web as a medium.
Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment.
Mbakwe, Ikenna; De Jager, Pieter C; Annandale, John G; Matema, Taurai
2013-01-01
Rehabilitating coal gasification ash dumps by amendment with waste-activated sludge has been shown to improve the physical and chemical properties of ash and to facilitate the establishment of vegetation. However, mineralization of organic N from sludge in such an alkaline and saline medium and the effect that ash weathering has on the process are poorly understood and need to be ascertained to make decisions regarding the suitability of this rehabilitation option. This study investigated the rate and pattern of N mineralization from sludge in a coal gasification ash medium to determine the prevalent inorganic N form in the system and assess the effect of ash weathering on N mineralization. An incubation experiment was performed in which fresh ash, weathered ash, and soil were amended with the equivalent of 90 Mg ha sludge, and N mineralization was evaluated over 63 d. More N (24%) was mineralized in fresh ash than in weathered ash and soil, both of which mineralized 15% of the initial organic N in sludge. More nitrification occurred in soil, and most of the N mineralized in ash was in the form of ammonium, indicating an inhibition of nitrifying organisms in the ash medium and suggesting that, at least initially, plants used for rehabilitation of coal gasification ash dumps will take up N mostly as ammonium. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen
Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energymore » management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and 5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.« less
NASA Astrophysics Data System (ADS)
Cortés, L.; Curé, M.
2011-11-01
This research presents an evaluation of three meteorological models, the Global Forecast System (GFS), the European Centre for Medium-Range Weather Forecasts (ECMWF) and the mesoscale model WRF (Weather Research and Forecasting) for three sites located in north of Chile. Cerro Moreno Airport, the Paranal Observatory and Llano de Chajnantor are located at 25, 130 and 283 km from the city of Antofagasta, respectively. Results for the three sites show that the lowest correlation and the highest errors occur at the surface. ECMWF model presents the best results at these levels for the two hours analyzed. This could be due to the fact that the ECMWF model has 91 vertical levels, compared to the 64 and 27 vertical levels of GFS and WRF models, respectively. Therefore, it can represent better the processes in the Planetary Boundary Layer (PBL). In relation to the middle and upper troposphere, the three models show good agreement.
NASA Astrophysics Data System (ADS)
Leboucher, V.; Couillaux, A.; Parey, S.; Fil, C.
2007-12-01
Projections of changes in temperature are essential to assess the impact of climate change on the energy supply sector as heating and cooling, energy demand highly depends on temperature. A selection of temperature indicators and their changes are examined for several simulations using SRES Emission Scenario A2 from the CMIP3 archive. We compare the present day simulated indicators to those in European Center for Medium-Range Weather Forecasts (ECMWF) ERA40 reanalysis The results are analysed for six areas over Europe and two time periods during the 21st century. We focus our study on changes in number and duration of hot and cold events and on changes in heating degree-days and cooling degree-days, which are commonly used to estimate the weather-related variations in energy consumption. Results are presented for the different models with some comparisons to the regional model simulations from the European PRUDENCE project to evaluate uncertainties.
NASA Technical Reports Server (NTRS)
Weisz, Elisabeth; Li, Jun; Li, Jinlong; Zhou, Daniel K.; Huang, Hung-Lung; Goldberg, Mitchell D.; Yang, Ping
2007-01-01
High-spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) onboard the EOS (Earth Observing System) Aqua satellite provide unique information about atmospheric state, surface and cloud properties. This paper presents an AIRS alone single field-of-view (SFOV) retrieval algorithm to simultaneously retrieve temperature, humidity and ozone profiles under all weather conditions, as well as cloud top pressure (CTP) and cloud optical thickness (COT) under cloudy skies. For optically thick cloud conditions the above-cloud soundings are derived, whereas for clear skies and optically thin cloud conditions the profiles are retrieved from 0.005 hPa down to the earth's surface. Initial validation has been conducted by using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) product, ECMWF (European Center of Medium range Weather Forecasts) analysis fields and radiosonde observations (RAOBs). These inter-comparisons clearly demonstrate the potential of this algorithm to process data from 38 high-spectral infrared (IR) sounder instruments.
Second SNPP Cal/Val Campaign: Environmental Data Retrieval Analysis
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Tian, Jialin; Smith, William L.; Kizer, Susan H.; Goldberg, Mitch D.
2016-01-01
Satellite ultraspectral infrared sensors provide key data records essential for weather forecasting and climate change science. The Suomi National Polar-orbiting Partnership (Soumi NPP) satellite Environmental Data Records (EDRs) are retrieved from calibrated ultraspectral radiance or Sensor Data Records (SDRs). Understanding the accuracy of retrieved EDRs is critical. The second Suomi NPP Calibration/Validation field campaign was conducted during March 2015 with flights over Greenland. The NASA high-altitude ER-2 aircraft carrying ultraspectral interferometer sounders such as the National Airborne Sounder Testbed-Interferometer (NAST-I) flew under the Suomi NPP satellite that carries the Crosstrack Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). Herein we inter-compare the EDRs produced from different retrieval algorithms employed on these satellite and aircraft campaign data. The available radiosonde measurements together with the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses are used to assess atmospheric temperature and moisture retrievals from the aircraft and satellite platforms. Preliminary results of this experiment under a winter, Arctic environment are presented.
Forecasting Dust Storms Using the CARMA-Dust Model and MM5 Weather Data
NASA Astrophysics Data System (ADS)
Barnum, B. H.; Winstead, N. S.; Wesely, J.; Hakola, A.; Colarco, P.; Toon, O. B.; Ginoux, P.; Brooks, G.; Hasselbarth, L. M.; Toth, B.; Sterner, R.
2002-12-01
An operational model for the forecast of dust storms in Northern Africa, the Middle East and Southwest Asia has been developed for the United States Air Force Weather Agency (AFWA). The dust forecast model uses the 5th generation Penn State Mesoscale Meteorology Model (MM5), and a modified version of the Colorado Aerosol and Radiation Model for Atmospheres (CARMA). AFWA conducted a 60 day evaluation of the dust model to look at the model's ability to forecast dust storms for short, medium and long range (72 hour) forecast periods. The study used satellite and ground observations of dust storms to verify the model's effectiveness. Each of the main mesoscale forecast theaters was broken down into smaller sub-regions for detailed analysis. The study found the forecast model was able to forecast dust storms in Saharan Africa and the Sahel region with an average Probability of Detection (POD)exceeding 68%, with a 16% False Alarm Rate (FAR). The Southwest Asian theater had average POD's of 61% with FAR's averaging 10%.
NASA Astrophysics Data System (ADS)
Dumont, Marc; Join, Jean-Lambert; Wendling, Valentin; Aunay, Bertrand
2017-04-01
Shield volcano islands come from the succession of constructive phases and destructive phases. In this complex geological setting, weathering and paleo-weathering profiles have a major impact on the critical zone hydrology. Nevertheless those underground structures are difficult to characterize, which leads to a leak of understanding of the water balance, infiltration, and ground water flows. Airborne transient electromagnetic method, as SkyTEM dispositive, allows to proceed regional 3D resistivity mapping with almost no topographic and vegetation limitations with an investigation depth higher than 300 m. Electromagnetics results are highly sensitive to conductive layers depending of clay content, water content and water mineralization. Skytem investigations are useful to characterize the thickness of the weathering profile and its lateral variations among large areas. In addition, it provides precise information about buried valleys and paleo-weathering of older lavas flows which control preferential groundwater flows. The French Geological Survey (BRGM) conducted a SkyTEM survey over Reunion Island (2500 km2). This survey yields on a dense 3D resistivity mapping. This continuous information is used to characterize the critical zone of the experimental watershed of Rivière des Pluies. A wide range of weathering profiles has been identified. Their variations are highly dependent of lava flow ages. Furthermore, 3D resistivity model highlights buried valleys characterized by specific weathering due to groundwater flows. Hydrogeological implication is a partitioning of groundwater flows in three different reservoirs: (i) deep basal aquifer, (ii) perched aquifers and (iii) superficial flows. The two latter behaviors have been characterized and mapped above our experimental watershed. The 3D manner of airborne electromagnetics results allows describing the continuity of weathering and alteration structures. The identification of specific groundwater flow paths provides a better understanding of the relation between the surface hydrology, the unsaturated medium and the basal aquifer. This study underlines the key role of volcanic underground structures in the critical zone flows.
Medium Range Forecasts Representation (and Long Range Forecasts?)
NASA Astrophysics Data System (ADS)
Vincendon, J.-C.
2009-09-01
The progress of the numerical forecasts urges us to interest us in more and more distant ranges. We thus supply more and more forecasts with term of some days. Nevertheless, precautions of use are necessary to give the most reliable and the most relevant possible information. Available in a TV bulletin or on quite other support (Internet, mobile phone), the interpretation and the representation of a medium range forecast (5 - 15 days) must be different from those of a short range forecast. Indeed, the "foresee-ability” of a meteorological phenomenon decreases gradually in the course of the ranges, it decreases all the more quickly that the phenomenon is of small scale. So, at the end of some days, the probability character of a forecast becomes very widely dominating. That is why in Meteo-France the forecasts of D+4 to D+7 are accompanied with a confidence index since around ten years. It is a figure between 1 and 5: the more we approach 5, the more the confidence in the supplied forecast is good. In the practice, an indication is supplied for period D+4 / D+5, the other one for period D+6 / D+7, every day being able to benefit from a different forecast, that is be represented in a independent way. We thus supply a global tendency over 24 hours with less and less precise symbols as the range goes away. Concrete examples will be presented. From now on two years, we also publish forecasts to D+8 / J+9, accompanied with a sign of confidence (" good reliability " or " to confirm "). These two days are grouped together on a single map because for us, the described tendency to this term is relevant on a duration about 48 hours with a spatial scale slightly superior to the synoptic scale. So, we avoid producing more than two zones of types of weather over France and we content with giving an evolution for the temperatures (still, in increase or in decline). Newspapers began to publish this information, it should soon be the case of televisions. It is particularly interesting on Fridays because it gives then a first outlook of the weather for the second weekend. There also, an example will illustrate that. Finally, we lead an experiment for some months to go beyond and supply a tendency of weather forecasts over the period D+10 / D+14, whom we also call " tendency for week 2 ". It is a question at the moment of producing a small text describing the global evolution of the temperatures and the precipitation, there is no graphic production. All this is completed by a sentence summarizing the tendencies expected from the temperature for weeks 3 and 4. We thus begin to think seriously about the production of a monthly forecast for the public within the framework of our operational activities. We have to establish under which graphic shape this one can be made.
Mapping Snow Depth with Automated Terrestrial Laser Scanning - Investigating Potential Applications
NASA Astrophysics Data System (ADS)
Adams, M. S.; Gigele, T.; Fromm, R.
2017-11-01
This contribution presents an automated terrestrial laser scanning (ATLS) setup, which was used during the winter 2016/17 to monitor the snow depth distribution on a NW-facing slope at a high-alpine study site. We collected data at high temporal [(sub-)daily] and spatial resolution (decimetre-range) over 0.8 km² with a Riegl LPM-321, set in a weather-proof glass fibre enclosure. Two potential ATLS-applications are investigated here: monitoring medium-sized snow avalanche events, and tracking snow depth change caused by snow drift. The results show the ATLS data's high explanatory power and versatility for different snow research questions.
NASA Astrophysics Data System (ADS)
Ólafsson, Haraldur; Cataldi, Maxime; Zehouf, Hafsa; Pálmason, Bolli
2014-05-01
Short wave radiation has been observed at several locations in Iceland in recent years. The observations reveal that there is large spatial variability in the incoming radiation. There are indications of a coast-to-inland gradient and there is much greater radiation at central-inland locations than further west as well in the far east. The results are in line with Markús Á. Einarsson's reports where estimation of radiation was based on manned cloud observations shortly after the middle of the 20th century. Values of radiation retrieved from the operational simulations of the European Centre for Medium-range Weather Forecasts (ECMWF) compare in general well with the observations.
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.
2015-12-01
Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of several hundred kilometers, and periods between 15 - 60 min. In SuperDARN radar data, MSTID signatures are manifested as quasi-periodic enhancements of ground backscatter (i.e. skip focusing) which propagate through the radar field-of-view. At high latitudes, SuperDARN observations of MSTIDs have generally been attributed to atmospheric gravity waves (AGWs) launched by auroral sources (e.g. Joule heating). However, recent studies with newer mid-latitude radars have shown MSTIDs are routinely observed in the subauroral ionosphere as well. To develop a more complete picture of MSTID activity, we have surveyed observations from four high latitude and six mid latitude SuperDARN radars located in the North American sector collected between 2011 and 2015 during the months of November to May. Consistent with previous SuperDARN MSTID studies, all radars observed MSTIDs with horizontal wavelengths between ~250 - 500 km and horizontal velocities between ~100 - 250 m/s. The majority of the MSTIDs were observed to propagate in a predominantly southward direction, with bearings ranging from ~135 ̊ - 250 ̊ geographic azimuth. This is highly suggestive of high latitude auroral sources; however, no apparent correlation with geomagnetic or space weather activity could be identified. Rather, comparison of the SuperDARN MSTID time-series data with northern hemisphere geopotential data from the European Center for Medium Range Weather Forecasting (ECMWF) operational model reveals a strong correlation of MSTID activity with dynamics in the polar vortex structure on two primary time scales. First, a seasonal effect manifests as enhanced MSTID activity from November through January, followed by a depressed period from February to May. This appears to correspond with the seasonal development and later decay of the polar vortex. A second, shorter time scale correlation occurs on a 1 to 3 week timescale with MSTID enhancements and depressions again corresponding with strong and weak polar vortex structuring. Collectively, these observations suggest the polar vortex is a more dominant source for MSTIDs observed by SuperDARN radars, rather than auroral sources.
Interoperability challenges in river discharge modelling: A cross domain application scenario
NASA Astrophysics Data System (ADS)
Santoro, Mattia; Andres, Volker; Jirka, Simon; Koike, Toshio; Looser, Ulrich; Nativi, Stefano; Pappenberger, Florian; Schlummer, Manuela; Strauch, Adrian; Utech, Michael; Zsoter, Ervin
2018-06-01
River discharge is a critical water cycle variable, as it integrates all the processes (e.g. runoff and evapotranspiration) occurring within a river basin and provides a hydrological output variable that can be readily measured. Its prediction is of invaluable help for many water-related tasks including water resources assessment and management, flood protection, and disaster mitigation. Observations of river discharge are important to calibrate and validate hydrological or coupled land, atmosphere and ocean models. This requires using datasets from different scientific domains (Water, Weather, etc.). Typically, such datasets are provided using different technological solutions. This complicates the integration of new hydrological data sources into application systems. Therefore, a considerable effort is often spent on data access issues instead of the actual scientific question. This paper describes the work performed to address multidisciplinary interoperability challenges related to river discharge modeling and validation. This includes definition and standardization of domain specific interoperability standards for hydrological data sharing and their support in global frameworks such as the Global Earth Observation System of Systems (GEOSS). The research was developed in the context of the EU FP7-funded project GEOWOW (GEOSS Interoperability for Weather, Ocean and Water), which implemented a "River Discharge" application scenario. This scenario demonstrates the combination of river discharge observations data from the Global Runoff Data Centre (GRDC) database and model outputs produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) predicting river discharge based on weather forecast information in the context of the GEOSS.
Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast
NASA Astrophysics Data System (ADS)
Masselink, Thomas; Schluessel, P.
1995-12-01
Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.
Monitoring and Predicting the African Climate for Food Security
NASA Astrophysics Data System (ADS)
Thiaw, W. M.
2015-12-01
Drought is one of the greatest challenges in Africa due to its impact on access to sanitary water and food. In response to this challenge, the international community has mobilized to develop famine early warning systems (FEWS) to bring safe food and water to populations in need. Over the past several decades, much attention has focused on advance risk planning in agriculture and water. This requires frequent updates of weather and climate outlooks. This paper describes the active role of NOAA's African Desk in FEWS. Emphasis is on the operational products from short and medium range weather forecasts to subseasonal and seasonal outlooks in support of humanitarian relief programs. Tools to provide access to real time weather and climate information to the public are described. These include the downscaling of the U.S. National Multi-model Ensemble (NMME) to improve seasonal forecasts in support of Regional Climate Outlook Forums (RCOFs). The subseasonal time scale has emerged as extremely important to many socio-economic sectors. Drawing from advances in numerical models that can now provide a better representation of the MJO, operational subseasonal forecasts are included in the African Desk product suite. These along with forecasts skill assessment and verifications are discussed. The presentation will also highlight regional hazards outlooks basis for FEWSNET food security outlooks.
The potential predictability of fire danger provided by ECMWF forecast
NASA Astrophysics Data System (ADS)
Di Giuseppe, Francesca
2017-04-01
The European Forest Fire Information System (EFFIS), is currently being developed in the framework of the Copernicus Emergency Management Services to monitor and forecast fire danger in Europe. The system provides timely information to civil protection authorities in 38 nations across Europe and mostly concentrates on flagging regions which might be at high danger of spontaneous ignition due to persistent drought. The daily predictions of fire danger conditions are based on the US Forest Service National Fire Danger Rating System (NFDRS), the Canadian forest service Fire Weather Index Rating System (FWI) and the Australian McArthur (MARK-5) rating systems. Weather forcings are provided in real time by the European Centre for Medium range Weather Forecasts (ECMWF) forecasting system. The global system's potential predictability is assessed using re-analysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 years of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire and low values correspond to non observed events. A more quantitative skill evaluation was performed using the Extremal Dependency Index which is a skill score specifically designed for rare events. It revealed that the three indices were more skilful on a global scale than the random forecast to detect large fires. The performance peaks in the boreal forests, in the Mediterranean, the Amazon rain-forests and southeast Asia. The skill-scores were then aggregated at country level to reveal which nations could potentiallty benefit from the system information in aid of decision making and fire control support. Overall we found that fire danger modelling based on weather forecasts, can provide reasonable predictability over large parts of the global landmass.
The birth of numerical weather prediction
NASA Astrophysics Data System (ADS)
Wiin-Nielsen, A.
1991-08-01
The paper describes the major events leading gradually to operational, numerical, short-range predictions for the large-scale atmospheric flow. The theoretical foundation starting with Rossby's studies of the linearized, barotropic equation and ending a decade and a half later with the general formulation of the quasi-geostrophic, baroclinic model by Charney and Phillips is described. The problems connected with the very long waves and the inconsistences of the geostrophic approximation which were major obstacles in the first experimental forecasts are discussed. The resulting changes to divergent barotropic and baroclinic models and to the use of the balance equation are described. After the discussion of the theoretical foundation, the paper describes the major developments leading to the Meteorology Project at the Institute for Advanced Studied under the leadership of John von Neumann and Jule Charney followed by the establishment of the Joint Numerical Weather Prediction Unit in Suitland, Maryland. The interconnected developments in Europe, taking place more-or-less at the same time, are described by concentrating on the activities in Stockholm where the barotropic model was used in many experiments leading also to operational forecasts. The further developments resulting in the use of the primitive equations and the formulation of medium-range forecasting models are not included in the paper.
The birth of numerical weather prediction
NASA Astrophysics Data System (ADS)
Wiin-Nielsen, A.
1991-09-01
The paper describes the major events leading gradually to operational, numerical, short-range predictions for the large-scale atmospheric flow. The theoretical foundation starting with Rossby's studies of the linearized, barotropic equation and ending a decade and a half later with the general formulation of the quasi-geostrophic, baroclinic model by Charney and Phillips is described. The problems connected with the very long waves and the inconsistences of the geostrophic approximation which were major obstacles in the first experimental forecasts are discussed. The resulting changes to divergent barotropic and baroclinic models and to the use of the balance equation are described. After the discussion of the theoretical foundation, the paper describes the major developments leading to the Meteorology Project at the Institute for Advanced Studied under the leadership of John von Neumann and Jule Charney followed by the establishment of the Joint Numerical Weather Prediction Unit in Suitland, Maryland. The inter-connected developments in Europe, taking place more-or-less at the same time, are described by concentrating on the activities in Stockholm where the barotropic model was used in many experiments leading also to operational forecasts. The further developments resulting in the use of the primitive equations and the formulation of medium-range forecasting models are not included in the paper.
Towards a unified Global Weather-Climate Prediction System
NASA Astrophysics Data System (ADS)
Lin, S. J.
2016-12-01
The Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions and kilometer scale regional climate simulations within a unified global modeling system. The foundation of this flexible modeling system is the nonhydrostatic Finite-Volume Dynamical Core on the Cubed-Sphere (FV3). A unique aspect of FV3 is that it is "vertically Lagrangian" (Lin 2004), essentially reducing the equation sets to two dimensions, and is the single most important reason why FV3 outperforms other non-hydrostatic cores. Owning to its accuracy, adaptability, and computational efficiency, the FV3 has been selected as the "engine" for NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched grid, a two-way regional-global nested grid, and an optimal combination of the stretched and two-way nests capability, making kilometer-scale regional simulations within a global modeling system feasible. Our main scientific goal is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that, with the FV3, it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornado-like vortices using a global model that was originally designed for climate simulations. The development and tuning strategy between traditional weather and climate models are fundamentally different due to different metrics. We were able to adapt and use traditional "climate" metrics or standards, such as angular momentum conservation, energy conservation, and flux balance at top of the atmosphere, and gain insight into problems of traditional weather prediction model for medium-range weather prediction, and vice versa. Therefore, the unification in weather and climate models can happen not just at the algorithm or parameterization level, but also in the metric and tuning strategy used for both applications, and ultimately, with benefits to both weather and climate applications.
A Precipitation Climatology of the Snowy Mountains, Australia
NASA Astrophysics Data System (ADS)
Theobald, Alison; McGowan, Hamish; Speirs, Johanna
2014-05-01
The precipitation that falls in the Snowy Mountains region of southeastern Australia provides critical water resources for hydroelectric power generation. Water storages in this region are also a major source of agricultural irrigation, environmental flows, and offer a degree of flood protection for some of the major river systems in Australia. Despite this importance, there remains a knowledge gap regarding the long-term, historic variability of the synoptic weather systems that deliver precipitation to the region. This research aims to increase the understanding of long-term variations in precipitation-bearing weather systems resulting in runoff into the Snowy Mountains catchments and reservoirs, and the way in which these are influenced by large-scale climate drivers. Here we present initial results on the development of a climatology of precipitation-bearing synoptic weather systems (synoptic typology), spanning a period of over 100 years. The synoptic typology is developed from the numerical weather model re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), in conjunction with regional precipitation and temperature data from a network of private gauges. Given the importance of surface, mid- and upper-air patterns on seasonal precipitation, the synoptic typing will be based on a range of meteorological variables throughout the depth of the troposphere, highlighting the importance of different atmospheric levels on the development and steering of synoptic precipitation bearing systems. The temporal and spatial variability of these synoptic systems, their response to teleconnection forcings and their contribution to inflow generation in the headwater catchments of the Snowy Mountains will be investigated. The resulting climatology will provide new understanding of the drivers of regional-scale precipitation variability at inter- and intra-annual timescales. It will enable greater understanding of how variability in synoptic scale atmospheric circulation affects the hydroclimate of alpine environments in southeast Australia - allowing recently observed precipitation declines to be placed in the context of a long-term record spanning at least 100 years. This information will provide further insight into the impacts of predicted anthropogenic climate change and will ultimately lead to more informed water resource management in the Snowy Mountains.
Arockia Bazil Raj, A; Arputha Vijaya Selvi, J; Durairaj, S
2015-02-01
Atmospheric parameters strongly affect the performance of free-space optical communication (FSOC) systems when the optical wave is propagating through the inhomogeneous turbulence transmission medium. Developing a model to get an accurate prediction of the atmospheric turbulence strength (C(n)(2)) according to meteorological parameters (weather data) becomes significant to understand the behavior of the FSOC channel during different seasons. The construction of a dedicated free-space optical link for the range of 0.5 km at an altitude of 15.25 m built at Thanjavur (Tamil Nadu) is described in this paper. The power level and beam centroid information of the received signal are measured continuously with weather data at the same time using an optoelectronic assembly and the developed weather station, respectively, and are recorded in a data-logging computer. Existing models that exhibit relatively fewer prediction errors are briefed and are selected for comparative analysis. Measured weather data (as input factors) and C(n)(2) (as a response factor) of size [177,147×4] are used for linear regression analysis and to design mathematical models more suitable in the test field. Along with the model formulation methodologies, we have presented the contributions of the input factors' individual and combined effects on the response surface and the coefficient of determination (R(2)) estimated using analysis of variance tools. An R(2) value of 98.93% is obtained using the new model, model equation V, from a confirmatory test conducted with a testing data set of size [2000×4]. In addition, the prediction accuracies of the selected and the new models are investigated during different seasons in a one-year period using the statistics of day, week-averaged, month-averaged, and seasonal-averaged diurnal Cn2 profiles, and are verified in terms of the sum of absolute error (SAE). A Cn2 prediction maximum average SAE of 2.3×10(-13) m(-2/3) is achieved using the new model in a longer range of dynamic meteorological parameters during the different local seasons.
Flight Test Results of VDL-3, 1090ES, and UAT Datalinks for Weather Information Communication
NASA Technical Reports Server (NTRS)
Griner, James
2006-01-01
This presentation describes final test results for the Weather Information Communications (WINCOMM) program at the NASA Glenn Research Center on flight testing of the 1090 Extended Squitter (1090ES), VDL Mode 3, and Universal Access Transceiver (UAT) data links as a medium for weather data exchange. It presents an architectural description of the use of 1090ES to meet the program objectives of sending turbulence information, the use of VDL Mode 3 to send graphical weather images, and the use of UAT for transmitting weather sensor data. This presentation provides a high level definition of the changes made to both avionics and ground-based receivers as well as the ground infrastructure used to support flight testing and future implementation. Summary of results from flight tests of these datalinks will also be presented.
Bern, Carleton R.; Yesavage, Tiffany; Foley, Nora K.
2017-01-01
Ion-adsorbed rare earth element (REE) deposits supply the majority of world heavy REE production and substantial light REE production, but relatively little is known of their occurrence outside Southeast Asia. We examined the distribution and forms of REEs on a North American pluton located in the highly weathered and slowly eroding South Carolina Piedmont. The Hercynian Liberty Hill pluton experiences a modern climate that includes ~ 1500 mm annual rainfall and a mean annual temperature of 17 °C. The pluton is medium- to coarse-grained biotite-amphibole granite with minor biotite granite facies. REE-bearing phases are diverse and include monazite, zircon, titanite, allanite, apatite and bastnäsite. Weathered profiles were sampled up to 7 m-deep across the ~ 400 km2 pluton. In one profile, ion-adsorbed REEs plus yttrium (REE + Y) ranged up to 581 mg/kg and accounted for up to 77% of total REE + Y in saprolite. In other profiles, ion-adsorbed REE + Y ranged 12–194 mg/kg and only accounted for 3–37% of totals. The profile most enriched in ion-adsorbed REEs was located along the mapped boundary of two granite facies and contained trioctahedral smectite in the saprolite, evidence suggestive of hydrothermal alteration of biotite at that location. Post-emplacement deuteric alteration can generate easily weathered REE phases, particularly fluorocarbonates. In the case of Liberty Hill, hydrothermal alteration may have converted less soluble to more soluble REE minerals. Additionally, regolith P content was inversely correlated with the fraction ion-adsorbed REEs, and weathering related secondary REE-phosphates were found in some regolith profiles. Both patterns illustrate how low P content aids in the accumulation of ion-adsorbed REEs. The localized occurrence at Liberty Hill sheds light on conditions and processes that generate ion-adsorbed REEs.
Characterization of Minnesota lunar simulant for plant growth
NASA Technical Reports Server (NTRS)
Oglesby, James P.; Lindsay, Willard L.; Sadeh, Willy Z.
1993-01-01
Processing of lunar regolith into a plant growth medium is crucial in the development of a regenerative life support system for a lunar base. Plants, which are the core of such a system, produce food and oxygen for humans and, at the same time, consume carbon dioxide. Because of the scarcity of lunar regolith, simulants must be used to infer its properties and to develop procedures for weathering and chemical analyses. The Minnesota Lunar Simulant (MLS) has been identified to date as the best available simulant for lunar regolith. Results of the dissolution studies reveal that appropriately fertilized MLS can be a suitable medium for plant growth. The techniques used in conducting these studies can be extended to investigate the suitability of actual lunar regolith as a plant growth medium. Dissolution experiments were conducted using the MLS to determine its nutritional and toxicity characteristics for plant growth and to develop weathering and chemical analysis techniques. Two weathering regimes, one with water and one with dilute organic acids simulating the root rhizosphere microenvironment, were investigated. Elemental concentrations were measured using inductively-coupled-plasma (ICP) emission spectrometry and ion chromatography (IC). The geochemical speciation model, MINTEQA2, was used to determine the major solution species and the minerals controlling them. Acidification was found to be a useful method for increasing cation concentrations to meaningful levels. Initial results indicate that MLS weathers to give neutral to slightly basic solutions which contain acceptable amounts of the essential elements required for plant nutrition (i.e., potassium, calcium, magnesium, sulfur, zinc, sodium, silicon, manganese, copper, chlorine, boron, molybdenum, and cobalt). Elements that need to be supplemented include carbon, nitrogen, and perhaps phosphorus and iron. Trace metals in solution were present at nontoxic levels.
NASA Technical Reports Server (NTRS)
Burns, R. G.
1993-01-01
The copious deposits of ferric-iron assemblages littering the surface of bright regions of Mars indicate that efficient oxidative weathering reactions have taken place during the evolution of the planet. Because the kinetics of atmosphere-surface (gas-solid) reactions are considerably slower than chemical weathering reactions involving an aqueous medium, most of the oxidation products now present in the martian regolith probably formed when groundwater flowed near the surface. This paper examines how chemical weathering reactions were effected by climatic variations when warm, wet environments became arid on Mars. Analogies are drawn with hydrogeochemical and weathering environments on the Australian continent where present-day oxidation of iron is occurring in acidic ground water under arid conditions.
Johnson, Edward A.; Warwick, Peter D.; Khan, Intizar H.; Kazim, Mohsin A.
1994-01-01
The information presented on this sheet was collected as part of a joint U.S. Geological Survey-Geological Survey of Pakistan program sponsored by the U.S. Agency for International Development. As a project within this program, the coal-bearing Ghazij Formation (Eocene) was investigated in the northeastern part of Balochistan cast and south of the provincial capital of Quetta. Strata exposed in this area range in age from Permian to Holocene and crop out as a belt of folded and thrusted rocks that form a southeast-facing orocline. In this region of Pakistan, the Ghazij can usually be divided into three parts. The lower part is the thickest (probably more than 1,000 m) and consists of gray-weathering calcareous mudrock (shale, mudstone, and impure claystone) and a few tabular bodies of fine-to medium-grained calcareous sandstone. The middle part (27-300 m) consists of gray-weathering calcareous mudrock and tabular to lenticular bodies of fine-to medium-grained calcareous sandstone; beds of carbonaceous shale and coal are common. The upper part (as thick as 533 m) contains reddish-weathering calcareous mudrock that contains scattered lenticular bodies of fine- to medium-grained calcareous sandstone. Fossil plant debris is common in mudrock of the lower and middle parts of the Ghazij, and bivalves and gastropods are common in the middle part; the upper part of the Ghazij is usually unfossiliferous. This three-fold division of the Ghazij is less distinct in the Johan area. Here, the upper part of the formation is clearly identifiable, but rocks below it are poorly exposed and assigning a stratigraphic level that separates the middle and lower parts of the formation is problematic. Below the upper part of the formation is a thick sequence of greenish-gray calcareous mudrock that contains locally abundant plant debris and isolated bodies of brown-weathering sandstone. Rare carbonaceous shale and even rarer coal are present in the upper part of this sequence, and this interval of the formation might correspond to the middle part of the Ghazji exposed in areas to the north. We propose that, in the Johan area, those rocks below the upper part of the formation be referred to as the main body of the Ghazij (for example, main-body Ghazij). Underlying the Ghazij are the carbonate rocks of the Paleocene Dungan Formation (or its equivalent), and overlying the Ghazij are the mostly carbonate rocks of the Eocene Kirthar Formation (or its equivalent). Both contacts can be conformable or unconformable. All of the pre-Neogene rocks in Balochistan are greatly deformed by the collision of India and Asia. The Ghazij is especially susceptible to regional compressional tectonics because it contains a large amount of shale and is sandwiched between two thick carbonate units. As a result, bedding-plane faults and isoclinal folds are common.As part of our study of the Ghazij Formation, five stratigraphic sections were measured: one near Pir Ismail Ziarat, one in the Sor Range, two in the vicinity of Mach, and one near Johan. Each area's section is published separately.
Johnson, Edward A.; Warwick, Peter D.; Khan, Intizar H.; Rana, Asif N.; Kazim, Mohsin A.
1994-01-01
The information presented on this sheet was collected as part of a joint U.S. Geological Survey-Geological Survey of Pakistan program sponsored by the U.S. Agency for International Development. As a project within this program, the coal-bearing Ghazij Formation (Eocene) was investigated in the northeastern part of Balochistan cast and south of the provincial capital of Quetta. Strata exposed in this area range in age from Permian to Holocene and crop out as a belt of folded and thrusted rocks that form a southeast-facing orocline. In this region of Pakistan, the Ghazij can usually be divided into three parts. The lower part is the thickest (probably more than 1,000 m) and consists of gray-weathering calcareous mudrock (shale, mudstone, and impure claystone) and a few tabular bodies of fine-to medium-grained calcareous sandstone. The middle part (27-300 m) consists of gray-weathering calcareous mudrock and tabular to lenticular bodies of fine-to medium-grained calcareous sandstone; beds of carbonaceous shale and coal are common. The upper part (as thick as 533 m) contains reddish-weathering calcareous mudrock that contains scattered lenticular bodies of fine- to medium-grained calcareous sandstone. Fossil plant debris is common in mudrock of the lower and middle parts of the Ghazij, and bivalves and gastropods are common in the middle part; the upper part of the Ghazij is usually unfossiliferous. This three-fold division of the Ghazij is less distinct in the Johan area. Here, the upper part of the formation is clearly identifiable, but rocks below it are poorly exposed and assigning a stratigraphic level that separates the middle and lower parts of the formation is problematic. Below the upper part of the formation is a thick sequence of greenish-gray calcareous mudrock that contains locally abundant plant debris and isolated bodies of brown-weathering sandstone. Rare carbonaceous shale and even rarer coal are present in the upper part of this sequence, and this interval of the formation might correspond to the middle part of the Ghazji exposed in areas to the north. We propose that, in the Johan area, those rocks below the upper part of the formation be referred to as the main body of the Ghazij (for example, main-body Ghazij). Underlying the Ghazij are the carbonate rocks of the Paleocene Dungan Formation (or its equivalent), and overlying the Ghazij are the mostly carbonate rocks of the Eocene Kirthar Formation (or its equivalent). Both contacts can be conformable or unconformable. All of the pre-Neogene rocks in Balochistan are greatly deformed by the collision of India and Asia. The Ghazij is especially susceptible to regional compressional tectonics because it contains a large amount of shale and is sandwiched between two thick carbonate units. As a result, bedding-plane faults and isoclinal folds are common. As part of our study of the Ghazij Formation, five stratigraphic sections were measured: one near Pir Ismail Ziarat, one in the Sor Range, two in the vicinity of Mach, and one near Johan. Each area's section is published separately.
NASA Astrophysics Data System (ADS)
Engel, Jacqueline M.; Ma, Lin; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.
2016-12-01
Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite. Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds. This is the first time that multiple weathering clasts from the same watershed were analyzed for U-series isotope disequlibrian and show consistent results. The U-series disequilibria allowed for the determination of rind formation ages and weathering advance rates with a U-series mass balance model. The weathering advance rates generally decreased with decreasing curvature: ∼0.17 ± 0.10 mm/kyr for high curvature, ∼0.12 ± 0.05 mm/kyr for medium curvature, and ∼0.11 ± 0.04, 0.08 ± 0.03, 0.06 ± 0.03 mm/kyr for low curvature locations. The observed positive correlation between the curvature and the weathering rates is well supported by predictions of weathering models, i.e., that the curvature of the rind-core boundary controls the porosity creation and weathering advance rates at the clast scale. At the watershed scale, the new weathering advance rates derived on the low curvature transects for the relatively dry Deshaies watershed (average rate of 0.08 mm/kyr; MAP = 1800 mm and MAT = 23 °C) are ∼60% slower than the rind formation rates previously determined in the much wetter Bras David watershed (∼0.18 mm/kyr, low curvature transect; MAP = 3400 mm and MAT = 23 °C) also on Basse-Terre Island. Thus, a doubling of MAP roughly correlates with a doubling of weathering advance rate. The new rind study highlights the effect of precipitation on weathering rates over a time scale of ∼100 kyr. Weathering rinds are thus a suitable system for investigating long-term chemical weathering across environmental gradients, complementing short-term riverine solute fluxes.
NASA Technical Reports Server (NTRS)
Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.
1991-01-01
Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.
Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 1: January
NASA Astrophysics Data System (ADS)
Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.
1989-07-01
The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of January. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Mean density standard deviation (all for 13 levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.
Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields
NASA Astrophysics Data System (ADS)
Wang, Lihua; Zhou, Yunxuan; Shen, Fang
2018-01-01
The complexity of suspended sediment concentration (SSC) distribution and diffusion has been widely recognized because it is influenced by sediment supply and various hydrodynamic forcing conditions that vary over space and over time. Sediment suspended by waves and transported by currents are the dominant sediment transport mechanisms in estuarine and coastal areas. However, it is unclear to what extent the SSC distribution is impacted by each hydrodynamic factor. Research on the quantitative influence of wind fields on the SSC diffusion range will contribute to a better understanding of the characteristics of sediment transport change and sedimentary geomorphic evolution. This study determined SSC from three Envisat Medium-Resolution Imaging Spectrometer acquisitions, covering the Yangtze Estuary and adjacent water area under the same season and tidal conditions but with varying wind conditions. SSC was examined based on the Semi-Empirical Radiative Transfer model, which has been well validated with the observation data. Integrating the corresponding wind field information from European Centre for Medium-Range Weather Forecasts further facilitated the discussion of wind fields affecting SSC, and in turn the influence of water and suspended sediment transportation and diffusion in the Yangtze estuarine and coastal area. The results demonstrated that the SSC present much more distinctive fluvial features in the inner estuary and wind fields are one of the major factors controlling the range of turbid water diffusion.
Fire Weather Sun/Moon Long Range Forecasts Climate Prediction Past Weather Past Weather Heating/Cooling Space Weather Sun (Ultraviolet Radiation) Safety Campaigns Wind Drought Winter Weather Information
An Ensemble-Based Forecasting Framework to Optimize Reservoir Releases
NASA Astrophysics Data System (ADS)
Ramaswamy, V.; Saleh, F.
2017-12-01
Increasing frequency of extreme precipitation events are stressing the need to manage water resources on shorter timescales. Short-term management of water resources becomes proactive when inflow forecasts are available and this information can be effectively used in the control strategy. This work investigates the utility of short term hydrological ensemble forecasts for operational decision making during extreme weather events. An advanced automated hydrologic prediction framework integrating a regional scale hydrologic model, GIS datasets and the meteorological ensemble predictions from the European Center for Medium Range Weather Forecasting (ECMWF) was coupled to an implicit multi-objective dynamic programming model to optimize releases from a water supply reservoir. The proposed methodology was evaluated by retrospectively forecasting the inflows to the Oradell reservoir in the Hackensack River basin in New Jersey during the extreme hydrologic event, Hurricane Irene. Additionally, the flexibility of the forecasting framework was investigated by forecasting the inflows from a moderate rainfall event to provide important perspectives on using the framework to assist reservoir operations during moderate events. The proposed forecasting framework seeks to provide a flexible, assistive tool to alleviate the complexity of operational decision-making.
Weakening of Indian Summer Monsoon Rainfall due to Changes in Land Use Land Cover
Paul, Supantha; Ghosh, Subimal; Oglesby, Robert; Pathak, Amey; Chandrasekharan, Anita; Ramsankaran, RAAJ
2016-01-01
Weakening of Indian summer monsoon rainfall (ISMR) is traditionally linked with large-scale perturbations and circulations. However, the impacts of local changes in land use and land cover (LULC) on ISMR have yet to be explored. Here, we analyzed this topic using the regional Weather Research and Forecasting model with European Center for Medium range Weather Forecast (ECMWF) reanalysis data for the years 2000–2010 as a boundary condition and with LULC data from 1987 and 2005. The differences in LULC between 1987 and 2005 showed deforestation with conversion of forest land to crop land, though the magnitude of such conversion is uncertain because of the coarse resolution of satellite images and use of differential sources and methods for data extraction. We performed a sensitivity analysis to understand the impacts of large-scale deforestation in India on monsoon precipitation and found such impacts are similar to the observed changes in terms of spatial patterns and magnitude. We found that deforestation results in weakening of the ISMR because of the decrease in evapotranspiration and subsequent decrease in the recycled component of precipitation. PMID:27553384
Operational Hydrologic Forecasts in the Columbia River Basin
NASA Astrophysics Data System (ADS)
Shrestha, K. Y.; Curry, J. A.; Webster, P. J.; Toma, V. E.; Jelinek, M.
2013-12-01
The Columbia River Basin (CRB) covers an area of ~670,000 km2 and stretches across parts of seven U.S. states and one Canadian province. The basin is subject to a variable climate, and moisture stored in snowpack during the winter is typically released in spring and early summer. These releases contribute to rapid increases in flow. A number of impoundments have been constructed on the Columbia River main stem and its tributaries for the purposes of flood control, navigation, irrigation, recreation, and hydropower. Storage reservoirs allow water managers to adjust natural flow patterns to benefit water and energy demands. In the past decade, the complexity of water resource management issues in the basin has amplified the importance of streamflow forecasting. Medium-range (1-10 day) numerical weather forecasts of precipitation and temperature can be used to drive hydrological models. In this work, probabilistic meteorological variables from the European Center for Medium Range Weather Forecasting (ECMWF) are used to force the Variable Infiltration Capacity (VIC) model. Soil textures were obtained from FAO data; vegetation types / land cover information from UMD land cover data; stream networks from USGS HYDRO1k; and elevations from CGIAR version 4 SRTM data. The surface energy balance in 0.25° (~25 km) cells is closed through an iterative process operating at a 6 hour timestep. Output fluxes from a number of cells in the basin are combined through one-dimensional flow routing predicated on assumptions of linearity and time invariance. These combinations lead to daily mean streamflow estimates at key locations throughout the basin. This framework is suitable for ingesting daily numerical weather prediction data, and was calibrated using USGS mean daily streamflow data at the Dalles Dam (TDA). Operational streamflow forecasts in the CRB have been active since October 2012. These are 'naturalized' or unregulated forecasts. In 2013, increases of ~2600 m3/s (~48% of average discharge for water years 1879-2012) or greater were observed at TDA during the following periods: 29 March to 12 April, 5 May to 11 May, and 19 June to 29 June. Precipitation and temperature forecasts during these periods are shown along with changes in the model simulated snowpack. We evaluate the performance of the ensemble mean 10 days in advance of each of these three events, and comment on how the distribution of ensemble members affected forecast confidence in each situation.
NASA Astrophysics Data System (ADS)
Dill, Robert; Bergmann-Wolf, Inga; Thomas, Maik; Dobslaw, Henryk
2016-04-01
The global numerical weather prediction model routinely operated at the European Centre for Medium-Range Weather Forecasts (ECMWF) is typically updated about two times a year to incorporate the most recent improvements in the numerical scheme, the physical model or the data assimilation procedures into the system for steadily improving daily weather forecasting quality. Even though such changes frequently affect the long-term stability of meteorological quantities, data from the ECMWF deterministic model is often preferred over alternatively available atmospheric re-analyses due to both the availability of the data in near real-time and the substantially higher spatial resolution. However, global surface pressure time-series, which are crucial for the interpretation of geodetic observables, such as Earth rotation, surface deformation, and the Earth's gravity field, are in particular affected by changes in the surface orography of the model associated with every major change in horizontal resolution happened, e.g., in February 2006, January 2010, and May 2015 in case of the ECMWF operational model. In this contribution, we present an algorithm to harmonize surface pressure time-series from the operational ECMWF model by projecting them onto a time-invariant reference topography under consideration of the time-variable atmospheric density structure. The effectiveness of the method will be assessed globally in terms of pressure anomalies. In addition, we will discuss the impact of the method on predictions of crustal deformations based on ECMWF input, which have been recently made available by GFZ Potsdam.
NASA Astrophysics Data System (ADS)
Hayes, P.; Trigg, J. L.; Stauffer, D.; Hunter, G.; McQueen, J.
2006-05-01
Consequence assessment (CA) operations are those processes that attempt to mitigate negative impacts of incidents involving hazardous materials such as chemical, biological, radiological, nuclear, and high explosive (CBRNE) agents, facilities, weapons, or transportation. Incident types range from accidental spillage of chemicals at/en route to/from a manufacturing plant, to the deliberate use of radiological or chemical material as a weapon in a crowded city. The impacts of these incidents are highly variable, from little or no impact to catastrophic loss of life and property. Local and regional scale atmospheric conditions strongly influence atmospheric transport and dispersion processes in the boundary layer, and the extent and scope of the spread of dangerous materials in the lower levels of the atmosphere. Therefore, CA personnel charged with managing the consequences of CBRNE incidents must have detailed knowledge of current and future weather conditions to accurately model potential effects. A meteorology team was established at the U.S. Defense Threat Reduction Agency (DTRA) to provide weather support to CA personnel operating DTRA's CA tools, such as the Hazard Prediction and Assessment Capability (HPAC) tool. The meteorology team performs three main functions: 1) regular provision of meteorological data for use by personnel using HPAC, 2) determination of the best performing medium-range model forecast for the 12 - 48 hour timeframe and 3) provision of real-time help-desk support to users regarding acquisition and use of weather in HPAC CA applications. The normal meteorology team operations were expanded during a recent modeling project which took place during the 2006 Winter Olympic Games. The meteorology team took advantage of special weather observation datasets available in the domain of the Winter Olympic venues and undertook a project to improve weather modeling at high resolution. The varied and complex terrain provided a special challenge to the modelers on the meteorology team. Some of the Olympic venues were located in the mountains to the west of Torino, while the rest were located on the relatively flat plain in and around the cities of Pinerolo and Torino to the east. DTRA partners at Pennsylvania State University (PSU) and the U.S. National Center for Atmospheric Research (NCAR) established data collection and assimilation, and forecast modeling processes that used special weather station observations provided by the Area Previsione e Monitoraggio Ambientale of Italy's ARPA Piemonte. At PSU a version of the MM5 was especially prepared to use observation data to forecast weather in a four-nest configuration. Two other DTRA partners provided independent weather forecast models against which the PSU model data were compared. The U.S. Air Force Weather Agency provided its MM5 forecast model data and the U.S. National Oceanic and Atmospheric Administration's National Centers for Environmental Prediction provided data from a special version of their WRF model. The project produced many opportunities to improve the modeling and forecasting capability at DTRA. DTRA and its partners plan to expand upon this experience during upcoming field tests, and to further improve and expand the capability to provide accurate high-resolution weather forecast information to hazard and consequence assessment operations.
NASA Astrophysics Data System (ADS)
Luitel, Beda; Villarini, Gabriele; Vecchi, Gabriel A.
2018-01-01
The goal of this study is the evaluation of the skill of five state-of-the-art numerical weather prediction (NWP) systems [European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC)] in forecasting rainfall from North Atlantic tropical cyclones (TCs). Analyses focus on 15 North Atlantic TCs that made landfall along the U.S. coast over the 2007-2012 period. As reference data we use gridded rainfall provided by the Climate Prediction Center (CPC). We consider forecast lead-times up to five days. To benchmark the skill of these models, we consider rainfall estimates from one radar-based (Stage IV) and four satellite-based [Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH)] rainfall products. Daily and storm total rainfall fields from each of these remote sensing products are compared to the reference data to obtain information about the range of errors we can expect from "observational data." The skill of the NWP models is quantified: (1) by visual examination of the distribution of the errors in storm total rainfall for the different lead-times, and numerical examination of the first three moments of the error distribution; (2) relative to climatology at the daily scale. Considering these skill metrics, we conclude that the NWP models can provide skillful forecasts of TC rainfall with lead-times up to 48 h, without a consistently best or worst NWP model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosking, Jonathan R. M.; Natarajan, Ramesh
The computer creates a utility demand forecast model for weather parameters by receiving a plurality of utility parameter values, wherein each received utility parameter value corresponds to a weather parameter value. Determining that a range of weather parameter values lacks a sufficient amount of corresponding received utility parameter values. Determining one or more utility parameter values that corresponds to the range of weather parameter values. Creating a model which correlates the received and the determined utility parameter values with the corresponding weather parameters values.
Weather impacts on space operations
NASA Astrophysics Data System (ADS)
Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.
The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.
GEOSS interoperability for Weather, Ocean and Water
NASA Astrophysics Data System (ADS)
Richardson, David; Nyenhuis, Michael; Zsoter, Ervin; Pappenberger, Florian
2013-04-01
"Understanding the Earth system — its weather, climate, oceans, atmosphere, water, land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards — is crucial to enhancing human health, safety and welfare, alleviating human suffering including poverty, protecting the global environment, reducing disaster losses, and achieving sustainable development. Observations of the Earth system constitute critical input for advancing this understanding." With this in mind, the Group on Earth Observations (GEO) started implementing the Global Earth Observation System of Systems (GEOSS). GEOWOW, short for "GEOSS interoperability for Weather, Ocean and Water", is supporting this objective. GEOWOW's main challenge is to improve Earth observation data discovery, accessibility and exploitability, and to evolve GEOSS in terms of interoperability, standardization and functionality. One of the main goals behind the GEOWOW project is to demonstrate the value of the TIGGE archive in interdisciplinary applications, providing a vast amount of useful and easily accessible information to the users through the GEO Common Infrastructure (GCI). GEOWOW aims at developing funcionalities that will allow easy discovery, access and use of TIGGE archive data and of in-situ observations, e.g. from the Global Runoff Data Centre (GRDC), to support applications such as river discharge forecasting.TIGGE (THORPEX Interactive Grand Global Ensemble) is a key component of THORPEX: a World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. The TIGGE archive consists of ensemble weather forecast data from ten global NWP centres, starting from October 2006, which has been made available for scientific research. The TIGGE archive has been used to analyse hydro-meteorological forecasts of flooding in Europe as well as in China. In general the analysis has been favourable in terms of forecast skill and concluded that the use of a multi-model forecast is beneficial. Long term analysis of individual centres, such as the European Centre for Medium-Range Weather Forecasts (ECMWF), has been conducted in the past. However, no long term and large scale study has been performed so far with inclusion of different global numerical models. Here we present some initial results from such a study.
Mixture EMOS model for calibrating ensemble forecasts of wind speed.
Baran, S; Lerch, S
2016-03-01
Ensemble model output statistics (EMOS) is a statistical tool for post-processing forecast ensembles of weather variables obtained from multiple runs of numerical weather prediction models in order to produce calibrated predictive probability density functions. The EMOS predictive probability density function is given by a parametric distribution with parameters depending on the ensemble forecasts. We propose an EMOS model for calibrating wind speed forecasts based on weighted mixtures of truncated normal (TN) and log-normal (LN) distributions where model parameters and component weights are estimated by optimizing the values of proper scoring rules over a rolling training period. The new model is tested on wind speed forecasts of the 50 member European Centre for Medium-range Weather Forecasts ensemble, the 11 member Aire Limitée Adaptation dynamique Développement International-Hungary Ensemble Prediction System ensemble of the Hungarian Meteorological Service, and the eight-member University of Washington mesoscale ensemble, and its predictive performance is compared with that of various benchmark EMOS models based on single parametric families and combinations thereof. The results indicate improved calibration of probabilistic and accuracy of point forecasts in comparison with the raw ensemble and climatological forecasts. The mixture EMOS model significantly outperforms the TN and LN EMOS methods; moreover, it provides better calibrated forecasts than the TN-LN combination model and offers an increased flexibility while avoiding covariate selection problems. © 2016 The Authors Environmetrics Published by JohnWiley & Sons Ltd.
A Comparison of Five Numerical Weather Prediction Analysis Climatologies in Southern High Latitudes.
NASA Astrophysics Data System (ADS)
Connolley, William M.; Harangozo, Stephen A.
2001-01-01
In this paper, numerical weather prediction analyses from four major centers are compared-the Australian Bureau of Meteorology (ABM), the European Centre for Medium-Range Weather Forecasts (ECMWF), the U.S. National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR), and The Met. Office (UKMO). Two of the series-ECMWF reanalysis (ERA) and NCEP-NCAR reanalysis (NNR)-are `reanalyses'; that is, the data have recently been processed through a consistent, modern analysis system. The other three-ABM, ECMWF operational (EOP), and UKMO-are archived from operational analyses.The primary focus in this paper is on the period of 1979-93, the period used for the reanalyses, and on climatology. However, ABM and NNR are also compared for the period before 1979, for which the evidence tends to favor NNR. The authors are concerned with basic variables-mean sea level pressure, height of the 500-hPa surface, and near-surface temperature-that are available from the basic analysis step, rather than more derived quantities (such as precipitation), which are available only from the forecast step.Direct comparisons against station observations, intercomparisons of the spatial pattern of the analyses, and intercomparisons of the temporal variation indicate that ERA, EOP, and UKMO are best for sea level pressure;that UKMO and EOP are best for 500-hPa height; and that none of the analyses perform well for near-surface temperature.
NASA Astrophysics Data System (ADS)
Phillips, Thomas J.; Gates, W. Lawrence; Arpe, Klaus
1992-12-01
The effects of sampling frequency on the first- and second-moment statistics of selected European Centre for Medium-Range Weather Forecasts (ECMWF) model variables are investigated in a simulation of "perpetual July" with a diurnal cycle included and with surface and atmospheric fields saved at hourly intervals. The shortest characteristic time scales (as determined by the e-folding time of lagged autocorrelation functions) are those of ground heat fluxes and temperatures, precipitation and runoff, convective processes, cloud properties, and atmospheric vertical motion, while the longest time scales are exhibited by soil temperature and moisture, surface pressure, and atmospheric specific humidity, temperature, and wind. The time scales of surface heat and momentum fluxes and of convective processes are substantially shorter over land than over oceans. An appropriate sampling frequency for each model variable is obtained by comparing the estimates of first- and second-moment statistics determined at intervals ranging from 2 to 24 hours with the "best" estimates obtained from hourly sampling. Relatively accurate estimation of first- and second-moment climate statistics (10% errors in means, 20% errors in variances) can be achieved by sampling a model variable at intervals that usually are longer than the bandwidth of its time series but that often are shorter than its characteristic time scale. For the surface variables, sampling at intervals that are nonintegral divisors of a 24-hour day yields relatively more accurate time-mean statistics because of a reduction in errors associated with aliasing of the diurnal cycle and higher-frequency harmonics. The superior estimates of first-moment statistics are accompanied by inferior estimates of the variance of the daily means due to the presence of systematic biases, but these probably can be avoided by defining a different measure of low-frequency variability. Estimates of the intradiurnal variance of accumulated precipitation and surface runoff also are strongly impacted by the length of the storage interval. In light of these results, several alternative strategies for storage of the EMWF model variables are recommended.
NASA Astrophysics Data System (ADS)
Singh, Sanjeev Kumar; Prasad, V. S.
2018-02-01
This paper presents a systematic investigation of medium-range rainfall forecasts from two versions of the National Centre for Medium Range Weather Forecasting (NCMRWF)-Global Forecast System based on three-dimensional variational (3D-Var) and hybrid analysis system namely, NGFS and HNGFS, respectively, during Indian summer monsoon (June-September) 2015. The NGFS uses gridpoint statistical interpolation (GSI) 3D-Var data assimilation system, whereas HNGFS uses hybrid 3D ensemble-variational scheme. The analysis includes the evaluation of rainfall fields and comparisons of rainfall using statistical score such as mean precipitation, bias, correlation coefficient, root mean square error and forecast improvement factor. In addition to these, categorical scores like Peirce skill score and bias score are also computed to describe particular aspects of forecasts performance. The comparison results of mean precipitation reveal that both the versions of model produced similar large-scale feature of Indian summer monsoon rainfall for day-1 through day-5 forecasts. The inclusion of fully flow-dependent background error covariance significantly improved the wet biases in HNGFS over the Indian Ocean. The forecast improvement factor and Peirce skill score in the HNGFS have also found better than NGFS for day-1 through day-5 forecasts.
Improving medium-range ensemble streamflow forecasts through statistical post-processing
NASA Astrophysics Data System (ADS)
Mendoza, Pablo; Wood, Andy; Clark, Elizabeth; Nijssen, Bart; Clark, Martyn; Ramos, Maria-Helena; Nowak, Kenneth; Arnold, Jeffrey
2017-04-01
Probabilistic hydrologic forecasts are a powerful source of information for decision-making in water resources operations. A common approach is the hydrologic model-based generation of streamflow forecast ensembles, which can be implemented to account for different sources of uncertainties - e.g., from initial hydrologic conditions (IHCs), weather forecasts, and hydrologic model structure and parameters. In practice, hydrologic ensemble forecasts typically have biases and spread errors stemming from errors in the aforementioned elements, resulting in a degradation of probabilistic properties. In this work, we compare several statistical post-processing techniques applied to medium-range ensemble streamflow forecasts obtained with the System for Hydromet Applications, Research and Prediction (SHARP). SHARP is a fully automated prediction system for the assessment and demonstration of short-term to seasonal streamflow forecasting applications, developed by the National Center for Atmospheric Research, University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. The suite of post-processing techniques includes linear blending, quantile mapping, extended logistic regression, quantile regression, ensemble analogs, and the generalized linear model post-processor (GLMPP). We assess and compare these techniques using multi-year hindcasts in several river basins in the western US. This presentation discusses preliminary findings about the effectiveness of the techniques for improving probabilistic skill, reliability, discrimination, sharpness and resolution.
Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.
NASA Astrophysics Data System (ADS)
Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin
1998-11-01
Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.
Automatic visibility retrieval from thermal camera images
NASA Astrophysics Data System (ADS)
Dizerens, Céline; Ott, Beat; Wellig, Peter; Wunderle, Stefan
2017-10-01
This study presents an automatic visibility retrieval of a FLIR A320 Stationary Thermal Imager installed on a measurement tower on the mountain Lagern located in the Swiss Jura Mountains. Our visibility retrieval makes use of edges that are automatically detected from thermal camera images. Predefined target regions, such as mountain silhouettes or buildings with high thermal differences to the surroundings, are used to derive the maximum visibility distance that is detectable in the image. To allow a stable, automatic processing, our procedure additionally removes noise in the image and includes automatic image alignment to correct small shifts of the camera. We present a detailed analysis of visibility derived from more than 24000 thermal images of the years 2015 and 2016 by comparing them to (1) visibility derived from a panoramic camera image (VISrange), (2) measurements of a forward-scatter visibility meter (Vaisala FD12 working in the NIR spectra), and (3) modeled visibility values using the Thermal Range Model TRM4. Atmospheric conditions, mainly water vapor from European Center for Medium Weather Forecast (ECMWF), were considered to calculate the extinction coefficients using MODTRAN. The automatic visibility retrieval based on FLIR A320 images is often in good agreement with the retrieval from the systems working in different spectral ranges. However, some significant differences were detected as well, depending on weather conditions, thermal differences of the monitored landscape, and defined target size.
Evaluation of CMAQ and CAMx Ensemble Air Quality Forecasts during the 2015 MAPS-Seoul Field Campaign
NASA Astrophysics Data System (ADS)
Kim, E.; Kim, S.; Bae, C.; Kim, H. C.; Kim, B. U.
2015-12-01
The performance of Air quality forecasts during the 2015 MAPS-Seoul Field Campaign was evaluated. An forecast system has been operated to support the campaign's daily aircraft route decisions for airborne measurements to observe long-range transporting plume. We utilized two real-time ensemble systems based on the Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Comprehensive Air quality Model with extensions (CAMx) modeling framework and WRF-SMOKE- Community Multi_scale Air Quality (CMAQ) framework over northeastern Asia to simulate PM10 concentrations. Global Forecast System (GFS) from National Centers for Environmental Prediction (NCEP) was used to provide meteorological inputs for the forecasts. For an additional set of retrospective simulations, ERA Interim Reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) was also utilized to access forecast uncertainties from the meteorological data used. Model Inter-Comparison Study for Asia (MICS-Asia) and National Institute of Environment Research (NIER) Clean Air Policy Support System (CAPSS) emission inventories are used for foreign and domestic emissions, respectively. In the study, we evaluate the CMAQ and CAMx model performance during the campaign by comparing the results to the airborne and surface measurements. Contributions of foreign and domestic emissions are estimated using a brute force method. Analyses on model performance and emissions will be utilized to improve air quality forecasts for the upcoming KORUS-AQ field campaign planned in 2016.
Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 7: July
NASA Astrophysics Data System (ADS)
Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.
1989-07-01
The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of July. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.
Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 10: October
NASA Astrophysics Data System (ADS)
Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.
1989-07-01
The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of October. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point/standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.
Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 3: March
NASA Astrophysics Data System (ADS)
Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.
1989-11-01
The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of March. Included are global analyses of: (1) Mean Temperature Standard Deviation; (2) Mean Geopotential Height Standard Deviation; (3) Mean Density Standard Deviation; (4) Height and Vector Standard Deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean Dew Point Standard Deviation for levels 1000 through 30 mb; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.
Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 2: February
NASA Astrophysics Data System (ADS)
Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.
1989-09-01
The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of February. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Height and vector standard deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.
Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 4: April
NASA Astrophysics Data System (ADS)
Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.
1989-07-01
The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of April. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Height and vector standard deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.
Confocal Raman Microscopy: new perspective on the weathering of anhydrous cement
NASA Astrophysics Data System (ADS)
Torres-Carrasco, M.; del Campo, A.; de la Rubia, MA; Reyes, E.; Moragues, A.; Fernández, JF
2017-10-01
Raman spectroscopy when is combined with Confocal microscopy is a non-destructive technique that allow us to obtain information in cementitious materials. In this study, we present non-destructive image and structural analysis of anhydrous cement with carbonation evidences by Confocal Raman Microscopy (CRM). The results obtained by CRM show a direct relationship between the presence of the weathering processes of an anhydrous cement with the presence of sulphates and surprisingly, with the existence of amorphous carbon in the medium.
2016-05-11
new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric data...of new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric...the medium behavior at these frequency bands from both a physical and a statistical point of view (e.g., [5]-[7]). However, these campaigns are
The importance of range edges for an irruptive species during extreme weather events
Bateman, Brooke L.; Pidgeon, Anna M.; Radeloff, Volker C.; Allstadt, Andrew J.; Akçakaya, H. Resit; Thogmartin, Wayne E.; Vavrus, Stephen J.; Heglund, Patricia J.
2015-01-01
In a changing climate where more frequent extreme weather may be more common, conservation strategies for weather-sensitive species may require consideration of habitat in the edges of species’ ranges, even though non-core areas may be unoccupied in ‘normal’ years. Our results highlight the conservation importance of range edges in providing refuge from extreme events, such as drought, and climate change.
Engel, Jacqueline M.; May, Linda; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.
2016-01-01
Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite.Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds. This is the first time that multiple weathering clasts from the same watershed were analyzed for U-series isotope disequlibrian and show consistent results. The U-series disequilibria allowed for the determination of rind formation ages and weathering advance rates with a U-series mass balance model. The weathering advance rates generally decreased with decreasing curvature: ∼0.17 ± 0.10 mm/kyr for high curvature, ∼0.12 ± 0.05 mm/kyr for medium curvature, and ∼0.11 ± 0.04, 0.08 ± 0.03, 0.06 ± 0.03 mm/kyr for low curvature locations. The observed positive correlation between the curvature and the weathering rates is well supported by predictions of weathering models, i.e., that the curvature of the rind-core boundary controls the porosity creation and weathering advance rates at the clast scale.At the watershed scale, the new weathering advance rates derived on the low curvature transects for the relatively dry Deshaies watershed (average rate of 0.08 mm/kyr; MAP = 1800 mm and MAT = 23 °C) are ∼60% slower than the rind formation rates previously determined in the much wetter Bras David watershed (∼0.18 mm/kyr, low curvature transect; MAP = 3400 mm and MAT = 23 °C) also on Basse-Terre Island. Thus, a doubling of MAP roughly correlates with a doubling of weathering advance rate. The new rind study highlights the effect of precipitation on weathering rates over a time scale of ∼100 kyr. Weathering rinds are thus a suitable system for investigating long-term chemical weathering across environmental gradients, complementing short-term riverine solute fluxes.
On the assimilation of satellite derived soil moisture in numerical weather prediction models
NASA Astrophysics Data System (ADS)
Drusch, M.
2006-12-01
Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.
NASA Astrophysics Data System (ADS)
Najafi, H.; Shahbazi, A.; Zohrabi, N.; Robertson, A. W.; Mofidi, A.; Massah Bavani, A. R.
2016-12-01
Each year, a number of high impact weather events occur worldwide. Since any level of predictability at sub-seasonal to seasonal timescale is highly beneficial to society, international efforts is now on progress to promote reliable Ensemble Prediction Systems for monthly forecasts within the WWRP/WCRP initiative (S2S) project and North American Multi Model Ensemble (NMME). For water resources managers in the face of extreme events, not only can reliable forecasts of high impact weather events prevent catastrophic losses caused by floods but also contribute to benefits gained from hydropower generation and water markets. The aim of this paper is to analyze the predictability of recent severe weather events over Iran. Two recent heavy precipitations are considered as an illustration to examine whether S2S forecasts can be used for developing flood alert systems especially where large cascade of dams are in operation. Both events have caused major damages to cities and infrastructures. The first severe precipitation was is in the early November 2015 when heavy precipitation (more than 50 mm) occurred in 2 days. More recently, up to 300 mm of precipitation is observed within less than a week in April 2016 causing a consequent flash flood. Over some stations, the observed precipitation was even more than the total annual mean precipitation. To analyze the predictive capability, ensemble forecasts from several operational centers including (European Centre for Medium-Range Weather Forecasts (ECMWF) system, Climate Forecast System Version 2 (CFSv2) and Chinese Meteorological Center (CMA) are evaluated. It has been observed that significant changes in precipitation anomalies were likely to be predicted days in advance. The next step will be to conduct thorough analysis based on comparing multi-model outputs over the full hindcast dataset developing real-time high impact weather prediction systems.
Flat world versus real world : where is weathering the most important ?
NASA Astrophysics Data System (ADS)
Godderis, Yves; Maffre, Pierre; Ladant, Jean-Baptiste; Donnadieu, Yannick
2016-04-01
Mountain ranges are a key driver of the Earth climates. Acting on a large range of timescales, they modulate the atmospheric and oceanic circulations but also plays a crucial role in regulating the geological carbon cycle through their impacts on erosion and continental weathering. Since the 90's, there is an ongoing debate about the role of the mountain uplift on the long term global cooling of the Earth climate. Mountain ranges are thought to enhance silicate weathering and the associated CO2 consumption. But this has been repeatedly questioned in the recent years. Here we present a new method for modeling the spatial distribution of both physical erosion and coupled chemical weathering. The IPSL ocean-atmosphere model calculates the continental climate, which is used to force the erosion/weathering model. We first compare the global silicate weathering for two geographical configurations: the present-day world with mountain ranges, and a world where all mountains have been removed. Depending on the chosen formalism for silicate weathering and on the climate changes linked to the removal of mountains, it can be higher in the flat world than in the real world, or up to 5 times weaker. In the second part of the talk, we will explore the role of the Hercynian mountain range on the onset and demise of the late Paleozoic ice age, within the context of the Pangea assembly.
Environmental Impact Specification for Direct Space Weathering of Kuiper Belt and Oort Cloud Objects
NASA Technical Reports Server (NTRS)
Cooper, John F.
2010-01-01
The Direct Space Weathering Project of NASA's Outer Planets Research Program addresses specification of the plasma and energetic particle environments for irradiation and surface chemical processing of icy bodies in the outer solar system and the local interstellar medium. Knowledge of the radiation environments is being expanded by ongoing penetration of the twin Voyager spacecraft into the heliosheath boundary region of the outer heliosphere and expected emergence within the next decade into the very local interstellar medium. The Voyager measurements are being supplemented by remote sensing from Earth orbit of energetic neutral atom emission from this boundary region by NASA's Interstellar Boundary Explorer (IBEX). Although the Voyagers long ago passed the region of the Classical Kuiper Belt, the New Horizons spacecraft will encounter Pluto in 2015 and thereafter explore one or more KBOs, meanwhile providing updated measurements of the heliospheric radiation environment in this region. Modeling of ion transport within the heliosphere allows specification of time-integrated irradiation effects while the combination of Voyager and IBEX data supports projection of the in-situ measurements into interstellar space beyond the heliosheath. Transformation of model ion flux distributions into surface sputtering and volume ionization profiles provides a multi-layer perspective for space weathering impact on the affected icy bodies and may account for some aspects of color and compositional diversity. Other important related factors may include surface erosion and gardening by meteoritic impacts and surface renewal by cryovolcanism. Chemical products of space weathering may contribute to energy resources for the latter.
Integration of Weather Avoidance and Traffic Separation
NASA Technical Reports Server (NTRS)
Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.
2011-01-01
This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction
Sugihara, George; Casdagli, Martin; Habjan, Edward; Hess, Dale; Dixon, Paul; Holland, Greg
1999-01-01
We use residual-delay maps of observational field data for barometric pressure to demonstrate the structure of latitudinal gradients in nonlinearity in the atmosphere. Nonlinearity is weak and largely lacking in tropical and subtropical sites and increases rapidly into the temperate regions where the time series also appear to be much noisier. The degree of nonlinearity closely follows the meridional variation of midlatitude storm track frequency. We extract the specific functional form of this nonlinearity, a V shape in the lagged residuals that appears to be a basic feature of midlatitude synoptic weather systems associated with frontal passages. We present evidence that this form arises from the relative time scales of high-pressure versus low-pressure events. Finally, we show that this nonlinear feature is weaker in a well regarded numerical forecast model (European Centre for Medium-Range Forecasts) because small-scale temporal and spatial variation is smoothed out in the grided inputs. This is significant, in that it allows us to demonstrate how application of statistical corrections based on the residual-delay map may provide marked increases in local forecast accuracy, especially for severe weather systems. PMID:10588685
Forecasting of monsoon heavy rains: challenges in NWP
NASA Astrophysics Data System (ADS)
Sharma, Kuldeep; Ashrit, Raghavendra; Iyengar, Gopal; Bhatla, R.; Rajagopal, E. N.
2016-05-01
Last decade has seen a tremendous improvement in the forecasting skill of numerical weather prediction (NWP) models. This is attributed to increased sophistication in NWP models, which resolve complex physical processes, advanced data assimilation, increased grid resolution and satellite observations. However, prediction of heavy rains is still a challenge since the models exhibit large error in amounts as well as spatial and temporal distribution. Two state-of-art NWP models have been investigated over the Indian monsoon region to assess their ability in predicting the heavy rainfall events. The unified model operational at National Center for Medium Range Weather Forecasting (NCUM) and the unified model operational at the Australian Bureau of Meteorology (Australian Community Climate and Earth-System Simulator -- Global (ACCESS-G)) are used in this study. The recent (JJAS 2015) Indian monsoon season witnessed 6 depressions and 2 cyclonic storms which resulted in heavy rains and flooding. The CRA method of verification allows the decomposition of forecast errors in terms of error in the rainfall volume, pattern and location. The case by case study using CRA technique shows that contribution to the rainfall errors come from pattern and displacement is large while contribution due to error in predicted rainfall volume is least.
IRRIMET: a web 2.0 advisory service for irrigation water management
NASA Astrophysics Data System (ADS)
De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni
2016-04-01
Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.
Tropospheric delay ray tracing applied in VLBI analysis
NASA Astrophysics Data System (ADS)
Eriksson, David; MacMillan, D. S.; Gipson, John M.
2014-12-01
Tropospheric delay modeling error continues to be one of the largest sources of error in VLBI (very long baseline interferometry) analysis. For standard operational solutions, we use the VMF1 elevation-dependent mapping functions derived from European Centre for Medium-Range Weather Forecasts data. These mapping functions assume that tropospheric delay at a site is azimuthally symmetric. As this assumption is not true, we have instead determined the ray trace delay along the signal path through the troposphere for each VLBI quasar observation. We determined the troposphere refractivity fields from the pressure, temperature, specific humidity, and geopotential height fields of the NASA Goddard Space Flight Center Goddard Earth Observing System version 5 numerical weather model. When applied in VLBI analysis, baseline length repeatabilities were improved compared with using the VMF1 mapping function model for 72% of the baselines and site vertical repeatabilities were better for 11 of 13 sites during the 2 week CONT11 observing period in September 2011. When applied to a larger data set (2011-2013), we see a similar improvement in baseline length and also in site position repeatabilities for about two thirds of the stations in each of the site topocentric components.
NASA Astrophysics Data System (ADS)
Bellier, Joseph; Bontron, Guillaume; Zin, Isabella
2017-12-01
Meteorological ensemble forecasts are nowadays widely used as input of hydrological models for probabilistic streamflow forecasting. These forcings are frequently biased and have to be statistically postprocessed, using most of the time univariate techniques that apply independently to individual locations, lead times and weather variables. Postprocessed ensemble forecasts therefore need to be reordered so as to reconstruct suitable multivariate dependence structures. The Schaake shuffle and ensemble copula coupling are the two most popular methods for this purpose. This paper proposes two adaptations of them that make use of meteorological analogues for reconstructing spatiotemporal dependence structures of precipitation forecasts. Performances of the original and adapted techniques are compared through a multistep verification experiment using real forecasts from the European Centre for Medium-Range Weather Forecasts. This experiment evaluates not only multivariate precipitation forecasts but also the corresponding streamflow forecasts that derive from hydrological modeling. Results show that the relative performances of the different reordering methods vary depending on the verification step. In particular, the standard Schaake shuffle is found to perform poorly when evaluated on streamflow. This emphasizes the crucial role of the precipitation spatiotemporal dependence structure in hydrological ensemble forecasting.
NASA Technical Reports Server (NTRS)
Stoffelen, AD; Anderson, David L. T.; Woiceshyn, Peter M.
1992-01-01
Calibration and validation activities for the ERS-1 scatterometer were carried out at ECMWF (European Center for Medium range Weather Forecast) complementary to the 'Haltenbanken' field campaign off the coast of Norway. At a Numerical Weather Prediction (NWP) center a wealth of verifying data is available both in time and space. This data is used to redefine the wind retrieval procedure given the instrumental characteristics. It was found that a maximum likelihood estimation procedure to obtain the coefficients of a reformulated sigma deg to wind relationship should use radar measurements in logarithmic rather than physical space, and use winds as the wind components rather than wind speed and direction. Doing this, a much more accurate transfer function than the one currently operated by ESA was derived. Sigma deg measurement space shows no signature of a separation in an upwind solution cone and a downwind solution cone. As such signature was anticipated in ESA's wind direction ambiguity removal algorithm, reconsideration of the procedure is necessary. Despite the fact that revisions have to be made in the process of wind retrieval; a grid potential is shown for scatterometry in meteorology and climatology.
NASA Astrophysics Data System (ADS)
Dutton, John A.; James, Richard P.; Ross, Jeremy D.
2013-06-01
Seasonal probability forecasts produced with numerical dynamics on supercomputers offer great potential value in managing risk and opportunity created by seasonal variability. The skill and reliability of contemporary forecast systems can be increased by calibration methods that use the historical performance of the forecast system to improve the ongoing real-time forecasts. Two calibration methods are applied to seasonal surface temperature forecasts of the US National Weather Service, the European Centre for Medium Range Weather Forecasts, and to a World Climate Service multi-model ensemble created by combining those two forecasts with Bayesian methods. As expected, the multi-model is somewhat more skillful and more reliable than the original models taken alone. The potential value of the multimodel in decision making is illustrated with the profits achieved in simulated trading of a weather derivative. In addition to examining the seasonal models, the article demonstrates that calibrated probability forecasts of weekly average temperatures for leads of 2-4 weeks are also skillful and reliable. The conversion of ensemble forecasts into probability distributions of impact variables is illustrated with degree days derived from the temperature forecasts. Some issues related to loss of stationarity owing to long-term warming are considered. The main conclusion of the article is that properly calibrated probabilistic forecasts possess sufficient skill and reliability to contribute to effective decisions in government and business activities that are sensitive to intraseasonal and seasonal climate variability.
Wedi, Nils P
2014-06-28
The steady path of doubling the global horizontal resolution approximately every 8 years in numerical weather prediction (NWP) at the European Centre for Medium Range Weather Forecasts may be substantially altered with emerging novel computing architectures. It coincides with the need to appropriately address and determine forecast uncertainty with increasing resolution, in particular, when convective-scale motions start to be resolved. Blunt increases in the model resolution will quickly become unaffordable and may not lead to improved NWP forecasts. Consequently, there is a need to accordingly adjust proven numerical techniques. An informed decision on the modelling strategy for harnessing exascale, massively parallel computing power thus also requires a deeper understanding of the sensitivity to uncertainty--for each part of the model--and ultimately a deeper understanding of multi-scale interactions in the atmosphere and their numerical realization in ultra-high-resolution NWP and climate simulations. This paper explores opportunities for substantial increases in the forecast efficiency by judicious adjustment of the formal accuracy or relative resolution in the spectral and physical space. One path is to reduce the formal accuracy by which the spectral transforms are computed. The other pathway explores the importance of the ratio used for the horizontal resolution in gridpoint space versus wavenumbers in spectral space. This is relevant for both high-resolution simulations as well as ensemble-based uncertainty estimation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Biogenic Cracks in Porous Rock
NASA Astrophysics Data System (ADS)
Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.
2014-12-01
Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.
Time Relevance of Convective Weather Forecast for Air Traffic Automation
NASA Technical Reports Server (NTRS)
Chan, William N.
2006-01-01
The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic as opposed to the deterministic shorter range forecasts. Despite the known low level of confidence with respect to long range convective forecasts, these data are still useful to a DST routing algorithm. It is better to develop an aircraft route using the best information available than no information. The temporally coarse long range forecast data needs to be interpolated to be useful to a DST. A DST uses aircraft trajectory predictions that need to be evaluated for impacts by convective storms. Each time-step of a trajectory prediction n&s to be checked against weather data. For the case of coarse temporal data, there needs to be a method fill in weather data where there is none. Simply using the coarse weather data without any interpolation can result in DST routes that are impacted by regions of strong convection. Increasing the temporal resolution of these data can be achieved but result in a large dataset that may prove to be an operational challenge in transmission and loading by a DST. Currently, it takes about 7mins retrieve a 7mb RUC2 forecast file from NOAA at NASA-Ames Research Center. A prototype NCWF6 1 hour forecast is about 3mb in size. A Six hour NCWFG forecast with a 1hr forecast time-step will be about l8mb (6 x 3mb). A 6 hour NCWF6 forecast with a l5min forecast time-step will be about 7mb (24 x 3mb). Based on the time it takes to retrieve a 7mb RUC2 forecast, it will take approximately 70mins to retrieve a 6 hour NCWF forecast with 15min time steps. Until those issues are addressed, there is a need to develop an algorithm that interpolates between these temporally coarse long range forecasts. This paper describes a method of how to use low temporal resolution probabilistic weather forecasts in a DST. The beginning of this paper is a description of some convective weather forecast and observation products followed by an example of how weather data are used by a DST. The subsequent sections will describe probabilistic forecasts followed by a descrtion of a method to use low temporal resolution probabilistic weather forecasts by providing a relevance value to these data outside of their valid times.
Climate Prediction - NOAA's National Weather Service
Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Climate > Predictions Climate Prediction Long range forecasts across the U.S. Climate Prediction Web Sites Climate Prediction
Nonlinear problems in data-assimilation : Can synchronization help?
NASA Astrophysics Data System (ADS)
Tribbia, J. J.; Duane, G. S.
2009-12-01
Over the past several years, operational weather centers have initiated ensemble prediction and assimilation techniques to estimate the error covariance of forecasts in the short and the medium range. The ensemble techniques used are based on linear methods. The theory This technique s been shown to be a useful indicator of skill in the linear range where forecast errors are small relative to climatological variance. While this advance has been impressive, there are still ad hoc aspects of its use in practice, like the need for covariance inflation which are troubling. Furthermore, to be of utility in the nonlinear range an ensemble assimilation and prediction method must be capable of giving probabilistic information for the situation where a probability density forecast becomes multi-modal. A prototypical, simplest example of such a situation is the planetary-wave regime transition where the pdf is bimodal. Our recent research show how the inconsistencies and extensions of linear methodology can be consistently treated using the paradigm of synchronization which views the problems of assimilation and forecasting as that of optimizing the forecast model state with respect to the future evolution of the atmosphere.
Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service
NASA Astrophysics Data System (ADS)
Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.
2016-12-01
The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.
2006-12-01
2 D . APPROACH TAKEN......................................................................................3 E...7 d . FORCEnet.................................................................................8 D . HISTORY OF LONG-RANGE PROJECTILES (LRPS...46 D . NUMERICAL WEATHER MODELING CENTERS...............................47 1. Fleet Numerical Meteorological
SSM/I and ECMWF Wind Vector Comparison
NASA Technical Reports Server (NTRS)
Wentz, Frank J.; Ashcroft, Peter D.
1996-01-01
Wentz was the first to convincingly show that satellite microwave radiometers have the potential to measure the oceanic wind vector. The most compelling evidence for this conclusion was the monthly wind vector maps derived solely from a statistical analysis of Special Sensor Microwave Imager (SSM/I) observations. In a qualitative sense, these maps clearly showed the general circulation over the world's oceans. In this report we take a closer look at the SSM/I monthly wind vector maps and compare them to European Center for Medium-Range Weather Forecasts (ECMWF) wind fields. This investigation leads both to an empirical comparison of SSM/I calculated wind vectors with ECMWF wind vectors, and to an examination of possible reasons that the SSM/I calculated wind vector direction would be inherently more reliable at some locations than others.
Rossby-gravity waves in tropical total ozone data
NASA Technical Reports Server (NTRS)
Stanford, J. L.; Ziemke, J. R.
1993-01-01
Evidence for Rossby-gravity waves in tropical data fields produced by the European Center for Medium Range Weather Forecasts (ECMWF) was recently reported. Similar features are observable in fields of total column ozone from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The observed features are episodic, have zonal (east-west) wavelengths of 6,000-10,000 km, and oscillate with periods of 5-10 days. In accord with simple linear theory, the modes exhibit westward phase progression and eastward group velocity. The significance of finding Rossby-gravity waves in total ozone fields is that (1) the report of similar features in ECMWF tropical fields is corroborated with an independent data set and (2) the TOMS data set is demonstrated to possess surprising versatility and sensitivity to relatively smaller scale tropical phenomena.
California Drought and the 2015-2016 El Niño
NASA Astrophysics Data System (ADS)
Cash, B.
2017-12-01
California winter rainfall is examined in observations and data from the North American Multi-Model Ensemble (NMME) and Project Metis, a new suite of seasonal integrations made using the operational European Centre for Medium-Range Weather Forecasts model. We focus on the 2015-2016 season, and the non-canonical response to the major El Niño event that occurred. We show that the Metis ensemble mean is capable of distinguishing between the response to the 1997/98 and 2015/16 events, while the two events are more similar in the NMME. We also show that unpredicted variations in the atmospheric circulation in the north Pacific significantly affect southern California rainfall totals. Improving prediction of these variations is thus a key target for improving seasonal rainfall predictions for this region.
Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories
NASA Astrophysics Data System (ADS)
Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan
2017-10-01
Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.
El Niño suppresses Antarctic warming
NASA Astrophysics Data System (ADS)
Bertler, Nancy A. N.; Barrett, Peter J.; Mayewski, Paul A.; Fogt, Ryan L.; Kreutz, Karl J.; Shulmeister, James
2004-08-01
Here we present new isotope records derived from snow samples from the McMurdo Dry Valleys, Antarctica and re-analysis data of the European Centre for Medium-Range Weather Forecasts (ERA-40) to explain the connection between the warming of the Pacific sector of the Southern Ocean [Jacka and Budd, 1998; Jacobs et al., 2002] and the current cooling of the terrestrial Ross Sea region [Doran et al., 2002a]. Our analysis confirms previous findings that the warming is linked to the El Niño Southern Oscillation (ENSO) [Kwok and Comiso, 2002a, 2002b; Carleton, 2003; Ribera and Mann, 2003; Turner, 2004], and provides new evidence that the terrestrial cooling is caused by a simultaneous ENSO driven change in atmospheric circulation, sourced in the Amundsen Sea and West Antarctica.
Use of medium-range numerical weather prediction model output to produce forecasts of streamflow
Clark, M.P.; Hay, L.E.
2004-01-01
This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases he accuracy of precipitation forecasts over the northeastern United States, but overall, the accuracy of MOS-based precipitation forecasts is slightly lower than the raw NCEP forecasts. Four basins in the United States were chosen as case studies to evaluate the value of MRF output for predictions of streamflow. Streamflow forecasts using MRF output were generated for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado: East Fork of the Carson River near Gardnerville, Nevada: and Cle Elum River near Roslyn, Washington). Hydrologic model output forced with measured-station data were used as "truth" to focus attention on the hydrologic effects of errors in the MRF forecasts. Eight-day streamflow forecasts produced using the MOS-corrected MRF output as input (MOS) were compared with those produced using the climatic Ensemble Streamflow Prediction (ESP) technique. MOS-based streamflow forecasts showed increased skill in the snowmelt-dominated river basins, where daily variations in streamflow are strongly forced by temperature. In contrast, the skill of MOS forecasts in the rainfall-dominated basin (the Alapaha River) were equivalent to the skill of the ESP forecasts. Further improvements in streamflow forecasts require more accurate local-scale forecasts of precipitation and temperature, more accurate specification of basin initial conditions, and more accurate model simulations of streamflow. ?? 2004 American Meteorological Society.
NASA Astrophysics Data System (ADS)
Soraya, N. W.; El Hadi, R. M.; Chumaidiyah, E.; Tripiawan, W.
2017-12-01
Conventional drying process is constrained by weather (cloudy / rainy), and requires wide drying area, and provides low-quality product. Multi-function dual energy oven is the appropriate technology to solve these problems. The oven uses solar thermal or gas heat for drying various type of products, including tapioca crackers. Investment analysis in technical, operational, and financial aspects show that the multi-function dual energy oven is feasible to be implemented for small medium enterprise (SME) processing tapioca crackers.
Evaluation of Contrail Reduction Strategies Based on Aircraft Flight Distances
NASA Technical Reports Server (NTRS)
Chen, Neil Y.; Sridhar, Banavar; Li, Jinhua; Ng, Hok Kwan
2012-01-01
This paper evaluates a set of contrail reduction strategies based on the flight range of aircraft as contrail reduction strategies have different impacts on aircraft depending on how they plan to fly. In general, aircraft with longer flight distances cruise at the altitudes where contrails are more likely to form. The concept of the contrail frequency index is used to quantify contrail impacts. The strategy for reducing the persistent contrail formation is to minimize the contrail frequency index by altering the aircraft's cruising altitude. A user-defined factor is used to trade off between contrail reduction and extra CO2 emissions. A higher value of tradeoff factor results in more contrail reduction and extra CO2 emissions. Results show that contrail reduction strategies using various tradeo factors behave differently from short-range flights to long-range ights. Analysis shows that short-distance flights (less than 500 miles) are the most frequent flights but contribute least to contrail reduction. Therefore these aircraft have the lowest priority when applying contrail reduction strategies. Medium-distance flights (500 to 1000 miles) have a higher priority if the goal is to achieve maximum contrail reduction in total; long-distance flights (1000 to 1500 miles) have a higher priority if the goal is to achieve maximum contrail reduction per flight. The characteristics of transcontinental flights (greater than 1500 miles) vary with different weather days so the priority of applying contrail reduction strategies to the group needs to be evaluated based on the locations of the contrail areas during any given day. For the days tested, medium-distance ights contribute up to 42.6% of the reduction among the groups during a day. The contrail frequency index per 1,000 miles for medium-distance, long-distance, and transcontinental flights can be reduced by an average of 75%. The results provide a starting point for developing operational policies to reduce the impact of aviation on climate based on aircraft flight distances.
Developments of the European Flood Awareness System (EFAS)
NASA Astrophysics Data System (ADS)
Thiemig, Vera; Olav Skøien, Jon; Salamon, Peter; Pappenberger, Florian; Wetterhall, Fredrik; Holst, Bo; Asp, Sara-Sophia; Garcia Padilla, Mercedes; Garcia, Rafael J.; Schweim, Christoph; Ziese, Markus
2017-04-01
EFAS (http://www.efas.eu) is an operational system for flood forecasting and early warning for the entire Europe, which is fully operational as part of the Copernicus Emergency Management Service since 2012. The prime aim of EFAS is to gain time for preparedness measures before major flood events - particularly in trans-national river basins - strike. This is achieved by providing complementary, added value information to the national and regional services holding the mandate for flood warning as well as to the ERCC (European Response and Coordination Centre). Using a coherent model for all of Europe forced with a range of deterministic and ensemble weather forecasts, the system can give a probabilistic flood forecast for a medium range lead time (up to 10 days) independent of country borders. The system is under continuous development, and we will present the basic set up, some prominent examples of recent and ongoing developments (such as the rapid impact assessment, seasonal outlook and the extended domain) and the future challenges.
Process studies with airborne GLORIA limb-imaging FTS observations during the Arctic winter 2015/16
NASA Astrophysics Data System (ADS)
Woiwode, W.; Bramberger, M.; Braun, M.; Dörnbrack, A.; Friedl-Vallon, F.; Grooss, J. U.; Hoepfner, M.; Johansson, S.; Latzko, T.; Oelhaf, H.; Orphal, J.; Preusse, P.; Sinnhuber, B. M.; Suminska-Ebersoldt, O.; Ungermann, J.
2017-12-01
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) limb-imaging infrared Fourier-Transform Spectrometer (FTS) was deployed on board the High Altitude and LOng range research aircraft (HALO) from December 2015 until March 2016 for process studies in the Arctic and mid-latitudes. Operations were carried out from Kiruna (Sweden, 68°N) and Oberpfaffenhofen (Germany, 48°N) in the framework of the combined POLSTRACC/GW-LCYCLE/SALSA (PGS) campaigns, including 18 scientific HALO flights and about 156 flight hours. After a brief overview of the instrument, examples of process studies using GLORIA high spectral resolution mode observations will be given: (1) Strong nitrification of the Arctic lowermost stratosphere during the exceptionally cold stratospheric winter 2015/16 and comparisons with CLaMS (Chemical Lagrangian Model of the Stratosphere) chemistry transport simulations. (ii) A case study involving high-resolution ECMWF (European Centre for Medium-Range Weather Forecasts) IFS (Integrated Forecasting System) data, investigating the meridional structure of a tropopause fold interfering with a mountain wave.
NASA Astrophysics Data System (ADS)
Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.
2018-03-01
There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and underestimate the heavy rain days compared to the observation data.
Quasi-most unstable modes: a window to 'À la carte' ensemble diversity?
NASA Astrophysics Data System (ADS)
Homar Santaner, Victor; Stensrud, David J.
2010-05-01
The atmospheric scientific community is nowadays facing the ambitious challenge of providing useful forecasts of atmospheric events that produce high societal impact. The low level of social resilience to false alarms creates tremendous pressure on forecasting offices to issue accurate, timely and reliable warnings.Currently, no operational numerical forecasting system is able to respond to the societal demand for high-resolution (in time and space) predictions in the 12-72h time span. The main reasons for such deficiencies are the lack of adequate observations and the high non-linearity of the numerical models that are currently used. The whole weather forecasting problem is intrinsically probabilistic and current methods aim at coping with the various sources of uncertainties and the error propagation throughout the forecasting system. This probabilistic perspective is often created by generating ensembles of deterministic predictions that are aimed at sampling the most important sources of uncertainty in the forecasting system. The ensemble generation/sampling strategy is a crucial aspect of their performance and various methods have been proposed. Although global forecasting offices have been using ensembles of perturbed initial conditions for medium-range operational forecasts since 1994, no consensus exists regarding the optimum sampling strategy for high resolution short-range ensemble forecasts. Bred vectors, however, have been hypothesized to better capture the growing modes in the highly nonlinear mesoscale dynamics of severe episodes than singular vectors or observation perturbations. Yet even this technique is not able to produce enough diversity in the ensembles to accurately and routinely predict extreme phenomena such as severe weather. Thus, we propose a new method to generate ensembles of initial conditions perturbations that is based on the breeding technique. Given a standard bred mode, a set of customized perturbations is derived with specified amplitudes and horizontal scales. This allows the ensemble to excite growing modes across a wider range of scales. Results show that this approach produces significantly more spread in the ensemble prediction than standard bred modes alone. Several examples that illustrate the benefits from this approach for severe weather forecasts will be provided.
An Overview of the National Weather Service National Water Model
NASA Astrophysics Data System (ADS)
Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Feng, X.; Karsten, L. R.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.
2016-12-01
The National Weather Service (NWS) Office of Water Prediction (OWP), in conjunction with the National Center for Atmospheric Research (NCAR) and the NWS National Centers for Environmental Prediction (NCEP) recently implemented version 1.0 of the National Water Model (NWM) into operations. This model is an hourly cycling uncoupled analysis and forecast system that provides streamflow for 2.7 million river reaches and other hydrologic information on 1km and 250m grids. It will provide complementary hydrologic guidance at current NWS river forecast locations and significantly expand guidance coverage and type in underserved locations. The core of this system is the NCAR-supported community Weather Research and Forecasting (WRF)-Hydro hydrologic model. It ingests forcing from a variety of sources including Multi-Sensor Multi-Radar (MRMS) radar-gauge observed precipitation data and High Resolution Rapid Refresh (HRRR), Rapid Refresh (RAP), Global Forecast System (GFS) and Climate Forecast System (CFS) forecast data. WRF-Hydro is configured to use the Noah-Multi Parameterization (Noah-MP) Land Surface Model (LSM) to simulate land surface processes. Separate water routing modules perform diffusive wave surface routing and saturated subsurface flow routing on a 250m grid, and Muskingum-Cunge channel routing down National Hydrogaphy Dataset Plus V2 (NHDPlusV2) stream reaches. River analyses and forecasts are provided across a domain encompassing the Continental United States (CONUS) and hydrologically contributing areas, while land surface output is available on a larger domain that extends beyond the CONUS into Canada and Mexico (roughly from latitude 19N to 58N). The system includes an analysis and assimilation configuration along with three forecast configurations. These include a short-range 15 hour deterministic forecast, a medium-Range 10 day deterministic forecast and a long-range 30 day 16-member ensemble forecast. United Sates Geologic Survey (USGS) streamflow observations are assimilated into the analysis and assimilation configuration, and all four configurations benefit from the inclusion of 1,260 reservoirs. An overview of the National Water Model will be given, along with information on ongoing evaluation activities and plans for future NWM enhancements.
NASA Astrophysics Data System (ADS)
Allstadt, A. J.; Gorzo, J.; Bateman, B. L.; Heglund, P. J.; Pidgeon, A. M.; Thogmartin, W.; Vavrus, S. J.; Radeloff, V.
2016-12-01
Often, fewer birds are often observed in an area experiencing extreme weather, as local populations tend to leave an area (via out-migration or concentration in refugia) or experience a change in population size (via mortality or reduced fecundity). Further, weather patterns are often coherent over large areas so unsuitable weather may threaten large portions of an entire species range simultaneously. However, beyond a few iconic irruptive species, rarely have studies applied both the necessary scale and sensitivity required to assess avian population responses over entire species range. Here, we examined the effects of pre-breeding season weather on the distribution and abundances of 103 North American bird species from the late 1966-2010 using observed abundance records from the Breeding Bird Survey. We compared abundances with measures of drought and temperature over each species' range, and with three atmospheric teleconnections that describe large-scale circulation patterns influencing conditions on the ground. More than 90% of the species responded to at least one of our five weather variables. Grassland bird species tended to be most responsive to weather conditions and forest birds the least, though we found relations among all habitat types. For most species, the response was movement rather than large effects on the overall population size. Maps of these responses indicate that concentration and out-migration are both common strategies for coping with challenging weather conditions across a species range. The dynamic distribution of many bird species makes clear the need to account for temporal variability in conservation planning, as areas that are less important for a species' breeding success in most years may be very important in years with abnormal weather conditions.
NASA Astrophysics Data System (ADS)
Sharma, Sanjib; Siddique, Ridwan; Reed, Seann; Ahnert, Peter; Mendoza, Pablo; Mejia, Alfonso
2018-03-01
The relative roles of statistical weather preprocessing and streamflow postprocessing in hydrological ensemble forecasting at short- to medium-range forecast lead times (day 1-7) are investigated. For this purpose, a regional hydrologic ensemble prediction system (RHEPS) is developed and implemented. The RHEPS is comprised of the following components: (i) hydrometeorological observations (multisensor precipitation estimates, gridded surface temperature, and gauged streamflow); (ii) weather ensemble forecasts (precipitation and near-surface temperature) from the National Centers for Environmental Prediction 11-member Global Ensemble Forecast System Reforecast version 2 (GEFSRv2); (iii) NOAA's Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM); (iv) heteroscedastic censored logistic regression (HCLR) as the statistical preprocessor; (v) two statistical postprocessors, an autoregressive model with a single exogenous variable (ARX(1,1)) and quantile regression (QR); and (vi) a comprehensive verification strategy. To implement the RHEPS, 1 to 7 days weather forecasts from the GEFSRv2 are used to force HL-RDHM and generate raw ensemble streamflow forecasts. Forecasting experiments are conducted in four nested basins in the US Middle Atlantic region, ranging in size from 381 to 12 362 km2. Results show that the HCLR preprocessed ensemble precipitation forecasts have greater skill than the raw forecasts. These improvements are more noticeable in the warm season at the longer lead times (> 3 days). Both postprocessors, ARX(1,1) and QR, show gains in skill relative to the raw ensemble streamflow forecasts, particularly in the cool season, but QR outperforms ARX(1,1). The scenarios that implement preprocessing and postprocessing separately tend to perform similarly, although the postprocessing-alone scenario is often more effective. The scenario involving both preprocessing and postprocessing consistently outperforms the other scenarios. In some cases, however, the differences between this scenario and the scenario with postprocessing alone are not as significant. We conclude that implementing both preprocessing and postprocessing ensures the most skill improvements, but postprocessing alone can often be a competitive alternative.
LIGHT NONAQUEOUS-PHASE LIQUID HYDROCARBON WEATHERING AT SOME JP-4 FUEL RELEASE SITES
A fuel weathering study was conducted for database entries to estimate natural light, nonaqueousphase
liquid weathering and source-term reduction rates for use in natural attenuation models. A range of BTEX
weathering rates from mobile LNAPL plumes at eight field sites with...
NASA Astrophysics Data System (ADS)
Kumar, Amit; Gokhale, Anupam Anand; Shukla, Tanuj; Dobhal, Dwarika Prasad
2016-07-01
Sediments released from high altitude glaciers exhibit varying evacuation patterns and transport characteristics owing to the presence of thick debris cover over the glacier. Despite the recent needs for integrated hydrometeorological studies in the Himalaya, little is known about the impacts of suspended sediment on hydropower generation, reservoir sedimentation, and abrasion of turbine components. Present study involves analysis of particle size distribution of suspended sediments to understand sediment evacuation patterns and transport characteristics in variable energy conditions during the ablation season. Peak suspended sediments were evacuated during extreme rainfall events. The estimated seasonal modern sediment erosion rate varies from 0.6 to 2.3 mm y- 1 for the study period (2009-2012). The analysis shows dominance of medium silt-sized to fine sand-sized particles having sediment size of 0.0156-0.25 mm corresponding to 70-80% without any significant seasonal variation. These transported sediments show that they are poorly sorted, coarser in nature with a nearly symmetrical to coarse skewed texture and kurtosis analysis suggesting mesokurtic distribution of sediments. The particle size fraction ranges between 4.65 and 5.23 ϕ, which is dominantly medium to coarse silty in texture. Results indicate that suspended sediments are evacuated in highly variable energy conditions through subglacial transport pathways because of increase in availability of meltwater with the progressive ablation season. Bulk geochemical characterization has been carried out to differentiate the source of suspended sediments and intensity of weathering. Chemical Index of Alterations (CIA) values of sediment flux range from 54.68 to 55.18 compared to the Upper Continental Crust (UCC) ~ 50, indicating moderate intensity of weathering. Mean seasonal (2009-2012) elemental fluxes and their contribution to the suspended sediment flux reflect that Si and Al are responsible for about 85% of the total detrital elemental flux. Trace elements show high concentrations of radioactive elements like U, Th, Pb, and Rb that suggest their high anomalous presence in the catchment lithology. An overall study indicates that the hydroclimatic conditions over the debris-covered glacier play a dominant controlling factor in erosion, transportation, and evacuation of suspended sediments during the ablation season.
Evaluation of Software Simulation of Road Weather Information System.
DOT National Transportation Integrated Search
2016-09-01
A road weather information system (RWIS) is a combination of technologies that collects, transmits, models, and disseminates weather and road condition information. Sensors measure a range of weatherrelated conditions, including pavement temperatur...
Our Understanding of Space Weather features responsible for geostationary satellite anamolies (P39)
NASA Astrophysics Data System (ADS)
Rajaram, G.; et al.
2006-11-01
girija60@yahoo.com The topic of space weather effects on operational anomalies on spacecraft is one of considerable research investigation, with both pure and applied aspects. This is because of the very high costs involved in fabricating and operating spacecraft, and in insuring them against the harmful effects of space weather. This is more true for geostationary satellites than of low-orbiting spacecraft, as the former operate in the high-risk environment of the Earth’s outer radiation belts, with its large vagaries in spatial and time variations of high- energy electron and proton distributions (BAKER 2003). Without doubt, plasma and magnetic field emissions from active regions on the Sun are the root cause for spacecraft anomalies. Our study for 2005 shows that over 95% of anomalies can be related to some definite activity on the Sun, ranging from high-speed solar wind streams with their 27-day recurrence patterns/coronal holes/coronal mass ejections preceded by X or M type of flares/and magnetic cloud events. The most energetic solar activity events are generally accompanied by a large rise in solar MeV proton densities at geo-stationary orbit (WILKINSON 1994), and they account for definite anomalies classified as SEU (Single Event Upsets which most often are reversible through resetting commands). Any particles in the low energy ranges (eV and keV, and these could be of magnetospheric or ionospheric origin), are believed to cause external charging effects in exposed parts of the spacecraft such as solar power arrays and power cables. These mainly result in power losses which are debilitating over a period of time. The most dangerous and often irrecoverable damage is due to electronics in the 1-5 MeV range which cause deep dielectric discharge of arc type in semi-conductors comprising spacecraft instruments. Following major solar activity, the populations of these rise to more than (5x103) particles/cm2.ster.sec, with large spatial and time variations (LOVE et al. 2000). When the influence of these relativistic electrons in the neighborhood of geo-stationary spacecraft builds up to values exceeding 108/cm2.ster.day, satellite anomalies invariably occur.Our study finds that these ‘Relativistic electron events’ accompanied by satellite anomalies invariably occur following sharp, well-defined shocks in the inter-planetary medium, and we are trying to understand the relationship between the two. We also notice that anomalies due to space weather effects are very satellite-specific, with differing threshold values seen for different satellites.
Colluvial deposits as a possible weathering reservoir in uplifting mountains
NASA Astrophysics Data System (ADS)
Carretier, Sébastien; Goddéris, Yves; Martinez, Javier; Reich, Martin; Martinod, Pierre
2018-03-01
The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains sparsely covered by regolith during cold periods, colluvium produces most of the simulated weathering flux for a large range of erosion parameters and precipitation rate patterns. In addition to other reservoirs such as deep fractured bedrock, colluvial deposits may help to maintain a substantial and constant weathering flux in rapidly uplifting mountains during cooling periods.
FIELD-SCALE LEACHING OF ARSENIC, CHROMIUM AND COPPER FROM WEATHERED TREATED WOOD
Hasan, A. Rasem; Hu, Ligang; Solo-Gabriele, Helena M.; Fieber, Lynne; Cai, Yong; Townsend, Timothy G.
2010-01-01
Earlier studies documented the loss of wood preservatives from new wood. The objective of this study was to evaluate losses from weathered treated wood under field conditions by collecting rainfall leachate from 5 different wood types, all with a surface area of 0.21 m2. Wood samples included weathered chromate copper arsenate (CCA) treated wood at low (2.7 kg/m3), medium (4.8 kg/m3) and high (35.4 kg/m3) retention levels, new alkaline copper quat (ACQ) treated wood (1.1 kg/m3 as CuO) and new untreated wood. Arsenic was found to leach at a higher rate (100 mg in 1 year for low retention) than chromium and copper (<40 mg) in all CCA treated wood samples. Copper leached at the highest rate from the ACQ sample (670 mg). Overall results suggest that metals’ leaching is a continuous process driven by rainfall, and that the mechanism of release from the wood matrix changes as wood weathers. PMID:20053493
The economic impact of longer range weather information on the production of peas in Wisconsin
NASA Technical Reports Server (NTRS)
Smith, K. R.; Torkelson, A. W.
1972-01-01
The extent of benefits which will be realized in the pea industry as a result of improved long range weather forecasts are outlined. Particular attention was given to planting and harvesting operations.
NASA Astrophysics Data System (ADS)
Avgoustoglou, E.; Matsangouras, I. T.; Pytharoulis, I.; Kamperakis, N.; Mylonas, M.; Nastos, P. T.; Bluestein, H. W.
2018-08-01
The COnsortium for Small-scale MOdeling (COSMO) was formed in October 1998, and its general goal is to develop, improve and maintain a non-hydrostatic limited-area atmospheric model. The COSMO model has been designed both for operational numerical weather prediction (NWP) as well as various scientific applications on the meso-β and meso-γ scale. Two tornado case studies were selected to investigate the ability of COSMO model to depict the characteristics of severe convective weather, which favoured the development of the associated storms. The first tornado (TR01) occurred, close to Ag. Ilias village, 8 Km north-western of Aitoliko city over western Greece on February 7, 2013, while the second tornado (TR02) was developed close to Palio Katramio village, 8 Km southern from Xanthi city over northern Greece on November 25, 2015. Although both tornadoes had a short lifetime, they caused significant damages. The COSMO.GR atmospheric model was initialized with analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF). The resulting numerical products with spatial resolution of 0.02° (∼ 2 km) over the geographical domain of Greece depicted very well the severe convective conditions close to tornadoes formation. The Energy Helicity Index (EHI) diagnostic variable in both numerical simulations showed a gradual increase of values closing to the location and time of the tornadogenesis. Similar to EHI, the storm relative helicity (SRH) spatio-temporal analysis followed a gradual increase prior to the tornadogenesis events and was reduced after them.
Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations
NASA Astrophysics Data System (ADS)
Christensen, H. M.; Dawson, A.; Palmer, T.
2017-12-01
Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.
DOT National Transportation Integrated Search
2006-04-01
The purpose of the Advanced Transportation Weather Information System (ATWIS) was to provide en-route weather forecasts and road condition information to the traveling public across North Dakota and South Dakota. ATWIS was the first system to develop...
NASA Technical Reports Server (NTRS)
Griner, James H.; Jirberg, Russ; Frantz, Brian; Kachmar, Brian A.
2006-01-01
NASA s Aviation Safety Program was created for the purpose of making a significant reduction in the incidents of weather related aviation accidents by improving situational awareness. The objectives of that program are being met in part through advances in weather sensor technology, and in part through advances in the communications technology that are developed for use in the National Airspace System. It is this latter element, i.e., the improvements in aviation communication technologies, that is the focus of the Weather Information Communications project. This report describes the final flight test results completed under the WINCOMM project at the NASA Glenn Research Center of the 1090 Extended Squitter (1090ES) and VDL Mode 3 (VDL-3) data links as a medium for weather data exchange. It presents the use of 1090ES to meet the program objectives of sending broadcast turbulence information and the use of VDL-3 to send graphical weather images. This report provides the test requirements and test plans, which led to flight tests, as well as final results from flight testing. The reports define the changes made to both avionics and ground-based receivers as well as the ground infrastructure to support implementation of the recommended architecture, with a focus on the issues associated with these changes.
NASA Technical Reports Server (NTRS)
Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.
1993-01-01
The following monthly mean global distributions for 1990 are proposed with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (US) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components on the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation values are displayed. Annual mean distributions are displayed.
NASA Technical Reports Server (NTRS)
Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.
1993-01-01
The following monthly mean global distributions for 1991 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free-drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components of the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.
California Drought and the 2015-2016 El Niño: Implications for Seasonal Forecasts
NASA Astrophysics Data System (ADS)
Cash, B.
2017-12-01
California winter rainfall is examined in observations and data from the North American Multi-Model Ensemble (NMME) and Project Metis, a new suite of seasonal integrations made using the operational European Centre for Medium-Range Weather Forecasts model. We focus on the 2015-2016 season, and the non-canonical response to the major El Niño event that occurred. We show that the Metis ensemble mean is capable of distinguishing between the response to the 1997/98 and 2015/16 events, while the two events are more similar in the NMME. We also show that unpredicted variations in the atmospheric circulation in the north Pacific significantly affect southern California rainfall totals. Improving prediction of these variations is thus a key target for improving seasonal rainfall predictions for this region.
NASA Astrophysics Data System (ADS)
Lawrence, G.; Reid, S.; Tranquille, C.; Evans, H.
2013-12-01
Space Weather is a multi-disciplinary and cross-domain system defined as, 'The physical and phenomenological state of natural space environments. The associated discipline aims, through observation, monitoring, analysis and modelling, at understanding and predicting the state of the Sun, the interplanetary and planetary environments, and the solar and non-solar driven perturbations that affect them, and also at forecasting and nowcasting the potential impacts on biological and technological systems'. National and Agency-level efforts to provide services addressing the myriad problems, such as ESA's SSA programme are therefore typically complex and ambitious undertakings to introduce a comprehensive suite of services aimed at a large number and broad range of end users. We focus on some of the particular threats and risks that Space Weather events pose to the Spacecraft Operations community, and the resulting implications in terms of User Requirements. We describe some of the highest-priority service elements identified as being needed by the Operations community, and outline some service components that are presently available, or under development. The particular threats and risks often vary according to orbit, so the particular User Needs for Operators at LEO, MEO and GEO are elaborated. The inter-relationship between these needed service elements and existing service components within the broader Space Weather domain is explored. Some high-priority service elements and potential correlation with Space Weather drivers include: solar array degradation and energetic proton storms; single event upsets at GEO and solar proton events and galactic cosmic rays; surface charging and deep dielectric charging at MEO and radiation belt dynamics; SEUs at LEO and the South Atlantic Anomaly and its variability. We examine the current capability to provide operational services addressing such threats and identify some advances that the Operations community can expect to benefit from in the short- and medium-term, such as: enhanced forecasting eg. using Bayesian statistics; optimization and standardization of effects tools; operations-ready real-time data tools, with customization options tailored around the operator's views; next-generation SWE-specific sensors and provision of key data to Operators.
ICE CONTROL - Towards optimizing wind energy production during icing events
NASA Astrophysics Data System (ADS)
Dorninger, Manfred; Strauss, Lukas; Serafin, Stefano; Beck, Alexander; Wittmann, Christoph; Weidle, Florian; Meier, Florian; Bourgeois, Saskia; Cattin, René; Burchhart, Thomas; Fink, Martin
2017-04-01
Forecasts of wind power production loss caused by icing weather conditions are produced by a chain of physical models. The model chain consists of a numerical weather prediction model, an icing model and a production loss model. Each element of the model chain is affected by significant uncertainty, which can be quantified using targeted observations and a probabilistic forecasting approach. In this contribution, we present preliminary results from the recently launched project ICE CONTROL, an Austrian research initiative on measurements, probabilistic forecasting, and verification of icing on wind turbine blades. ICE CONTROL includes an experimental field phase, consisting of measurement campaigns in a wind park in Rhineland-Palatinate, Germany, in the winters 2016/17 and 2017/18. Instruments deployed during the campaigns consist of a conventional icing detector on the turbine hub and newly devised ice sensors (eologix Sensor System) on the turbine blades, as well as meteorological sensors for wind, temperature, humidity, visibility, and precipitation type and spectra. Liquid water content and spectral characteristics of super-cooled water droplets are measured using a Fog Monitor FM-120. Three cameras document the icing conditions on the instruments and on the blades. Different modelling approaches are used to quantify the components of the model-chain uncertainties. The uncertainty related to the initial conditions of the weather prediction is evaluated using the existing global ensemble prediction system (EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Furthermore, observation system experiments are conducted with the AROME model and its 3D-Var data assimilation to investigate the impact of additional observations (such as Mode-S aircraft data, SCADA data and MSG cloud mask initialization) on the numerical icing forecast. The uncertainty related to model formulation is estimated from multi-physics ensembles based on the Weather Research and Forecasting model (WRF) by perturbing parameters in the physical parameterization schemes. In addition, uncertainties of the icing model and of its adaptations to the rotating turbine blade are addressed. The model forecasts combined with the suite of instruments and their measurements make it possible to conduct a step-wise verification of all the components of the model chain - a novel aspect compared to similar ongoing and completed forecasting projects.
NASA Technical Reports Server (NTRS)
Ardanuy, P.; Victorine, J.; Sechrist, F.; Feiner, A.; Penn, L.
1988-01-01
The goal of the 1987 Airborne Antarctic Ozone Experiment was to improve the understanding of the mechanisms involved in the formation of the Antarctic ozone hole. Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the experiment. During the experiment, the near-real-time TOMS total ozone observations were supplied within hours of real time to the operations center in Punta Arenas, Chile. The final report summarizes the role which Research and Data Systems (RDS) Corporation played in the support of the experiment. The RDS provided telecommunications to support the science and operations efforts for the Airborne Antarctic Ozone Experiment, and supplied near real-time weather information to ensure flight and crew safety; designed and installed the telecommunications network to link NASA-GSFC, the United Kingdom Meteorological Office (UKMO), Palmer Station, the European Center for Medium-Range Weather Forecasts (ECMWF) to the operation at Punta Arenas; engineered and installed stations and other stand-alone systems to collect data from designated low-orbiting polar satellites and beacons; provided analyses of Nimbus-7 TOMS data and backup data products to Punta Arenas; and provided synoptic meteorological data analysis and reduction.
Impact of major volcanic eruptions on stratospheric water vapour
NASA Astrophysics Data System (ADS)
Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick
2016-05-01
Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.
The Hydrologic Ensemble Prediction Experiment (HEPEX)
NASA Astrophysics Data System (ADS)
Wood, Andy; Wetterhall, Fredrik; Ramos, Maria-Helena
2015-04-01
The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF), and co-sponsored by the US National Weather Service (NWS) and the European Commission (EC). The HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support. HEPEX pursues this goal through research efforts and practical implementations involving six core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. HEPEX has grown through meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. In the last decade, HEPEX has organized over a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Through these interactions and an active online blog (www.hepex.org), HEPEX has built a strong and active community of nearly 400 researchers & practitioners around the world. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.
AIRS Retrieval Validation During the EAQUATE
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L.; Cuomo, Vincenzo; Taylor, Jonathan P.; Barnet, Christopher D.; DiGirolamo, Paolo; Pappalardo, Gelsomina; Larar, Allen M.; Liu, Xu; Newman, Stuart M.
2006-01-01
Atmospheric and surface thermodynamic parameters retrieved with advanced hyperspectral remote sensors of Earth observing satellites are critical for weather prediction and scientific research. The retrieval algorithms and retrieved parameters from satellite sounders must be validated to demonstrate the capability and accuracy of both observation and data processing systems. The European AQUA Thermodynamic Experiment (EAQUATE) was conducted mainly for validation of the Atmospheric InfraRed Sounder (AIRS) on the AQUA satellite, but also for assessment of validation systems of both ground-based and aircraft-based instruments which will be used for other satellite systems such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) from the NPOESS Preparatory Project and the following NPOESS series of satellites. Detailed inter-comparisons were conducted and presented using different retrieval methodologies: measurements from airborne ultraspectral Fourier transform spectrometers, aircraft in-situ instruments, dedicated dropsondes and radiosondes, and ground based Raman Lidar, as well as from the European Center for Medium range Weather Forecasting (ECMWF) modeled thermal structures. The results of this study not only illustrate the quality of the measurements and retrieval products but also demonstrate the capability of these validation systems which are put in place to validate current and future hyperspectral sounding instruments and their scientific products.
Could Malaria Control Programmes be Timed to Coincide with Onset of Rainfall?
Komen, Kibii
2017-06-01
Malaria cases in South Africa's Northern Province of Limpopo have surpassed known endemic KwaZulu Natal and Mpumalanga Provinces. This paper applies statistical methods: regression analysis and impulse response function to understand the timing of impact and the length that such impacts last. Climate data (rainfall and temperature) are obtained from South African Weather Services (SAWs); global data from the European Centre for Medium-Range Weather Forecasts (ECMWF), while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province). Data collected span from January 1998 to July 2007. Signs of the coefficients are positive for rainfall and temperature and negative for their exponents. Three out of five independent variables consistently maintain a very high statistical level of significance. The coefficients for climate variables describe an inverted u-shape: parameters for the exponents of rainfall (-0.02, -0.01, -0.02, -0.00) and temperature (-46.61, -47.46, -48.14, -36.04) are both negative. A one standard deviation rise in rainfall (rainfall onset) increases malaria cases, and the effects become sustained for at least 3 months and conclude that onset of rainfall therefore triggers a 'malaria season'. Malaria control programme and early warning system should be intensified in the first 3 months following the onset of rainfall.
NASA Technical Reports Server (NTRS)
Markson, R.
1980-01-01
The ionospheric potential and galactic cosmic radiation, found to be inversely correlated with the solar wind velocity are examined as being germane to weather modification. Since the ionospheric potential is proportional to the fair weather electric field intensity and cosmic radiation is the dominant source of atmospheric ionization, it is concluded that the Earth's overall electric field varies in phase with atmospheric ionization and that the latter is modulated by the solar wind. A proposed mechanism, in which solar control of ionizing radiation influences atmospheric electrification and thus possibly cloud physical processes is discussed. An experimental approach to critically test the proposed mechanism through comparison of the temporal variation of the Earth's electric field with conditions in the interplanetary medium is outlined.
NASA Astrophysics Data System (ADS)
Lazar, Dora; Ihasz, Istvan
2013-04-01
The short and medium range operational forecasts, warning and alarm of the severe weather are one of the most important activities of the Hungarian Meteorological Service. Our study provides comprehensive summary of newly developed methods based on ECMWF ensemble forecasts to assist successful prediction of the convective weather situations. . In the first part of the study a brief overview is given about the components of atmospheric convection, which are the atmospheric lifting force, convergence and vertical wind shear. The atmospheric instability is often used to characterize the so-called instability index; one of the most popular and often used indexes is the convective available potential energy. Heavy convective events, like intensive storms, supercells and tornadoes are needed the vertical instability, adequate moisture and vertical wind shear. As a first step statistical studies of these three parameters are based on nine years time series of 51-member ensemble forecasting model based on convective summer time period, various statistical analyses were performed. Relationship of the rate of the convective and total precipitation and above three parameters was studied by different statistical methods. Four new visualization methods were applied for supporting successful forecasts of severe weathers. Two of the four visualization methods the ensemble meteogram and the ensemble vertical profiles had been available at the beginning of our work. Both methods show probability of the meteorological parameters for the selected location. Additionally two new methods have been developed. First method provides probability map of the event exceeding predefined values, so the incident of the spatial uncertainty is well-defined. The convective weather events are characterized by the incident of space often rhapsodic occurs rather have expected the event area can be selected so that the ensemble forecasts give very good support. Another new visualization tool shows time evolution of predefined multiple thresholds in graphical form for any selected location. With applying this tool degree of the dangerous weather conditions can be well estimated. Besides intensive convective periods are clearly marked during the forecasting period. Developments were done by MAGICS++ software under UNIX operating system. The third part of the study usefulness of these tools is demonstrated in three interesting cases studies of last summer.
NASA Astrophysics Data System (ADS)
Cong, Xiaoying; Balss, Ulrich; Eineder, Michael
2015-04-01
The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the Base of Far-Distributed Test Sites; EUSAR 2014; 10th European Conference on Synthetic Aperture Radar; Proceedings of. VDE, 2014: 1-4. [3] Eineder M., Balss U., Gisinger C., et al. TerraSAR-X pixel localization accuracy: Approaching the centimeter level, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE, 2014: 2669-2670. [4] Cong X., Balss U., Eineder M., et al. Imaging Geodesy -- Centimeter-Level Ranging Accuracy With TerraSAR-X: An Update. Geoscience and Remote Sensing Letters, IEEE, 2012, 9(5): 948-952. [5] Cong X. SAR Interferometry for Volcano Monitoring: 3D-PSI Analysis and Mitigation of Atmospheric Refractivity. München, Technische Universität München, Dissertation, 2014.
14 CFR 259.4 - Contingency Plan for Lengthy Tarmac Delays.
Code of Federal Regulations, 2012 CFR
2012-01-01
... airport, medium hub airport, small hub airport and non-hub airport at which it operates or markets such... safety-related or security-related reason (e.g. weather, a directive from an appropriate government... elsewhere in order to deplane passengers would significantly disrupt airport operations. (2) For...
14 CFR 259.4 - Contingency Plan for Lengthy Tarmac Delays.
Code of Federal Regulations, 2014 CFR
2014-01-01
... airport, medium hub airport, small hub airport and non-hub airport at which it operates or markets such... safety-related or security-related reason (e.g. weather, a directive from an appropriate government... elsewhere in order to deplane passengers would significantly disrupt airport operations. (2) For...
14 CFR 259.4 - Contingency Plan for Lengthy Tarmac Delays.
Code of Federal Regulations, 2013 CFR
2013-01-01
... airport, medium hub airport, small hub airport and non-hub airport at which it operates or markets such... safety-related or security-related reason (e.g. weather, a directive from an appropriate government... elsewhere in order to deplane passengers would significantly disrupt airport operations. (2) For...
Weather severity index on a mule deer winter range. [Odocoileus hemionus hemionus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leckenby, D.A.; Adams, A.W.
1986-05-01
Temperature, wind, and snow conditions predictably affect the nutrition, behavior, distribution, productivity, and mortality of free-ranging cattle and big game in winter. Indexing of data obtained with commonly available weather instruments to reflect episodes of positive and negative energy balances of free-ranging ruminants could aid scheduling of feeding programs and planning of cover-forage manipulations. Such a weather severity index was developed and tested over 11 winters. Plausible levels of stress and episodes of relative severity were depicted during winters when mule deer exhibited low, moderate, and high mortality. The index curves mirrored over-winter declines of fat reserves probably sustained bymore » mule deer. Lesser weather severity was predicted and measured in a western juniper woodland than in an adjacent rabbitbrush steppe community in southcentral Oregon. 32 references, 3 figures, 2 tables.« less
NASA Astrophysics Data System (ADS)
Drusch, M.
2007-02-01
Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.
Impact of Urbanization on Spatial Variability of Rainfall-A case study of Mumbai city with WRF Model
NASA Astrophysics Data System (ADS)
Mathew, M.; Paul, S.; Devanand, A.; Ghosh, S.
2015-12-01
Urban precipitation enhancement has been identified over many cities in India by previous studies conducted. Anthropogenic effects such as change in land cover from hilly forest areas to flat topography with solid concrete infrastructures has certain effect on the local weather, the same way the greenhouse gas has on climate change. Urbanization could alter the large scale forcings to such an extent that it may bring about temporal and spatial changes in the urban weather. The present study investigate the physical processes involved in urban forcings, such as the effect of sudden increase in wind velocity travelling through the channel space in between the dense array of buildings, which give rise to turbulence and air mass instability in urban boundary layer and in return alters the rainfall distribution as well as rainfall initiation. A numerical model study is conducted over Mumbai metropolitan city which lies on the west coast of India, to assess the effect of urban morphology on the increase in number of extreme rainfall events in specific locations. An attempt has been made to simulate twenty extreme rainfall events that occurred over the summer monsoon period of the year 2014 using high resolution WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to assess the urban land cover mechanisms that influences precipitation variability over this spatially varying urbanized region. The result is tested against simulations with altered land use. The correlation of precipitation with spatial variability of land use is found using a detailed urban land use classification. The initial and boundary conditions for running the model were obtained from the global model ECMWF(European Centre for Medium Range Weather Forecast) reanalysis data having a horizontal resolution of 0.75 °x 0.75°. The high resolution simulations show significant spatial variability in the accumulated rainfall, within a few kilometers itself. Understanding the spatial variability of precipitation will help in the planning and management of the built environment more efficiently.
Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay
NASA Astrophysics Data System (ADS)
Garzon, Juan L.; Ferreira, Celso M.; Padilla-Hernandez, Roberto
2018-01-01
Accurate forecast of sea-level heights in coastal areas depends, among other factors, upon a reliable coupling of a meteorological forecast system to a hydrodynamic and wave system. This study evaluates the predictive skills of the coupled circulation and wind-wave model system (ADCIRC+SWAN) for simulating storm tides in the Chesapeake Bay, forced by six different products: (1) Global Forecast System (GFS), (2) Climate Forecast System (CFS) version 2, (3) North American Mesoscale Forecast System (NAM), (4) Rapid Refresh (RAP), (5) European Center for Medium-Range Weather Forecasts (ECMWF), and (6) the Atlantic hurricane database (HURDAT2). This evaluation is based on the hindcasting of four events: Irene (2011), Sandy (2012), Joaquin (2015), and Jonas (2016). By comparing the simulated water levels to observations at 13 monitoring stations, we have found that the ADCIR+SWAN System forced by the following: (1) the HURDAT2-based system exhibited the weakest statistical skills owing to a noteworthy overprediction of the simulated wind speed; (2) the ECMWF, RAP, and NAM products captured the moment of the peak and moderately its magnitude during all storms, with a correlation coefficient ranging between 0.98 and 0.77; (3) the CFS system exhibited the worst averaged root-mean-square difference (excepting HURDAT2); (4) the GFS system (the lowest horizontal resolution product tested) resulted in a clear underprediction of the maximum water elevation. Overall, the simulations forced by NAM and ECMWF systems induced the most accurate results best accuracy to support water level forecasting in the Chesapeake Bay during both tropical and extra-tropical storms.
NASA Astrophysics Data System (ADS)
Wei, C.; Cheng, K. S.
Using meteorological radar and satellite imagery had become an efficient tool for rainfall forecasting However few studies were aimed to predict quantitative rainfall in small watersheds for flood forecasting by using remote sensing data Due to the terrain shelter and ground clutter effect of Central Mountain Ridges the application of meteorological radar data was limited in mountainous areas of central Taiwan This study devises a new scheme to predict rainfall of a small upstream watershed by combing GOES-9 geostationary weather satellite imagery and ground rainfall records which can be applied for local quantitative rainfall forecasting during periods of typhoon and heavy rainfall Imagery of two typhoon events in 2004 and five correspondent ground raingauges records of Chitou Forest Recreational Area which is located in upstream region of Bei-Shi river were analyzed in this study The watershed accounts for 12 7 square kilometers and altitudes ranging from 1000 m to 1800 m Basin-wide Average Rainfall BAR in study area were estimated by block kriging Cloud Top Temperature CTT from satellite imagery and ground hourly rainfall records were medium correlated The regression coefficient ranges from 0 5 to 0 7 and the value decreases as the altitude of the gauge site increases The regression coefficient of CCT and next 2 to 6 hour accumulated BAR decrease as the time scale increases The rainfall forecasting for BAR were analyzed by Kalman Filtering Technique The correlation coefficient and average hourly deviates between estimated and observed value of BAR for
Examining the Pilot and Controller Performance Data When in a Free Flight with Weather Phenomenon
NASA Technical Reports Server (NTRS)
Nituen, Celestine A.; Lozito, Sandra C. (Technical Monitor)
2002-01-01
The present study investigated effects of weather related factors on the performance of pilots under free flight. A weather scenario was defined by a combination of precipitation factors (light rain, moderate rain, and heavy rain or snow), visibility (1,4,8 miles), wind conditions (light, medium, or heavy), cloud ceiling (800ft. below, 1800ft above, and 4000ft horizontal). The performance of the aircraft self-separation was evaluated in terms of detection accuracy and detection times for student- and commercial (expert) pilots. Overall, the results obtained from a behavioral analysis showed that in general, the ability to recognize intruder aircraft conflict incidents, followed by the ability to acquire the spatial location of the intruder aircraft relative to ownership aircraft were judged to be the major cognitive tasks as perceived by the participants during self-separation. Further, the participants rarely used cockpit display of traffic information (CDTI) during conflict management related to aircraft separation, but used CDTI highly during decision-making tasks. In all weather scenarios, there were remarkable differences between expert and student pilots in detection times. In summary, weather scenarios were observed to affect intruder aircraft detection performance accuracies. There was interaction effects between weather Scenario-1 and Scenario-2 for climbing task data generated by both expert- and student- pilots at high traffic density. Scenario-3 weather condition provided an opportunity for poor detection accuracy as well as detection time increase. This may be attributed to low visibility. The intruder aircraft detection times were not affected by the weather conditions during climbing and descending tasks. The decision of pilots to fly into certain weather condition was dependent in part on the warning distance to the location of the weather. When pilots were warned of the weather conditions, they were more likely to fly their aircraft into it, but mostly when the warning was not close to the weather location.
Effects of Weathering on TIR Spectra and Rock Classification
NASA Astrophysics Data System (ADS)
McDowell, M. L.; Hamilton, V. E.; Riley, D.
2006-03-01
Changes in mineralogy due to weathering are detectable in the TIR and cause misclassification of rock types. We survey samples over a range of lithologies and attempt to provide a method of correction for rock identification from weathered spectra.
On the reliability of seasonal climate forecasts.
Weisheimer, A; Palmer, T N
2014-07-06
Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1-5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that 'goodness' should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a '5' should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of 'goodness' rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching '5' across all regions and variables in 30 years time.
Web-based Weather Expert System (WES) for Space Shuttle Launch
NASA Technical Reports Server (NTRS)
Bardina, Jorge E.; Rajkumar, T.
2003-01-01
The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.
Climate change may alter regional weather extremes resulting in a range of environmental impacts including changes in air quality, water quality and availability, energy demands, agriculture, and ecology. Dynamical downscaling simulations were conducted with the Weather Research...
NASA Astrophysics Data System (ADS)
Christensen, Hannah; Moroz, Irene; Palmer, Tim
2015-04-01
Forecast verification is important across scientific disciplines as it provides a framework for evaluating the performance of a forecasting system. In the atmospheric sciences, probabilistic skill scores are often used for verification as they provide a way of unambiguously ranking the performance of different probabilistic forecasts. In order to be useful, a skill score must be proper -- it must encourage honesty in the forecaster, and reward forecasts which are reliable and which have good resolution. A new score, the Error-spread Score (ES), is proposed which is particularly suitable for evaluation of ensemble forecasts. It is formulated with respect to the moments of the forecast. The ES is confirmed to be a proper score, and is therefore sensitive to both resolution and reliability. The ES is tested on forecasts made using the Lorenz '96 system, and found to be useful for summarising the skill of the forecasts. The European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system (EPS) is evaluated using the ES. Its performance is compared to a perfect statistical probabilistic forecast -- the ECMWF high resolution deterministic forecast dressed with the observed error distribution. This generates a forecast that is perfectly reliable if considered over all time, but which does not vary from day to day with the predictability of the atmospheric flow. The ES distinguishes between the dynamically reliable EPS forecasts and the statically reliable dressed deterministic forecasts. Other skill scores are tested and found to be comparatively insensitive to this desirable forecast quality. The ES is used to evaluate seasonal range ensemble forecasts made with the ECMWF System 4. The ensemble forecasts are found to be skilful when compared with climatological or persistence forecasts, though this skill is dependent on region and time of year.
Wave Absorber with Fine Weatherability for Improving ETC Environment
NASA Astrophysics Data System (ADS)
Miura, Yu; Matsumoto, Kouta; Okada, Osamu; Hashimoto, Osamu
Wave absorber of rubber sheet containing natural rubber and EPDM is designed, fabricated and measured for improving ETC environment. As a result, proposed absorption material has fine weatherability and wave absorption satisfied with ETC standard can be realized theoretically before and after the weatherability test if the thickness of absorber is fabricated at the ranging from 2.26mm to 2.52mm. Moreover, absorber sheet sample based on theoretical values is fabricated and are measured. As a result, 20dB or more is also confirmed at the incident angle ranging from 5 to 55 degrees experimentally. Therefore, the wave absorber with fine weatherability being satisfied with ETC standard can be realized.
Space-weather assets developed by the French space-physics community
NASA Astrophysics Data System (ADS)
Rouillard, A. P.; Pinto, R. F.; Brun, A. S.; Briand, C.; Bourdarie, S.; Dudok De Wit, T.; Amari, T.; Blelly, P.-L.; Buchlin, E.; Chambodut, A.; Claret, A.; Corbard, T.; Génot, V.; Guennou, C.; Klein, K. L.; Koechlin, L.; Lavarra, M.; Lavraud, B.; Leblanc, F.; Lemorton, J.; Lilensten, J.; Lopez-Ariste, A.; Marchaudon, A.; Masson, S.; Pariat, E.; Reville, V.; Turc, L.; Vilmer, N.; Zucarello, F. P.
2016-12-01
We present a short review of space-weather tools and services developed and maintained by the French space-physics community. They include unique data from ground-based observatories, advanced numerical models, automated identification and tracking tools, a range of space instrumentation and interconnected virtual observatories. The aim of the article is to highlight some advances achieved in this field of research at the national level over the last decade and how certain assets could be combined to produce better space-weather tools exploitable by space-weather centres and customers worldwide. This review illustrates the wide range of expertise developed nationally but is not a systematic review of all assets developed in France.
Recent Progress of Solar Weather Forecasting at Naoc
NASA Astrophysics Data System (ADS)
He, Han; Wang, Huaning; Du, Zhanle; Zhang, Liyun; Huang, Xin; Yan, Yan; Fan, Yuliang; Zhu, Xiaoshuai; Guo, Xiaobo; Dai, Xinghua
The history of solar weather forecasting services at National Astronomical Observatories, Chinese Academy of Sciences (NAOC) can be traced back to 1960s. Nowadays, NAOC is the headquarters of the Regional Warning Center of China (RWC-China), which is one of the members of the International Space Environment Service (ISES). NAOC is responsible for exchanging data, information and space weather forecasts of RWC-China with other RWCs. The solar weather forecasting services at NAOC cover short-term prediction (within two or three days), medium-term prediction (within several weeks), and long-term prediction (in time scale of solar cycle) of solar activities. Most efforts of the short-term prediction research are concentrated on the solar eruptive phenomena, such as flares, coronal mass ejections (CMEs) and solar proton events, which are the key driving sources of strong space weather disturbances. Based on the high quality observation data of the latest space-based and ground-based solar telescopes and with the help of artificial intelligence techniques, new numerical models with quantitative analyses and physical consideration are being developed for the predictions of solar eruptive events. The 3-D computer simulation technology is being introduced for the operational solar weather service platform to visualize the monitoring of solar activities, the running of the prediction models, as well as the presenting of the forecasting results. A new generation operational solar weather monitoring and forecasting system is expected to be constructed in the near future at NAOC.
NASA Astrophysics Data System (ADS)
Akip Tan, S. N. Mohd; Dan, M. F. Md; Edy Tonnizam, M.; Saad, R.; Madun, A.; Hazreek, Z. A. M.
2018-04-01
2-D resistivity technique and pole-dipole array with spacing of 2 m electrode and total spacing of 80 m were adopted to map and characterize the shallow subsurface in a sedimentary area at Nusajaya, Johor. Geological field mapping and laboratory testing were conducted to determine weathering grades. Res2Dinv software was used to generate the inversion model resistivity. The result shows sandstone contains iron mineral (30-1000ohm-m) and weathered sandstone (500-1000 ohm-m). The lowest layer represents sandstone and siltstone with the highest range from 1500 through 5000 ohm-m. The weathering grade IV and V of sandstone in the actual profile indicates the range from 30 to 1000 ohm-m, whereas grade II and III in ground mass matched the higest range. Overall, the increase of weathering grade influenced both the physical properties and strength of rocks.
Explaining Space-Weathering Effects on UV-Vis-NIR Spectra with Light-Scattering Methods
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Väisänen, Timo; Martikainen, Julia; Kohout, Tomas; Muinonen, Karri
2015-11-01
Space-weathering (SW) introduces changes to the asteroid reflectance spectra. In silicate minerals, SW is known to darken the spectra and reduce the silicate absorption band depths. In olivine, the neutral slope in Vis and NIR wavelengths is becoming positive [1]. In pyroxene, the positive slope over the 1 µm absorption band is decreasing, and the negative slope over the 2 µm band is increasing towards positive values with increasing SW [2].The SW process generates small nanophase iron (npFe0) inclusions in the surface layers of mineral grains. The inclusions are some tens of nm in size. This mechanism has been linked to the Moon and to a certain extent also to the silicate-rich S-complex asteroids.We offer two simple explanations from light-scattering theory to explain the SW effects on the spectral slope. First, the npFe0 will introduce a posititive general slope (reddening) to the spectra. The npFe0 inclusions (~10 nm) are in the Rayleigh domain with the wavelength λ in the UV-Vis-NIR range. Their absorption cross-section follows approximately the 1/λ-relation from the Rayleigh theory. Absorption is more efficient in the UV than in the NIR wavelengths, therefore the spectra are reddening.Second, the effect of npFe0 absorption is more efficient for originally brighter reflectance values. Explanation combines the effective medium theory and the exponential attenuation in the medium. When adding a small amount of highly absorbing npFe0, the effective absorption coefficient k will increase approximately the same Δk for the typical values of silicates. This change will increase more effectively the exponential attenuation if the original k was very small, and thus the reflectance high. Therefore, both positive and negative spectral slopes will approach zero with SW.We conclude that the SW will introduce a general reddening, and neutralize local slopes. This is verified using the SIRIS code [3], which combines geometric optics with small internal diffuse scatterers in the radiative transfer domain.[1] Kohout T. et al. (2014), Icarus 237(15), 75-83.[2] Kohout T. et al. (2015), Workshop on Space Weathering of Airless Bodies, Abstract.[3] Muinonen K. et al. (2009), JQSRT 110, 1628-1639.
Fifty Years of Space Weather Forecasting from Boulder
NASA Astrophysics Data System (ADS)
Berger, T. E.
2015-12-01
The first official space weather forecast was issued by the Space Disturbances Laboratory in Boulder, Colorado, in 1965, ushering in an era of operational prediction that continues to this day. Today, the National Oceanic and Atmospheric Administration (NOAA) charters the Space Weather Prediction Center (SWPC) as one of the nine National Centers for Environmental Prediction (NCEP) to provide the nation's official watches, warnings, and alerts of space weather phenomena. SWPC is now integral to national and international efforts to predict space weather events, from the common and mild, to the rare and extreme, that can impact critical technological infrastructure. In 2012, the Strategic National Risk Assessment included extreme space weather events as low-to-medium probability phenomena that could, unlike any other meteorogical phenomena, have an impact on the government's ability to function. Recognizing this, the White House chartered the Office of Science and Technology Policy (OSTP) to produce the first comprehensive national strategy for the prediction, mitigation, and response to an extreme space weather event. The implementation of the National Strategy is ongoing with NOAA, its partners, and stakeholders concentrating on the goal of improving our ability to observe, model, and predict the onset and severity of space weather events. In addition, work continues with the research community to improve our understanding of the physical mechanisms - on the Sun, in the heliosphere, and in the Earth's magnetic field and upper atmosphere - of space weather as well as the effects on critical infrastructure such as electrical power transmission systems. In fifty years, people will hopefully look back at the history of operational space weather prediction and credit our efforts today with solidifying the necessary developments in observational systems, full-physics models of the entire Sun-Earth system, and tools for predicting the impacts to infrastructure to protect against any and all forms of space weather.
Solar Energetic Particle Transport Near a Heliospheric Current Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battarbee, Markus; Dalla, Silvia; Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk
2017-02-10
Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibitmore » multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.« less
Orogen and long-term carbon cycle, what numerical modelling can tell us about their interactions.
NASA Astrophysics Data System (ADS)
Maffre, P.; Godderis, Y.; Carretier, S.; Ladant, J. B.; Moquet, J. S.; Donnadieu, Y.
2017-12-01
If the uplift of current mountain ranges is often cited as a possible cause for Cenozoic cooling and the onset of the quaternary glaciation, this hypothesis is highly discussed. The main reason is that mountain uplift has a wide range of consequences, turning on or of sources or sinks of CO2. Most of these CO2 fluxes are still poorly constrained. Indeed, high erosion rates of mountain ranges increase silicate weathering by increasing fresh material supply (Goddéris et al. 2017) and enhance organic matter burial throughout intense sediment discharge by rivers (Galy et al. 2007). Yet, the effect of fresh matter supply by erosion is different if it happens on a weathering-limited or a supply-limited place (West 2012), and as eroded clasts are often weathered in pediments or floodplains (Moquet et al 2011, Lupker et al. 2012), it makes the issue more complex. Moreover, mountain ranges dramatically alter local and global climatic pattern by affecting atmospheric and oceanic circulation (Maffre et al. 2017), which must have consequences on weathering efficiency. Finally, it has been shown that the CO2 source due to sulphur oxidation can locally exceed the CO2 sink associated to silicate weathering (Torres et al. 2016) and may be relevant at geological timescale (Torres et al. 2014). Our aim here is to investigate theses processes in a global model in order to quantify their relative importance. We used the spatially resolved numerical model GEOCLIM (geoclimmodel.worpress.com) to test the effect of orography on CO2 fluxes with present-day continent configuration. We designed for that purpose two experiments, with and without orography, everything else kept as present-day state. Preliminary results show antagonist effects of mountain ranges. While erosion acts to enhance weathering efficiency when mountains are built, dryer and cooler conditions triggered by reorganization of ocean-atmosphere circulation act to reduce it. A first quantification using weathering data to constraint the model gives a probable range of 30% less to 100% more weathering with mountains (at constant CO2), depending on the sensitivity to the model to climate pattern or erosion. The uncertainty is primarily due to the lack of data.
Airships for transporting highly volatile commodities
NASA Technical Reports Server (NTRS)
Sonstegaard, M.
1975-01-01
Large airships may prove feasible as carriers of commodities that move as gases or cryogenic liquids; buoyant gaseous cargo could be ballasted with liquid cargo. Airships are compact in shape, operate in a rarified medium, and hence can be fast and perhaps economic carriers of costly cryogenic tanks. The high-pressure gas pipeline has excessive surface area when carrying hydrogen and excessive fluid density when carrying natural gas, while the cryogenic ocean tanker runs in a dense medium and makes gravity waves. But the airship, despite its fluid dynamic advantages, faces problems of safety, weather, and altitude control.
Evaluation of thunderstorm indices from ECMWF analyses, lightning data and severe storm reports
NASA Astrophysics Data System (ADS)
Kaltenböck, Rudolf; Diendorfer, Gerhard; Dotzek, Nikolai
This study describes the environmental atmospheric characteristics in the vicinity of different types of severe convective storms in Europe during the warm seasons in 2006 and 2007. 3406 severe weather events from the European Severe Weather Database ESWD were investigated to get information about different types of severe local storms, such as significant or weak tornadoes, large hail, damaging winds, and heavy precipitation. These data were combined with EUCLID (European Cooperation for Lightning Detection) lightning data to distinguish and classify thunderstorm activity on a European scale into seven categories: none, weak and 5 types of severe thunderstorms. Sounding parameters in close proximity to reported events were derived from daily high-resolution T799 ECMWF (European Centre for Medium-range Weather Forecasts) analyses. We found from the sounding-derived parameters in Europe: 1) Instability indices and CAPE have considerable skill to predict the occurrence of thunderstorms and the probability of severe events. 2) Low level moisture can be used as a predictor to distinguish between significant tornadoes or non-severe convection. 3) Most of the events associated with wind gusts during strong synoptic flow situations reveal the downward transport of momentum as a very important factor. 4) While deep-layer shear discriminates well between severe and non-severe events, the storm-relative helicity in the 0-1 km and especially in the 0-3 km layer adjacent to the ground has more skill in distinguishing between environments favouring significant tornadoes and wind gusts versus other severe events. Additionally, composite parameters that combine measurements of buoyancy, vertical shear and low level moisture have been tested to discriminate between severe events.
NASA Astrophysics Data System (ADS)
Luitel, B. N.; Villarini, G.; Vecchi, G. A.
2014-12-01
When we talk about tropical cyclones (TCs), the first things that come to mind are strong winds and storm surge affecting the coastal areas. However, according to the Federal Emergency Management Agency (FEMA) 59% of the deaths caused by TCs since 1970 is due to fresh water flooding. Heavy rainfall associated with TCs accounts for 13% of heavy rainfall events nationwide for the June-October months, with this percentage being much higher if the focus is on the eastern and southern United States. This study focuses on the evaluation of precipitation associated with the North Atlantic TCs that affected the continental United States over the period 2007 - 2012. We evaluate the rainfall associated with these TCs using four satellite based rainfall products: Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA; both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); Climate Prediction Center (CPC) MORPHing technique (CMORPH). As a reference data we use gridded rainfall provided by CPC (Daily US Unified Gauge-Based Analysis of Precipitation). Rainfall fields from each of these satellite products are compared to the reference data, providing valuable information about the realism of these products in reproducing the rainfall associated with TCs affecting the continental United States. In addition to the satellite products, we evaluate the forecasted rainfall produced by five state-of-the-art numerical weather prediction (NWP) models: European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC). The skill of these models in reproducing TC rainfall is quantified for different lead times, and discussed in light of the performance of the satellite products.
The meta-Gaussian Bayesian Processor of forecasts and associated preliminary experiments
NASA Astrophysics Data System (ADS)
Chen, Fajing; Jiao, Meiyan; Chen, Jing
2013-04-01
Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.
Prediction skill of rainstorm events over India in the TIGGE weather prediction models
NASA Astrophysics Data System (ADS)
Karuna Sagar, S.; Rajeevan, M.; Vijaya Bhaskara Rao, S.; Mitra, A. K.
2017-12-01
Extreme rainfall events pose a serious threat of leading to severe floods in many countries worldwide. Therefore, advance prediction of its occurrence and spatial distribution is very essential. In this paper, an analysis has been made to assess the skill of numerical weather prediction models in predicting rainstorms over India. Using gridded daily rainfall data set and objective criteria, 15 rainstorms were identified during the monsoon season (June to September). The analysis was made using three TIGGE (THe Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble) models. The models considered are the European Centre for Medium-Range Weather Forecasts (ECMWF), National Centre for Environmental Prediction (NCEP) and the UK Met Office (UKMO). Verification of the TIGGE models for 43 observed rainstorm days from 15 rainstorm events has been made for the period 2007-2015. The comparison reveals that rainstorm events are predictable up to 5 days in advance, however with a bias in spatial distribution and intensity. The statistical parameters like mean error (ME) or Bias, root mean square error (RMSE) and correlation coefficient (CC) have been computed over the rainstorm region using the multi-model ensemble (MME) mean. The study reveals that the spread is large in ECMWF and UKMO followed by the NCEP model. Though the ensemble spread is quite small in NCEP, the ensemble member averages are not well predicted. The rank histograms suggest that the forecasts are under prediction. The modified Contiguous Rain Area (CRA) technique was used to verify the spatial as well as the quantitative skill of the TIGGE models. Overall, the contribution from the displacement and pattern errors to the total RMSE is found to be more in magnitude. The volume error increases from 24 hr forecast to 48 hr forecast in all the three models.
NASA Technical Reports Server (NTRS)
Sanchez, Braulio V.; Nishihama, Masahiro
1997-01-01
Half-daily global wind speeds in the east-west (u) and north-south (v) directions at the 10-meter height level were obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) data set of global analyses. The data set covered the period 1985 January to 1995 January. A spherical harmonic expansion to degree and order 50 was used to perform harmonic analysis of the east-west (u) and north-south (v) velocity field components. The resulting wind field is displayed, as well as the residual of the fit, at a particular time. The contribution of particular coefficients is shown. The time variability of the coefficients up to degree and order 3 is presented. Corresponding power spectrum plots are given. Time series analyses were applied also to the power associated with degrees 0-10; the results are included.
Barometric Tides from ECMWF Operational Analyses
NASA Technical Reports Server (NTRS)
Ray, R. D.; Ponte, R. M.
2003-01-01
The solar diurnal and semidiurnal tidal oscillations in surface pressure are extracted from the the operational analysis product of the European Centre for Medium Range Weather Forecasting (ECMWF). For the semidiurnal tide this involves a special temporal interpolation, following Van den Dool and colleagues. The resulting tides are compared with a ground truth tide dataset, a compilation of well-determined tide estimates deduced from long time series of station barometer measurements. These comparisons show that the ECMWF tides are significantly more accurate than the tides deduced from two other widely available reanalysis products. Spectral analysis of ECMWF pressure series shows that the tides consist of sharp central peaks with modulating sidelines at integer multiples of 1 cycle/year, superimposed on a broad cusp of stochastic energy. The integrated energy in the cusp dominates that of the sidelines. This complicates development of a simple model that can characterize the full temporal variability of the tides.
NASA Astrophysics Data System (ADS)
Lavers, David A.; Pappenberger, Florian; Richardson, David S.; Zsoter, Ervin
2016-11-01
In winter, heavy precipitation and floods along the west coasts of midlatitude continents are largely caused by intense water vapor transport (integrated vapor transport (IVT)) within the atmospheric river of extratropical cyclones. This study builds on previous findings that showed that forecasts of IVT have higher predictability than precipitation, by applying and evaluating the European Centre for Medium-Range Weather Forecasts Extreme Forecast Index (EFI) for IVT in ensemble forecasts during three winters across Europe. We show that the IVT EFI is more able (than the precipitation EFI) to capture extreme precipitation in forecast week 2 during forecasts initialized in a positive North Atlantic Oscillation (NAO) phase; conversely, the precipitation EFI is better during the negative NAO phase and at shorter leads. An IVT EFI example for storm Desmond in December 2015 highlights its potential to identify upcoming hydrometeorological extremes, which may prove useful to the user and forecasting communities.
Tropopause sharpening by data assimilation
NASA Astrophysics Data System (ADS)
Pilch Kedzierski, R.; Neef, L.; Matthes, K.
2016-08-01
Data assimilation was recently suggested to smooth out the sharp gradients that characterize the tropopause inversion layer (TIL) in systems that did not assimilate TIL-resolving observations. We investigate whether this effect is present in the ERA-Interim reanalysis and the European Centre for Medium-Range Weather Forecasts (ECMWF) operational forecast system (which assimilate high-resolution observations) by analyzing the 4D-Var increments and how the TIL is represented in their data assimilation systems. For comparison, we also diagnose the TIL from high-resolution GPS radio occultation temperature profiles from the COSMIC satellite mission, degraded to the same vertical resolution as ERA-Interim and ECMWF operational analyses. Our results show that more recent reanalysis and forecast systems improve the representation of the TIL, updating the earlier hypothesis. However, the TIL in ERA-Interim and ECMWF operational analyses is still weaker and farther away from the tropopause than GPS radio occultation observations of the same vertical resolution.
NASA Technical Reports Server (NTRS)
Chen, L.; Gray, W. M.
1985-01-01
The characteristics of the upper tropospheric outflow patterns which occur with tropical cyclone intensification and weakening over all of the global tropical cyclone basins during the year long period of the First GARP Global Experiment (FGGE) are discussed. By intensification is meant the change in the tropical cyclone's maximum wind or central pressure, not the change of the cyclone's outer 1 to 3 deg radius mean wind which we classify as cyclone strength. All the 80 tropical cyclones which existed during the FGGE year are studied. Two-hundred mb wind fields are derived from the analysis of the European Center for Medium Range Weather Forecasting (ECMWF) which makes extensive use of upper tropospheric satellite and aircraft winds. Corresponding satellite cloud pictures from the polar orbiting U.S. Defense Meteorological Satellite Program (DMSP) and other supplementary polar and geostationary satellite data are also used.
An analysis of simulated and observed storm characteristics
NASA Astrophysics Data System (ADS)
Benestad, R. E.
2010-09-01
A calculus-based cyclone identification (CCI) method has been applied to the most recent re-analysis (ERAINT) from the European Centre for Medium-range Weather Forecasts and results from regional climate model (RCM) simulations. The storm frequency for events with central pressure below a threshold value of 960-990hPa were examined, and the gradient wind from the simulated storm systems were compared with corresponding estimates from the re-analysis. The analysis also yielded estimates for the spatial extent of the storm systems, which was also included in the regional climate model cyclone evaluation. A comparison is presented between a number of RCMs and the ERAINT re-analysis in terms of their description of the gradient winds, number of cyclones, and spatial extent. Furthermore, a comparison between geostrophic wind estimated though triangules of interpolated or station measurements of SLP is presented. Wind still represents one of the more challenging variables to model realistically.
NASA Technical Reports Server (NTRS)
Knudsen, Bjorn; Vondergathen, Peter; Braathen, Geir O.; Fabian, Rolf; Jorgensen, Torben S.; Kyro, Esko; Neuber, Roland; Rummukainen, Markku
1994-01-01
Ozone sonde data of the winters 1988/89, 1989/90, and 1990/91 from a group of Arctic stations are used in this study. The ozone mixing ratio on several isentropic surfaces is correlated to the potential vorticity (P). The P is based on the initialized analysis data from the European Center for Medium-Range Weather Forecasts. Similar investigations were made by Lait et al. (Geophys. Res. Lett., 17, 521-524, March Supplement 1990) for the AASE campaign (January and February 1989), showing how the ozone mixing ratio varies with the distance to the edge of the vortex. Their findings are confirmed and extended to the following two winters. Furthermore we have studied the temporal development of the P-ozone correlations during these winters in order to recognize any chemical ozone depletion.
Rossby waves, extreme fronts, and wildfires in southeastern Australia
NASA Astrophysics Data System (ADS)
Reeder, Michael J.; Spengler, Thomas; Musgrave, Ruth
2015-03-01
The most catastrophic fires in recent history in southern Australia have been associated with extreme cold fronts. Here an extreme cold front is defined as one for which the maximum temperature at 2 m is at least 17°C lower on the day following the front. An anticyclone, which precedes the cold front, directs very dry northerlies or northwesterlies from the interior of the continent across the region. The passage of the cold front is followed by strong southerlies or southwesterlies. European Centre for Medium-Range Weather Forecasts ERA-Interim Reanalyses show that this regional synoptic pattern common to all strong cold fronts, and hence severe fire conditions, is a consequence of propagating Rossby waves, which grow to large amplitude and eventually irreversibly overturn. The process of overturning produces the low-level anticyclone and dry conditions over southern Australia, while simultaneously producing an upper level trough and often precipitation in northeastern Australia.
Analysis/forecast experiments with a multivariate statistical analysis scheme using FGGE data
NASA Technical Reports Server (NTRS)
Baker, W. E.; Bloom, S. C.; Nestler, M. S.
1985-01-01
A three-dimensional, multivariate, statistical analysis method, optimal interpolation (OI) is described for modeling meteorological data from widely dispersed sites. The model was developed to analyze FGGE data at the NASA-Goddard Laboratory of Atmospherics. The model features a multivariate surface analysis over the oceans, including maintenance of the Ekman balance and a geographically dependent correlation function. Preliminary comparisons are made between the OI model and similar schemes employed at the European Center for Medium Range Weather Forecasts and the National Meteorological Center. The OI scheme is used to provide input to a GCM, and model error correlations are calculated for forecasts of 500 mb vertical water mixing ratios and the wind profiles. Comparisons are made between the predictions and measured data. The model is shown to be as accurate as a successive corrections model out to 4.5 days.
NASA Astrophysics Data System (ADS)
Lossow, Stefan; Garny, Hella; Jöckel, Patrick
2017-09-01
The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (˜ 40.5 km) in altitude. This enhanced annual variation is primarily related to the Brewer-Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding) observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.
NASA Technical Reports Server (NTRS)
Emmitt, G. D.; Wood, S. A.; Morris, M.
1990-01-01
Lidar Atmospheric Wind Sounder (LAWS) Simulation Models (LSM) were developed to evaluate the potential impact of global wind observations on the basic understanding of the Earth's atmosphere and on the predictive skills of current forecast models (GCM and regional scale). Fully integrated top to bottom LAWS Simulation Models for global and regional scale simulations were developed. The algorithm development incorporated the effects of aerosols, water vapor, clouds, terrain, and atmospheric turbulence into the models. Other additions include a new satellite orbiter, signal processor, line of sight uncertainty model, new Multi-Paired Algorithm and wind error analysis code. An atmospheric wind field library containing control fields, meteorological fields, phenomena fields, and new European Center for Medium Range Weather Forecasting (ECMWF) data was also added. The LSM was used to address some key LAWS issues and trades such as accuracy and interpretation of LAWS information, data density, signal strength, cloud obscuration, and temporal data resolution.
Turbulent vertical diffusivity in the sub-tropical stratosphere
NASA Astrophysics Data System (ADS)
Pisso, I.; Legras, B.
2008-02-01
Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s-1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.
Grant, M R; Tymon, L S; Helms, G L; Thomashow, L S; Kent Keller, C; Harsh, J B
2016-11-01
Bacteria in nature often live within biofilms, exopolymeric matrices that provide a favorable environment that can differ markedly from their surroundings. Biofilms have been found growing on mineral surfaces and are expected to play a role in weathering those surfaces, but a clear understanding of how environmental factors, such as trace-nutrient limitation, influence this role is lacking. Here, we examine biofilm development by Pseudomonas putida in media either deficient or sufficient in Fe during growth on biotite, an Fe rich mineral, or on glass. We hypothesized that the bacteria would respond to Fe deficiency by enhancing biotite dissolution and by the formation of binding sites to inhibit Fe leaching from the system. Glass coupons acted as a no-Fe control to investigate whether biofilm response depended on the presence of Fe in the supporting solid. Biofilms grown on biotite, as compared to glass, had significantly greater biofilm biomass, specific numbers of viable cells (SNVC), and biofilm cation concentrations of K, Mg, and Fe, and these differences were greater when Fe was deficient in the medium. Scanning electron microscopy (SEM) confirmed that biofilm growth altered the biotite surface, smoothing the rough, jagged edges of channels scratched by hand on the biotite, and dissolving away small, easy-to-access particles scattered across the planar surface. High-resolution magic angle spinning proton nuclear magnetic resonance (HRMAS 1 H NMR) spectroscopy showed that, in the Fe-deficient medium, the relative amount of polysaccharide nearly doubled relative to that in biofilms grown in the medium amended with Fe. The results imply that the bacteria responded to the Fe deficiency by obtaining Fe from biotite and used the biofilm matrix to enhance weathering and as a sink for released cation nutrients. These results demonstrate one mechanism by which biofilms may help soil microbes overcome nutrient deficiencies in oligotrophic systems. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wood, A. W.; Clark, E.; Mendoza, P. A.; Nijssen, B.; Newman, A. J.; Clark, M. P.; Arnold, J.; Nowak, K. C.
2016-12-01
Many if not most national operational short-to-medium range streamflow prediction systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow are automated, but others require the hands-on-effort of an experienced human forecaster. This approach evolved out of the need to correct for deficiencies in the models and datasets that were available for forecasting, and often leads to skillful predictions despite the use of relatively simple, conceptual models. On the other hand, the process is not reproducible, which limits opportunities to assess and incorporate process variations, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast ensembles and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun to develop more centralized, `over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, the operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as the systems are being rolled out in major operational forecasting centers. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis, Research, and Prediction' (SHARP) to implement, assess and demonstrate real-time over-the-loop forecasts. We present early hindcast and verification results from SHARP for short to medium range streamflow forecasts in a number of US case study watersheds.
The Effects of Space Weathering at UV Wavelengths: S-Class Asteroids
NASA Technical Reports Server (NTRS)
Hendrix, Amanda R.; Vilas, Faith
2006-01-01
We present evidence that space weathering manifests itself at near-UV wavelengths as a bluing of the spectrum, in contrast with the spectral reddening that has been seen at visible-near-IR wavelengths. Furthermore, the effects of space weathering at UV wavelengths tend to appear with less weathering than do the longer wavelength effects, suggesting that the UV wavelength range is a more sensitive indicator of weathering, and thus age. We report results from analysis of existing near-UV (approx.220-350 nm) measurements of S-type asteroids from the International Ultraviolet Explorer and the Hubble Space Telescope and comparisons with laboratory measurements of meteorites to support this hypothesis. Composite spectra of S asteroids are produced by combining UV spacecraft data with ground-based longer wavelength data. At visible-near-IR wavelengths, S-type asteroids are generally spectrally redder (and darker) than ordinary chondrite meteorites, whereas the opposite is generally true at near-UV wavelengths. Similarly, laboratory measurements of lunar samples show that lunar soils (presumably more weathered) are spectrally redder at longer wavelengths, and spectrally bluer at near-UV wavelengths, than less weathered crushed lunar rocks. The UV spectral bluing may be a result of the addition of nanophase iron to the regolith through the weathering process. The UV bluing is most prominent in the 300-400 nm range, where the strong UV absorption edge is degraded with weathering.
The weathering and transformation process of lead in China's shooting ranges.
Li, Yeling; Zhu, Yongbing; Zhao, Sanping; Liu, Xiaodong
2015-09-01
Corroding steel-core bullets from three shooting ranges in different climate zones of China were collected. Multiple technical methods (EMPA, SEM, XRD, and ICP-OES) were applied to investigate the structure, morphology, and weathering product of this type of bullet in China to analyze the weathering mechanisms in different types of soils. A scanning electron microscope (SEM) was used to view the morphology and microstructure of corrosion layers. On the corroded lead layer surface, unevenness, micro cracks, and spallation were usually present. Around the micro cracks, many types of euhedral and subhedral crystals of the secondary products of lead were formed, most of which were composed of cerussite (PbCO3), while hydrocerussite (Pb3(CO3)2(OH)2) was predominant in the bullet collected from the humid environment. X-ray power diffraction (XRD) results show that the secondary weathering products in the three shooting range soils are clearly different. In the Fangyan shooting range, which has a neutral and semi-arid soil, the lead weathering product was mainly hydrocerussite (Pb3(CO3)2(OH)2), while no substantial amount of crystal phase of lead compound could be found in acidic, damp soils from the Fenghuang shooting range, possibly due to the enhanced dissolution and mobilization of lead compounds at lower pH and higher content of organic matter in the soil. In hot and arid environment of the Baicheng shooting range, cerussite might have undergone thermal decomposition, thus generating shannonite (Pb2O(CO3)). These results indicate that the formation of secondary Pb minerals is largely affected by the climatic zone or the soil properties, which may have implications for range management practices.
Near-real-time Estimation and Forecast of Total Precipitable Water in Europe
NASA Astrophysics Data System (ADS)
Bartholy, J.; Kern, A.; Barcza, Z.; Pongracz, R.; Ihasz, I.; Kovacs, R.; Ferencz, C.
2013-12-01
Information about the amount and spatial distribution of atmospheric water vapor (or total precipitable water) is essential for understanding weather and the environment including the greenhouse effect, the climate system with its feedbacks and the hydrological cycle. Numerical weather prediction (NWP) models need accurate estimations of water vapor content to provide realistic forecasts including representation of clouds and precipitation. In the present study we introduce our research activity for the estimation and forecast of atmospheric water vapor in Central Europe using both observations and models. The Eötvös Loránd University (Hungary) operates a polar orbiting satellite receiving station in Budapest since 2002. This station receives Earth observation data from polar orbiting satellites including MODerate resolution Imaging Spectroradiometer (MODIS) Direct Broadcast (DB) data stream from satellites Terra and Aqua. The received DB MODIS data are automatically processed using freely distributed software packages. Using the IMAPP Level2 software total precipitable water is calculated operationally using two different methods. Quality of the TPW estimations is a crucial question for further application of the results, thus validation of the remotely sensed total precipitable water fields is presented using radiosonde data. In a current research project in Hungary we aim to compare different estimations of atmospheric water vapor content. Within the frame of the project we use a NWP model (DBCRAS; Direct Broadcast CIMSS Regional Assimilation System numerical weather prediction software developed by the University of Wisconsin, Madison) to forecast TPW. DBCRAS uses near real time Level2 products from the MODIS data processing chain. From the wide range of the derived Level2 products the MODIS TPW parameter found within the so-called mod07 results (Atmospheric Profiles Product) and the cloud top pressure and cloud effective emissivity parameters from the so-called mod06 results (Cloud Product) are assimilated twice a day (at 00 and 12 UTC) by DBCRAS. DBCRAS creates 72 hours long weather forecasts with 48 km horizontal resolution. DBCRAS is operational at the University since 2009 which means that by now sufficient data is available for the verification of the model. In the present study verification results for the DBCRAS total precipitable water forecasts are presented based on analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). Numerical indices are calculated to quantify the performance of DBCRAS. During a limited time period DBCRAS was also ran without assimilating MODIS products which means that there is possibility to quantify the effect of assimilating MODIS physical products on the quality of the forecasts. For this limited time period verification indices are compared to decide whether MODIS data improves forecast quality or not.
A new precipitation and meteorological drought climatology based on weather patterns
NASA Astrophysics Data System (ADS)
Richardson, D.; Fowler, H. J.; Kilsby, C. G.; Neal, R.
2017-12-01
Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterise the broad-scale atmospheric circulation over a given region. An analysis of regional UK precipitation and meteorological drought climatology with respect to a set of objectively defined weather patterns is presented. This classification system, introduced last year, is currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. The classification consists of 30 daily patterns derived from North Atlantic Ocean and European mean sea level pressure data. Clustering these 30 patterns yields another set of eight patterns that are intended for use in longer-range applications. Weather pattern definitions and daily occurrences are mapped to the commonly-used Lamb Weather Types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Drought index series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for different drought index thresholds, representing dry, wet and drought conditions. The set of 30 weather patterns is shown to be adequate for precipitation-based analyses in the UK, although the smaller set of clustered patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in the context of precipitation studies. Weather patterns associated with drought over the different UK regions are identified. This has potential forecasting application - if a model (e.g. a global seasonal forecast model) can predict weather pattern occurrences then regional drought outlooks may be derived from the forecasted weather patterns.
NASA Technical Reports Server (NTRS)
Scudder, N. A.; Horgan, B.; Havig, J.; Rutledge, A.; Rampe, E. B.; Hamilton, T.
2016-01-01
Although the current cold, dry environment of Mars extends back through much of its history, its earliest periods experienced significant water- related surface activity. Both geomorphic features (e.g., paleolakes, deltas, and river valleys) and hydrous mineral detections (e.g., clays and salts) have historically been interpreted to imply a "warm and wet" early Mars climate. More recently, atmospheric modeling studies have struggled to produce early climate conditions with temperatures above 0degC, leading some studies to propose a "cold and icy" early Mars dominated by widespread glaciation with transient melting. However, the alteration mineralogy produced in subglacial environments is not well understood, so the extent to which cold climate glacial weathering can produce the diverse alteration mineralogy observed on Mars is unknown. This summer, we will be conducting a field campaign in a glacial weathering environment in the Cascade Range, OR in order to determine the types of minerals that these environments produce. However, we must first disentangle the effects of glacial weathering from other significant alteration processes. Here we attempt a first understanding of glacial weathering by differentiating rocks and sediments weathered by hydrothermal, pedogenic, and glacial weathering processes in the Cascades volcanic range.
NASA Astrophysics Data System (ADS)
Muehlhausen, Thorsten; Kreuz, Michael; Temme, Annette; Nokkala, Marko; Nurmi, Pertti; Perrels, Adriaan; Hyvarinen, Otto; Yuga, Ilkka; Pylkko, Pirkko; Kral, Stephan; Schaetter, Frank; Bartsch, Mariana; Wiens, Marcus; Michaelides, Silas; Tymvios, Filippos; Papadakis, Matheos; Athanasatos, Spyros
2014-05-01
The European transport system has shown various degrees of vulnerability to external shocks such as severe weather events, which have partially or, in some cases, totally shut down part of the transport system. Under climate change conditions, the identification of Best Practices within the European area and the proposal of short, medium and long term solutions in order to deal with induced disruptions are vital to upkeep the efficiency and integrity of the European transport network. The MOWE-IT (Management of weather events in the transport system) project is a continuation of the work performed in up-to-date European projects such as the EWENT, WEATHER and ECCONET projects. Its aim is to identify such existing best practices and to develop methodologies in order to assist transport operators, authorities and transport system users to mitigate the impact of natural disasters and extreme weather phenomena on transport system performance. While the MOWE-IT project covers a wide number of transportation modes such as road, rail, marine transport, aviation and inland waterways, in this current work, an overview of the project's work performed in the aviation sector in Europe is presented. The MOWE-IT project is funded by the European Union, under its 7th Framework Programme (TRANSPORT SUPPORT ACTIONS).
NASA Astrophysics Data System (ADS)
Štyriaková, I.; Štyriak, I.; Oberhänsli, H.
2012-07-01
The bio-weathering of basalt, granite and gneiss was experimentally investigated in this study. These rock-forming minerals weathered more rapidly via the ubiquitous psychrotrophic heterotrophic bacteria . With indigenous bacteria of Bacillus spp. from sediments of Lake Baikal, we traced the degradation process of silicate minerals to understand the weathering processes occurring at the change temperature in the subsurface environment with organic input. The bacteria mediated dissolution of minerals was monitored with solution and solid chemistry, X-ray analyses as well as microscopic techniques. We determined the impact of the bacteria on the mineral surface and leaching of K, Ca, Mg, Si, Fe, and Al from silicate minerals. In the samples the release of major structural elements of silicates was used as an overall indicator of silicate mineral degradation at 4°C and 18°C from five medium exchanges over 255 days of rock bioleaching. The increase of temperature importantly affected the efficiency of Fe extraction from granite and basalt as well as Si extraction from granite and gneiss. In comparison with elemental extraction order at 4°C, Ca was substituted first by Fe or Si. It is evident that temperature influences rock microbial weathering and results in a change of elements extraction.
Numerical modeling and analysis of the effect of complex Greek topography on tornadogenesis
NASA Astrophysics Data System (ADS)
Matsangouras, I. T.; Pytharoulis, I.; Nastos, P. T.
2014-07-01
Tornadoes have been reported in Greece over recent decades in specific sub-geographical areas and have been associated with strong synoptic forcing. While it has been established that meteorological conditions over Greece are affected at various scales by the significant variability of topography, the Ionian Sea to the west and the Aegean Sea to the east, there is still uncertainty regarding topography's importance on tornadic generation and development. The aim of this study is to investigate the role of topography in significant tornadogenesis events that were triggered under strong synoptic scale forcing over Greece. Three tornado events that occurred over the last years in Thebes (Boeotia, 17 November 2007), Vrastema (Chalkidiki, 12 February 2010) and Vlychos (Lefkada, 20 September 2011) were selected for numerical experiments. These events were associated with synoptic scale forcing, while their intensities were T4-T5 (on the TORRO scale), causing significant damage. The simulations were performed using the non-hydrostatic weather research and forecasting model (WRF), initialized by European Centre for Medium-Range Weather Forecasts (ECMWF) gridded analyses, with telescoping nested grids that allow for the representation of atmospheric circulations ranging from the synoptic scale down to the mesoscale. In the experiments, the topography of the inner grid was modified by: (a) 0% (actual topography) and (b) -100% (without topography), making an effort to determine whether the occurrence of tornadoes - mainly identified by various severe weather instability indices - could be indicated by modifying topography. The principal instability variables employed consisted of the bulk Richardson number (BRN) shear, the energy helicity index (EHI), the storm-relative environmental helicity (SRH), and the maximum convective available potential energy (MCAPE, for parcels with maximum θe). Additionally, a model verification was conducted for every sensitivity experiment accompanied by analysis of the absolute vorticity budget. Numerical simulations revealed that the complex topography constituted an important factor during the 17 November 2007 and 12 February 2010 events, based on EHI, SRH, BRN, and MCAPE analyses. Conversely, topography around the 20 September 2011 event was characterized as the least significant factor based on EHI, SRH, BRN, and MCAPE analyses.
NASA Astrophysics Data System (ADS)
Peuch, V. H.
2016-12-01
Operational environmental services are a reality today, as exemplified by the Copernicus Atmospheric Monitoring Service in Europe. Air quality forecasts, information on the long-range transport of dust or of fire plumes or on greenhouse gas fluxes have become reliable enough to be considered by decision makers and to be communicated broadly -making our societies more informed about the changing environment and about the direct link between human activities, atmospheric composition, weather and climate. Many aspects of the value-adding information chains that have been built over the years share commonalities with Numerical Weather Prediction: global and regional numerical models, reflecting both the level of understanding of physical and chemical processes in the atmosphere and the contemporary computing capabilities, are used to blend observations from different in situ and, increasingly, Earth Observation sources. Significantly, the World Meteorological Organisation has recently added a new component to the Global Atmospheric Watch programme in the form of a Science Advisory Group on "Applications". The main objectives of this group are to develop a portfolio of products and services related to atmospheric composition and to demonstrate particularly the usefulness of exchanging chemical observational data in Near-Real-Time. Exchanging best practices worldwide and facilitating the set-up of new applications are also among the activities. Having operational applications does not imply that research efforts to improve environmental monitoring and forecasting services have become obsolete. Quite the contrary: feedbacks and increasingly demanding requirements from users are stimulating steady progress. The last part of the talk will support the idea that atmospheric compositions services are not only an application or an extension of weather services but contribute now also to the core of them. Atmospheric composition information has become indeed of high interest for modelling physical processes and assimilation of meteorological information. There are also exciting developments regarding the medium- to extended range prediction skill, with potential sources of predictability yet to be fully understood and harnessed.
Weathered antlers as a source of DNA
Roy G. Lopez; Paul Beier
2012-01-01
We tested antlers of Coues white-tailed (Odocoileus virginianus couesi) and mule deer (O. hemionus) in various stages of natural decomposition to determine the degree of weathering that cast antlers could endure and still yield usable DNA. Based on physical characteristics, we partitioned antlers into 7 weathering categories ranging from freshly cast (class 1) to...
Economic Value of Weather and Climate Forecasts
NASA Astrophysics Data System (ADS)
Katz, Richard W.; Murphy, Allan H.
1997-06-01
Weather and climate extremes can significantly impact the economics of a region. This book examines how weather and climate forecasts can be used to mitigate the impact of the weather on the economy. Interdisciplinary in scope, it explores the meteorological, economic, psychological, and statistical aspects of weather prediction. Chapters by area specialists provide a comprehensive view of this timely topic. They encompass forecasts over a wide range of temporal scales, from weather over the next few hours to the climate months or seasons ahead, and address the impact of these forecasts on human behavior. Economic Value of Weather and Climate Forecasts seeks to determine the economic benefits of existing weather forecasting systems and the incremental benefits of improving these systems, and will be an interesting and essential text for economists, statisticians, and meteorologists.
Veronica Loewe M.; Victor Vargas; Juan Miguel Ruiz; Andrea Alvarez C.; Felipe Lobo Q.
2015-01-01
Currently, the Chilean insurance market sells forest fire insurance policies and agricultural weather risk policies. However, access to forest fire insurance is difficult for small and medium enterprises (SMEs), with a significant proportion (close to 50%) of forest plantations being without coverage. Indeed, the insurance market that sells forest fire insurance...
Lateritic, supergene rare earth element (REE) deposits
Cocker, Mark D.
2014-01-01
Intensive lateritic weathering of bedrock under tropical or sub-tropical climatic conditions can form a variety of secondary, supergene-type deposits. These secondary deposits may range in composition from aluminous bauxites to iron and niobium, and include rare earth elements (REE). Over 250 lateritic deposits of REE are currently known and many have been important sources of REE. In southeastern China, lateritic REE deposits, known as ion-adsorption type deposits, have been the world’s largest source of heavy REE (HREE). The lateritized upper parts of carbonatite intrusions are being investigated for REE in South America, Africa, Asia and Australia, with the Mt. Weld deposit in Australia being brought into production in late 2012. Lateritic REE deposits may be derived from a wide range of primary host rocks, but all have similar laterite and enrichment profiles, and are probably formed under similar climatic conditions. The weathering profile commonly consists of a depleted zone, an enriched zone, and a partially weathered zone which overlie the protolith. Lateritic weathering may commonly extend to depths of 30 to 60 m. REE are mobilized from the breakdown of primary REE-bearing minerals and redeposited in the enriched zone deeper in the weathering horizon as secondary minerals, as colloids, or adsorbed on other secondary minerals. Enrichment of REE may range from 3 to 10 times that of the source lithology; in some instances, enrichment may range up to 100 times.
NASA Technical Reports Server (NTRS)
Griner, James H., Jr.
2004-01-01
This report describes preliminary results of work done by JHU/APL under contract to the NASA Glenn Research Center to support flight testing of the Universal Access Transceiver (UAT) data link as a medium for weather data exchange. It presents a high level architectural description of the use of UAT to meet the program objectives with an identification of issues associated with the use of this data link, including a high level definition of the changes required to UAT avionics and ground-based receivers and supporting ground infrastructure to support implementation of the recommended architecture with focus on the issues associated with these changes.
Performance of FSO Links using CSRZ, RZ, and NRZ and Effects of Atmospheric Turbulence
NASA Astrophysics Data System (ADS)
Nadeem, Lubna; Saadullah Qazi, M.; Hassam, Ammar
2018-04-01
Free space optical (FSO) communication is a wireless communication technology in which data is transferred from one point to another through highly directed beam of light. The main factors that limit the FSO link availability is the local weather conditions. It guarantees the potential of high bandwidth capacity over unlicensed optical wavelengths. The transmission medium of FSO is atmosphere and is significantly affected by the various weather conditions such as rain, fog, snow, wind, etc. In this paper, the modulation techniques under consideration are RZ, NRZ and CSRZ. Analysis is carried out regarding Q-factor with respect to varying distance, bit rates and input laser power.
The Hydrologic Ensemble Prediction Experiment (HEPEX)
NASA Astrophysics Data System (ADS)
Wood, A. W.; Thielen, J.; Pappenberger, F.; Schaake, J. C.; Hartman, R. K.
2012-12-01
The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF). With support from the US National Weather Service (NWS) and the European Commission (EC), the HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support in emergency management and water resources sectors. The strategy to meet this goal includes meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. HEPEX has organized about a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Today, the HEPEX mission is to demonstrate the added value of hydrological ensemble prediction systems (HEPS) for emergency management and water resources sectors to make decisions that have important consequences for economy, public health, safety, and the environment. HEPEX is now organised around six major themes that represent core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.
NASA Astrophysics Data System (ADS)
Centurioni, Luca
2017-04-01
The Global Drifter Program is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observing System and a scientific project of the Data Buoy Cooperation Panel (DBCP). The DBCP is an international program coordinating the use of autonomous data buoys to observe atmospheric and oceanographic conditions over ocean areas where few other measurements are taken. The Global Drifter Program maintains an array of over 1,250 Lagrangian drifters, reporting in near real-time and designed measure 15 m depth Lagrangian currents, sea surface temperature (SST) and sea level atmospheric pressure (SLP), among others, to fulfill the needs to observe the air-sea interface at temporal and spatial scales adequate to support short to medium-range weather forecasting, ocean state estimates and climate science. This overview talk will discuss the main achievements of the program, the main impacts for satellite SST calibration and validation, for numerical weather prediction, and it will review the main scientific findings based on the use of Lagrangian currents. Finally, we will present new developments in Lagrangian drifter technology, which include special drifters designed to measure sea surface salinity, wind and directional wave spectra. New opportunities for expanding the scope of the Global Drifter Program will be discussed.
NASA Astrophysics Data System (ADS)
Srivastava, Prashant K.; Han, Dawei; Islam, Tanvir; Petropoulos, George P.; Gupta, Manika; Dai, Qiang
2016-04-01
Reference evapotranspiration (ETo) is an important variable in hydrological modeling, which is not always available, especially for ungauged catchments. Satellite data, such as those available from the MODerate Resolution Imaging Spectroradiometer (MODIS), and global datasets via the European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis (ERA) interim and National Centers for Environmental Prediction (NCEP) reanalysis are important sources of information for ETo. This study explored the seasonal performances of MODIS (MOD16) and Weather Research and Forecasting (WRF) model downscaled global reanalysis datasets, such as ERA interim and NCEP-derived ETo, against ground-based datasets. Overall, on the basis of the statistical metrics computed, ETo derived from ERA interim and MODIS were more accurate in comparison to the estimates from NCEP for all the seasons. The pooled datasets also revealed a similar performance to the seasonal assessment with higher agreement for the ERA interim (r = 0.96, RMSE = 2.76 mm/8 days; bias = 0.24 mm/8 days), followed by MODIS (r = 0.95, RMSE = 7.66 mm/8 days; bias = -7.17 mm/8 days) and NCEP (r = 0.76, RMSE = 11.81 mm/8 days; bias = -10.20 mm/8 days). The only limitation with downscaling ERA interim reanalysis datasets using WRF is that it is time-consuming in contrast to the readily available MODIS operational product for use in mesoscale studies and practical applications.
Ionospheric Effects of X-Ray Solar Bursts in the Brazilian Sector
NASA Astrophysics Data System (ADS)
Becker-Guedes, F.; Takahashi, H.; Costa, J. E.; Otsuka, Y.
2011-12-01
When the solar X-ray flux in the interplanetary medium reaches values above a certain threshold, some undesired effects affecting radio communications are expected. Basically, the magnitudes of these effects depend on the X-ray peak brightness and duration, which drive the intensity of the ionosphere response when the associated electromagnetic wave hit the sunlit side of the Earth atmosphere. An important aspect defining the severity of damages to HF radio communications and LF navigation signals in a certain area is the local time when each event takes place. In order to create more accurate warnings referred to possible radio signal loss or degradation in the Brazilian sector, we analyze TEC maps obtained by a GPS network, formed by dual-frequency receivers spread all over the country, to observe ionospheric local changes during several X-ray events in the 0.1-0.8 nm range measured by GOES satellite. Considering the duration, peak brightness, and local time of the events, the final purpose of this study is to understand and predict the degree of changes suffered by the ionosphere during these X-ray bursts. We intend using these results to create a radio blackout warning product to be offered by the Brazilian space weather program named EMBRACE (Estudo e Monitoramento BRAsileiro do Clima Espacial): Brazilian Monitoring and Study of Space Weather.
Efforts in assimilating Indian satellite data in the NGFS and monitoring of their quality
NASA Astrophysics Data System (ADS)
Prasad, V. S.; Singh, Sanjeev Kumar
2016-05-01
Megha-Tropiques (MT) is an Indo-French Joint Satellite Mission, launched on 12 October 2011. MT-SAPHIR is a sounding instrument with 6 channels near the absorption band of water vapor at 183 GHz, for studying the water cycle and energy exchanges in the tropics. The main objective of this mission is to understand the life cycle of convective systems that influence the tropical weather and climate and their role in associated energy and moisture budget of the atmosphere in tropical regions. India also has a prestigious space programme and has launched the INSAT-3D satellite on 26 July 2013 which has an atmospheric sounder for the first time along with improved VHRR imager. NCMRWF (National Centre for Medium Range Weather Forecasting) is regularly receiving these new datasets and also making changes to its Global Data Assimilation Forecasting (GDAF) system from time-to-time to assimilate these new datasets. A well planned strategy involving various steps such as monitoring of data quality, development of observation operator and quality control procedures, and finally then studying its impact on forecasts is developed to include new observations in global data analysis system. By employing this strategy observations having positive impact on forecast quality such as MT-SAPHIR, and INSAT-3D Clear Sky Radiance (CSR) products are identified and being assimilated in the Global Data Assimilation and Forecasting (GDAF) system.
First SNPP Cal/Val Campaign: Satellite and Aircraft Sounding Retrieval Intercomparison
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Tian, Jialin; Smith, William L.; Wu, Wan; Kizer, Susan; Goldberg, Mitch; Liu, Q.
2015-01-01
Satellite ultraspectral infrared sensors provide key data records essential for weather forecasting and climate change science. The Suomi National Polar-orbiting Partnership (SNPP) satellite Environmental Data Record (EDR) is retrieved from calibrated ultraspectral radiance so called Sensor Data Record (SDR). It is critical to understand the accuracy of retrieved EDRs, which mainly depends on SDR accuracy (e.g., instrument random noise and absolute accuracy), an ill-posed retrieval system, and radiative transfer model errors. There are few approaches to validate EDR products, e.g., some common methods are to rely on radiosonde measurements, ground-based measurements, and dedicated aircraft campaign providing in-situ measurements of atmosphere and/or employing similar ultraspectral interferometer sounders. Ultraspectral interferometer sounder aboard aircraft measures SDR to retrieve EDR, which is often used to validate satellite measurements of SDR and EDR. The SNPP Calibration/Validation Campaign was conducted during May 2013. The NASA high-altitude aircraft ER-2 that carried ultraspectral interferometer sounders such as the NASA Atmospheric Sounder Testbed-Interferometer (NAST-I) flew under the SNPP satellite that carries the Cross-track Infrared Sounder (CrIS). Here we inter-compare the EDRs produced with different retrieval algorithms from SDRs measured by the sensors from satellite and aircraft. The available dropsonde and radiosonde measurements together with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis were also used to draw the conclusion from this experiment.
Troposphere gradients from the ECMWF in VLBI analysis
NASA Astrophysics Data System (ADS)
Boehm, Johannes; Schuh, Harald
2007-06-01
Modeling path delays in the neutral atmosphere for the analysis of Very Long Baseline Interferometry (VLBI) observations has been improved significantly in recent years by the use of elevation-dependent mapping functions based on data from numerical weather models. In this paper, we present a fast way of extracting both, hydrostatic and wet, linear horizontal gradients for the troposphere from data of the European Centre for Medium-range Weather Forecasts (ECMWF) model, as it is realized at the Vienna University of Technology on a routine basis for all stations of the International GNSS (Global Navigation Satellite Systems) Service (IGS) and International VLBI Service for Geodesy and Astrometry (IVS) stations. This approach only uses information about the refractivity gradients at the site vertical, but no information from the line-of-sight. VLBI analysis of the CONT02 and CONT05 campaigns, as well as all IVS-R1 and IVS-R4 sessions in the first half of 2006, shows that fixing these a priori gradients improves the repeatability for 74% (40 out of 54) of the VLBI baseline lengths compared to fixing zero or constant a priori gradients, and improves the repeatability for the majority of baselines compared to estimating 24-h offsets for the gradients. Only if 6-h offsets are estimated, the baseline length repeatabilities significantly improve, no matter which a priori gradients are used.
Cloudiness and Marine Boundary Layer Variability at the ARM Eastern North Atlantic Site
NASA Astrophysics Data System (ADS)
Remillard, J.; Kollias, P.; Zhou, X.; Luke, E. P.
2016-12-01
The US Department of Energy Atmospheric Radiation Measurement (ARM) program operates a fixed ground-based site at Graciosa Island in the Azores in the Eastern North Atlantic (ENA). The measurement record extends through two warm seasons where marine boundary layer (MBL) clouds prevail. Here, a plethora of ground-based observations from the ARM ENA site are used to characterize the vertical and horizontal variability of the MBL and associated cloudiness. In particular, the Doppler lidar observations along with thermodynamic information are used to determine the coupling or decoupling of the MBL. The horizontal variability of the sub-cloud layer is assessed via wavelet analysis and compared to the cloud scale, which is quantified by Fourier analysis of liquid water path (LWP) from microwave radiometer observations. The role of drizzle-induced evaporative cooling and moistening in modifying the MBL is examined using surface measurements, microwave radiometer, ceilometer, cloud radar and Doppler lidar observations. The MBL variability is categorized by the strength of drizzle and their relation is studied. Furthermore, the relationship between MBL cloudiness and subsidence is tested using reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). Weather states from the International Satellite Cloud Climatology Project (ISCCP) put the results into a more general context, and provide an easy way to link them to the atmospheric situation surrounding the area.
NASA Astrophysics Data System (ADS)
Fehlmann, Michael; Gascón, Estíbaliz; Rohrer, Mario; Schwarb, Manfred; Stoffel, Markus
2018-05-01
The snowfall limit has important implications for different hazardous processes associated with prolonged or heavy precipitation such as flash floods, rain-on-snow events and freezing precipitation. To increase preparedness and to reduce risk in such situations, early warning systems are frequently used to monitor and predict precipitation events at different temporal and spatial scales. However, in alpine and pre-alpine valleys, the estimation of the snowfall limit remains rather challenging. In this study, we characterize uncertainties related to snowfall limit for different lead times based on local measurements of a vertically pointing micro rain radar (MRR) and a disdrometer in the Zulg valley, Switzerland. Regarding the monitoring, we show that the interpolation of surface temperatures tends to overestimate the altitude of the snowfall limit and can thus lead to highly uncertain estimates of liquid precipitation in the catchment. This bias is much smaller in the Integrated Nowcasting through Comprehensive Analysis (INCA) system, which integrates surface station and remotely sensed data as well as outputs of a numerical weather prediction model. To reduce systematic error, we perform a bias correction based on local MRR measurements and thereby demonstrate the added value of such measurements for the estimation of liquid precipitation in the catchment. Regarding the nowcasting, we show that the INCA system provides good estimates up to 6 h ahead and is thus considered promising for operational hydrological applications. Finally, we explore the medium-range forecasting of precipitation type, especially with respect to rain-on-snow events. We show for a selected case study that the probability for a certain precipitation type in an ensemble-based forecast is more persistent than the respective type in the high-resolution forecast (HRES) of the European Centre for Medium Range Weather Forecasts Integrated Forecasting System (ECMWF IFS). In this case study, the ensemble-based forecast could be used to anticipate such an event up to 7-8 days ahead, whereas the use of the HRES is limited to a lead time of 4-5 days. For the different lead times investigated, we point out possibilities of considering uncertainties in snowfall limit and precipitation type estimates so as to increase preparedness to risk situations.
Application of the Haines Index in the fire warning system
NASA Astrophysics Data System (ADS)
Kalin, Lovro; Marija, Mokoric; Tomislav, Kozaric
2016-04-01
Croatia, as all Mediterranean countries, is strongly affected by large wildfires, particularly in the coastal region. In the last two decades the number and intensity of fires has been significantly increased, which is unanimously associated with climate change, e.g. global warming. More extreme fires are observed, and the fire-fighting season has been expanded to June and September. The meteorological support for fire protection and planning is therefore even more important. At the Meteorological and Hydrological Service of Croatia a comprehensive monitoring and warning system has been established. It includes standard components, such as short term forecast of Fire Weather Index (FWI), but long range forecast as well. However, due to more frequent hot and dry seasons, FWI index often does not provide additional information of extremely high fire danger, since it regularly takes the highest values for long periods. Therefore the additional tools have been investigated. One of widely used meteorological products is the Haines index (HI). It provides information of potential fire growth, taking into account only the vertical instability of the atmosphere, and not the state of the fuel. Several analyses and studies carried out at the Service confirmed the correlation of high HI values with large and extreme fires. The Haines index forecast has been used at the Service for several years, employing European Centre for Medium Range Weather Forecast (ECMWF) global prediction model, as well as the limited-area Aladin model. The verification results show that these forecast are reliable, when compared to radiosonde measurements. All these results provided the introduction of the additional fire warnings, that are issued by the Service's Forecast Department.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisin, Nathalie; Pappenberger, Florian; Lettenmaier, D. P.
2011-08-15
A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003-2007. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium Range Weather Forecasts (ECMWF) analysis temperatures and wind, and Tropical Rainfall Monitoring Mission Multi Satellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF ensemble prediction system (EPS) 10-day ensemble forecast. A parallel set up was used where ECMWF EPS forecasts were interpolated to the spatialmore » scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The flood prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. Initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.« less
Space Weathering of Intermediate-Size Soil Grains in Immature Apollo 17 Soil 71061
NASA Technical Reports Server (NTRS)
Wentworth, S. J.; Robinson, G. A.; McKay, D. S.
2005-01-01
Understanding space weathering, which is caused by micrometeorite impacts, implantation of solar wind gases, radiation damage, chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputter erosion and deposition, continues to be a primary objective of lunar sample research. Electron beam studies of space weathering have focused on space weathering effects on individual glasses and minerals from the finest size fractions of lunar soils [1] and patinas on lunar rocks [2]. We are beginning a new study of space weathering of intermediate-size individual mineral grains from lunar soils. For this initial work, we chose an immature soil (see below) in order to maximize the probability that some individual grains are relatively unweathered. The likelihood of identifying a range of relatively unweathered grains in a mature soil is low, and we plan to study grains ranging from pristine to highly weathered in order to determine the progression of space weathering. Future studies will include grains from mature soils. We are currently in the process of documenting splash glass, glass pancakes, craters, and accretionary particles (glass and mineral grains) on plagioclase from our chosen soil using high-resolution field emission scanning electron microscopy (FESEM). These studies are being done concurrently with our studies of patinas on larger lunar rocks [e.g., 3]. One of our major goals is to correlate the evidence for space weathering observed in studies of the surfaces of samples with the evidence demonstrated at higher resolution (TEM) using cross-sections of samples. For example, TEM studies verified the existence of vapor deposits on soil grains [1]; we do not yet know if they can be readily distinguished by surfaces studies of samples. A wide range of textures of rims on soil grains is also clear in TEM [1]; might it be possible to correlate them with specific characteristics of weathering features seen in SEM?
NASA Astrophysics Data System (ADS)
Ayscue, Emily P.
This study profiles the coastal tourism sector, a large and diverse consumer of climate and weather information. It is crucial to provide reliable, accurate and relevant resources for the climate and weather-sensitive portions of this stakeholder group in order to guide them in capitalizing on current climate and weather conditions and to prepare them for potential changes. An online survey of tourism business owners, managers and support specialists was conducted within the eight North Carolina oceanfront counties asking respondents about forecasts they use and for what purposes as well as why certain forecasts are not used. Respondents were also asked about their perceived dependency of their business on climate and weather as well as how valuable different forecasts are to their decision-making. Business types represented include: Agriculture, Outdoor Recreation, Accommodations, Food Services, Parks and Heritage, and Other. Weekly forecasts were the most popular forecasts with Monthly and Seasonal being the least used. MANOVA and ANOVA analyses revealed outdoor-oriented businesses (Agriculture and Outdoor Recreation) as perceiving themselves significantly more dependent on climate and weather than indoor-oriented ones (Food Services and Accommodations). Outdoor businesses also valued short-range forecasts significantly more than indoor businesses. This suggests a positive relationship between perceived climate and weather dependency and forecast value. The low perceived dependency and value of short-range forecasts of indoor businesses presents an opportunity to create climate and weather information resources directed at how they can capitalize on positive climate and weather forecasts and how to counter negative effects with forecasted adverse conditions. The low use of long-range forecasts among all business types can be related to the low value placed on these forecasts. However, these forecasts are still important in that they are used to make more financially risky decisions such as investment decisions.
Observational study of atmospheric surface layer and coastal weather in northern Qatar
NASA Astrophysics Data System (ADS)
Samanta, Dhrubajyoti; Sadr, Reza
2016-04-01
Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.
A Wind Forecasting System for Energy Application
NASA Astrophysics Data System (ADS)
Courtney, Jennifer; Lynch, Peter; Sweeney, Conor
2010-05-01
Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated probabilistic wind forecasts which will be invaluable in wind energy management. In brief, this method turns the ensemble forecasts into a calibrated predictive probability distribution. Each ensemble member is provided with a 'weight' determined by its relative predictive skill over a training period of around 30 days. Verification of data is carried out using observed wind data from operational wind farms. These are then compared to existing forecasts produced by ECMWF and Met Eireann in relation to skill scores. We are developing decision-making models to show the benefits achieved using the data produced by our wind energy forecasting system. An energy trading model will be developed, based on the rules currently used by the Single Electricity Market Operator for energy trading in Ireland. This trading model will illustrate the potential for financial savings by using the forecast data generated by this research.
Weathering and genesis of Soils from Ellsworth Mountains, East Antarctica
NASA Astrophysics Data System (ADS)
Karoline Delpupo Souza, Katia; Schaefer, Carlos Ernesto; Michel, Roberto; Monari, Julia; Machado, Vania
2015-04-01
Knowledge on Antarctic soils from the Ellsworth Mountains (EM) are patchy comparatively with Dry Valleys soils from the Transantartic Mountains, and could help understand the genesis of cryogenic soils under extreme dry, cold desert conditions. The EM are a slightly arcuate 350-km-long north-northwest-trending mountain chain is bordered on the west by the polar plateau of West Antarctica and on the east by Ronne Ice Shelf. The range is as much as 90 km wide and constitutes one of the largest areas of exposed bedrock in West Antarctica. The stratigraphic succession in the EM includes strata from Cambriam to Permian in age. The objective of this study is to analyze the properties of soils from EM in order to identify the main factors and processes involved in soil formation under cold desert conditions in Antarctica. The sampling design aimed to represent the different geological substrates (marble-clast conglomerate, graywacke, argillite, conglomerate, black shale, marble and quartzite) as well as altitudinal levels and landforms within the same substrate. We characterized soils from EM regarding their morphological, physics and chemical properties. Soil samples were air dried and passed through 2 mm sieves. After removal of water soluble salts, the samples were submitted to chemical and physical analyses such as: pH in water, potential acidity (H + Al), exchangeable bases, total organic carbon, electric conductivity, soil texture and color. The soils classify, for the most part, in weathering stages 1 to 2. Only in the upper parts of ridges were there traces of soils at weathering stage 3. This indicates that much of the present icefree topography has been overridden by ice within the last few hundred thousand years. Cryoturbation is a widespread phenomenon in this area resulting in intense cryoclastic weathering and patterned ground, forming sorted circles, stripes and gelifluxion lobes. The soil show low horizontation, discrete patches of salt on the surface, and salt crusts beneath the rock fragments. Despite of the low weathering stage of the soil, they have yellowish hue and high chroma values from influence by sulfide material. Boulders on moraines show staining, pitting, spalling, and some striations. All soil are alkaline in reaction, with pHs at the range between 7.5-9.2. Cryptogamic (lichens or mosses) crusts are absent, and the organic matter contents were invariably very low, ranging between 0.13 and 0.38%. Permafrost is continuous and occurs close to the surface, at between 5-15 cm down the top. The available P background is also very low (< 5.3 mg/kg), exchangeable K and Na levels are surprisingly low for Polar Desert soils. Soils are all skelletic, with a predominance of coarse materials. CEC is medium to high, and Ca-dominated, as a result of a strong limestone influence in the moraine parent materials. The main salts present are Ca and Na-sulphate forms, and less cloride forms, and clay sized materials are dominated by salts in all soils, especially below 5 cm depth.
Trends in the predictive performance of raw ensemble weather forecasts
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Scheuerer, Michael; Pappenberger, Florian; Bogner, Konrad; Haiden, Thomas
2015-04-01
Over the last two decades the paradigm in weather forecasting has shifted from being deterministic to probabilistic. Accordingly, numerical weather prediction (NWP) models have been run increasingly as ensemble forecasting systems. The goal of such ensemble forecasts is to approximate the forecast probability distribution by a finite sample of scenarios. Global ensemble forecast systems, like the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble, are prone to probabilistic biases, and are therefore not reliable. They particularly tend to be underdispersive for surface weather parameters. Hence, statistical post-processing is required in order to obtain reliable and sharp forecasts. In this study we apply statistical post-processing to ensemble forecasts of near-surface temperature, 24-hour precipitation totals, and near-surface wind speed from the global ECMWF model. Our main objective is to evaluate the evolution of the difference in skill between the raw ensemble and the post-processed forecasts. The ECMWF ensemble is under continuous development, and hence its forecast skill improves over time. Parts of these improvements may be due to a reduction of probabilistic bias. Thus, we first hypothesize that the gain by post-processing decreases over time. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations from globally distributed stations we generate post-processed forecasts by ensemble model output statistics (EMOS) for each station and variable. Parameter estimates are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over rolling training periods that consist of the n days preceding the initialization dates. Given the higher average skill in terms of CRPS of the post-processed forecasts for all three variables, we analyze the evolution of the difference in skill between raw ensemble and EMOS forecasts. The fact that the gap in skill remains almost constant over time, especially for near-surface wind speed, suggests that improvements to the atmospheric model have an effect quite different from what calibration by statistical post-processing is doing. That is, they are increasing potential skill. Thus this study indicates that (a) further model development is important even if one is just interested in point forecasts, and (b) statistical post-processing is important because it will keep adding skill in the foreseeable future.
NASA Astrophysics Data System (ADS)
Maffre, Pierre; Ladant, Jean-Baptiste; Moquet, Jean-Sébastien; Carretier, Sébastien; Labat, David; Goddéris, Yves
2018-07-01
The role of mountains in the geological evolution of the carbon cycle has been intensively debated for the last decades. Mountains are thought to increase the local physical erosion, which in turns promotes silicate weathering, organic carbon transport and burial, and release of sulfuric acid by dissolution of sulfides. In this contribution, we explore the impact of mountain ranges on silicate weathering. Mountains modify the global pattern of atmospheric circulation as well as the local erosion conditions. Using an IPCC-class climate model, we first estimate the climatic impact of mountains by comparing the present day climate with the climate when all the continents are assumed to be flat. We then use these climate output to calculate weathering changes when mountains are present or absent, using standard expression for physical erosion and a 1D vertical model for rock weathering. We found that large-scale climate changes and enhanced rock supply by erosion due to mountain uplift have opposite effect, with similar orders of magnitude. A thorough testing of the weathering model parameters by data-model comparison shows that best-fit parameterizations lead to a decrease of weathering rate in the absence of mountain by about 20%. However, we demonstrate that solutions predicting an increase in weathering in the absence of mountain cannot be excluded. A clear discrimination between the solutions predicting an increase or a decrease in global weathering is pending on the improvement of the existing global databases for silicate weathering. Nevertheless, imposing a constant and homogeneous erosion rate for models without relief, we found that weathering decrease becomes unequivocal for very low erosion rates (below 10 t/km2/yr). We conclude that further monitoring of continental silicate weathering should be performed with a spatial distribution allowing to discriminate between the various continental landscapes (mountains, plains …).
Economic Impact of Fire Weather Forecasts
Don Gunasekera; Graham Mills; Mark Williams
2006-01-01
Southeastern Australia, where the State of Victoria is located is regarded as one of the most fire prone areas in the world. The Australian Bureau of Meteorology provides fire weather services in Victoria as part of a national framework for the provision of such services. These services range from fire weather warnings to special forecasts for hazard reduction burns....
No Matter the Weather, We'll Measure Together
ERIC Educational Resources Information Center
Blanchard, Margaret; Albert, Jennifer
2011-01-01
Weather is a topic that occurs many times in the standard course of study (NRC 1996) from elementary school through high school. The activity described in this article allows students to collect data on the questions that interest them about the weather, and learn from their peers about a range of other questions that were investigated. No matter…
The effects of clutter-rejection filtering on estimating weather spectrum parameters
NASA Technical Reports Server (NTRS)
Davis, W. T.
1989-01-01
The effects of clutter-rejection filtering on estimating the weather parameters from pulse Doppler radar measurement data are investigated. The pulse pair method of estimating the spectrum mean and spectrum width of the weather is emphasized. The loss of sensitivity, a measure of the signal power lost due to filtering, is also considered. A flexible software tool developed to investigate these effects is described. It allows for simulated weather radar data, in which the user specifies an underlying truncated Gaussian spectrum, as well as for externally generated data which may be real or simulated. The filter may be implemented in either the time or the frequency domain. The software tool is validated by comparing unfiltered spectrum mean and width estimates to their true values, and by reproducing previously published results. The effects on the weather parameter estimates using simulated weather-only data are evaluated for five filters: an ideal filter, two infinite impulse response filters, and two finite impulse response filters. Results considering external data, consisting of weather and clutter data, are evaluated on a range cell by range cell basis. Finally, it is shown theoretically and by computer simulation that a linear phase response is not required for a clutter rejection filter preceeding pulse-pair parameter estimation.
Global sensitivity analysis of the BSM2 dynamic influent disturbance scenario generator.
Flores-Alsina, Xavier; Gernaey, Krist V; Jeppsson, Ulf
2012-01-01
This paper presents the results of a global sensitivity analysis (GSA) of a phenomenological model that generates dynamic wastewater treatment plant (WWTP) influent disturbance scenarios. This influent model is part of the Benchmark Simulation Model (BSM) family and creates realistic dry/wet weather files describing diurnal, weekend and seasonal variations through the combination of different generic model blocks, i.e. households, industry, rainfall and infiltration. The GSA is carried out by combining Monte Carlo simulations and standardized regression coefficients (SRC). Cluster analysis is then applied, classifying the influence of the model parameters into strong, medium and weak. The results show that the method is able to decompose the variance of the model predictions (R(2)> 0.9) satisfactorily, thus identifying the model parameters with strongest impact on several flow rate descriptors calculated at different time resolutions. Catchment size (PE) and the production of wastewater per person equivalent (QperPE) are two parameters that strongly influence the yearly average dry weather flow rate and its variability. Wet weather conditions are mainly affected by three parameters: (1) the probability of occurrence of a rain event (Llrain); (2) the catchment size, incorporated in the model as a parameter representing the conversion from mm rain · day(-1) to m(3) · day(-1) (Qpermm); and, (3) the quantity of rain falling on permeable areas (aH). The case study also shows that in both dry and wet weather conditions the SRC ranking changes when the time scale of the analysis is modified, thus demonstrating the potential to identify the effect of the model parameters on the fast/medium/slow dynamics of the flow rate. The paper ends with a discussion on the interpretation of GSA results and of the advantages of using synthetic dynamic flow rate data for WWTP influent scenario generation. This section also includes general suggestions on how to use the proposed methodology to any influent generator to adapt the created time series to a modeller's demands.
NASA Astrophysics Data System (ADS)
Matsangouras, I. T.; Nastos, P. T.; Pytharoulis, I.
2016-03-01
Recent research revealed that western Greece and NW Peloponnese are regions that favor prefrontal tornadic incidence. On March 25, 2009 a tornado developed approximately at 10:30 UTC near Varda village (NW Peloponnese). Tornado intensity was T4-T5 (TORRO scale) and consequently caused an economic impact of 350,000 € over the local society. The goals of this study are: (i) to analyze synoptic and remote sensing features regarding the tornado event over NW Peloponnese and (ii) to investigate the role of topography in tornadogenesis triggered under strong synoptic scale forcing over that area. Synoptic analysis was based on the European Centre for Medium-Range Weather Forecasts (ECMWF) data sets. The analysis of daily anomaly of synoptic conditions with respect to 30 years' climatology (1981-2010), was based on the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis data sets. In addition, numerous remote sensing data sets were derived by the Hellenic National Meteorological Service (HNMS) weather station network in order to better interpret the examined tornado event. Finally, numerical modeling was performed using the non-hydrostatic Weather Research and Forecasting model (WRF), initialized by ECMWF gridded analyses, with telescoping nested grids that allow the representation of atmospheric circulations ranging from the synoptic scale down to the meso-scale. The two numerical experiments were performed on the basis of: (a) the presence and (b) the absence of topography (landscape), so as to determine whether the occurrence of a tornado - identified by diagnostic instability indices - could be indicated by modifying topography. The energy helicity index (EHI), the bulk Richardson number (BRN) shear, the storm-relative environmental helicity (SRH), and the maximum convective available potential energy (MCAPE, for parcels with maximum θe) were considered as principal diagnostic instability variables and employed in both numerical experiments. Furthermore, model verification was conducted, accompanied by analysis of the absolute vorticity budget. Synoptic analysis revealed that the synoptic weather conditions on March 25, 2009 are in agreement with the composite synoptic climatology for tornado days over western Greece. In addition, maximum daily anomalies at the barometric levels of 500, 700, 850 and 925 hPa were found, compared to the climatology of composite mean anomalies for tornado days over western Greece. Numerical simulations revealed that the topography of NW Peloponnese did not constitute an important factor during the tornado event on March 25, 2009, based on EHI, SRH, BRN, and MCAPE analyses.
Construction of Real-time Forecast System on the Boreal Summer Intraseasonal Oscillation
NASA Astrophysics Data System (ADS)
Kim, H.; Wheeler, M. C.; Lee, J.; Gottschalck, J.
2013-12-01
Hae-Jeong Kim1, Matthew C. Wheeler2, June-Yi Lee3 and Jon C. Gottschalck4 1APEC Climate Center, 12 Centum 7-ro, Haeundae-gu, Busan, 612-020, South Korea 2Centre for Australian Weather and Climate Research Bureau of Meteorology, Melbourne, Australia 3Global Monsoon Climate Laboratory, Pusan National University, Busan, Korea 4Climate Prediction Center, NOAA/National Weather Service, Washington D. C., USA *E-mail : shout@apcc21.org The boreal summer intraseasonal oscillation (BSISO) is one of the dominant mode of variability in the Asian summer monsoon and global monsoon (e.g. Webster et al., 1998; Lee et al., 2013). The BSISO influences summer monsoon onsets (e.g. Wang and Xie, 1997) and interacts with a wide range of atmospheric circulation and associated weather (e.g. Lee et al., 2011; Wang et al., 2012). In addition, the wet and dry spells of the BSISO strongly can influence extreme hydro-meteorological events, major driving forces of natural disasters (Lau and Waliser 2005). Thus, it is important to monitor and predict the BSISO. As the occurrence of and concern over extreme climate events rises, moreover, the provision of high-quality BSISO forecasts will become increasingly relevant. APCC has recently begun to provide the BSISO forecast information service at http://www.apcc21.org/eng/service/bsiso/fore/japcc030601.jsp. The forecast is contributed by the Australian Bureau of Meteorology, the US National Centers for Environmental Prediction, the European Center for Medium Range Weather Forecasts and UK Meteorology Office in cooperation with the CAS/WCRP Working Group on Numerical Experimentation (WGNE) Madden Julian Oscillation (MJO) Task Force. The APCC BSISO forecasts are displayed by newly developed indices proposed by Lee at al. (2013) that are able to overcome the limitation of the RMM index (Wheeler and Hendon, 2004) in terms of representing BSISO activity with northward propagation over off-equatorial monsoon domain. The BSISO forecast information can be useful for coping with extreme climate events and can help mitigate the agricultural and socioeconomic impacts of these natural disasters. This activity is expected to improve our understanding on the model shortcomings and forecast ability of the BSISO by inducing the participation of various model into BSISO metric. Acknowledgement. We would like to gratefully and sincerely thank the forecast contributions to this activity that has been facilitated by a number of individuals including Andrew Marshall, Wanqiu Wang, Ann Shelly and Frederic Vitart. We also thank the member of the MJO Task Force for their cooperation.
On the reliability of seasonal climate forecasts
Weisheimer, A.; Palmer, T. N.
2014-01-01
Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1–5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that ‘goodness’ should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a ‘5’ should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of ‘goodness’ rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching ‘5’ across all regions and variables in 30 years time. PMID:24789559
PROPAGATION AND EVOLUTION OF THE JUNE 1st 2008 CME IN THE INTERPLANETARY MEDIUM
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, T.; Lamb, D. A.; Davila, J. M.; Vinas, A. F.; Moestl, C.; Hidalgo, M. A.; Farrugia, C. J.; Malandraki, O.; Dresing, N.; Gómez-Herrero, R.
2009-12-01
In this work we present a study of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been extensively studied by others because of its favorable geometry and the possible consequences of its peculiar initiation for space weather forecasting. We show an analysis of the evolution of the CME in the interplanetary medium in order to shed some light on the propagation mechanism of the ICME. We have determined the typical shock associated characteristics of the ICME in order to understand the propagation properties. Using two different non force-free models of the magnetic cloud allows us to incorporate expansion of the cloud. We use in-situ measurements from STEREO B/IMPACT to characterize the ICME. In addition, we use images from STEREO A/SECCHI-HI to analyze the propagation and visual evolution of the associated flux rope in the interplanetary medium. We compare and contrast these observations with the results of the analytical models.
Fast single image dehazing based on image fusion
NASA Astrophysics Data System (ADS)
Liu, Haibo; Yang, Jie; Wu, Zhengping; Zhang, Qingnian
2015-01-01
Images captured in foggy weather conditions often fade the colors and reduce the contrast of the observed objects. An efficient image fusion method is proposed to remove haze from a single input image. First, the initial medium transmission is estimated based on the dark channel prior. Second, the method adopts an assumption that the degradation level affected by haze of each region is the same, which is similar to the Retinex theory, and uses a simple Gaussian filter to get the coarse medium transmission. Then, pixel-level fusion is achieved between the initial medium transmission and coarse medium transmission. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods.
Extreme weather-year sequences have nonadditive effects on environmental nitrogen losses.
Iqbal, Javed; Necpalova, Magdalena; Archontoulis, Sotirios V; Anex, Robert P; Bourguignon, Marie; Herzmann, Daryl; Mitchell, David C; Sawyer, John E; Zhu, Qing; Castellano, Michael J
2018-01-01
The frequency and intensity of extreme weather years, characterized by abnormal precipitation and temperature, are increasing. In isolation, these years have disproportionately large effects on environmental N losses. However, the sequence of extreme weather years (e.g., wet-dry vs. dry-wet) may affect cumulative N losses. We calibrated and validated the DAYCENT ecosystem process model with a comprehensive set of biogeophysical measurements from a corn-soybean rotation managed at three N fertilizer inputs with and without a winter cover crop in Iowa, USA. Our objectives were to determine: (i) how 2-year sequences of extreme weather affect 2-year cumulative N losses across the crop rotation, and (ii) if N fertilizer management and the inclusion of a winter cover crop between corn and soybean mitigate the effect of extreme weather on N losses. Using historical weather (1951-2013), we created nine 2-year scenarios with all possible combinations of the driest ("dry"), wettest ("wet"), and average ("normal") weather years. We analyzed the effects of these scenarios following several consecutive years of relatively normal weather. Compared with the normal-normal 2-year weather scenario, 2-year extreme weather scenarios affected 2-year cumulative NO 3 - leaching (range: -93 to +290%) more than N 2 O emissions (range: -49 to +18%). The 2-year weather scenarios had nonadditive effects on N losses: compared with the normal-normal scenario, the dry-wet sequence decreased 2-year cumulative N 2 O emissions while the wet-dry sequence increased 2-year cumulative N 2 O emissions. Although dry weather decreased NO 3 - leaching and N 2 O emissions in isolation, 2-year cumulative N losses from the wet-dry scenario were greater than the dry-wet scenario. Cover crops reduced the effects of extreme weather on NO 3 - leaching but had a lesser effect on N 2 O emissions. As the frequency of extreme weather is expected to increase, these data suggest that the sequence of interannual weather patterns can be used to develop short-term mitigation strategies that manipulate N fertilizer and crop rotation to maximize crop N uptake while reducing environmental N losses. © 2017 John Wiley & Sons Ltd.
Optimized Strategies for Detecting Extrasolar Space Weather
NASA Astrophysics Data System (ADS)
Hallinan, Gregg
2018-06-01
Fully understanding the implications of space weather for the young solar system, as well as the wider population of planet-hosting stars, requires remote sensing of space weather in other stellar systems. Solar coronal mass ejections can be accompanied by bright radio bursts at low frequencies (typically <100 MHz), that are produced as the resulting shockwave propagates through the corona and interplanetary medium.; searches for similar emissions are ongoing from nearby stellar systems. Exoplanets that encounter CMEs can increase in radio luminosity by orders of magnitude at kHz-MHz frequencies. A detection of this radio emission allows the direct measurement of the magnetic field strength of the planet, informing on whether the atmosphere of the planet can survive the intense magnetic activity of its host star. However, both stellar and planetary radio emission are highly variable and optimal strategies for detection of these emissions requires the capability to monitor 1000s of nearby stellar/planetary systems simultaneously. I will discuss optimized strategies for both ground and space-based experiments to take advantage of the highly variable nature of the radio emissions powered by extrasolar space weather to enable detection of stellar CMEs and planetary magnetospheres.
Surface Exposure Ages of Space-Weathered Grains from Asteroid 25143 Itokawa
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.; Christoffersen, R.
2015-01-01
Space weathering processes such as solar wind ion irradiation and micrometeorite impacts are widely known to alter the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies.
Determining rates of chemical weathering in soils - Solute transport versus profile evolution
Stonestrom, David A.; White, A.F.; Akstin, K.C.
1998-01-01
SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses that have occurred during regolith development. Climates at the three profiles range from Mediterranean to humid to tropical. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. This allows current SiO2 fluxes below the zone of seasonal variations to be estimated from pore-water concentrations and average hydraulic flux densities. Mean-annual SiO2 concentrations were 0.1-1.5 mM. Hydraulic conductivities for the investigated range of soil-moisture saturations ranged from 10-6 m s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6 x 10-9 to 14 x 10-9 m s-1 based on Darcy's law and field measurements of moisture saturations and pressure heads. Corresponding fluid-residence times in the profiles ranged from 10 to 44 years. Total SiO2 losses, based on chemical and volumetric changes in the respective profiles, ranged from 19 to 110 kmoles SiO2 m-2 of land surface as a result of 0.2-0.4 Ma of chemical weathering. Extrapolation of contemporary solute fluxes to comparable time periods reproduced these SiO2 losses to about an order of magnitude. Despite the large range and non-linearity of measured hydraulic conductivities, solute transport rates in weathering regoliths can be estimated from characterization of hydrologic conditions at sufficiently large depths. The agreement suggests that current weathering rates are representative of long-term average weathering rates in the regoliths.SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses during regolith development. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. Hydraulic conductivities for the investigated range of soil-moisture saturations of 10-6 m/s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6??10-9 to 14??10-9 m/s based on Darcy's law and field measurements of moisture saturations and pressure heads.
NASA Technical Reports Server (NTRS)
Pazmany, Andrew L.
2014-01-01
In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.
A Comparison of Wind Speed Data from Mechanical and Ultrasonic Anemometers
NASA Technical Reports Server (NTRS)
Short, D.; Wells, L.; Merceret, F.; Roeder, W. P.
2006-01-01
This study compared the performance of mechanical and ultrasonic anemometers at the Eastern Range (ER; Kennedy Space Center and Cape Canaveral Air Force Station on Florida's Atlantic coast) and the Western Range (WR; Vandenberg Air Force Base on California's Pacific coast). Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at the ER and WR for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The current ER and WR weather tower wind instruments are being changed from the current propeller-and-vane (ER) and cup-and-vane (WR) sensors to ultrasonic sensors through the Range Standardization and Automation (RSA) program. The differences between mechanical and ultrasonic techniques have been found to cause differences in the statistics of peak wind speed in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between RSA and current sensors to determine if there are significant differences. Approximately 3 weeks of Legacy and RSA wind data from each range were used in the study, archived during May and June 2005. The ER data spanned the full diurnal cycle, while the WR data was confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on 5 different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The 10 towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The RSA sensors were collocated at the same vertical levels as the present sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with present sensors were compared. The 1-minute average wind speed/direction and the 1-second peak wind speed/direction were compared.
Structural properties of medium-range order in CuNiZr alloy
NASA Astrophysics Data System (ADS)
Gao, Tinghong; Hu, Xuechen; Xie, Quan; Li, Yidan; Ren, Lei
2017-10-01
The evolution characteristics of icosahedral clusters during the rapid solidification of Cu50Ni10Zr40 alloy at cooling rate of 1011 K s-1 are investigated based on molecular dynamics simulations. The structural properties of the short-range order and medium-range order of Cu50Ni10Zr40 alloy are analyzed by several structural characterization methods. The results reveal that the icosahedral clusters are the dominant short-range order structure, and that they assemble themselves into medium-range order by interpenetrating connections. The different morphologies of medium-range order are found in the system and include chain, triangle, tetrahedral, and their combination structures. The tetrahedral morphologies of medium-range order have excellent structural stability with decreasing temperature. The Zr atoms are favorable to form longer chains, while the Cu atoms are favorable to form shorter chains in the system. Those chains interlocked with each other to improve the structural stability.
Arduino Based Weather Monitoring Telemetry System Using NRF24L01+
NASA Astrophysics Data System (ADS)
Sidqi, Rafi; Rio Rynaldo, Bagus; Hadi Suroso, Satya; Firmansyah, Rifqi
2018-04-01
Abstract-Weather is an important part of the natural environment, thus knowing weather information is needed before doing activity. The main purpose of this research was to develop a weather monitoring system which capable to transmit weather data via radio frequency by using nRF24L01+ 2,4GHz radio module. This research implement Arduino UNO as the main controller of the system which send data wirelessly using the radio module and received by a receiver system. Received data then logged and displayed using a Graphical User Interface on a personal computer. Test and experiment result show that the system was able to transmit weather data via radio wave with maximum transmitting range of 32 meters.
NASA Astrophysics Data System (ADS)
Scarciglia, Fabio; Critelli, Salvatore; Borrelli, Luigi; Coniglio, Sabrina; Muto, Francesco; Perri, Francesco
2016-05-01
In this paper we characterized several weathering profiles developed on granitoid rocks in the Sila Massif upland (Calabria, southern Italy), integrating detailed macro- and micromorphological observations with physico-mechanical field tests and petrographic, mineralogical and geochemical analyses. We focused our attention on the main weathering and pedogenetic processes, trying to understand apparent discrepancies between weathering grade classes based on field description and geomechanical properties, and two common weathering indices, such as the micropetrographic index (Ip) and the chemical index of alteration (CIA). Our results showed that sericite on plagioclase and biotite chloritization, that represent inherited features formed during late-stage hydrothermal alteration of granitoid rocks, may cause an overestimation of the real degree of weathering of primary mineral grains under meteoric conditions, especially in lower weathering grade classes. Moreover, the frequent identification of Fe-Mn oxides and clay coatings of illuvial origin (rather than or in addition to those formed in situ), both at the macro- and microscale, may also explain an overestimation of the weathering degree with respect to field-based classifications. Finally, some apparent inconsistencies between field geomechanical responses and chemical weathering were interpreted as related to physical weathering processes (cryoclastism and thermoclastism), that lead to rock breakdown even when chemical weathering is not well developed. Hence, our study showed that particular caution is needed for evaluating weathering grades, because traditional field and geochemical-petrographic tools may be biased by inherited hydrothermal alteration, physical weathering and illuvial processes. On the basis of chronological constraints to soil formation obtained from a 42 ka-old volcanic input (mixed to granite parent materials) detected in the soil cover of the Sila Massif upland, a first attempt to estimate soil formation rates was achieved for different depths of corresponding weathering profile zones. Soil formation rates ranged from 0.01-0.07 mm a- 1 for A and Bw horizons (weathering class VI) to 0.04-0.36 mm a- 1 for the underlying saprolite (C and Cr layers; class V). By comparing these results with the corresponding erosion rates available in the literature for the study area, that range from < 0.01-0.05 to 0.10-0.21 mm a- 1, we suggest that the upland landscape of the Sila Massif is close to steady-state conditions between weathering and erosive processes.
The use of the durometer to measure rock hardness in geomorphology. Advantages and limitations.
NASA Astrophysics Data System (ADS)
Feal-Pérez, Alejandra; Blanco-Chao, Ramón; Valcarcel-Díaz, Marcos; Combes, Martín. A.
2010-05-01
The durometer is a hardness tester developed to measure hardness of metallic materials that has been recently introduced to measure rock hardness in weathering studies. Aoki & Matsukura (2007) highlight some advantages of the durometer compared with the Schmidt Rock Test Hammer: the smaller plunge allows measurements in small surfaces such as taffoni or rock carvings, the wider measurement range and the lower impact energy. This last makes it a non destructive method that can be used on relatively soft rocks. In this work the durometer Equotip (©) has been tested in different environments in the field and in the laboratory to explore its applicability and limitations. We applied the device on small rock samples of granite and limestone and a T-test showed that smaller sample size gave smaller hardness values (p < 0.01). Testing the effects of water content, there were no statistically significant differences between water saturated and dry samples. The influence of rock surface roughness was evaluated applying the durometer in ancient rock carvings in medium to coarse grain granites. We compared the values obtained inside and outside the grooves of the carvings using two different support rings, one flat and one concave. The flat ring was not able to reach the bottom of the groove, meanwhile the concave ring adjusts fairly well given its semi spherical section. A t-test confirmed the difference (p < 0.01) between lower rebound values obtained in the grooves using the flat ring and the higher and less scattered values obtained when the concave ring is used. As a very sensitive device, there are some problems in the use related with rock roughness and rock grain size. In weathered medium to coarse grained rocks, with very irregular surfaces, is not easy to get a good contact between the plunge and the rock surface. A poor contact caused by surface roughness causes the scattering and lowering of rebound values. On the contrary, in homogeneous fine grained rocks and in uniform rock surfaces the device gave very good results. The data obtained in glacial, nival and rock coastal environments showed the potential of the device in the identification of changes in rock hardness. We were able to asses the changes in the weathering degree of glacial striations and marked differences in the rock surfaces subjected or not to abrasion. A. Feal-Pérez is supported by the grant AP2006-03854 (Spanish Ministry of Education)
NASA Astrophysics Data System (ADS)
Bramberger, Martina; Dörnbrack, Andreas; Rapp, Markus; Gemsa, Steffen; Raynor, Kevin
2017-04-01
In January 2016, the combined POLar STRAtosphere in a Changing Climate (POLSTRACC), Investigation of the life cycle of gravity waves (GW-LCYCLE) II and Seasonality of Air mass transport and origin in the Lowermost Stratosphere (SALSA) campaign, shortly abbreviated as PGS, took place in Kiruna, Sweden. During this campaign, on 31 January 2016, a strong polar jet with horizontal wind speeds up to 100 m/s was located above northern Great Britain. The research flight PGS12 lead the High Altitude LOng range (HALO) aircraft right above the jet streak of this polar jet, a region which is known from theoretical studies for prevalent turbulence. Here, we present a case study in which high-resolution in-situ aircraft measurements are employed to analyse and quantify turbulence in the described region with parameters such as e.g. turbulent kinetic energy and the eddy dissipation rate. This analysis is supported by idealized numerical simulations to determine involved processes for the generation of turbulence. Complementing, forecasts and operational analyses of the integrated forecast system (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) are used to thoroughly analyze the meteorological situation.
Forest fire weather in western Oregon and western Washington in 1957.
Owen P. Cramer
1957-01-01
Severity of 1957 fire weather west of the Cascade Range summit in Oregon and Washington was near the average of the previous 10 years. The season (April 1 through October 31) was slightly more severe than 1956 in western Oregon and about the same as 1956 in western Washington. Spring fire weather was near average severity in both western Washington and western Oregon....
Weather delay costs to trucking.
DOT National Transportation Integrated Search
2012-11-01
Estimates of the nations freight sector of transportation range to upwards of $600 billion of total gross domestic product with 70 percent of total value and 60 percent of total weight moving by truck. Weather-related delays can add significantly ...
2017-07-01
forecasts and observations on a common grid, which enables the application a number of different spatial verification methods that reveal various...forecasts of continuous meteorological variables using categorical and object-based methods . White Sands Missile Range (NM): Army Research Laboratory (US... Research version of the Weather Research and Forecasting Model adapted for generating short-range nowcasts and gridded observations produced by the
Insights into Regolith Dynamics from the Irradiation Record Preserved in Hayabusa Samples
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Berger, E. L.
2014-01-01
The rates of space weathering processes are poorly constrained for asteroid surfaces, with recent estimates ranging over 5 orders of magnitude. The return of the first surface samples from a space-weathered asteroid by the Hayabusa mission and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering. We determine the rates of space weathering on Itokawa by measuring solar flare track densities and the widths of solar wind damaged rims on grains. These measurements are made possible through novel focused ion beam (FIB) sample preparation methods.
Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation
NASA Technical Reports Server (NTRS)
Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.
2013-01-01
Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.
The expectation of applying IR guidance in medium range air-to-air missiles
NASA Astrophysics Data System (ADS)
Li, Lijuan; Liu, Ke
2016-10-01
IR guidance has been widely used in near range dogfight air-to-air missiles while radar guidance is dominant in medium and long range air-to-air missiles. With the development of stealth airplanes and advanced electronic countermeasures, radar missiles have met with great challenges. In this article, the advantages and potential problems of applying IR guidance in medium range air-to-air missiles are analyzed. Approaches are put forward to solve the key technologies including depressing aerodynamic heating, increasing missiles' sensitivity and acquiring target after launch. IR medium range air-to-air missiles are predicted to play important role in modern battle field.
Development of seasonal flow outlook model for Ganges-Brahmaputra Basins in Bangladesh
NASA Astrophysics Data System (ADS)
Hossain, Sazzad; Haque Khan, Raihanul; Gautum, Dilip Kumar; Karmaker, Ripon; Hossain, Amirul
2016-10-01
Bangladesh is crisscrossed by the branches and tributaries of three main river systems, the Ganges, Bramaputra and Meghna (GBM). The temporal variation of water availability of those rivers has an impact on the different water usages such as irrigation, urban water supply, hydropower generation, navigation etc. Thus, seasonal flow outlook can play important role in various aspects of water management. The Flood Forecasting and Warning Center (FFWC) in Bangladesh provides short term and medium term flood forecast, and there is a wide demand from end-users about seasonal flow outlook for agricultural purposes. The objective of this study is to develop a seasonal flow outlook model in Bangladesh based on rainfall forecast. It uses European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal precipitation, temperature forecast to simulate HYDROMAD hydrological model. Present study is limited for Ganges and Brahmaputra River Basins. ARIMA correction is applied to correct the model error. The performance of the model is evaluated using coefficient of determination (R2) and Nash-Sutcliffe Efficiency (NSE). The model result shows good performance with R2 value of 0.78 and NSE of 0.61 for the Brahmaputra River Basin, and R2 value of 0.72 and NSE of 0.59 for the Ganges River Basin for the period of May to July 2015. The result of the study indicates strong potential to make seasonal outlook to be operationalized.
Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna.
Jemec, Anita; Horvat, Petra; Kunej, Urban; Bele, Marjan; Kržan, Andrej
2016-12-01
Microplastic fibers (MP) from textile weathering and washing are increasingly being recognized as environmental pollutants. The majority of studies on the bioavailability and effects of microplastic focused on small polystyrene spherical plastic particles, while less data are available for fibers and for other materials besides polystyrene. We investigated the ingestion and effects of ground polyethylene terephthalate (PET) textile microfibers (length range: 62-1400 μm, width 31-528 μm, thickness 1-21.5 μm) on the freshwater zooplankton crustacean Daphnia magna after a 48 h exposure and subsequent 24 h of recovery in MP free medium and algae. The majority of ingested fibers by D. magna were around 300 μm, but also some very large twisted MP fibers around 1400 μm were found inside the gut. Exposure to these fibers results in increased mortality of daphnids after 48 h only in the case where daphnids were not pre-fed with algae prior to experiment, but no effect was found when daphnids were fed before the experiments. Regardless of the feeding regime, daphnids were not able to recover from MP exposure after additional 24 h incubation period in a MP free medium with algae. The uptake and effects of PET textile MP on D. magna are presented here for the first time. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lionello, P.; Pernigotti, D.; Zampato, L.
1994-12-31
The purpose of this research program is the construction of the modelling framework to describe and predict the development of the sea and of the atmosphere in the Adriatic region. There are two time scales that are considered: the medium range time scale of the weather-surge-oceanwave forecast and the interseasonal time scale of the thermohaline circulation in the Adriatic Sea. The phenomenology associated with the medium range is represented by the intense storms that take place in the Adriatic Sea, in spite of its relatively small extension, when the presence of a pressure minimum over Italy generates an intense Sciroccomore » wind which, channeled by the mountain ridges surrounding the basin, blows along its whole length. Because of the long fetch, approximately 1,000 Km., this situation produces high ocean waves and the storm surge that is associated with the flooding of Venice. The interseasonal phenomenology is represented by the formation of dense water in the Northern part of the basin during winter. This is presumably caused by Bora, a strong South-Westerly wind, cold and dry, which produces cooling and evaporation in the shallow water coastal region of the Northern Adriatic. The complex orography surrounding the Adriatic and the short duration of this phenomena require a model framework capable of high space and time resolution on a limited area. This is the motivation for addressing these issues in a coupled model framework consisting of a limited area atmospheric circulation model, an ocean circulation model, and a ocean wave model with high resolution both in space and time.« less
Medium range flood forecasts at global scale
NASA Astrophysics Data System (ADS)
Voisin, N.; Wood, A. W.; Lettenmaier, D. P.; Wood, E. F.
2006-12-01
While weather and climate forecast methods have advanced greatly over the last two decades, this capability has yet to be evidenced in mitigation of water-related natural hazards (primarily floods and droughts), especially in the developing world. Examples abound of extreme property damage and loss of life due to floods in the underdeveloped world. For instance, more than 4.5 million people were affected by the July 2000 flooding of the Mekong River and its tributaries in Cambodia, Vietnam, Laos and Thailand. The February- March 2000 floods in the Limpopo River of Mozambique caused extreme disruption to that country's fledgling economy. Mitigation of these events through advance warning has typically been modest at best. Despite the above noted improvement in weather and climate forecasts, there is at present no system for forecasting of floods globally, notwithstanding that the potential clearly exists. We describe a methodology that is eventually intended to generate global flood predictions routinely. It draws heavily from the experimental North American Land Data Assimilation System (NLDAS) and the companion Global Land Data Assimilation System (GLDAS) for development of nowcasts, and the University of Washington Experimental Hydrologic Prediction System to develop ensemble hydrologic forecasts based on Numerical Weather Prediction (NWP) models which serve both as nowcasts (and hence reduce the need for in situ precipitation and other observations in parts of the world where surface networks are critically deficient) and provide forecasts for lead times as long as fifteen days. The heart of the hydrologic modeling system is the University of Washington/Princeton University Variable Infiltration Capacity (VIC) macroscale hydrology model. In the prototype (tested using retrospective data), VIC is driven globally up to the time of forecast with daily ERA40 precipitation (rescaled on a monthly basis to a station-based global climatology), ERA40 wind, and ERA40 average surface air temperature (with temperature ranges adjusted to a station-based climatology). In the retrospective forecasting mode, VIC is driven by global NCEP ensemble 15-day reforecasts provided by Tom Hamill (NOAA/ERL), bias corrected with respect to the adjusted ERA40 data and further downscaled spatially using higher spatial resolution Global Precipitation Climatology Project (GPCP) 1dd daily precipitation. Downward solar and longwave radiation, surface relative humidity, and other model forcings are derived from relationships with the daily temperature range during both the retrospective (spinup) and forecast period. The initial system is implemented globally at one-half degree spatial resolution. We evaluate model performance retrospectively for predictions of major floods for the Oder River in 1997, the Mekong River in 2000 and the Limpopo River in 2000.
Probabilistic rainfall warning system with an interactive user interface
NASA Astrophysics Data System (ADS)
Koistinen, Jarmo; Hohti, Harri; Kauhanen, Janne; Kilpinen, Juha; Kurki, Vesa; Lauri, Tuomo; Nurmi, Pertti; Rossi, Pekka; Jokelainen, Miikka; Heinonen, Mari; Fred, Tommi; Moisseev, Dmitri; Mäkelä, Antti
2013-04-01
A real time 24/7 automatic alert system is in operational use at the Finnish Meteorological Institute (FMI). It consists of gridded forecasts of the exceedance probabilities of rainfall class thresholds in the continuous lead time range of 1 hour to 5 days. Nowcasting up to six hours applies ensemble member extrapolations of weather radar measurements. With 2.8 GHz processors using 8 threads it takes about 20 seconds to generate 51 radar based ensemble members in a grid of 760 x 1226 points. Nowcasting exploits also lightning density and satellite based pseudo rainfall estimates. The latter ones utilize convective rain rate (CRR) estimate from Meteosat Second Generation. The extrapolation technique applies atmospheric motion vectors (AMV) originally developed for upper wind estimation with satellite images. Exceedance probabilities of four rainfall accumulation categories are computed for the future 1 h and 6 h periods and they are updated every 15 minutes. For longer forecasts exceedance probabilities are calculated for future 6 and 24 h periods during the next 4 days. From approximately 1 hour to 2 days Poor man's Ensemble Prediction System (PEPS) is used applying e.g. the high resolution short range Numerical Weather Prediction models HIRLAM and AROME. The longest forecasts apply EPS data from the European Centre for Medium Range Weather Forecasts (ECMWF). The blending of the ensemble sets from the various forecast sources is performed applying mixing of accumulations with equal exceedance probabilities. The blending system contains a real time adaptive estimator of the predictability of radar based extrapolations. The uncompressed output data are written to file for each member, having total size of 10 GB. Ensemble data from other sources (satellite, lightning, NWP) are converted to the same geometry as the radar data and blended as was explained above. A verification system utilizing telemetering rain gauges has been established. Alert dissemination e.g. for citizens and professional end users applies SMS messages and, in near future, smartphone maps. The present interactive user interface facilitates free selection of alert sites and two warning thresholds (any rain, heavy rain) at any location in Finland. The pilot service was tested by 1000-3000 users during summers 2010 and 2012. As an example of dedicated end-user services gridded exceedance scenarios (of probabilities 5 %, 50 % and 90 %) of hourly rainfall accumulations for the next 3 hours have been utilized as an online input data for the influent model at the Greater Helsinki Wastewater Treatment Plant.
NASA Astrophysics Data System (ADS)
Clark, E.; Wood, A.; Nijssen, B.; Clark, M. P.
2017-12-01
Short- to medium-range (1- to 7-day) streamflow forecasts are important for flood control operations and in issuing potentially life-save flood warnings. In the U.S., the National Weather Service River Forecast Centers (RFCs) issue such forecasts in real time, depending heavily on a manual data assimilation (DA) approach. Forecasters adjust model inputs, states, parameters and outputs based on experience and consideration of a range of supporting real-time information. Achieving high-quality forecasts from new automated, centralized forecast systems will depend critically on the adequacy of automated DA approaches to make analogous corrections to the forecasting system. Such approaches would further enable systematic evaluation of real-time flood forecasting methods and strategies. Toward this goal, we have implemented a real-time Sequential Importance Resampling particle filter (SIR-PF) approach to assimilate observed streamflow into simulated initial hydrologic conditions (states) for initializing ensemble flood forecasts. Assimilating streamflow alone in SIR-PF improves simulated streamflow and soil moisture during the model spin up period prior to a forecast, with consequent benefits for forecasts. Nevertheless, it only consistently limits error in simulated snow water equivalent during the snowmelt season and in basins where precipitation falls primarily as snow. We examine how the simulated initial conditions with and without SIR-PF propagate into 1- to 7-day ensemble streamflow forecasts. Forecasts are evaluated in terms of reliability and skill over a 10-year period from 2005-2015. The focus of this analysis is on how interactions between hydroclimate and SIR-PF performance impact forecast skill. To this end, we examine forecasts for 5 hydroclimatically diverse basins in the western U.S. Some of these basins receive most of their precipitation as snow, others as rain. Some freeze throughout the mid-winter while others experience significant mid-winter melt events. We describe the methodology and present seasonal and inter-basin variations in DA-enhanced forecast skill.
Precipitable Water Variability Using SSM/I and GOES VAS Pathfinder Data Sets
NASA Technical Reports Server (NTRS)
Lerner, Jeffrey A.; Jedlovec, Gary J.; Kidder, Stanley Q.
1996-01-01
Determining moisture variability for all weather scenes is critical to understanding the earth's hydrologic cycle and global climate changes. Remote sensing from geostationary satellites provides the necessary temporal and spatial resolutions necessary for global change studies. Due to antenna size constraints imposed with the use of microwave radiometers, geostationary satellites have carried instruments passively measuring radiation at infrared wavelengths or shorter. The shortfall of using infrared instruments in moisture studies lies in its inability to sense terrestrial radiation through clouds. Microwave emissions, on the other hand, are mostly unaffected by cloudy atmospheres. Land surface emissivity at microwave frequencies exhibit both high temporal and spatial variability thus confining moisture retrievals at microwave frequencies to over marine atmospheres (a near uniform cold background). This study intercompares the total column integrated water content Precipitable Water, (PW) as derived from both the Special Sensor Microwave Imager (SSM/I) and the Geostationary Operational Environmental Satellite (GOES) VISSR Atmospheric Sounder (VAS) pathfinder data sets. PW is a bulk parameter often used to quantify moisture variability and is important to understanding the earth's hydrologic cycle and climate system. This research has been spawned in an effort to combine two different algorithms which together can lead to a more comprehensive quantification of global water vapor. The approach taken here is to intercompare two independent PW retrieval algorithms and to validate the resultant retrievals against an existing data set, namely the European Center for Medium range Weather Forecasts (ECMWF) model analysis data.
On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model
NASA Astrophysics Data System (ADS)
Xu, Jingwei; Koldunov, Nikolay; Remedio, Armelle Reca C.; Sein, Dmitry V.; Zhi, Xiefei; Jiang, Xi; Xu, Min; Zhu, Xiuhua; Fraedrich, Klaus; Jacob, Daniela
2018-02-01
A number of studies have shown that added value is obtained by increasing the horizontal resolution of a regional climate model to capture additional fine-scale weather processes. However, the mechanisms leading to this added value are different over areas with complicated orographic features, such as the Tibetan Plateau (TP). To determine the role that horizontal resolution plays over the TP, a detailed comparison was made between the results from the REMO regional climate model at resolutions of 25 and 50 km for the period 1980-2007. The model was driven at the lateral boundaries by the European Centre for Medium-Range Weather Forecasts Interim Reanalysis data. The experiments differ only in representation of topography, all other land parameters (e.g., vegetation characteristics, soil texture) are the same. The results show that the high-resolution topography affects the regional air circulation near the ground surface around the edge of the TP, which leads to a redistribution of the transport of atmospheric water vapor, especially over the Brahmaputra and Irrawaddy valleys—the main water vapor paths for the southern TP—increasing the amount of atmospheric water vapor transported onto the TP by about 5%. This, in turn, significantly decreases the temperature at 2 m by > 1.5 °C in winter in the high-resolution simulation of the southern TP. The impact of topography on the 2 m temperature over the TP is therefore by influencing the transport of atmospheric water vapor in the main water vapor paths.
NASA Technical Reports Server (NTRS)
Prive, Nikki C.; Errico, Ronald M.
2013-01-01
A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.
NASA Astrophysics Data System (ADS)
Macedonio, Giovanni; Costa, Antonio; Scollo, Simona; Neri, Augusto
2015-04-01
Uncertainty in the tephra fallout hazard assessment may depend on different meteorological datasets and eruptive source parameters used in the modelling. We present a statistical study to analyze this uncertainty in the case of a sub-Plinian eruption of Vesuvius of VEI = 4, column height of 18 km and total erupted mass of 5 × 1011 kg. The hazard assessment for tephra fallout is performed using the advection-diffusion model Hazmap. Firstly, we analyze statistically different meteorological datasets: i) from the daily atmospheric soundings of the stations located in Brindisi (Italy) between 1962 and 1976 and between 1996 and 2012, and in Pratica di Mare (Rome, Italy) between 1996 and 2012; ii) from numerical weather prediction models of the National Oceanic and Atmospheric Administration and of the European Centre for Medium-Range Weather Forecasts. Furthermore, we modify the total mass, the total grain-size distribution, the eruption column height, and the diffusion coefficient. Then, we quantify the impact that different datasets and model input parameters have on the probability maps. Results shows that the parameter that mostly affects the tephra fallout probability maps, keeping constant the total mass, is the particle terminal settling velocity, which is a function of the total grain-size distribution, particle density and shape. Differently, the evaluation of the hazard assessment weakly depends on the use of different meteorological datasets, column height and diffusion coefficient.
Tangborn, Wendell V.
1980-01-01
Snowmelt runoff is forecast with a statistical model that utilizes daily values of stream discharge, gaged precipitation, and maximum and minimum observations of air temperature. Synoptic observations of these variables are made at existing low- and medium-altitude weather stations, thus eliminating the difficulties and expense of new, high-altitude installations. Four model development steps are used to demonstrate the influence on prediction accuracy of basin storage, a preforecast test season, air temperature (to estimate ablation), and a prediction based on storage. Daily ablation is determined by a technique that employs both mean temperature and a radiative index. Radiation (both long- and short-wave components) is approximated by using the range in daily temperature, which is shown to be closely related to mean cloud cover. A technique based on the relationship between prediction error and prediction season weather utilizes short-term forecasts of precipitation and temperature to improve the final prediction. Verification of the model is accomplished by a split sampling technique for the 1960–1977 period. Short- term (5–15 days) predictions of runoff throughout the main snowmelt season are demonstrated for mountain drainages in western Washington, south-central Arizona, western Montana, and central California. The coefficient of prediction (Cp) based on actual, short-term predictions for 18 years is for Thunder Creek (Washington), 0.69; for South Fork Flathead River (Montana), 0.45; for the Black River (Arizona), 0.80; and for the Kings River (California), 0.80.
NASA Astrophysics Data System (ADS)
Stewart, M. M.; Pratt, M.
2002-05-01
This paper examines the effectiveness of FM and digital radio in disseminating weather and climate information to remote rural populations in Niger and Uganda. In Niger, poor communications infrastructure necessitated the establishment of a basic radio system as a first step towards disseminating climate information. Dissemination via digital radio is limited, in this context, by lack of technical support and the difficulty of maintaining computer equipment in the hot and dusty climate. Community FM stations have supported a range of mitigation activities that reduced vulnerability in all sites studied. Digital radio proved a more effective tool for disseminating climate information in Uganda, where technical knowledge is more prevalent and infrastructure networks are stronger. The primary challenge in Uganda lies in maintaining equipment in remote locations and disseminating information to a wider audience by linking with FM radio. Climate and weather information is already demonstrating positive impacts on agricultural production in Uganda, health and civil society in Niger, and on vulnerability reduction in both countries. Radio,particularly FM, was an excellent medium for disseminating information to women, youth, and other hard to reach populations. Discussion will focus on recommendations for improving the effectiveness of both systems and for practically linking FM and digital dissemination systems for better communication of climate information. Implications of the case studies will also be discussed in the context of digital and FM radio as media for disseminating other types of scientific information.
Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat
NASA Astrophysics Data System (ADS)
Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.; Feridun Turkman, K.
2018-02-01
We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI) and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004-2016) and validated against the period of January-September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme
class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.
Makra, László; Juhász, Miklós; Mika, János; Bartzokas, Aristides; Béczi, Rita; Sümeghy, Zoltán
2006-07-01
This paper discusses the characteristic air mass types over the Carpathian Basin in relation to plant pollen levels over annual pollination periods. Based on the European Centre for Medium-Range Weather Forecasts dataset, daily sea-level pressure fields analysed at 00 UTC were prepared for each air mass type (cluster) in order to relate sea-level pressure patterns to pollen levels in Szeged, Hungary. The database comprises daily values of 12 meteorological parameters and daily pollen concentrations of 24 species for their pollination periods from 1997 to 2001. Characteristic air mass types were objectively defined via factor analysis and cluster analysis. According to the results, nine air mass types (clusters) were detected for pollination periods of the year corresponding to pollen levels that appear with higher concentration when irradiance is moderate while wind speed is moderate or high. This is the case when an anticyclone prevails in the region west of the Carpathian Basin and when Hungary is under the influence of zonal currents (wind speed is high). The sea level pressure systems associated with low pollen concentrations are mostly similar to those connected to higher pollen concentrations, and arise when wind speed is low or moderate. Low pollen levels occur when an anticyclone prevails in the region west of the Carpathian Basin, as well as when an anticyclone covers the region with Hungary at its centre. Hence, anticyclonic or anticyclonic ridge weather situations seem to be relevant in classifying pollen levels.
Space Weathering of Itokawa Particles: Implications for Regolith Evolution
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.
2015-01-01
Space weathering processes such as solar wind irradiation and micrometeorite impacts are known to alter the the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies. Here, we use the effects of solar wind irradiation and the accumulation of solar flare tracks recorded in Itokawa grains to constrain the rates of space weathering and yield information about regolith dynamics on these timescales.
NASA Technical Reports Server (NTRS)
Drinkwater, Mark R.; Liu, Xiang
2000-01-01
A combination of satellite microwave data sets are used in conjunction with ECMWF (Medium Range Weather Forecasts) and NCEP (National Center for Environment Prediction) meteorological analysis fields to investigate seasonal variability in the circulation and sea-ice dynamics of the Weddell and Ross Seas. Results of sea-ice tracking using SSM/I (Special Sensor Microwave Imager), Scatterometer and SAR images are combined with in-situ data derived from Argos buoys and GPS drifters to validate observed drift patterns. Seasonal 3-month climatologies of ice motion and drift speed variance illustrate the response of the sea-ice system to seasonal forcing. A melt-detection algorithm is used to track the onset of seasonal melt, and to determine the extent and duration of atmospherically-led surface melting during austral summer. Results show that wind-driven drift regulates the seasonal distribution and characteristics of sea-ice and the intensity of the cyclonic Gyre circulation in these two regions.
NASA Astrophysics Data System (ADS)
Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence
2018-04-01
Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).
Physical Mechanisms Controlling Upper Tropospheric Water Vapor as Revealed by MLS Data from UARS
NASA Technical Reports Server (NTRS)
Newell, Reginald E.
1998-01-01
The seasonal changes of the upper tropospheric humidity are studied with the water vapor data from the Microwave Limb Sounder on the NASA Upper Atmosphere Research Satellite, and the winds and vertical velocity data obtained from the European Centre for Medium-Range Weather Forecasts. Using the same algorithm for vertical transport as that used for horizontal transport (Zhu and Newell, 1998), we find that the moisture in the tropical upper troposphere may be increased mainly by intensified local convection in a small portion, less than 10%, of the whole area between 40 deg S to 40 deg N. The contribution of large scale background circulations and divergence of horizontal transport is relatively small in these regions. These dynamic processes cannot be revealed by the traditional analyses of moisture fluxes. The negative feedback suggested by Lindzen (1990) also exists, if enhanced convection is concentrated in the tropics, but is apparently not the dominant process in the moisture budget.
NASA Astrophysics Data System (ADS)
Shani-Kadmiel, Shahar; Assink, Jelle D.; Smets, Pieter S. M.; Evers, Läslo G.
2018-01-01
In this study we analyze infrasound signals from three earthquakes in central Italy. The Mw 6.0 Amatrice, Mw 5.9 Visso, and Mw 6.5 Norcia earthquakes generated significant epicentral ground motions that couple to the atmosphere and produce infrasonic waves. Epicentral seismic and infrasonic signals are detected at I26DE; however, a third type of signal, which arrives after the seismic wave train and before the epicentral infrasound signal, is also detected. This peculiar signal propagates across the array at acoustic wave speeds, but the celerity associated with it is 3 times the speed of sound. Atmosphere-independent backprojections and full 3-D ray tracing using atmospheric conditions of the European Centre for Medium-Range Weather Forecasts are used to demonstrate that this apparently fast-arriving infrasound signal originates from ground motions more than 400 km away from the epicenter. The location of the secondary infrasound patch coincides with the closest bounce point to I26DE as depicted by ray tracing backprojections.
Synoptic Factors Affecting Structure Predictability of Hurricane Alex (2016)
NASA Astrophysics Data System (ADS)
Gonzalez-Aleman, J. J.; Evans, J. L.; Kowaleski, A. M.
2016-12-01
On January 7, 2016, a disturbance formed over the western North Atlantic basin. After undergoing tropical transition, the system became the first hurricane of 2016 - and the first North Atlantic hurricane to form in January since 1938. Already an extremely rare hurricane event, Alex then underwent extratropical transition [ET] just north of the Azores Islands. We examine the factors affecting Alex's structural evolution through a new technique called path-clustering. In this way, 51 ensembles from the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (ECMWF-EPS) are grouped based on similarities in the storm's path through the Cyclone Phase Space (CPS). The differing clusters group various possible scenarios of structural development represented in the ensemble forecasts. As a result, it is possible to shed light on the role of the synoptic scale in changing the structure of this hurricane in the midlatitudes through intercomparison of the most "realistic" forecast of the evolution of Alex and the other physically plausible modes of its development.
NASA Technical Reports Server (NTRS)
Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.
1995-01-01
The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.
NASA Astrophysics Data System (ADS)
Beria, H.; Nanda, T., Sr.; Chatterjee, C.
2015-12-01
High resolution satellite precipitation products such as Tropical Rainfall Measuring Mission (TRMM), Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts (ECMWF), etc., offer a promising alternative to flood forecasting in data scarce regions. At the current state-of-art, these products cannot be used in the raw form for flood forecasting, even at smaller lead times. In the current study, these precipitation products are bias corrected using statistical techniques, such as additive and multiplicative bias corrections, and wavelet multi-resolution analysis (MRA) with India Meteorological Department (IMD) gridded precipitation product,obtained from gauge-based rainfall estimates. Neural network based rainfall-runoff modeling using these bias corrected products provide encouraging results for flood forecasting upto 48 hours lead time. We will present various statistical and graphical interpretations of catchment response to high rainfall events using both the raw and bias corrected precipitation products at different lead times.
On the Influence of Convectively Coupled Kelvin Waves on African Easterly waves
NASA Astrophysics Data System (ADS)
Thorncroft, C. D.; Brammer, A.
2015-12-01
While Convectively Coupled Kelvin Waves (CCKWs) are generally weaker in Boreal Summer than in Boreal Spring in the tropical West African region, previous reseach has shown that they can have a significant impact on African Easterly Waves (AEWs) in the West African and tropical Atlantic regions. This talk will highlight the significance of CCKWs in determining variability in AEW behaviour including how they impact: (i) Initiation of AEWs, (ii) Convection within existing AEWs and (iii) Development of favorable AEW structures for tropical cyclogenesis in the tropical Atlantic. Reanalysis and satellite datasets will be combined to shed light on these interactions from both a climatological and a case-study perspective. A major conclusion from this work is the strong recognition that forecasters in the region should be closely monitoring the propagation of CCKWs into the region and that medium-range weather prediction efforts in the tropics should be paying close attention to the fidelity of models to represent CCKWs.
Climate forecasts in disaster management: Red Cross flood operations in West Africa, 2008.
Braman, Lisette Martine; van Aalst, Maarten Krispijn; Mason, Simon J; Suarez, Pablo; Ait-Chellouche, Youcef; Tall, Arame
2013-01-01
In 2008, the International Federation of Red Cross and Red Crescent Societies (IFRC) used a seasonal forecast for West Africa for the first time to implement an Early Warning, Early Action strategy for enhanced flood preparedness and response. Interviews with disaster managers suggest that this approach improved their capacity and response. Relief supplies reached flood victims within days, as opposed to weeks in previous years, thereby preventing further loss of life, illness, and setbacks to livelihoods, as well as augmenting the efficiency of resource use. This case demonstrates the potential benefits to be realised from the use of medium-to-long-range forecasts in disaster management, especially in the context of potential increases in extreme weather and climate-related events due to climate variability and change. However, harnessing the full potential of these forecasts will require continued effort and collaboration among disaster managers, climate service providers, and major humanitarian donors. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.
Atlas of Seasonal Means Simulated by the NSIPP 1 Atmospheric GCM. Volume 17
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Bacmeister, Julio; Pegion, Philip J.; Schubert, Siegfried D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
This atlas documents the climate characteristics of version 1 of the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Atmospheric General Circulation Model (AGCM). The AGCM includes an interactive land model (the Mosaic scheme), and is part of the NSIPP coupled atmosphere-land-ocean model. The results presented here are based on a 20-year (December 1979-November 1999) "ANIIP-style" integration of the AGCM in which the monthly-mean sea-surface temperature and sea ice are specified from observations. The climate characteristics of the AGCM are compared with the National Centers for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasting (ECMWF) reanalyses. Other verification data include Special Sensor Microwave/Imager (SSNM) total precipitable water, the Xie-Arkin estimates of precipitation, and Earth Radiation Budget Experiment (ERBE) measurements of short and long wave radiation. The atlas is organized by season. The basic quantities include seasonal mean global maps and zonal and vertical averages of circulation, variance/covariance statistics, and selected physics quantities.
Statistical bias correction modelling for seasonal rainfall forecast for the case of Bali island
NASA Astrophysics Data System (ADS)
Lealdi, D.; Nurdiati, S.; Sopaheluwakan, A.
2018-04-01
Rainfall is an element of climate which is highly influential to the agricultural sector. Rain pattern and distribution highly determines the sustainability of agricultural activities. Therefore, information on rainfall is very useful for agriculture sector and farmers in anticipating the possibility of extreme events which often cause failures of agricultural production. This research aims to identify the biases from seasonal forecast products from ECMWF (European Centre for Medium-Range Weather Forecasts) rainfall forecast and to build a transfer function in order to correct the distribution biases as a new prediction model using quantile mapping approach. We apply this approach to the case of Bali Island, and as a result, the use of bias correction methods in correcting systematic biases from the model gives better results. The new prediction model obtained with this approach is better than ever. We found generally that during rainy season, the bias correction approach performs better than in dry season.
Exploration of industrially important pigments from soil fungi.
Akilandeswari, P; Pradeep, B V
2016-02-01
The worldwide interest of the current era is to increase tendency towards the use of natural substances instead of synthetic ones. So, alternative and effective environment friendly sustainable technologies are highly needed. Due to a broad range of biological activities, fungi are considered as a significant source of pigments. Among the fungal species in the soil, the genera of Aspergillus, Fusarium, Penicillium, Paecilomyces, and Trichoderma are dominant. The pigments commonly produced by fungi belong to aromatic polyketide groups such as melanins, quinones, flavins, ankaflavin, anthraquinone, and naphthoquinone. The use of fungal pigments has benefits which comprise easy and fast growth in the cheap culture medium and different color shades being independent of weather conditions and would be useful in various industrial applications. In relation to the toxic effects of the synthetic dyes, the natural dyes are easily degradable since they cause no detrimental effects. Thus, the study of pigments produced by soil fungi has tremendous use in medical, textile coloring, food coloring, and cosmetics.
TOGA COARE Satellite data summaries available on the World Wide Web
NASA Technical Reports Server (NTRS)
Chen, S. S.; Houze, R. A., Jr.; Mapes, B. E.; Brodzick, S. R.; Yutler, S. E.
1995-01-01
Satellite data summary images and analysis plots from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE), which were initially prepared in the field at the Honiara Operations Center, are now available on the Internet via World Wide Web browsers such as Mosaic. These satellite data summaries consist of products derived from the Japanese Geosynchronous Meteorological Satellite IR data: a time-size series of the distribution of contiguous cold cloudiness areas, weekly percent high cloudiness (PHC) maps, and a five-month time-longitudinal diagram illustrating the zonal motion of large areas of cold cloudiness. The weekly PHC maps are overlaid with weekly mean 850-hPa wind calculated from the European Centre for Medium-Range Weather Forecasts (ECMWF) global analysis field and can be viewed as an animation loop. These satellite summaries provide an overview of spatial and temporal variabilities of the cloud population and a large-scale context for studies concerning specific processes of various components of TOGA COARE.
Radar detection of surface oil accumulations
NASA Technical Reports Server (NTRS)
Estes, J. E.; Oneill, P.; Wilson, M.
1980-01-01
The United States Coast Guard is developing AIREYE, an all weather, day/night airborne surveillance system, for installation aboard future medium range surveillance aircraft. As part of this program, a series of controlled tests were conducted off southern California to evaluate the oil slick detection capabilities of two Motorola developed, side looking radars. The systems, a real aperture AN/APS-94D and a synthetic aperture coherent on receive (COR) were flown over the Santa Barbara Channel on May 19, 1976. Targets imaged during the coincident overflights included natural oil seepage, simulated oil spills, oil production platforms, piers, mooring buoys, commercial boats and barges at other targets. Based on an analysis of imagery from the coincident radar runs, COR provides better detection of natural and man made oil slicks, whereas the AN/APS-94D consistently exhibited higher surface target detection results. This and other tests have shown that active microwave systems have considerable potential for aiding in the detection and analysis of surface oil accumulations.
Henderson, Sarah B; Gauld, Jillian S; Rauch, Stephen A; McLean, Kathleen E; Krstic, Nikolas; Hondula, David M; Kosatsky, Tom
2016-11-15
Most excess deaths that occur during extreme hot weather events do not have natural heat recorded as an underlying or contributing cause. This study aims to identify the specific individuals who died because of hot weather using only secondary data. A novel approach was developed in which the expected number of deaths was repeatedly sampled from all deaths that occurred during a hot weather event, and compared with deaths during a control period. The deaths were compared with respect to five factors known to be associated with hot weather mortality. Individuals were ranked by their presence in significant models over 100 trials of 10,000 repetitions. Those with the highest rankings were identified as probable excess deaths. Sensitivity analyses were performed on a range of model combinations. These methods were applied to a 2009 hot weather event in greater Vancouver, Canada. The excess deaths identified were sensitive to differences in model combinations, particularly between univariate and multivariate approaches. One multivariate and one univariate combination were chosen as the best models for further analyses. The individuals identified by multiple combinations suggest that marginalized populations in greater Vancouver are at higher risk of death during hot weather. This study proposes novel methods for classifying specific deaths as expected or excess during a hot weather event. Further work is needed to evaluate performance of the methods in simulation studies and against clinically identified cases. If confirmed, these methods could be applied to a wide range of populations and events of interest.
Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center
NASA Astrophysics Data System (ADS)
Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.
2012-12-01
Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.
Where to find weather and climatic data for forest research studies and management planning.
Donald A. Haines
1977-01-01
Forest-range research or operational study designs should include the possible effects of weather and climate. This document describes the meteorological observational networks, the data available from them, and where the information is stored.
DOT National Transportation Integrated Search
2007-01-01
Vehicle Infrastructure Integration (VII) involves the two-way wireless transmission of data from vehicle-to-vehicle and vehicle-to-infrastructure utilizing Dedicated Short Range Communications (DSRC). VII will enable the development of weather-relate...
On the Nature of People's Reaction to Space Weather and Meteorological Weather Changes
NASA Astrophysics Data System (ADS)
Khabarova, O. V.; Dimitrova, S.
2009-12-01
Our environment includes many natural and artificial agents affecting any person on the Earth in one way or other. This work is focused on two of them - weather and space weather, which are permanently effective. Their cumulative effect is proved by means of the modeling. It is shown that combination of geomagnetic and solar indices and weather strength parameter (which includes six main meteorological parameters) correlates with health state significantly better (up to R=0.7), than separate environmental parameters do. The typical shape of any health characteristics' time-series during human body reaction to any negative impact represents a curve, well-known in medicine as a General Adaptation Syndrome curve by Hans Selye. We demonstrate this on the base of blood pressure time-series and acupunctural experiment data, averaged by group. The first stage of adaptive stress-reaction (resistance to stress) is sometimes observed 1-2 days before geomagnetic storm onset. The effect of "outstripping reaction to magnetic storm", named Tchizhevsky- Velkhover effect, had been known for many years, but its explanation was obtained recently due to the consideration of the near-Earth space plasma processes. It was shown that lowfrequency variations of the solar wind density on a background of the density growth can stimulate the development of the geomagnetic filed (GMF) variations of the wide frequency range. These variations seem to have "bioeffective frequencies", resonant with own frequencies of body organs and systems. The mechanism of human body reaction is supposed to be a parametrical resonance in low-frequency range (which is determined by the resonance in large-scale organs and systems) and a simple forced resonance in GHz-range of variations (the resonance of micro-objects in the organism such as DNA, cell membranes, blood ions etc.) Given examples of mass-reaction of the objects to ULF-range GMF variations during quiet space weather time prove this hypothesis.
Estimating the water budget for a peat filter treating septic tank effluent in the field
NASA Astrophysics Data System (ADS)
Van Geel, Paul J.; Parker, Wayne J.
2003-02-01
The use of peat as a filter medium for the treatment of a variety of liquid and gas waste streams has increased over the past decade. Peat has been used as an alternate treatment medium to treat septic tank effluent (STE) from domestic and small communal systems. Very little research has been completed to study the hydraulics and water budget of a peat filter operating in the field. This study evaluated the water budget of a peat filter operating at an elementary school near Ottawa, Canada. The peat filter was instrumented with tensiometers to measure the pore water pressures within the filter and a weather station to collect weather data required to estimate potential evapotranspiration. A one-dimensional unsaturated flow model, SoilCover, was calibrated using the pressure data and weather data collected in the field. The calibrated model was use to estimate the water budget for the filter operating with and without STE loading. The calibrated model predicted that the annual precipitation exceeded evapotranspiration for both scenarios. For the filter treating 50 mm/day of STE, there was a slight dilution due to the infiltration resulting in a net dilution factor of 0.97 (loading divided by the loading plus infiltration). The largest rainfall event of 49.9 mm resulted in a dilution factor of approximately 0.87, which corresponded to an approximate decrease in the hydraulic retention time (HRT) of between 12 and 33% depending on the calculation used to determine the HRT. When the filter does not receive STE, the precipitation exceeds evapotranspiration and hence the filter should not dry out when the filter is not in use.
Assessing Individual Weather Risk-Taking and Its Role in Modeling Likelihood of Hurricane Evacuation
NASA Astrophysics Data System (ADS)
Stewart, A. E.
2017-12-01
This research focuses upon measuring an individual's level of perceived risk of different severe and extreme weather conditions using a new self-report measure, the Weather Risk-Taking Scale (WRTS). For 32 severe and extreme situations in which people could perform an unsafe behavior (e. g., remaining outside with lightning striking close by, driving over roadways covered with water, not evacuating ahead of an approaching hurricane, etc.), people rated: 1.their likelihood of performing the behavior, 2. The perceived risk of performing the behavior, 3. the expected benefits of performing the behavior, and 4. whether the behavior has actually been performed in the past. Initial development research with the measure using 246 undergraduate students examined its psychometric properties and found that it was internally consistent (Cronbach's a ranged from .87 to .93 for the four scales) and that the scales possessed good temporal (test-retest) reliability (r's ranged from .84 to .91). A second regression study involving 86 undergraduate students found that taking weather risks was associated with having taken similar risks in one's past and with the personality trait of sensation-seeking. Being more attentive to the weather and perceiving its risks when it became extreme was associated with lower likelihoods of taking weather risks (overall regression model, R2adj = 0.60). A third study involving 334 people examined the contributions of weather risk perceptions and risk-taking in modeling the self-reported likelihood of complying with a recommended evacuation ahead of a hurricane. Here, higher perceptions of hurricane risks and lower perceived benefits of risk-taking along with fear of severe weather and hurricane personal self-efficacy ratings were all statistically significant contributors to the likelihood of evacuating ahead of a hurricane. Psychological rootedness and attachment to one's home also tend to predict lack of evacuation. This research highlights the contributions that a psychological approach can offer in understanding preparations for severe weather. This approach also suggests that a great deal of individual variation exists in weather-protective behaviors, which may explain in part why some people take weather-related risks despite receiving warnings for severe weather.
Weather-Related Flood and Landslide Damage: A Risk Index for Italian Regions
Messeri, Alessandro; Morabito, Marco; Messeri, Gianni; Brandani, Giada; Petralli, Martina; Natali, Francesca; Grifoni, Daniele; Crisci, Alfonso; Gensini, Gianfranco; Orlandini, Simone
2015-01-01
The frequency of natural hazards has been increasing in the last decades in Europe and specifically in Mediterranean regions due to climate change. For example heavy precipitation events can lead to disasters through the interaction with exposed and vulnerable people and natural systems. It is therefore necessary a prevention planning to preserve human health and to reduce economic losses. Prevention should mainly be carried out with more adequate land management, also supported by the development of an appropriate risk prediction tool based on weather forecasts. The main aim of this study is to investigate the relationship between weather types (WTs) and the frequency of floods and landslides that have caused damage to properties, personal injuries, or deaths in the Italian regions over recent decades. In particular, a specific risk index (WT-FLARI) for each WT was developed at national and regional scale. This study has identified a specific risk index associated with each weather type, calibrated for each Italian region and applicable to both annual and seasonal levels. The risk index represents the seasonal and annual vulnerability of each Italian region and indicates that additional preventive actions are necessary for some regions. The results of this study represent a good starting point towards the development of a tool to support policy-makers, local authorities and health agencies in planning actions, mainly in the medium to long term, aimed at the weather damage reduction that represents an important issue of the World Meteorological Organization mission. PMID:26714309
Weather-Related Flood and Landslide Damage: A Risk Index for Italian Regions.
Messeri, Alessandro; Morabito, Marco; Messeri, Gianni; Brandani, Giada; Petralli, Martina; Natali, Francesca; Grifoni, Daniele; Crisci, Alfonso; Gensini, Gianfranco; Orlandini, Simone
2015-01-01
The frequency of natural hazards has been increasing in the last decades in Europe and specifically in Mediterranean regions due to climate change. For example heavy precipitation events can lead to disasters through the interaction with exposed and vulnerable people and natural systems. It is therefore necessary a prevention planning to preserve human health and to reduce economic losses. Prevention should mainly be carried out with more adequate land management, also supported by the development of an appropriate risk prediction tool based on weather forecasts. The main aim of this study is to investigate the relationship between weather types (WTs) and the frequency of floods and landslides that have caused damage to properties, personal injuries, or deaths in the Italian regions over recent decades. In particular, a specific risk index (WT-FLARI) for each WT was developed at national and regional scale. This study has identified a specific risk index associated with each weather type, calibrated for each Italian region and applicable to both annual and seasonal levels. The risk index represents the seasonal and annual vulnerability of each Italian region and indicates that additional preventive actions are necessary for some regions. The results of this study represent a good starting point towards the development of a tool to support policy-makers, local authorities and health agencies in planning actions, mainly in the medium to long term, aimed at the weather damage reduction that represents an important issue of the World Meteorological Organization mission.
Deformation of high performance concrete plate under humid tropical weather
NASA Astrophysics Data System (ADS)
Niken, C.; Elly, T.; Supartono, FX; Laksmi, I.
2018-03-01
This paper presents the relationship between surrounding relative humidity and temperature on deformation behavior of one sample concrete plate with compressive strength of 60MPa. This research was done in Indonesia that is in humid tropical weather. A specimens measuring 3000 mm × 1600 mm × 150 mm were used. The behavior was obtained by using four embedded vibrating wire strain gauges (VWESG). As a result there is a very strong relationship between humidity and deformation at the age range of 7 until 21 days. The largest deformation occurs in the corner and the fluctuation of deformation in side position is larger than in the corner and in the middle. The peaks of surrounding relative humidity were fully followed by the deepest valley of deformation on time in the corner, while in another position the range delay time was 8 - 11 hours. There is a strong relationship between surrounding temperature and deformation at the range of 7 until 14 days. The influenced of surrounding relative humidity to concrete behavior is faster and longer than surrounding temperature. The influence of surrounding temperature in humid tropical weather was shorter than in non-humid tropical weather.
Predictability of short-range forecasting: a multimodel approach
NASA Astrophysics Data System (ADS)
García-Moya, Jose-Antonio; Callado, Alfons; Escribà, Pau; Santos, Carlos; Santos-Muñoz, Daniel; Simarro, Juan
2011-05-01
Numerical weather prediction (NWP) models (including mesoscale) have limitations when it comes to dealing with severe weather events because extreme weather is highly unpredictable, even in the short range. A probabilistic forecast based on an ensemble of slightly different model runs may help to address this issue. Among other ensemble techniques, Multimodel ensemble prediction systems (EPSs) are proving to be useful for adding probabilistic value to mesoscale deterministic models. A Multimodel Short Range Ensemble Prediction System (SREPS) focused on forecasting the weather up to 72 h has been developed at the Spanish Meteorological Service (AEMET). The system uses five different limited area models (LAMs), namely HIRLAM (HIRLAM Consortium), HRM (DWD), the UM (UKMO), MM5 (PSU/NCAR) and COSMO (COSMO Consortium). These models run with initial and boundary conditions provided by five different global deterministic models, namely IFS (ECMWF), UM (UKMO), GME (DWD), GFS (NCEP) and CMC (MSC). AEMET-SREPS (AE) validation on the large-scale flow, using ECMWF analysis, shows a consistent and slightly underdispersive system. For surface parameters, the system shows high skill forecasting binary events. 24-h precipitation probabilistic forecasts are verified using an up-scaling grid of observations from European high-resolution precipitation networks, and compared with ECMWF-EPS (EC).
NASA Astrophysics Data System (ADS)
Denardini, Clezio Marcos; Padilha, Antonio; Takahashi, Hisao; Souza, Jonas; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Costa, D. Joaquim
On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is kwon by the acronyms Embrace that stands for the Portuguese statement “Estudo e Monitoramento BRAasileiro de Clima Espacial” Program (Brazilian Space Weather Study and Monitoring program). The main purpose of the Embrace Program is to monitor the space climate and weather from sun, interplanetary space, magnetosphere and ionosphere-atmosphere, and to provide useful information to space related communities, technological, industrial and academic areas. Since then we have being visiting several different space weather costumers and we have host two workshops of Brazilian space weather users at the Embrace facilities. From the inputs and requests collected from the users the Embrace Program decided to monitored several physical parameters of the sun-earth environment through a large ground base network of scientific sensors and under collaboration with space weather centers partners. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. A comprehensive data bank and an interface layer are under development to allow an easy and direct access to the useful information. Nowadays, the users will count on products derived from a GNSS monitor network that covers most of the South American territory; a digisonde network that monitors the ionospheric profiles in two equatorial sites and in one low latitude site; several solar radio telescopes to monitor solar activity, and a magnetometer network, besides a global ionospheric physical model. Regarding outreach, we publish a daily bulletin in Portuguese with the status of the space weather environment on the Sun, in the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, we have release brand new products, among them, some regional magnetic indices and the GNSS vertical error map over South America. Contacting Author: C. M. Denardini (clezio.denardin@inpe.br)
NASA Astrophysics Data System (ADS)
Dhanya, M.; Chandrasekar, A.
2016-02-01
The background error covariance structure influences a variational data assimilation system immensely. The simulation of a weather phenomenon like monsoon depression can hence be influenced by the background correlation information used in the analysis formulation. The Weather Research and Forecasting Model Data assimilation (WRFDA) system includes an option for formulating multivariate background correlations for its three-dimensional variational (3DVar) system (cv6 option). The impact of using such a formulation in the simulation of three monsoon depressions over India is investigated in this study. Analysis and forecast fields generated using this option are compared with those obtained using the default formulation for regional background error correlations (cv5) in WRFDA and with a base run without any assimilation. The model rainfall forecasts are compared with rainfall observations from the Tropical Rainfall Measurement Mission (TRMM) and the other model forecast fields are compared with a high-resolution analysis as well as with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. The results of the study indicate that inclusion of additional correlation information in background error statistics has a moderate impact on the vertical profiles of relative humidity, moisture convergence, horizontal divergence and the temperature structure at the depression centre at the analysis time of the cv5/cv6 sensitivity experiments. Moderate improvements are seen in two of the three depressions investigated in this study. An improved thermodynamic and moisture structure at the initial time is expected to provide for improved rainfall simulation. The results of the study indicate that the skill scores of accumulated rainfall are somewhat better for the cv6 option as compared to the cv5 option for at least two of the three depression cases studied, especially at the higher threshold levels. Considering the importance of utilising improved flow-dependent correlation structures for efficient data assimilation, the need for more studies on the impact of background error covariances is obvious.
VenSAR on EnVision: Taking earth observation radar to Venus
NASA Astrophysics Data System (ADS)
Ghail, Richard C.; Hall, David; Mason, Philippa J.; Herrick, Robert R.; Carter, Lynn M.; Williams, Ed
2018-02-01
Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? EnVision is a proposed ESA Medium class mission designed to take Earth Observation technology to Venus to measure its current rate of geological activity, determine its geological history, and the origin and maintenance of its hostile atmosphere, to understand how Venus and Earth could have evolved so differently. EnVision will carry three instruments: the Venus Emission Mapper (VEM); the Subsurface Radar Sounder (SRS); and VenSAR, a world-leading European phased array synthetic aperture radar that is the subject of this article. VenSAR will obtain images at a range of spatial resolutions from 30 m regional coverage to 1 m images of selected areas; an improvement of two orders of magnitude on Magellan images; measure topography at 15 m resolution vertical and 60 m spatially from stereo and InSAR data; detect cm-scale change through differential InSAR, to characterise volcanic and tectonic activity, and estimate rates of weathering and surface alteration; and characterise of surface mechanical properties and weathering through multi-polar radar data. These data will be directly comparable with Earth Observation radar data, giving geoscientists unique access to an Earth-sized planet that has evolved on a radically different path to our own, offering new insights on the Earth-sized exoplanets across the galaxy.
Implementation of SMOS data monitoring in the Integrated Forecast System. Preliminary results.
NASA Astrophysics Data System (ADS)
Muñoz Sabater, Joaquin; de Rosnay, Patricia; Drusch, Mathias; Dahoui, Mohamed; Delwart, Steven; Wright, Norrie
2010-05-01
The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space Agency (ESA) was successfully launched on November 2nd 2009. Using a novel concept based on the Synthetic Aperture Radar technique, it is expected that SMOS observations will provide global accurate maps of brightness temperatures (TB) and soil moisture at L-band every 3 days and at 50 km ground-spatial resolution. Thus, SMOS data will soon provide a valuable input for numerical weather prediction (NWP), hydrological and land surface systems, among others. Operational numerical weather forecast systems are widely used to evaluate and analyse new types of satellite observations. NWP centres use these observations in their analyses to derive level 2 retrieved geophysical parameters (e.g. soil moisture and ocean salinity for SMOS) from the observed radiances. The European Centre for Medium Range Weather Forecasts is monitoring the first flow of SMOS level 1C TB over sea and land. Monitoring, i.e. the systematic comparison between observations and the corresponding model parameters, is a mandatory step prior to data assimilation. Consequently, monitoring provides an overall quality assessment of SMOS data based on departures values between SMOS observations and the modelled equivalent in the observation space. This is a significant contribution to the calibration / validation activities during the SMOS commissioning phase. Any systematic error or spikes in the data become visible and can be reported to ESA and the other calibration and validation teams without significant delays. Furthermore, the monitored data at global scale will help to calibrate the SMOS instrument at key decision points during the commissioning phase. In this paper the first SMOS data over land is monitored. Special emphasis is given to the effect of different parametrisations and auxiliary data sets on the simulated TB. This is a first step towards the assimilation of SMOS TB to improve the initialization of soil moisture for NWP systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonn, Bruce; Hawkins, Beth; Rose, Erin
The Department of Energy (DOE) administers the national low-income Weatherization Assistance Program (WAP). Under this program, DOE provides grants to states (grantees), which then provide grants to local weatherization agencies (subgrantees), to weatherize income-eligible homes for free. The American Recovery and Reinvestment Act (ARRA) of 2009 allocated $5 billion in funding to WAP, a very significant increase from an annual appropriation that ranged in the $200–250 million range for many years. Furthermore, as part of a major evaluation of WAP, states and local weatherization agencies were surveyed, in part, to assess their experiences during the ARRA period. The substantial fundingmore » increase created a number of issues for the national weatherization network: the political visibility of their programs increased significantly, organizational responsibilities were shifted, new laws and regulations were passed that impacted their programs, media attention of their programs increased, federal oversight of their programs increased; and programmatic costs increased because of the increased oversight and because ARRA required WAP to operate under the provisions of the Davis-Bacon Act of 1931. There was also some concern within the national weatherization network that the influx of ARRA funds would permanently damage nonfederal funding leveraging relationships. However, two-thirds of grantees and over 40% of subgrantees stated that they believe that the long-term impacts of ARRA on leveraging relationships will be positive.« less
ESA SSA Space Radiation Expert Service Centre: the Importance of Community Feedback
NASA Astrophysics Data System (ADS)
Crosby, Norma; Dierckxsens, Mark; Kruglanski, Michel; De Donder, Erwin; Calders, Stijn; Messios, Neophytos; Glover, Alexi
2017-04-01
End-users in a wide range of sectors both in space and on the ground are affected by space weather. In the frame of its Space Situational Awareness (SSA) programme (http://swe.ssa.esa.int/) the European Space Agency (ESA) is establishing a Space Weather (SWE) Service Network to support end-users in three ways: mitigate the effects of space weather on their systems, reduce costs, and improve reliability. Almost 40 expert groups from institutes and organisations across Europe contribute to this Network organised in five Expert Service Centres (ESCs) - Solar Weather, Heliospheric Weather, Space Radiation, Ionospheric Weather, Geomagnetic Conditions. To understand the end-user needs, the ESCs are supported by the SSCC (SSA Space Weather Coordination Centre) that offers first line support to the end-users. Here we present the mission of the Space Radiation ESC (R-ESC) (http://swe.ssa.esa.int/space-radiation) and the space domain services it supports. Furthermore, we describe how the R-ESC project complements past and ongoing projects both on national level as well as international (e.g. EU projects), emphasizing the importance of inter-disciplinary communication between different communities ranging from scientists, engineers to end-users. Such collaboration is needed if basic science is to be used most efficiently for the development of products and tools that provide end-users with what they actually need. Additionally, feedback from the various communities (projects) is also essential when defining future projects.
Preference for shelter and additional heat in horses exposed to Nordic winter conditions.
Jørgensen, G H M; Aanensen, L; Mejdell, C M; Bøe, K E
2016-11-01
Horses may adapt to a wide range of temperatures and weather conditions. Owners often interfere with this natural thermoregulation ability by clipping and use of blankets. To investigate the effects of different winter weather conditions on shelter seeking behaviour of horses and their preference for additional heat. Observational study in various environments. Mature horses (n = 22) were given a free choice test between staying outdoors, going into a heated shelter compartment or into a nonheated shelter compartment. Horse location and behaviour was scored using instantaneous sampling every minute for 1 h. Each horse was tested once per day and weather factors were continuously recorded by a local weather station. The weather conditions influenced time spent outdoors, ranging from 52% (of all observations) on days with mild temperatures, wind and rain to 88% on days with <0°C and dry weather. Shivering was only observed during mild temperatures and rain/sleet. Small Warmblood horses were observed to select outdoors less (34% of all observations) than small Coldblood horses (80%). We found significant correlations between hair coat sample weight and number of observations outdoors (ρ = 0.23; P = 0.004). Horses selected shelters the most on days with precipitation and horses changed from a nonheated compartment to a heated compartment as weather changed from calm and dry to wet and windy. Horse breed category affected the use of shelter and body condition score and hair coat weight were associated with voluntary shelter selection. © 2015 EVJ Ltd.
Climate control: United States weather modification in the cold war and beyond.
Harper, Kristine C
2008-03-01
Rainmaking, hail busting, fog lifting, snowpack enhancing, lightning suppressing, hurricane snuffing...weather control. At the lunatic fringe of scientific discussion in the early twentieth century--and the subject of newspaper articles with tones ranging from skeptical titters to awestruck wonder--weather modification research became more serious after World War II. In the United States, the 'seeds' of silver iodide and dry ice purported to enhance rainfall and bust hailstorms soon became seeds of controversy from which sprouted attempts by federal, state and local government to control the controllers and exploit 'designer weather' for their own purposes.
Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control
The “Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control: State of the Technology” project investigated a range of innovative technology and management strategies emerging outside the normal realm of business within the continental United States, fo...
2009-09-01
Interface IFR Instrument Flight Rules LANTIRN Low-Altitude Navigation and Targeting Infrared for Night MANTIRN Medium Altitude Navigation and...MANTIRN categories, and IFR weather categories. Aside from the category of personnel (computer specialist NCOs rather than pilots), the main...of the node, (2) Adding a description, (3) Implementing event arguments , local variables, and state transitions, (4) Implementing a code that is
Jeff Skousen; Carl Zipper; Jim Burger; Christopher Barton; Patrick. Angel
2017-01-01
The Forestry Reclamation Approach (FRA), a method for reclaiming coal-mined land to forest (Chapter 2, this volume), is based on research, knowledge, and experience of forest soil scientists and reclamation practitioners. Step 1 of the FRA is to create a suitable rooting medium for good tree growth that is no less than 4 feet deep and consists of topsoil, weathered...
Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass
Gammer, C.; Escher, B.; Ebner, C.; ...
2017-03-21
Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less
Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammer, C.; Escher, B.; Ebner, C.
Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less
Kaplan, Kevin M.; ElAttrache, Neal S.; Jobe, Frank W.; Morrey, Bernard F.; Kaufman, Kenton R.; Hurd, Wendy J.
2014-01-01
Background There is an assumption that baseball athletes who reside in warm-weather climates experience larger magnitude adaptations in throwing shoulder motion and strength compared with their peers who reside in cold-weather climates. Hypotheses (1) The warm-weather climate (WWC) group would exhibit more pronounced shoulder motion and strength adaptations than the cold-weather climate (CWC) group, and (2) the WWC group would participate in pitching activities for a greater proportion of the year than the CWC group, with the time spent pitching predicting throwing shoulder motion and strength in both groups. Study Design Cross-sectional study; Level of evidence, 3. Methods One hundred uninjured high school pitchers (50 each WWC, CWC) were recruited. Rotational shoulder motion and isometric strength were measured and participants reported the number of months per year they pitched. To identify differences between groups, t tests were performed; linear regression was used to determine the influence of pitching volume on shoulder motion and strength. Results The WWC group pitched more months per year than athletes from the CWC group, with the number of months spent pitching negatively related to internal rotation motion and external rotation strength. The WWC group exhibited greater shoulder range of motion in all planes compared with the CWC group, as well as significantly lower external rotation strength and external/internal rotation strength ratios. There was no difference in internal rotation strength between groups, nor a difference in the magnitude of side-to-side differences for strength or motion measures. Conclusion Athletes who reside in cold- and warm-weather climates exhibit differences in throwing shoulder motion and strength, related in part to the number of months spent participating in pitching activities. The amount of time spent participating in pitching activities and the magnitude of range of motion and strength adaptations in athletes who reside in warm-weather climates may make these athletes more susceptible to throwing-related injuries. PMID:21051421
Modeling Silicate Weathering for Elevated CO2 and Temperature
NASA Astrophysics Data System (ADS)
Bolton, E. W.
2016-12-01
A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.
Yaghoobi Ershadi, Nastaran
2017-01-01
Traffic surveillance systems are interesting to many researchers to improve the traffic control and reduce the risk caused by accidents. In this area, many published works are only concerned about vehicle detection in normal conditions. The camera may vibrate due to wind or bridge movement. Detection and tracking of vehicles is a very difficult task when we have bad weather conditions in winter (snowy, rainy, windy, etc.), dusty weather in arid and semi-arid regions, at night, etc. Also, it is very important to consider speed of vehicles in the complicated weather condition. In this paper, we improved our method to track and count vehicles in dusty weather with vibrating camera. For this purpose, we used a background subtraction based strategy mixed with an extra processing to segment vehicles. In this paper, the extra processing included the analysis of the headlight size, location, and area. In our work, tracking was done between consecutive frames via a generalized particle filter to detect the vehicle and pair the headlights using the connected component analysis. So, vehicle counting was performed based on the pairing result, with Centroid of each blob we calculated distance between two frames by simple formula and hence dividing it by the time between two frames obtained from the video. Our proposed method was tested on several video surveillance records in different conditions such as dusty or foggy weather, vibrating camera, and in roads with medium-level traffic volumes. The results showed that the new proposed method performed better than our previously published method and other methods, including the Kalman filter or Gaussian model, in different traffic conditions. PMID:29261719
Yaghoobi Ershadi, Nastaran
2017-01-01
Traffic surveillance systems are interesting to many researchers to improve the traffic control and reduce the risk caused by accidents. In this area, many published works are only concerned about vehicle detection in normal conditions. The camera may vibrate due to wind or bridge movement. Detection and tracking of vehicles is a very difficult task when we have bad weather conditions in winter (snowy, rainy, windy, etc.), dusty weather in arid and semi-arid regions, at night, etc. Also, it is very important to consider speed of vehicles in the complicated weather condition. In this paper, we improved our method to track and count vehicles in dusty weather with vibrating camera. For this purpose, we used a background subtraction based strategy mixed with an extra processing to segment vehicles. In this paper, the extra processing included the analysis of the headlight size, location, and area. In our work, tracking was done between consecutive frames via a generalized particle filter to detect the vehicle and pair the headlights using the connected component analysis. So, vehicle counting was performed based on the pairing result, with Centroid of each blob we calculated distance between two frames by simple formula and hence dividing it by the time between two frames obtained from the video. Our proposed method was tested on several video surveillance records in different conditions such as dusty or foggy weather, vibrating camera, and in roads with medium-level traffic volumes. The results showed that the new proposed method performed better than our previously published method and other methods, including the Kalman filter or Gaussian model, in different traffic conditions.
NASA Astrophysics Data System (ADS)
Nasser, Mohammed; Gibson, Andy, ,, Dr; Koor, Nick, ,, Dr; Gale, Professor Andy; Huggett, Jenny, ,, Dr; Branch, Steve
2017-04-01
The London Clay Formation (LCF) which underlies much of South-East England is hugely important as a construction medium. However, its geotechnical performance (shear strength, compressive strength, shrink-swell behaviour, etc. ) is greatly affected by its degree of weathering. Despite this importance, little attention has been focussed on a robust method to define and measure its degree of weathering. This is perhaps a result of a well-known colour change from bluish-grey to brown that accompanies 'weathering' and considered to be the result of oxidisation (Chandler and Apted 1988). Through wide experience, this definition is normally effective, but it is perhaps subjective and reliant on the experience of the investigator and the ability to observe samples or exposures. More objective investigation, typically using SEM is not normally economically feasible or expedient for construction works. We propose a simple, robust method to characterise the degree of weathering in the LCF using reflective or Visible-Near-InfraRed-Spectroscopy (VNIRS). 24 samples were extracted from 2 boreholes drilled in the Hampstead area of London to depths of 12 m within the uppermost Claygate Member of the LCF. VNIRS spectra (350-2500 nm) were measured from all samples and compared with XRD, XRF, SEM and PSD results on the same samples. Results show increased magnitude of absorption features related to clay mineralogy around 1400, 1900 and 2200 nm to a depth of 5 m beneath ground level. Beneath this depth, the absorption features show little variation. SEM analyses show corresponding changes in the degradation of pyrite crystals and individual clay (illite/smectite). These preliminary results show that there is a good potential for VNIRS spectroscopy to determine the variation of weathering in the LCF.
Weather and Climate Indicators for Coffee Rust Disease
NASA Astrophysics Data System (ADS)
Georgiou, S.; Imbach, P. A.; Avelino, J.; Anzueto, F.; del Carmen Calderón, G.
2014-12-01
Coffee rust is a disease that has significant impacts on the livelihoods of those who are dependent on the Central American coffee sector. Our investigation has focussed on the weather and climate indicators that favoured the high incidence of coffee rust disease in Central America in 2012 by assessing daily temperature and precipitation data available from 81 weather stations in the INSIVUMEH and ANACAFE networks located in Guatemala. The temperature data were interpolated to determine the corresponding daily data at 1250 farms located across Guatemala, between 400 and 1800 m elevation. Additionally, CHIRPS five day (pentad) data has been used to assess the anomalies between the 2012 and the climatological average precipitation data at farm locations. The weather conditions in 2012 displayed considerable variations from the climatological data. In general the minimum daily temperatures were higher than the corresponding climatology while the maximum temperatures were lower. As a result, the daily diurnal temperature range was generally lower than the corresponding climatological range, leading to an increased number of days where the temperatures fell within the optimal range for either influencing the susceptibility of the coffee plants to coffee rust development during the dry season, or for the development of lesions on the coffee leaves during the wet season. The coffee rust latency period was probably shortened as a result, and farms at high altitudes were impacted due to these increases in minimum temperature. Factors taken into consideration in developing indicators for coffee rust development include: the diurnal temperature range, altitude, the environmental lapse rate and the phenology. We will present the results of our study and discuss the potential for each of the derived weather and climatological indicators to be used within risk assessments and to eventually be considered for use within an early warning system for coffee rust disease.
Lucas, Richard E.; Lawless, Nicole M.
2013-01-01
Weather conditions have been shown to affect a broad range of thoughts, feelings, and behaviors. The current study examines whether these effects extend to life satisfaction judgments. We examine the association between daily weather conditions and life satisfaction in a representative sample of over 1 million Americans from all 50 states who were assessed (in a cross-sectional design) over a 5-year period. Most daily weather conditions were unrelated to life satisfaction judgments, and those effects that were significant reflect very small effects that were only detectable because of the extremely high power of these analyses. These results show that weather does not reliably affect judgments of life satisfaction. PMID:23607534
Enhanced Weather Radar (EWxR) System
NASA Technical Reports Server (NTRS)
Kronfeld, Kevin M. (Technical Monitor)
2003-01-01
An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.
NASA Astrophysics Data System (ADS)
Qing, Jiasheng; Wang, Lei; Dou, Kun; Wang, Bao; Liu, Qing
2016-06-01
The influence of V-N microalloying on the high-temperature mechanical behavior of high strength weathering steel is discussed through thermomechanical simulation experiment. The difference of tensile strength caused by variation of [%V][%N] appears after proeutectoid phase change, and the higher level of [%V][%N] is, the stronger the tensile strength tends to be. The ductility trough apparently becomes deeper and wider with the increase of [%V][%N]. When the level of [%V][%N] reaches to 1.7 × 10-3, high strength weathering steel shows almost similar reduction of area to 0.03% Nb-containing steel in the temperature range of 800-900°, however, the ductility trough at the low-temperature stage is wider than that of Nb-containing steel. Moreover, the net crack defect of bloom is optimized through the stable control of N content in low range under the precondition of high strength weathering steel with sufficient strength.
The Complex Relationship between Weather and Dengue Virus Transmission in Thailand
Campbell, Karen M.; Lin, C. D.; Iamsirithaworn, Sopon; Scott, Thomas W.
2013-01-01
Using a novel analytical approach, weather dynamics and seasonal dengue virus transmission cycles were profiled for each Thailand province, 1983–2001, using monthly assessments of cases, temperature, humidity, and rainfall. We observed systematic differences in the structure of seasonal transmission cycles of different magnitude, the role of weather in regulating seasonal cycles, necessary versus optimal transmission “weather-space,” basis of large epidemics, and predictive indicators that estimate risk. Larger epidemics begin earlier, develop faster, and are predicted at Onset change-point when case counts are low. Temperature defines a viable range for transmission; humidity amplifies the potential within that range. This duality is central to transmission. Eighty percent of 1.2 million severe dengue cases occurred when mean temperature was 27–29.5°C and mean humidity was > 75%. Interventions are most effective when applied early. Most cases occur near Peak, yet small reductions at Onset can substantially reduce epidemic magnitude. Monitoring the Quiet-Phase is fundamental in effectively targeting interventions pre-emptively. PMID:23958906
The Art and Science of Long-Range Space Weather Forecasting
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Wilson, Robert M.
2006-01-01
Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.
The complex relationship between weather and dengue virus transmission in Thailand.
Campbell, Karen M; Lin, C D; Iamsirithaworn, Sopon; Scott, Thomas W
2013-12-01
Using a novel analytical approach, weather dynamics and seasonal dengue virus transmission cycles were profiled for each Thailand province, 1983-2001, using monthly assessments of cases, temperature, humidity, and rainfall. We observed systematic differences in the structure of seasonal transmission cycles of different magnitude, the role of weather in regulating seasonal cycles, necessary versus optimal transmission "weather-space," basis of large epidemics, and predictive indicators that estimate risk. Larger epidemics begin earlier, develop faster, and are predicted at Onset change-point when case counts are low. Temperature defines a viable range for transmission; humidity amplifies the potential within that range. This duality is central to transmission. Eighty percent of 1.2 million severe dengue cases occurred when mean temperature was 27-29.5°C and mean humidity was > 75%. Interventions are most effective when applied early. Most cases occur near Peak, yet small reductions at Onset can substantially reduce epidemic magnitude. Monitoring the Quiet-Phase is fundamental in effectively targeting interventions pre-emptively.
NASA Astrophysics Data System (ADS)
George, Richard J.
1992-01-01
Hydraulic properties of deeply weathered basement rocks and variably weathered sedimentary materials were measured by pumping and slug-test methods. Results from over 200 bores in 13 catchments, and eight pumping-test sites across the eastern and central wheatbelt of Western Australia were analysed. Measurements were made in each of the major lithological units, and emphasis placed on a ubiquitous basal saprolite aquifer. Comparisons were made between alternative drilling and analytical procedures to determine the most appropriate methods of investigation. Aquifers with an average hydraulic conductivity of 0.55 m day -1 occur in variably weathered Cainozoic sediments and poorly weathered saprolite grits (0.57 m day -1). These aquifers are separated by an aquitard (0.065 m day -1) comprising the mottled and pallid zones of the deeply weathered profile. Locally higher values of hydraulic conductivity occur in the saprolite aquifer, although after prolonged periods of pumping the values decrease until they are similar to those obtained from the slug-test methods. Hydraulic conductivities measured in bores drilled with rotary auger rigs were approximately an order of magnitude lower than those measured in the same material with bores drilled by the rotary air-blast method. Wheatbelt aquifers range from predominantly unconfined (Cainozoic sediments), to confined (saprolite grit aquifer). The poorly weathered saprolite grit aquifer has moderate to high transmissivities (4-50 m 2 day -1) and is capable of producing from less than 5 to over 230 kl day -1 of ground water, which is often of a quality suitable for livestock. Yields are influenced by the variability in the permeability of isovolumetrically weathered materials from which the aquifer is derived. The overlying aquitard has a low transmissivity (< 1 m 2 day -1), especially when deeply weathered, indurated and silicified. The transmissivity of the variably weathered sedimentary materials ranges from less than 0.5 m 2 day -1 to over 10 m 2 day -1, depending on the texture of the materials and their position within the landscape. Higher transmissivity zones may occur as discrete layers of coarser textured materials. The salinity of the saprolite and sedimentary aquifers ranges from less than 2000 mgl -1 to greater than 250000 mgl -1 (total dissolved solids; TDS), depending on position within the landscape. Secondary soil salinization develops when groundwater discharge occurs from either saprolite or sedimentary aquifers.
NASA Astrophysics Data System (ADS)
Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Kubik, Peter
2015-04-01
The production and denudation of soil material are controlled by chemical weathering and physical erosion which influence one another. Better understanding and quantification of this relationship is critical to understand biogeochemical cycles in the critical zone. The intense silicate weathering that is taking place in young mountain ranges is often cited to be a negative feedback that involves a long-term reduction of the atmospheric CO2 and the temperature cooling. However the possible (de)coupling between weathering and erosion is not fully understood for the moment and could reduce the effect of the feedback. This study is conducted in the eastern Betic Cordillera located in southeast Spain. The Betic Cordillera is composed by several mountains ranges or so-called Sierras that are oriented E-W to SE-NW and rise to 2000m.a.s.l. The Sierras differ in topographic setting, tectonic activity, and slightly in climate and vegetation. The mountain ranges located in the northwest, such as the Sierra Estancias, have the lowest uplift rates ( ~20-30 mm/kyr); while those in the southeast, such as the Sierra Cabrera, have the highest uplift rates ( >150mm/kyr). The sampling was realised into four small catchments located in three different Sierras. In each of them, two to three soil profiles were excavated on exposed ridgetops, and samples were taken by depth slices. The long-term denudation rate at the sites is inferred from in-situ 10Be CRN measurements. The chemical weathering intensity is constrained using a mass balance approach that is based on the concentration of immobile elements throughout the soil profile (CDF). Our results show that the soil depth decreases with an increase of the denudation rates. Chemical weathering accounts for 5 to 35% of the total mass lost due to denudation. Higher chemical weathering intensities (CDFs) are observed in sites with lower denudation rates (and vice versa). The data suggest that chemical weathering intensities are strongly associated with long-term 10Be derived denudation rates. Several causative factors may contribute to this observation, amongst which variation in climate, topography, and vegetation that are all associated with the measured variation in denudation rates. Finally, our data do not support a positive relation between the weathering rate and the physical erosion rate in the soil.
Campbell, Karen M; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V; Halsey, Eric S; Laguna-Torres, V Alberto; Yagui, Martín; Morrison, Amy C; Lin, Chii-Dean; Scott, Thomas W
2015-01-01
Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and globally. Weather regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model development is an empirical perspective clarifying how weather impacts transmission in diverse ecological settings. We sought to determine if location, timing, and potential-intensity of transmission are systematically defined by weather. We developed a high-resolution empirical profile of the local weather-disease connection across Peru, a country with considerable ecological diversity. Applying 2-dimensional weather-space that pairs temperature versus humidity, we mapped local transmission-potential in weather-space by week during 1994-2012. A binary classification-tree was developed to test whether weather data could classify 1828 Peruvian districts as positive/negative for transmission and into ranks of transmission-potential with respect to observed disease. We show that transmission-potential is regulated by temperature-humidity coupling, enabling epidemics in a limited area of weather-space. Duration within a specific temperature range defines transmission-potential that is amplified exponentially in higher humidity. Dengue-positive districts were identified by mean temperature >22°C for 7+ weeks and minimum temperature >14°C for 33+ weeks annually with 95% sensitivity and specificity. In elevated-risk locations, seasonal peak-incidence occurred when mean temperature was 26-29°C, coincident with humidity at its local maximum; highest incidence when humidity >80%. We profile transmission-potential in weather-space for temperature-humidity ranging 0-38°C and 5-100% at 1°C x 2% resolution. Local duration in limited areas of temperature-humidity weather-space identifies potential locations, timing, and magnitude of transmission. The weather-space profile of transmission-potential provides needed data that define a systematic and highly-sensitive weather-disease connection, demonstrating separate but coupled roles of temperature and humidity. New insights regarding natural regulation of human-mosquito transmission across diverse ecological settings advance our understanding of risk locally and globally for dengue and other mosquito-borne diseases and support advances in public health policy/operations, providing an evidence-base for modeling, predicting risk, and surveillance-prevention planning.
High Fragmentation Steel Production Process
1984-01-01
J/ FTA c« ;« MO G SO KM s s P WS W-U Hi ; T 14 434 CASK G S3 K 11 ma WM MM MM ACTS 1 TC*4 U S7« ill GC 135 V M NTA «M FT...relative feed range 2nd digit -relative force range FMd 1 Very Low Fore* t 2 Low 2 3 Medium Low 3 4 Medium 4 5 Medium 5 6 Medium High 6 7 Medium
NASA Astrophysics Data System (ADS)
Dalai, T. K.; Krishnaswami, S.; Sarin, M. M.
2002-10-01
The Yamuna river and its tributaries in the Himalaya constitute the Yamuna River System (YRS). The YRS basin has a drainage area and discharge comparable in magnitude to those of the Bhagirathi and the Alaknanda rivers, which merge to form the Ganga at the foothills of the Himalaya. A detailed geochemical study of the YRS was carried out to determine: (i) the relative significance of silicate, carbonate and evaporite weathering in contributing to its major ion composition; (ii) CO 2 consumption via silicate weathering; and (iii) the factors regulating chemical weathering of silicates in the basin. The results show that the YRS waters are mildly alkaline, with a wide range of TDS, ˜32 to ˜620 mg l-1. In these waters, the abundances of Ca, Mg and alkalinity, which account for most of TDS, are derived mainly from carbonates. Many of the tributaries in the lower reaches of the Yamuna basin are supersaturated with calcite. In addition to carbonic acid, sulphuric acid generated by oxidation of pyrites also seems to be supplying protons for chemical weathering. Silicate weathering in YRS basin contributes, on average, ˜25% (molar basis) of total cations on a basin wide scale. Silicate weathering, however, does not seem to be intense in the basin as evident from low Si/(Na*+K) in the waters, ˜1.2 and low values of chemical index of alteration (CIA) in bed sediments, ˜60. CO 2 drawdown resulting from silicate weathering in the YRS basin in the Himalaya during monsoon ranges between (4 to 7) × 10 5 moles km -2 y -1. This is higher than that estimated for the Ganga at Rishikesh for the same season. The CO 2 consumption rates in the Yamuna and the Ganga basins in the Himalaya are higher than the global average value, suggesting enhanced CO 2 drawdown in the southern slopes of the Himalaya. The impact of this enhanced drawdown on the global CO 2 budget may not be pronounced, as the drainage area of the YRS and the Ganga in the Himalaya is small. The CO 2 drawdown by silicates in the YRS basin is marginally higher than the reported values of CO 2 release from oxidation of organic rich sediments, estimated using Re as a proxy. This comparison shows the need to constrain CO 2 sources and sinks better to balance its budget in a regional scale. The results also show that silicate weathering rate in the YRS basin is ˜10 mm ky -1 and on the Ganga basin, it is ˜5 mm ky -1, which are several times lower than the carbonate weathering rates. The significantly higher silicate weathering rate observed in the YRS basin seems to be governed by rapid physical erosion in this region. The apparent activation energy for overall silicate weathering in the YRS basin, derived from Na* and Si concentrations and water temperature, ranges from ˜50 to 80 kJ mol -1. These values are comparable to those reported for granitoid weathering in natural watersheds and feldspar weathering in laboratory experiments. This study brings to light the sources contributing to major ions, enhanced chemical weathering rates in the Yamuna River Basin and interdependence of silicate weathering on physical erosion and temperature.
How Satellites Have Contributed to Building a Weather Ready Nation
NASA Astrophysics Data System (ADS)
Lapenta, W.
2017-12-01
NOAA's primary mission since its inception has been to reduce the loss of life and property, as well as disruptions from, high impact weather and water-related events. In recent years, significant societal losses resulting even from well forecast extreme events have shifted attention from the forecast alone toward ensuring societal response is equal to the risks that exist for communities, businesses and the public. The responses relate to decisions ranging from coastal communities planning years in advance to mitigate impacts from rising sea level, to immediate lifesaving decisions such as a family seeking adequate shelter during a tornado warning. NOAA is committed to building a "Weather-Ready Nation" where communities are prepared for and respond appropriately to these events. The Weather-Ready Nation (WRN) strategic priority is building community resilience in the face of increasing vulnerability to extreme weather, water, climate and environmental threats. To build a Weather-Ready Nation, NOAA is enhancing Impact-Based Decision Support Services (IDSS), transitioning science and technology advances into forecast operations, applying social science research to improve the communication and usefulness of information, and expanding its dissemination efforts to achieve far-reaching readiness, responsiveness and resilience. These four components of Weather-Ready Nation are helping ensure NOAA data, products and services are fully utilized to minimize societal impacts from extreme events. Satellite data and satellite products have been important elements of the national Weather Service (NWS) operations for more than 40 years. When one examines the uses of satellite data specific to the internal forecast and warning operations of NWS, two main applications are evident. The first is the use of satellite data in numerical weather prediction models; the second is the use of satellite imagery and derived products for mesoscale and short-range weather warning and prediction. The purpose of this paper is to highlight the value of the satellite component of the global observing system to NWS operational weather forecasting and emphasize how these data form a critical component of the NWS ability to protect life and property and ensure economic well-being.
Kinetically limited weathering at low denudation rates in semiarid climatic conditions
NASA Astrophysics Data System (ADS)
Schoonejans, Jérôme; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Christl, Marcus
2016-02-01
Biogeochemical cycling within the Critical Zone depends on the interactions between minerals and fluids controlling chemical weathering and physical erosion rates. In this study, we explore the role of water availability in controlling soil chemical weathering in semiarid climatic conditions. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We combine a geochemical mass balance with 10Be cosmogenic nuclides to constrain chemical weathering intensities and long-term denudation rates. As such, this study presents new data on chemical weathering and 10Be-derived denudation for understudied semiarid climate systems. In the Betic Cordillera, chemical weathering intensities are relatively low (~5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Chemical mass losses are inversely related to denudation rates (14-109 mm/kyr) and positively to soil thickness (14-58 cm); these results are consistent with kinetic limitation of chemical weathering rates. A worldwide compilation of chemical weathering data suggests that soil water balance may regulate the coupling between chemical weathering and physical erosion by modulating soil solute fluxes. Therefore, future landscape evolution models that seek to link chemical weathering and physical erosion should include soil water flux as an essential driver of weathering.
Interseismic strain accumulation across the Ashkabad fault (NE Iran) from MERIS-corrected ASAR data
NASA Astrophysics Data System (ADS)
Walters, R. J.; Elliott, J. R.; Li, Z.; Parsons, B. E.
2011-12-01
The right-lateral Ashkabad Fault separates deforming NE Iran from the stable Turkmenistan platform to the north, and also facilitates the north-westwards extrusion of the South Caspian block (along with the left-lateral Shahrud fault zone). The fault represents the northernmost boundary of significant deformation of the Arabia-Eurasia collision in NE Iran. The 1948 M 7.3 Ashkabad earthquake, which killed around 110,000 people and was the deadliest earthquake to hit Europe or the Middle East in the 20th Century, also possibly occurred on this fault. However, the slip rate and therefore the seismic hazard that the Ashkabad fault represents are not well known. GPS data in NE Iran are sparse, and there are no direct geological or quaternary rates for the main strand of the fault. We use Envisat ASAR data acquired between 2003 and 2010 to measure interseismic strain accumulation across the fault, and hence estimate the slip rate across it. Due to the proximity of this region to the Caspian Sea and the presence of highly variable weather systems, we use data from Envisat's Medium Resolution Imaging Spectrometer (MERIS) instrument, as well as modelled weather data from the European Centre for Medium-Range Weather Forecasting (ECMWF), to correct interferograms for differences in water vapour and atmospheric pressure. We mitigate the effects of remaining noise by summing the 13 corrected interferograms that cover the fault, effectively creating a 30 year interferogram with improved signal-to-noise ratio, and we empirically correct for orbital errors. Our measurements of rates of displacement are consistent with an interseismic model for the Ashkabad fault where deformation occurs at depth on a narrow shear zone below a layer in which the fault is locked. We invert the data to solve for best fitting model parameters, estimating both the slip rate and the depth to which the fault is locked. Our measurements show that the Ashkabad fault is accumulating strain at a rate of 9 mm/yr below a locking depth of 15 km. We use a Monte Carlo approach to estimate the errors on our best fit solution and find our data is consistent with 6-12 mm/yr slip rate and 8-25 km locking depth. Using an alternative jacknife approach we obtain ranges of 4-11 mm/yr and 9-18 km. Lyberis and Manby (1999, AAPG Bulletin 83: 1135-1160) proposed a slip rate of 3-8 mm/yr for the Ashkabad fault, based on an estimated offset and a likely age of onset for the fault. Masson et al. (2007, GJI 170:436-440) estimated a slip rate of 2-4 mm/yr from GPS data. Our best fit solution is higher, but within error our results are compatible with both of these previous estimates. In addition, GPS data from an unpublished PhD Thesis (Tavakoli, 2007, PhD Thesis, LGIT Grenoble) suggest slip rates of around 9 mm/yr, supporting our best fit slip rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonn, Bruce Edward; Rose, Erin M.; Hawkins, Beth A.
The report presents fifteen individual case studies of high-performing and unique local weatherization agencies. This research was one component of the retrospective evaluation of the U.S. Department of Energy s Weatherization Assistance Program. The agencies were chosen to represent a range of contexts and approaches to weatherization. For example, the set of agencies includes a mix of urban and rural agencies, those that mainly use in-house crews to weatherize homes versus those that use contractor crews, and a mix of locations, from very cold climates to moderate to hot humid and dry climates. The case studies were mainly based onmore » site visits to the agencies that encompassed interviews with program directors, weatherization crews, and recipients of weatherization. This information was supplemented by secondary materials. The cases document the diversity of contexts and challenges faced by the agencies and how they operate on a day-by-day basis. The cases also high common themes found throughout the agencies, such as their focus on mission and respect for their clients.« less
NASA Astrophysics Data System (ADS)
Rüfenacht, R.; Kämpfer, N.; Murk, A.
2012-11-01
We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57' N, 7°26' E) is presented and compared to ECMWF wind data.
NASA Astrophysics Data System (ADS)
Rüfenacht, R.; Kämpfer, N.; Murk, A.
2012-07-01
We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved what makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the used techniques for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using MonteCarlo simulations. Finally, a first time series of 11 months of zonal wind measurements over Bern (46°57' N, 7°26' E) is presented and compared to ECMWF wind data.
An Empirical Cumulus Parameterization Scheme for a Global Spectral Model
NASA Technical Reports Server (NTRS)
Rajendran, K.; Krishnamurti, T. N.; Misra, V.; Tao, W.-K.
2004-01-01
Realistic vertical heating and drying profiles in a cumulus scheme is important for obtaining accurate weather forecasts. A new empirical cumulus parameterization scheme based on a procedure to improve the vertical distribution of heating and moistening over the tropics is developed. The empirical cumulus parameterization scheme (ECPS) utilizes profiles of Tropical Rainfall Measuring Mission (TRMM) based heating and moistening derived from the European Centre for Medium- Range Weather Forecasts (ECMWF) analysis. A dimension reduction technique through rotated principal component analysis (RPCA) is performed on the vertical profiles of heating (Q1) and drying (Q2) over the convective regions of the tropics, to obtain the dominant modes of variability. Analysis suggests that most of the variance associated with the observed profiles can be explained by retaining the first three modes. The ECPS then applies a statistical approach in which Q1 and Q2 are expressed as a linear combination of the first three dominant principal components which distinctly explain variance in the troposphere as a function of the prevalent large-scale dynamics. The principal component (PC) score which quantifies the contribution of each PC to the corresponding loading profile is estimated through a multiple screening regression method which yields the PC score as a function of the large-scale variables. The profiles of Q1 and Q2 thus obtained are found to match well with the observed profiles. The impact of the ECPS is investigated in a series of short range (1-3 day) prediction experiments using the Florida State University global spectral model (FSUGSM, T126L14). Comparisons between short range ECPS forecasts and those with the modified Kuo scheme show a very marked improvement in the skill in ECPS forecasts. This improvement in the forecast skill with ECPS emphasizes the importance of incorporating realistic vertical distributions of heating and drying in the model cumulus scheme. This also suggests that in the absence of explicit models for convection, the proposed statistical scheme improves the modeling of the vertical distribution of heating and moistening in areas of deep convection.
Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model.
Krissansen-Totton, Joshua; Arney, Giada N; Catling, David C
2018-04-17
The early Earth's environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean-Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO 2 , which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Li, Yapeng; Wang, Xi-Ling; Zheng, Xueying
2018-05-01
Accumulating evidence demonstrates the significant influence of weather factors, especially temperature and humidity, on influenza seasonality. However, it is still unclear whether temperature variation within the same day, that is diurnal temperature range (DTR), is related to influenza seasonality. In addition, the different effects of weather factors on influenza seasonality across age groups have not been well documented in previous studies. Our study aims to explore the effects of DTR and humidity on influenza seasonality, and the differences in the association between weather factors and influenza seasonality among different age groups in Hong Kong, China. Generalized additive models were conducted to flexibly assess the impact of DTR, absolute humidity (vapor pressure, VP), and relative humidity on influenza seasonality in Hong Kong, China, from January 2012 to December 2016. Stratified analyses were performed to determine if the effects of weather factors differ across age groups (< 5, 5-9, 10-64, and > 64 years). The results suggested that DTR, absolute humidity, and relative humidity were significantly related to influenza seasonality in dry period (when VP is less than 20 mb), while no significant association was found in humid period (when VP is greater than 20 mb). The percentage changes of hospitalization rates due to influenza associated with per unit increase of weather factors in the very young children (age 0-4) and the elderly (age 65+) were higher than that in the adults (age 10-64). Diurnal temperature range is significantly associated with influenza seasonality in dry period, and the effects of weather factors differ across age groups in Hong Kong, China.
Clouds in ECMWF's 30 KM Resolution Global Atmospheric Forecast Model (TL639)
NASA Technical Reports Server (NTRS)
Cahalan, R. F.; Morcrette, J. J.
1999-01-01
Global models of the general circulation of the atmosphere resolve a wide range of length scales, and in particular cloud structures extend from planetary scales to the smallest scales resolvable, now down to 30 km in state-of-the-art models. Even the highest resolution models do not resolve small-scale cloud phenomena seen, for example, in Landsat and other high-resolution satellite images of clouds. Unresolved small-scale disturbances often grow into larger ones through non-linear processes that transfer energy upscale. Understanding upscale cascades is of crucial importance in predicting current weather, and in parameterizing cloud-radiative processes that control long term climate. Several movie animations provide examples of the temporal and spatial variation of cloud fields produced in 4-day runs of the forecast model at the European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, England, at particular times and locations of simultaneous measurement field campaigns. model resolution is approximately 30 km horizontally (triangular truncation TL639) with 31 vertical levels from surface to stratosphere. Timestep of the model is about 10 minutes, but animation frames are 3 hours apart, at timesteps when the radiation is computed. The animations were prepared from an archive of several 4-day runs at the highest available model resolution, and archived at ECMWF. Cloud, wind and temperature fields in an approximately 1000 km X 1000 km box were retrieved from the archive, then approximately 60 Mb Vis5d files were prepared with the help of Graeme Kelly of ECMWF, and were compressed into MPEG files each less than 3 Mb. We discuss the interaction of clouds and radiation in the model, and compare the variability of cloud liquid as a function of scale to that seen in cloud observations made in intensive field campaigns. Comparison of high-resolution global runs to cloud-resolving models, and to lower resolution climate models is leading to better understanding of the upscale cascade and suggesting new cloud-radiation parameterizations for climate models.
NASA Astrophysics Data System (ADS)
Saleh, F.; Ramaswamy, V.; Georgas, N.; Blumberg, A. F.; Wang, Y.
2016-12-01
Advances in computational resources and modeling techniques are opening the path to effectively integrate existing complex models. In the context of flood prediction, recent extreme events have demonstrated the importance of integrating components of the hydrosystem to better represent the interactions amongst different physical processes and phenomena. As such, there is a pressing need to develop holistic and cross-disciplinary modeling frameworks that effectively integrate existing models and better represent the operative dynamics. This work presents a novel Hydrologic-Hydraulic-Hydrodynamic Ensemble (H3E) flood prediction framework that operationally integrates existing predictive models representing coastal (New York Harbor Observing and Prediction System, NYHOPS), hydrologic (US Army Corps of Engineers Hydrologic Modeling System, HEC-HMS) and hydraulic (2-dimensional River Analysis System, HEC-RAS) components. The state-of-the-art framework is forced with 125 ensemble meteorological inputs from numerical weather prediction models including the Global Ensemble Forecast System, the European Centre for Medium-Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), the Short Range Ensemble Forecast (SREF) and the North American Mesoscale Forecast System (NAM). The framework produces, within a 96-hour forecast horizon, on-the-fly Google Earth flood maps that provide critical information for decision makers and emergency preparedness managers. The utility of the framework was demonstrated by retrospectively forecasting an extreme flood event, hurricane Sandy in the Passaic and Hackensack watersheds (New Jersey, USA). Hurricane Sandy caused significant damage to a number of critical facilities in this area including the New Jersey Transit's main storage and maintenance facility. The results of this work demonstrate that ensemble based frameworks provide improved flood predictions and useful information about associated uncertainties, thus improving the assessment of risks as when compared to a deterministic forecast. The work offers perspectives for short-term flood forecasts, flood mitigation strategies and best management practices for climate change scenarios.
Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere
NASA Astrophysics Data System (ADS)
Gegout, P.; Biancale, R.; Soudarin, L.
2011-10-01
The anisotropy of propagation of radio waves used by global navigation satellite systems is investigated using high-resolution observational data assimilations produced by the European Centre for Medium-range Weather Forecast. The geometry and the refractivity of the neutral atmosphere are built introducing accurate geodetic heights and continuous formulations of the refractivity and its gradient. Hence the realistic ellipsoidal shape of the refractivity field above the topography is properly represented. Atmospheric delays are obtained by ray-tracing through the refractivity field, integrating the eikonal differential system. Ray-traced delays reveal the anisotropy of the atmosphere. With the aim to preserve the classical mapping function strategy, mapping functions can evolve to adapt to high-frequency atmospheric fluctuations and to account for the anisotropy of propagation by fitting at each site and time the zenith delays and the mapping functions coefficients. Adaptive mapping functions (AMF) are designed with coefficients of the continued fraction form which depend on azimuth. The basic idea is to expand the azimuthal dependency of the coefficients in Fourier series introducing a multi-scale azimuthal decomposition which slightly changes the elevation functions with the azimuth. AMF are used to approximate thousands of atmospheric ray-traced delays using a few tens of coefficients. Generic recursive definitions of the AMF and their partial derivatives lead to observe that the truncation of the continued fraction form at the third term and the truncation of the azimuthal Fourier series at the fourth term are sufficient in usual meteorological conditions. Delays' and elevations' mapping functions allow to store and to retrieve the ray-tracing results to solve the parallax problem at the observation level. AMF are suitable to fit the time-variable isotropic and anisotropic parts of the ray-traced delays at each site at each time step and to provide GPS range corrections at the measurement level with millimeter accuracy at low elevation. AMF to the azimuthal anisotropy of the neutral atmosphere are designed to adapt to complex weather conditions by adaptively changing their truncations.
NASA Astrophysics Data System (ADS)
Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui
2018-01-01
Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are weak, especially when more stringent conditions are imposed (i.e. when T is very high), except at the monthly scale.
NASA Astrophysics Data System (ADS)
Martinez, C. J.; Starkweather, S.; Cox, C. J.; Solomon, A.; Shupe, M.
2015-12-01
Radiosondes are balloon-borne meteorological sensors used to acquire profiles of temperature and humidity. Radiosonde data are essential inputs for numerical weather prediction models and are used for climate research, particularly in the creation of reanalysis products. However, radiosonde programs are costly to maintain, in particular in the remote regions of the Arctic (e.g., $440,000/yr at Summit, Greenland), where only 40 of approximately 1000 routine global launches are made. The climate of this data-sparse region is poorly understood and forecast data assimilation procedures are designed for global applications. Thus, observations may be rejected from the data assimilation because they are too far from the model expectations. For the most cost-efficient deployment of resources and to improve forecasting methods, analyses of the effectiveness of individual radiosonde programs are necessary. Here, we evaluate how radiosondes launched twice daily (0 and 12 UTC) from Summit Station, Greenland, (72.58⁰N, 38.48⁰W, 3210 masl) influence the European Centre for Medium Range Weather Forecasting (ECMWF) operational forecasts from June 2013 through May of 2015. A statistical analysis is conducted to determine the impact of the observations on the forecast model and the meteorological regimes that the model fails to reproduce are identified. Assimilation rates in the inversion layer are lower than any other part of the troposphere. Above the inversion, assimilation rates range from 85%-100%, 60%-98%, and > 99% for temperature, humidity, and wind, respectively. The lowest assimilation rates are found near the surface, possibly associated with biases in the representation of the temperature inversion by the ECMWF model at Summit. Consequently, assimilation rates are lower near the surface during winter when strong temperature inversions are frequently observed. Our findings benefit the scientific community who uses this information for climatological analysis of the Greenland Ice Sheet, and thus further analysis is warranted.
Griffiths, Stephen R; Rowland, Jessica A; Briscoe, Natalie J; Lentini, Pia E; Handasyde, Kathrine A; Lumsden, Linda F; Robert, Kylie A
2017-01-01
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons.
Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife
Rowland, Jessica A.; Briscoe, Natalie J.; Lentini, Pia E.; Handasyde, Kathrine A.; Lumsden, Linda F.; Robert, Kylie A.
2017-01-01
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons. PMID:28472147
Stadig, L M; Rodenburg, T B; Ampe, B; Reubens, B; Tuyttens, F A M
2017-06-01
Free-range use by broiler chickens is often limited, whereas better use of the free-range area could benefit animal welfare. Use of free-range areas could be stimulated by more appropriate shelter or environmental enrichment (by decreasing birds' fearfulness). This study aimed to assess the effects of shelter type, early environmental enrichment and weather conditions on free-range use. Three production rounds with 440 slow-growing broiler chickens (Sasso T451) were carried out. Birds were housed indoors in four groups (two with males, two with females) from days 0 to 25, during which two of the groups received environmental enrichment. At day 23 birds' fearfulness was assessed with a tonic immobility (TI) test (n=100). At day 25 all birds were moved (in mixed-sex groups) to mobile houses, and provided with free-range access from day 28 onwards. Each group could access a range consisting for 50% of grassland with 21 artificial shelters (ASs, wooden A-frames) and for 50% of short rotation coppice (SRC) with willow (dense vegetation). Free-range use was recorded by live observations at 0900, 1300 and 1700 h for 15 to 21 days between days 28 and 63. For each bird observed outside the shelter type (AS or SRC), distance from the house (0 to 2, 2 to 5, >5 m) and its behaviour (only rounds 2 and 3) were recorded. Weather conditions were recorded by four weather stations. On average, 27.1% of the birds were observed outside at any given moment of observation. Early environmental enrichment did not decrease fearfulness as measured by the TI test. It only had a minor effect on the percentage of birds outside (0.4% more birds outside). At all distances from the house, SRC was preferred over AS. In AS, areas closer to the house were preferred over farther ones, in SRC this was less pronounced. Free-range use increased with age and temperature and decreased with wind speed. In AS, rainfall and decreasing solar radiation were related to finding more birds outside, whereas the opposite was true in SRC. Behaviour of the birds depended on shelter type, distance from the house, early environmental enrichment, time of day and age. Chickens ranged more and farther in SRC, possibly because this provided a greater sense of safety because of the amount of cover and/or better protection against adverse weather conditions. These results indicate that SRC with willow is a more appropriate shelter for slow-growing broiler chickens than A-frames.
Heliophysics Science and the Moon: Potential Solar and Space Physics Science for Lunar Exploration
NASA Technical Reports Server (NTRS)
2007-01-01
This report addresses both these features new science enabled by NASAs exploration initiative and enabling science that is critical to ensuring a safe return to the Moon and onward to Mars. The areas of interest are structured into four main themes: Theme 1: Heliophysics Science of the Moon Studies of the Moons unique magnetodynamic plasma environment. Theme 2: Space Weather, Safeguarding the Journey Studies aimed at developing a predictive capability for space weather hazards. Theme 3: The Moon as a Historical Record Studies of the variation of the lunar regolith to uncover the history of the Sun, solar system, local interstellar medium, galaxy, and universe. Theme 4: The Moon as a Heliophysics Science Platform Using the unique environment of the lunar surface as a platform to provide observations beneficial to advancing heliophysics science.
Aharonovich, Marius; Arnon, Shlomi
2005-08-01
Optical wireless communication (OWC) systems use the atmosphere as a propagation medium. However, a common problem is that from time to time moderate cloud and fog emerge between the receiver and the transmitter. These adverse weather conditions impose temporal broadening and power loss on the optical signal, which reduces the digital signal-to-noise ratio (DSNR), produces significant intersymbol interference (ISI), and degrades the communication system's bit error rate (BER) and throughput. We propose and investigate the use of a combined adaptive bandwidth mechanism and decision feedback equalizer (DFE) to mitigate these atmospheric multipath effects. Based on theoretical analysis and simulations of DSNR penalties, BER, and optimum system bandwidths, we show that a DFE improves the outdoor OWC system immunity to ISI in foggy weather while maintaining high throughput and desired low BER.
Advanced Vehicle Testing Activity Cold Weather On-road Testing of the Chevrolet Volt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smart, John
This report details cold weather on-road testing of a Chevrolet Volt. It quantifies changes in efficiency and electric range as ambient temperature changes. It will be published to INL's AVTA website as an INL technical report and will be accessible to the general public.
Social perceptions versus meteorological observations of snow and winter along the Front Range
NASA Astrophysics Data System (ADS)
Milligan, William James, IV
This research aims to increase understanding of Front Range residents' perceptions of snow, winter and hydrologic events. This study also investigates how an individual's characteristics may shape perceptions of winter weather and climate. A survey was administered to determine if perceptions of previous winters align with observed meteorological data. The survey also investigated how individual characteristics influence perceptions of snow and winter weather. The survey was conducted primarily along the Front Range area of the state of Colorado in the United States of America. This is a highly populated semi-arid region that acts as an interface between the agricultural plains to the east that extend to the Mississippi River and the Rocky Mountains to the west. The climate is continental, and while many people recreate in the snowy areas of the mountains, most live where annual snowfall amounts are low. Precipitation, temperature, and wind speed datasets from selected weather stations were analyzed to determine correct survey responses. Survey analysis revealed that perceptions of previous winters do not necessarily align with observed meteorological data. The mean percentage of correct responses to all survey questions was 36.8%. Further analysis revealed that some individual characteristics (e.g. winter recreation, source of winter weather information) did influence correct responses to survey questions.
Weatherbee, Courtney R.; Pechal, Jennifer L.; Stamper, Trevor; Benbow, M. Eric
2017-01-01
Common forensic entomology practice has been to collect the largest Diptera larvae from a scene and use published developmental data, with temperature data from the nearest weather station, to estimate larval development time and post-colonization intervals (PCIs). To evaluate the accuracy of PCI estimates among Calliphoridae species and spatially distinct temperature sources, larval communities and ambient air temperature were collected at replicate swine carcasses (N = 6) throughout decomposition. Expected accumulated degree hours (ADH) associated with Cochliomyia macellaria and Phormia regina third instars (presence and length) were calculated using published developmental data sets. Actual ADH ranges were calculated using temperatures recorded from multiple sources at varying distances (0.90 m–7.61 km) from the study carcasses: individual temperature loggers at each carcass, a local weather station, and a regional weather station. Third instars greatly varied in length and abundance. The expected ADH range for each species successfully encompassed the average actual ADH for each temperature source, but overall under-represented the range. For both calliphorid species, weather station data were associated with more accurate PCI estimates than temperature loggers associated with each carcass. These results provide an important step towards improving entomological evidence collection and analysis techniques, and developing forensic error rates. PMID:28375172
NASA Astrophysics Data System (ADS)
Heinkelmann, Robert; Dick, Galina; Nilsson, Tobias; Soja, Benedikt; Wickert, Jens; Zus, Florian; Schuh, Harald
2015-04-01
Observations from space-geodetic techniques are nowadays increasingly used to derive atmospheric information for various commercial and scientific applications. A prominent example is the operational use of GNSS data to improve global and regional weather forecasts, which was started in 2006. Atmosphere gradients describe the azimuthal asymmetry of zenith delays. Estimates of geodetic and other parameters significantly improve when atmosphere gradients are determined in addition. Here we assess the capability of several space geodetic techniques (GNSS, VLBI, DORIS) to determine atmosphere gradients of refractivity. For this purpose we implement and compare various strategies for gradient estimation, such as different values for the temporal resolution and the corresponding parameter constraints. Applying least squares estimation the gradients are usually deterministically modelled as constants or piece-wise linear functions. In our study we compare this approach with a stochastic approach modelling atmosphere gradients as random walk processes and applying a Kalman Filter for parameter estimation. The gradients, derived from space geodetic techniques are verified by comparison with those derived from Numerical Weather Models (NWM). These model data were generated using raytracing calculations based on European Centre for Medium-Range Weather Forecast (ECMWF) and National Centers for Environmental Prediction (NCEP) analyses with different spatial resolutions. The investigation of the differences between the ECMWF and NCEP gradients hereby in addition allow for an empirical assessment of the quality of model gradients and how suitable the NWM data are for verification. CONT14 (2014-05-06 until 2014-05-20) is the youngest two week long continuous VLBI campaign carried out by IVS (International VLBI Service for Geodesy and Astrometry). It presents the state-of-the-art VLBI performance in terms of number of stations and number of observations and presents thus an excellent test period for comparisons with other space geodetic techniques. During the VLBI campaign CONT14 the HOBART12 and HOBART26 (Hobart, Tasmania, Australia) VLBI antennas were involved that co-locate with each other. The investigation of the gradient estimate differences from these co-located antennas allows for a valuable empirical quality assessment. Another quality criterion for gradient estimates are the differences of parameters at the borders of adjacent 24h-sessions. Both are investigated in our study.
Infrasound ray tracing models for real events
NASA Astrophysics Data System (ADS)
Averbuch, Gil; Applbaum, David; Price, Colin; Ben Horin, Yochai
2015-04-01
Infrasound ray tracing models for real events C. Price1, G. Averbuch1, D. Applbaum1, Y. Ben Horin2 (1) Department of Geosciences, Tel Aviv University, Israel (2) Soreq Nuclear Research Center, Yavne, Israel Ray tracing models for infrasound propagation require two atmospheric parameters: the speed of sound profile and the wind profile. The usage of global atmospheric models for the speed of sound and wind profiles raises a fundamental question: can these models provide accurate results for modeling real events that have been detected by the infrasound arrays? Moreover, can these models provide accurate results for events that occurred during extreme weather conditions? We use 2D and 3D ray tracing models based on a modified Hamiltonian for a moving medium. Radiosonde measurements enable us to update the first 20 km of both speed of sound and wind profiles. The 2009 and 2011 Sayarim calibration experiments in Israel served us as a test for the models. In order to answer the question regarding the accuracy of the model during extreme weather conditions, we simulate infrasound sprite signals that were detected by the infrasound array in Mt. Meron, Israel. The results from modeling the Sayarim experiment provided us sufficient insight to conclude that ray tracing modeling can provide accurate results for real events that occurred during fair weather conditions. We conclude that the time delay in the model of the 2009 experiment is due to lack of accuracy in the wind and speed of sound profiles. Perturbed profiles provide accurate results. Earlier arrivals in 2011 are a result of the assumption that the earth is flat (no topography) and the use of local radiosonde measurements for the entire model. Using local radiosonde measurements only for part of the model and neglecting them on other parts prevents the early arrivals. We were able to determine which sprite is the one that got detected in the infrasound array as well as providing a height range for the sprite's height or the sprite's most energetic part. Even though atmospheric wind has a strong influence on infrasound wave propagation, our estimation is that for high altitude sources, extreme weather in the troposphere below has low impact on the trajectories of the waves.
NASA Astrophysics Data System (ADS)
Koutroulis, Aristeidis; Grillakis, Manolis; Tsanis, Ioannis
2017-04-01
Seasonal prediction is recently at the center of the forecasting research efforts, especially for regions that are projected to be severely affected by global warming. The value of skillful seasonal forecasts can be considerable for many sectors and especially for the agricultural in which water users and managers can benefit to better anticipate against drought conditions. Here we present the first reflections from the user/stakeholder interactions and the design of a tailored drought decision support system in an attempt to bring seasonal predictions into local practice for the Messara valley located in the central-south area of Crete, Greece. Findings from interactions with the users and stakeholders reveal that although long range and seasonal predictions are not used, there is a strong interest for this type of information. The increase in the skill of short range weather predictions is also of great interest. The drought monitoring and prediction tool under development that support local water and agricultural management will include (a) sources of skillful short to medium term forecast information, (b) tailored drought monitoring and forecasting indices for the local groundwater aquifer and rain-fed agriculture, and (c) seasonal inflow forecasts for the local dam through hydrologic simulation to support management of freshwater resources and drought impacts on irrigated agriculture.
Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model
Swain, Eric; Stefanova, Lydia; Smith, Thomas
2014-01-01
Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.
Terrestrial photography as a complementary measurement in weather stations for snow monitoring
NASA Astrophysics Data System (ADS)
Pimentel, Rafael; José Pérez-Palazón, María; Herrero, Javier; José Polo, María
2015-04-01
Snow monitoring constitutes a basic key to know snow behaviour and evolution, which have particular features in semiarid regions (i.e. highly strong spatiotemporal variability, and the occurrence of several accumulation-melting cycles throughout the year). On one hand, traditional snow observation, such as snow surveys and snow pillows have the inconvenience of a limited accessibility during snow season and the impossibility to cover a vast extension. On the other hand, satellite remote sensing techniques, largely employed in medium to large scale regional studies, has the disadvantage of a fixed spatial and temporal resolutions which in some cases are not able to reproduce snow processes at small scale. An economic alternative is the use of terrestrial photography which scales are adapted to the study problem. At the microscale resolution permits the continuous monitoring of snow, adapting the resolution of the observation to the scales of the processes. Besides its use as raw observation datasets to calibrate and validate models' results, terrestrial photography constitutes valuable information to complement weather stations observations. It allows the discriminating possible mistakes in meteorological observations (i.e. overestimation on rain measurements) and a better understanding of snow behaviour against certain weather agents (i.e. blowing snow). Thus, terrestrial photography is a feasible and convenient technique to be included in weather monitoring stations in mountainous areas in semiarid regions.
Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification
NASA Technical Reports Server (NTRS)
Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.
2015-01-01
Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.
Enhanced weathering strategies for stabilizing climate and averting ocean acidification
NASA Astrophysics Data System (ADS)
Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.
2016-04-01
Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m-2 yr-1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.
Frey, Beat; Rieder, Stefan R; Brunner, Ivano; Plötze, Michael; Koetzsch, Stefan; Lapanje, Ales; Brandl, Helmut; Furrer, Gerhard
2010-07-01
Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH(4)Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas.
Frey, Beat; Rieder, Stefan R.; Brunner, Ivano; Plötze, Michael; Koetzsch, Stefan; Lapanje, Ales; Brandl, Helmut; Furrer, Gerhard
2010-01-01
Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH4Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas. PMID:20525872
An ionospheric index suitable for estimating the degree of ionospheric perturbations
NASA Astrophysics Data System (ADS)
Wilken, Volker; Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens
2018-03-01
Space weather can strongly affect trans-ionospheric radio signals depending on the used frequency. In order to assess the strength of a space weather event from its origin at the sun towards its impact on the ionosphere a number of physical quantities need to be derived from scientific measurements. These are for example the Wolf number sunspot index, the solar flux density F10.7, measurements of the interplanetary magnetic field, the proton density, the solar wind speed, the dynamical pressure, the geomagnetic indices Auroral Electrojet, Kp, Ap and Dst as well as the Total Electron Content (TEC), the Rate of TEC, the scintillation indices S4 and σ(ϕ) and the Along-Arc TEC Rate index index. All these quantities provide in combination with an additional classification an orientation in a physical complex environment. Hence, they are used for brief communication of a simplified but appropriate space situation awareness. However, space weather driven ionospheric phenomena can affect many customers in the communication and navigation domain, which are still served inadequately by the existing indices. We present a new robust index, that is able to properly characterize temporal and spatial ionospheric variations of small to medium scales. The proposed ionospheric disturbance index can overcome several drawbacks of other ionospheric measures and might be suitable as potential driver for an ionospheric space weather scale.
NASA Technical Reports Server (NTRS)
Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.
2015-01-01
Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp. -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.
Mapping users' expectations regarding extended-range forecasts
NASA Astrophysics Data System (ADS)
Ervasti, Tiina; Gregow, Hilppa; Vajda, Andrea; Laurila, Terhi K.; Mäkelä, Antti
2018-05-01
An online survey was used to map the needs and preferences of the Finnish general public concerning extended-range forecasts and their presentation. First analyses of the survey were used to guide the co-design process of novel extended-range forecasts to be developed and tested during the project. In addition, the survey was used to engage the respondents from the general public to participate in a one year piloting phase that started in June 2017. The respondents considered that the tailored extended-range forecasts would be beneficial in planning activities, preparing for the weather risks and scheduling the everyday life. The respondents also perceived the information about the impacts of weather conditions more important than advice on how to prepare for the impacts.
NASA Technical Reports Server (NTRS)
2006-01-01
Topics covered include: Airport Remote Tower Sensor Systems; Implantable Wireless MEMS Sensors for Medical Uses; Embedded Sensors for Measuring Surface Regression; Coordinating an Autonomous Earth-Observing Sensorweb; Range-Measuring Video Sensors; Stability Enhancement of Polymeric Sensing Films Using Fillers; Sensors for Using Times of Flight to Measure Flow Velocities; Receiver Would Control Phasing of a Phased-Array Antenna; Modern Design of Resonant Edge-Slot Array Antennas; Carbon-Nanotube Schottky Diodes; Simplified Optics and Controls for Laser Communications; Coherent Detection of High-Rate Optical PPM Signals; Multichannel Phase and Power Detector; Using Satellite Data in Weather Forecasting: I; Using Dissimilarity Metrics to Identify Interesting Designs; X-Windows PVT Widget Class; Shuttle Data Center File-Processing Tool in Java; Statistical Evaluation of Utilization of the ISS; Nanotube Dispersions Made With Charged Surfactant; Aerogels for Thermal Insulation of Thermoelectric Devices; Low-Density, Creep-Resistant Single-Crystal Superalloys; Excitations for Rapidly Estimating Flight-Control Parameters; Estimation of Stability and Control Derivatives of an F-15; Tool for Coupling a Torque Wrench to a Round Cable Connector; Ultrasonically Actuated Tools for Abrading Rock Surfaces; Active Struts With Variable Spring Stiffness and Damping; Multiaxis, Lightweight, Computer-Controlled Exercise System; Dehydrating and Sterilizing Wastes Using Supercritical CO2; Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium; Ice-Borehole Probe; Alpha-Voltaic Sources Using Diamond as Conversion Medium; White-Light Whispering-Gallery-Mode Optical Resonators; Controlling Attitude of a Solar-Sail Spacecraft Using Vanes; and Wire-Mesh-Based Sorber for Removing Contaminants from Air.
NASA Technical Reports Server (NTRS)
Shafer, Jaclyn; Watson, Leela R.
2015-01-01
NASA's Launch Services Program, Ground Systems Development and Operations, Space Launch System and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). Examples include determining if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 km Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the high-resolution WRF Environmental Modeling System (EMS) model configured by the AMU (Watson 2013) in real time. Implementing a real-time version of the ER WRF-EMS would generate a larger database of model output than in the previous AMU task for determining model performance, and allows the AMU more control over and access to the model output archive. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The AMU also calculated verification statistics to determine model performance compared to observational data. Finally, the AMU made the model output available on the AMU Advanced Weather Interactive Processing System II (AWIPS II) servers, which allows the 45 WS and AMU staff to customize the model output display on the AMU and Range Weather Operations (RWO) AWIPS II client computers and conduct real-time subjective analyses.
Accumulation mechanisms and the weathering of Antarctic equilibrated ordinary chondrites
NASA Astrophysics Data System (ADS)
Benoit, P. H.; Sears, D. W. G.
1999-06-01
Induced thermoluminescence (TL) is used to quantitatively evaluate the degree of weathering of meteorites found in Antarctica. We find a weak correlation between TL sensitivity and descriptions of weathering in hand specimens, the highly weathered meteorites having lower TL sensitivity than unweathered meteorites. Analysis of samples taken throughout large meteorites shows that the heterogeneity in TL sensitivity within meteorite finds is not large relative to the range exhibited by different weathered meteorites. The TL sensitivity values can be restored by minimal acid washing, suggesting the lower TL sensitivities of weathered meteorites reflects thin weathering rims on mineral grains or coating of these grains by iron oxides produced by hydration and oxidation of metal and sulfides. Small meteorites may tend to be more highly weathered than large meteorites at the Allan Hills ice fields. We find that meteorite fragments >150 g may take up to 300,000 years to reach the highest degrees of weathering, while meteorites <150 g require <40,000 years. However, at other fields, local environmental conditions and variability in terrestrial history are more important in determining weathering than size alone. Weathering correlates poorly with surface exposure duration, presumably because weathering occurs primarily during interglacial periods. The Allan Hills locality has served as a fairly stable surface over the last 100,000 years or so and has efficiently preserved both small and large meteorites. Meteorites from Lewis Cliff, however, have experienced extensive weathering, probably because of increased surface melt water from nearby outcrops. Meteorites from the Elephant Moraine locality tend to exhibit only minor degrees of weathering, but small meteorites are less weathered than large meteorites, which we suggest is due to the loss of small meteorites by aeolian transport.
Weathering Grade Classification of Granite Stone Monument Using Reflectance Spectroscopy
NASA Astrophysics Data System (ADS)
Hyun, C.; Roh, T.; Choi, M.; Park, H.
2009-05-01
Stone monument has been placed in field and exposed to rain and wind. This outdoor environment and air pollution induced weathering of stone monument. Weathering grade classification is necessary to manage and conserve stone monuments. Visual interpretation by geologist and laboratory experiments using specimens fallen off from the monument to avoid damage on the monument have been applied to classify weathering grade conventionally. Rocks and minerals absorb some particular wavelength ranges of electromagnetic energy by electronic process and vibrational process of composing elements and these phenomena produce intrinsic diagnostic spectral reflectance curve. Non-destructive technique for weathering degree assessment measures those diagnostic absorption features of weathering products and converts the depths of features related to abundance of the materials to relative weathering degree. We selected granite outcrop to apply conventional six folded weathering grade classification method using Schmidt hammer rebound teste. The correlations between Schmidt hammer rebound values and absorption depths of iron oxides such as ferric oxide in the vicinity of 0.9 micrometer wavelength and clay minerals such as illite and kaolinite in the vicinity of 2.2 micrometer wavelength, representative weathering products of granite, were analyzed. The Schmidt hammer rebound value decreased according to increase of absorption depths induced from those weathering products. Weathering grade classification on the granite stone monument was conducted by using absorption depths of weathering products This research is supported from National Research Institute of Cultural Heritage and we appreciate for this.
Space-weathering processes and products on volatile-rich asteroids
NASA Astrophysics Data System (ADS)
Britt, D.; Schelling, P.; Consolmagno, G.; Bradley, T.
2014-07-01
Space weathering is a generic term for the effects on atmosphereless solid bodies in the solar system from a range of processes associated with direct exposure to the space environment. These include impact processes (shock, vaporization, fragmentation, heating, melting, and ejecta formation), radiation damage (from galactic and solar cosmic rays), solar-wind effects (irradiation, ion implantation, and sputtering), and the chemical reactions driven by these processes. The classic example of space weathering is the formation of the lunar spectral red slope associated with the production of nanophase Fe (npFe0) in the dusty lunar regolith (C.R. Chapman, 2004, Annual Review of Earth & Planet. Sci. 32, C.M. Pieters, 2000, MAPS 35). Similar npFe0 has been recovered from asteroid (25143) Itokawa and some asteroid classes do exhibit modest spectral red slopes (T. Noguchi, 2011, Science 333). Space weathering can be thought of as driven by a combination of the chemical environment of space (hard vacuum, low oxygen fugacity, solar-wind implantation of hydrogen) along with thermal energy supplied by micrometeorite impacts. The forward modeling of space weathering as thermodynamically-driven decomposition of common rock-forming minerals suggests the production of a range of daughter products: (1) The silicate products typically lose oxygen, other volatile elements (i.e., sulfur and sodium), and metallic cations, producing minerals that are typically more disordered and less optically active than the original parent materials. (2) The decomposed metallic cations form in nano-sized blebs including npFe0, on the surfaces or in condensing rims of mineral grains. This creates a powerful optical component as seen in the lunar red slope. Surfaces with exposed npFe0 are an ideal environment for catalyzing further reactions. (3) The liberated volatile elements and gases (O, S, Na) may form an observable exosphere (e.g., Moon and Mercury) and can either escape from the body or recombine with available solar-wind-implanted hydrogen to form trace amounts of water and OH. Mineral decomposition can be thought of as the first stage of space weathering. It produces weathered surfaces somewhat depleted in volatile elements, creates a predictable set of minor or trace minerals, and leaves the surfaces with catalytic species, primarily npFe0. However, a second stage of further reactions and weathering depends upon the presence of ''feed-stock'' components that can participate in catalyzed chemical reactions on exposed surfaces. For volatile-rich small bodies, the available materials are not only silicates, but a volatile feedstock that can include water, carbon monoxide, ammonia, to name a few. Thermodynamically-driven decomposition of silicates will produce trace amounts of npFe0 which are ideal sites for Fischer-Tropsch type (FTT) catalytic reactions that can produce organics in situ on the asteroids including alkanes, polyaromatic hydrocarbons, and amino acids (J.E. Elsila, 2012, MAPS 47). The mix and range of products depends on the composition and morphology of the mineral surface, energy inputs produced by the micrometeorite impacts or other processes, and the composition of the input volatile feedstock. FFT reactions generate long-chain carbon compounds and amino acids. Secondary reactions that generate more complex carbon compounds and amino acids are likely to occur as the organic material matures. Weathering maturity can be thought of as a function of the abundance and diversity of the weathering products. Since the npFe0 is not destroyed in the reaction, continued micrometeorite bombardment would result in continuing processing and recombination of the existing organic feedstock. More weathering would result in progressively longer-chain carbon compounds as well as more complex and diverse amino acids, and eventually the kerogen-like insoluble-organic matter that forms a large fraction of carbonaceous meteorites. This insight has several major implications for our planetary science and, potentially, the formation of the precursors of life. First, the range of weathering products seen in remotely-sensed data, meteorites, and returned samples are not random, but the predictable outcome of the source region's mineral kinetics and chemical feedstock. Weathering products do not have to be optically active like the npFe0 that produces the lunar red slope; on the contrary, probably most weathering products are spectrally neutral or even suppress an object's near-IR reflectance spectrum. In the case of volatile-rich parent bodies, a major weathering product is a range of carbon-rich compounds. But an additional result of considerable interest is the generation of pre-biotic compounds as a routine and predictable byproduct of common space-weathering processes. Any atmosphereless body around any star with mafic silicate mineral compositions and volatile feedstocks should create amino acids as a standard byproduct of space weathering. The precursors of life are probably abundant in any space-weathered asteroid belt, in any solar system, and only wait being accreted to a hospitable environment.
Recent Advances in Ionospheric Modeling Using the USU GAIM Data Assimilation Models
NASA Astrophysics Data System (ADS)
Scherliess, L.; Thompson, D. C.; Schunk, R. W.
2009-12-01
The ionospheric plasma distribution at low and mid latitudes has been shown to display both a background state (climatology) and a disturbed state (weather). Ionospheric climatology has been successfully modeled, but ionospheric weather has been much more difficult to model because the ionosphere can vary significantly on an hour-by-hour basis. Unfortunately, ionospheric weather can have detrimental effects on several human activities and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems using Global Positioning System (GPS) satellites. As shown by meteorologists and oceanographers, the most reliable weather models are physics-based, data-driven models that use Kalman filter or other data assimilation techniques. Since the state of a medium (ocean, lower atmosphere, ionosphere) is driven by complex and frequently nonlinear internal and external processes, it is not possible to accurately specify all of the drivers and initial conditions of the medium. Therefore physics-based models alone cannot provide reliable specifications and forecasts. In an effort to better understand the ionosphere and to mitigate its adverse effects on military and civilian operations, specification and forecast models are being developed that use state-of-the-art data assimilation techniques. Over the past decade, Utah State University (USU) has developed two data assimilation models for the ionosphere as part of the USU Global Assimilation of Ionospheric Measurements (GAIM) program and one of these models has been implemented at the Air Force Weather Agency for operational use. The USU-GAIM models are also being used for scientific studies, and this should lead to a dramatic advance in our understanding of ionospheric physics; similar to what occurred in meteorology and oceanography after the introduction of data assimilation models in those fields. Both USU-GAIM models are capable of assimilating data from a variety of data sources, including in situ electron densities from satellites, bottomside electron density profiles from ionosondes, total electron content (TEC) measurements between ground receivers and the GPS satellites, occultation data from satellite constellations, and ultraviolet emissions from the ionosphere measured by satellites. We will present the current status of the model development and discuss the employed data assimilation technique. Recent examples of the ionosphere specifications obtained from our model runs will be presented with an emphasis on the ionospheric plasma distribution during the current low solar activity conditions. Various comparisons with independent data will also be shown in an effort to validate the models.
Weather observations on Whistler Mountain during five storms
NASA Astrophysics Data System (ADS)
Thériault, Julie M.; Rasmussen, Kristen L.; Fisico, Teresa; Stewart, Ronald E.; Joe, Paul; Gultepe, Ismail; Clément, Marilys; Isaac, George A.
2014-01-01
A greater understanding of precipitation formation processes over complex terrain near the west coast of British Colombia will contribute to many relevant applications, such as climate studies, local hydrology, transportation, and winter sport competition. The phase of precipitation is difficult to determine because of the warm and moist weather conditions experienced during the wintertime in coastal mountain ranges. The goal of this study is to investigate the wide range of meteorological conditions that generated precipitation on Whistler Mountain from 4-12 March 2010 during the SNOW-V10 field campaign. During this time period, five different storms were documented in detail and were associated with noticeably different meteorological conditions in the vicinity of Whistler Mountain. New measurement techniques, along with the SNOW-V10 instrumentation, were used to obtain in situ observations during precipitation events along the Whistler mountainside. The results demonstrate a high variability of weather conditions ranging from the synoptic-scale to the macro-scale. These weather events were associated with a variation of precipitation along the mountainside, such as events associated with snow, snow pellets, and rain. Only two events associated with a rain-snow transition along the mountainside were observed, even though above-freezing temperatures along the mountainside were recorded 90 % of the time. On a smaller scale, these events were also associated with a high variability of snowflake types that were observed simultaneously near the top of Whistler Mountain. Overall, these detailed observations demonstrate the importance of understanding small-scale processes to improve observational techniques, short-term weather prediction, and longer-term climate projections over mountainous regions.
Characteristics of mesospheric gravity waves over the southeastern Tibetan Plateau region
NASA Astrophysics Data System (ADS)
Li, Qinzeng; Xu, Jiyao; Liu, Xiao; Yuan, Wei; Chen, Jinsong
2016-09-01
The Tibetan Plateau (TP), known as "Third Pole" of the Earth, has important influences on global climates and local weather. An important objective in present study is to investigate how orographic features of the TP affect the geographical distributions of gravity wave (GW) sources. Three-year OH airglow images (November 2011 to October 2014) from Qujing (25.6°N, 103.7°E) were used to study the characteristics of GWs over the southeastern TP region. Along with the almost concurrent and collocated meteor radar wind measurements and temperature data from SABER/TIMED satellite, the propagation conditions of three types of GWs (freely propagating, ducted, or evanescent) were estimated. Most of GWs exhibited ducted or evanescent characteristics. Almost all GWs propagate southeastward in winter. The GW propagation directions in winter are significantly different from other airglow imager observations at northern middle latitudes. Wind data and convective precipitation fields from the European Centre for Medium-Range Weather Forecasts reanalysis data are used to study the sources of GWs on the edge of the TP. Using backward ray-tracing analysis, we find that most of the mesospheric freely propagating GWs are located in or near the large wind shear intensity region ( 10 km- 17 km) on the southeastern edge of the TP in spring and winter. The averaged value of momentum flux is 11.6 ± 5.2 m2/s2 in winter and 7.5 ± 3.1 m2/s2 in summer. This work will provide valuable information for the GW parameterization schemes in general circulation models in TP region.
Impact of bias-corrected reanalysis-derived lateral boundary conditions on WRF simulations
NASA Astrophysics Data System (ADS)
Moalafhi, Ditiro Benson; Sharma, Ashish; Evans, Jason Peter; Mehrotra, Rajeshwar; Rocheta, Eytan
2017-08-01
Lateral and lower boundary conditions derived from a suitable global reanalysis data set form the basis for deriving a dynamically consistent finer resolution downscaled product for climate and hydrological assessment studies. A problem with this, however, is that systematic biases have been noted to be present in the global reanalysis data sets that form these boundaries, biases which can be carried into the downscaled simulations thereby reducing their accuracy or efficacy. In this work, three Weather Research and Forecasting (WRF) model downscaling experiments are undertaken to investigate the impact of bias correcting European Centre for Medium range Weather Forecasting Reanalysis ERA-Interim (ERA-I) atmospheric temperature and relative humidity using Atmospheric Infrared Sounder (AIRS) satellite data. The downscaling is performed over a domain centered over southern Africa between the years 2003 and 2012. The sample mean and the mean as well as standard deviation at each grid cell for each variable are used for bias correction. The resultant WRF simulations of near-surface temperature and precipitation are evaluated seasonally and annually against global gridded observational data sets and compared with ERA-I reanalysis driving field. The study reveals inconsistencies between the impact of the bias correction prior to downscaling and the resultant model simulations after downscaling. Mean and standard deviation bias-corrected WRF simulations are, however, found to be marginally better than mean only bias-corrected WRF simulations and raw ERA-I reanalysis-driven WRF simulations. Performances, however, differ when assessing different attributes in the downscaled field. This raises questions about the efficacy of the correction procedures adopted.
Impact of Satellite Atmospheric Motion Vectors In the GMAO GEOS-5 Global Data Assimilation System
NASA Technical Reports Server (NTRS)
Gelaro, Ronald; Merkova, Dagmar
2012-01-01
The WMO and THORPEX co-sponsored fifth Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction will be organized by the Expert Team on the Evolution of the Global Observing System in Sedona, Arizona, United States, from 22 to 25 May 2012. Participants are expected to come from all the major NWP centres which are active in the area of impact studies. The workshop will be conducted in English. As for the first four workshops it is planned to produce a workshop report to be published as a WMO Technical Report that will include the papers submitted by the participants. The previous four workshops in this series took place in Geneva {April 1997), Toulouse (March 2000), Alpbach (March 2004) and Geneva (May 2008). Results from Observing System Experiments (OSEs), both with global and regional aspects were presented and conclusions were drawn concerning the contributions of the various components of the observing system to the large scale forecast skill at short and medium range (Workshop Proceedings were published as WMO World Weather Watch Technical Reports TD No. 868, 1034, 1228 and 1450). Since then, some significant changes and developments have affected the global observing system and more efforts have been devoted to meso-scale observing and assimilation systems. There has also been a trend toward using techniques other than OSEs to document data impact, such as adjoint-based sensitivity to observations or ensemble-based sensitivity. Field experiments have been carried out, in particular through the THORPEX project, and the use of targeted data has been assessed.
Dynamic downscaling over western Himalayas: Impact of cloud microphysics schemes
NASA Astrophysics Data System (ADS)
Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.
2018-03-01
Due to lack of observation data in the region of inhomogeneous terrain of the Himalayas, detailed climate of Himalayas is still unknown. Global reanalysis data are too coarse to represent the hydroclimate over the region with sharp orography gradient in the western Himalayas. In the present study, dynamic downscaling of the European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis-Interim (ERA-I) dataset over the western Himalayas using high-resolution Weather Research and Forecast (WRF) model has been carried out. Sensitivity studies have also been carried out using convection and microphysics parameterization schemes. The WRF model simulations have been compared against ERA-I and available station observations. Analysis of the results suggests that the WRF model has simulated the hydroclimate of the region well. It is found that in the simulations that the impact of convection scheme is more during summer months than in winter. Examination of simulated results using various microphysics schemes reveal that the WRF single-moment class-6 (WSM6) scheme simulates more precipitation on the upwind region of the high mountain than that in the Morrison and Thompson schemes during the winter period. Vertical distribution of various hydrometeors shows that there are large differences in mixing ratios of ice, snow and graupel in the simulations with different microphysics schemes. The ice mixing ratio in Morrison scheme is more than WSM6 above 400 hPa. The Thompson scheme favors formation of more snow than WSM6 or Morrison schemes while the Morrison scheme has more graupel formation than other schemes.
NASA Astrophysics Data System (ADS)
Wanka, E. R.; Bayerstadler, A.; Heumann, C.; Nowak, D.; Jörres, R. A.; Fischer, R.
2014-03-01
This study determined the influence of various meteorological variables and air pollutants on airway disorders in general, and asthma and/or chronic obstructive pulmonary disease in particular, in Munich, Bavaria, during 2006 and 2007. This was achieved through an evaluation of the daily frequency of calls to medical and emergency call centres, ambulatory medical care visits at general practitioners, and prescriptions of antibiotics for respiratory diseases. Meteorological parameters were extracted from data supplied by the European Centre for Medium Range Weather Forecast. Data on air pollutant levels were extracted from the air quality database of the European Environmental Agency for different measurement sites. In addition to descriptive analyses, a backward elimination procedure was performed to identify variables associated with medical outcome variables. Afterwards, generalised additive models (GAM) were used to verify whether the selected variables had a linear or nonlinear impact on the medical outcomes. The analyses demonstrated associations between environmental parameters and daily frequencies of different medical outcomes, such as visits at GPs and air pressure (-27 % per 10 hPa change) or ozone (-24 % per 10 μg/m3 change). The results of the GAM indicated that the effects of some covariates, such as carbon monoxide on consultations at GPs, or humidity on medical calls in general, were nonlinear, while the type of association varied between medical outcomes. These data suggest that the multiple, complex effect of environmental factors on medical outcomes should not be assumed homogeneous or linear a priori and that different settings might be associated with different types of associations.
Simulations of Madden-Julian Oscillation in High Resolution Atmospheric General Circulation Model
NASA Astrophysics Data System (ADS)
Deng, Liping; Stenchikov, Georgiy; McCabe, Matthew; Bangalath, HamzaKunhu; Raj, Jerry; Osipov, Sergey
2014-05-01
The simulation of tropical signals, especially the Madden-Julian Oscillation (MJO), is one of the major deficiencies in current numerical models. The unrealistic features in the MJO simulations include the weak amplitude, more power at higher frequencies, displacement of the temporal and spatial distributions, eastward propagation speed being too fast, and a lack of coherent structure for the eastward propagation from the Indian Ocean to the Pacific (e.g., Slingo et al. 1996). While some improvement in simulating MJO variance and coherent eastward propagation has been attributed to model physics, model mean background state and air-sea interaction, studies have shown that the model resolution, especially for higher horizontal resolution, may play an important role in producing a more realistic simulation of MJO (e.g., Sperber et al. 2005). In this study, we employ unique high-resolution (25-km) simulations conducted using the Geophysical Fluid Dynamics Laboratory global High Resolution Atmospheric Model (HIRAM) to evaluate the MJO simulation against the European Center for Medium-range Weather Forecasts (ECMWF) Interim re-analysis (ERAI) dataset. We specifically focus on the ability of the model to represent the MJO related amplitude, spatial distribution, eastward propagation, and horizontal and vertical structures. Additionally, as the HIRAM output covers not only an historic period (1979-2012) but also future period (2012-2050), the impact of future climate change related to the MJO is illustrated. The possible changes in intensity and frequency of extreme weather and climate events (e.g., strong wind and heavy rainfall) in the western Pacific, the Indian Ocean and the Middle East North Africa (MENA) region are highlighted.
NASA Astrophysics Data System (ADS)
Spinks, James D.
North African climate is analyzed between 1979 and 2010 with an emphasis on August using the European Center for Medium Range Weather Forecast (ECMWF) global dataset to investigate the effects of the subtropical anticyclones over North Africa and the Arabian Peninsula on the Africa easterly jet (AEJ). It was found that the AEJ encloses a core with a local wind maximum (LWM) in both West and East Africa, in which the west LWM core has a higher zonal wind speed. The strength of both cores is distinctly different by way of thermal wind balance. The variability of these synoptic weather features is higher in East Africa. The most noticeable variability of intensity occurred with easterly waves. Maintenance of easterly waves from the Arabian Peninsula into East Africa is dependent on strong zonal gradients from the AEJ. These zonal gradients were induced by the strengthening of the subtropical highs and the presence of a westerly jet in Central Africa and south of the Arabian Peninsula. During positive ENSO periods, these systems are generally weaker while in negative periods are stronger. The origins of an intense African easterly wave (AEW) and mesoscale convective system (MCS) in August 2004 (A04) were traced back to the southern Arabian Peninsula, Asir Mountains, and Ethiopian Highlands using gridded satellite (GridSat) data, ERA-I, and the WRF-ARW model. A vorticity budget was developed to investigate the dynamics and mechanisms that contribute to the formation of A04's vorticity perturbation.
Identification and climatology of cut-off lows near the tropopause.
Nieto, R; Sprenger, M; Wernli, H; Trigo, R M; Gimeno, L
2008-12-01
Cut-off low pressure systems (COLs) are defined as closed lows in the upper troposphere that have become completely detached from the main westerly current. These slow-moving systems often affect the weather conditions at the earth's surface and also work as a mechanism of mass transfer between the stratosphere and the troposphere, playing a significant role in the net flow of tropospheric ozone. In the first part of this work we provide a comprehensive summary of results obtained in previous studies of COLs. Following this, we present three long-term climatologies of COLs. The first two climatologies are based on the conceptual model of a COL, using European Centre for Medium-range Weather Forecasts (ECMWF) analyses (1958-2002) and National Centers for Environmental Prediction-National Center for Atmospheric Research (1948-2006) reanalysis data sets. The third climatology uses a different method of detection, which is based on using potential vorticity as the physical parameter of diagnosis. This approach was applied only to the ECMWF reanalysis data. The final part of the paper is devoted to comparing results obtained by these different climatologies in terms of areas of preferential occurrence, life span, and seasonal cycle. Despite some key differences, the three climatologies agree in terms of the main areas of COL occurrence, namely (1) southwestern Europe, (2) the eastern north Pacific coast, and (3) the north China-Siberian region. However, it is also shown that the detection of these areas of main COL occurrence, as obtained using the potential vorticity approach, depends on the level of isentropic analysis used.
The influence of El Niño-Southern Oscillation on boreal winter rainfall over Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Richard, Sandra; Walsh, Kevin J. E.
2017-09-01
Multi-scale interactions between El Niño-Southern Oscillation and the Boreal Winter Monsoon contribute to rainfall variations over Malaysia. Understanding the physical mechanisms that control these spatial variations in local rainfall is crucial for improving weather and climate prediction and related risk management. Analysis using station observations and European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) reanalysis reveals a significant decrease in rainfall during El Niño (EL) and corresponding increase during La Niña particularly north of 2°N over Peninsular Malaysia (PM). It is noted that the southern tip of PM shows a small increase in rainfall during El Niño although not significant. Analysis of the diurnal cycle of rainfall and winds indicates that there are no significant changes in morning and evening rainfall over PM that could explain the north-south disparity. Thus, we suggest that the key factor which might explain the north-south rainfall disparity is the moisture flux convergence (MFC). During the December to January (DJF) period of EL years, except for the southern tip of PM, significant negative MFC causes drying as well as suppression of uplift over most areas. In addition, lower specific humidity combined with moisture flux divergence results in less moisture over PM. Thus, over the areas north of 2°N, less rainfall (less heavy rain days) with smaller diurnal rainfall amplitude explains the negative rainfall anomaly observed during DJF of EL. The same MFC argument might explain the dipolar pattern over other areas such as Borneo if further analysis is performed.
NASA Astrophysics Data System (ADS)
Perera, Kushan C.; Western, Andrew W.; Robertson, David E.; George, Biju; Nawarathna, Bandara
2016-06-01
Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short-term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash-Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.
Campbell, Karen M.; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V.; Halsey, Eric S.; Laguna-Torres, V. Alberto; Yagui, Martín; Morrison, Amy C.; Lin, Chii-Dean; Scott, Thomas W.
2015-01-01
Background Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and globally. Weather regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model development is an empirical perspective clarifying how weather impacts transmission in diverse ecological settings. We sought to determine if location, timing, and potential-intensity of transmission are systematically defined by weather. Methodology/Principal Findings We developed a high-resolution empirical profile of the local weather-disease connection across Peru, a country with considerable ecological diversity. Applying 2-dimensional weather-space that pairs temperature versus humidity, we mapped local transmission-potential in weather-space by week during 1994-2012. A binary classification-tree was developed to test whether weather data could classify 1828 Peruvian districts as positive/negative for transmission and into ranks of transmission-potential with respect to observed disease. We show that transmission-potential is regulated by temperature-humidity coupling, enabling epidemics in a limited area of weather-space. Duration within a specific temperature range defines transmission-potential that is amplified exponentially in higher humidity. Dengue-positive districts were identified by mean temperature >22°C for 7+ weeks and minimum temperature >14°C for 33+ weeks annually with 95% sensitivity and specificity. In elevated-risk locations, seasonal peak-incidence occurred when mean temperature was 26-29°C, coincident with humidity at its local maximum; highest incidence when humidity >80%. We profile transmission-potential in weather-space for temperature-humidity ranging 0-38°C and 5-100% at 1°C x 2% resolution. Conclusions/Significance Local duration in limited areas of temperature-humidity weather-space identifies potential locations, timing, and magnitude of transmission. The weather-space profile of transmission-potential provides needed data that define a systematic and highly-sensitive weather-disease connection, demonstrating separate but coupled roles of temperature and humidity. New insights regarding natural regulation of human-mosquito transmission across diverse ecological settings advance our understanding of risk locally and globally for dengue and other mosquito-borne diseases and support advances in public health policy/operations, providing an evidence-base for modeling, predicting risk, and surveillance-prevention planning. PMID:26222979
Using Volcanic Ash to Remove Dissolved Uranium and Lead
NASA Technical Reports Server (NTRS)
McKay, David S.; Cuero, Raul G.
2009-01-01
Experiments have shown that significant fractions of uranium, lead, and possibly other toxic and/or radioactive substances can be removed from an aqueous solution by simply exposing the solution, at ambient temperature, to a treatment medium that includes weathered volcanic ash from Pu'u Nene, which is a cinder cone on the Island of Hawaii. Heretofore, this specific volcanic ash has been used for an entirely different purpose: simulating the spectral properties of Martian soil. The treatment medium can consist of the volcanic ash alone or in combination with chitosan, which is a natural polymer that can be produced from seafood waste or easily extracted from fungi, some bacteria, and some algae. The medium is harmless to plants and animals and, because of the abundance and natural origin of its ingredient( s), is inexpensive. The medium can be used in a variety of ways and settings: it can be incorporated into water-filtration systems; placed in contact or mixed with water-containing solids (e.g., soils and sludges); immersed in bodies of water (e.g., reservoirs, lakes, rivers, or wells); or placed in and around nuclear power plants, mines, and farm fields.
Low-Frequency Radio Bursts and Space Weather
NASA Technical Reports Server (NTRS)
Gopalswamy, N.
2016-01-01
Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.
Space weather activities in Europe
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, R. F.
The Sun has long been understood as a source of energy for mankind. Only in the more modern times has it also been seen as a source of disturbances in the space environment of the Earth, but also of the other planets and the heliosphere. Space weather research had an early start in Europe with investigations of Birkeland, Fitzgerald and Lodge, ultimately leading to an understanding of geomagnetic storms and their relation to the Sun. Today, European space weather activities range from the study of the Sun, through the inner heliosphere, to the magnetosphere, ionosphere, atmosphere, down to ground level effects. We will give an overview of European space weather activities and focus on the chain of events from Sun to Earth.
NOAA Environmental Satellite Measurements of Extreme Space Weather Events
NASA Astrophysics Data System (ADS)
Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.
2015-12-01
For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.
The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing
NASA Technical Reports Server (NTRS)
Chamberlin, R.
1985-01-01
A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.
A method for ensemble wildland fire simulation
Mark A. Finney; Isaac C. Grenfell; Charles W. McHugh; Robert C. Seli; Diane Trethewey; Richard D. Stratton; Stuart Brittain
2011-01-01
An ensemble simulation system that accounts for uncertainty in long-range weather conditions and two-dimensional wildland fire spread is described. Fuel moisture is expressed based on the energy release component, a US fire danger rating index, and its variation throughout the fire season is modeled using time series analysis of historical weather data. This analysis...
Passive ranging redundancy reduction in diurnal weather conditions
NASA Astrophysics Data System (ADS)
Cha, Jae H.; Abbott, A. Lynn; Szu, Harold H.
2013-05-01
Ambiguity in binocular ranging (David Marr's paradox) may be resolved by using two eyes moving from side to side behind an optical bench while integrating multiple views. Moving a head from left to right with one eye closed can also help resolve the foreground and background range uncertainty. That empirical experiment implies redundancy in image data, which may be reduced by adopting a 3-D camera imaging model to perform compressive sensing. Here, the compressive sensing concept is examined from the perspective of redundancy reduction in images subject to diurnal and weather variations for the purpose of resolving range uncertainty at all weather conditions such as the dawn or dusk, the daytime with different light level or the nighttime at different spectral band. As an example, a scenario at an intersection of a country road at dawn/dusk is discussed where the location of the traffic signs needs to be resolved by passive ranging to answer whether it is located on the same side of the road or the opposite side, which is under the influence of temporal light/color level variation. A spectral band extrapolation via application of Lagrange Constrained Neural Network (LCNN) learning algorithm is discussed to address lost color restoration at dawn/dusk. A numerical simulation is illustrated along with the code example.
An Overview of the Applied Meteorology Unit (AMU)
NASA Technical Reports Server (NTRS)
Merceret, Francis; Bauman, William; Lambert, Winifred; Short, David; Barrett, Joe; Watson, Leela
2007-01-01
The Applied Meteorology Unit (AMU) acts as a bridge between research and operations by transitioning technology to improve weather support to the Shuttle and American space program. It is a NASA entity operated under a tri-agency agreement by NASA, the US Air Force, and the National Weather Service (NWS). The AMU contract is managed by NASA, operated by ENSCO, Inc. personnel, and is collocated with Range Weather Operations at Cape Canaveral Air Force Station. The AMU is tasked by its customers in the 45th Weather Squadron, Spaceflight Meteorology Group, and the NWS in Melbourne, FL with projects whose results help improve the weather forecast for launch, landing, and ground operations. This presentation describes the history behind the formation of the AMU, its working relationships and goals, how it is tasked by its customers, and examples of completed tasks.
Home range size of Tengmalm's owl during breeding in Central Europe is determined by prey abundance.
Kouba, Marek; Bartoš, Luděk; Tomášek, Václav; Popelková, Alena; Šťastný, Karel; Zárybnická, Markéta
2017-01-01
Animal home ranges typically characterized by their size, shape and a given time interval can be affected by many different biotic and abiotic factors. However, despite the fact that many studies have addressed home ranges, our knowledge of the factors influencing the size of area occupied by different animals is, in many cases, still quite poor, especially among raptors. Using radio-telemetry (VHF; 2.1 g tail-mounted tags) we studied movements of 20 Tengmalm's owl (Aegolius funereus) males during the breeding season in a mountain area of Central Europe (the Czech Republic, the Ore Mountains: 50° 40' N, 13° 35' E) between years 2006-2010, determined their average hunting home range size and explored what factors affected the size of home range utilised. The mean breeding home range size calculated according to 95% fixed kernel density estimator was 190.7 ± 65.7 ha (± SD) with a median value of 187.1 ha. Home range size was affected by prey abundance, presence or absence of polygyny, the number of fledglings, and weather conditions. Home range size increased with decreasing prey abundance. Polygynously mated males had overall larger home range than those mated monogamously, and individuals with more fledged young possessed larger home range compared to those with fewer raised fledglings. Finally, we found that home ranges recorded during harsh weather (nights with strong wind speed and/or heavy rain) were smaller in size than those registered during better weather. Overall, the results provide novel insights into what factors may influence home range size and emphasize the prey abundance as a key factor for breeding dynamics in Tengmalm's owl.
NASA Technical Reports Server (NTRS)
Arneson, Heather; Bombelli, Alessandro; Segarra-Torne, Adria; Tse, Elmer
2017-01-01
In response to severe weather conditions, Traffic Managers specify flow constraints and reroutes to route air traffic around affected regions of airspace. Providing analysis and recommendations of available reroute options and associated airspace capacities would assist Traffic Managers in making more efficient decisions in response to convective weather. These recommendations can be developed by examining historical data to determine which previous reroute options were used in similar weather and traffic conditions. This paper describes the initial steps and methodology used towards this goal. The focus of this work is flights departing from Fort Worth Center destined for New York Center. Dominant routing structures used in the absence of convective weather are identified. A method to extract relevant features from the large volume of weather data available to quantify the impact of convective weather on this routing structure over a given time range is presented. Finally, a method of estimating flow rate capacity along commonly used routes during convective weather events is described. Results show that the flow rates drop exponentially as a function of the values of the proposed feature and that convective weather on the final third of the route was found to have a greater impact on the flow rate restriction than other portions of the route.
Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model
Krissansen-Totton, Joshua; Arney, Giada N.
2018-01-01
The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6−0.4+0.6 (2σ) at 4.0 Ga to 7.0−0.5+0.7 (2σ) at the Archean–Proterozoic boundary, and to 7.9−0.2+0.1 (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. PMID:29610313
Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model
NASA Astrophysics Data System (ADS)
Krissansen-Totton, Joshua; Arney, Giada N.; Catling, David C.
2018-04-01
The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6‑0.4+0.6 (2σ) at 4.0 Ga to 7.0‑0.5+0.7 (2σ) at the Archean–Proterozoic boundary, and to 7.9‑0.2+0.1 (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering.
Toward seamless weather-climate and environmental prediction
NASA Astrophysics Data System (ADS)
Brunet, Gilbert
2016-04-01
Over the last decade or so, predicting the weather, climate and atmospheric composition has emerged as one of the most important areas of scientific endeavor. This is partly because the remarkable increase in skill of current weather forecasts has made society more and more dependent on them day to day for a whole range of decision making. And it is partly because climate change is now widely accepted and the realization is growing rapidly that it will affect every person in the world profoundly, either directly or indirectly. One of the important endeavors of our societies is to remain at the cutting-edge of modelling and predicting the evolution of the fully coupled environmental system: atmosphere (weather and composition), oceans, land surface (physical and biological), and cryosphere. This effort will provide an increasingly accurate and reliable service across all the socio-economic sectors that are vulnerable to the effects of adverse weather and climatic conditions, whether now or in the future. This emerging challenge was at the center of the World Weather Open Science Conference (Montreal, 2014).The outcomes of the conference are described in the World Meteorological Organization (WMO) book: Seamless Prediction of the Earth System: from Minutes to Months, (G. Brunet, S. Jones, P. Ruti Eds., WMO-No. 1156, 2015). It is freely available on line at the WMO website. We will discuss some of the outcomes of the conference for the WMO World Weather Research Programme (WWRP) and Global Atmospheric Watch (GAW) long term goals and provide examples of seamless modelling and prediction across a range of timescales at convective and sub-kilometer scales for regional coupled forecasting applications at Environment and Climate Change Canada (ECCC).
Mat-Desa, Wan N S; Ismail, Dzulkiflee; NicDaeid, Niamh
2011-10-15
Three different medium petroleum distillate (MPD) products (white spirit, paint brush cleaner, and lamp oil) were purchased from commercial stores in Glasgow, Scotland. Samples of 10, 25, 50, 75, 90, and 95% evaporated product were prepared, resulting in 56 samples in total which were analyzed using gas chromatography-mass spectrometry. Data sets from the chromatographic patterns were examined and preprocessed for unsupervised multivariate analyses using principal component analysis (PCA), hierarchical cluster analysis (HCA), and a self organizing feature map (SOFM) artificial neural network. It was revealed that data sets comprised of higher boiling point hydrocarbon compounds provided a good means for the classification of the samples and successfully linked highly weathered samples back to their unevaporated counterpart in every case. The classification abilities of SOFM were further tested and validated for their predictive abilities where one set of weather data in each case was withdrawn from the sample set and used as a test set of the retrained network. This revealed SOFM to be an outstanding mechanism for sample discrimination and linkage over the more conventional PCA and HCA methods often suggested for such data analysis. SOFM also has the advantage of providing additional information through the evaluation of component planes facilitating the investigation of underlying variables that account for the classification. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Li, Su; Gaschnig, Richard M.; Rudnick, Roberta L.
2016-03-01
Glacial diamictites, with ages ranging from ∼2900 to 0.01 Ma, record the changing composition of the upper continental crust through time (Gaschnig et al., 2014). Li concentrations and isotopic compositions, combined with Pb isotopic compositions, chemical index of alteration (CIA) values and relative Sr concentrations are used here to assess the degree of chemical weathering recorded in these deposits and the origin of this signature. The δ7Li values of most of the diamictites (ranging from -3.9 to +3.5) are lower than those of mantle-derived basalts (+3.7 ± 2, 2σ), and the low δ7Li values are generally accompanied by high CIA and low Sr/Sr∗ values (or Sr depletion factor, Sr/Sr∗ = Sr/(Ce∗Nd)0.5), reflecting a weathering signature that may have derived from pre-depositional, syn-depositional, and/or post-depositional weathering processes. Profiles through three glacial diamictites with relatively high CIA (a fresh road cut of the Neoproterozoic Nantuo Formation (CIA = 62-69), and drill cores through the Paleoproterozoic Timeball Hill (CIA = 66-75) and Duitschland Formations (CIA = 84-91)) do not show evidence of significant post-depositional weathering. High Th/U, reflecting loss of uranium during oxidative weathering, is seen in all Paleozoic and Neoproterozoic diamictites and a few Paleoproterozoic deposits. Pb isotopic systematics suggest that this signature was largely inherited from preexisting crust, although a subset of samples (the Neoproterozoic Konnarock, Paleozoic Dwyka, and several of the Paleoproterozoic Duitschland samples) appears to have experienced post-depositional U loss. Modern glaciomarine sediments record little weathering (CIA = 47, Sr/Sr∗ = 0.7, δ7Li = +1.8), consistent with the cold temperatures accompanying glacial periods, and suggesting that limited syn-depositional weathering has occurred. Thus, the chemical weathering signature observed in ancient glacial diamictites appears to be largely inherited from the upper continental crust (UCC) over which the glaciers traversed. The strength of this weathering signature, based on the CIA, is greatest in the Mesoarchean and some of the Paleoproterozoic diamictites and is weaker in the Neoproterozoic and Phanerozoic glacial diamictites. Combining these data with data for Archean shales and other types of post-Paleoproterozoic sedimentary rocks (i.e., shales, mudstones, etc.), it appears that post-Paleoproterozoic upper continental crust experienced less intense chemical weathering, on average, than Archean and Paleoproterozoic upper continental crust.
NASA Astrophysics Data System (ADS)
Uehara, M.; Gattacceca, J.; Valenzuela, M.; Demory, F.; Rochette, P.
2010-12-01
Hot deserts are one of the large reservoirs of meteorites on Earth (about 25% of total meteorites), and some groups of rare meteorites (Rumuruti chondrites or lunar meteorites for instance). Therefore, the paleomagnetic record of hot desert meteorites is potentially a good source of information about the ancient extraterrestrial magnetic fields. However, meteorites recovered in hot deserts have typical terrestrial residence times (their so-called terrestrial ages) in the order of a few to several tens of kyr. During that time, a desert meteorite is exposed to the geomagnetic field, and is likely to acquire a Viscous Remanent Magnetization (VRM) whose intensity is controlled, among other things, by the stability of the desert surface. Moreover, with increasing terrestrial age, metallic and sulphide phases that are the dominant magnetic minerals in meteorites are oxidized and form potentially magnetic weathering minerals, resulting in the possible destruction of the primary remanence and acquisition of secondary terrestrial chemical remanence (CRM). Therefore, the paleomagnetic study of desert meteorites must take into account these terrestrial processes, in order to isolate the extraterrestrial magnetic record. We report here the paleomagnetic data obtained from 8 ordinary chondrites (3 H- and 5 L-chondrites) collected by our group in the Atacama desert (Chile) and oriented in situ with respect to the geographic north. Optical microscopy found that their weathering grades are W3 (60 - 95 % of metal is replaced by oxi-/hydroxides, 4 samples), W2 (moderate oxidation of metal, 20 - 60 % replaced; 2 samples), and W1 (only minor oxidation, 2 samples). Alternating field demagnetization experiments up to 100 mT found that W1 and W2 samples have a very low coercivity component (< 5 mT) and show unstable demagnetization paths above 10 mT, a behavior similar to that of freshly fallen ordinary chondrites. On the other hand, the more weathered samples (weathering stage W3) have medium to high coercivity components (20 ~ 100 mT) in addition to low coercivity components (<10mT). Thermal demagnetization experiments up to 300 °C found that W1 ~ W3 samples have low temperature components unblocked below 110 ~ 200 °C, which are plausibly VRM or CRM. Only W3 samples have directionally stable medium temperature component (150 ~ 300 °C or higher). In a given meteorite, the directions of mutually oriented samples are identical in W3 meteorites, but are scattered in W1 and W2 meteorites (like in most meteorite falls). These results indicate that the weathered samples (W3) have much more homogeneous and stable Natural Remanent Magnetizations than weakly weathered (W2 ~ W1) samples. Therefore, the W3 meteorites appear almost completely re-magnetized during terrestrial weathering. The directions of magnetization do no point toward the north, but the inclinations of the high temperature components of W3 samples are clustered around -40°, corresponding to the inclination of the average dipole field inclination at the find location. This suggests that the meteorites have moved on the desert surface by creeping movements.
[Urban heat island intensity and its grading in Liaoning Province of Northeast China].
Li, Li-Guang; Wang, Hong-Bo; Jia, Qing-Yu; Lü, Guo-Hong; Wang, Xiao-Ying; Zhang, Yu-Shu; Ai, Jing-Feng
2012-05-01
According to the recorded air temperature data and their continuity of each weather station, the location of each weather station, the numbers of and the distances among the weather stations, and the records on the weather stations migration, several weather stations in Liaoning Province were selected as the urban and rural representative stations to study the characteristics of urban heat island (UHI) intensity in the province. Based on the annual and monthly air temperature data of the representative stations, the ranges and amplitudes of the UHI intensity were analyzed, and the grades of the UHI intensity were classified. The Tieling station, Dalian station, Anshan station, Chaoyang station, Dandong station, and Jinzhou station and the 18 stations including Tai' an station were selected as the representative urban and rural weather stations, respectively. In 1980-2009, the changes of the annual UHI intensity in the 6 representative cities differed. The annual UHI intensity in Tieling was in a decreasing trend, while that in the other five cities was in an increasing trend. The UHI intensity was strong in Tieling but weak in Dalian. The changes of the monthly UHI intensity in the 6 representative cities also differed. The distribution of the monthly UHI intensity in Dandong, Jinzhou and Tieling took a "U" shape, with the maximum and minimum appeared in January and in May-August, respectively, indicating that the monthly UHI intensity was strong in winter and weak in summer. The ranges of the annual and monthly UHI intensity in the 6 cities were 0.57-2.15 degrees C and -0.70-4.60 degrees C, and the ranges of 0.5-2.0 degrees C accounted for 97.8% and 72.3%, respectively. The UHI intensity in the province could be classified into 4 grades, i. e., weak, strong, stronger and strongest.
Space Weather Concerns for All-Electric Propulsion Satellites
NASA Astrophysics Data System (ADS)
Horne, Richard B.; Pitchford, David
2015-08-01
The introduction of all-electric propulsion satellites is a game changer in the quest for low-cost access to space. It also raises new questions for satellite manufacturers, operators, and the insurance industry regarding the general risks and specifically the threat of adverse space weather. The issues surrounding this new concept were discussed by research scientists and up to 30 representatives from the space industry at a special meeting at the European Space Weather Week held in November 2014. Here we report on the discussions at that meeting. We show that for a satellite undergoing electric orbit raising for 200 days the radiation dose due to electrons is equivalent to approximately 6.7 year operation at geostationary orbit or approximately half the typical design life. We also show that electrons can be injected into the slot region (8000 km) where they pose a risk of satellite internal charging. The results highlight the importance of additional radiation protection. We also discuss the benefits, the operational considerations, the other risks from the Van Allen radiation belts, the new business opportunities for space insurance, and the need for space situation awareness in medium Earth orbit where electric orbit raising takes place.
The influence of lightning induced voltage on the distribution power line polymer insulators.
Izadi, Mahdi; Abd Rahman, Muhammad Syahmi; Ab-Kadir, Mohd Zainal Abidin; Gomes, Chandima; Jasni, Jasronita; Hajikhani, Maryam
2017-01-01
Protection of medium voltage (MV) overhead lines against the indirect effects of lightning is an important issue in Malaysia and other tropical countries. Protection of these lines against the indirect effects of lightning is a major concern and can be improved by several ways. The choice of insulator to be used for instance, between the glass, ceramic or polymer, can help to improve the line performance from the perspective of increasing the breakdown strength. In this paper, the electrical performance of a 10 kV polymer insulator under different conditions for impulse, weather and insulator angle with respect to a cross-arm were studied (both experimental and modelling) and the results were discussed accordingly. Results show that the weather and insulator angle (with respect to the cross-arm) are surprisingly influenced the values of breakdown voltage and leakage current for both negative and positive impulses. Therefore, in order to select a proper protection system for MV lines against lightning induced voltage, consideration of the local information concerning the weather and also the insulator angles with respect to the cross-arm are very useful for line stability and performance.
The influence of lightning induced voltage on the distribution power line polymer insulators
Ab-Kadir, Mohd Zainal Abidin; Gomes, Chandima; Jasni, Jasronita; Hajikhani, Maryam
2017-01-01
Protection of medium voltage (MV) overhead lines against the indirect effects of lightning is an important issue in Malaysia and other tropical countries. Protection of these lines against the indirect effects of lightning is a major concern and can be improved by several ways. The choice of insulator to be used for instance, between the glass, ceramic or polymer, can help to improve the line performance from the perspective of increasing the breakdown strength. In this paper, the electrical performance of a 10 kV polymer insulator under different conditions for impulse, weather and insulator angle with respect to a cross-arm were studied (both experimental and modelling) and the results were discussed accordingly. Results show that the weather and insulator angle (with respect to the cross-arm) are surprisingly influenced the values of breakdown voltage and leakage current for both negative and positive impulses. Therefore, in order to select a proper protection system for MV lines against lightning induced voltage, consideration of the local information concerning the weather and also the insulator angles with respect to the cross-arm are very useful for line stability and performance. PMID:28234930
NASA Astrophysics Data System (ADS)
Diniz, F. L.; Munchow, G. B.; Herdies, D. L.; Foster, P. R.
2010-12-01
When the eletromagnetic wave travels in the atmosphere from one medium to another with different density and/or composition suffers small changes in speed and direction of propagation. These changes are caused by the vertical variation of atmospheric refractive index. This causes different types of trajectory deviations, which can be called: normal refraction, sub-refraction, super-refraction and duct. The condition to create duct is satisfied when there is a especific vertical profile of refraction, in this case an eletromagnectic wave will oscillate in a layer of the atmosphere. Considering that this ducts condition can causes damage in the transmission and reception of microwave system equipment (e.g. telecomunications, global positioning, weather radars and satellites) and that in the Rio Grande do Sul, state of Brazil, there are two weather radars, this study present a simulation of the trajectory that would have an eletromagnetic wave. In this study was used soundings of the atmosphere to infer the vertical profile of refractive index during the passage of a Mesoescale Convective System on September 7, 2009. In the lack of this data a numerical simulation with nested grids using Weather Research & Forecasting Model was performed to infer this.
Observation of severe weather activities by Doppler sounder array
NASA Technical Reports Server (NTRS)
Smith, R. E.; Hung, R. J.
1975-01-01
A three-dimensional, nine-element, high-frequency CW Doppler sounder array has been used to detect ionospheric disturbances during periods of severe weather, particularly during periods with severe thunderstorms and tornadoes. One typical disturbance recorded during a period of severe thunderstorm activity and one during a period of tornado activity have been chosen for analysis in this note. The observations indicate that wave-like disturbances possibly generated by the severe weather have wave periods in the range 2-8 min which place them in the infrasonic wave category.
Long- range transport of Xe-133 emissions under convective and non-convective conditions.
NASA Astrophysics Data System (ADS)
Kusmierczyk-Michulec, Jolanta; Gheddou, Abdelhakim
2015-04-01
The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). The aim of this study is to investigate the long-range transport of Xe-133 emissions under convective and non-convective conditions. For that purpose a series of 14 days forward simulations was conducted using the Lagrangian Particle Diffusion Model FLEXPART, designed for calculating the long-range and mesoscale dispersion of air pollution from point sources. The release point was at the ANSTO facility in Australia. The geographical localization to some extent justifies the assumption that the only source of Xe-133 observed at the neighbouring stations, comes from the ANSTO facility. In the simulations the analysed wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) were used with the spatial resolution of 0.5 degree. Studies have been performed to link Xe-133 emissions with detections at the IMS stations supported by the ATM, and to assess the impact of atmospheric convection on non-detections at the IMS stations. The results of quantitative and qualitative comparison will be presented.
Strontium stable isotope behaviour accompanying basalt weathering
NASA Astrophysics Data System (ADS)
Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.
2016-12-01
The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.
NASA Technical Reports Server (NTRS)
Spirkovska, Liljana (Inventor)
2006-01-01
Method and system for automatically displaying, visually and/or audibly and/or by an audible alarm signal, relevant weather data for an identified aircraft pilot, when each of a selected subset of measured or estimated aviation situation parameters, corresponding to a given aviation situation, has a value lying in a selected range. Each range for a particular pilot may be a default range, may be entered by the pilot and/or may be automatically determined from experience and may be subsequently edited by the pilot to change a range and to add or delete parameters describing a situation for which a display should be provided. The pilot can also verbally activate an audible display or visual display of selected information by verbal entry of a first command or a second command, respectively, that specifies the information required.
NASA Astrophysics Data System (ADS)
Singh, Mehtab
2018-04-01
Free Space Optics (FSO) also known as Optical Wireless Communication (OWC) is a communication technology in which free space/air is used as the propagation medium and optical signals are used as the information carriers. One of the most crucial factors which degrade the performance of FSO link is the signal attenuation due to different atmospheric weather conditions such as haze, rain, storm, and fog. In this paper, an improved performance analysis of a 2.5 Gbps FSO link under rain conditions has been reported using Erbium-Doped Fiber Amplifier (EDFA) as a pre-amplifier. The results show that the maximum link distance for an FSO link under rain weather conditions with acceptable performance levels (Q ˜6 and BER ≤ 10-9 in the absence of EDFA pre-amplifier is 1,250 m which increases to 1,675 m with the use of EDFA pre-amplifier.
An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers
NASA Technical Reports Server (NTRS)
Short, David A.; Wells, Leonard; Merceret, Francis J.; Roeder, William P.
2007-01-01
This study compared peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at CCAFS/KSC and VAFB for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The legacy CCAFS/KSC and VAFB weather tower wind instruments are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. Mechanical and ultrasonic wind measuring techniques are known to cause differences in the statistics of peak wind speed as shown in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between the RSA ultrasonic and legacy mechanical sensors to determine if there are significant differences. Note that the instruments were sited outdoors under naturally varying conditions and that this comparison was not designed to verify either technology. Approximately 3 weeks of mechanical and ultrasonic wind data from each range from May and June 2005 were used in this study. The CCAFS/KSC data spanned the full diurnal cycle, while the VAFB data were confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on five different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The ten towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The ultrasonic sensors were collocated at the same vertical levels as the mechanical sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with mechanical sensors were compared. The 1- minute average wind speed/direction and the 1-second peak wind speed/direction were compared.
Atmospheric propagation of high power laser radiation at different weather conditions
NASA Astrophysics Data System (ADS)
Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen
2016-05-01
Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long free transmission laser test range. Sensors around this test range continuously monitor turbulence strength, visibility, precipitation, temperature, and wind speed. High power laser radiation is obtained by a TruDisk 6001 disk laser (Trumpf company) yielding a maximum output power of 6 kW at a wavelength of 1030 nm. The laser beam is expanded to 180 mm and focused along the beam path. Power and intensity distribution are measured before and after propagation, providing information about the atmospheric transmission and alterations of diameter and position of the laser beam. Backscattered laser light is acquired by a photo receiver. As a result, measurements performed at different weather conditions show a couple of correlations to the characteristics of the laser beam. The experimental results are compared to a numerical analysis. The calculations are based on the Maxwell wave equation in Fresnel approximation. The turbulence is considered by the introduction of phase screens and the "von Karman" spectrum.
Short-range solar radiation forecasts over Sweden
NASA Astrophysics Data System (ADS)
Landelius, Tomas; Lindskog, Magnus; Körnich, Heiner; Andersson, Sandra
2018-04-01
In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF) is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble. The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI) for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI) and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models. Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.
August gamma Cepheids (523-AGC)
NASA Astrophysics Data System (ADS)
Roggemans, Paul
2018-02-01
Favorable weather conditions between 19 August and 5 September 2017 enabled the CAMS BeNeLux network to collect 3189 orbits. A radiant concentration was spotted which was identified as the August gamma Cepheids (523-AGC). An independent search on a selection from all available meteor orbit lists coming from the suspect radiant area and velocity range was made. This resulted in 283 similar orbits, radiating from R.A. 358.4° and Decl. +76.2° with a geocentric velocity of 43.7 km/s in a time lapse between 146° and 165° in solar longitude with best activity at 155.7°. The orbital elements match perfectly with previously published results. There is no indication for any periodicity in the shower displays from year to year. The AGC-meteors are remarkably rich in bright meteors and rather deficient in faint meteors. Being detected independently from orbital data collected by different video networks, confirmed by 283 orbits with a medium threshold D criterion DD < 0.08 and 125 orbits with a high threshold of DD < 0.04, this minor shower could be considered to be listed as an established meteor shower.
Evaluation of the Vienna APL corrections using reprocessed GNSS series
NASA Astrophysics Data System (ADS)
Steigenberger, P.; Dach, R.
2011-12-01
The Institute of Geodesy and Geophysics of the Vienna University of Technology recently started an operational service to provide non-tidal atmospheric pressure loading (APL) corrections. As the series is based on European Centre for Medium-Range Weather Forecasts (ECMWF) pressure data, it is fully consistent with the Vienna Mapping Function 1 (VMF1) atmospheric delay correction model for microwave measurements. Whereas VMF1 is widely used for, e.g., observations of Global Navigation Satellite Systems (GNSS), applying APL corrections is not yet a standard nowadays. The Center for Orbit Determination in Europe (CODE) - a joint venture between the Astronomical Institute of the University of Bern (AIUB, Bern, Switzerland), the Federal Office of Topography (swisstopo, Wabern, Switzerland), the Federal Office for Cartography and Geodesy (BKG, Frankfurt am Main, Germany), and the Insitute for Astronomical and Physical Geodesy, TU Muenchen (IAPG, Munich, Germany) - uses a recently generated series of reprocessed multi-GNSS data (considering GPS and GLONASS) to evaluate the APL corrections provided by the Vienna group. The results are also used to investigate the propagation of the APL effect in GNSS-derived results if no corrections are applied.
On the use of infrasound for constraining global climate models
NASA Astrophysics Data System (ADS)
Millet, Christophe; Ribstein, Bruno; Lott, Francois; Cugnet, David
2017-11-01
Numerical prediction of infrasound is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect the temperature and the wind, yet the process by which the gravity wave field changes the infrasound arrivals remains poorly understood. In the present work, we use a stochastic parameterization to represent the subgrid scale gravity wave field from the atmospheric specifications provided by the European Centre for Medium-Range Weather Forecasts. It is shown that regardless of whether the gravity wave field possesses relatively small or large features, the sensitivity of acoustic waveforms to atmospheric disturbances can be extremely different. Using infrasound signals recorded during campaigns of ammunition destruction explosions, a new set of tunable parameters is proposed which more accurately predicts the small-scale content of gravity wave fields in the middle atmosphere. Climate simulations are performed using the updated parameterization. Numerical results demonstrate that a network of ground-based infrasound stations is a promising technology for dynamically tuning the gravity wave parameterization.
NASA Astrophysics Data System (ADS)
Lehner, F.; Wood, A.; Llewellyn, D.; Blatchford, D. B.; Goodbody, A. G.; Pappenberger, F.
2017-12-01
Recent studies have documented the influence of increasing temperature on streamflow across the American West, including snow-melt driven rivers such as the Colorado or Rio Grande. At the same time, some basins are reporting decreasing skill in seasonal streamflow forecasts, termed water supply forecasts (WSFs), over the recent decade. While the skill in seasonal precipitation forecasts from dynamical models remains low, their skill in predicting seasonal temperature variations could potentially be harvested for WSFs to account for non-stationarity in regional temperatures. Here, we investigate whether WSF skill can be improved by incorporating seasonal temperature forecasts from dynamical forecasting models (from the North American Multi Model Ensemble and the European Centre for Medium-Range Weather Forecast System 4) into traditional statistical forecast models. We find improved streamflow forecast skill relative to traditional WSF approaches in a majority of headwater locations in the Colorado and Rio Grande basins. Incorporation of temperature into WSFs thus provides a promising avenue to increase the robustness of current forecasting techniques in the face of continued regional warming.
Propagation Route and Speed of Swell in the Indian Ocean
NASA Astrophysics Data System (ADS)
Zheng, C. W.; Li, C. Y.; Pan, J.
2018-01-01
The characteristics of swell propagation play an important role in the forecasting of ocean waves as well as on research on global climate change, wave energy development, and disaster prevention and reduction. To reveal the propagation routes, terminal targets and speeds of swells that originate from the southern Indian Ocean westerly (SIOW), an intraseasonal swell index (SI) was defined based on the 45 year (September 1957 to August 2002) ERA-40 wave reanalysis data product from the European Center for Medium-Range Weather Forecasts (ECMWF). The results show that the main body of the SIOW-related swells typically spread to the waters off Sri Lanka and Christmas Island, while the branches spread to the Arabian Sea and other waters. The propagation speeds of swells originated in the SIOW were fastest in May and August, followed by November, and were slowest in February. Swells usually required 4-6 days to propagate from the western part of the SIOW to the waters off Sri Lanka and Christmas Island, whereas swells usually required 2-4 days to propagate from the eastern part of the SIOW to the waters off Christmas Island.
NASA Astrophysics Data System (ADS)
Christou, Michalis; Christoudias, Theodoros; Morillo, Julián; Alvarez, Damian; Merx, Hendrik
2016-09-01
We examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing performance, offering extra flexibility to expose multiple levels of parallelism and achieve better scalability. The EMAC model atmospheric chemistry code (Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA)) was taskified with an offload mechanism implemented using OmpSs directives. The model was ported to the MareNostrum 3 supercomputer to allow testing with Intel Xeon Phi accelerators on a production-size machine. The changes proposed in this paper are expected to contribute to the eventual adoption of Cluster-Booster division and Many Integrated Core (MIC) accelerated architectures in presently available implementations of Earth system models, towards exploiting the potential of a fully Exascale-capable platform.
NASA Technical Reports Server (NTRS)
See, T. H.; Montes, R.
2012-01-01
Impact is the most common and only weathering phenomenon affecting all the planetary bodies (e.g., planets, satellites, asteroids, comets, etc.) in the solar system. NASA Johnson Space Center s Experimental Impact Laboratory (EIL) includes three accelerators that are used in support of research into the effects of impact on the formation and evolution of the solar system. They permit researchers to study a wide variety of phenomena associated with high-velocity impacts into a wide range of geologic targets and materials relevant to astrobiological studies. By studying these processes, researchers can investigate the histories and evolution of planetary bodies and the solar system as a whole. While the majority of research conducted in the EIL addresses questions involving planetary impacts, work involving spacecraft components has been performed on occasion. An example of this is the aerogel collector material flown on the Stardust spacecraft that traveled to Comet Wild-2. This capture medium was tested and flight qualified using the 5 mm Light-Gas Gun located in the EIL.
Why did the storm ex-Gaston (2010) fail to redevelop during the PREDICT experiment?
NASA Astrophysics Data System (ADS)
Freismuth, Thomas M.; Rutherford, Blake; Boothe, Mark A.; Montgomery, Michael T.
2016-07-01
An analysis is presented of the failed re-development of ex-Gaston during the 2010 PREDICT field campaign based on the European Centre for Medium Range Weather Forecast (ECMWF) analyses. We analyze the dynamics and kinematics of ex-Gaston to investigate the role of dry, environmental air in the failed redevelopment. The flow topology defined by the calculation of particle trajectories shows that ex-Gaston's pouch was vulnerable to dry, environmental air on all days of observations. As early as 12:00 UTC 2 September 2010, a dry layer at and above 600 hPa results in a decrease in the vertical mass flux and vertical relative vorticity. These findings support the hypothesis that entrained, dry air near 600 hPa thwarted convective updraughts and vertical mass flux, which in turn led to a reduction in vorticity and a compromised pouch at these middle levels. A compromised pouch allows further intrusion of dry air and quenching of subsequent convection, therefore hindering vorticity amplification through vortex tube stretching. This study supports recent work investigating the role of dry air in moist convection during tropical cyclogenesis.
Troposphere Delay Raytracing Applied in VLBI Analysis
NASA Astrophysics Data System (ADS)
Eriksson, David; MacMillan, Daniel; Gipson, John
2014-12-01
Tropospheric delay modeling error is one of the largest sources of error in VLBI analysis. For standard operational solutions, we use the VMF1 elevation-dependent mapping functions derived from European Centre for Medium Range Forecasting (ECMWF) data. These mapping functions assume that tropospheric delay at a site is azimuthally symmetric. As this assumption does not reflect reality, we have instead determined the raytrace delay along the signal path through the three-dimensional troposphere refractivity field for each VLBI quasar observation. We calculated the troposphere refractivity fields from the pressure, temperature, specific humidity, and geopotential height fields of the NASA GSFC GEOS-5 numerical weather model. We discuss results using raytrace delay in the analysis of the CONT11 R&D sessions. When applied in VLBI analysis, baseline length repeatabilities were better for 70% of baselines with raytraced delays than with VMF1 mapping functions. Vertical repeatabilities were better for 2/3 of all stations. The reference frame scale bias error was 0.02 ppb for raytracing versus 0.08 ppb and 0.06 ppb for VMF1 and NMF, respectively.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Schubert, Siegfried; Rood, Richard
1995-01-01
The primary objective of the three-day workshop on results from the Data Assimilation Office (DAO) five-year assimilation was to provide timely feedback from the data users concerning the strengths and weaknesses of version 1 of the Goddard Earth Observing System (GEOS-1) assimilated products. A second objective was to assess user satisfaction with the current methods of data access and retrieval. There were a total of 49 presentations, with about half (23) of the presentations from scientists from outside of Goddard. The first two days were devoted to applications of data: studies of the energy diagnostics, precipitation and diabatic heating, hydrological modeling and moisture transport, cloud forcing and validation, various aspects of intraseasonal, seasonal, and interannual variability, ocean wind stress applications, and validation of surface fluxes. The last day included talks from the National Meteorological Center (NMC), the National Center for Atmospheric Research (NCAR), the Center for Ocean-Land-Atmosphere Studies (COLA), the United States Navy, and the European Center for Medium Range Weather Forecasts (ECMWF).
The ARPAL operational high resolution Poor Man's Ensemble, description and validation
NASA Astrophysics Data System (ADS)
Corazza, Matteo; Sacchetti, Davide; Antonelli, Marta; Drofa, Oxana
2018-05-01
The Meteo Hydrological Functional Center for Civil Protection of the Environmental Protection Agency of the Liguria Region is responsible for issuing forecasts primarily aimed at the Civil Protection needs. Several deterministic high resolution models, run every 6 or 12 h, are regularly used in the Center to elaborate weather forecasts at short to medium range. The Region is frequently affected by severe flash floods over its very small basins, characterized by a steep orography close to the sea. These conditions led the Center in the past years to pay particular attention to the use and development of high resolution model chains for explicit simulation of convective phenomena. For years, the availability of several models has been used by the forecasters for subjective analyses of the potential evolution of the atmosphere and of its uncertainty. More recently, an Interactive Poor Man's Ensemble has been developed, aimed at providing statistical ensemble variables to help forecaster's evaluations. In this paper the structure of this system is described and results are validated using the regional dense ground observational network.
NASA Astrophysics Data System (ADS)
Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Li, Yu; Jiang, Tingchen; San Liang, X.
2018-05-01
In this study, we evaluated the effects of springtime Indian Ocean's sea surface temperature (SST) on the Tibetan Plateau's role as atmospheric heat source (AHS) in summer. The SST data of the National Oceanic and Atmospheric Administration (NOAA), European Centre for Medium-Range Weather Forecasts (ECMWF) and the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) and the reanalysis data of the National Center for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) for 33 years (from 1979 to 2011) were used to analyze the relationship between the Indian Ocean SST and the Tibetan Plateau's AHS in summer, using the approaches that include correlation analysis, and lead-lag analysis. Our results show that some certain strong oceanic SSTs affect the summer plateau heat, specially finding that the early spring SSTs of the Indian Ocean significantly affect the plateau's ability to serve as a heat source in summer. Moreover, the anomalous atmospheric circulation and transport of water vapor are related to the Plateau heat variation.
NASA Astrophysics Data System (ADS)
Mejia, Carlos; Thiria, Sylvie; Tran, Ngan; CréPon, Michel; Badran, Fouad
1998-06-01
We present a geophysical model function (GMF) for the ERS-1 scatterometer computed by the use of neural networks. The neural networks GMF (NN GMF) is calibrated with ERS-1 scatterometer sigma 0 collocated with European Center for Medium-Range Weather Forecasts (ECMWF) analyzed wind vectors. Four different NN GMFs have been computed: one for each antenna and an average NN GMF. These NN GMFs do not present any significant differences which means that the three antenna are quasi-identical. The NN GMFs exhibit a biharmonic dependence on the wind azimuth with a small upwind-downwind modulation as found on previous GMFs. In order to check the validity of the NN GMF systematic comparisons with the European Space Agency (ESA) C band model (CMOD4) GMF (version 2 of March 25, 1993) and the Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) CMOD213 GMF are done. It is found that the NN GMFs are highly accurate and relevant functions to model the ERS-1 scatterometer sigma 0.
Analysis of continuous GPS measurements from southern Victoria Land, Antarctica
Willis, Michael J.
2007-01-01
Several years of continuous data have been collected at remote bedrock Global Positioning System (GPS) sites in southern Victoria Land, Antarctica. Annual to sub-annual variations are observed in the position time-series. An atmospheric pressure loading (APL) effect is calculated from pressure field anomalies supplied by the European Centre for Medium-Range Weather Forecasts (ECMWF) model loading an elastic Earth model. The predicted APL signal has a moderate correlation with the vertical position time-series at McMurdo, Ross Island (International Global Navigation Satellite System Service (IGS) station MCM4), produced using a global solution. In contrast, a local solution in which MCM4 is the fiducial site generates a vertical time series for a remote site in Victoria Land (Cape Roberts, ROB4) which exhibits a low, inverse correlation with the predicted atmospheric pressure loading signal. If, in the future, known and well modeled geophysical loads can be separated from the time-series, then local hydrological loading, of interest for glaciological and climate applications, can potentially be extracted from the GPS time-series.
Measuring Carbon Monoxide With TROPOMI: First Results and a Comparison With ECMWF-IFS Analysis Data
NASA Astrophysics Data System (ADS)
Borsdorff, T.; Aan de Brugh, J.; Hu, H.; Aben, I.; Hasekamp, O.; Landgraf, J.
2018-03-01
The Tropospheric Monitoring Instrument (TROPOMI) was launched onboard of the European Space Agency's (ESA) Sentinel-5P satellite. One of the mission's key products is the total column density of carbon monoxide, inferred from TROPOMI's 2.3 μm measurements. Using the operational processing algorithm, we analyze six subsequent days of measurements during the commissioning phase. The TROPOMI product is compared with CO fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) assimilation system. Globally, a small mean difference between the data sets of 3.2 ± 5.5% with a correlation coefficient of 0.97 is found. The daily global coverage of TROPOMI enables it to capture day-to-day evolution of the atmospheric composition. As an example, we discuss the air pollution event of India in November 2017 with high carbon monoxide (CO) concentrations, which partly dispersed when the CO polluted air was transported north alongside the Himalaya to China. The striking agreement and also regional differences with ECMWF indicate new exciting applications for the TROPOMI CO data product.
Investigation of Kelvin wave periods during Hai-Tang typhoon using Empirical Mode Decomposition
NASA Astrophysics Data System (ADS)
Kishore, P.; Jayalakshmi, J.; Lin, Pay-Liam; Velicogna, Isabella; Sutterley, Tyler C.; Ciracì, Enrico; Mohajerani, Yara; Kumar, S. Balaji
2017-11-01
Equatorial Kelvin waves (KWs) are fundamental components of the tropical climate system. In this study, we investigate Kelvin waves (KWs) during the Hai-Tang typhoon of 2005 using Empirical Mode Decomposition (EMD) of regional precipitation, zonal and meridional winds. For the analysis, we use daily precipitation datasets from the Global Precipitation Climatology Project (GPCP) and wind datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-analysis (ERA-Interim). As an additional measurement, we use in-situ precipitation datasets from rain-gauges over the Taiwan region. The maximum accumulated precipitation was approximately 2400 mm during the period July 17-21, 2005 over the southwestern region of Taiwan. The spectral analysis using the wind speed at 950 hPa found in the 2nd, 3rd, and 4th intrinsic mode functions (IMFs) reveals prevailing Kelvin wave periods of ∼3 days, ∼4-6 days, and ∼6-10 days, respectively. From our analysis of precipitation datasets, we found the Kelvin waves oscillated with periods between ∼8 and 20 days.
NASA Astrophysics Data System (ADS)
Jayakumar, A.; Sethunadh, Jisesh; Rakhi, R.; Arulalan, T.; Mohandas, Saji; Iyengar, Gopal R.; Rajagopal, E. N.
2017-05-01
National Centre for Medium Range Weather Forecasting high-resolution regional convective-scale Unified Model with latest tropical science settings is used to evaluate vertical structure of cloud and precipitation over two prominent monsoon regions: Western Ghats (WG) and Monsoon Core Zone (MCZ). Model radar reflectivity generated using Cloud Feedback Model Intercomparison Project Observation Simulator Package along with CloudSat profiling radar reflectivity is sampled for an active synoptic situation based on a new method using Budyko's index of turbulence (BT). Regime classification based on BT-precipitation relationship is more predominant during the active monsoon period when convective-scale model's resolution increases from 4 km to 1.5 km. Model predicted precipitation and vertical distribution of hydrometeors are found to be generally in agreement with Global Precipitation Measurement products and BT-based CloudSat observation, respectively. Frequency of occurrence of radar reflectivity from model implies that the low-level clouds below freezing level is underestimated compared to the observations over both regions. In addition, high-level clouds in the model predictions are much lesser over WG than MCZ.
Summer drought predictability over Europe: empirical versus dynamical forecasts
NASA Astrophysics Data System (ADS)
Turco, Marco; Ceglar, Andrej; Prodhomme, Chloé; Soret, Albert; Toreti, Andrea; Doblas-Reyes Francisco, J.
2017-08-01
Seasonal climate forecasts could be an important planning tool for farmers, government and insurance companies that can lead to better and timely management of seasonal climate risks. However, climate seasonal forecasts are often under-used, because potential users are not well aware of the capabilities and limitations of these products. This study aims at assessing the merits and caveats of a statistical empirical method, the ensemble streamflow prediction system (ESP, an ensemble based on reordering historical data) and an operational dynamical forecast system, the European Centre for Medium-Range Weather Forecasts—System 4 (S4) in predicting summer drought in Europe. Droughts are defined using the Standardized Precipitation Evapotranspiration Index for the month of August integrated over 6 months. Both systems show useful and mostly comparable deterministic skill. We argue that this source of predictability is mostly attributable to the observed initial conditions. S4 shows only higher skill in terms of ability to probabilistically identify drought occurrence. Thus, currently, both approaches provide useful information and ESP represents a computationally fast alternative to dynamical prediction applications for drought prediction.
Characteristics of Heavy Summer Rainfall in Southwestern Taiwan in Relation to Orographic Effects
NASA Technical Reports Server (NTRS)
Chen, Ching-Sen; Chen, Wan-Chin; Tao, Wei-Kuo
2004-01-01
On the windward side of southwestern Taiwan, about a quarter to a half of all rainfall during mid-July through August from 1994 to 2000 came from convective systems embedded in the southwesterly monsoon flow. k this study, the causes of two heavy rainfall events (daily rainfall exceeding 100 mm day over at least three rainfall stations) observed over the slopes and/or lowlands of southwestern Taiwan were examined. Data from European Center for Medium-Range Weather Forecasts /Tropical Ocean- Global Atmosphere (EC/TOGA) analyses, the rainfall stations of the Automatic Rainfall and Meteorological Telemetry System (ARMTS) and the conventional surface stations over Taiwan, and the simulation results from a regional-scale numerical model were used to accomplish the objectives. In one event (393 mm day on 9 August 1999), heavy rainfall was observed over the windward slopes of southern Taiwan in a potentially unstable environment with very humid air around 850 hPa. The extreme accumulation was simulated and attributed to orographic lifting effects. No preexisting convection drifted in from the Taiwan Strait into western Taiwan.
The state of the art of flood forecasting - Hydrological Ensemble Prediction Systems
NASA Astrophysics Data System (ADS)
Thielen-Del Pozo, J.; Pappenberger, F.; Salamon, P.; Bogner, K.; Burek, P.; de Roo, A.
2010-09-01
Flood forecasting systems form a key part of ‘preparedness' strategies for disastrous floods and provide hydrological services, civil protection authorities and the public with information of upcoming events. Provided the warning leadtime is sufficiently long, adequate preparatory actions can be taken to efficiently reduce the impacts of the flooding. Because of the specific characteristics of each catchment, varying data availability and end-user demands, the design of the best flood forecasting system may differ from catchment to catchment. However, despite the differences in concept and data needs, there is one underlying issue that spans across all systems. There has been an growing awareness and acceptance that uncertainty is a fundamental issue of flood forecasting and needs to be dealt with at the different spatial and temporal scales as well as the different stages of the flood generating processes. Today, operational flood forecasting centres change increasingly from single deterministic forecasts to probabilistic forecasts with various representations of the different contributions of uncertainty. The move towards these so-called Hydrological Ensemble Prediction Systems (HEPS) in flood forecasting represents the state of the art in forecasting science, following on the success of the use of ensembles for weather forecasting (Buizza et al., 2005) and paralleling the move towards ensemble forecasting in other related disciplines such as climate change predictions. The use of HEPS has been internationally fostered by initiatives such as "The Hydrologic Ensemble Prediction Experiment" (HEPEX), created with the aim to investigate how best to produce, communicate and use hydrologic ensemble forecasts in hydrological short-, medium- und long term prediction of hydrological processes. The advantages of quantifying the different contributions of uncertainty as well as the overall uncertainty to obtain reliable and useful flood forecasts also for extreme events, has become evident. However, despite the demonstrated advantages, worldwide the incorporation of HEPS in operational flood forecasting is still limited. The applicability of HEPS for smaller river basins was tested in MAP D-Phase, an acronym for "Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region" which was launched in 2005 as a Forecast Demonstration Project of World Weather Research Programme of WMO, and entered a pre-operational and still active testing phase in 2007. In Europe, a comparatively high number of EPS driven systems for medium-large rivers exist. National flood forecasting centres of Sweden, Finland and the Netherlands, have already implemented HEPS in their operational forecasting chain, while in other countries including France, Germany, Czech Republic and Hungary, hybrids or experimental chains have been installed. As an example of HEPS, the European Flood Alert System (EFAS) is being presented. EFAS provides medium-range probabilistic flood forecasting information for large trans-national river basins. It incorporates multiple sets of weather forecast including different types of EPS and deterministic forecasts from different providers. EFAS products are evaluated and visualised as exceedance of critical levels only - both in forms of maps and time series. Different sources of uncertainty and its impact on the flood forecasting performance for every grid cell has been tested offline but not yet incorporated operationally into the forecasting chain for computational reasons. However, at stations where real-time discharges are available, a hydrological uncertainty processor is being applied to estimate the total predictive uncertainty from the hydrological and input uncertainties. Research on long-term EFAS results has shown the need for complementing statistical analysis with case studies for which examples will be shown.
Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements
Tuttle, M.L.W.; Breit, G.N.; Goldhaber, M.B.
2009-01-01
During weathering, elements enriched in black shale are dispersed in the environment by aqueous and mechanical transport. Here a unique evaluation of the differential release, transport, and fate of Fe and 15 trace elements during progressive weathering of the Devonian New Albany Shale in Kentucky is presented. Results of chemical analyses along a weathering profile (unweathered through progressively weathered shale to soil) describe the chemically distinct pathways of the trace elements and the rate that elements are transferred into the broader, local environment. Trace elements enriched in the unweathered shale are in massive or framboidal pyrite, minor sphalerite, CuS and NiS phases, organic matter and clay minerals. These phases are subject to varying degrees and rates of alteration along the profile. Cadmium, Co, Mn, Ni, and Zn are removed from weathered shale during sulfide-mineral oxidation and transported primarily in aqueous solution. The aqueous fluxes for these trace elements range from 0.1 g/ha/a (Cd) to 44 g/ha/a (Mn). When hydrologic and climatic conditions are favorable, solutions seep to surface exposures, evaporate, and form Fe-sulfate efflorescent salts rich in these elements. Elements that remain dissolved in the low pH (<4) streams and groundwater draining New Albany Shale watersheds become fixed by reactions that increase pH. Neutralization of the weathering solution in local streams results in elements being adsorbed and precipitated onto sediment surfaces, resulting in trace element anomalies. Other elements are strongly adsorbed or structurally bound to solid phases during weathering. Copper and U initially are concentrated in weathering solutions, but become fixed to modern plant litter in soil formed on New Albany Shale. Molybdenum, Pb, Sb, and Se are released from sulfide minerals and organic matter by oxidation and accumulate in Fe-oxyhydroxide clay coatings that concentrate in surface soil during illuviation. Chromium, Ti, and V are strongly correlated with clay abundance and considered to be in the structure of illitic clay. Illite undergoes minimal alteration during weathering and is concentrated during illuvial processes. Arsenic concentration increases across the weathering profile and is associated with the succession of secondary Fe(III) minerals that form with progressive weathering. Detrital fluxes of particle-bound trace elements range from 0.1 g/ha/a (Sb) to 8 g/ha/a (Mo). Although many of the elements are concentrated in the stream sediments, changes in pH and redox conditions along the sediment transport path could facilitate their release for aqueous transport.
A new precipitation and drought climatology based on weather patterns.
Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert
2018-02-01
Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.
Pandey, Sachin; Rajaram, Harihar
2016-12-05
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Sachin; Rajaram, Harihar
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
ERIC Educational Resources Information Center
Majdik, Zoltan P.; Platt, Carrie Anne; Meister, Mark
2011-01-01
This paper explores the rhetorical basis of a major paradigm change in meteorology, from a focus on inductive observation to deductive, mathematical reasoning. Analysis of Cleveland Abbe's "The Physical Basis of Long-Range Weather Forecasts" demonstrates how in his advocacy for a new paradigm, Abbe navigates the tension between piety to tradition…
Weather For Aircrews - Air Force Handbook 11-203, Volume 1
1997-03-01
I S-X. Aurora Borealis...combinations of these factors produce tropical weather ranging from the hot, humid climate of the Amazon and Congo river basins, to the arid Sahara Desert... Aurora . Disturbances on the sun spew out bursts of energy particles, a portion of which eventually reach the earth. The high-energy particles strike
NASA Astrophysics Data System (ADS)
Brunsell, N. A.; Nippert, J. B.
2011-12-01
As the climate warms, it is generally acknowledged that the number and magnitude of extreme weather events will increase. We examined an ecophysiological model's responses to precipitation and temperature anomalies in relation to the mean and variance of annual precipitation along a pronounced precipitation gradient from eastern to western Kansas. This natural gradient creates a template of potential responses for both the mean and variance of annual precipitation to compare the timescales of carbon and water fluxes. Using data from several Ameriflux sites (KZU and KFS) and a third eddy covariance tower (K4B) along the gradient, BIOME-BGC was used to characterize water and carbon cycle responses to extreme weather events. Changes in the extreme value distributions were based on SRES A1B and A2 scenarios using an ensemble mean of 21 GCMs for the region, downscaled using a stochastic weather generator. We focused on changing the timing and magnitude of precipitation and altering the diurnal and seasonal temperature ranges. Biome-BGC was then forced with daily output from the stochastic weather generator, and we examined how potential changes in these extreme value distributions impact carbon and water cycling at the sites across the Kansas precipitation gradient at time scales ranging from daily to interannual. To decompose the time scales of response, we applied a wavelet based information theory analysis approach. Results indicate impacts in soil moisture memory and carbon allocation processes, which vary in response to both the mean and variance of precipitation along the precipitation gradient. These results suggest a more pronounced focus ecosystem responses to extreme events across a range of temporal scales in order to fully characterize the water and carbon cycle responses to global climate change.
[Distribution of atmospheric ultrafine particles during haze weather in Hangzhou].
Chen, Qiu-Fang; Sun, Zai; Xie, Xiao-Fang
2014-08-01
Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning. There was a small peak at 8 o'clock in the morning and 18 o'clock in the afternoon. It showed an obvious peak traffic source, which indicated that traffic emissions played a great role in the atmospheric pollution. During haze weather, the highest number concentration of UFPs reached 8 x 10(4) cm(-3). Particle size spectrum distribution was bimodal, the peak particle sizes were 15 nm and 100 nm respectively. Majority of UFPs were Aitken mode and Accumulation mode and the size of most particles concentrated near 100 nm. Average CMD(count medium diameter) was 85.89 nm. During haze fading process, number concentration and particles with size around 100 nm began to reduce and peak size shifted to small size. Nuclear modal particles increased and were more than accumulation mode. Average CMD was 58.64 nm. Meteorological factors such as the visibility and wind were negatively correlated with the particle number concentration. Correlation coefficient R were -0.225 and - 0.229. The humidity was correlated with number concentration. Correlation coefficient R was 0.271. The atmosphere was stable in winter and the level temperature had small correlation with number concentration. Therefore, study on distribution of atmospheric ultrafine particles during haze weather had the significance on the formation mechanism and control of haze weather.
Mesonet Programs - Needs and Best Practices
NASA Astrophysics Data System (ADS)
Usher, J.; Doherty, J.
2010-09-01
Authors: Jeremy Usher Managing Director, Europe WeatherBug® Professional John Doherty Senior Vice President Sales & Marketing WeatherBug® Professional There are many well documented and compelling needs for significant improvements in mesoscale meteorological observations throughout many parts of the world. This is evidenced by the fact that the vast majority of severe weather impacts and related life, property and economic losses are associated with mesoscale events such as tornados, thunderstorms, fronts, squall lines, etc. Additionally, the looming impacts of climate change are likely to vary substantially on a regional basis requiring more detailed information on a finer scale. Hence, development of comprehensive densely spaced observing systems can establish the critical information repositories needed to improve: short- and medium-term weather and wind forecasting down to local scales, climate monitoring on a regional basis, as well as decision support capabilities including plume dispersion modeling and air quality forecasting, to name a few. It is imperative that governmental/public/private/academic partnerships are formed to leverage the collective expertise, assets and technological know-how of each sector. Collaboration of this type is particularly germane given that many existing mesonets (weather networks) have been deployed by local organizations with local considerations in mind. These stakeholders maintain the capacity to react quickly and efficiently and are best positioned to recommend future network evolution within their domains. Additionally, coordination will go a long way toward avoiding duplication of effort and promote both a robust private sector and wise expenditure of public funds. This presentation will outline the major building blocks of a mesonet program and discuss best practices for a multi-tiered, multi-faceted "network of networks" approach that maximizes the value derived from leveraging existing assets and serves multiple needs. On-going activities within the U.S. National Mesonet Program will be highlighted.
NASA Astrophysics Data System (ADS)
Shorts, Vincient F.
1994-09-01
The Janus combat simulation offers the user a wide variety of weather effects options to employ during the execution of any simulation run, which can directly influence detection of opposing forces. Realistic weather effects are required if the simulation is to accurately reproduce 'real world' results. This thesis examines the mathematics of the Janus weather effects models. A weather effect option in Janus is the sky-to-ground brightness ratio (SGR). SGR affects an optical sensor's ability to detect targets. It is a measure of the sun angle in relation to the horizon. A review of the derivation of SGR is performed and an analysis of SGR's affect on the number of optical detections and detection ranges is performed using an unmanned aerial vehicle (UAV) search scenario. For comparison, the UAV's are equipped with a combination of optical and thermal sensors.
Discover Space Weather and Sun's Superpowers: Using CCMC's innovative tools and applications
NASA Astrophysics Data System (ADS)
Mendoza, A. M. M.; Maddox, M. M.; Kuznetsova, M. M.; Chulaki, A.; Rastaetter, L.; Mullinix, R.; Weigand, C.; Boblitt, J.; Taktakishvili, A.; MacNeice, P. J.; Pulkkinen, A. A.; Pembroke, A. D.; Mays, M. L.; Zheng, Y.; Shim, J. S.
2015-12-01
Community Coordinated Modeling Center (CCMC) has developed a comprehensive set of tools and applications that are directly applicable to space weather and space science education. These tools, some of which were developed by our student interns, are capable of serving a wide range of student audiences, from middle school to postgraduate research. They include a web-based point of access to sophisticated space physics models and visualizations, and a powerful space weather information dissemination system, available on the web and as a mobile app. In this demonstration, we will use CCMC's innovative tools to engage the audience in real-time space weather analysis and forecasting and will share some of our interns' hands-on experiences while being trained as junior space weather forecasters. The main portals to CCMC's educational material are ccmc.gsfc.nasa.gov and iswa.gsfc.nasa.gov
NASA Astrophysics Data System (ADS)
Nuradibah, M. A.; Sam, S. T.; Noriman, N. Z.; Ragunathan, S.; Ismail, H.
2015-07-01
Soya spent powder was blended with low density polyethylene (LDPE) ranging from 5-25 wt%. Glycerol was added to soya spent powder (SSP) for preparation of thermoplastic soya spent powder (TSSP). Then, the blends were exposed to natural weathering for 6 months. The susceptibility of the LDPE/soya spent powder blends based on its tensile, morphological properties and structural changes was measured every three months. The tensile strength of LDPE/TSSP blends after 6 months of weathering was the lowest compared to the other blends whereas LDPE/SSP blends after 6 months of weathering demonstrated the lowest elongation at break (Eb). Large pore can be seen on the surface of 25 wt% of LDPE/SSP blends.
Composition-dependent stability of the medium-range order responsible for metallic glass formation
Zhang, Feng; Ji, Min; Fang, Xiao-Wei; ...
2014-09-18
The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less
Fire danger assessment using ECMWF weather prediction system
NASA Astrophysics Data System (ADS)
Di Giuseppe, Francesca; Pappemberger, Florian; Wetterhall, Fredrik
2015-04-01
Weather plays a major role in the birth, growth and death of a wildfire wherever there is availability of combustible vegetation and suitable terrain topography. Prolonged dry periods creates favourable conditions for ignitions, wind can then increase the fire spread, while higher relative humidity, and precipitation (rain or snow) may decrease or extinguish it altogether. The European Forest Fire Information System (EFFIS), started in 2011 under the lead of the European Joint Research Centre (JRC) to monitor and forecast fire danger and fire behaviour in Europe. In 2012 a collaboration with the European Centre for Medium range Weather Forecast (ECMWF) was established to explore the potential of using state of the art weather forecast systems as driving forcing for the calculations of fire risk indices. From this collaboration in 2013 the EC-fire system was born. It implements the three most commonly used fire danger rating systems (NFDRS, FWI and MARK-5) and it is both initialised and forced by gridded atmospheric fields provided either by ECMWF re-analysis or ECMWF ensemble prediction systems. For consistency invariant fields (i.e fuel maps, vegetation cover, topogarphy) and real-time weather information are all provided on the same grid. Similarly global climatological vegetation stage conditions for each day of the year are provided by remote satellite observations. These climatological static maps substitute the traditional man judgement in an effort to create an automated procedure that can work in places where local observations are not available. The system has been in operation for the last year providing an ensemble of daily forecasts for fire indices with lead-times up to 10 days over Europe and Globally. An important part of the system is provided by its (re)-analysis dataset obtained by using the (re)-analysis forcings as drivers to calculate the fire risk indices. This is a crucial part of the whole chain since these fields are used to establish the initial conditions from which the forecast is subsequently run. The reanalysis dataset goes back to year 1980 (the starting year of ERA-Interim integrations) and is updated in quasi real time. In addition of providing the staring point for the operational forecasts it is a very useful dataset for the scope of calibration and verification of the system. Assuming reanalysis fields are good proxies for observations then, by comparison with fire events which really occurred, this dataset can be used to assess the potential predictability of fire risk indices. In this work we will introduce the EC-fire system. Then the reanalysis dataset will be used to identify regions of high fire risk predictability and where the system might be in need of further refinement.
NASA Astrophysics Data System (ADS)
Adzhieva, Aida A.; Shapovalov, Vitaliy A.; Boldyreff, Anton S.
2017-10-01
In the context of rising the frequency of natural disasters and catastrophes humanity has to develop methods and tools to ensure safe living conditions. Effectiveness of preventive measures greatly depends on quality and lead time of the forecast of disastrous natural phenomena, which is based on the amount of knowledge about natural hazards, their causes, manifestations, and impact. To prevent them it is necessary to get complete and comprehensive information about the extent of spread and severity of natural processes that can act within a defined territory. For these purposes the High Mountain Geophysical Institute developed the automated workplace for mining, analysis and archiving of radar, satellite, lightning sensors information and terrestrial (automatic weather station) weather data. The combination and aggregation of data from different sources of meteorological data provides a more informativity of the system. Satellite data shows the global cloud region in visible and infrared ranges, but have an uncertainty in terms of weather events and large time interval between the two periods of measurements, which complicates the use of this information for very short range forecasts of weather phenomena. Radar and lightning sensors data provide the detection of weather phenomena and their localization on the background of the global pattern of cloudiness in the region and have a low period measurement of atmospheric phenomena (hail, thunderstorms, showers, squalls, tornadoes). The authors have developed the improved algorithms for recognition of dangerous weather phenomena, based on the complex analysis of incoming information using the mathematical apparatus of pattern recognition.
Resurfacing asteroids from YORP spin-up and failure
NASA Astrophysics Data System (ADS)
Graves, Kevin J.; Minton, David A.; Hirabayashi, Masatoshi; DeMeo, Francesca E.; Carry, Benoit
2018-04-01
The spectral properties of S and Q-type asteroids can change over time due to interaction with the solar wind and micrometeorite impacts in a process known as 'space weathering.' Space weathering raises the spectral slope and decreases the 1 μm absorption band depth in the spectra of S and Q-type asteroids. Over time, Q-type asteroids, which have very similar spectra to ordinary chondrite meteorites, will change into S-type asteroids. Because there are a significant number of Q-type asteroids, there must be some process which is resurfacing S-type asteroids into Q-types. In this study, we use asteroid data from the Sloan Digital Sky Survey to show a trend between the slope through the g‧, r‧, and i‧ filters, called the gri-slope, and size that holds for all populations of S and Q-type asteroids in the inner solar system, regardless of orbit. We model the evolution of a suite of asteroids in a Monte Carlo YORP rotational evolution and space weathering model. We show that spin-up and failure from YORP is one of the key resurfacing mechanisms that creates the observed weathering trends with size. By varying the non-dimensional YORP coefficient and running time of the present model over the range 475-1425 Myr, we find a range of values for the space weathering timescale, τSW ≈ 19-80 Myr at 2.2 AU. We also estimate the time to weather a newly resurfaced Q-type asteroid into an S-complex asteroid at 1 AU, τQ → S(1AU) ≈ 2-7 Myr.
An Analytic Approach to Projectile Motion in a Linear Resisting Medium
ERIC Educational Resources Information Center
Stewart, Sean M.
2006-01-01
The time of flight, range and the angle which maximizes the range of a projectile in a linear resisting medium are expressed in analytic form in terms of the recently defined Lambert W function. From the closed-form solutions a number of results characteristic to the motion of the projectile in a linear resisting medium are analytically confirmed,…
Alkhatib, E; Peters, R
2008-04-01
During rain storm events, land surface runoff and resuspension of bottom sediments cause an increase in Trihalomethane (THM) precursors in rivers. These precursors, when chlorinated at water treatment facilities will lead to the formation of THMs and hence impact drinking water resources. In order to evaluate the wet weather impact on the potential formation of THMs, river samples were collected before, during and after three rain storms ranging from 15.2 to 24.9 mm precipitation. The samples were tested for THM formation potential and other indicators including UV254 absorbance, turbidity and volatile suspended solid (VSS). Average levels of THMs increased from 61 microg/l during dry weather to 131 microg/l during wet weather, and then went back to 81 microg/l after rain ended. Wet weather values of THM are well above the maximum contaminant level (MCL) 80 microg/l, set by EPA for drinking water. THM indicators also exhibited similar trends. Average levels increased from 0.6 to 1.8 abs; 2.6 to 6 ntu; and 7.5 to 15 mg/l respectively for UV254, turbidity and VSS. A positive correlation was observed between THM formation and THM indicators. The t-test of significance (p-value) was less than 0.05 for all indicators, and R values ranged from 0.85 to 0.92 between THMs and the indicators, and 0.72 to 0.9 among indicators themselves.
2010-09-01
open - water oil spills or treatment of large contaminated volumes such as ballast water or holding ponds. The practi- cal application of the mat is...approach, the immobilized cells are also protected from weathering and the elements that may wash away the microbes in open water applica- tions. The...SS, Al-Hasan RH, Salamah S, Al-Dabbous A. Biore- mediation of oily sea water by bacteria immobilized in biofilms coating macroalgae . Int Biodeter
NASA Technical Reports Server (NTRS)
Douglass, R. W.; Meyer, M. P.; French, D. W.
1972-01-01
Criteria was established for practical remote sensing of vegetation stress and mortality caused by dwarf mistletoe infections in black spruce subboreal forest stands. The project was accomplished in two stages: (1) A fixed tower-tramway site in an infected black spruce stand was used for periodic multispectral photo coverage to establish basic film/filter/scale/season/weather parameters; (2) The photographic combinations suggested by the tower-tramway tests were used in low, medium, and high altitude aerial photography.
NASA Technical Reports Server (NTRS)
1991-01-01
Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.
Assessment of community noise for a medium-range airplane with open-rotor engines
NASA Astrophysics Data System (ADS)
Kopiev, V. F.; Shur, M. L.; Travin, A. K.; Belyaev, I. V.; Zamtfort, B. S.; Medvedev, Yu. V.
2017-11-01
Community noise of a hypothetical medium-range airplane equipped with open-rotor engines is assessed by numerical modeling of the aeroacoustic characteristics of an isolated open rotor with the simplest blade geometry. Various open-rotor configurations are considered at constant thrust, and the lowest-noise configuration is selected. A two-engine medium-range airplane at known thrust of bypass turbofan engines at different segments of the takeoff-landing trajectory is considered, after the replacement of those engines by the open-rotor engines. It is established that a medium-range airplane with two open-rotor engines meets the requirements of Chapter 4 of the ICAO standard with a significant margin. It is shown that airframe noise makes a significant contribution to the total noise of an airplane with open-rotor engines at landing.
Investigations On Limestone Weathering Of El-Tuba Minaret El Mehalla, Egypt: A Case Study.
NASA Astrophysics Data System (ADS)
El-Gohary; A, M.
The weathering phenomena that have affected El-TUBA Minaret, one of the most important Islamic stone minarets in middle delta in Egypt; that has suffered from several factors of deterioration due to weathering phenomenon. The present investigations concern the weathering factors that may have affected the minaret via the following methods and techniques: a) Contact-free methods used to study the chemical and mineralogical composition of building materials before and after weathering effects such as SEM-EDX and XRD, b) Non-destructive methods to find out percentage of range of decay which has affected these materials as well as the deteriorating roles of the surrounding environment. This method has been used to make an anatomical scheme of these features especially to specific deteriorated parts by GIS and other digital imaging techniques. All results confirm that the degradation factors affecting the minaret building materials are essentially attributed to direct effects of weathering phenomena. These weathering phenomena arise from physical and chemical mechanisms which have lead to many deterioration forms on the following two scales: a) Macro scale of weathering phenomena (e.g. structural damages, crakes, loss of plumb and walls bulging), b) Micro scale of weathering phenomena (e.g. hydrated salts, bursting, flaking, coloration, scaling, skinning, exfoliation and soiling). Discussion on the management and rehabilitation of this monument is made, since it is one of the religious shrines in Egypt.
Locations Where Space Weather Energy Impacts the Atmosphere
NASA Astrophysics Data System (ADS)
Sojka, Jan J.
2017-11-01
In this review we consider aspects of space weather that can have a severe impact on the terrestrial atmosphere. We begin by identifying the pre-conditioning role of the Sun on the temperature and density of the upper atmosphere. This effect we define as "space climatology". Space weather effects are then defined as severe departures from this state of the atmospheric energy and density. Three specific forms of space weather are reviewed and we show that each generates severe space weather impacts. The three forms of space weather being considered are the solar photon flux (flares), particle precipitation (aurora), and electromagnetic Joule heating (magnetosphere-ionospheric (M-I) coupling). We provide an overview of the physical processes associated with each of these space weather forms. In each case a very specific altitude range exists over which the processes can most effectively impact the atmosphere. Our argument is that a severe change in the local atmosphere's state leads to atmospheric heating and other dynamic changes at locations beyond the input heat source region. All three space weather forms have their greatest atmospheric impact between 100 and 130 km. This altitude region comprises the transition between the atmosphere's mesosphere and thermosphere and is the ionosphere's E-region. This region is commonly referred to as the Space Atmosphere Interaction Region (SAIR). The SAIR also acts to insulate the lower atmosphere from the space weather impact of energy deposition. A similar space weather zone would be present in atmospheres of other planets and exoplanets.
Space Weathering on Airless Bodies.
Pieters, Carle M; Noble, Sarah K
2016-10-01
Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produce different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research.
Space Weathering on Airless Bodies
Pieters, Carle M.; Noble, Sarah K.
2018-01-01
Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produce different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research. PMID:29862145
Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality
NASA Technical Reports Server (NTRS)
Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph
2008-01-01
Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.
NASA Astrophysics Data System (ADS)
Carrasco, Ana; Semedo, Alvaro; Behrens, Arno; Weisse, Ralf; Breivik, Øyvind; Saetra, Øyvind; Håkon Christensen, Kai
2016-04-01
The global wave-induced current (the Stokes Drift - SD) is an important feature of the ocean surface, with mean values close to 10 cm/s along the extra-tropical storm tracks in both hemispheres. Besides the horizontal displacement of large volumes of water the SD also plays an important role in the ocean mix-layer turbulence structure, particularly in stormy or high wind speed areas. The role of the wave-induced currents in the ocean mix-layer and in the sea surface temperature (SST) is currently a hot topic of air-sea interaction research, from forecast to climate ranges. The SD is mostly driven by wind sea waves and highly sensitive to changes in the overlaying wind speed and direction. The impact of climate change in the global wave-induced current climate will be presented. The wave model WAM has been forced by the global climate model (GCM) ECHAM5 wind speed (at 10 m height) and ice, for present-day and potential future climate conditions towards the end of the end of the twenty-first century, represented by the Intergovernmental Panel for Climate Change (IPCC) CMIP3 (Coupled Model Inter-comparison Project phase 3) A1B greenhouse gas emission scenario (usually referred to as a ''medium-high emissions'' scenario). Several wave parameters were stored as output in the WAM model simulations, including the wave spectra. The 6 hourly and 0.5°×0.5°, temporal and space resolution, wave spectra were used to compute the SD global climate of two 32-yr periods, representative of the end of the twentieth (1959-1990) and twenty-first (1969-2100) centuries. Comparisons of the present climate run with the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-40 reanalysis are used to assess the capability of the WAM-ECHAM5 runs to produce realistic SD results. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.
Akinbode, O M; Eludoyin, A O; Fashae, O A
2008-04-01
This study was carried out in one of the medium-sized public administrative towns in the southwestern part of Nigeria. Its aim is to highlight the effect of spatial distribution of settlements, population, and socio-economic activities on urban air temperature and humidity in the town. Temperature and relative humidity data from 1992 to 2001 were obtained from three meteorological stations in Akure, the Administrative Capital of Ondo State, Nigeria. The stations are located within the Federal Ministry of Aviation, Akure Airport (FMA), Federal University of Technology, Akure (FUTA) and Federal School of Agriculture (SOA). Air temperature and relative humidity measurements were also obtained from 27 points, which were cited to include road junctions, markets, built up areas, etc., using sling psychrometer. The data were subsequently analysed for spatial and temporal variations using statistical packages (SPSS and Microsoft Excel) and isolines. Actual vapour pressure and dew point temperature were computed using Magnus conversion formulae. The results obtained showed that spatial variation was insignificant, in terms of the temperature and humidity variables. The annual mean temperature (Tmean) ranged between 21.9 and 30.4 degrees C while minimum (Tmin) and maximum (Tmax) temperatures varied from 13 to 26 and 21.5-39.6 degrees C, respectively. Relative humidity (RH), actual vapour pressure (Es) and dew point temperature (Td) values also varied from 39.1% to 98.2%, 19.7-20.8 gm(-3), and 17.3-17.8 degrees C, respectively. A significant relationship (p>0.6; r<0.05) between Tmin, Es and Td was observed while the daytime 'urban heat island' intensity (UHI) ranged between 0.5 and 2.5 degrees C within the study period. The study concluded that there is influence of urban canopy on the microclimate of Akure, and hypothesizes that the urban dwellers may be subjected to some levels of weather related physiological disorderliness.
Biophysical Variables Retrieval Over Russian Winter Wheat Fields Using Medium Resolution
NASA Astrophysics Data System (ADS)
d'Andrimont, Raphael; Waldner, Francois; Bartalev, Sergey; Plotnikov, Dmitry; Kleschenko, Alexander; Virchenko, Oleg; de Wit, Allard; Roerink, Gerbert; Defourny, Pierre
2013-12-01
Winter wheat production in the Russian Federation represents one of the sources of uncertainty for the international commodity market. In particular, adverse weather conditions may induce winter kill resulting in large yields' losses. Improving the monitoring of winter- wheat in Russia with a focus on winter-kill damage and its impacts on yield is thus a key challenge.This paper presents the methods and the results of the biophysical variables retrieval on a daily basis as an input for crop growth modeling at parcel level over a 10-years period (2003-2012) in the Russian context. The field campaigns carried out on 2 sites in the Tula region from 2010 to 2012 shows that it is possible to characterize the spatial and temporal variability at pixel, field and regional scale using medium resolution sensors (MODIS) over Russian fields.