Sample records for medium resolution imaging

  1. Combining image processing and modeling to generate traces of beta-strands from cryo-EM density images of beta-barrels.

    PubMed

    Si, Dong; He, Jing

    2014-01-01

    Electron cryo-microscopy (Cryo-EM) technique produces 3-dimensional (3D) density images of proteins. When resolution of the images is not high enough to resolve the molecular details, it is challenging for image processing methods to enhance the molecular features. β-barrel is a particular structure feature that is formed by multiple β-strands in a barrel shape. There is no existing method to derive β-strands from the 3D image of a β-barrel at medium resolutions. We propose a new method, StrandRoller, to generate a small set of possible β-traces from the density images at medium resolutions of 5-10Å. StrandRoller has been tested using eleven β-barrel images simulated to 10Å resolution and one image isolated from the experimentally derived cryo-EM density image at 6.7Å resolution. StrandRoller was able to detect 81.84% of the β-strands with an overall 1.5Å 2-way distance between the detected and the observed β-traces, if the best of fifteen detections is considered. Our results suggest that it is possible to derive a small set of possible β-traces from the β-barrel cryo-EM image at medium resolutions even when no separation of the β-strands is visible in the images.

  2. Optimization of an on-board imaging system for extremely rapid radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry Kemmerling, Erica M.; Wu, Meng, E-mail: mengwu@stanford.edu; Yang, He

    2015-11-15

    Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors aremore » proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration deformation fields was computed. Results: By most global metrics (e.g., mean, median, and maximum pointwise distance), the high-resolution detector had the best performance but the medium-resolution detector was comparable. For all medium- and high-resolution detector registrations, mean error between the realistic and gold standard deformation fields was less than 4 mm. By pointwise metrics (e.g., tracking a small lesion), the high- and medium-resolution detectors performed similarly. For these detectors, the smallest error between the realistic and gold standard registrations was 0.6 mm and the largest error was 3.6 mm. Conclusions: The medium-resolution CT detector was selected as the best for an extremely rapid radiation therapy system. In essentially all test cases, data from this detector produced a significantly better registration than data from the low-resolution detector and a comparable registration to data from the high-resolution detector. The medium-resolution detector provides an appropriate compromise between registration accuracy and system cost.« less

  3. Fabry-Perot observations of comet Austin

    NASA Technical Reports Server (NTRS)

    Schultz, David; Scherb, F.; Roesler, F. L.; Li, G.; Harlander, J.; Roberts, T. P. P.; Vandenberk, D.; Nossal, S.; Coakley, M.; Oliversen, Ronald J.

    1990-01-01

    Preliminary results of a program to observe Comet Austin (1990c1) from 16 April to 4 May and from 11 May to 27 May 1990 using the West Auxiliary of the McMath Solar Telescope on Kitt Peak, Arizona were presetned. The observations were made with a 15 cm duel-etalon Fabry-Perot scanning and imaging spectrometer with two modes of operation: a high resolution mode with a velocity resolution of 1.2 km/s and a medium resolution mode with a velocity resolution 10 km/s. Scanning data was obtained with an RCA C31034A photomultiplier tube and imaging data was obtained with a Photometrics LN2 cooled CCD camera with a 516 by 516 Ford chip. The results include: (1) information on the coma outflow velocity from high resolution spectral profiles of (OI)6300 and NH2 emissions, (2) gaseous water production rates from medium resolution observation of (OI)6300, (3) spectra of H2O(+) emissions in order to study the ionized component of the coma, (4) spatial distribution of H2O(+) emission features from sequences of velocity resolved images (data cubes), and (5) spatial distribution of (OI)6300 and NH2 emissions from medium resolution images. The field of view on the sky was 10.5 arcminutes in diameter. In the imaging mode the CCD was binned 4 by 4 resulting in 7.6 sec power pixel and a subarray readout for a field of view of 10.5 min.

  4. A patch-based convolutional neural network for remote sensing image classification.

    PubMed

    Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di

    2017-11-01

    Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Equilibrium-phase MR angiography: Comparison of unspecific extracellular and protein-binding gadolinium-based contrast media with respect to image quality.

    PubMed

    Erb-Eigner, Katharina; Taupitz, Matthias; Asbach, Patrick

    2016-01-01

    The purpose of this study was to compare contrast and image quality of whole-body equilibrium-phase high-spatial-resolution MR angiography using a non-protein-binding unspecific extracellular gadolinium-based contrast medium with that of two contrast media with different protein-binding properties. 45 patients were examined using either 15 mL of gadobutrol (non-protein-binding, n = 15), 32 mL of gadobenate dimeglumine (weakly protein binding, n = 15) or 11 mL gadofosveset trisodium (protein binding, n = 15) followed by equilibrium-phase high-spatial-resolution MR-angiography of four consecutive anatomic regions. The time elapsed between the contrast injection and the beginning of the equilibrium-phase image acquisition in the respective region was measured and was up to 21 min. Signal intensity was measured in two vessels per region and in muscle tissue. Relative contrast (RC) values were calculated. Vessel contrast, artifacts and image quality were rated by two radiologists in consensus on a five-point scale. Compared with gadobutrol, gadofosveset trisodium revealed significantly higher RC values only when acquired later than 15 min after bolus injection. Otherwise, no significant differences between the three contrast media were found regarding vascular contrast and image quality. Equilibrium-phase high-spatial-resolution MR-angiography using a weakly protein-binding or even non-protein-binding contrast medium is equivalent to using a stronger protein-binding contrast medium when image acquisition is within the first 15 min after contrast injection, and allows depiction of the vasculature with high contrast and image quality. The protein-binding contrast medium was superior for imaging only later than 15 min after contrast medium injection. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Mars Digital Image Mosaic Globe

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The photomosaic that forms the base for this globe was created by merging two global digital image models (DIM's) of Mars-a medium-resolution monochrome mosaic processed to emphasize topographic features and a lower resolution color mosaic emphasizing color and albedo variations.

    The medium-resolution (1/256 or roughly 231 m/pixel) monochromatic image model was constructed from about 6,000 images having resolutions of 150-350 m/pixel and oblique illumination (Sun 20 o -45 o above the horizon). Radiometric processing was intended to suppress or remove the effects of albedo variations through the use of a high-pass divide filter, followed by photometric normalization so that the contrast of a given topographic slope would be approximately the same in all images.

    The global color mosaic was assembled at 1/64 or roughly 864 m/pixel from about 1,000 red- and green-filter images having 500-1,000 m/pixel resolution. These images were first mosaiced in groups, each taken on a single orbit of the Viking spacecraft. The orbit mosaics were then processed to remove spatially and temporally varying atmospheric haze in the overlap regions. After haze removal, the per-orbit mosaics were photometrically normalized to equalize the contrast of albedo features and mosaiced together with cosmetic seam removal. The medium-resolution DIM was used for geometric control of this color mosaic. A green-filter image was synthesized by weighted averaging of the red- and violet-filter mosaics. Finally, the product seen here was obtained by multiplying each color image by the medium-resolution monochrome image. The color balance selected for images in this map series was designed to be close to natural color for brighter, redder regions, such as Arabia Terra and the Tharsis region, but the data have been stretched so that the relatively dark regions appear darker and less red than they actually are.

    The images are presented in a projection that portrays the entire surface of Mars in a manner suitable for the production of a globe; the number, size, and placement of text annotations were chosen for a 12-inch globe. Prominent features are labeled with names approved by the International Astronomical Union. A specialized program was used to create the 'flower petal' appearance of the images; the area of each petal from 0 to 75 degrees latitude is in the Transverse Mercator projection, and the area from 75 to 90 degrees latitude is in the Lambert Azimuthal Equal-Area projection. The northern hemisphere of Mars is shown on the left, and the southern hemisphere on the right.

  7. DICOM to print, 35-mm slides, web, and video projector: tutorial using Adobe Photoshop.

    PubMed

    Gurney, Jud W

    2002-10-01

    Preparing images for publication has dealt with film and the photographic process. With picture archiving and communications systems, many departments will no longer produce film. This will change how images are produced for publication. DICOM, the file format for radiographic images, has to be converted and then prepared for traditional publication, 35-mm slides, the newest techniques of video projection, and the World Wide Web. Tagged image file format is the common format for traditional print publication, whereas joint photographic expert group is the current file format for the World Wide Web. Each medium has specific requirements that can be met with a common image-editing program such as Adobe Photoshop (Adobe Systems, San Jose, CA). High-resolution images are required for print, a process that requires interpolation. However, the Internet requires images with a small file size for rapid transmission. The resolution of each output differs and the image resolution must be optimized to match the output of the publishing medium.

  8. A digital gigapixel large-format tile-scan camera.

    PubMed

    Ben-Ezra, M

    2011-01-01

    Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.

  9. High-resolution imaging and target designation through clouds or smoke

    DOEpatents

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  10. Mapping Impervious Surface Expansion using Medium-resolution Satellite Image Time Series: A Case Study in the Yangtze River Delta, China

    NASA Technical Reports Server (NTRS)

    Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe

    2012-01-01

    Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived from this study agree well with an existing urban extent polygon data set that was previously developed independently. The overall mapping accuracy was estimated at about 92.5% with 3% commission error and 12% omission error for the impervious type from all images regardless of image quality and initial spatial resolution.

  11. First imaging results from Apertif, a phased-array feed for WSRT

    NASA Astrophysics Data System (ADS)

    Adams, Elizabeth A.; Adebahr, Björn; de Blok, Willem J. G.; Hess, Kelley M.; Hut, Boudewijn; Lucero, Danielle M.; Maccagni, Filippo; Morganti, Raffaella; Oosterloo, Tom; Staveley-Smith, Lister; van der Hulst, Thijs; Verheijen, Marc; Verstappen, Joris

    2017-01-01

    Apertif is a phased-array feed for the Westerbork Synthesis Radio Telescope (WSRT), increasing the field of view of the telescope by a factor of twenty-five. In 2017, three legacy surveys will commence: a shallow imaging survey, a medium-deep imaging survey, and a pulsars and fast transients survey. The medium-deep imaging survey will include coverage of the northern Herschel Atlas field, the CVn region, HetDex, and the Perseus-Pisces supercluster. The shallow imaging survey increases overlap with HetDex, has expanded coverage of the Perseus-Pisces supercluster, and includes part of the Zone of Avoidance. Both imaging surveys are coordinating with MaNGA and will have WEAVE follow-up. The imaging surveys will be done in full polarization over the frequency range 1130-1430 MHz, which corresponds to redshifts of z=0-0.256 for neutral hydrogen (HI). The spectral resolution is 12.2 kHz, or an HI velocity resolution of 2.6 km/s at z=0 and 3.2 km/s at z=0.256. The full resolution images will have a beam size of 15"x15"/sin(declination), and tapered data products (i.e., 30" resolution images) will also be available. The shallow survey will cover ~3500 square degrees with a four-sigma HI imaging sensitivity of 2.5x10^20 atoms cm^-2 (20 km/s linewidth) at the highest resolution and a continuum sensitivity of 15 uJy/beam (11 uJy/beam for polarization data). The current plan calls for the medium deep survey to cover 450 square degrees and provide an HI imaging sensitivity of 1.0x10^20 atoms cm^-2 at the highest resolution and a continuum sensitivity of 6 uJy/beam, close to the confusion limit (4 uJy/beam for polarization data, not confusion limited). Up-to-date information on Apertif and the planned surveys can be found at: http://www.apertif.nl.Commissioning of the Apertif instrument is currently underway. Here we present first results from the image commissioning, including the detection of HI absorption plus continuum and HI imaging. These results highlight the data quality that will be achieved for the surveys.

  12. High-resolution imaging of living mammalian cells bound by nanobeads-connected antibodies in a medium using scanning electron-assisted dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Ogura, Toshihiko

    2017-02-01

    Nanometre-scale-resolution imaging technologies for liquid-phase specimens are indispensable tools in various scientific fields. In biology, observing untreated living cells in a medium is essential for analysing cellular functions. However, nanoparticles that bind living cells in a medium are hard to detect directly using traditional optical or electron microscopy. Therefore, we previously developed a novel scanning electron-assisted dielectric microscope (SE-ADM) capable of nanoscale observations. This method enables observation of intact cells in aqueous conditions. Here, we use this SE-ADM system to clearly observe antibody-binding nanobeads in liquid-phase. We also report the successful direct detection of streptavidin-conjugated nanobeads binding to untreated cells in a medium via a biotin-conjugated anti-CD44 antibody. Our system is capable of obtaining clear images of cellular organelles and beads on the cells at the same time. The direct observation of living cells with nanoparticles in a medium allowed by our system may contribute the development of carriers for drug delivery systems (DDS).

  13. Photon-efficient super-resolution laser radar

    NASA Astrophysics Data System (ADS)

    Shin, Dongeek; Shapiro, Jeffrey H.; Goyal, Vivek K.

    2017-08-01

    The resolution achieved in photon-efficient active optical range imaging systems can be low due to non-idealities such as propagation through a diffuse scattering medium. We propose a constrained optimization-based frame- work to address extremes in scarcity of photons and blurring by a forward imaging kernel. We provide two algorithms for the resulting inverse problem: a greedy algorithm, inspired by sparse pursuit algorithms; and a convex optimization heuristic that incorporates image total variation regularization. We demonstrate that our framework outperforms existing deconvolution imaging techniques in terms of peak signal-to-noise ratio. Since our proposed method is able to super-resolve depth features using small numbers of photon counts, it can be useful for observing fine-scale phenomena in remote sensing through a scattering medium and through-the-skin biomedical imaging applications.

  14. Historical Analysis of Melt Pond Fraction on Arctic Sea Ice Through the Synthesis of High- and Medium- Resolution Optical Satellite Remote Sensing.

    NASA Astrophysics Data System (ADS)

    Wright, N.; Polashenski, C. M.

    2017-12-01

    Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces exert tremendous influence over the energy balance of the Arctic Ocean by controlling the absorption of solar radiation. Here we demonstrate the use of a newly released, open source, image classification algorithm designed to identify surface features in high resolution optical satellite imagery of sea ice. Through explicitly resolving individual features on the surface, the algorithm can determine the percentage of ice that is covered by melt ponds with a high degree of certainty. We then compare observations of melt pond fraction extracted from these images with an established method of estimating melt pond fraction from medium resolution satellite images (e.g. MODIS). Because high resolution satellite imagery does not provide the spatial footprint needed to examine the entire Arctic basin, we propose a method of synthesizing both high and medium resolution satellite imagery for an improved determination of melt pond fraction across whole Arctic. We assess the historical trends of melt pond fraction in the Arctic ocean, and address the question: Is pond coverage changing in response to changing ice conditions? Furthermore, we explore the image area that must be observed in order to get a locally representative sample (i.e. the aggregate scale), and show that it is possible to determine accurate estimates of melt pond fraction by observing sample areas significantly smaller than the typical footprint of high-resolution satellite imagery.

  15. Breaking the acoustic diffraction limit via nonlinear effect and thermal confinement for potential deep-tissue high-resolution imaging

    PubMed Central

    Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth

    2013-01-01

    Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498

  16. The Advanced Energetic Pair Telescope (AdEPT}: A Future Medium-Energy Gamma-Ray Balloon (and Explorer?) Mission

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2011-01-01

    Gamma-ray astrophysics probes the highest energy, exotic phenomena in astrophysics. In the medium-energy regime, 0.1-200 MeV, many astrophysical objects exhibit unique and transitory behavior such as the transition from electron dominated to hadron dominated processes, spectral breaks, bursts, and flares. Medium-energy gamma-ray imaging however, continues to be a major challenge particularly because of high background, low effective area, and low source intensities. The sensitivity and angular resolution required to address these challenges requires a leap in technology. The Advance Energetic Pair Telescope (AdEPT) being developed at GSFC is designed to image gamma rays above 5 MeV via pair production with angular resolution of 1-10 deg. In addition AdEPT will, for the first time, provide high polarization sensitivity in this energy range. This performance is achieved by reducing the effective area in favor of enhanced angular resolution through the use of a low-density gaseous conversion medium. AdEPT is based on the Three-Dimensional Track Imager (3-DTI) technology that combines a large volume Negative Ion Time Projection Chamber (NITPC) with 2-D Micro-Well Detector (MWD) readout. I will review the major science topics addressable with medium-energy gamma-rays and discuss the current status of the AdEPT technology, a proposed balloon instrument, and the design of a future satellite mission.

  17. Spatially detailed retrievals of spring phenology from single-season high-resolution image time series

    NASA Astrophysics Data System (ADS)

    Vrieling, Anton; Skidmore, Andrew K.; Wang, Tiejun; Meroni, Michele; Ens, Bruno J.; Oosterbeek, Kees; O'Connor, Brian; Darvishzadeh, Roshanak; Heurich, Marco; Shepherd, Anita; Paganini, Marc

    2017-07-01

    Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.

  18. Time of flight dependent linearity in diffuse imaging: how effective is it to evaluate the spatial resolution by measuring the edge response function?

    PubMed

    Ortiz-Rascón, E; Bruce, N C; Rodríguez-Rosales, A A; Garduño-Mejía, J

    2016-03-01

    We describe the behavior of linearity in diffuse imaging by evaluating the differences between time-resolved images produced by photons arriving at the detector at different times. Two approaches are considered: Monte Carlo simulations and experimental results. The images of two complete opaque bars embedded in a transparent or in a turbid medium with a slab geometry are analyzed; the optical properties of the turbid medium sample are close to those of breast tissue. A simple linearity test was designed involving a direct comparison between the intensity profile produced by two bars scanned at the same time and the intensity profile obtained by adding two profiles of each bar scanned one at a time. It is shown that the linearity improves substantially when short time of flight photons are used in the imaging process, but even then the nonlinear behavior prevails. As the edge response function (ERF) has been used widely for testing the spatial resolution in imaging systems, the main implication of a time dependent linearity is the weakness of the linearity assumption when evaluating the spatial resolution through the ERF in diffuse imaging systems, and the need to evaluate the spatial resolution by other methods.

  19. Windowed time-reversal music technique for super-resolution ultrasound imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Labyed, Yassin

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements.

  20. Optimization of contrast resolution by genetic algorithm in ultrasound tissue harmonic imaging.

    PubMed

    Ménigot, Sébastien; Girault, Jean-Marc

    2016-09-01

    The development of ultrasound imaging techniques such as pulse inversion has improved tissue harmonic imaging. Nevertheless, no recommendation has been made to date for the design of the waveform transmitted through the medium being explored. Our aim was therefore to find automatically the optimal "imaging" wave which maximized the contrast resolution without a priori information. To overcome assumption regarding the waveform, a genetic algorithm investigated the medium thanks to the transmission of stochastic "explorer" waves. Moreover, these stochastic signals could be constrained by the type of generator available (bipolar or arbitrary). To implement it, we changed the current pulse inversion imaging system by including feedback. Thus the method optimized the contrast resolution by adaptively selecting the samples of the excitation. In simulation, we benchmarked the contrast effectiveness of the best found transmitted stochastic commands and the usual fixed-frequency command. The optimization method converged quickly after around 300 iterations in the same optimal area. These results were confirmed experimentally. In the experimental case, the contrast resolution measured on a radiofrequency line could be improved by 6% with a bipolar generator and it could still increase by 15% with an arbitrary waveform generator. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Quantitative criteria for assessment of gamma-ray imager performance

    NASA Astrophysics Data System (ADS)

    Gottesman, Steve; Keller, Kristi; Malik, Hans

    2015-08-01

    In recent years gamma ray imagers such as the GammaCamTM and Polaris have demonstrated good imaging performance in the field. Imager performance is often summarized as "resolution", either angular, or spatial at some distance from the imager, however the definition of resolution is not always related to the ability to image an object. It is difficult to quantitatively compare imagers without a common definition of image quality. This paper examines three categories of definition: point source; line source; and area source. It discusses the details of those definitions and which ones are more relevant for different situations. Metrics such as Full Width Half Maximum (FWHM), variations on the Rayleigh criterion, and some analogous to National Imagery Interpretability Rating Scale (NIIRS) are discussed. The performance against these metrics is evaluated for a high resolution coded aperture imager modeled using Monte Carlo N-Particle (MCNP), and for a medium resolution imager measured in the lab.

  2. Blur spot limitations in distal endoscope sensors

    NASA Astrophysics Data System (ADS)

    Yaron, Avi; Shechterman, Mark; Horesh, Nadav

    2006-02-01

    In years past, the picture quality of electronic video systems was limited by the image sensor. In the present, the resolution of miniature image sensors, as in medical endoscopy, is typically superior to the resolution of the optical system. This "excess resolution" is utilized by Visionsense to create stereoscopic vision. Visionsense has developed a single chip stereoscopic camera that multiplexes the horizontal dimension of the image sensor into two (left and right) images, compensates the blur phenomena, and provides additional depth resolution without sacrificing planar resolution. The camera is based on a dual-pupil imaging objective and an image sensor coated by an array of microlenses (a plenoptic camera). The camera has the advantage of being compact, providing simultaneous acquisition of left and right images, and offering resolution comparable to a dual chip stereoscopic camera with low to medium resolution imaging lenses. A stereoscopic vision system provides an improved 3-dimensional perspective of intra-operative sites that is crucial for advanced minimally invasive surgery and contributes to surgeon performance. An additional advantage of single chip stereo sensors is improvement of tolerance to electronic signal noise.

  3. Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Boyle, A.; Grychtol, B.; Cabrera, J.; Marteau, J.; Adler, A.

    2016-05-01

    Electrical resistivity images supply information on sub-surface structures and are classically performed to characterize faults geometry. Here we use the presence of a tunnel intersecting a regional fault to inject electrical currents between surface and the tunnel to improve the image resolution at depth. We apply an original methodology for defining the inversion parametrization based on pilot points to better deal with the heterogeneous sounding of the medium. An increased region of high spatial resolution is shown by analysis of point spread functions as well as inversion of synthetics. Such evaluations highlight the advantages of using transmission measurements by transferring a few electrodes from the main profile to increase the sounding depth. Based on the resulting image we propose a revised structure for the medium surrounding the Cernon fault supported by geological observations and muon flux measurements.

  4. An Investigation of the Cold Interstellar Medium of the Outer Galaxy

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.

    1997-01-01

    The primary objective of this proposal was to determine the relationship between the molecular gas and dust components of the interstellar medium of the Outer Galaxy. It made use of the High Resolution IRAS Galaxy Atlas and the FCRAO CO Survey of the Outer Galaxy. These HIRES images greatly augment the spatial dynamic range of the IRAS Survey data and the ability to discriminate multiple point sources within a compact region. Additionally, the HIRES far infrared images allow for more direct comparisons with molecular line data observed at 45 sec resolution. From funding of this proposal, we have completed two papers for publication in a refereed journal.

  5. Ultrasound modulation of bioluminescence generated inside a turbid medium

    NASA Astrophysics Data System (ADS)

    Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.

    2017-03-01

    In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep ( 20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, M; Shankar, A; Lau, A

    Purpose: Demonstrate and quantify the augmented resolution due to focalspot size decrease in images acquired on the anode side of the field, for both small and medium (0.3 and 0.6mm) focal-spot sizes using the experimental task-based GM-ROD metric. Theoretical calculations have shown that a medium focal-spot can achieve the resolution of a small focal-spot if acquired with a tilted anode, effectively providing a higher-output small focal-spot. Methods: The MAF-CMOS (micro-angiographic fluoroscopic complementary-metal-oxide semiconductor) detector (75µm pixel pitch) imaged two copper wire segments of different diameter and a pipeline stent at the central axis and on the anode side of themore » beam, achieved by tilting the x-ray C-arm (Toshiba Infinix) to 6° and realigning the detector with the perpendicular ray to correct for x-ray obliquity. The relative gain in resolution was determined using the GM-ROD metric, which compares images on the basis of the Fourier transform of the image and the measured NNPS. To emphasize the geometric unsharpness, images were acquired at a magnification of two. Results: Images acquired on the anode side were compared to those acquired on the central axis with the same target-area focal-spot to consider the effect of an angled tube, and for all three objects the advantage of the smaller effective focal-spot was clear, showing a maximum improvement of 36% in GM-ROD. The images obtained with the small focal-spot at the central axis were compared to those of the medium focal-spot at the anode side and, for all objects, the relative performance was comparable. Conclusion: For three objects, the GM-ROD demonstrated the advantage of the anode side focal-spot. The comparable performance of the medium focal-spot on the anode side will allow for a high-output small focal-spot; a necessity in endovascular image-guided interventions. Partial support from an NIH grant R01EB002873 and an equipment grant from Toshiba Medical Systems Corp.« less

  7. Monitoring of oil pollution in the Arabian Gulf based on medium resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Ghedira, H.

    2013-12-01

    A large number of inland and offshore oil fields are located in the Arabian Gulf where about 25% of the world's oil is produced by the countries surrounding the Arabian Gulf region. Almost all of this oil production is shipped by sea worldwide through the Strait of Hormuz making the region vulnerable to environmental and ecological threats that might arise from accidental or intentional oil spills. Remote sensing technologies have the unique capability to detect and monitor oil pollutions over large temporal and spatial scales. Synoptic satellite imaging can date back to 1972 when Landsat-1 was launched. Landsat satellite missions provide long time series of imagery with a spatial resolution of 30 m. MODIS sensors onboard NASA's Terra and Aqua satellites provide a wide and frequent coverage at medium spatial resolution, i.e. 250 m and 500, twice a day. In this study, the capability of medium resolution MODIS and Landsat data in detecting and monitoring oil pollutions in the Arabian Gulf was tested. Oil spills and slicks show negative or positive contrasts in satellite derived RGB images compared with surrounding clean waters depending on the solar/viewing geometry, oil thickness and evolution, etc. Oil-contaminated areas show different spectral characteristics compared with surrounding waters. Rayleigh-corrected reflectance at the seven medium resolution bands of MODIS is lower in oil affected areas. This is caused by high light absorption of oil slicks. 30-m Landsat image indicated the occurrence of oil spill on May 26 2000 in the Arabian Gulf. The oil spill showed positive contrast and lower temperature than surrounding areas. Floating algae index (FAI) images are also used to detect oil pollution. Oil-contaminated areas were found to have lower FAI values. To track the movement of oil slicks found on October 21 2007, ocean circulations from a HYCOM model were examined and demonstrated that the oil slicks were advected toward the coastal areas of United Arab Emirates (UAE). This can help to enable an early alarm for oil pollution and minimize the potential adverse effects. Remote sensing provides an effective tool for monitoring oil pollution. Medium resolution MODIS and Landsat data have shown to be effective in detecting oil pollution over small areas. Combined with remote sensing imagery, ocean circulation models demonstrate their unique value for developing a warning and forecasting system for oil pollution management.

  8. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media

    NASA Astrophysics Data System (ADS)

    Edrei, Eitan; Scarcelli, Giuliano

    2016-09-01

    High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.

  9. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media.

    PubMed

    Edrei, Eitan; Scarcelli, Giuliano

    2016-09-16

    High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.

  10. Spacecraft Images Comet Target Jets

    NASA Image and Video Library

    2010-11-04

    NASA Deep Impact spacecraft High- and Medium-Resolution Imagers HRI and MRI captured multiple jets emanating from comet Hartley 2 turning on and off while the spacecraft is 8 million kilometers 5 million miles away from the comet.

  11. Toward an image compression algorithm for the high-resolution electronic still camera

    NASA Technical Reports Server (NTRS)

    Nerheim, Rosalee

    1989-01-01

    Taking pictures with a camera that uses a digital recording medium instead of film has the advantage of recording and transmitting images without the use of a darkroom or a courier. However, high-resolution images contain an enormous amount of information and strain data-storage systems. Image compression will allow multiple images to be stored in the High-Resolution Electronic Still Camera. The camera is under development at Johnson Space Center. Fidelity of the reproduced image and compression speed are of tantamount importance. Lossless compression algorithms are fast and faithfully reproduce the image, but their compression ratios will be unacceptably low due to noise in the front end of the camera. Future efforts will include exploring methods that will reduce the noise in the image and increase the compression ratio.

  12. Improving axial resolution in confocal microscopy with new high refractive index mounting media.

    PubMed

    Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne

    2015-01-01

    Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

  13. Comparison of C-band and Ku-band scatterometry for medium-resolution tropical forest inventory

    NASA Astrophysics Data System (ADS)

    Hardin, Perry J.; Long, David G.

    1993-08-01

    Since 1978, AVHRR imagery from NOAA polar orbiters has provided coverage of tropical regions at this desirable resolution, but much of the imagery is plagued with heavy cloud cover typical of equatorial regions. Clearly a medium resolution radar sensor would be a useful addition to AVHRR, but none are planned to fly in the future. In contrast, scatterometers are an important radar component of many future earth remote sensing systems, but the inherent resolution of these instruments is too low (approximately equals 50 km) for monitoring earth's land surfaces. However, a recently developed image reconstruction technique can increase the spatial resolution of scatterometer data to levels (approximately equals 4 to 14 km) approaching AVHRR global area coverage (approximately equals 4 km). When reconstructed, scatterometer data may prove to be an important asset in evaluating equatorial land cover. In this paper, the authors compare the utility of reconstructed Seasat scatterometer (SASS), Ku-band microwave data to reconstructed ERS-1 C-band scatterometer imagery for discrimination and monitoring of tropical vegetation formations. In comparative classification experiments conducted on reconstructed images of Brasil, the ERS-1 C-band imagery was slightly superior to its reconstructed SASS Ku-band counterpart for discriminating between several equatorial land cover classes. A classification accuracy approaching .90 was achieved when the two scatterometer images were combined with an AVHRR normalized difference vegetation index (NDVI) image. The success of these experiments indicates that further research into reconstructed image applications to tropical forest monitoring is warranted.

  14. Optical imaging of objects in turbid medium with ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Yu; Sun, Chia-Wei; Yang, Chih Chung; Kiang, Yean-Woei; Lin, Chii-Wann

    2000-07-01

    Photons are seriously scattered when entering turbid medium; this the images of objects hidden in turbid medium can not be obtained by just collecting the transmitted photons. Early-arriving photons, which are also called ballistic or snake protons, are much less scattered when passing through turbid medium, and contains more image information than the late-arriving ones. Therefore, objects embedded in turbid medium can be imaged by gathering the ballistic and snake photons. In the present research we try to recover images of objects in turbid medium by simultaneously time-gate and polarization-gate to obtain the snake photons. An Argon-pumped Ti-Sapphire laser with 100fs pulses was employed as a light source. A streak camera with a 2ps temporal resolution was used to extract the ballistic and snake photons. Two pieces of lean swine meat, measured 4mmX3mm and 5xxX4mm, respectively, were placed in a 10cmX10cmX3cm acrylic tank, which was full of diluted milk. A pair of polarizer and an analyzer was used to extract the light that keeps polarization unchanged. The combination of time gating and polarization gating resulted in good images of objects hidden in turbid medium.

  15. Apparatus and method for measuring and imaging traveling waves

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2001-01-01

    An apparatus is provided for imaging traveling waves in a medium. The apparatus includes a vibration excitation source configured to impart traveling waves within a medium. An emitter is configured to produce two or more wavefronts, at least one wavefront modulated by a vibrating medium. A modulator is configured to modulate another wavefront in synchronization with the vibrating medium. A sensing media is configured to receive in combination the modulated one wavefront and the another wavefront and having a detection resolution within a limited bandwidth. The another wavefront is modulated at a frequency such that a difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. Such modulation produces an image of the vibrating medium having an output intensity that is substantially linear with small physical variations within the vibrating medium for all vibration frequencies above the sensing media's response bandwidth. A detector is configured to detect an image of traveling waves in the vibrating medium resulting from interference between the modulated one wavefront and the another wavefront when combined in association with the sensing media. The traveling wave can be used to characterize certain material properties of the medium. Furthermore, a method is provided for imaging and characterizing material properties according to the apparatus.

  16. A tunable refractive index matching medium for live imaging cells, tissues and model organisms

    PubMed Central

    Boothe, Tobias; Hilbert, Lennart; Heide, Michael; Berninger, Lea; Huttner, Wieland B; Zaburdaev, Vasily; Vastenhouw, Nadine L; Myers, Eugene W; Drechsel, David N; Rink, Jochen C

    2017-01-01

    In light microscopy, refractive index mismatches between media and sample cause spherical aberrations that often limit penetration depth and resolution. Optical clearing techniques can alleviate these mismatches, but they are so far limited to fixed samples. We present Iodixanol as a non-toxic medium supplement that allows refractive index matching in live specimens and thus substantially improves image quality in live-imaged primary cell cultures, planarians, zebrafish and human cerebral organoids. DOI: http://dx.doi.org/10.7554/eLife.27240.001 PMID:28708059

  17. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2015-03-01

    Aboveground biomass estimation is critical in understanding forest contribution to regional carbon cycles. Despite the successful application of high spatial and spectral resolution sensors in aboveground biomass (AGB) estimation, there are challenges related to high acquisition costs, small area coverage, multicollinearity and limited availability. These challenges hamper the successful regional scale AGB quantification. The aim of this study was to assess the utility of the newly-launched medium-resolution multispectral Landsat 8 Operational Land Imager (OLI) dataset with a large swath width, in quantifying AGB in a forest plantation. We applied different sets of spectral analysis (test I: spectral bands; test II: spectral vegetation indices and test III: spectral bands + spectral vegetation indices) in testing the utility of Landsat 8 OLI using two non-parametric algorithms: stochastic gradient boosting and the random forest ensembles. The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis and Pinus taeda especially when using the extracted spectral information together with the derived spectral vegetation indices. We also noted that incorporating the optimal subset of the most important selected medium-resolution multispectral Landsat 8 OLI bands improved AGB accuracies. We compared medium-resolution multispectral Landsat 8 OLI AGB estimates with Landsat 7 ETM + estimates and the latter yielded lower estimation accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the relatively affordable and readily available newly-launched medium-resolution Landsat 8 OLI dataset, with a large swath width (185-km) in precisely estimating AGB. This strength of the Landsat OLI dataset is crucial especially in sub-Saharan Africa where high-resolution remote sensing data availability remains a challenge.

  18. Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media

    PubMed Central

    Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne

    2015-01-01

    Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required. PMID:25822785

  19. Time reversal and phase coherent music techniques for super-resolution ultrasound imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Labyed, Yassin

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements. A modified TR-MUSIC imaging algorithm is used to account for ultrasound scattering from both density and compressibility contrasts. The phase response of ultrasound transducer elements is accounted for in a PC-MUSIC system.

  20. Daily monitoring of vegetation conditions and evapotranspiration at field scale by fusing multi-satellite images

    USDA-ARS?s Scientific Manuscript database

    Vegetation monitoring requires frequent remote sensing observations. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for vegetation monitoring. The medium spatial resolution (10-100m) sensors are su...

  1. Laser line scanning for fluorescence reflectance imaging: a phantom study and in vivo validation of the enhancement of contrast and resolution.

    PubMed

    Fantoni, Frédéric; Hervé, Lionel; Poher, Vincent; Gioux, Sylvain; Mars, Jérôme I; Dinten, Jean-Marc

    2014-01-01

    Intraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality to noninvasively monitor fluorescence-targeted tumors. In some situations, this kind of imaging suffers from poor resolution due to the diffusive nature of photons in tissue. The objective of the proposed technique is to tackle this limitation. It relies on the scanning of the medium with a laser line illumination and the acquisition of images at each position of excitation. The detection scheme proposed takes advantage of the stack of images acquired to enhance the resolution and the contrast of the final image. The experimental protocol is described to fully understand why we overpass the classical limits and validate the scheme on tissue-like phantoms and in vivo with a preliminary testing. The results are compared with those obtained with a classical wide-field illumination.

  2. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  3. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index

    NASA Astrophysics Data System (ADS)

    Yang, Dedi; Chen, Jin; Zhou, Yuan; Chen, Xiang; Chen, Xuehong; Cao, Xin

    2017-06-01

    Plastic greenhouses (PGs) are an important agriculture development technique to protect and control the growing environment for food crops. The extensive use of PGs can change the agriculture landscape and affects the local environment. Accurately mapping and estimating the coverage of PGs is a necessity to the strategic planning of modern agriculture. Unfortunately, PG mapping over large areas is methodologically challenging, as the medium spatial resolution satellite imagery (such as Landsat data) used for analysis lacks spatial details and spectral variations. To fill the gap, the paper proposes a new plastic greenhouse index (PGI) based on the spectral, sensitivity, and separability analysis of PGs using medium spatial resolution images. In the context of the Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, the paper examines the effectiveness and capability of the proposed PGI. The results indicate that PGs in Landsat ETM+ image can be successfully detected by the PGI if the PG fraction is greater than 12% in a mixed pixel. A kappa coefficient of 0.83 and overall accuracy of 91.2% were achieved when applying the proposed PGI in the case of Weifang District, Shandong, China. These results show that the proposed index can be applied to identifying transparent PGs in atmospheric corrected Landsat image and has the potential for the digital mapping of plastic greenhouse coverage over a large area.

  4. Development of the Advanced Energetic Pair Telescope (AdEPT) for Medium-Energy Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Bloser, Peter F.; Dion, Michael P.; McConnell, Mark L.; deNolfo, Georgia A.; Son, Seunghee; Ryan, James M.; Stecker, Floyd W.

    2011-01-01

    Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI. These instruments, however, are not optimized for observations in the medium-energy (approx.0.3< E(sub gamma)< approx.200 MeV) regime where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. We outline some of the major science goals of a medium-energy mission. These science goals are best achieved with a combination of two telescopes, a Compton telescope and a pair telescope, optimized to provide significant improvements in angular resolution and sensitivity. In this paper we describe the design of the Advanced Energetic Pair Telescope (AdEPT) based on the Three-Dimensional Track Imager (3-DTI) detector. This technology achieves excellent, medium-energy sensitivity, angular resolution near the kinematic limit, and gamma-ray polarization sensitivity, by high resolution 3-D electron tracking. We describe the performance of a 30x30x30 cm3 prototype of the AdEPT instrument.

  5. Three-dimensional morphological imaging of human induced pluripotent stem cells by using low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Kakuno, Yumi; Goto, Kentaro; Fukami, Tadashi; Sugiyama, Norikazu; Iwai, Hidenao; Mizuguchi, Yoshinori; Yamashita, Yutaka

    2014-03-01

    There is an increasing need for non-invasive imaging techniques in the field of stem cell research. Label-free techniques are the best choice for assessment of stem cells because the cells remain intact after imaging and can be used for further studies such as differentiation induction. To develop a high-resolution label-free imaging system, we have been working on a low-coherence quantitative phase microscope (LC-QPM). LC-QPM is a Linnik-type interference microscope equipped with nanometer-resolution optical-path-length control and capable of obtaining three-dimensional volumetric images. The lateral and vertical resolutions of our system are respectively 0.5 and 0.93 μm and this performance allows capturing sub-cellular morphological features of live cells without labeling. Utilizing LC-QPM, we reported on three-dimensional imaging of membrane fluctuations, dynamics of filopodia, and motions of intracellular organelles. In this presentation, we report three-dimensional morphological imaging of human induced pluripotent stem cells (hiPS cells). Two groups of monolayer hiPS cell cultures were prepared so that one group was cultured in a suitable culture medium that kept the cells undifferentiated, and the other group was cultured in a medium supplemented with retinoic acid, which forces the stem cells to differentiate. The volumetric images of the 2 groups show distinctive differences, especially in surface roughness. We believe that our LC-QPM system will prove useful in assessing many other stem cell conditions.

  6. Crop Monitoring Using European and Chinese Medium Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Fan, Jinlong; Defourny, Pierre

    2016-08-01

    The European medium resolution satellite data ENVISAT/MERIS were available in 2002 while the Chinese medium resolution spectrometer data with 5 bands in 250m spatial resolution and 15 bands in 1000m onboard Fengyun 3 series satellites became a new data source at the end of the year 2008. Under the framework of Dragon program 3, both teams demonstrated the utilization of medium resolution satellite data in crop monitoring. The Chinese team has made efforts to improve the processing of the Chinese Medium resolution satellite data (MERSI) in order to promote its applications in crop monitoring. The European team has checked and evaluated the processed FY3A/3B MERSI data and inspiring findings have found in terms of the imaging quality and the performance of retrieving LAI and GAI etc. The Chinese team has mapped the winter wheat area in North China Plain in the growing season from 2009 to 2014 with the finely processed FY3A MERSI 250m data. The LAI retrieval algorithm with the FY3 MERSI data was developed based on the in-situ data and other satellite products. The participation of young scientists is critical for the implementation of the project. 4 Chinese master students were involving in this project and the Chinese team hosted a European young master student to carry out research in China in the spring of 2014. Both research teams are looking forward to successful and productive achievements for this Dragon project and new deep cooperation in Dragon 4.

  7. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect

    PubMed Central

    Edrei, Eitan; Scarcelli, Giuliano

    2016-01-01

    Several phenomena have been recently exploited to circumvent scattering and have succeeded in imaging or focusing light through turbid layers. However, the requirement for the turbid medium to be steady during the imaging process remains a fundamental limitation of these methods. Here we introduce an optical imaging modality that overcomes this challenge by taking advantage of the so-called shower-curtain effect, adapted to the spatial-frequency domain via speckle correlography. We present high resolution imaging of objects hidden behind millimeter-thick tissue or dense lens cataracts. We demonstrate our imaging technique to be insensitive to rapid medium movements (> 5 m/s) beyond any biologically-relevant motion. Furthermore, we show this method can be extended to several contrast mechanisms and imaging configurations. PMID:27347498

  8. Go Huygens!

    NASA Image and Video Library

    2005-01-11

    This map illustrates the planned imaging coverage for the Descent Imager/Spectral Radiometer, onboard the European Space Agency's Huygens probe during the probe's descent toward Titan's surface on Jan. 14, 2005. The Descent Imager/Spectral Radiometer is one of two NASA instruments on the probe. The colored lines delineate regions that will be imaged at different resolutions as the probe descends. On each map, the site where Huygens is predicted to land is marked with a yellow dot. This area is in a boundary between dark and bright regions. This map was made from the images taken by the Cassini spacecraft cameras on Oct. 26, 2004, at image scales of 4 to 6 kilometers (2.5 to 3.7 miles) per pixel. The images were obtained using a narrow band filter centered at 938 nanometers -- a near-infrared wavelength (invisible to the human eye) at which light can penetrate Titan's atmosphere to reach the surface and return through the atmosphere to be detected by the camera. The images have been processed to enhance surface details. Only brightness variations on Titan's surface are seen; the illumination is such that there is no shading due to topographic variations. For about two hours, the probe will fall by parachute from an altitude of 160 kilometers (99 miles) to Titan's surface. During the descent the camera on the probe and five other science instruments will send data about the moon's atmosphere and surface back to the Cassini spacecraft for relay to Earth. The Descent Imager/Spectral Radiometer will take pictures as the probe slowly spins, and some these will be made into panoramic views of Titan's surface. This map shows the planned coverage by the medium- and high-resolution. PIA06173 shows expected coverage by the Descent Imager/Spectral Radiometer side-looking imager and two downward-looking imagers - one providing medium-resolution and the other high-resolution coverage. http://photojournal.jpl.nasa.gov/catalog/PIA06173

  9. A generic framework for internet-based interactive applications of high-resolution 3-D medical image data.

    PubMed

    Liu, Danzhou; Hua, Kien A; Sugaya, Kiminobu

    2008-09-01

    With the advances in medical imaging devices, large volumes of high-resolution 3-D medical image data have been produced. These high-resolution 3-D data are very large in size, and severely stress storage systems and networks. Most existing Internet-based 3-D medical image interactive applications therefore deal with only low- or medium-resolution image data. While it is possible to download the whole 3-D high-resolution image data from the server and perform the image visualization and analysis at the client site, such an alternative is infeasible when the high-resolution data are very large, and many users concurrently access the server. In this paper, we propose a novel framework for Internet-based interactive applications of high-resolution 3-D medical image data. Specifically, we first partition the whole 3-D data into buckets, remove the duplicate buckets, and then, compress each bucket separately. We also propose an index structure for these buckets to efficiently support typical queries such as 3-D slicer and region of interest, and only the relevant buckets are transmitted instead of the whole high-resolution 3-D medical image data. Furthermore, in order to better support concurrent accesses and to improve the average response time, we also propose techniques for efficient query processing, incremental transmission, and client sharing. Our experimental study in simulated and realistic environments indicates that the proposed framework can significantly reduce storage and communication requirements, and can enable real-time interaction with remote high-resolution 3-D medical image data for many concurrent users.

  10. Nonlinear ultrasonic imaging with X wave

    NASA Astrophysics Data System (ADS)

    Du, Hongwei; Lu, Wei; Feng, Huanqing

    2009-10-01

    X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.

  11. Spatially dispersive finite-difference time-domain analysis of sub-wavelength imaging by the wire medium slabs

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Belov, Pavel A.; Hao, Yang

    2006-06-01

    In this paper, a spatially dispersive finite-difference time-domain (FDTD) method to model wire media is developed and validated. Sub-wavelength imaging properties of the finite wire medium slabs are examined. It is demonstrated that the slab with its thickness equal to an integer number of half-wavelengths is capable of transporting images with sub-wavelength resolution from one interface of the slab to another. It is also shown that the operation of such transmission devices is not sensitive to their transverse dimensions, which can be made even comparable to the wavelength. In this case, the edge diffractions are negligible and do not disturb the image formation.

  12. Multi-scale investigation of shrub encroachment in southern Africa

    NASA Astrophysics Data System (ADS)

    Aplin, Paul; Marston, Christopher; Wilkinson, David; Field, Richard; O'Regan, Hannah

    2016-04-01

    There is growing speculation that savannah environments throughout Africa have been subject to shrub encroachment in recent years, whereby grassland is lost to woody vegetation cover. Changes in the relative proportions of grassland and woodland are important in the context of conservation of savannah systems, with implications for faunal distributions, environmental management and tourism. Here, we focus on southern Kruger National Park, South Africa, and investigate whether or not shrub encroachment has occurred over the last decade and a half. We use a multi-scale approach, examining the complementarity of medium (e.g. Landsat TM and OLI) and fine (e.g. QuickBird and WorldView-2) spatial resolution satellite sensor imagery, supported by intensive field survey in 2002 and 2014. We employ semi-automated land cover classification, involving a hybrid unsupervised clustering approach with manual class grouping and checking, followed by change detection post-classification comparison analysis. The results show that shrub encroachment is indeed occurring, a finding evidenced through three fine resolution replicate images plus medium resolution imagery. The results also demonstrate the complementarity of medium and fine resolution imagery, though some thematic information must be sacrificed to maintain high medium resolution classification accuracy. Finally, the findings have broader implications for issues such as vegetation seasonality, spatial transferability and management practices.

  13. Coherent and incoherent imaging through scattering media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Edrei, Eitan

    2017-02-01

    The shower-curtain effect is a familiar phenomenon, routinely observed in our everyday life: an object placed behind a scattering layer appears blurred but if the object is attached to the scattering layer it can be clearly resolved. The optical system we developed takes advantage of the shower-curtain effect properties and generalizes them to achieve high-resolution imaging of objects placed at a nearly arbitrary distance behind the scattering medium. The imaging procedure is based on retrieving the object Fourier transform from the turbid medium (used as the shower-curtain) through a correlography technique based on speckle illumination. Illuminating the object with a speckle pattern rather than a coherent beam, we show that the correlography principles can be effectively applied in the near field. While the far-field condition is usually known as z<(2D^2)⁄λ (D, size of the object; λ wavelength); by tuning the spatial coherence of the illumination beam, as one can do with speckle illumination, the "far-field" condition can be written as z<(2DRc)⁄λ where Rc is the correlation radius of the speckle pattern. Using our method we present high-resolution imaging of objects hidden behind millimeter-thick tissue or dense lens cataracts, and demonstrate our imaging technique to be insensitive to rapid medium movements (<5 m/s) beyond any biologically relevant motion. Furthermore, we show this method can be extended to several contrast mechanisms and imaging configurations.

  14. Comet Dead Ahead

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows comet Tempel 1 as seen through the clear filter of the medium resolution imager camera on Deep Impact. It was taken on June 26, 2005, when the spacecraft was 7,118,499.4 kilometers (4,423,435 miles) away from the comet. Eight images were combined to create this picture, and a logarithmic stretch was applied to enhance the coma of the comet.

  15. Microcontroller-driven fluid-injection system for atomic force microscopy.

    PubMed

    Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  16. Capturing the Coma

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows comet Tempel 1, as seen by the Deep Impact spacecraft on June 21, 2005. It was taken using the clear filter of the spacecraft's medium resolution imager camera. The spacecraft was 11,564,081.7 kilometers (7,185,920 miles) away from the comet. Twelve images were combined together, and a logarithmic stretch was applied to enhance the coma of the comet.

  17. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography

    USGS Publications Warehouse

    Husak, G.J.; Marshall, M. T.; Michaelsen, J.; Pedreros, Diego; Funk, Christopher C.; Galu, G.

    2008-01-01

    Reliable estimates of cropped area (CA) in developing countries with chronic food shortages are essential for emergency relief and the design of appropriate market-based food security programs. Satellite interpretation of CA is an effective alternative to extensive and costly field surveys, which fail to represent the spatial heterogeneity at the country-level. Bias-corrected, texture based classifications show little deviation from actual crop inventories, when estimates derived from aerial photographs or field measurements are used to remove systematic errors in medium resolution estimates. In this paper, we demonstrate a hybrid high-medium resolution technique for Central Ethiopia that combines spatially limited unbiased estimates from IKONOS images, with spatially extensive Landsat ETM+ interpretations, land-cover, and SRTM-based topography. Logistic regression is used to derive the probability of a location being crop. These individual points are then aggregated to produce regional estimates of CA. District-level analysis of Landsat based estimates showed CA totals which supported the estimates of the Bureau of Agriculture and Rural Development. Continued work will evaluate the technique in other parts of Africa, while segmentation algorithms will be evaluated, in order to automate classification of medium resolution imagery for routine CA estimation in the future.

  18. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Marshall, M. T.; Michaelsen, J.; Pedreros, D.; Funk, C.; Galu, G.

    2008-07-01

    Reliable estimates of cropped area (CA) in developing countries with chronic food shortages are essential for emergency relief and the design of appropriate market-based food security programs. Satellite interpretation of CA is an effective alternative to extensive and costly field surveys, which fail to represent the spatial heterogeneity at the country-level. Bias-corrected, texture based classifications show little deviation from actual crop inventories, when estimates derived from aerial photographs or field measurements are used to remove systematic errors in medium resolution estimates. In this paper, we demonstrate a hybrid high-medium resolution technique for Central Ethiopia that combines spatially limited unbiased estimates from IKONOS images, with spatially extensive Landsat ETM+ interpretations, land-cover, and SRTM-based topography. Logistic regression is used to derive the probability of a location being crop. These individual points are then aggregated to produce regional estimates of CA. District-level analysis of Landsat based estimates showed CA totals which supported the estimates of the Bureau of Agriculture and Rural Development. Continued work will evaluate the technique in other parts of Africa, while segmentation algorithms will be evaluated, in order to automate classification of medium resolution imagery for routine CA estimation in the future.

  19. Imaging photorefractive optical vibration measurement method and device

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.; Hale, Thomas C.

    2000-01-01

    A method and apparatus are disclosed for characterizing a vibrating image of an object of interest. The method includes providing a sensing media having a detection resolution within a limited bandwidth and providing an object of interest having a vibrating medium. Two or more wavefronts are provided, with at least one of the wavefronts being modulated by interacting the one wavefront with the vibrating medium of the object of interest. The another wavefront is modulated such that the difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. The modulated one wavefront and another wavefront are combined in association with the sensing media to interfere and produce simultaneous vibration measurements that are distributed over the object so as to provide an image of the vibrating medium. The image has an output intensity that is substantially linear with small physical variations within the vibrating medium. Furthermore, the method includes detecting the image. In one implementation, the apparatus comprises a vibration spectrum analyzer having an emitter, a modulator, sensing media and a detector configured so as to realize such method. According to another implementation, the apparatus comprises a vibration imaging device.

  20. Instrumentation progress at the Giant Magellan Telescope project

    NASA Astrophysics Data System (ADS)

    Jacoby, George H.; Bernstein, R.; Bouchez, A.; Colless, M.; Crane, Jeff; DePoy, D.; Espeland, B.; Hare, Tyson; Jaffe, D.; Lawrence, J.; Marshall, J.; McGregor, P.; Shectman, Stephen; Sharp, R.; Szentgyorgyi, A.; Uomoto, Alan; Walls, B.

    2016-08-01

    Instrument development for the 24m Giant Magellan Telescope (GMT) is described: current activities, progress, status, and schedule. One instrument team has completed its preliminary design and is currently beginning its final design (GCLEF, an optical 350-950 nm, high-resolution and precision radial velocity echelle spectrograph). A second instrument team is in its conceptual design phase (GMACS, an optical 350-950 nm, medium resolution, 6-10 arcmin field, multi-object spectrograph). A third instrument team is midway through its preliminary design phase (GMTIFS, a near-IR YJHK diffraction-limited imager/integral-field-spectrograph), focused on risk reduction prototyping and design optimization. A fourth instrument team is currently fabricating the 5 silicon immersion gratings needed to begin its preliminary design phase (GMTNIRS, a simultaneous JHKLM high-resolution, AO-fed, echelle spectrograph). And, another instrument team is focusing on technical development and prototyping (MANIFEST, a facility robotic, multifiber feed, with a 20 arcmin field of view). In addition, a medium-field (6 arcmin, 0.06 arcsec/pix) optical imager will support telescope and AO commissioning activities, and will excel at narrow-band imaging. In the spirit of advancing synergies with other groups, the challenges of running an ELT instrument program and opportunities for cross-ELT collaborations are discussed.

  1. Hard X-ray and gamma-ray imaging spectroscopy for the next solar maximum

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Crannell, C. J.; Dennis, B. R.; Spicer, D. S.; Davis, J. M.; Hurford, G. J.; Lin, R. P.

    1990-01-01

    The objectives and principles are described of a single spectroscopic imaging package that can provide effective imaging in the hard X- and gamma-ray ranges. Called the High-Energy Solar Physics (HESP) mission instrument for solar investigation, the device is based on rotating modulation collimators with germanium semiconductor spectrometers. The instrument is planned to incorporate thick modulation plates, and the range of coverage is discussed. The optics permit the coverage of high-contrast hard X-ray images from small- and medium-sized flares with large signal-to-noise ratios. The detectors allow angular resolution of less than 1 arcsec, time resolution of less than 1 arcsec, and spectral resolution of about 1 keV. The HESP package is considered an effective and important instrument for investigating the high-energy solar events of the near-term future efficiently.

  2. Satellite-based monitoring of cyanobacteria blooms from 2002–2011 for 11 reservoirs with watersheds along an agricultural gradient

    EPA Science Inventory

    Imagery acquired by the Envisat Medium Resolution Imaging Spectrometer from 2002-2011 was used to estimate cyanobacteria cell densities for 11 reservoirs in Indiana, Ohio, and Kentucky, USA (surface areas 8–43 km2; 864 total images spanning May–September). This initia...

  3. Seeing the Invisible with Schlieren Imaging

    ERIC Educational Resources Information Center

    Lekholm, Ville; Ramme, Goran; Thornell, Greger

    2011-01-01

    Schlieren imaging is a method for visualizing differences in refractive index as caused by pressure or temperature non-uniformities within a medium, or as caused by the mixing of two fluids. It is an inexpensive yet powerful and straightforward tool for sensitive and high-resolution visualization of otherwise invisible phenomena. In this article,…

  4. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  5. On Course for a Comet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows comet Tempel 1 as seen through the clear filter of the medium resolution imager camera on Deep Impact. It was taken on June 27, 2005, when the spacecraft was 6,229,030.3 kilometers (3,870,719 miles) away from the comet. Three images were combined to create this picture, and a logarithmic stretch was applied to enhance the coma of the comet.

  6. Biological elements carry out optical tasks in coherent imaging systems

    NASA Astrophysics Data System (ADS)

    Ferraro, P.; Bianco, V.; Paturzo, M.; Miccio, L.; Memmolo, P.; Merola, F.; Marchesano, V.

    2016-03-01

    We show how biological elements, like live bacteria species and Red Blood Cells (RBCs) can accomplish optical functionalities in DH systems. Turbid media allow coherent microscopy despite the strong light scattering these provoke, acting on light just as moving diffusers. Furthermore, a turbid medium can have positive effects on a coherent imaging system, providing resolution enhancement and mimicking the action of noise decorrelation devices, thus yielding an image quality significantly higher than the quality achievable through a transparent medium in similar recording conditions. Besides, suspended RBCs are demonstrated to behave as controllable liquid micro-lenses, opening new possibilities in biophotonics for endoscopy imaging purposes, as well as telemedicine for point-of-care diagnostics in developing countries and low-resource settings.

  7. Image degradation in aerial imagery duplicates. [photographic processing of photographic film and reproduction (copying)

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.

    1975-01-01

    A series of Earth Resources Aircraft Program data flights were made over an aerial test range in Arizona for the evaluation of large cameras. Specifically, both medium altitude and high altitude flights were made to test and evaluate a series of color as well as black-and-white films. Image degradation, inherent in duplication processing, was studied. Resolution losses resulting from resolution characteristics of the film types are given. Color duplicates, in general, are shown to be degraded more than black-and-white films because of the limitations imposed by available aerial color duplicating stock. Results indicate that a greater resolution loss may be expected when the original has higher resolution. Photographs of the duplications are shown.

  8. A high-resolution radio image of a young supernova

    NASA Technical Reports Server (NTRS)

    Bartel, N.; Rupen, M. P.; Shapiro, I. I.; Preston, R. A.; Rius, A.

    1991-01-01

    A VLBI radio images of the bright supernova 1986J, which occurred in the galaxy NGC891 at a distance of about 12 Mpc, is presented. No detailed image of any supernova or remnant has been obtained before so soon after the explosion. The image shows a shell of emission with jetlike protrusions. Analysis of the images should advance understanding of the dynamics of the expanding debris, the dissipation of energy into the surrounding circumstellar medium, and the evolution of the supernova into the remnant.

  9. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    NASA Astrophysics Data System (ADS)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  10. Medium resolution spectra of the shuttle glow in the visible region of the spectrum

    NASA Technical Reports Server (NTRS)

    Viereck, R. A.; Murad, E.; Pike, C. P.; Mende, S. B.; Swenson, G. R.; Culbertson, F. L.; Springer, B. C.

    1992-01-01

    Recent spectral measurements of the visible shuttle glow (lambda = 400 - 800 nm) at medium resolution (1 nm) reveal the same featureless continuum with a maximum near 680 nm that was reported previously. This is also in good agreement with recent laboratory experiments that attribute the glow to the emissions of NO2 formed by the recombination of O + NO. The data that are presented were taken from the aft flight deck with a hand-held spectrograph and from the shuttle bay with a low-light-level television camera. Shuttle glow images and spectra are presented and compared with laboratory data and theory.

  11. Objective comparison of lesion detectability in low and medium-energy collimator iodine-123 mIBG images using a channelized Hotelling observer

    NASA Astrophysics Data System (ADS)

    Gregory, Rebecca A.; Murray, Iain; Gear, Jonathan; Aldridge, Matthew D.; Levine, Daniel; Fowkes, Lucy; Waddington, Wendy A.; Chua, Sue; Flux, Glenn

    2017-01-01

    Iodine-123 mIBG imaging is widely regarded as a gold standard for diagnostic studies of neuroblastoma and adult neuroendocrine cancer although the optimal collimator for tumour imaging remains undetermined. Low-energy (LE) high-resolution (HR) collimators provide superior spatial resolution. However due to septal penetration of high-energy photons these provide poorer contrast than medium-energy (ME) general-purpose (GP) collimators. LEGP collimators improve count sensitivity. The aim of this study was to objectively compare the lesion detection efficiency of each collimator to determine the optimal collimator for diagnostic imaging. The septal penetration and sensitivity of each collimator was assessed. Planar images of the patient abdomen were simulated with static scans of a Liqui-Phil™ anthropomorphic phantom with lesion-shaped inserts, acquired with LE and ME collimators on 3 different manufacturers’ gamma camera systems (Skylight (Philips), Intevo (Siemens) and Discovery (GE)). Two-hundred normal and 200 single-lesion abnormal images were created for each collimator. A channelized Hotelling observer (CHO) was developed and validated to score the images for the likelihood of an abnormality. The areas under receiver-operator characteristic (ROC) curves, Az, created from the scores were used to quantify lesion detectability. The CHO ROC curves for the LEHR collimators were inferior to the GP curves for all cameras. The LEHR collimators resulted in statistically significantly smaller Azs (p  <  0.05), of on average 0.891  ±  0.004, than for the MEGP collimators, 0.933  ±  0.004. In conclusion, the reduced background provided by MEGP collimators improved 123I mIBG image lesion detectability over LEHR collimators that provided better spatial resolution.

  12. Rapid Diagnosis of Tuberculosis by Real-Time High-Resolution Imaging of Mycobacterium tuberculosis Colonies.

    PubMed

    Ghodbane, Ramzi; Asmar, Shady; Betzner, Marlena; Linet, Marie; Pierquin, Joseph; Raoult, Didier; Drancourt, Michel

    2015-08-01

    Culture remains the cornerstone of diagnosis for pulmonary tuberculosis, but the fastidiousness of Mycobacterium tuberculosis may delay culture-based diagnosis for weeks. We evaluated the performance of real-time high-resolution imaging for the rapid detection of M. tuberculosis colonies growing on a solid medium. A total of 50 clinical specimens, including 42 sputum specimens, 4 stool specimens, 2 bronchoalveolar lavage fluid specimens, and 2 bronchial aspirate fluid specimens were prospectively inoculated into (i) a commercially available Middlebrook broth and evaluated for mycobacterial growth indirectly detected by measuring oxygen consumption (standard protocol) and (ii) a home-made solid medium incubated in an incubator featuring real-time high-resolution imaging of colonies (real-time protocol). Isolates were identified by Ziehl-Neelsen staining and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Use of the standard protocol yielded 14/50 (28%) M. tuberculosis isolates, which is not significantly different from the 13/50 (26%) M. tuberculosis isolates found using the real-time protocol (P = 1.00 by Fisher's exact test), and the contamination rate of 1/50 (2%) was not significantly different from the contamination rate of 2/50 (4%) using the real-time protocol (P = 1.00). The real-time imaging protocol showed a 4.4-fold reduction in time to detection, 82 ± 54 h versus 360 ± 142 h (P < 0.05). These preliminary data give the proof of concept that real-time high-resolution imaging of M. tuberculosis colonies is a new technology that shortens the time to growth detection and the laboratory diagnosis of pulmonary tuberculosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Television experiment for Mariner Mars 1971

    USGS Publications Warehouse

    Masursky, H.; Batson, R.; Borgeson, W.; Carr, M.; McCauley, J.; Milton, D.; Wildey, R.; Wilhelms, D.; Murray, B.; Horowitz, N.; Leighton, R.; Sharp, R.; Thompson, W.; Briggs, G.; Chandeysson, P.; Shipley, E.; Sagan, C.; Pollack, J.; Lederberg, J.; Levinthal, E.; Hartmann, W.; McCord, T.; Smith, B.; Davies, M.; De Vaucouleurs, G.; Leovy, C.

    1970-01-01

    The Television Experiment objectives are to provide imaging data which will complement previously gathered data and extend our knowledge of Mars. The two types of investigations will be fixed-feature (for mapping) and variable-feature (for surface and atmospheric changes). Two cameras with a factor-of-ten difference in resolution will be used on each spacecraft for medium- and high-resolution imagery. Mapping of 70% of the planet's surface will be provided by medium-resolution imagery. Spot coverage of about 5% of the surface will be possible with the high-resolution imagery. The experiment's 5 Principal Investigators and 21 Co-Investigators are organized into a team. Scientific disciplines and technical task groups have been formed to provide the formulation of experiment requirements for mission planning and instrument development. It is expected that the team concept will continue through the operational and reporting phases of the Mariner Mars 1971 Project. ?? 1970.

  14. Improving GPR image resolution in lossy ground using dispersive migration

    USGS Publications Warehouse

    Oden, C.P.; Powers, M.H.; Wright, D.L.; Olhoeft, G.R.

    2007-01-01

    As a compact wave packet travels through a dispersive medium, it becomes dilated and distorted. As a result, ground-penetrating radar (GPR) surveys over conductive and/or lossy soils often result in poor image resolution. A dispersive migration method is presented that combines an inverse dispersion filter with frequency-domain migration. The method requires a fully characterized GPR system including the antenna response, which is a function of the local soil properties for ground-coupled antennas. The GPR system response spectrum is used to stabilize the inverse dispersion filter. Dispersive migration restores attenuated spectral components when the signal-to-noise ratio is adequate. Applying the algorithm to simulated data shows that the improved spatial resolution is significant when data are acquired with a GPR system having 120 dB or more of dynamic range, and when the medium has a loss tangent of 0.3 or more. Results also show that dispersive migration provides no significant advantage over conventional migration when the loss tangent is less than 0.3, or when using a GPR system with a small dynamic range. ?? 2007 IEEE.

  15. Whiting events in SW Florida coastal waters: a case study using MODIS medium-resolution data

    USGS Publications Warehouse

    Long, Jacqueline; Hu, Chuanmin; Robbins, Lisa

    2014-01-01

    Whitings, floating patches of calcium carbonate mud, have been found in both shallow carbonate banks and freshwater environments around the world. Although these events have been studied for many decades, much of their characteristics remain unknown. Recent sightings of whitings near Ten Thousand Islands, Florida suggest a phenomenon that has not previously been documented in this area. Using medium-resolution (250-m) data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) from December 2010 to November 2013, we documented whiting events and their spatial and temporal patterns in this region. Classification rules were first established, and then applied to all 474 cloud-free and sun glint-free MODIS images. Whiting occurrences were found between 25°46′N and 25°20′N and less than 40 km from the southwest Florida coastline. Over the 3-year period, whiting occurrence peaked in spring and autumn and reached a minimum during the winter and summer months. Further field and laboratory research are needed to explain driving force(s) behind these events.

  16. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know.

    PubMed

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted.

  17. The design of L1-norm visco-acoustic wavefield extrapolators

    NASA Astrophysics Data System (ADS)

    Salam, Syed Abdul; Mousa, Wail A.

    2018-04-01

    Explicit depth frequency-space (f - x) prestack imaging is an attractive mechanism for seismic imaging. To date, the main focus of this method was data migration assuming an acoustic medium, but until now very little work assumed visco-acoustic media. Real seismic data usually suffer from attenuation and dispersion effects. To compensate for attenuation in a visco-acoustic medium, new operators are required. We propose using the L1-norm minimization technique to design visco-acoustic f - x extrapolators. To show the accuracy and compensation of the operators, prestack depth migration is performed on the challenging Marmousi model for both acoustic and visco-acoustic datasets. The final migrated images show that the proposed L1-norm extrapolation results in practically stable and improved resolution of the images.

  18. Chryse Outflow Channel

    NASA Image and Video Library

    1998-06-08

    A color image of the south Chryse basin Valles Marineris outflow channels on Mars; north toward top. The scene shows on the southwest corner the chaotic terrain of the east part of Valles Marineris and two of its related canyons: Eos and Capri Chasmata (south to north). Ganges Chasma lies directly north. The chaos in the southern part of the image gives rise to several outflow channels, Shalbatana, Simud, Tiu, and Ares Valles (left to right), that drained north into the Chryse basin. The mouth of Ares Valles is the site of the Mars Pathfinder lander. This image is a composite of NASA's Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 20 degrees S. to 20 degrees N. and from longitude 15 degrees to 53 degrees; Mercator projection. http://photojournal.jpl.nasa.gov/catalog/PIA00418

  19. VizieR Online Data Catalog: Chemical analysis of CH stars. II. (Karinkuzhi+, 2015)

    NASA Astrophysics Data System (ADS)

    Karinkuzhi, D.; Goswami, A.

    2017-10-01

    Low-resolution spectra of these objects obtained from 2m Himalayan Chandra Telescope at the Indian Astronomical Observatory, Hanle using HFOSC clearly show strong features due to carbon. HFOSC is an optical imager cum spectrograph for conducting low- and medium-resolution grism spectroscopy (http://www.iiap.res.in/iao/hfosc.html). High-resolution spectra necessary for abundance analyses of the programme stars are taken from the ELODIE archive (Moultaka et al. 2004PASP..116..693M). (7 data files).

  20. High resolution, two-dimensional imaging, microchannel plate detector for use on a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John

    1991-01-01

    We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.

  1. The formation of quantum images and their transformation and super-resolution reading

    NASA Astrophysics Data System (ADS)

    Balakin, D. A.; Belinsky, A. V.

    2016-05-01

    Images formed by light with suppressed photon fluctuations are interesting objects for studies with the aim of increasing their limiting information capacity and quality. This light in the sub-Poisson state can be prepared in a resonator filled with a medium with Kerr nonlinearity, in which self-phase modulation takes place. Spatially and temporally multimode light beams are studied and the production of spatial frequency spectra of suppressed photon fluctuations is described. The efficient operation regimes of the system are found. A particular schematic solution is described, which allows one to realize the potential possibilities laid in the formation of the squeezed states of light to a maximum degree during self-phase modulation in a resonator for the maximal suppression of amplitude quantum noises upon two-dimensional imaging. The efficiency of using light with suppressed quantum fluctuations for computer image processing is studied. An algorithm is described for interpreting measurements for increasing the resolution with respect to the geometrical resolution. A mathematical model that characterizes the measurement scheme is constructed and the problem of the image reconstruction is solved. The algorithm for the interpretation of images is verified. Conditions are found for the efficient application of sub-Poisson light for super-resolution imaging. It is found that the image should have a low contrast and be maximally transparent.

  2. The medium and the message: a revisionist view of image quality

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2010-02-01

    In his book "Understanding Media" social theorist Marshall McLuhan declared: "The medium is the message." The thesis of this paper is that with respect to image quality, imaging system developers have taken McLuhan's dictum too much to heart. Efforts focus on improving the technical specifications of the media (e.g. dynamic range, color gamut, resolution, temporal response) with little regard for the visual messages the media will be used to communicate. We present a series of psychophysical studies that investigate the visual system's ability to "see through" the limitations of imaging media to perceive the messages (object and scene properties) the images represent. The purpose of these studies is to understand the relationships between the signal characteristics of an image and the fidelity of the visual information the image conveys. The results of these studies provide a new perspective on image quality that shows that images that may be very different in "quality", can be visually equivalent as realistic representations of objects and scenes.

  3. Advanced millimeter wave imaging systems

    NASA Technical Reports Server (NTRS)

    Schuchardt, J. M.; Gagliano, J. A.; Stratigos, J. A.; Webb, L. L.; Newton, J. M.

    1980-01-01

    Unique techniques are being utilized to develop self-contained imaging radiometers operating at single and multiple frequencies near 35, 95 and 183 GHz. These techniques include medium to large antennas for high spatial resolution, lowloss open structures for RF confinemnt and calibration, wide bandwidths for good sensitivity plus total automation of the unit operation and data collection. Applications include: detection of severe storms, imaging of motor vehicles, and the remote sensing of changes in material properties.

  4. Vital-dye enhanced fluorescence imaging of gastrointestinal mucosa: metaplasia, neoplasia, inflammation

    PubMed Central

    Muldoon, Timothy J; Polydorides, Alexandros D; Maru, Dipen M; Harpaz, Noam; Harris, Michael T; Hofstettor, Wayne; Hiotis, Spiros P; Kim, Sanghyun A; Ky, Alex J; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2012-01-01

    Background Confocal endomicroscopy has revolutionized endoscopy by offering sub-cellular images of gastrointestinal epithelium; however, field-of-view is limited. There is a need for multi-scale endoscopy platforms that use widefield imaging to better direct placement of high-resolution probes. Design Feasibility Study Objective This study evaluates the feasibility of a single agent, proflavine hemisulfate, as a contrast medium during both widefield and high resolution imaging to characterize morphologic changes associated with a variety of gastrointestinal conditions. Setting U.T. M.D. Anderson Cancer Center (Houston, TX) and Mount Sinai Medical Center (New York, NY) Patients, Interventions, and Main Outcome Measurements Surgical specimens were obtained from 15 patients undergoing esophagectomy/colectomy. Proflavine, a vital fluorescent dye, was applied topically. Specimens were imaged with a widefield multispectral microscope and a high-resolution microendoscope. Images were compared to histopathology. Results Widefield-fluorescence imaging enhanced visualization of morphology, including the presence and spatial distribution of glands, glandular distortion, atrophy and crowding. High-resolution imaging of widefield-abnormal areas revealed that neoplastic progression corresponded to glandular heterogeneity and nuclear crowding in dysplasia, with glandular effacement in carcinoma. These widefield and high-resolution image features correlated well with histopathology. Limitations This imaging approach must be validated in vivo with a larger sample size. Conclusions Multi-scale proflavine-enhanced fluorescence imaging can delineate epithelial changes in a variety of gastrointestinal conditions. Distorted glandular features seen with widefield imaging could serve as a critical ‘bridge’ to high-resolution probe placement. An endoscopic platform combining the two modalities with a single vital-dye may facilitate point-of-care decision-making by providing real-time, in vivo diagnoses. PMID:22301343

  5. Vital-dye enhanced fluorescence imaging of GI mucosa: metaplasia, neoplasia, inflammation.

    PubMed

    Thekkek, Nadhi; Muldoon, Timothy; Polydorides, Alexandros D; Maru, Dipen M; Harpaz, Noam; Harris, Michael T; Hofstettor, Wayne; Hiotis, Spiros P; Kim, Sanghyun A; Ky, Alex Jenny; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2012-04-01

    Confocal endomicroscopy has revolutionized endoscopy by offering subcellular images of the GI epithelium; however, the field of view is limited. Multiscale endoscopy platforms that use widefield imaging are needed to better direct the placement of high-resolution probes. Feasibility study. This study evaluated the feasibility of a single agent, proflavine hemisulfate, as a contrast medium during both widefield and high-resolution imaging to characterize the morphologic changes associated with a variety of GI conditions. The University of Texas MD Anderson Cancer Center, Houston, Texas, and Mount Sinai Medical Center, New York, New York. PATIENTS, INTERVENTIONS, AND MAIN OUTCOME MEASUREMENTS: Resected specimens were obtained from 15 patients undergoing EMR, esophagectomy, or colectomy. Proflavine hemisulfate, a vital fluorescent dye, was applied topically. The specimens were imaged with a widefield multispectral microscope and a high-resolution microendoscope. The images were compared with histopathologic examination. Widefield fluorescence imaging enhanced visualization of morphology, including the presence and spatial distribution of glands, glandular distortion, atrophy, and crowding. High-resolution imaging of widefield abnormal areas revealed that neoplastic progression corresponded to glandular heterogeneity and nuclear crowding in dysplasia, with glandular effacement in carcinoma. These widefield and high-resolution image features correlated well with the histopathologic features. This imaging approach must be validated in vivo with a larger sample size. Multiscale proflavine-enhanced fluorescence imaging can delineate epithelial changes in a variety of GI conditions. Distorted glandular features seen with widefield imaging could serve as a critical bridge to high-resolution probe placement. An endoscopic platform combining the two modalities with a single vital dye may facilitate point-of-care decision making by providing real-time, in vivo diagnoses. Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  6. Patterned thin metal film for the lateral resolution measurement of photoacoustic tomography

    PubMed Central

    2012-01-01

    Background Image quality assessment method of photoacoustic tomography has not been completely standardized yet. Due to the combined nature of photonic signal generation and ultrasonic signal transmission in biological tissue, neither optical nor ultrasonic traditional methods can be used without modification. An optical resolution measurement technique was investigated for its feasibility for resolution measurement of photoacoustic tomography. Methods A patterned thin metal film deposited on silica glass provides high contrast in optical imaging due to high reflectivity from the metal film and high transmission from the glass. It provides high contrast when it is used for photoacoustic tomography because thin metal film can absorb pulsed laser energy. An US Air Force 1951 resolution target was used to generate patterned photoacoustic signal to measure the lateral resolution. Transducer with 2.25 MHz bandwidth and a sample submerged in water and gelatinous block were tested for lateral resolution measurement. Results Photoacoustic signal generated from a thin metal film deposited on a glass can propagate along the surface or through the surrounding medium. First, a series of experiments with tilted sample confirmed that the measured photoacoustic signal is what is propagating through the medium. Lateral resolution of the photoacoustic tomography system was successfully measured for water and gelatinous block as media: 0.33 mm and 0.35 mm in water and gelatinous material, respectively, when 2.25 MHz transducer was used. Chicken embryo was tested for biomedical applications. Conclusions A patterned thin metal film sample was tested for its feasibility of measuring lateral resolution of a photoacoustic tomography system. Lateral resolutions in water and gelatinous material were successfully measured using the proposed method. Measured resolutions agreed well with theoretical values. PMID:22794510

  7. OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité

    NASA Astrophysics Data System (ADS)

    Bibring, J.-P.; Soufflot, A.; Berthé, M.; Langevin, Y.; Gondet, B.; Drossart, P.; Bouyé, M.; Combes, M.; Puget, P.; Semery, A.; Bellucci, G.; Formisano, V.; Moroz, V.; Kottsov, V.; Bonello, G.; Erard, S.; Forni, O.; Gendrin, A.; Manaud, N.; Poulet, F.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiori, R.; Altieri, F.; Ignatiev, N.; Titov, D.; Zasova, L.; Coradini, A.; Capacionni, F.; Cerroni, P.; Fonti, S.; Mangold, N.; Pinet, P.; Schmitt, B.; Sotin, C.; Hauber, E.; Hoffmann, H.; Jaumann, R.; Keller, U.; Arvidson, R.; Mustard, J.; Forget, F.

    2004-08-01

    The OMEGA visible and near-IR mapping spectrometer will reveal the mineralogical and molecular composition of the surface and atmosphere of Mars through the spectral analysis of the diffused solar light and surface thermal emission. It will provide global coverage at medium resolution (2-5 km) for altitudes from 1500 km to 4000 km, and high-resolution (<350 m) spectral images of selected areas.

  8. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know

    PubMed Central

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted. PMID:26728701

  9. Ship detection from high-resolution imagery based on land masking and cloud filtering

    NASA Astrophysics Data System (ADS)

    Jin, Tianming; Zhang, Junping

    2015-12-01

    High resolution satellite images play an important role in target detection application presently. This article focuses on the ship target detection from the high resolution panchromatic images. Taking advantage of geographic information such as the coastline vector data provided by NOAA Medium Resolution Coastline program, the land region is masked which is a main noise source in ship detection process. After that, the algorithm tries to deal with the cloud noise which appears frequently in the ocean satellite images, which is another reason for false alarm. Based on the analysis of cloud noise's feature in frequency domain, we introduce a windowed noise filter to get rid of the cloud noise. With the help of morphological processing algorithms adapted to target detection, we are able to acquire ship targets in fine shapes. In addition, we display the extracted information such as length and width of ship targets in a user-friendly way i.e. a KML file interpreted by Google Earth.

  10. Calibration of medium-resolution monochrome cathode ray tube displays for the purpose of board examinations.

    PubMed

    Evanoff, M G; Roehrig, H; Giffords, R S; Capp, M P; Rovinelli, R J; Hartmann, W H; Merritt, C

    2001-06-01

    This report discusses calibration and set-up procedures for medium-resolution monochrome cathode ray tubes (CRTs) taken in preparation of the oral portion of the board examination of the American Board of Radiology (ABR). The board examinations took place in more than 100 rooms of a hotel. There was one display-station (a computer and the associated CRT display) in each of the hotel rooms used for the examinations. The examinations covered the radiologic specialties cardiopulmonary, musculoskeletal, gastrointestinal, vascular, pediatric, and genitourinary. The software used for set-up and calibration was the VeriLUM 4.0 package from Image Smiths in Germantown, MD. The set-up included setting minimum luminance and maximum luminance, as well as positioning of the CRT in each examination room with respect to reflections of roomlights. The calibration for the grey scale rendition was done meeting the Digital Imaging and communication in Medicine (DICOM) 14 Standard Display Function. We describe these procedures, and present the calibration data in. tables and graphs, listing initial values of minimum luminance, maximum luminance, and grey scale rendition (DICOM 14 standard display function). Changes of these parameters over the duration of the examination were observed and recorded on 11 monitors in a particular room. These changes strongly suggest that all calibrated CRTs be monitored over the duration of the examination. In addition, other CRT performance data affecting image quality such as spatial resolution should be included in set-up and image quality-control procedures.

  11. High resolution atomic force microscopy of double-stranded RNA.

    PubMed

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-09

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.

  12. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction.

    PubMed

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-04-01

    We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (p<0.01). Contrast medium in the injection syringe was scanned to analyse image quality; ASIR did not suppress the severe artefacts of contrast medium. In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode.

  13. Time series evapotranspiration maps at a regional scale: A methodology, evaluation, and their use in water resources management

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.

    2016-12-01

    Evapotranspiration (ET) is an important process in ecosystems' water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. There are efforts to develop such datasets on a regional to global scale but often faced with the limitations of spatial-temporal resolution tradeoffs in satellite remote sensing technology. In this study, we developed frameworks for generating high and medium resolution daily ET maps from Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data, respectively. For developing high resolution (30-m) daily time series ET maps with Landsat TM data, the series version of Two Source Energy Balance (TSEB) model was used to compute sensible and latent heat fluxes of soil and canopy separately. Landsat 5 (2000-2011) and Landsat 8 (2013-2014) imageries for row 28/35 and 27/36 covering central Oklahoma was used. MODIS data (2001-2014) covering Oklahoma and Texas Panhandle was used to develop medium resolution (250-m), time series daily ET maps with SEBS (Surface Energy Balance System) model. An extensive network of weather stations managed by Texas High Plains ET Network and Oklahoma Mesonet was used to generate spatially interpolated inputs of air temperature, relative humidity, wind speed, solar radiation, pressure, and reference ET. A linear interpolation sub-model was used to estimate the daily ET between the image acquisition days. Accuracy assessment of daily ET maps were done against eddy covariance data from two grassland sites at El Reno, OK. Statistical results indicated good performance by modeling frameworks developed for deriving time series ET maps. Results indicated that the proposed ET mapping framework is suitable for deriving daily time series ET maps at regional scale with Landsat and MODIS data.

  14. Reconstruction of three-dimensional porous media using a single thin section

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Sahimi, Muhammad

    2012-06-01

    The purpose of any reconstruction method is to generate realizations of two- or multiphase disordered media that honor limited data for them, with the hope that the realizations provide accurate predictions for those properties of the media for which there are no data available, or their measurement is difficult. An important example of such stochastic systems is porous media for which the reconstruction technique must accurately represent their morphology—the connectivity and geometry—as well as their flow and transport properties. Many of the current reconstruction methods are based on low-order statistical descriptors that fail to provide accurate information on the properties of heterogeneous porous media. On the other hand, due to the availability of high resolution two-dimensional (2D) images of thin sections of a porous medium, and at the same time, the high cost, computational difficulties, and even unavailability of complete 3D images, the problem of reconstructing porous media from 2D thin sections remains an outstanding unsolved problem. We present a method based on multiple-point statistics in which a single 2D thin section of a porous medium, represented by a digitized image, is used to reconstruct the 3D porous medium to which the thin section belongs. The method utilizes a 1D raster path for inspecting the digitized image, and combines it with a cross-correlation function, a grid splitting technique for deciding the resolution of the computational grid used in the reconstruction, and the Shannon entropy as a measure of the heterogeneity of the porous sample, in order to reconstruct the 3D medium. It also utilizes an adaptive technique for identifying the locations and optimal number of hard (quantitative) data points that one can use in the reconstruction process. The method is tested on high resolution images for Berea sandstone and a carbonate rock sample, and the results are compared with the data. To make the comparison quantitative, two sets of statistical tests consisting of the autocorrelation function, histogram matching of the local coordination numbers, the pore and throat size distributions, multiple-points connectivity, and single- and two-phase flow permeabilities are used. The comparison indicates that the proposed method reproduces the long-range connectivity of the porous media, with the computed properties being in good agreement with the data for both porous samples. The computational efficiency of the method is also demonstrated.

  15. Doppler Imaging and Chemical Abundance Analysis of EK Dra: Capabilities of Small Telescopes

    NASA Astrophysics Data System (ADS)

    Kilicoglu, Tolgahan; Senavci, H. V.; Bahar, E.; Isik, E.; Montes, D.; Hussain, G. A. J.

    2018-04-01

    We investigate the chromospheric and spot activity behaviour of the young Solar-like star EK Dra via Doppler imaging and spectral synthesis methods, using mid-resolution time series spectra of the system. We also present the atmospheric parameters and detailed elemental photospheric abundances of the star. The chemical abundance pattern of EK Dra do not suggest any remarkable peculiarities except few elements. The Titanium Oxide (TiO) bandheads at 7000 - 7100 A region also give clues about the spot temperature that may be cooler than 4000 K. In addition, we also discuss the capabilities of small telescopes (40 cm in our case) and medium resolution spectrographs in terms of Doppler imaging and chemical abundance analysis.

  16. Hyperspectral Imagers for the Study of Massive Star Nebulae

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Alarie, A.; Martin, T.; Spiomm/Sitelle Team

    2012-12-01

    We present two wide-field imaging Fourier transform spectrometers built by our team to study the interstellar medium around massive stars in the Milky Way and nearby galaxies. SpIOMM, attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in about a million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We illustrate SpIOMM's capabilities to study the interactions between massive stars and their environment.

  17. The RINGS Survey. III. Medium-resolution Hα Fabry–Pérot Kinematic Data Set

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl J.; Sellwood, J. A.; Williams, T. B.; Spekkens, Kristine; Kuzio de Naray, Rachel; Bixel, Alex

    2018-03-01

    The distributions of stars, gas, and dark matter in disk galaxies provide important constraints on galaxy formation models, particularly on small spatial scales (<1 kpc). We have designed the RSS Imaging spectroscopy Nearby Galaxy Survey (RINGS) to target a sample of 19 nearby spiral galaxies. For each of these galaxies, we obtain and model Hα and H I 21 cm spectroscopic data as well as multi-band photometric data. We intend to use these models to explore the underlying structure and evolution of these galaxies in a cosmological context, as well as whether the predictions of ΛCDM are consistent with the mass distributions of these galaxies. In this paper, we present spectroscopic imaging data for 14 of the RINGS galaxies observed with the medium spectral resolution Fabry–Pérot etalon on the Southern African Large Telescope. From these observations, we derive high spatial resolution line-of-sight velocity fields of the Hα line of excited hydrogen, as well as maps and azimuthally averaged profiles of the integrated Hα and [N II] emission and oxygen abundances. We then model these kinematic maps with axisymmetric models, from which we extract rotation curves and projection geometries for these galaxies. We show that our derived rotation curves agree well with other determinations, and the similarity of the projection angles with those derived from our photometric images argues against these galaxies having intrinsically oval disks.

  18. Cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM with the ResourceSat-1 (IRS-P6) AWiFS and LISS-III sensors

    USGS Publications Warehouse

    Chander, G.; Scaramuzza, P.L.

    2006-01-01

    Increasingly, data from multiple sensors are used to gain a more complete understanding of land surface processes at a variety of scales. The Landsat suite of satellites has collected the longest continuous archive of multispectral data. The ResourceSat-1 Satellite (also called as IRS-P6) was launched into the polar sunsynchronous orbit on Oct 17, 2003. It carries three remote sensing sensors: the High Resolution Linear Imaging Self-Scanner (LISS-IV), Medium Resolution Linear Imaging Self-Scanner (LISS-III), and the Advanced Wide Field Sensor (AWiFS). These three sensors are used together to provide images with different resolution and coverage. To understand the absolute radiometric calibration accuracy of IRS-P6 AWiFS and LISS-III sensors, image pairs from these sensors were compared to the Landsat-5 TM and Landsat-7 ETM+ sensors. The approach involved the calibration of nearly simultaneous surface observations based on image statistics from areas observed simultaneously by the two sensors.

  19. Quantifying Stellar Mass Loss with High Angular Resolution Imaging

    DTIC Science & Technology

    2009-02-19

    material – via massive winds, planetary nebulae and supernova explosions – seeding the interstellar medium with heavier elements. Subsequent...of Planetary Nebulae (Harpaz, ApJ, 498,293, (1998)), impacts the pre-explosion characteristic of SNII (Taylor, “The Stars”, Cambridge (1994)), and...A 464, 119) or may have an important role, such as Be Stars, W-R stars, and planetary nebulae . The Future of Interferometric O/IR Imaging. The

  20. Data Quality Evaluation and Application Potential Analysis of TIANGONG-2 Wide-Band Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Qin, B.; Li, L.; Li, S.

    2018-04-01

    Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  1. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie

    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Resultsmore » from various data input to the method indicate significant improvements are provided in both image quality and resolution.« less

  2. Generating land cover boundaries from remotely sensed data using object-based image analysis: overview and epidemiological application

    PubMed Central

    Maxwell, Susan K.

    2010-01-01

    Satellite imagery and aerial photography represent a vast resource to significantly enhance environmental mapping and modeling applications for use in understanding spatio-temporal relationships between environment and health. Deriving boundaries of land cover objects, such as trees, buildings, and crop fields, from image data has traditionally been performed manually using a very time consuming process of hand digitizing. Boundary detection algorithms are increasingly being applied using object-based image analysis (OBIA) technology to automate the process. The purpose of this paper is to present an overview and demonstrate the application of OBIA for delineating land cover features at multiple scales using a high resolution aerial photograph (1 m) and a medium resolution Landsat image (30 m) time series in the context of a pesticide spray drift exposure application. PMID:21135917

  3. Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations

    NASA Astrophysics Data System (ADS)

    Hofer, Matthias; Soeller, Christian; Brasselet, Sophie; Bertolotti, Jacopo

    2018-04-01

    Fluorescence microscopy is widely used in biological imaging, however scattering from tissues strongly limits its applicability to a shallow depth. In this work we adapt a methodology inspired from stellar speckle interferometry, and exploit the optical memory effect to enable fluorescence microscopy through a turbid layer. We demonstrate efficient reconstruction of micrometer-size fluorescent objects behind a scattering medium in epi-microscopy, and study the specificities of this imaging modality (magnification, field of view, resolution) as compared to traditional microscopy. Using a modified phase retrieval algorithm to reconstruct fluorescent objects from speckle images, we demonstrate robust reconstructions even in relatively low signal to noise conditions. This modality is particularly appropriate for imaging in biological media, which are known to exhibit relatively large optical memory ranges compatible with tens of micrometers size field of views, and large spectral bandwidths compatible with emission fluorescence spectra of tens of nanometers widths.

  4. Deep Impact Autonomous Navigation : the trials of targeting the unknown

    NASA Technical Reports Server (NTRS)

    Kubitschek, Daniel G.; Mastrodemos, Nickolaos; Werner, Robert A.; Kennedy, Brian M.; Synnott, Stephen P.; Null, George W.; Bhaskaran, Shyam; Riedel, Joseph E.; Vaughan, Andrew T.

    2006-01-01

    On July 4, 2005 at 05:44:34.2 UTC the Impactor Spacecraft (s/c) impacted comet Tempel 1 with a relative speed of 10.3 km/s capturing high-resolution images of the surface of a cometary nucleus just seconds before impact. Meanwhile, the Flyby s/c captured the impact event using both the Medium Resolution Imager (MRI) and the High Resolution Imager (HRI) and tracked the nucleus for the entire 800 sec period between impact and shield attitude transition. The objective of the Impactor s/c was to impact in an illuminated area viewable from the Flyby s/c and capture high-resolution context images of the impact site. This was accomplished by using autonomous navigation (AutoNav) algorithms and precise attitude information from the attitude determination and control subsystem (ADCS). The Flyby s/c had two primary objectives: 1) capture the impact event with the highest temporal resolution possible in order to observe the ejecta plume expansion dynamics; and 2) track the impact site for at least 800 sec to observe the crater formation and capture the highest resolution images possible of the fully developed crater. These two objectives were met by estimating the Flyby s/c trajectory relative to Tempel 1 using the same AutoNav algorithms along with precise attitude information from ADCS and independently selecting the best impact site. This paper describes the AutoNav system, what happened during the encounter with Tempel 1 and what could have happened.

  5. Landsat 8 Multispectral and Pansharpened Imagery Processing on the Study of Civil Engineering Issues

    NASA Astrophysics Data System (ADS)

    Lazaridou, M. A.; Karagianni, A. Ch.

    2016-06-01

    Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM - Landsat 8) is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion - pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.

  6. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction

    PubMed Central

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-01-01

    Objective We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Methods Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. Results The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (p<0.01). Contrast medium in the injection syringe was scanned to analyse image quality; ASIR did not suppress the severe artefacts of contrast medium. Conclusion In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode. PMID:21081572

  7. Agricultural Land Use mapping by multi-sensor approach for hydrological water quality monitoring

    NASA Astrophysics Data System (ADS)

    Brodsky, Lukas; Kodesova, Radka; Kodes, Vit

    2010-05-01

    The main objective of this study is to demonstrate potential of operational use of the high and medium resolution remote sensing data for hydrological water quality monitoring by mapping agriculture intensity and crop structures. In particular use of remote sensing mapping for optimization of pesticide monitoring. The agricultural mapping task is tackled by means of medium spatial and high temporal resolution ESA Envisat MERIS FR images together with single high spatial resolution IRS AWiFS image covering the whole area of interest (the Czech Republic). High resolution data (e.g. SPOT, ALOS, Landsat) are often used for agricultural land use classification, but usually only at regional or local level due to data availability and financial constraints. AWiFS data (nominal spatial resolution 56 m) due to the wide satellite swath seems to be more suitable for use at national level. Nevertheless, one of the critical issues for such a classification is to have sufficient image acquisitions over the whole vegetation period to describe crop development in appropriate way. ESA MERIS middle-resolution data were used in several studies for crop classification. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. However, spatial resolution of 300 m results in mixture signal in a single pixel. AWiFS-MERIS data synergy brings new perspectives in agricultural Land Use mapping. Also, the developed methodology procedure is fully compatible with future use of ESA (GMES) Sentinel satellite images. The applied methodology of hybrid multi-sensor approach consists of these main stages: a/ parcel segmentation and spectral pre-classification of high resolution image (AWiFS); b/ ingestion of middle resolution (MERIS) vegetation spectro-temporal features; c/ vegetation signatures unmixing; and d/ semantic object-oriented classification of vegetation classes into final classification scheme. These crop groups were selected to be classified: winter crops, spring crops, oilseed rape, legumes, summer and other crops. This study highlights operational potentials of high temporal full resolution MERIS images in agricultural land use monitoring. Practical application of this methodology is foreseen, among others, in the water quality monitoring. Effective pesticide monitoring relies also on spatial distribution of applied pesticides, which can be derived from crop - plant protection product relationship. Knowledge of areas with predominant occurrence of specific crop based on remote sensing data described above can be used for a forecast of probable plant protection product application, thus cost-effective pesticide monitoring. The remote sensing data used on a continuous basis can be used in other long-term water management issues and provide valuable data for decision makers. Acknowledgement: Authors acknowledge the financial support of the Ministry of Education, Youth and Sports of the Czech Republic (grants No. 2B06095 and No. MSM 6046070901). The study was also supported by ESA CAT-1 (ref. 4358) and SOSI projects (Spatial Observation Services and Infrastructure; ref. GSTP-RTDA-EOPG-SW-08-0004).

  8. Geologic map of Ophir and central Candor Chasmata (MTM -05072) of Mars

    USGS Publications Warehouse

    Lucchitta, Baerbel K.

    1999-01-01

    The geologic map of Ophir and central Candor Chasmata is one of a series of 1:500,000 scale maps prepared for areas on Mars that are of particular scientific interest and may serve as potential future landing sites. This map is also part of a set that includes east Candor Chasma, west Candor Chasma, and Melas Chasma. The geologic interpretations are based dominantly on medium- and high-resolution Viking images, many of them stereoscopic, and supplemented by lower resolution apoapsis and other color images. A strip of very high resolution stereoscopic images (~20 m/pixel) crosses the central part of the quadrangle from northwest to southeast and served to clarify detailed relations not obvious on other images. A topographic map with contour intervals of 200 m was also used, as were multidirectional oblique images derived from merged image mosaics and topography (see fig. 1) (Bertolini and McEwen, 1990). Geologic relations and interpretations are based on the entire central Valles Marineris map set. The map area is included in the Valles Marineris map of Witbeck and others (1991), but units were defined independently. Age assignments, however, were integrated with those by Witbeck and others and Scott and Tanaka (1986).

  9. Comparison of satellite reflectance algorithms for estimating ...

    EPA Pesticide Factsheets

    We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop simple proxies for algal blooms and to facilitate portability between multispectral satellite imagers for regional algal bloom monitoring. Narrow band hyperspectral aircraft images were upscaled spectrally and spatially to simulate 5 current and near future satellite imaging systems. Established and new Chl-a algorithms were then applied to the synthetic satellite images and then compared to calibrated Chl-a water truth measurements collected from 44 sites within one hour of aircraft acquisition of the imagery. Masks based on the spatial resolution of the synthetic satellite imagery were then applied to eliminate mixed pixels including vegetated shorelines. Medium-resolution Landsat and finer resolution data were evaluated against 29 coincident water truth sites. Coarse-resolution MODIS and MERIS-like data were evaluated against 9 coincident water truth sites. Each synthetic satellite data set was then evaluated for the performance of a variety of spectrally appropriate algorithms with regard to the estimation of Chl-a concentrations against the water truth data set. The goal is to inform water resource decisions on the appropriate satellite data acquisition and processing for the es

  10. Optical data storage and metallization of polymers

    NASA Technical Reports Server (NTRS)

    Roland, C. M.; Sonnenschein, M. F.

    1991-01-01

    The utilization of polymers as media for optical data storage offers many potential benefits and consequently has been widely explored. New developments in thermal imaging are described, wherein high resolution lithography is accomplished without thermal smearing. The emphasis was on the use of poly(ethylene terephthalate) film, which simultaneously serves as both the substrate and the data storage medium. Both physical and chemical changes can be induced by the application of heat and, thereby, serve as a mechanism for high resolution optical data storage in polymers. The extension of the technique to obtain high resolution selective metallization of poly(ethylene terephthalate) is also described.

  11. Ex vivo validation of photo-magnetic imaging.

    PubMed

    Luk, Alex; Nouizi, Farouk; Erkol, Hakan; Unlu, Mehmet B; Gulsen, Gultekin

    2017-10-15

    We recently introduced a new high-resolution diffuse optical imaging technique termed photo-magnetic imaging (PMI), which utilizes magnetic resonance thermometry (MRT) to monitor the 3D temperature distribution induced in a medium illuminated with a near-infrared light. The spatiotemporal temperature distribution due to light absorption can be accurately estimated using a combined photon propagation and heat diffusion model. High-resolution optical absorption images are then obtained by iteratively minimizing the error between the measured and modeled temperature distributions. We have previously demonstrated the feasibility of PMI with experimental studies using tissue simulating agarose phantoms. In this Letter, we present the preliminary ex vivo PMI results obtained with a chicken breast sample. Similarly to the results obtained on phantoms, the reconstructed images reveal that PMI can quantitatively resolve an inclusion with a 3 mm diameter embedded deep in a biological tissue sample with only 10% error. These encouraging results demonstrate the high performance of PMI in ex vivo biological tissue and its potential for in vivo imaging.

  12. Generating land cover boundaries from remotely sensed data using object-based image analysis: overview and epidemiological application.

    PubMed

    Maxwell, Susan K

    2010-12-01

    Satellite imagery and aerial photography represent a vast resource to significantly enhance environmental mapping and modeling applications for use in understanding spatio-temporal relationships between environment and health. Deriving boundaries of land cover objects, such as trees, buildings, and crop fields, from image data has traditionally been performed manually using a very time consuming process of hand digitizing. Boundary detection algorithms are increasingly being applied using object-based image analysis (OBIA) technology to automate the process. The purpose of this paper is to present an overview and demonstrate the application of OBIA for delineating land cover features at multiple scales using a high resolution aerial photograph (1 m) and a medium resolution Landsat image (30 m) time series in the context of a pesticide spray drift exposure application. Copyright © 2010. Published by Elsevier Ltd.

  13. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Jeffrey; Bilheux, Hassina Z; Kang, Misun

    2013-01-01

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with watermore » or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.« less

  14. Development of a high resolution liquid xenon imaging chamber for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1991-01-01

    The objective was to develop the technology of liquid xenon (LXe) detectors for spectroscopy and imaging of gamma rays from astrophysical sources emitting in the low to medium energy regime. In particular, the technical challenges and the physical processes relevant to the realization of the LXe detector operated as a Time Projection Chamber (TPC) were addressed and studied. Experimental results were obtained on the following topics: (1) long distance drift of free electrons in LXe (purity); (2) scintillation light yield for electrons and alphas in LXe (triggering); and (3) ionization yield for electrons and gamma rays in LXe (energy resolution). The major results from the investigations are summarized.

  15. Mauna Kea Spectrographic Explorer (MSE): a conceptual design for multi-object high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.

  16. Development of a High Resolution Liquid Xenon Imaging Telescope for Medium Energy Gamma Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1992-01-01

    In the third year of the research project, we have (1) tested a 3.5 liter prototype of the Liquid Xenon Time Projection Chamber, (2) used a prototype having a 4.4 cm drift gap to study the charge and energy resolution response of the 3.5 liter chamber, (3) obtained an energy resolution as good as that previously measured by us using chambers with drift gaps of the order of millimeters, (4) observed the induction signals produced by MeV gamma rays, (4) used the 20 hybrid charge sensitive preamplifiers for a nondestructive readout of the electron image on the induction wires, (5) performed extensive Monte Carlo simulations to obtain results on efficiency, background rejection capability, and source flux sensitivity, and (6) developed a reconstruction algorithm for events with multiple interaction points.

  17. MUSIC electromagnetic imaging with enhanced resolution for small inclusions

    NASA Astrophysics Data System (ADS)

    Chen, Xudong; Zhong, Yu

    2009-01-01

    This paper investigates the influence of the test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC does not apply.

  18. A new MUSIC electromagnetic imaging method with enhanced resolution for small inclusions

    NASA Astrophysics Data System (ADS)

    Zhong, Yu; Chen, Xudong

    2008-11-01

    This paper investigates the influence of test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply.

  19. Introduction and Testing of a Monitoring and Colony-Mapping Method for Waterbird Populations That Uses High-Speed and Ultra-Detailed Aerial Remote Sensing

    PubMed Central

    Bakó, Gábor; Tolnai, Márton; Takács, Ádám

    2014-01-01

    Remote sensing is a method that collects data of the Earth's surface without causing disturbances. Thus, it is worthwhile to use remote sensing methods to survey endangered ecosystems, as the studied species will behave naturally while undisturbed. The latest passive optical remote sensing solutions permit surveys from long distances. State-of-the-art highly sensitive sensor systems allow high spatial resolution image acquisition at high altitudes and at high flying speeds, even in low-visibility conditions. As the aerial imagery captured by an airplane covers the entire study area, all the animals present in that area can be recorded. A population assessment is conducted by visual interpretations of an ortho image map. The basic objective of this study is to determine whether small- and medium-sized bird species are recognizable in the ortho images by using high spatial resolution aerial cameras. The spatial resolution needed for identifying the bird species in the ortho image map was studied. The survey was adjusted to determine the number of birds in a colony at a given time. PMID:25046012

  20. JWST DD ERS Team Update: Decoding Smoke Signals from WR140 using NIRISS+AMI and MIRI/MRS

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Hankins, Matt; WR DustERS Team

    2018-06-01

    Dust is a key component of the interstellar medium and plays and important role in the formation of stars and planets. However, the dominant channels of dust production throughout cosmic time are uncertain. With its unprecedented sensitivity and spatial resolution in the mid-IR, the James Webb Space Telescope (JWST) is the ideal platform to address this issue by investigating the dust abundance, composition, and production rates of various dusty sources. In particular, colliding-wind Wolf-Rayet (WR) binaries are known to be efficient dust producers in the local Universe and likely existed in the earliest galaxies. In our Early Release Science (ERS) program, we will use JWST to observe the archetypal colliding-wind binary, WR 140, to study its dust composition, abundance, and formation mechanisms. We will utilize two key JWST observing modes with the medium-resolution spectrometer (MRS) on the Mid-Infrared Instrument (MIRI) and the Aperture Masking Interferometry (AMI) mode with the Near Infrared Imager and Slitless Spectrograph (NIRISS).Our planned observations will establish a benchmark for key observing modes for imaging bright sources with faint extended emission at high spatial resolutions. This will be valuable in various astrophysical contexts including mass-loss from evolved stars, dusty tori around active galactic nuclei, and protoplanetary disks. We are committed to delivering science-enabling products for the JWST community that include high-level pipeline tools to mitigate bright source artifacts and image reconstruction tools compatible with NIRISS+AMI data.

  1. Gd3+-DTPA-bis (N-methylamine) - anionic linear globular Dendrimer-G1; a more efficient MRI contrast media.

    PubMed

    Ghalandarlaki, N; Mohammadi, T D; Agha Babaei, R; Tabasi, M A; Keyhanvar, P; Mehravi, B; Yaghmaei, P; Cohan, R A; Ardestani, M S

    2014-02-01

    By advancing of molecular imaging techniques, magnetic resonance imaging (MRI) is becoming an increasingly important tool in early diagnosis. Researchers have found new ways to increase contrast of MRI images.Therefore some types of drug known as contrast media are produced. Contrast media improve the visibility of internal body structures in MRI images. Gadodiamide (Omniscan®) is one of these contrast media which is produced commercially and used clinically. In this study Gadodiamide was first synthesized and then qualitative and quantitative methods were carried out to ensure the proper synthesis of this drug then to increase the efficiency of this contrast medium use dendrimer that is one kind of nano particle. This dendrimer has a polyethylene glycol (PEG) core and citric acid branches. After dendrimer attached to Gadodiamide to ensure the proper efficient connection between them the stability studies were carried out and cytotoxicity of the drug was evaluated. Finally, after ensuring the non-toxicity of the drug, in vivo studies (injected into mice) MR imaging was performed to examine the impact of synthesis drug on the resolution of image.The result obtained from this study demonstrated that the attachment of Gadodiamide to dendrimer reduces its cytotoxicity and also improved resolution of image. Also the new contrast media (Gd3+-DTPA- bis [N-methylamine] - Dendrimer) - unlike Omniscan® - is biodegradable and able to enter the HEPG2 cell line. The results confirm the hypothesis that using dendrimer to synthesize this new nano contrast medium increases its effectiveness. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Three-dimensional imaging of sulfides in silicate rocks at submicron resolution with multiphoton microscopy.

    PubMed

    Bénard, Antoine; Palle, Sabine; Doucet, Luc Serge; Ionov, Dmitri A

    2011-12-01

    We report the first application of multiphoton microscopy (MPM) to generate three-dimensional (3D) images of natural minerals (micron-sized sulfides) in thick (∼120 μm) rock sections. First, reflection mode (RM) using confocal laser scanning microscopy (CLSM), combined with differential interference contrast (DIC), was tested on polished sections. Second, two-photon fluorescence (TPF) and second harmonic signal (SHG) images were generated using a femtosecond-laser on the same rock section without impregnation by a fluorescent dye. CSLM results show that the silicate matrix is revealed with DIC and RM, while sulfides can be imaged in 3D at low resolution by RM. Sulfides yield strong autofluorescence from 392 to 715 nm with TPF, while SHG is only produced by the embedding medium. Simultaneous recording of TPF and SHG images enables efficient discrimination between different components of silicate rocks. Image stacks obtained with MPM enable complete reconstruction of the 3D structure of a rock slice and of sulfide morphology at submicron resolution, which has not been previously reported for 3D imaging of minerals. Our work suggests that MPM is a highly efficient tool for 3D studies of microstructures and morphologies of minerals in silicate rocks, which may find other applications in geosciences.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, D. A.; Belinsky, A. V., E-mail: belinsky@inbox.ru

    Images formed by light with suppressed photon fluctuations are interesting objects for studies with the aim of increasing their limiting information capacity and quality. This light in the sub-Poisson state can be prepared in a resonator filled with a medium with Kerr nonlinearity, in which self-phase modulation takes place. Spatially and temporally multimode light beams are studied and the production of spatial frequency spectra of suppressed photon fluctuations is described. The efficient operation regimes of the system are found. A particular schematic solution is described, which allows one to realize the potential possibilities laid in the formation of the squeezedmore » states of light to a maximum degree during self-phase modulation in a resonator for the maximal suppression of amplitude quantum noises upon two-dimensional imaging. The efficiency of using light with suppressed quantum fluctuations for computer image processing is studied. An algorithm is described for interpreting measurements for increasing the resolution with respect to the geometrical resolution. A mathematical model that characterizes the measurement scheme is constructed and the problem of the image reconstruction is solved. The algorithm for the interpretation of images is verified. Conditions are found for the efficient application of sub-Poisson light for super-resolution imaging. It is found that the image should have a low contrast and be maximally transparent.« less

  4. Carotid lesion characterization by synthetic-aperture-imaging techniques with multioffset ultrasonic probes

    NASA Astrophysics Data System (ADS)

    Capineri, Lorenzo; Castellini, Guido; Masotti, Leonardo F.; Rocchi, Santina

    1992-06-01

    This paper explores the applications of a high-resolution imaging technique to vascular ultrasound diagnosis, with emphasis on investigation of the carotid vessel. With the present diagnostic systems, it is difficult to measure quantitatively the extension of the lesions and to characterize the tissue; quantitative images require enough spatial resolution and dynamic to reveal fine high-risk pathologies. A broadband synthetic aperture technique with multi-offset probes is developed to improve the lesion characterization by the evaluation of local scattering parameters. This technique works with weak scatterers embedded in a constant velocity medium, large aperture, and isotropic sources and receivers. The features of this technique are: axial and lateral spatial resolution of the order of the wavelength, high dynamic range, quantitative measurements of the size and scattering intensity of the inhomogeneities, and capabilities of investigation of inclined layer. The evaluation of the performances in real condition is carried out by a software simulator in which different experimental situations can be reproduced. Images of simulated anatomic test-objects are presented. The images are obtained with an inversion process of the synthesized ultrasonic signals, collected on the linear aperture by a limited number of finite size transducers.

  5. Absorption characterization of immersion medium for multiphoton microscopy at the 1700nm window

    NASA Astrophysics Data System (ADS)

    Wen, Wenhui; Qiu, Ping

    2017-02-01

    Larger imaging depth is the quest of almost all the imaging modalities, including multiphoton microscopy (MPM). Recently, it has been domonstrated that excitation at the 1700-nm helps extending imaging depth in MPM, optical coherence tomography, as well as photoacoustic imaging compared with excitation at other wavelengths. In MPM, immersion objective lenses with high numerical aperture (NA) are typically used to achieve better signal resolution, higer signal collection efficiency, and stronger signal generation. Although physically short ( mm), this extra optical path length traversed by the excitation light inevitably introduces absorption of the excitation light, and as a result leads to a decrease in the signal generation. Here we demonstrate experimental characterization of absorption spectrum of various immersion media at the 1700-nm window, including water (H2O), deuterium oxide (D2O), and several brands of immersion oil. Our results identify either the best immersion medium for a specific wavelength, or the best wavelength for a specific immersion medium at the 1700-nm window. Furthermore, through quantitative MPM experiments comparing different immersion media, we show that the MPM signal levels can be enhanced by more than ten fold simply by selecting the proper immersion medium, in good agreement with theoretical expectation based on the absorption measurement. Our results will offer guidelines for signal optimization in MPM at the 1700-nm window.

  6. An image quality comparison study between XVI and OBI CBCT systems.

    PubMed

    Kamath, Srijit; Song, William; Chvetsov, Alexei; Ozawa, Shuichi; Lu, Haibin; Samant, Sanjiv; Liu, Chihray; Li, Jonathan G; Palta, Jatinder R

    2011-02-04

    The purpose of this study is to evaluate and compare image quality characteristics for two commonly used and commercially available CBCT systems: the X-ray Volumetric Imager and the On-Board Imager. A commonly used CATPHAN image quality phantom was used to measure various image quality parameters, namely, pixel value stability and accuracy, noise, contrast to noise ratio (CNR), high-contrast resolution, low contrast resolution and image uniformity. For the XVI unit, we evaluated the image quality for four manufacturer-supplied protocols as a function of mAs. For the OBI unit, we did the same for the full-fan and half-fan scanning modes, which were respectively used with the full bow-tie and half bow-tie filters. For XVI, the mean pixel values of regions of interest were found to generally decrease with increasing mAs for all protocols, while they were relatively stable with mAs for OBI. Noise was slightly lower on XVI and was seen to decrease with increasing mAs, while CNR increased with mAs for both systems. For XVI and OBI, the high-contrast resolution was approximately limited by the pixel resolution of the reconstructed image. On OBI images, up to 6 and 5 discs of 1% and 0.5% contrast, respectively, were visible for a high mAs setting using the full-fan mode, while none of the discs were clearly visible on the XVI images for various mAs settings when the medium resolution reconstruction was used. In conclusion, image quality parameters for XVI and OBI have been quantified and compared for clinical protocols under various mAs settings. These results need to be viewed in the context of a recent study that reported the dose-mAs relationship for the two systems and found that OBI generally delivered higher imaging doses than XVI.

  7. Atmospheric correction of the ocean color observations of the medium resolution imaging spectrometer (MERIS)

    NASA Astrophysics Data System (ADS)

    Antoine, David; Morel, Andre

    1997-02-01

    An algorithm is proposed for the atmospheric correction of the ocean color observations by the MERIS instrument. The principle of the algorithm, which accounts for all multiple scattering effects, is presented. The algorithm is then teste, and its accuracy assessed in terms of errors in the retrieved marine reflectances.

  8. TWO SNe Ia AT REDSHIFT ∼2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodney, Steven A.; Riess, Adam G.; Jones, David O.

    2015-11-15

    We present two supernovae (SNe) discovered with the Hubble Space Telescope (HST) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, an HST multi-cycle treasury program. We classify both objects as SNe Ia and find redshifts of z = 1.80 ± 0.02 and 2.26{sup +0.02}{sub −0.10}, the latter of which is the highest redshift SN Ia yet seen. Using light curve fitting we determine luminosity distances and find that both objects are consistent with a standard ΛCDM cosmological model. These SNe were observed using the HST Wide Field Camera 3 infrared detector, with imaging in both wide- and medium-band filters.more » We demonstrate that the classification and redshift estimates are significantly improved by the inclusion of single-epoch medium-band observations. This medium-band imaging approximates a very low resolution spectrum (λ/Δλ ≲ 100) which can isolate broad spectral absorption features that differentiate SNe Ia from their most common core collapse cousins. This medium-band method is also insensitive to dust extinction and (unlike grism spectroscopy) it is not affected by contamination from the SN host galaxy or other nearby sources. As such, it can provide a more efficient—though less precise—alternative to IR spectroscopy for high-z SNe.« less

  9. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse.

    PubMed

    Voras, Zachary E; deGhetaldi, Kristin; Wiggins, Marcie B; Buckley, Barbara; Baade, Brian; Mass, Jennifer L; Beebe, Thomas P

    2015-11-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as identifying unexpected organic materials in specific paint layers.

  10. Proper alignment of the microscope.

    PubMed

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse

    NASA Astrophysics Data System (ADS)

    Voras, Zachary E.; deGhetaldi, Kristin; Wiggins, Marcie B.; Buckley, Barbara; Baade, Brian; Mass, Jennifer L.; Beebe, Thomas P.

    2015-11-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as identifying unexpected organic materials in specific paint layers.

  12. Valles Marineris

    NASA Image and Video Library

    1998-06-08

    A color image of Valles Marineris, the great canyon of Mars; north toward top. The scene shows the entire canyon system, over 3,000 km long and averaging 8 km deep, extending from Noctis Labyrinthus, the arcuate system of graben to the west, to the chaotic terrain to the east. This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color; Mercator projection. The image extends from latitude 0 degrees to 20 degrees S. and from longitude 45 degrees to 102.5 degrees. The connected chasma or valleys of Valles Marineris may have formed from a combination of erosional collapse and structural activity. Layers of material in the eastern canyons might consist of carbonates deposited in ancient lakes. Huge ancient river channels began from Valles Marineris and from adjacent canyons and ran north. Many of the channels flowed north into Chryse Basin, which contains the site of the Viking 1 Lander and the future site of the Mars Pathfinder Lander. http://photojournal.jpl.nasa.gov/catalog/PIA00422

  13. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  14. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  15. Pattern-Recognition Processor Using Holographic Photopolymer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Cammack, Kevin

    2006-01-01

    proposed joint-transform optical correlator (JTOC) would be capable of operating as a real-time pattern-recognition processor. The key correlation-filter reading/writing medium of this JTOC would be an updateable holographic photopolymer. The high-resolution, high-speed characteristics of this photopolymer would enable pattern-recognition processing to occur at a speed three orders of magnitude greater than that of state-of-the-art digital pattern-recognition processors. There are many potential applications in biometric personal identification (e.g., using images of fingerprints and faces) and nondestructive industrial inspection. In order to appreciate the advantages of the proposed JTOC, it is necessary to understand the principle of operation of a conventional JTOC. In a conventional JTOC (shown in the upper part of the figure), a collimated laser beam passes through two side-by-side spatial light modulators (SLMs). One SLM displays a real-time input image to be recognized. The other SLM displays a reference image from a digital memory. A Fourier-transform lens is placed at its focal distance from the SLM plane, and a charge-coupled device (CCD) image detector is placed at the back focal plane of the lens for use as a square-law recorder. Processing takes place in two stages. In the first stage, the CCD records the interference pattern between the Fourier transforms of the input and reference images, and the pattern is then digitized and saved in a buffer memory. In the second stage, the reference SLM is turned off and the interference pattern is fed back to the input SLM. The interference pattern thus becomes Fourier-transformed, yielding at the CCD an image representing the joint-transform correlation between the input and reference images. This image contains a sharp correlation peak when the input and reference images are matched. The drawbacks of a conventional JTOC are the following: The CCD has low spatial resolution and is not an ideal square-law detector for the purpose of holographic recording of interference fringes. A typical state-of-the-art CCD has a pixel-pitch limited resolution of about 100 lines/mm. In contrast, the holographic photopolymer to be used in the proposed JTOC offers a resolution > 2,000 lines/mm. In addition to being disadvantageous in itself, the low resolution of the CCD causes overlap of a DC term and the desired correlation term in the output image. This overlap severely limits the correlation signal-to-noise ratio. The two-stage nature of the process limits the achievable throughput rate. A further limit is imposed by the low frame rate (typical video rates) of low- and medium-cost commercial CCDs.

  16. SPICA, Stellar Parameters and Images with a Cophased Array: a 6T visible combiner for the CHARA array.

    PubMed

    Mourard, Denis; Bério, Philippe; Perraut, Karine; Clausse, Jean-Michel; Creevey, Orlagh; Martinod, Marc-Antoine; Meilland, Anthony; Millour, Florentin; Nardetto, Nicolas

    2017-05-01

    High angular resolution studies of stars in the optical domain have highly progressed in recent years. After the results obtained with the visible instrument Visible spEctroGraph and polArimeter (VEGA) on the Center for High Angular Resolution Astronomy (CHARA) array and the recent developments on adaptive optics and fibered interferometry, we have started the design and study of a new six-telescope visible combiner with single-mode fibers. It is designed as a low spectral resolution instrument for the measurement of the angular diameter of stars to make a major step forward in terms of magnitude and precision with respect to the present situation. For a large sample of bright stars, a medium spectral resolution mode will allow unprecedented spectral imaging of stellar surfaces and environments for higher accuracy on stellar/planetary parameters. To reach the ultimate performance of the instrument in terms of limiting magnitude (Rmag≃8 for diameter measurements and Rmag≃4 to 5 for imaging), Stellar Parameters and Images with a Cophased Array (SPICA) includes the development of a dedicated fringe tracking system in the H band to reach "long" (200 ms to 30 s) exposures of the fringe signal in the visible.

  17. Estimation of leaf area index using WorldView-2 and Aster satellite image: a case study from Turkey.

    PubMed

    Günlü, Alkan; Keleş, Sedat; Ercanlı, İlker; Şenyurt, Muammer

    2017-10-04

    The objective of this study is to estimate the leaf area index (LAI) of a forest ecosystem using two different satellite images, WorldView-2 and Aster. For this purpose, 108 sample plots were taken from pure Crimean pine forest stands of Yenice Forest Management Planning Unit in Ilgaz Forest Management Enterprise, Turkey. Each sample plot was imaged with hemispherical photographs with a fish-eye camera to determine the LAI. These photographs were analyzed with the help of Hemisfer Hemiview software program, and thus, the LAI of each sample plot was estimated. Furthermore, multiple regression analysis method was used to model the statistical relationships between the LAI values and band spectral reflection values and some vegetation indices (Vis) obtained from satellite images. The results show that the high-resolution WorldView-2 satellite image is better than the medium-resolution Aster satellite image in predicting the LAI. It was also seen that the results obtained by using the VIs are better than the bands when the LAI value is predicted with satellite images.

  18. Descent Through Clouds to Surface

    NASA Image and Video Library

    2005-01-18

    This frame from an animation is made up from a sequence of images taken by the Descent Imager/Spectral Radiometer (DISR) instrument on board ESA's Huygens probe, during its successful descent to Titan on Jan. 14, 2005. The animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA07234 It shows what a passenger riding on Huygens would have seen. The sequence starts from an altitude of 152 kilometers (about 95 miles) and initially only shows a hazy view looking into thick cloud. As the probe descends, ground features can be discerned and Huygens emerges from the clouds at around 30 kilometers (about 19 miles) altitude. The ground features seem to rotate as Huygens spins slowly underits parachute. The DISR consists of a downward-looking High Resolution Imager (HRI), a Medium Resolution Imager (MRI), which looks out at an angle, and a Side Looking Imager (SLI). For this animation, most images used were captured by the HRI and MRI. Once on the ground, the final landing scene was captured by the SLI. The Descent Imager/Spectral Radiometer is one of two NASA instruments on the probe.

  19. CHISL: the combined high-resolution and imaging spectrograph for the LUVOIR surveyor

    NASA Astrophysics Data System (ADS)

    France, Kevin; Fleming, Brian; Hoadley, Keri

    2016-10-01

    NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) surveyor mission (d≈12 m, Δλ≈1000 Å, 2 μm spectroscopic bandpass) can carry out the largest number of NASA's exoplanet and astrophysics science goals over the coming decades. The science grasp of an LUVOIR surveyor is broad, ranging from the direct detection of potential biomarkers on rocky planets to the flow of matter into and out of galaxies and the history of star-formation across cosmic time. There are technical challenges for several aspects of the LUVOIR surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR surveyor mission concept, the combined high-resolution and imaging spectrograph for the LUVOIR surveyor (CHISL). CHISL includes a high-resolution (R≈120,000 1000 to 1700 Å) point-source spectroscopy channel and a medium-resolution (R≥14,000 from 1000 to 2000 Å in a single observation and R˜24,000 to 35,000 in multiple grating settings) imaging spectroscopy channel. CHISL addresses topics ranging from characterizing the composition and structure of planet-forming disks to the feedback of matter between galaxies and the intergalactic medium. We present the CHISL concept, a small sample of representative science cases, and the primary technological hurdles. Technical challenges include high-efficiency ultraviolet coatings and high-quantum efficiency, large-format, photon counting detectors. We are actively engaged in laboratory and flight characterization efforts for all of these enabling technologies as components on sounding rocket payloads under development at the University of Colorado. We describe two payloads that are designed to be pathfinder instruments for the high-resolution (CHESS) and imaging spectroscopy (SISTINE) arms of CHISL. We are carrying out this instrument design, characterization, and flight-testing today to support the new start of an LUVOIR surveyor mission in the next decade.

  20. Coherent imaging with incoherent light in digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Chmelik, Radim

    2012-01-01

    Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.

  1. The Observing Modes of JWST/NIRISS

    NASA Astrophysics Data System (ADS)

    Taylor, Joanna M.; NIRISS Team

    2018-06-01

    The Near Infrared Imager and Slitless Spectrograph (NIRISS) is a contribution of the Canadian Space Agency to the James Webb Space Telescope (JWST). NIRISS complements the other near-infrared science instruments onboard JWST by providing capabilities for (a) low resolution grism spectroscopy between 0.8 and 2.2 µm over the entire field of view, with the possibility of observing the same scene with orthogonal dispersion directions to disentangle blended objects; (b) medium-resolution grism spectroscopy between 0.6 and 2.8 µm that has been optimized to provide high spectrophotometric stability for time-series observations of transiting exoplanets; (c) aperture masking interferometry that provides high angular resolution of 70 - 400 mas at wavelengths between 2.8 and 4.8 µm and (d) parallel imaging through a set of filters that are closely matched to NIRCam's.In this poster, we discuss each of these modes and present simulations of how they might typically be used to address specific scientific questions.

  2. Remote sensing of atmospheric water vapor from synthetic aperture radar interferometry: case studies in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Chang, Liang; Liu, Min; Guo, Lixin; He, Xiufeng; Gao, Guoping

    2016-10-01

    The estimation of atmospheric water vapor with high resolution is important for operational weather forecasting, climate monitoring, atmospheric research, and numerous other applications. The 40 m×40 m and 30 m×30 m differential precipitable water vapor (ΔPWV) maps are generated with C- and L-band synthetic aperture radar interferometry (InSAR) images over Shanghai, China, respectively. The ΔPWV maps are accessed via comparisons with the spatiotemporally synchronized PWV measurements from the European Centre for Medium-Range Weather Forecasts Interim reanalysis at the finest resolution and global positioning system observations, respectively. Results reveal that the ΔPWV maps can be estimated from both C- and L-band InSAR images with an accuracy of better than 2.0 mm, which, therefore, demonstrates the ability of InSAR observations at both C- and L-band to detect the water vapor distribution with high spatial resolution.

  3. On pictures and stuff: image quality and material appearance

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2014-02-01

    Realistic images are a puzzle because they serve as visual representations of objects while also being objects themselves. When we look at an image we are able to perceive both the properties of the image and the properties of the objects represented by the image. Research on image quality has typically focused improving image properties (resolution, dynamic range, frame rate, etc.) while ignoring the issue of whether images are serving their role as visual representations. In this paper we describe a series of experiments that investigate how well images of different quality convey information about the properties of the objects they represent. In the experiments we focus on the effects that two image properties (contrast and sharpness) have on the ability of images to represent the gloss of depicted objects. We found that different experimental methods produced differing results. Specifically, when the stimulus images were presented using simultaneous pair comparison, observers were influenced by the surface properties of the images and conflated changes in image contrast and sharpness with changes in object gloss. On the other hand, when the stimulus images were presented sequentially, observers were able to disregard the image plane properties and more accurately match the gloss of the objects represented by the different quality images. These findings suggest that in understanding image quality it is useful to distinguish between quality of the imaging medium and the quality of the visual information represented by that medium.

  4. Optically based technique for producing merged spectra of water-leaving radiances from ocean color remote sensing.

    PubMed

    Mélin, Frédéric; Zibordi, Giuseppe

    2007-06-20

    An optically based technique is presented that produces merged spectra of normalized water-leaving radiances L(WN) by combining spectral data provided by independent satellite ocean color missions. The assessment of the merging technique is based on a four-year field data series collected by an autonomous above-water radiometer located on the Acqua Alta Oceanographic Tower in the Adriatic Sea. The uncertainties associated with the merged L(WN) obtained from the Sea-viewing Wide Field-of-view Sensor and the Moderate Resolution Imaging Spectroradiometer are consistent with the validation statistics of the individual sensor products. The merging including the third mission Medium Resolution Imaging Spectrometer is also addressed for a reduced ensemble of matchups.

  5. Superlensing effect for surface acoustic waves in a pillar-based phononic crystal with negative refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addouche, Mahmoud, E-mail: mamoud.addouche@femto-st.fr; Al-Lethawe, Mohammed A., E-mail: mohammed.abdulridha@femto-st.fr; Choujaa, Abdelkrim, E-mail: achoujaa@femto-st.fr

    2014-07-14

    We demonstrate super resolution imaging for surface acoustic waves using a phononic structure displaying negative refractive index. This phononic structure is made of a monolithic square lattice of cylindrical pillars standing on a semi-infinite medium. The pillars act as acoustic resonator and induce a surface propagating wave with unusual dispersion. We found, under specific geometrical parameters, one propagating mode that exhibits negative refraction effect with negative effective index close to −1. Furthermore, a flat lens with finite number of pillars is designed to allow the focusing of an acoustic point source into an image with a resolution of (λ)/3 ,more » overcoming the Rayleigh diffraction limit.« less

  6. Sunny Side of a Comet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Temperature Map

    This image composite shows comet Tempel 1 in visible (left) and infrared (right) light (figure 1). The infrared picture highlights the warm, or sunlit, side of the comet, where NASA's Deep Impact probe later hit. These data were acquired about six minutes before impact. The visible image was taken by the medium-resolution camera on the mission's flyby spacecraft, and the infrared data were acquired by the flyby craft's infrared spectrometer.

  7. Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Khosroshahi, H. G.; Danesh, A.; Molaeinezhad, A.

    2016-09-01

    The Iranian National Observatory is under construction at an altitude of 3600m at Gargash summit 300km southern Tehran. The site selection was concluded in 2007 and the site monitoring activities have begun since then, which indicates a high quality of the site with a median seeing of 0.7 arcsec through the year. One of the major observing facilities of the observatory is a 3.4m Alt-Az Ritchey-Chretien optical telescope which is currently under design. This f/11 telescope will be equipped with high resolution medium-wide field imaging cameras as well as medium and high resolution spectrographs. In this review, I will give an overview of astronomy research and education in Iran. Then I will go through the past and present activities of the Iranian National Observatory project including the site quality, telescope specifications and instrument capabilities.

  8. Evaluation of collimation and imaging configuration in scintimammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsui, B.M.W.; Frey, E.C.; Wessell, D.E.

    1996-12-31

    Conventional scintimammography (SM) with {sup 99m}Tc sestamibi has been limited to taking a single lateral view of the breast using a parallel-hole high resolution (LEHR) collimator. The collimator is placed close to the breast for best possible spatial resolution. However, the collimator geometry precludes imaging the breast from other views. We evaluated using a pinhole collimator instead of a LEHR collimator in SM for improved spatial resolution and detection efficiency, and to allow additional imaging views. Results from theoretical calculations indicated that pinhole collimators could be designed with higher spatial resolution and detection efficiency than LEHR when imaging small tomore » medium size breasts. The geometrical shape of the pinhole collimator allows imaging of the breasts from both the lateral and craniocaudal views. The dual-view images allow better determination of the location of the tumors within the breast and improved detection of tumors located in the medial region of the breast. A breast model that simulates the shape and composition of the breast and breast tumors with different sizes and locations was added to an existing 3D mathematical cardiac-torso (MCAT) phantom. A cylindrically shaped phantom with 10 cm diameter and spherical inserts with different sizes and {sup 99m}Tc sestamibi uptakes with respect to the background provide physical models of breast with tumors. Simulation studies using the breast and MCAT phantoms and experimental studies using the cylindrical phantom confirmed the utility of the pinhole collimator in SM for improved breast tumor detection.« less

  9. Multiplexing and de-multiplexing with scattering media for large field of view and multispectral imaging

    NASA Astrophysics Data System (ADS)

    Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong

    2018-02-01

    Large field of view multispectral imaging through scattering medium is a fundamental quest in optics community. It has gained special attention from researchers in recent years for its wide range of potential applications. However, the main bottlenecks of the current imaging systems are the requirements on specific illumination, poor image quality and limited field of view. In this work, we demonstrated a single-shot high-resolution colour-imaging through scattering media using a monochromatic camera. This novel imaging technique is enabled by the spatial, spectral decorrelation property and the optical memory effect of the scattering media. Moreover the use of deconvolution image processing further annihilate above-mentioned drawbacks arise due iterative refocusing, scanning or phase retrieval procedures.

  10. Dawn XMO2 Image 28

    NASA Image and Video Library

    2017-01-03

    Meanderi Crater on Ceres is seen at lower right in this image from NASA's Dawn spacecraft. Meanderi -- named for the Ngaing goddess (New Guinea) of taro, sugar cane and other foods -- hosts several medium-sized craters within its walls. Meanderi measures 64 miles (103 kilometers) in diameter. The crater is centered at 41 degrees south, 194 degrees east. Dawn took this image on Oct. 26, 2016, during its second extended-mission science orbit (XMO2), from a distance of about 920 miles (1,480 kilometers) above the surface of Ceres. The image resolution is about 460 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21248

  11. WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya, J; Ferrero, A; Yu, L

    Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150more » and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare.« less

  12. Using CloudSat and the A-Train to Estimate Tropical Cyclone Intensity in the Western North Pacific

    DTIC Science & Technology

    2014-09-01

    CloudSat System Data Flow (from Cooperative Institute for Research in the Atmosphere 2008...radar Department of Defense Data Processing Center European Centre for Medium-Range Weather Forecasts Earth observing system Earth observing... system data and information system Earth sciences systems pathfinder hierarchical data format moderate resolution imaging spectroradiometer moist

  13. Towards an ultra-thin medical endoscope: multimode fibre as a wide-field image transferring medium

    NASA Astrophysics Data System (ADS)

    Duriš, Miroslav; Bradu, Adrian; Podoleanu, Adrian; Hughes, Michael

    2018-03-01

    Multimode optical fibres are attractive for biomedical and industrial applications such as endoscopes because of the small cross section and imaging resolution they can provide in comparison to widely-used fibre bundles. However, the image is randomly scrambled by propagation through a multimode fibre. Even though the scrambling is unpredictable, it is deterministic, and therefore the scrambling can be reversed. To unscramble the image, we treat the multimode fibre as a linear, disordered scattering medium. To calibrate, we scan a focused beam of coherent light over thousands of different beam positions at the distal end and record complex fields at the proximal end of the fibre. This way, the inputoutput response of the system is determined, which then allows computational reconstruction of reflection-mode images. However, there remains the problem of illuminating the tissue via the fibre while avoiding back reflections from the proximal face. To avoid this drawback, we provide here the first preliminary confirmation that an image can be transferred through a 2x2 fibre coupler, with the sample at its distal port interrogated in reflection. Light is injected into one port for illumination and then collected from a second port for imaging.

  14. Is phase measurement necessary for incoherent holographic 3D imaging?

    NASA Astrophysics Data System (ADS)

    Rosen, Joseph; Vijayakumar, A.; Rai, Mani Ratnam; Mukherjee, Saswata

    2018-02-01

    Incoherent digital holography can be used for several applications, among which are high resolution fluorescence microscopy and imaging through a scattering medium. Historically, an incoherent digital hologram has been usually recorded by self-interference systems in which both interfering beams are originated from the same observed object. The self-interference system enables to read the phase distribution of the wavefronts propagating from an object and consequently to decode the 3D location of the object points. In this presentation, we survey several cases in which 3D holographic imaging can be done without the phase information and without two-wave interference.

  15. Stellar interferometers and hypertelescopes: new insights on an angular spatial frequency approach to their non-invariant imaging

    NASA Astrophysics Data System (ADS)

    Dettwiller, L.; Lépine, T.

    2017-12-01

    A general and pure wave theory of image formation for all types of stellar interferometers, including hypertelescopes, is developed in the frame of Fresnel's paraxial approximations of diffraction. For a hypertelescope, we show that the severe lack of translation invariance leads to multiple and strong spatial frequency heterodyning, which codes the very high frequencies detected by the hypertelescope into medium spatial frequencies and introduces a moiré-type ambiguity for extended objects. This explains mathematically the disappointing appearance of poor resolution observed in some image simulations for hypertelescopes.

  16. High-resolution imaging of cellular processes across textured surfaces using an indexed-matched elastomer.

    PubMed

    Ravasio, Andrea; Vaishnavi, Sree; Ladoux, Benoit; Viasnoff, Virgile

    2015-03-01

    Understanding and controlling how cells interact with the microenvironment has emerged as a prominent field in bioengineering, stem cell research and in the development of the next generation of in vitro assays as well as organs on a chip. Changing the local rheology or the nanotextured surface of substrates has proved an efficient approach to improve cell lineage differentiation, to control cell migration properties and to understand environmental sensing processes. However, introducing substrate surface textures often alters the ability to image cells with high precision, compromising our understanding of molecular mechanisms at stake in environmental sensing. In this paper, we demonstrate how nano/microstructured surfaces can be molded from an elastomeric material with a refractive index matched to the cell culture medium. Once made biocompatible, contrast imaging (differential interference contrast, phase contrast) and high-resolution fluorescence imaging of subcellular structures can be implemented through the textured surface using an inverted microscope. Simultaneous traction force measurements by micropost deflection were also performed, demonstrating the potential of our approach to study cell-environment interactions, sensing processes and cellular force generation with unprecedented resolution. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    PubMed

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  18. A combined Compton and coded-aperture telescope for medium-energy gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Galloway, Michelle; Zoglauer, Andreas; Boggs, Steven E.; Amman, Mark

    2018-06-01

    A future mission in medium-energy gamma-ray astrophysics would allow for many scientific advancements, such as a possible explanation for the excess positron emission from the Galactic center, a better understanding of nucleosynthesis and explosion mechanisms in Type Ia supernovae, and a look at the physical forces at play in compact objects such as black holes and neutron stars. Additionally, further observation in this energy regime would significantly extend the search parameter space for low-mass dark matter. In order to achieve these objectives, an instrument with good energy resolution, good angular resolution, and high sensitivity is required. In this paper we present the design and simulation of a Compton telescope consisting of cubic-centimeter cadmium zinc telluride detectors as absorbers behind a silicon tracker with the addition of a passive coded mask. The goal of the design was to create a very sensitive instrument that is capable of high angular resolution. The simulated telescope achieved energy resolutions of 1.68% FWHM at 511 keV and 1.11% at 1809 keV, on-axis angular resolutions in Compton mode of 2.63° FWHM at 511 keV and 1.30° FWHM at 1809 keV, and is capable of resolving sources to at least 0.2° at lower energies with the use of the coded mask. An initial assessment of the instrument in Compton-imaging mode yields an effective area of 183 cm2 at 511 keV and an anticipated all-sky sensitivity of 3.6 × 10-6 photons cm-2 s-1 for a broadened 511 keV source over a two-year observation time. Additionally, combining a coded mask with a Compton imager to improve point-source localization for positron detection has been demonstrated.

  19. Two-Dimensional Standing Wave Total Internal Reflection Fluorescence Microscopy: Superresolution Imaging of Single Molecular and Biological Specimens

    PubMed Central

    Chung, Euiheon; Kim, Daekeun; Cui, Yan; Kim, Yang-Hyo; So, Peter T. C.

    2007-01-01

    The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The <100 nm penetration depth of evanescence field ensures a thin excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or ∼100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy. PMID:17483188

  20. A multiresolution processing method for contrast enhancement in portal imaging.

    PubMed

    Gonzalez-Lopez, Antonio

    2018-06-18

    Portal images have a unique feature among the imaging modalities used in radiotherapy: they provide direct visualization of the irradiated volumes. However, contrast and spatial resolution are strongly limited due to the high energy of the radiation sources. Because of this, imaging modalities using x-ray energy beams have gained importance in the verification of patient positioning, replacing portal imaging. The purpose of this work was to develop a method for the enhancement of local contrast in portal images. The method operates in the subbands of a wavelet decomposition of the image, re-scaling them in such a way that coefficients in the high and medium resolution subbands are amplified, an approach totally different of those operating on the image histogram, widely used nowadays. Portal images of an anthropomorphic phantom were acquired in an electronic portal imaging device (EPID). Then, different re-scaling strategies were investigated, studying the effects of the scaling parameters on the enhanced images. Also, the effect of using different types of transforms was studied. Finally, the implemented methods were combined with histogram equalization methods like the contrast limited adaptive histogram equalization (CLAHE), and these combinations were compared. Uniform amplification of the detail subbands shows the best results in contrast enhancement. On the other hand, linear re-escalation of the high resolution subbands increases the visibility of fine detail of the images, at the expense of an increase in noise levels. Also, since processing is applied only to detail subbands, not to the approximation, the mean gray level of the image is minimally modified and no further display adjustments are required. It is shown that re-escalation of the detail subbands of portal images can be used as an efficient method for the enhancement of both, the local contrast and the resolution of these images. © 2018 Institute of Physics and Engineering in Medicine.

  1. Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains

    PubMed Central

    Schwarz, Martin K.; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  2. Constraints on Circumstellar Dust Grain Sizes from High Spatial Resolution Observations in the Thermal Infrared

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.

    1996-01-01

    We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.

  3. Wavefront coding for fast, high-resolution light-sheet microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Olarte, Omar E.; Licea-Rodriguez, Jacob; Loza-Alvarez, Pablo

    2017-02-01

    Some biological experiments demand the observation of dynamics processes in 3D with high spatiotemporal resolution. The use of wavefront coding to extend the depth-of-field (DOF) of the collection arm of a light-sheet microscope is an interesting alternative for fast 3D imaging. Under this scheme, the 3D features of the sample are captured at high volumetric rates while the light sheet is swept rapidly within the extended DOF. The DOF is extended by coding the pupil function of the imaging lens by using a custom-designed phase mask. A posterior restoration step is required to decode the information of the captured images based on the applied phase mask [1]. This hybrid optical-digital approach is known as wavefront coding (WFC). Previously, we have demonstrated this method for performing fast 3D imaging of biological samples at medium resolution [2]. In this work, we present the extension of this approach for high-resolution microscopes. Under these conditions, the effective DOF of a standard high NA objective is of a few micrometers. Here we demonstrate that by the use of WFC, we can extend the DOF more than one order of magnitude keeping the high-resolution imaging. This is demonstrated for two designed phase masks using Zebrafish and C. elegans samples. [1] Olarte, O.E., Andilla, J., Artigas, D., and Loza-Alvarez, P., "Decoupled Illumination-Detection Microscopy. Selected Optics in Year 2105," in Optics and Photonics news 26, p. 41 (2015). [2] Olarte, O.E., Andilla, J., Artigas, D., and Loza-Alvarez, P., "Decoupled illumination detection in light sheet microscopy for fast volumetric imaging," Optica 2(8), 702 (2015).

  4. High-Resolution Imaging of the Multiphase Interstellar Thick Disk in Two Edge-On Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, K.

    2009-01-01

    We present broadband and narrow-band images, acquired from Hubble Space Telescope WFPC2 and WIYN 3.5 m telescope respectively, of two edge-on spiral galaxies, NGC 4302 and NGC 4013. These high-resolution images (BVI + H-alpha) provide a detailed view of the thick disk interstellar medium (ISM) in these galaxies. Both galaxies show prominent extraplanar dust-bearing clouds viewed in absorption against the background stellar light. Individual clouds are found to z 2 kpc in each galaxy. These clouds each contain >10^4 to >10^5 solar masses of gas. Both galaxies have extraplanar diffuse ionized gas (DIG), as seen in our H-alpha images and earlier work. In addition to the DIG, discrete H II regions are found at heights up to 1 kpc from both galaxies. We compare the morphologies of the dusty clouds with the DIG in these galaxies and discuss the relationship between these components of the thick disk ISM.

  5. Optimized protocol for combined PALM-dSTORM imaging.

    PubMed

    Glushonkov, O; Réal, E; Boutant, E; Mély, Y; Didier, P

    2018-06-08

    Multi-colour super-resolution localization microscopy is an efficient technique to study a variety of intracellular processes, including protein-protein interactions. This technique requires specific labels that display transition between fluorescent and non-fluorescent states under given conditions. For the most commonly used label types, photoactivatable fluorescent proteins and organic fluorophores, these conditions are different, making experiments that combine both labels difficult. Here, we demonstrate that changing the standard imaging buffer of thiols/oxygen scavenging system, used for organic fluorophores, to the commercial mounting medium Vectashield increased the number of photons emitted by the fluorescent protein mEos2 and enhanced the photoconversion rate between its green and red forms. In addition, the photophysical properties of organic fluorophores remained unaltered with respect to the standard imaging buffer. The use of Vectashield together with our optimized protocol for correction of sample drift and chromatic aberrations enabled us to perform two-colour 3D super-resolution imaging of the nucleolus and resolve its three compartments.

  6. Detecting of forest afforestation and deforestation in Hainan Jianfengling Forest Park (China) using yearly Landsat time-series images

    NASA Astrophysics Data System (ADS)

    Jiao, Quanjun; Zhang, Xiao; Sun, Qi

    2018-03-01

    The availability of dense time series of Landsat images pro-vides a great chance to reconstruct forest disturbance and change history with high temporal resolution, medium spatial resolution and long period. This proposal aims to apply forest change detection method in Hainan Jianfengling Forest Park using yearly Landsat time-series images. A simple detection method from the dense time series Landsat NDVI images will be used to reconstruct forest change history (afforestation and deforestation). The mapping result showed a large decrease occurred in the extent of closed forest from 1980s to 1990s. From the beginning of the 21st century, we found an increase in forest areas with the implementation of forestry measures such as the prohibition of cutting and sealing in our study area. Our findings provide an effective approach for quickly detecting forest changes in tropical original forest, especially for afforestation and deforestation, and a comprehensive analysis tool for forest resource protection.

  7. An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method

    NASA Astrophysics Data System (ADS)

    Nouizi, F.; Erkol, H.; Luk, A.; Marks, M.; Unlu, M. B.; Gulsen, G.

    2016-10-01

    We previously introduced photo-magnetic imaging (PMI), an imaging technique that illuminates the medium under investigation with near-infrared light and measures the induced temperature increase using magnetic resonance thermometry (MRT). Using a multiphysics solver combining photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature variation and recovers high resolution optical absorption images using these temperature maps. In this paper, we present a new fast non-iterative reconstruction algorithm for PMI. This new algorithm uses analytic methods during the resolution of the forward problem and the assembly of the sensitivity matrix. We validate our new analytic-based algorithm with the first generation finite element method (FEM) based reconstruction algorithm previously developed by our team. The validation is performed using, first synthetic data and afterwards, real MRT measured temperature maps. Our new method accelerates the reconstruction process 30-fold when compared to a single iteration of the FEM-based algorithm.

  8. Computational photography with plenoptic camera and light field capture: tutorial.

    PubMed

    Lam, Edmund Y

    2015-11-01

    Photography is a cornerstone of imaging. Ever since cameras became consumer products more than a century ago, we have witnessed great technological progress in optics and recording mediums, with digital sensors replacing photographic films in most instances. The latest revolution is computational photography, which seeks to make image reconstruction computation an integral part of the image formation process; in this way, there can be new capabilities or better performance in the overall imaging system. A leading effort in this area is called the plenoptic camera, which aims at capturing the light field of an object; proper reconstruction algorithms can then adjust the focus after the image capture. In this tutorial paper, we first illustrate the concept of plenoptic function and light field from the perspective of geometric optics. This is followed by a discussion on early attempts and recent advances in the construction of the plenoptic camera. We will then describe the imaging model and computational algorithms that can reconstruct images at different focus points, using mathematical tools from ray optics and Fourier optics. Last, but not least, we will consider the trade-off in spatial resolution and highlight some research work to increase the spatial resolution of the resulting images.

  9. Polar research from satellites

    NASA Technical Reports Server (NTRS)

    Thomas, Robert H.

    1991-01-01

    In the polar regions and climate change section, the topics of ocean/atmosphere heat transfer, trace gases, surface albedo, and response to climate warming are discussed. The satellite instruments section is divided into three parts. Part one is about basic principles and covers, choice of frequencies, algorithms, orbits, and remote sensing techniques. Part two is about passive sensors and covers microwave radiometers, medium-resolution visible and infrared sensors, advanced very high resolution radiometers, optical line scanners, earth radiation budget experiment, coastal zone color scanner, high-resolution imagers, and atmospheric sounding. Part three is about active sensors and covers synthetic aperture radar, radar altimeters, scatterometers, and lidar. There is also a next decade section that is followed by a summary and recommendations section.

  10. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  11. Deriving Continuous Fields of Tree Cover at 1-m over the Continental United States From the National Agriculture Imagery Program (NAIP) Imagery to Reduce Uncertainties in Forest Carbon Stock Estimation

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Basu, S.; Mukhopadhyay, S.; Michaelis, A.; Milesi, C.; Votava, P.; Nemani, R. R.

    2013-12-01

    An unresolved issue with coarse-to-medium resolution satellite-based forest carbon mapping over regional to continental scales is the high level of uncertainty in above ground biomass (AGB) estimates caused by the absence of forest cover information at a high enough spatial resolution (current spatial resolution is limited to 30-m). To put confidence in existing satellite-derived AGB density estimates, it is imperative to create continuous fields of tree cover at a sufficiently high resolution (e.g. 1-m) such that large uncertainties in forested area are reduced. The proposed work will provide means to reduce uncertainty in present satellite-derived AGB maps and Forest Inventory and Analysis (FIA) based regional estimates. Our primary objective will be to create Very High Resolution (VHR) estimates of tree cover at a spatial resolution of 1-m for the Continental United States using all available National Agriculture Imaging Program (NAIP) color-infrared imagery from 2010 till 2012. We will leverage the existing capabilities of the NASA Earth Exchange (NEX) high performance computing and storage facilities. The proposed 1-m tree cover map can be further aggregated to provide percent tree cover at any medium-to-coarse resolution spatial grid, which will aid in reducing uncertainties in AGB density estimation at the respective grid and overcome current limitations imposed by medium-to-coarse resolution land cover maps. We have implemented a scalable and computationally-efficient parallelized framework for tree-cover delineation - the core components of the algorithm [that] include a feature extraction process, a Statistical Region Merging image segmentation algorithm and a classification algorithm based on Deep Belief Network and a Feedforward Backpropagation Neural Network algorithm. An initial pilot exercise has been performed over the state of California (~11,000 scenes) to create a wall-to-wall 1-m tree cover map and the classification accuracy has been assessed. Results show an improvement in accuracy of tree-cover delineation as compared to existing forest cover maps from NLCD, especially over fragmented, heterogeneous and urban landscapes. Estimates of VHR tree cover will complement and enhance the accuracy of present remote-sensing based AGB modeling approaches and forest inventory based estimates at both national and local scales. A requisite step will be to characterize the inherent uncertainties in tree cover estimates and propagate them to estimate AGB.

  12. Mapping impervious surface expansion using medium resolution satellite image time series: A case study in Yangtze river delta, China

    USDA-ARS?s Scientific Manuscript database

    Due to the rapid growth of population and economic development in the developing countries, more people are now living in the cities than in the rural areas in the world for the first time in human history. As a result, cities are sprawling rapidly into their surroundings. A characteristic change as...

  13. MONET: multidimensional radiative cloud scene model

    NASA Astrophysics Data System (ADS)

    Chervet, Patrick

    1999-12-01

    All cloud fields exhibit variable structures (bulge) and heterogeneities in water distributions. With the development of multidimensional radiative models by the atmospheric community, it is now possible to describe horizontal heterogeneities of the cloud medium, to study these influences on radiative quantities. We have developed a complete radiative cloud scene generator, called MONET (French acronym for: MOdelisation des Nuages En Tridim.) to compute radiative cloud scene from visible to infrared wavelengths for various viewing and solar conditions, different spatial scales, and various locations on the Earth. MONET is composed of two parts: a cloud medium generator (CSSM -- Cloud Scene Simulation Model) developed by the Air Force Research Laboratory, and a multidimensional radiative code (SHDOM -- Spherical Harmonic Discrete Ordinate Method) developed at the University of Colorado by Evans. MONET computes images for several scenario defined by user inputs: date, location, viewing angles, wavelength, spatial resolution, meteorological conditions (atmospheric profiles, cloud types)... For the same cloud scene, we can output different viewing conditions, or/and various wavelengths. Shadowing effects on clouds or grounds are taken into account. This code is useful to study heterogeneity effects on satellite data for various cloud types and spatial resolutions, and to determine specifications of new imaging sensor.

  14. Ultrasound-mediation of self-illuminating reporters improves imaging resolution in optically scattering media

    PubMed Central

    Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.

    2018-01-01

    In vivo imaging of self-illuminating bio-and chemiluminescent reporters is used to observe the physiology of small animals. However, strong light scattering by biological tissues results in poor spatial resolution of the optical imaging, which also degrades the quantitative accuracy. To overcome this challenging problem, focused ultrasound is used to modulate the light from the reporter at the ultrasound frequency. This produces an ultrasound switchable light ‘beacon’ that reduces the influence of light scattering in order to improve spatial resolution. The experimental results demonstrate that apart from light modulation at the ultrasound frequency (AC signal at 3.5 MHz), ultrasound also increases the DC intensity of the reporters. This is shown to be due to a temperature rise caused by insonification that was minimized to be within acceptable mammalian tissue safety thresholds by adjusting the duty cycle of the ultrasound. Line scans of bio-and chemiluminescent objects embedded within a scattering medium were obtained using ultrasound modulated (AC) and ultrasound enhanced (DC) signals. Lateral resolution is improved by a factor of 12 and 7 respectively, as compared to conventional CCD imaging. Two chemiluminescent sources separated by ~10 mm at ~20 mm deep inside a 50 mm thick chicken breast have been successfully resolved with an average signal-to-noise ratio of approximately 8-10 dB. PMID:29675309

  15. The use of Sentinel-2 imagery for seagrass mapping: Kalloni Gulf (Lesvos Island, Greece) case study

    NASA Astrophysics Data System (ADS)

    Topouzelis, Konstantinos; Charalampis Spondylidis, Spyridon; Papakonstantinou, Apostolos; Soulakellis, Nikolaos

    2016-08-01

    Seagrass meadows play a significant role in ecosystems by stabilizing sediment and improving water clarity, which enhances seagrass growing conditions. It is high on the priority of EU legislation to map and protect them. The traditional use of medium spatial resolution satellite imagery e.g. Landsat-8 (30m) is very useful for mapping seagrass meadows on a regional scale. However, the availability of Sentinel-2 data, the recent ESA's satellite with its payload Multi-Spectral Instrument (MSI) is expected to improve the mapping accuracy. MSI designed to improve coastline studies due to its enhanced spatial and spectral capabilities e.g. optical bands with 10m spatial resolution. The present work examines the quality of Sentinel-2 images for seagrass mapping, the ability of each band in detection and discrimination of different habitats and estimates the accuracy of seagrass mapping. After pre-processing steps, e.g. radiometric calibration and atmospheric correction, image classified into four classes. Classification classes included sub-bottom composition e.g. seagrass, soft bottom, and hard bottom. Concrete vectors describing the areas covered by seagrass extracted from the high-resolution satellite image and used as in situ measurements. The developed methodology applied in the Gulf of Kalloni, (Lesvos Island - Greece). Results showed that Sentinel-2 images can be robustly used for seagrass mapping due to their spatial resolution, band availability and radiometric accuracy.

  16. Lightfield super-resolution through turbulence

    NASA Astrophysics Data System (ADS)

    Trujillo-Sevilla, Juan M.; Fernández-Valdivia, Juan J.; Rodríguez-Ramos, Luis F.; Cárdenes, Óscar G.; Marichal-Hernández, José G.; Javidi, Bahram; Rodríguez-Ramos, José M.

    2015-05-01

    In this paper, we use information from the light field to obtain a distribution map of the wavefront phase. This distribution is associated with changes in refractive index which are relevant in the propagation of light through a heterogeneous or turbulent medium. Through the measurement of the wavefront phase from a single shot, it is possible to make the deconvolution of blurred images affected by the turbulence. If this deconvolution is applied to light fields obtained by plenoptic acquisition, the original optical resolution associated to the objective lens is restored, it means we are using a kind of superresolution technique that works properly even in the presence of turbulence. The wavefront phase can also be estimated from the defocused images associated to the light field: we present here preliminary results using this approach.

  17. Second generation spectrograph for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  18. Crater Moreux

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Color image of part of the Ismenius Lacus region of Mars (MC-5 quadrangle) containing the impact crater Moreux (right center); north toward top. The scene shows heavily cratered highlands in the south on relatively smooth lowland plains in the north separated by a belt of dissected terrain, containing flat-floored valleys, mesas, and buttes. This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 36 degrees N. to 50 degrees N. and from longitude 310 degrees to 340 degrees; Lambert conformal conic projection. The dissected terrain along the highlands/lowlands boundary consists of the flat-floored valleys of Deuteronilus Mensae (on left) and Prontonilus Mensae (on right) and farther north the small, rounded hills of knobby terrain. Flows on the mensae floors contain striae that run parallel to valley walls; where valleys meet, the striae merge, similar to medial moraines on glaciers. Terraces within the valley hills have been interpreted as either layered rocks or wave terraces. The knobby terrain has been interpreted as remnants of the old, densely cratered highland terrain perhaps eroded by mass wasting.

  19. Pushing the plasmonic imaging nanolithography to nano-manufacturing

    NASA Astrophysics Data System (ADS)

    Gao, Ping; Li, Xiong; Zhao, Zeyu; Ma, Xiaoliang; Pu, Mingbo; Wang, Changtao; Luo, Xiangang

    2017-12-01

    Suffering from the so-called diffraction limit, the minimum resolution of conventional photolithography is limited to λ / 2 or λ / 4, where λ is the incident wavelength. The physical mechanism of this limit lies at the fact that the evanescent waves that carry subwavelength information of the object decay exponentially in a medium, and cannot reach the image plane. Surface plasmons (SPs) are non-radiative electromagnetic waves that propagate along the interface between metal and dielectric, which exhibits unique sub-diffraction optical characteristics. In recent years, benefiting from SPs' features, researchers have proposed a variety of plasmonic lithography methods in the manner of interference, imaging and direct writing, and have demonstrated that sub-diffraction resolution could be achieved by theoretical simulations or experiments. Among the various plasmonic lithography modes, plasmonic imaging lithography seems to be of particular importance for applications due to its compatibility with conventional lithography. Recent results show that the half pitch of nanograting can be shrinked down to 22 nm and even 16 nm. This paper will give an overview of research progress, representative achievements of plasmonic imaging lithography, the remained problems and outlook of further developments.

  20. Electromechanical and Elastic Probing of Bacteria in Cell Culture Medium

    PubMed Central

    Thompson, G.L.; Reukov, V.V.; Nikiforov, M.P.; Jesse, S.; Kalinin, S.V.; Vertegel, A.A.

    2012-01-01

    Rapid phenotype characterization and identification of cultured cells, which is needed for progress in tissue engineering and drug testing, requires an experimental technique that measures physical properties of cells with sub-micron resolution. Recently, band excitation piezoresponse force microscopy (BEPFM) has been proven useful for recognition and imaging of different types of bacteria in pure water. Here, the BEPFM method is performed for the first time in physiologically-relevant electrolyte media, such as Dulbecco’s phosphate-buffered saline (DPBS) and Dulbecco’s modified Eagle’s medium (DMEM). Distinct electromechanical responses for Micrococcus lysodeikticus (Gram-positive) and Pseudomonas fluorescens (Gram-negative) bacteria are demonstrated in DPBS. The results suggest that mechanical properties of the outer surface coating each bacterium, as well as the electrical double layer around them, are responsible for the BEPFM image formation mechanism in electrolyte media. PMID:22641388

  1. Electromechanical and elastic probing of bacteria in a cell culture medium

    NASA Astrophysics Data System (ADS)

    Thompson, G. L.; Reukov, V. V.; Nikiforov, M. P.; Jesse, S.; Kalinin, S. V.; Vertegel, A. A.

    2012-06-01

    Rapid phenotype characterization and identification of cultured cells, which is needed for progress in tissue engineering and drug testing, requires an experimental technique that measures physical properties of cells with sub-micron resolution. Recently, band excitation piezoresponse force microscopy (BEPFM) has been proven useful for recognition and imaging of bacteria of different types in pure water. Here, the BEPFM method is performed for the first time on physiologically relevant electrolyte media, such as Dulbecco’s phosphate-buffered saline (DPBS) and Dulbecco’s modified Eagle’s medium (DMEM). Distinct electromechanical responses for Micrococcus lysodeikticus (Gram-positive) and Pseudomonas fluorescens (Gram-negative) bacteria in DPBS are demonstrated. The results suggest that mechanical properties of the outer surface coating each bacterium, as well as the electrical double layer around them, are responsible for the BEPFM image formation mechanism in electrolyte media.

  2. A multispectral study of an extratropical cyclone with Nimbus 3 medium resolution infrared radiometer data

    NASA Technical Reports Server (NTRS)

    Holub, R.; Shenk, W. E.

    1973-01-01

    Four registered channels (0.2 to 4, 6.5 to 7, 10 to 11, and 20 to 23 microns) of the Nimbus 3 Medium Resolution Infrared Radiometer (MRIR) were used to study 24-hr changes in the structure of an extratropical cyclone during a 6-day period in May 1969. Use of a stereographic-horizon map projection insured that the storm was mapped with a single perspective throughout the series and allowed the convenient preparation of 24-hr difference maps of the infrared radiation fields. Single-channel and multispectral analysis techniques were employed to establish the positions and vertical slopes of jetstreams, large cloud systems, and major features of middle and upper tropospheric circulation. Use of these techniques plus the difference maps and continuity of observation allowed the early detection of secondary cyclones developing within the circulation of the primary cyclone. An automated, multispectral cloud-type identification technique was developed, and comparisons that were made with conventional ship reports and with high-resolution visual data from the image dissector camera system showed good agreement.

  3. Multi-object medium resolution optical spectroscopy at the E-ELT

    NASA Astrophysics Data System (ADS)

    Spanò, Paolo; Bonifacio, Piercarlo

    2008-07-01

    We present the design of a compact medium resolution spectrograph (R~15,000-20,000), intended to operate on a 42m telescope in seeing-limited mode. Our design takes full advantage of some new technology optical components, like volume phase holographic (VPH) gratings. At variance with the choice of complex large echelle spectrographs, which have been the standard on 8m class telescopes, we selected an efficient VPH spectrograph with a limited beam diameter, in order to keep overall dimensions and costs low, using proven available technologies. To obtain such a resolution, we need to moderately slice the telescope image plane onto the spectrograph entrance slit (5-6 slices). Then, standard telescope AO-mode (GLAO, Ground Layer Adaptive Optics) can be used over a large field of view (~10 arcmin), without loosing efficiency. Multiplex capabilities can greatly increase the observing efficiency. A robotic pick-up mirror system can be implemented, within conventional environmental conditions (temperature, pressure, gravity, size), demanding only standard mechanical and optical tolerances. A modular approach allows us scaling multiplex capabilities on overall costs and available space.

  4. Unexpected materials in a Rembrandt painting characterized by high spatial resolution cluster-TOF-SIMS imaging.

    PubMed

    Sanyova, Jana; Cersoy, Sophie; Richardin, Pascale; Laprévote, Olivier; Walter, Philippe; Brunelle, Alain

    2011-02-01

    The painting materials of the Portrait of Nicolaes van Bambeeck (Royal Museums of Fine Arts of Belgium, Brussels, inv. 155) painted by Rembrandt van Rijn in 1641 has been studied using high resolution cluster-TOF-SIMS imaging. In the first step, a moderate spatial resolution (2 μm) was used to characterize the layer structure and the chemical composition of each layer on account of a high mass resolution. Then, in the second step, and despite a low mass resolution, the cluster primary ion beam was focused well below 1 μm in order to reveal smaller structures in the painting sample. The study confirmed the presence of starch in the second ground layer, which is quite surprising and, at least for Rembrandt paintings, has never been reported before. TOF-SIMS also indicated the presence of proteins, which, added to the size and shape of lake particles, suggests that it was manufactured from shearings (waste of textile manufacturing) of dyed wool, used as the source of the dyestuff. The analyses have also shown various lead carboxylates, being the products of the interaction between lead white and the oil of the binding medium. These findings considerably contribute to the understanding of Rembrandt's studio practice and thus demonstrate the importance and potential of cluster-TOF-SIMS imaging in the characterization on a submicrometer scale of artist painting materials.

  5. Transport of magnetic fields into the circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Lilly, Simon

    2017-08-01

    Supernova-driven winds are known to play a major role in galaxy evolution, and to drive metal-enriched material far out into the circum-galactic medium. We have demonstrated that magnetic fields in these winds are detectably modifying the polarization properties of background radio quasars with intervening MgII 2799 absorption in their spectra, through Faraday Rotation. We have obtained estimates of the disordered fields within these Faraday screens and wish to map how these vary around galaxies, e.g. whether they are maximal above the poles of the galaxies as we would expect for biconical outflows. We also want to compare our estimates quantitatively with magnetohydrodynamical models that we have been developing. For both investigations, we need to know where the lines of sight pass, relative to the galaxies. For this we need HST resolution images of the host galaxies to establish the orientation and inclination of the disks, and the general morphologies of the galaxies. We have in hand images for 17/30 quasars, and request here images for the remaining 13 sources.

  6. Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy.

    PubMed

    Kennedy, Eamonn; Nelson, Edward M; Tanaka, Tetsuya; Damiano, John; Timp, Gregory

    2016-02-23

    It is now possible to visualize at nanometer resolution the infection of a living biological cell with virus without compromising cell viability using scanning transmission electron microscopy (STEM). To provide contrast while preserving viability, Escherichia coli and P1 bacteriophages were first positively stained with a very low concentration of uranyl acetate in minimal phosphate medium and then imaged with low-dose STEM in a microfluidic liquid flow cell. Under these conditions, it was established that the median lethal dose of electrons required to kill half the tested population was LD50 = 30 e(-)/nm(2), which coincides with the disruption of a wet biological membrane, according to prior reports. Consistent with the lateral resolution and high-contrast signal-to-noise ratio (SNR) inferred from Monte Carlo simulations, images of the E. coli membrane, flagella, and the bacteriophages were acquired with 5 nm resolution, but the cumulative dose exceeded LD50. On the other hand, with a cumulative dose below LD50 (and lower SNR), it was still possible to visualize the infection of E. coli by P1, showing the insertion of viral DNA within 3 s, with 5 nm resolution.

  7. Two-dimensional photoacoustic imaging of femtosecond filament in water

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Mareev, E. I.; Rumiantsev, B. V.; Bychkov, A. S.; Karabutov, A. A.; Cherepetskaya, E. B.; Makarov, V. A.

    2018-07-01

    We report a first-of-its-kind optoacoustic tomography of a femtosecond filament in water. Using a broadband (~100 MHz) piezoelectric transducer and a back-projection reconstruction technique, a single filament profile was retrieved. Obtained pressure distribution induced by the femtosecond filament allowed us to identify the size of the core and the energy reservoir with spatial resolution better than 10 µm. The photoacoustic imaging provides direct measurements of the energy deposition into the medium under filamentation of ultrashort laser pulses that cannot be obtained by existing techniques. In combination with a relative simplicity and high accuracy, photoacoustic imaging can be considered as a breakthrough instrument for filamentation investigation.

  8. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  9. 75 MHz ultrasound biomicroscopy of anterior segment of eye.

    PubMed

    Silverman, Ronald H; Cannata, Jonathan; Shung, K Kirk; Gal, Omer; Patel, Monica; Lloyd, Harriet O; Feleppa, Ernest J; Coleman, D Jackson

    2006-07-01

    Very high frequency ultrasound (35-50 MHz) has had a significant impact upon clinical imaging of the anterior segment of the eye, offering an axial resolution as small as 30 microm. Higher frequencies, while potentially offering even finer resolution, are more affected by absorption in ocular tissues and even in the fluid coupling medium. Our aim was to develop and apply improved transducer technology utilizing frequencies beyond those routinely used for ultrasound biomicroscopy of the eye. A 75-MHz lithium niobate transducer with 2 mm aperture and 6 mm focal length was fabricated. We scanned the ciliary body and cornea of a human eye six years post-LASIK. Spectral parameter images were produced from the midband fit to local calibrated power spectra. Images were compared with those produced using a 35 MHz lithium niobate transducer of similar fractional bandwidth and focal ratio. The 75-MHz transducer was found to have a fractional bandwidth (-6 dB) of 61%. Images of the post-LASIK cornea showed higher stromal backscatter at 75 MHz than at 35 MHz. The improved lateral resolution resulted in better visualization of discontinuities in Bowman's layer, indicative of microfolds or breaks occurring at the time of surgery. The LASIK surface was evident as a discontinuity in stromal backscatter between the stromal component of the flap and the residual stroma. The iris and ciliary body were visualized despite attenuation by the overlying sclera. Very high frequency ultrasound imaging of the anterior segment of the eye has been restricted to the 35-50 MHz band for over a decade. We showed that higher frequencies can be used in vivo to image the cornea and anterior segment. This improvement in resolution and high sensitivity to backscatter from the corneal stroma will provide benefits in clinical diagnostic imaging of the anterior segment.

  10. Atomic Force Microscopy in Imaging of Viruses and Virus-Infected Cells

    PubMed Central

    Kuznetsov, Yurii G.; McPherson, Alexander

    2011-01-01

    Summary: Atomic force microscopy (AFM) can visualize almost everything pertinent to structural virology and at resolutions that approach those for electron microscopy (EM). Membranes have been identified, RNA and DNA have been visualized, and large protein assemblies have been resolved into component substructures. Capsids of icosahedral viruses and the icosahedral capsids of enveloped viruses have been seen at high resolution, in some cases sufficiently high to deduce the arrangement of proteins in the capsomeres as well as the triangulation number (T). Viruses have been recorded budding from infected cells and suffering the consequences of a variety of stresses. Mutant viruses have been examined and phenotypes described. Unusual structural features have appeared, and the unexpectedly great amount of structural nonconformity within populations of particles has been documented. Samples may be imaged in air or in fluids (including culture medium or buffer), in situ on cell surfaces, or after histological procedures. AFM is nonintrusive and nondestructive, and it can be applied to soft biological samples, particularly when the tapping mode is employed. In principle, only a single cell or virion need be imaged to learn of its structure, though normally images of as many as is practical are collected. While lateral resolution, limited by the width of the cantilever tip, is a few nanometers, height resolution is exceptional, at approximately 0.5 nm. AFM produces three-dimensional, topological images that accurately depict the surface features of the virus or cell under study. The images resemble common light photographic images and require little interpretation. The structures of viruses observed by AFM are consistent with models derived by X-ray crystallography and cryo-EM. PMID:21646429

  11. Optical Imaging of Flow Pattern and Phantom

    NASA Technical Reports Server (NTRS)

    Galland, Pierre A.; Liang, X.; Wang, L.; Ho, P. P.; Alfano, R. R.; Breisacher, K.

    1999-01-01

    Time-resolved optical imaging technique has been used to image the spatial distribution of small droplets and jet sprays in a highly scattering environment. The snake and ballistic components of the transmitted pulse are less scattered, and contain direct information about the sample to facilitate image formation as opposed to the diffusive components which are due to multiple collisions as a light pulse propagates through a scattering medium. In a time-gated imaging scheme, these early-arriving, image-bearing components of the incident pulse are selected by opening a gate for an ultrashort period of time and a shadowgram image is detected. Using a single shot cooled CCD camera system, the formation of water droplets is monitored as a function of time. Picosecond time-gated image of drop in scattering cells, spray droplets as a function of let speed and gas pressure, and model calcification samples consisted of calcium carbonate particles of irregular shapes ranging in size from 0. 1 to 1.5 mm affixed to a microscope slide have been measured. Formation produced by an impinging jet will be further monitored using a CCD with 1 kHz framing illuminated with pulsed light. The desired image resolution of the fuel droplets is on the 20 pm scale using early light through a highly scattering medium. A 10(exp -6)m displacement from a jet spray with a flow speed of 100 m/sec introduced by the ns grating pulse used in the imaging is negligible. Early ballistic/snake light imaging offers nondestructive and noninvasive method to observe the spatial distribution of hidden objects inside a highly scattering environment for space, biomedical, and materials applications. In this paper, the techniques we will present are time-resolved K-F transillumination imaging and time-gated scattered light imaging. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes. Refinements to these techniques may enable drop size measurements in the highly scattering, optically dense region of multi-element rocket injectors. These types of measurements should greatly enhance the design of stable, and higher performing rocket engines.

  12. CHISL: the combined high-resolution and imaging spectrograph for the LUVOIR surveyor

    NASA Astrophysics Data System (ADS)

    France, Kevin; Fleming, Brian; Hoadley, Keri

    2016-07-01

    NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) Surveyor mission (dprimary ≍ 12 m, Δλ ≍ 1000 Å - 2 μm spectroscopic bandpass) can carry out the largest number of NASA's exoplanet and astrophysics science goals over the coming decades. The science grasp of a LUVOIR Surveyor is broad, ranging from the direct detection of potential biomarkers on rocky planets to the flow of matter into and out of galaxies and the history of star-formation across cosmic time. There are technical challenges for several aspects of the LUVOIR Surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR Surveyor mission concept, the Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor (CHISL). CHISL includes a highresolution (R ≍ 120,000; 1000 - 1700Å) point-source spectroscopy channel and a medium resolution (R >= 14,000 from 1000 - 2000 Å in a single observation and R 24,000 - 35,000 in multiple grating settings) imaging spectroscopy channel. CHISL addresses topics ranging from characterizing the composition and structure of planet-forming disks to the feedback of matter between galaxies and the intergalactic medium. We present the CHISL concept, a small sample of representative science cases, and the primary technological hurdles. Technical challenges include high-efficiency ultraviolet coatings and high-quantum efficiency, large-format, photon counting detectors. We are actively engaged in laboratory and flight characterization efforts for all of these enabling technologies as components on sounding rocket payloads under development at the University of Colorado. We describe two payloads that are designed to be pathfinder instruments for the high-resolution (CHESS) and imaging spectroscopy (SISTINE) arms of CHISL. We are carrying out this instrument design, characterization, and flight-testing today to support the new start of a LUVOIR Surveyor mission in the next decade.

  13. Hubble Space Telescope Medium Deep Survey. 2: Deconvolution of Wide Field Camera field galaxy images in the 13 hour + 43 deg field

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Schmidtke, P. C.; Pascarelle, S. M.; Gordon, J. M.; Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G.; Glazebrook, K.

    1994-01-01

    We present isophotal profiles of six faint field galaxies from some of the first deep images taken for the Hubble Space Telescope (HST) Medium Deep Survey (MDS). These have redshifts in the range z = 0.126 to 0.402. The images were taken with the Wide Field Camera (WFC) in `parallel mode' and deconvolved with the Lucy method using as the point-spread function nearby stars in the image stack. The WFC deconvolutions have a dynamic range of 16 to 20 dB (4 to 5 mag) and an effective resolution approximately less than 0.2 sec (FWHM). The multiorbit HST images allow us to trace the morphology, light profiles, and color gradients of faint field galaxies down to V approximately equal to 22 to 23 mag at sub-kpc resolution, since the redshift range covered is z = 0.1 to 0.4. The goals of the MDS are to study the sub-kpc scale morphology, light profiles, and color gradients for a large samole of faint field galaxies down to V approximately equal to 23 mag, and to trace the fraction of early to late-type galaxies as function of cosmic time. In this paper we study the brighter MDS galaxies in the 13 hour + 43 deg MDS field in detail, and investigate to what extent model fits with pure exponential disks or a(exp 1/4) bulges are justified at V approximately less than 22 mag. Four of the six field galaxies have light profiles that indicate (small) inner bulges following r(exp 1/4) laws down to 0.2 sec resolution, plus a dominant surrounding exponential disk with little or no color gradients. Two occur in a group at z = 0.401, two are barred spiral galaxies at z = 0.179 and z = 0.302, and two are rather subluminous (and edge-on) disk galaxies at z = 0.126 and z = 0.179. Our deep MDS images can detect galaxies down to V, I approximately less than 25 to 26 mag, and demonstrate the impressive potential of HST--even with its pre-refurbished optics--to resolve morphological details in galaxies at cosmologically significant distances (v approximately less than 23 mag). Since the median redshift of these galaxies is approximately less than 0.4, the HST resolution allows us to study sub kpc size scales at the galaxy, which cannot be done with stable images over wide fields from the best ground-based sites.

  14. Versatile time-dependent spatial distribution model of sun glint for satellite-based ocean imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhang, Kai; Ma, Zhongqi; Wang, Jiwen; Zhang, Yue

    2017-01-01

    We propose a versatile model to describe the time-dependent spatial distribution of sun glint areas in satellite-based wave water imaging. This model can be used to identify whether the imaging is affected by sun glint and how strong the glint is. The observing geometry is calculated using an accurate orbit prediction method. The Cox-Munk model is used to analyze the bidirectional reflectance of wave water surface under various conditions. The effects of whitecaps and the reflectance emerging from the sea water have been considered. Using the moderate resolution atmospheric transmission radiative transfer model, we are able to effectively calculate the sun glint distribution at the top of the atmosphere. By comparing the modeled data with the medium resolution imaging spectrometer image and Feng Yun 2E (FY-2E) image, we have proven that the time-dependent spatial distribution of sun glint areas can be effectively predicted. In addition, the main factors in determining sun glint distribution and the temporal variation rules of sun glint have been discussed. Our model can be used to design satellite orbits and should also be valuable in either eliminating sun glint or making use of it.

  15. Low bit-rate image compression via adaptive down-sampling and constrained least squares upconversion.

    PubMed

    Wu, Xiaolin; Zhang, Xiangjun; Wang, Xiaohan

    2009-03-01

    Recently, many researchers started to challenge a long-standing practice of digital photography: oversampling followed by compression and pursuing more intelligent sparse sampling techniques. In this paper, we propose a practical approach of uniform down sampling in image space and yet making the sampling adaptive by spatially varying, directional low-pass prefiltering. The resulting down-sampled prefiltered image remains a conventional square sample grid, and, thus, it can be compressed and transmitted without any change to current image coding standards and systems. The decoder first decompresses the low-resolution image and then upconverts it to the original resolution in a constrained least squares restoration process, using a 2-D piecewise autoregressive model and the knowledge of directional low-pass prefiltering. The proposed compression approach of collaborative adaptive down-sampling and upconversion (CADU) outperforms JPEG 2000 in PSNR measure at low to medium bit rates and achieves superior visual quality, as well. The superior low bit-rate performance of the CADU approach seems to suggest that oversampling not only wastes hardware resources and energy, and it could be counterproductive to image quality given a tight bit budget.

  16. Sub-diffraction Limit Localization of Proteins in Volumetric Space Using Bayesian Restoration of Fluorescence Images from Ultrathin Specimens

    PubMed Central

    Wang, Gordon; Smith, Stephen J.

    2012-01-01

    Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nλ/NA2 (n = refractive index of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is ∼220 nm and ∼600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT), with its native 50–100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes. PMID:22956902

  17. Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens.

    PubMed

    Wang, Gordon; Smith, Stephen J

    2012-01-01

    Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nλ/NA(2) (n = refractive index of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is -220 nm and -600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT), with its native 50-100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes.

  18. Simulation-based evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography

    PubMed Central

    Lin, Yuting; Nouizi, Farouk; Kwong, Tiffany C.; Gulsen, Gultekin

    2016-01-01

    Conventional fluorescence tomography (FT) can recover the distribution of fluorescent agents within a highly scattering medium. However, poor spatial resolution remains its foremost limitation. Previously, we introduced a new fluorescence imaging technique termed “temperature-modulated fluorescence tomography” (TM-FT), which provides high-resolution images of fluorophore distribution. TM-FT is a multimodality technique that combines fluorescence imaging with focused ultrasound to locate thermo-sensitive fluorescence probes using a priori spatial information to drastically improve the resolution of conventional FT. In this paper, we present an extensive simulation study to evaluate the performance of the TM-FT technique on complex phantoms with multiple fluorescent targets of various sizes located at different depths. In addition, the performance of the TM-FT is tested in the presence of background fluorescence. The results obtained using our new method are systematically compared with those obtained with the conventional FT. Overall, TM-FT provides higher resolution and superior quantitative accuracy, making it an ideal candidate for in vivo preclinical and clinical imaging. For example, a 4 mm diameter inclusion positioned in the middle of a synthetic slab geometry phantom (D:40 mm × W :100 mm) is recovered as an elongated object in the conventional FT (x = 4.5 mm; y = 10.4 mm), while TM-FT recovers it successfully in both directions (x = 3.8 mm; y = 4.6 mm). As a result, the quantitative accuracy of the TM-FT is superior because it recovers the concentration of the agent with a 22% error, which is in contrast with the 83% error of the conventional FT. PMID:26368884

  19. Low cost, multiscale and multi-sensor application for flooded area mapping

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Notti, Davide; Villa, Alfredo; Zucca, Francesco; Calò, Fabiana; Pepe, Antonio; Dutto, Furio; Pari, Paolo; Baldo, Marco; Allasia, Paolo

    2018-05-01

    Flood mapping and estimation of the maximum water depth are essential elements for the first damage evaluation, civil protection intervention planning and detection of areas where remediation is needed. In this work, we present and discuss a methodology for mapping and quantifying flood severity over floodplains. The proposed methodology considers a multiscale and multi-sensor approach using free or low-cost data and sensors. We applied this method to the November 2016 Piedmont (northwestern Italy) flood. We first mapped the flooded areas at the basin scale using free satellite data from low- to medium-high-resolution from both the SAR (Sentinel-1, COSMO-Skymed) and multispectral sensors (MODIS, Sentinel-2). Using very- and ultra-high-resolution images from the low-cost aerial platform and remotely piloted aerial system, we refined the flooded zone and detected the most damaged sector. The presented method considers both urbanised and non-urbanised areas. Nadiral images have several limitations, in particular in urbanised areas, where the use of terrestrial images solved this limitation. Very- and ultra-high-resolution images were processed with structure from motion (SfM) for the realisation of 3-D models. These data, combined with an available digital terrain model, allowed us to obtain maps of the flooded area, maximum high water area and damaged infrastructures.

  20. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the sea ice in response to current and wind forcing and iceberg barriers. These are closely related to continental-shelf or central basin regimes, in which tidal forcing or barotropic circulation patterns appear to influence the sea-ice motion, respectively. These regimes provide valuable information about the regions of most prolific ice growth and influence of ice conditions upon air-sea-ice exchange processes in the Weddell Sea.

  1. Acoustic focusing by symmetrical self-bending beams with phase modulations

    NASA Astrophysics Data System (ADS)

    Gao, He; Gu, Zhong-ming; Liang, Bin; Zou, Xin-ye; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2016-02-01

    We propose a scheme for generating high-efficient acoustic focusing capable of circumventing obstacles in the propagating medium. This distinct feature that is highly desirable for practical applications is realized by employing two symmetrical Airy beams, and a different type of acoustic lens is designed by using a zero-index medium to provide the required phase profile with extremely high resolution. Furthermore, the scheme has the flexibility of generating tunable focal length. We anticipate our design to open possibilities for the design of acoustic lens and have potential applications in various important scenarios such as biomedical imaging/therapy and non-destructive evaluation.

  2. Resolution limits of ultrafast ultrasound localization microscopy

    NASA Astrophysics Data System (ADS)

    Desailly, Yann; Pierre, Juliette; Couture, Olivier; Tanter, Mickael

    2015-11-01

    As in other imaging methods based on waves, the resolution of ultrasound imaging is limited by the wavelength. However, the diffraction-limit can be overcome by super-localizing single events from isolated sources. In recent years, we developed plane-wave ultrasound allowing frame rates up to 20 000 fps. Ultrafast processes such as rapid movement or disruption of ultrasound contrast agents (UCA) can thus be monitored, providing us with distinct punctual sources that could be localized beyond the diffraction limit. We previously showed experimentally that resolutions beyond λ/10 can be reached in ultrafast ultrasound localization microscopy (uULM) using a 128 transducer matrix in reception. Higher resolutions are theoretically achievable and the aim of this study is to predict the maximum resolution in uULM with respect to acquisition parameters (frequency, transducer geometry, sampling electronics). The accuracy of uULM is the error on the localization of a bubble, considered a point-source in a homogeneous medium. The proposed model consists in two steps: determining the timing accuracy of the microbubble echo in radiofrequency data, then transferring this time accuracy into spatial accuracy. The simplified model predicts a maximum resolution of 40 μm for a 1.75 MHz transducer matrix composed of two rows of 64 elements. Experimental confirmation of the model was performed by flowing microbubbles within a 60 μm microfluidic channel and localizing their blinking under ultrafast imaging (500 Hz frame rate). The experimental resolution, determined as the standard deviation in the positioning of the microbubbles, was predicted within 6 μm (13%) of the theoretical values and followed the analytical relationship with respect to the number of elements and depth. Understanding the underlying physical principles determining the resolution of superlocalization will allow the optimization of the imaging setup for each organ. Ultimately, accuracies better than the size of capillaries are achievable at several centimeter depths.

  3. Imaging mesenchymal stem cells containing single wall nanotube nanoprobes in a 3D scaffold using photo-thermal optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Connolly, Emma; Subhash, Hrebesh M.; Leahy, Martin; Rooney, Niall; Barry, Frank; Murphy, Mary; Barron, Valerie

    2014-02-01

    Despite the fact, that a range of clinically viable imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), photo emission tomography (PET), ultrasound and bioluminescence imaging are being optimised to track cells in vivo, many of these techniques are subject to limitations such as the levels of contrast agent required, toxic effects of radiotracers, photo attenuation of tissue and backscatter. With the advent of nanotechnology, nanoprobes are leading the charge to overcome these limitations. In particular, single wall nanotubes (SWNT) have been shown to be taken up by cells and as such are effective nanoprobes for cell imaging. Consequently, the main aim of this research is to employ mesenchymal stem cells (MSC) containing SWNT nanoprobes to image cell distribution in a 3D scaffold for cartilage repair. To this end, MSC were cultured in the presence of 32μg/ml SWNT in cell culture medium (αMEM, 10% FBS, 1% penicillin/streptomycin) for 24 hours. Upon confirmation of cell viability, the MSC containing SWNT were encapsulated in hyaluronic acid gels and loaded on polylactic acid polycaprolactone scaffolds. After 28 days in complete chondrogenic medium, with medium changes every 2 days, chondrogenesis was confirmed by the presence of glycosaminoglycan. Moreover, using photothermal optical coherence tomography (PT-OCT), the cells were seen to be distributed through the scaffold with high resolution. In summary, these data reveal that MSC containing SWNT nanoprobes in combination with PT-OCT offer an exciting opportunity for stem cell tracking in vitro for assessing seeding scaffolds and in vivo for determining biodistribution.

  4. Application of shift-and-add algorithms for imaging objects within biological media

    NASA Astrophysics Data System (ADS)

    Aizert, Avishai; Moshe, Tomer; Abookasis, David

    2017-01-01

    The Shift-and-Add (SAA) technique is a simple mathematical operation developed to reconstruct, at high spatial resolution, atmospherically degraded solar images obtained from stellar speckle interferometry systems. This method shifts and assembles individual degraded short-exposure images into a single average image with significantly improved contrast and detail. Since the inhomogeneous refractive indices of biological tissue causes light scattering similar to that induced by optical turbulence in the atmospheric layers, we assume that SAA methods can be successfully implemented to reconstruct the image of an object within a scattering biological medium. To test this hypothesis, five SAA algorithms were evaluated for reconstructing images acquired from multiple viewpoints. After successfully retrieving the hidden object's shape, quantitative image quality metrics were derived, enabling comparison of imaging error across a spectrum of layer thicknesses, demonstrating the relative efficacy of each SAA algorithm for biological imaging.

  5. High-dose MVCT image guidance for stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerly, David C.; Schefter, Tracey E.; Kavanagh, Brian D.

    Purpose: Stereotactic body radiation therapy (SBRT) is a potent treatment for early stage primary and limited metastatic disease. Accurate tumor localization is essential to administer SBRT safely and effectively. Tomotherapy combines helical IMRT with onboard megavoltage CT (MVCT) imaging and is well suited for SBRT; however, MVCT results in reduced soft tissue contrast and increased image noise compared with kilovoltage CT. The goal of this work was to investigate the use of increased imaging doses on a clinical tomotherapy machine to improve image quality for SBRT image guidance. Methods: Two nonstandard, high-dose imaging modes were created on a tomotherapy machinemore » by increasing the linear accelerator (LINAC) pulse rate from the nominal setting of 80 Hz, to 160 Hz and 300 Hz, respectively. Weighted CT dose indexes (wCTDIs) were measured for the standard, medium, and high-dose modes in a 30 cm solid water phantom using a calibrated A1SL ion chamber. Image quality was assessed from scans of a customized image quality phantom. Metrics evaluated include: contrast-to-noise ratios (CNRs), high-contrast spatial resolution, image uniformity, and percent image noise. In addition, two patients receiving SBRT were localized using high-dose MVCT scans. Raw detector data collected after each scan were used to reconstruct standard-dose images for comparison. Results: MVCT scans acquired using a pitch of 1.0 resulted in wCTDI values of 2.2, 4.7, and 8.5 cGy for the standard, medium, and high-dose modes respectively. CNR values for both low and high-contrast materials were found to increase with the square root of dose. Axial high-contrast spatial resolution was comparable for all imaging modes at 0.5 lp/mm. Image uniformity was improved and percent noise decreased as the imaging dose increased. Similar improvements in image quality were observed in patient images, with decreases in image noise being the most notable. Conclusions: High-dose imaging modes are made possible on a clinical tomotherapy machine by increasing the LINAC pulse rate. Increasing the imaging dose results in increased CNRs; making it easier to distinguish the boundaries of low contrast objects. The imaging dose levels observed in this work are considered acceptable at our institution for SBRT treatments delivered in 3-5 fractions.« less

  6. High-dose MVCT image guidance for stereotactic body radiation therapy.

    PubMed

    Westerly, David C; Schefter, Tracey E; Kavanagh, Brian D; Chao, Edward; Lucas, Dan; Flynn, Ryan T; Miften, Moyed

    2012-08-01

    Stereotactic body radiation therapy (SBRT) is a potent treatment for early stage primary and limited metastatic disease. Accurate tumor localization is essential to administer SBRT safely and effectively. Tomotherapy combines helical IMRT with onboard megavoltage CT (MVCT) imaging and is well suited for SBRT; however, MVCT results in reduced soft tissue contrast and increased image noise compared with kilovoltage CT. The goal of this work was to investigate the use of increased imaging doses on a clinical tomotherapy machine to improve image quality for SBRT image guidance. Two nonstandard, high-dose imaging modes were created on a tomotherapy machine by increasing the linear accelerator (LINAC) pulse rate from the nominal setting of 80 Hz, to 160 Hz and 300 Hz, respectively. Weighted CT dose indexes (wCTDIs) were measured for the standard, medium, and high-dose modes in a 30 cm solid water phantom using a calibrated A1SL ion chamber. Image quality was assessed from scans of a customized image quality phantom. Metrics evaluated include: contrast-to-noise ratios (CNRs), high-contrast spatial resolution, image uniformity, and percent image noise. In addition, two patients receiving SBRT were localized using high-dose MVCT scans. Raw detector data collected after each scan were used to reconstruct standard-dose images for comparison. MVCT scans acquired using a pitch of 1.0 resulted in wCTDI values of 2.2, 4.7, and 8.5 cGy for the standard, medium, and high-dose modes respectively. CNR values for both low and high-contrast materials were found to increase with the square root of dose. Axial high-contrast spatial resolution was comparable for all imaging modes at 0.5 lp∕mm. Image uniformity was improved and percent noise decreased as the imaging dose increased. Similar improvements in image quality were observed in patient images, with decreases in image noise being the most notable. High-dose imaging modes are made possible on a clinical tomotherapy machine by increasing the LINAC pulse rate. Increasing the imaging dose results in increased CNRs; making it easier to distinguish the boundaries of low contrast objects. The imaging dose levels observed in this work are considered acceptable at our institution for SBRT treatments delivered in 3-5 fractions.

  7. From ATLASGAL to SEDIGISM: Towards a Complete 3D View of the Dense Galactic Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Schuller, F.; Urquhart, J.; Bronfman, L.; Csengeri, T.; Bontemps, S.; Duarte-Cabral, A.; Giannetti, A.; Ginsburg, A.; Henning, T.; Immer, K.; Leurini, S.; Mattern, M.; Menten, K.; Molinari, S.; Muller, E.; Sánchez-Monge, A.; Schisano, E.; Suri, S.; Testi, L.; Wang, K.; Wyrowski, F.; Zavagno, A.

    2016-09-01

    The ATLASGAL survey has provided the first unbiased view of the inner Galactic Plane at sub-millimetre wavelengths. This is the largest ground-based survey of its kind to date, covering 420 square degrees at a wavelength of 870 µm. The reduced data, consisting of images and a catalogue of > 104 compact sources, are available from the ESO Science Archive Facility through the Phase 3 infrastructure. The extremely rich statistics of this survey initiated several follow-up projects, including spectroscopic observations to explore molecular complexity and high angular resolution imaging with the Atacama Large Millimeter/submillimeter Array (ALMA), aimed at resolving individual protostars. The most extensive follow-up project is SEDIGISM, a 3D mapping of the dense interstellar medium over a large fraction of the inner Galaxy. Some notable results of these surveys are highlighted.

  8. Simulations of a micro-PET system based on liquid xenon

    NASA Astrophysics Data System (ADS)

    Miceli, A.; Glister, J.; Andreyev, A.; Bryman, D.; Kurchaninov, L.; Lu, P.; Muennich, A.; Retiere, F.; Sossi, V.

    2012-03-01

    The imaging performance of a high-resolution preclinical micro-positron emission tomography (micro-PET) system employing liquid xenon (LXe) as the gamma-ray detection medium was simulated. The arrangement comprises a ring of detectors consisting of trapezoidal LXe time projection ionization chambers and two arrays of large area avalanche photodiodes for the measurement of ionization charge and scintillation light. A key feature of the LXePET system is the ability to identify individual photon interactions with high energy resolution and high spatial resolution in three dimensions and determine the correct interaction sequence using Compton reconstruction algorithms. The simulated LXePET imaging performance was evaluated by computing the noise equivalent count rate, the sensitivity and point spread function for a point source according to the NEMA-NU4 standard. The image quality was studied with a micro-Derenzo phantom. Results of these simulation studies included noise equivalent count rate peaking at 1326 kcps at 188 MBq (705 kcps at 184 MBq) for an energy window of 450-600 keV and a coincidence window of 1 ns for mouse (rat) phantoms. The absolute sensitivity at the center of the field of view was 12.6%. Radial, tangential and axial resolutions of 22Na point sources reconstructed with a list-mode maximum likelihood expectation maximization algorithm were ⩽0.8 mm (full-width at half-maximum) throughout the field of view. Hot-rod inserts of <0.8 mm diameter were resolvable in the transaxial image of a micro-Derenzo phantom. The simulations show that a LXe system would provide new capabilities for significantly enhancing PET images.

  9. Submillimeter Spectroscopy with SOFIA

    NASA Technical Reports Server (NTRS)

    Erickson, E.; Gisten, R.; Moseley, H.; Poglitsch, A.; Zmuidzinas, J.

    2005-01-01

    Four submillimeter spectrometers are being developed for use on SOFIA, the Stratospheric Observatory for Infrared Astronomy. They will be nearly diffraction limited by SOFIA'S 2.5 m telescope, giving for example images of 8.5 arc seconds FWHM at 100 microns. The instruments are FlFI LS, an integral-field imaging grating spectrometer (MPE) covering 40-210 microns with 150 km/s resolution; SAFIRE an imaging Fabry-Perot spectrometer covering 100-'650 microns with resolution 200 km/s, and two heterodyne receivers with resolving powers up to 0.03 km/s: GREAT covering bands from 158-187 um, 110-125, and 62-65 microns, and CASIMIR, operating from 150-264 and 508-588 microns. These instruments will enable a variety of studies including topics relating to the origins of stars, planets, and biogenic materials in the interstallar medium of our own and other galaxies. Opportunities for observing with these and the other SOFIA instruments will be available to general investigators. SOFIA is a joint project of NASA in the U.S. and DLR in Germany.

  10. Process studies with airborne GLORIA limb-imaging FTS observations during the Arctic winter 2015/16

    NASA Astrophysics Data System (ADS)

    Woiwode, W.; Bramberger, M.; Braun, M.; Dörnbrack, A.; Friedl-Vallon, F.; Grooss, J. U.; Hoepfner, M.; Johansson, S.; Latzko, T.; Oelhaf, H.; Orphal, J.; Preusse, P.; Sinnhuber, B. M.; Suminska-Ebersoldt, O.; Ungermann, J.

    2017-12-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) limb-imaging infrared Fourier-Transform Spectrometer (FTS) was deployed on board the High Altitude and LOng range research aircraft (HALO) from December 2015 until March 2016 for process studies in the Arctic and mid-latitudes. Operations were carried out from Kiruna (Sweden, 68°N) and Oberpfaffenhofen (Germany, 48°N) in the framework of the combined POLSTRACC/GW-LCYCLE/SALSA (PGS) campaigns, including 18 scientific HALO flights and about 156 flight hours. After a brief overview of the instrument, examples of process studies using GLORIA high spectral resolution mode observations will be given: (1) Strong nitrification of the Arctic lowermost stratosphere during the exceptionally cold stratospheric winter 2015/16 and comparisons with CLaMS (Chemical Lagrangian Model of the Stratosphere) chemistry transport simulations. (ii) A case study involving high-resolution ECMWF (European Centre for Medium-Range Weather Forecasts) IFS (Integrated Forecasting System) data, investigating the meridional structure of a tropopause fold interfering with a mountain wave.

  11. A single-phase elastic hyperbolic metamaterial with anisotropic mass density.

    PubMed

    Zhu, R; Chen, Y Y; Wang, Y S; Hu, G K; Huang, G L

    2016-06-01

    Wave propagation can be manipulated at a deep subwavelength scale through the locally resonant metamaterial that possesses unusual effective material properties. Hyperlens due to metamaterial's anomalous anisotropy can lead to superior-resolution imaging. In this paper, a single-phase elastic metamaterial with strongly anisotropic effective mass density has been designed. The proposed metamaterial utilizes the independently adjustable locally resonant motions of the subwavelength-scale microstructures along the two principal directions. High anisotropy in the effective mass densities obtained by the numerical-based effective medium theory can be found and even have opposite signs. For practical applications, shunted piezoelectric elements are introduced into the microstructure to tailor the effective mass density in a broad frequency range. Finally, to validate the design, an elastic hyperlens made of the single-phase hyperbolic metamaterial is proposed with subwavelength longitudinal wave imaging illustrated numerically. The proposed single-phase hyperbolic metamaterial has many promising applications for high resolution damage imaging in nondestructive evaluation and structural health monitoring.

  12. A Decade of Satellite Ocean Color Observations

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.

    2009-01-01

    After the successful Coastal Zone Color Scanner (CZCS, 1978-1986), demonstration that quantitative estimations of geophysical variables such as chlorophyll a and diffuse attenuation coefficient could be derived from top of the atmosphere radiances, a number of international missions with ocean color capabilities were launched beginning in the late 1990s. Most notable were those with global data acquisition capabilities, i.e., the Ocean Color and Temperature Sensor (OCTS 1996-1997), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, United States, 1997-present), two Moderate Resolution Imaging Spectroradiometers, (MODIS, United States, Terra/2000-present and Aqua/2002-present), the Global Imager (GLI, Japan, 2002-2003), and the Medium Resolution Imaging Spectrometer (MERIS, European Space Agency, 2002-present). These missions have provided data of exceptional quality and continuity, allowing for scientific inquiries into a wide variety of marine research topics not possible with the CZCS. This review focuses on the scientific advances made over the past decade using these data sets.

  13. Medical imaging feasibility in body fluids using Markov chains

    NASA Astrophysics Data System (ADS)

    Kavehrad, M.; Armstrong, A. D.

    2017-02-01

    A relatively wide field-of-view and high resolution imaging is necessary for navigating the scope within the body, inspecting tissue, diagnosing disease, and guiding surgical interventions. As the large number of modes available in the multimode fibers (MMF) provides higher resolution, MMFs could replace the millimeters-thick bundles of fibers and lenses currently used in endoscopes. However, attributes of body fluids and obscurants such as blood, impose perennial limitations on resolution and reliability of optical imaging inside human body. To design and evaluate optimum imaging techniques that operate under realistic body fluids conditions, a good understanding of the channel (medium) behavior is necessary. In most prior works, Monte-Carlo Ray Tracing (MCRT) algorithm has been used to analyze the channel behavior. This task is quite numerically intensive. The focus of this paper is on investigating the possibility of simplifying this task by a direct extraction of state transition matrices associated with standard Markov modeling from the MCRT computer simulations programs. We show that by tracing a photon's trajectory in the body fluids via a Markov chain model, the angular distribution can be calculated by simple matrix multiplications. We also demonstrate that the new approach produces result that are close to those obtained by MCRT and other known methods. Furthermore, considering the fact that angular, spatial, and temporal distributions of energy are inter-related, mixing time of Monte- Carlo Markov Chain (MCMC) for different types of liquid concentrations is calculated based on Eigen-analysis of the state transition matrix and possibility of imaging in scattering media are investigated. To this end, we have started to characterize the body fluids that reduce the resolution of imaging [1].

  14. Phytoplankton off the West Coast of Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Just off the coast of West Africa, persistent northeasterly trade winds often churn up deep ocean water. When the nutrients in these deep waters reach the ocean's surface, they often give rise to large blooms of phytoplankton. This image of the Mauritanian coast shows swirls of phytoplankton fed by the upwelling of nutrient-rich water. The scene was acquired by the Medium Resolution Imaging Spectrometer (MERIS) aboard the European Space Agency's ENVISAT. MERIS will monitor changes in phytoplankton across Earth's oceans and seas, both for the purpose of managing fisheries and conducting global change research. NASA scientists will use data from this European instrument in the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) program. The mission of SIMBIOS is to construct a consistent long-term dataset of ocean color (phytoplankton abundance) measurements made by multiple satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For more information about MERIS and ENVISAT, visit the ENVISAT home page. Image copyright European Space Agency

  15. Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development.

    PubMed

    Bascom, Carlisle S; Wu, Shu-Zon; Nelson, Katherine; Oakey, John; Bezanilla, Magdalena

    2016-09-01

    Key developmental processes that occur on the subcellular and cellular level or occur in occluded tissues are difficult to access, let alone image and analyze. Recently, culturing living samples within polydimethylsiloxane (PDMS) microfluidic devices has facilitated the study of hard-to-reach developmental events. Here, we show that an early diverging land plant, Physcomitrella patens, can be continuously cultured within PDMS microfluidic chambers. Because the PDMS chambers are bonded to a coverslip, it is possible to image P. patens development at high resolution over long time periods. Using PDMS chambers, we report that wild-type protonemal tissue grows at the same rate as previously reported for growth on solid medium. Using long-term imaging, we highlight key developmental events, demonstrate compatibility with high-resolution confocal microscopy, and obtain growth rates for a slow-growing mutant. By coupling the powerful genetic tools available to P. patens with long-term growth and imaging provided by PDMS microfluidic chambers, we demonstrate the capability to study cellular and subcellular developmental events in plants directly and in real time. © 2016 American Society of Plant Biologists. All rights reserved.

  16. Comparison of the efficacy of MODIS and MERIS data for detecting cyanobacterial blooms in the southern Caspian Sea.

    PubMed

    Moradi, Masoud

    2014-10-15

    Medium Resolution Imaging Spectrometer (MERIS) data, Moderate Resolution Imaging Spectroradiometer (MODIS) data, and hydro-biological measurements were used to detect two very severe blooms in the southern Caspian Sea in 2005 and 2010. The MERIS Cyanobacteria Index (CIMERIS) was more reliable for detecting cyanobacterial blooms. The CIMERIS and MODIS cyanobacteria indices (CIMODIS) were compared in an effort to find a reliable method for detecting future blooms, as MERIS data were not available after April 2012. The CIMODIS had a linear relationship with and similar spatial patterns to the CIMERIS. On the CIMODIS images, extremely high biomass cyanobacteria patches were masked. A comparison of classified in situ data with the CIMODIS and Floating Algal Index (FAI) from four images of a severe bloom event in 2005 showed that the FAI is a reliable index for bloom detection over extremely dense patches. The corrected CIMODIS, the MODIS FAI and in situ data are adequate tools for cyanobacterial bloom monitoring in the southern Caspian Sea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Optical coherence tomography - principles and applications

    NASA Astrophysics Data System (ADS)

    Fercher, A. F.; Drexler, W.; Hitzenberger, C. K.; Lasser, T.

    2003-02-01

    There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

  18. Apertif: A new phased-array feed for WSRT

    NASA Astrophysics Data System (ADS)

    Adams, Elizabeth; Adebahr, Björn; de Blok, Willem J. G.; Hess, Kelley M.; Lucero, Danielle M.; Maccagni, Filippo; Morganti, Raffaella; Oosterloo, Tom A.; Ponomareva, Anastasia; Staveley-Smith, Lister; van der Hulst, J. M.; Verheijen, Marc A. W.; Verstappen, Joris

    2018-01-01

    Apertif is a phased-array feed for the Westerbork Synthesis Radio Telescope (WSRT), increasing the field of view of the telescope by a factor of twenty-five to 6.8 square degrees. In 2018, three legacy surveys will commence: a shallow imaging survey, a medium-deep imaging survey, and a pulsars and fast transients survey. The imaging surveys will be done in full polarization over the frequency range 1130-1430 MHz, which corresponds to redshifts of z=0-0.256 for neutral hydrogen (HI). The spectral resolution is 12.2 kHz, or an HI velocity resolution of 2.6 km/s at z=0 and 3.2 km/s at z=0.256. The full resolution images will have a beam size of 15"x15"/sin(declination), and tapered data products (i.e., 30" resolution images) will also be available. The footprints of the imaging surveys are chosen to maximize coverage of multi-wavelength datasets, including the Herschel Atlas North Galactic Pole field, HetDex region, plus coordination with MaNGA and planned WEAVE follow-up. The survey footprints were also chosen to probe different regions of interest, including the CVn region, Coma cluster, and Perseus-Pisces supercluster. The key science cases for the imaging surveys include understanding how galaxy properties depend on environment, the role of interactions and gas accretion and removal, understanding the smallest gas-rich galaxies, connecting cold gas to AGN, understanding the history of star formation and AGN activity in the faint radio continuum population, and studying magnetic fields in galaxies and large-scale structure. After a proprietary period, the survey data products will be publicly available through the Apertif Long Term Archive (ALTA). Up-to-date information on Apertif and the planned surveys can be found at www.apertif.nl.Commissioning of the Apertif instrument is underway. Here we will present results from the imaging commissioning, highlighting the capabilities of the instrument as related to the key science cases of the imaging surveys.

  19. Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image

    NASA Astrophysics Data System (ADS)

    Wicaksono, Pramaditya; Danoedoro, Projo; Hartono, Hartono; Nehren, Udo; Ribbe, Lars

    2011-11-01

    Mangrove forest is an important ecosystem located in coastal area that provides various important ecological and economical services. One of the services provided by mangrove forest is the ability to act as carbon sink by sequestering CO2 from atmosphere through photosynthesis and carbon burial on the sediment. The carbon buried on mangrove sediment may persist for millennia before return to the atmosphere, and thus act as an effective long-term carbon sink. Therefore, it is important to understand the distribution of carbon stored within mangrove forest in a spatial and temporal context. In this paper, an effort to map carbon stocks in mangrove forest is presented using remote sensing technology to overcome the handicap encountered by field survey. In mangrove carbon stock mapping, the use of medium spatial resolution Landsat 7 ETM+ is emphasized. Landsat 7 ETM+ images are relatively cheap, widely available and have large area coverage, and thus provide a cost and time effective way of mapping mangrove carbon stocks. Using field data, two image processing techniques namely Vegetation Index and Linear Spectral Unmixing (LSU) were evaluated to find the best method to explain the variation in mangrove carbon stocks using remote sensing data. In addition, we also tried to estimate mangrove carbon sequestration rate via multitemporal analysis. Finally, the technique which produces significantly better result was used to produce a map of mangrove forest carbon stocks, which is spatially extensive and temporally repetitive.

  20. An Eye-adapted Beamforming for Axial B-scans Free from Crystalline Lens Aberration: In vitro and ex vivo Results with a 20 MHz Linear Array

    NASA Astrophysics Data System (ADS)

    Matéo, Tony; Mofid, Yassine; Grégoire, Jean-Marc; Ossant, Frédéric

    In ophtalmic ultrasonography, axial B-scans are seriously deteriorated owing to the presence of the crystalline lens. This strongly aberrating medium affects both spatial and contrast resolution and causes important distortions. To deal with this issue, an adapted beamforming (BF) has been developed and experimented with a 20 MHz linear array working with a custom US research scanner. The adapted BF computes focusing delays that compensate for crystalline phase aberration, including refraction effects. This BF was tested in vitro by imaging a wire phantom through an eye phantom consisting of a synthetic gelatin lens, shaped according to the unaccommodated state of an adult human crystalline lens, anatomically set up in an appropriate liquid (turpentine) to approach the in vivo velocity ratio. Both image quality and fidelity from the adapted BF were assessed and compared with conventional delay-and-sum BF over the aberrating medium. Results showed 2-fold improvement of the lateral resolution, greater sensitivity and 90% reduction of the spatial error (from 758 μm to 76 μm) with adapted BF compared to conventional BF. Finally, promising first ex vivo axial B-scans of a human eye are presented.

  1. ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian B.; Joy, Marshall

    1995-01-01

    We present ROSAT high-resolution images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, X-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. If real, the enhancements may be associated with clumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.

  2. Crater Moreux

    NASA Image and Video Library

    1998-06-08

    Color image of part of the Ismenius Lacus region of Mars (MC-5 quadrangle) containing the impact crater Moreux (right center); north toward top. The scene shows heavily cratered highlands in the south on relatively smooth lowland plains in the north separated by a belt of dissected terrain, containing flat-floored valleys, mesas, and buttes. This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 36 degrees N. to 50 degrees N. and from longitude 310 degrees to 340 degrees; Lambert conformal conic projection. The dissected terrain along the highlands/lowlands boundary consists of the flat-floored valleys of Deuteronilus Mensae (on left) and Prontonilus Mensae (on right) and farther north the small, rounded hills of knobby terrain. Flows on the mensae floors contain striae that run parallel to valley walls; where valleys meet, the striae merge, similar to medial moraines on glaciers. Terraces within the valley hills have been interpreted as either layered rocks or wave terraces. The knobby terrain has been interpreted as remnants of the old, densely cratered highland terrain perhaps eroded by mass wasting. http://photojournal.jpl.nasa.gov/catalog/PIA00420

  3. Tyrrhena Patera

    NASA Image and Video Library

    1998-06-08

    A color image of the Tyrrhena Patera Region of Mars; north toward top. The scene shows a central circular depression surrounded by circular fractures and highly dissected horizontal sheets. A patera (Latin for shallow dish or saucer) is a volcano of broad areal extent with little vertical relief. This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 17 degrees S. to 25 degrees S. and from longitude 250 degrees to 260 degrees; Mercator projection. Tyrrhena Patera has a 12-km-diameter caldera at its center surrounded by a 45-km-diameter fracture ring. Around the fracture ring, the terrain is highly eroded forming ragged outward-facing cliffs, as though successive flat-lying layers had been eroded back. Cut into the sequence are several flat-floored channels that extend outward as far as 200 km from the center of the volcano. The structure may be composed of highly erodible ash layers and the channels may be fluvial, with the release of water being triggered by volcanic activity (Carr, 1981, The surface of Mars, Yale Univ. Press, New Haven, 232 p.). http://photojournal.jpl.nasa.gov/catalog/PIA00421

  4. Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens

    PubMed Central

    Lee, Eun Seong; Lee, Sang-Won; Hsu, Julie; Potma, Eric O.

    2014-01-01

    We use a hemispheric sapphire lens in combination with an off-axis parabolic mirror to demonstrate high-resolution vibrationally resonant sum-frequency generation (VR-SFG) microscopy in the mid-infrared range. With the sapphire lens as an immersed solid medium, the numerical aperture (NA) of the parabolic mirror objective is enhanced by a factor of 1.72, from 0.42 to 0.72, close to the theoretical value of 1.76 ( = nsapphire). The measured lateral resolution is as high as 0.64 μm. We show the practical utility of the sapphire immersion lens by imaging collagen-rich tissues with and without the solid immersion lens. PMID:25071953

  5. Super-resolution with a positive epsilon multi-quantum-well super-lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bak, A. O.; Giannini, V.; Maier, S. A.

    2013-12-23

    We design an anisotropic and dichroic quantum metamaterial that is able to achieve super-resolution without the need for a negative permittivity. When exploring the parameters of the structure, we take into account the limits of semiconductor fabrication technology based on quantum well stacks. By heavily doping the structure with free electrons, we infer an anisotropic effective medium with a prolate ellipsoid dispersion curve which allows for near-diffractionless propagation of light (similar to an epsilon-near-zero hyperbolic lens). This, coupled with low absorption, allows us to resolve images at the sub-wavelength scale at distances 6 times greater than equivalent natural materials.

  6. Evaluating the capability of Landsat 8 OLI and SPOT 6 for discriminating invasive alien species in the African Savanna landscape

    NASA Astrophysics Data System (ADS)

    Kganyago, Mahlatse; Odindi, John; Adjorlolo, Clement; Mhangara, Paidamoyo

    2018-05-01

    Globally, there is paucity of accurate information on the spatial distribution and patch sizes of Invasive Alien Plants (IAPs) species. Such information is needed to aid optimisation of control mechanisms to prevent further spread of IAPs and minimize their impacts. Recent studies have shown the capability of very high spatial (<1 m) and spectral resolution (<10 nm) data for discriminating vegetation species. However, very high spatial resolution may introduce significant intra-species spectral variability and result in reduced mapping accuracy, while higher spectral resolution data are commonly limited to smaller areas, are costly and computationally expensive. Alternatively, medium and high spatial resolution data are available at low or no cost and have limitedly been evaluated for their potential in determining invasion patterns relevant for invasion ecology and aiding effective IAPs management. In this study medium and high resolution datasets from Landsat Operational Land Imager (OLI) and SPOT 6 sensors respectively, were evaluated for mapping the distribution and patch sizes of IAP, Parthenium hysterophorus in the savannah landscapes of KwaZulu-Natal, South Africa. Support Vector Machines (SVM) classifier was used for classification of both datasets. Results indicated that SPOT 6 had a higher overall accuracy (86%) than OLI (83%) in mapping P. hysterophorus. The study found larger distributions and patch sizes in OLI than in SPOT 6 as a result of possible P. hysterophorus expansion due to temporal differences between images and coarser pixels were insufficient to delineate gaps inside larger patches. On the other hand, SPOT 6 showed better capabilities of delineating gaps and boundaries of patches, hence had better estimates of distribution and patch sizes. Overall, the study showed that OLI may be suitable for mapping well-established patches for the purpose of large scale monitoring, while SPOT 6 can be used for mapping small patches and prioritising them for eradication to prevent further spread at a landscape scale.

  7. SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUANG, LIANJIE; SIMONETTI, FRANCESCO; DURIC, NEBOJSA

    2007-01-18

    Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imagingmore » algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.« less

  8. Combining Optical Coherence Tomography with Fluorescence Molecular Imaging: Towards Simultaneous Morphology and Molecular Imaging

    PubMed Central

    Yuan, Shuai; Roney, Celeste A.; Wierwille, Jerry; Chen, Chao-Wei; Xu, Biying; Jiang, James; Ma, Hongzhou; Cable, Alex; Summers, Ronald M.; Chen, Yu

    2010-01-01

    Optical coherence tomography (OCT) provides high-resolution, cross-sectional imaging of tissue microstructure in situ and in real-time, while fluorescence molecular imaging (FMI) enables the visualization of basic molecular processes. There are great interests in combining these two modalities so that the tissue's structural and molecular information can be obtained simultaneously. This could greatly benefit biomedical applications such as detecting early diseases and monitoring therapeutic interventions. In this research, an optical system that combines OCT and FMI was developed. The system demonstrated that it could co-register en face OCT and FMI images with a 2.4 × 2.4 mm field of view. The transverse resolutions of OCT and FMI of the system are both ~10 μm. Capillary tubes filled with fluorescent dye Cy 5.5 in different concentrations under a scattering medium are used as the phantom. En face OCT images of the phantoms were obtained and successfully co-registered with FMI images that were acquired simultaneously. A linear relationship between FMI intensity and dye concentration was observed. The relationship between FMI intensity and target fluorescence tube depth measured by OCT images was also observed and compared with theoretical modeling. This relationship could help in correcting reconstructed dye concentration. Imaging of colon polyps of APCmin mouse model is presented as an example of biological applications of this co-registered OCT/FMI system. PMID:20009192

  9. Development of a Telescope for Medium-Energy Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2010-01-01

    Since the launch of AGILE and FERMI, the scientific progress in high-energy (E(sub gamma) greater than approximately 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from approximately 20 MeV to greater than 10 GeV. However, neither instrument is optimized for observations below approximately 200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, there will nonetheless remain a significant sensitivity gap in the medium-energy (approximately 0.1-200 MeV) regime; the lower end of this range remains largely unexplored whereas the upper end will allow comparison with FERMI data. Tapping into this unexplored regime requires significant improvements in sensitivity. A major emphasis of modern detector development, with the goal of providing significant improvements in sensitivity in the medium-energy regime, focuses on high-resolution electron tracking. The Three-Dimensional Track Imager (3-DTI) technology being developed at GSFC provides high resolution tracking of the electron-positron pair from gamma-ray interactions from 5 to 200 MeV. The 3-DTI consists of a time projection chamber (TPC) and 2-D cross-strip microwell detector (MWD). The low-density and homogeneous design of the 3-DTI, offers unprecedented sensitivity by providing angular resolution near the kinematic limit. Electron tracking also enables measurement of gamma-ray polarization, a new tool to study astrophysical phenomenon. We describe the design, fabrication, and performance of a 30x30x30 cubic centimeters 3-DTI detector prototype of a medium-energy gamma-ray telescope.

  10. Development of a Telescope for Medium-Energy Gamma-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Sunter, Stan

    2012-01-01

    Since the launch of AGILE and FERMI, the scientific progress in high-energy (Eg greater than approximately 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from approximately 20 MeV to greater than 10 GeV. However, neither instrument is optimized for observations below approximately 200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, there will nonetheless remain a significant sensitivity gap in the medium-energy (approximately 0.1-200 MeV) regime; the lower end of this range remains largely unexplored whereas the upper end will allow comparison with FERMI data. Tapping into this unexplored regime requires significant improvements in sensitivity. A major emphasis of modern detector development, with the goal of providing significant improvements in sensitivity in the medium-energy regime, focuses on high-resolution electron tracking. The Three-Dimensional Track Imager (3-DTI) technology being developed at GSFC provides high resolution tracking of the electron-positron pair from gamma-ray interactions from 5 to 200 MeV. The 3-DTI consists of a time projection chamber (TPC) and 2-D cross-strip microwell detector (MWD). The low-density and homogeneous design of the 3-DTI, offers unprecedented sensitivity by providing angular resolution near the kinematic limit. Electron tracking also enables measurement of gamma-ray polarization, a new tool to study astrophysical phenomenon. We describe the design, fabrication, and performance of a 30x30x30 cm3 3-DTI detector prototype of a medium-energy gamma-ray telescope.

  11. Simulation-based evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography.

    PubMed

    Lin, Yuting; Nouizi, Farouk; Kwong, Tiffany C; Gulsen, Gultekin

    2015-09-01

    Conventional fluorescence tomography (FT) can recover the distribution of fluorescent agents within a highly scattering medium. However, poor spatial resolution remains its foremost limitation. Previously, we introduced a new fluorescence imaging technique termed "temperature-modulated fluorescence tomography" (TM-FT), which provides high-resolution images of fluorophore distribution. TM-FT is a multimodality technique that combines fluorescence imaging with focused ultrasound to locate thermo-sensitive fluorescence probes using a priori spatial information to drastically improve the resolution of conventional FT. In this paper, we present an extensive simulation study to evaluate the performance of the TM-FT technique on complex phantoms with multiple fluorescent targets of various sizes located at different depths. In addition, the performance of the TM-FT is tested in the presence of background fluorescence. The results obtained using our new method are systematically compared with those obtained with the conventional FT. Overall, TM-FT provides higher resolution and superior quantitative accuracy, making it an ideal candidate for in vivo preclinical and clinical imaging. For example, a 4 mm diameter inclusion positioned in the middle of a synthetic slab geometry phantom (D:40  mm×W:100  mm) is recovered as an elongated object in the conventional FT (x=4.5  mm; y=10.4  mm), while TM-FT recovers it successfully in both directions (x=3.8  mm; y=4.6  mm). As a result, the quantitative accuracy of the TM-FT is superior because it recovers the concentration of the agent with a 22% error, which is in contrast with the 83% error of the conventional FT.

  12. 3D-NTT: a versatile integral field spectro-imager for the NTT

    NASA Astrophysics Data System (ADS)

    Marcelin, M.; Amram, P.; Balard, P.; Balkowski, C.; Boissin, O.; Boulesteix, J.; Carignan, C.; Daigle, O.; de Denus Baillargeon, M.-M.; Epinat, B.; Gach, J.-L.; Hernandez, O.; Rigaud, F.; Vallée, P.

    2008-07-01

    The 3D-NTT is a visible integral field spectro-imager offering two modes. A low resolution mode (R ~ 300 to 6 000) with a large field of view Tunable Filter (17'x17') and a high resolution mode (R ~ 10 000 to 40 000) with a scanning Fabry-Perot (7'x7'). It will be operated as a visitor instrument on the NTT from 2009. Two large programmes will be led: "Characterizing the interstellar medium of nearby galaxies with 2D maps of extinction and abundances" (PI M. Marcelin) and "Gas accretion and radiative feedback in the early universe" (PI J. Bland Hawthorn). Both will be mainly based on the Tunable Filter mode. This instrument is being built as a collaborative effort between LAM (Marseille), GEPI (Paris) and LAE (Montreal). The website adress of the instrument is : http://www.astro.umontreal.ca/3DNTT

  13. A Muon Tomography Station with GEM Detectors for Nuclear Threat Detection

    NASA Astrophysics Data System (ADS)

    Staib, Michael; Gnanvo, Kondo; Grasso, Leonard; Hohlmann, Marcus; Locke, Judson; Costa, Filippo; Martoiu, Sorin; Muller, Hans

    2011-10-01

    Muon tomography for homeland security aims at detecting well-shielded nuclear contraband in cargo and imaging it in 3D. The technique exploits multiple scattering of atmospheric cosmic ray muons, which is stronger in dense, high-Z nuclear materials, e.g. enriched uranium, than in low-Z and medium-Z shielding materials. We have constructed and operated a compact Muon Tomography Station (MTS) that tracks muons with six to ten 30 cm x 30 cm Triple Gas Electron Multiplier (GEM) detectors placed on the sides of a 27-liter cubic imaging volume. The 2D strip readouts of the GEMs achieve a spatial resolution of ˜130 μm in both dimensions and the station is operated at a muon trigger rate of ˜20 Hz. The 1,536 strips per GEM detector are read out with the first medium-size implementation of the Scalable Readout System (SRS) developed specifically for Micro-Pattern Gas Detectors by the RD51 collaboration at CERN. We discuss the performance of this MTS prototype and present experimental results on tomographic imaging of high-Z objects with and without shielding.

  14. Featured Image: Structures in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    This beautiful false-color image (which covers 57 degrees2; click for the full view!) reveals structures in the hydrogen gas that makes up the diffuse atomic interstellar medium at intermediate latitudes in our galaxy. The imagewas created by representing three velocity channels with colors red for gas moving at 7.59 km/s, green for 5.12 km/s, and blue for 2.64 km/s and it shows the dramatically turbulent and filamentary structure of this gas. This image is one of many stunning, high-resolution observations that came out of the DRAO HI Intermediate Galactic Latitude Survey, a program that used the Synthesis Telescope at the Dominion Radio Astrophysical Observatory in British Columbia to map faint hydrogen emission at intermediate latitudes in the Milky Way. The findings from the program were recently published in a study led by Kevin Blagrave (Canadian Institute for Theoretical Astrophysics, University of Toronto); to find out more about what they learned, check out the paper below!CitationK. Blagrave et al 2017 ApJ 834 126. doi:10.3847/1538-4357/834/2/126

  15. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    NASA Astrophysics Data System (ADS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  16. Sub-pixel flood inundation mapping from multispectral remotely sensed images based on discrete particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Li, Linyi; Chen, Yun; Yu, Xin; Liu, Rui; Huang, Chang

    2015-03-01

    The study of flood inundation is significant to human life and social economy. Remote sensing technology has provided an effective way to study the spatial and temporal characteristics of inundation. Remotely sensed images with high temporal resolutions are widely used in mapping inundation. However, mixed pixels do exist due to their relatively low spatial resolutions. One of the most popular approaches to resolve this issue is sub-pixel mapping. In this paper, a novel discrete particle swarm optimization (DPSO) based sub-pixel flood inundation mapping (DPSO-SFIM) method is proposed to achieve an improved accuracy in mapping inundation at a sub-pixel scale. The evaluation criterion for sub-pixel inundation mapping is formulated. The DPSO-SFIM algorithm is developed, including particle discrete encoding, fitness function designing and swarm search strategy. The accuracy of DPSO-SFIM in mapping inundation at a sub-pixel scale was evaluated using Landsat ETM + images from study areas in Australia and China. The results show that DPSO-SFIM consistently outperformed the four traditional SFIM methods in these study areas. A sensitivity analysis of DPSO-SFIM was also carried out to evaluate its performances. It is hoped that the results of this study will enhance the application of medium-low spatial resolution images in inundation detection and mapping, and thereby support the ecological and environmental studies of river basins.

  17. A simple and non-contact optical imaging probe for evaluation of corneal diseases

    NASA Astrophysics Data System (ADS)

    Hong, Xun Jie Jeesmond; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, T.

    2015-09-01

    Non-contact imaging techniques are preferred in ophthalmology. Corneal disease is one of the leading causes of blindness worldwide, and a possible way of detection is by analyzing the shape and optical quality of the cornea. Here, a simple and cost-effective, non-contact optical probe system is proposed and illustrated. The probe possesses high spatial resolutions and is non-dependent on coupling medium, which are significant for a clinician and patient friendly investigation. These parameters are crucial, when considering an imaging system for the objective diagnosis and management of corneal diseases. The imaging of the cornea is performed on ex vivo porcine samples and subsequently on small laboratory animals, in vivo. The clinical significance of the proposed study is validated by performing imaging of the New Zealand white rabbit's cornea infected with Pseudomonas.

  18. HST Solar Arrays photographed by Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This medium close-up view of one of two original Solar Arrays (SA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and downlinked to ground controllers soon afterward. This view shows the cell side of the minus V-2 panel. Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  19. High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla

    PubMed Central

    Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.

    2012-01-01

    The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941

  20. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu

    2016-12-10

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imagingmore » come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.« less

  1. [Usefulness of volume rendering stereo-movie in neurosurgical craniotomies].

    PubMed

    Fukunaga, Tateya; Mokudai, Toshihiko; Fukuoka, Masaaki; Maeda, Tomonori; Yamamoto, Kouji; Yamanaka, Kozue; Minakuchi, Kiyomi; Miyake, Hirohisa; Moriki, Akihito; Uchida, Yasufumi

    2007-12-20

    In recent years, the advancements in MR technology combined with the development of the multi-channel coil have resulted in substantially shortened inspection times. In addition, rapid improvement in functional performance in the workstation has produced a more simplified imaging-making process. Consequently, graphical images of intra-cranial lesions can be easily created. For example, the use of three-dimensional spoiled gradient echo (3D-SPGR) volume rendering (VR) after injection of a contrast medium is applied clinically as a preoperative reference image. Recently, improvements in 3D-SPGR VR high-resolution have enabled accurate surface images of the brain to be obtained. We used stereo-imaging created by weighted maximum intensity projection (Weighted MIP) to determine the skin incision line. Furthermore, the stereo imaging technique utilizing 3D-SPGR VR was actually used in cases presented here. The techniques we report here seemed to be very useful in the pre-operative simulation of neurosurgical craniotomy.

  2. Coregistration of high-resolution Mars orbital images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2015-04-01

    The systematic orbital imaging of the Martian surface started 4 decades ago from NASA's Viking Orbiter 1 & 2 missions, which were launched in August 1975, and acquired orbital images of the planet between 1976 and 1980. The result of this reconnaissance was the first medium-resolution (i.e. ≤ 300m/pixel) global map of Mars, as well as a variety of high-resolution images (reaching up to 8m/pixel) of special regions of interest. Over the last two decades NASA has sent 3 more spacecraft with onboard instruments for high-resolution orbital imaging: Mars Global Surveyor (MGS) having onboard the Mars Orbital Camera - Narrow Angle (MOC-NA), Mars Odyssey having onboard the Thermal Emission Imaging System - Visual (THEMIS-VIS) and the Mars Reconnaissance Orbiter (MRO) having on board two distinct high-resolution cameras, Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE). Moreover, ESA has the multispectral High resolution Stereo Camera (HRSC) onboard ESA's Mars Express with resolution up to 12.5m since 2004. Overall, this set of cameras have acquired more than 400,000 high-resolution images, i.e. with resolution better than 100m and as fine as 25 cm/pixel. Notwithstanding the high spatial resolution of the available NASA orbital products, their accuracy of areo-referencing is often very poor. As a matter of fact, due to pointing inconsistencies, usually form errors in roll attitude, the acquired products may actually image areas tens of kilometers far away from the point that they are supposed to be looking at. On the other hand, since 2004, the ESA Mars Express has been acquiring stereo images through the High Resolution Stereo Camera (HRSC), with resolution that is usually 12.5-25 metres per pixel. The achieved coverage is more than 64% for images with resolution finer than 20 m/pixel, while for ~40% of Mars, Digital Terrain Models (DTMs) have been produced with are co-registered with MOLA [Gwinner et al., 2010]. The HRSC images and DTMs represent the best available 3D reference frame for Mars showing co-registration with MOLA<25m (loc.cit.). In our work, the reference generated by HRSC terrain corrected orthorectified images is used as a common reference frame to co-register all available high-resolution orbital NASA products into a common 3D coordinate system, thus allowing the examination of the changes that happen on the surface of Mars over time (such as seasonal flows [McEwen et al., 2011] or new impact craters [Byrne, et al., 2009]). In order to accomplish such a tedious manual task, we have developed an automatic co-registration pipeline that produces orthorectified versions of the NASA images in realistic time (i.e. from ~15 minutes to 10 hours per image depending on size). In the first step of this pipeline, tie-points are extracted from the target NASA image and the reference HRSC image or image mosaic. Subsequently, the HRSC areo-reference information is used to transform the HRSC tie-points pixel coordinates into 3D "world" coordinates. This way, a correspondence between the pixel coordinates of the target NASA image and the 3D "world" coordinates is established for each tie-point. This set of correspondences is used to estimate a non-rigid, 3D to 2D transformation model, which transforms the target image into the HRSC reference coordinate system. Finally, correlation of the transformed target image and the HRSC image is employed to fine-tune the orthorectification results, thus generating results with sub-pixel accuracy. This method, which has been proven to be accurate, robust to resolution differences and reliable when dealing with partially degraded data and fast, will be presented, along with some example co-registration results that have been achieved by using it. Acknowledgements: The research leading to these results has received partial funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] K. F. Gwinner, et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007. [2] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science , 333 (6043): 740-743. [3] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676.

  3. Integrating Landsat Data and High-Resolution Imagery for Applied Conservation Assessment of Forest Cover in Latin American Heterogenous Landscapes

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Rueda, X.; Lambin, E.; Mendenhall, C. D.

    2012-12-01

    Large intact forested regions of the world are known to be critical to maintaining Earth's climate, ecosystem health, and human livelihoods. Remote sensing has been successfully implemented as a tool to monitor forest cover and landscape dynamics over broad regions. Much of this work has been done using coarse resolution sensors such as AVHRR and MODIS in combination with moderate resolution sensors, particularly Landsat. Finer scale analysis of heterogeneous and fragmented landscapes is commonly performed with medium resolution data and has had varying success depending on many factors including the level of fragmentation, variability of land cover types, patch size, and image availability. Fine scale tree cover in mixed agricultural areas can have a major impact on biodiversity and ecosystem sustainability but may often be inadequately captured with the global to regional (coarse resolution and moderate resolution) satellite sensors and processing techniques widely used to detect land use and land cover changes. This study investigates whether advanced remote sensing methods are able to assess and monitor percent tree canopy cover in spatially complex human-dominated agricultural landscapes that prove challenging for traditional mapping techniques. Our study areas are in high altitude, mixed agricultural coffee-growing regions in Costa Rica and the Colombian Andes. We applied Random Forests regression tree analysis to Landsat data along with additional spectral, environmental, and spatial variables to predict percent tree canopy cover at 30m resolution. Image object-based texture, shape, and neighborhood metrics were generated at the Landsat scale using eCognition and included in the variable suite. Training and validation data was generated using high resolution imagery from digital aerial photography at 1m to 2.5 m resolution. Our results are promising with Pearson's correlation coefficients between observed and predicted percent tree canopy cover of .86 (Costa Rica) and .83 (Colombia). The tree cover mapping developed here supports two distinct projects on sustaining biodiversity and natural and human capital: in Costa Rica the tree canopy cover map is utilized to predict bird community composition; and in Colombia the mapping is performed for two time periods and used to assess the impact of coffee eco-certification programs on the landscape. This research identifies ways to leverage readily available, high quality, and cost-free Landsat data or other medium resolution satellite data sources in combination with high resolution data, such as that frequently available through Google Earth, to monitor and support sustainability efforts in fragmented and heterogeneous landscapes.

  4. Real-time sound speed correction using golden section search to enhance ultrasound imaging quality

    NASA Astrophysics Data System (ADS)

    Yoon, Chong Ook; Yoon, Changhan; Yoo, Yangmo; Song, Tai-Kyong; Chang, Jin Ho

    2013-03-01

    In medical ultrasound imaging, high-performance beamforming is important to enhance spatial and contrast resolutions. A modern receive dynamic beamfomer uses a constant sound speed that is typically assumed to 1540 m/s in generating receive focusing delays [1], [2]. However, this assumption leads to degradation of spatial and contrast resolutions particularly when imaging obese patients or breast since the sound speed is significantly lower than the assumed sound speed [3]; the true sound speed in the fatty tissue is around 1450 m/s. In our previous study, it was demonstrated that the modified nonlinear anisotropic diffusion is capable of determining an optimal sound speed and the proposed method is a useful tool to improve ultrasound image quality [4], [5]. In the previous study, however, we utilized at least 21 iterations to find an optimal sound speed, which may not be viable for real-time applications. In this paper, we demonstrates that the number of iterations can be dramatically reduced using the GSS(golden section search) method with a minimal error. To evaluate performances of the proposed method, in vitro experiments were conducted with a tissue mimicking phantom. To emulate a heterogeneous medium, the phantom was immersed in the water. From the experiments, the number of iterations was reduced from 21 to 7 with GSS method and the maximum error of the lateral resolution between direct and GSS was less than 1%. These results indicate that the proposed method can be implemented in real time to improve the image quality in the medical ultrasound imaging.

  5. The Exploration, Discovery, Recovery, and Preservation of Endangered Electronic Scientific Records, the Lunar Orbiter Image Recovery Project

    NASA Astrophysics Data System (ADS)

    Wingo, D. R.; Harper, M.

    2017-12-01

    In 1966 and 1967 NASA sent five photo reconnaissance satellites to the Moon to scout out sites for the first Apollo landings. This was the first mission in human history to extensively map the Moon to one meter resolution. The Lunar Orbiter spacecraft obtained photographs via 70 millimeter film in high resolution (one meter), and medium resolution (7-8) meter. Each mission took approximately 200 medium and high resolution photographs. These were processed in an on board film laboratory and then scanned via a 6.5 micron light beam.. These images were then transmitted to the Earth as analog waveforms double modulated as a vestigial sideband (VSB) and Frequency Modulation With Feedback (FMFB). The spacecraft transmissions were received at NASA's Deep Space Network at Goldstone (DSS-12), Madrid (DSS-61) and Woomera (DSS-41). The signals received were shifted to a 10 MHz intermediate frequency spectrum which was then written to 2"analog instrumentation tape drives (Ampex-FR-900's). In parallel the signals were demodulated and displayed on a kinescope, which then was photographed using a 35mm camera, and the 35mm film was then rephotographed, processed, and printed for initial analysis by the landing site selection team. The magnetic tape based analog sigals preserved the higher dynamic range of the spacecraft 70mm film, and this was then digitized utilizing digitizer and fed to a Univac 1170 computer for analysis of rock height, slope angles, and geologic context. After the Apollo missions these tapes were largely forgotten. In 2007, retired NASA archivist Nancy Evans, who had saved the last surviving Ampex FR-900's donated the drives to the Lunar Orbiter Image Recovery Project. The project obtained the 1474 hours of original tapes from NASA JPL, and at NASA Ames refurbished the drives. Additionally, the demodulator system was recreated from archived documentation using modern techniques. The project digitized the 1474 tapes, processed the 20 terabyes of raw data. The process of reviving the tape drives after 45 years, redesigning the demodulator from limited information largely from engineering papers delivered in the 1960's, and the process for capturing and archiving the data will be described. The peer review is complete and the Lunar Orbiter images will be released to the planetary science community in Q3 2017.

  6. 75 MHz Ultrasound Biomicroscopy of Anterior Segment of Eye

    PubMed Central

    Silverman, Ronald H.; Cannata, Jonathan; Shung, K. Kirk; Gal, Omer; Patel, Monica; Lloyd, Harriet O.; Feleppa, Ernest J.; Coleman, D. Jackson

    2006-01-01

    Very high frequency ultrasound (35–50 MHz) has had a significant impact upon clinical imaging of the anterior segment of the eye, offering an axial resolution as small as 30 μm. Higher frequencies, while potentially offering even finer resolution, are more affected by absorption in ocular tissues and even in the fluid coupling medium. Our aim was to develop and apply improved transducer technology utilizing frequencies beyond those routinely used for ultrasound biomicroscopy of the eye. A 75-MHz lithium niobate transducer with 2 mm aperture and 6 mm focal length was fabricated. We scanned the ciliary body and cornea of a human eye six years post-LASIK. Spectral parameter images were produced from the midband fit to local calibrated power spectra. Images were compared with those produced using a 35 MHz lithium niobate transducer of similar fractional bandwidth and focal ratio. The 75-MHz transducer was found to have a fractional bandwidth (−6 dB) of 61%. Images of the post-LASIK cornea showed higher stromal backscatter at 75 MHz than at 35 MHz. The improved lateral resolution resulted in better visualization of discontinuities in Bowman’s layer, indicative of microfolds or breaks occurring at the time of surgery. The LASIK surface was evident as a discontinuity in stromal backscatter between the stromal component of the flap and the residual stroma. The iris and ciliary body were visualized despite attenuation by the overlying sclera. Very high frequency ultrasound imaging of the anterior segment of the eye has been restricted to the 35–50 MHz band for over a decade. We showed that higher frequencies can be used in vivo to image the cornea and anterior segment. This improvement in resolution and high sensitivity to backscatter from the corneal stroma will provide benefits in clinical diagnostic imaging of the anterior segment. PMID:17147058

  7. High-resolution, low-delay, and error-resilient medical ultrasound video communication using H.264/AVC over mobile WiMAX networks.

    PubMed

    Panayides, Andreas; Antoniou, Zinonas C; Mylonas, Yiannos; Pattichis, Marios S; Pitsillides, Andreas; Pattichis, Constantinos S

    2013-05-01

    In this study, we describe an effective video communication framework for the wireless transmission of H.264/AVC medical ultrasound video over mobile WiMAX networks. Medical ultrasound video is encoded using diagnostically-driven, error resilient encoding, where quantization levels are varied as a function of the diagnostic significance of each image region. We demonstrate how our proposed system allows for the transmission of high-resolution clinical video that is encoded at the clinical acquisition resolution and can then be decoded with low-delay. To validate performance, we perform OPNET simulations of mobile WiMAX Medium Access Control (MAC) and Physical (PHY) layers characteristics that include service prioritization classes, different modulation and coding schemes, fading channels conditions, and mobility. We encode the medical ultrasound videos at the 4CIF (704 × 576) resolution that can accommodate clinical acquisition that is typically performed at lower resolutions. Video quality assessment is based on both clinical (subjective) and objective evaluations.

  8. Attenuation tomography of the main volcanic regions of the Campanian Plain.

    NASA Astrophysics Data System (ADS)

    de Siena, Luca; Del Pezzo, Edoardo; Bianco, Francesca

    2010-05-01

    Passive, high resolution attenuation tomography is used to image the geological structure in the first upper 4 km of shallow crust beneath the Campanian Plain. Images were produced by two separate attenuation tomography studies of the main volcanic regions of the Campanian Plain, Southern Italy, Mt. Vesuvius volcano and Campi Flegrei caldera. The three-dimensional S wave attenuation tomography of Mt. Vesuvius has been obtained with multiple measurements of coda-normalized S-wave spectra of local small magnitude earthquakes. P-wave attenuation tomography was performed using classical spectral methods. The images were obtained inverting the spectral data with a multiple resolution approach expressively designed for attenuation tomography. This allowed to obtain a robust attenuation image of the volumes under the central cone at a maximum resolution of 300 m. The same approach was applied to a data set recorded in the Campi Flegrei area during the 1982-1984 seismic crisis. Inversion ensures a minimum cell size resolution of 500 meters in the zones with sufficient ray coverage, and 1000 meters outside these zones. The study of the resolution matrix as well as the synthetic tests guarantee an optimal reproduction of the input anomalies in the center of the caldera, between 0 and 3.5 km in depth. Results allowed an unprecedented view of several features of the medium, like the residual part of solidified magma from the last eruption, under the central cone of Mt. Vesuvius, and the feeding systems and top of the carbonate basement, 3 km depth below both volcanic areas. Vertical Q contrast image important fault zones, such as the La Starza fault, as well as high attenuation structures that correspond to gas or fluid reservoirs, and reveal the upper part of gas bearing conduits connecting these high attenuation volumes with the magma sill revealed at about 7 km in depth by passive travel-time tomography under the whole Campanian Plain.

  9. Regional Principal Color Based Saliency Detection

    PubMed Central

    Lou, Jing; Ren, Mingwu; Wang, Huan

    2014-01-01

    Saliency detection is widely used in many visual applications like image segmentation, object recognition and classification. In this paper, we will introduce a new method to detect salient objects in natural images. The approach is based on a regional principal color contrast modal, which incorporates low-level and medium-level visual cues. The method allows a simple computation of color features and two categories of spatial relationships to a saliency map, achieving higher F-measure rates. At the same time, we present an interpolation approach to evaluate resulting curves, and analyze parameters selection. Our method enables the effective computation of arbitrary resolution images. Experimental results on a saliency database show that our approach produces high quality saliency maps and performs favorably against ten saliency detection algorithms. PMID:25379960

  10. Numerical correction of distorted images in full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Min, Gihyeon; Kim, Ju Wan; Choi, Woo June; Lee, Byeong Ha

    2012-03-01

    We propose a numerical method which can numerically correct the distorted en face images obtained with a full field optical coherence tomography (FF-OCT) system. It is shown that the FF-OCT image of the deep region of a biological sample is easily blurred or degraded because the sample has a refractive index (RI) much higher than its surrounding medium in general. It is analyzed that the focal plane of the imaging system is segregated from the imaging plane of the coherence-gated system due to the RI mismatch. This image-blurring phenomenon is experimentally confirmed by imaging the chrome pattern of a resolution test target through its glass substrate in water. Moreover, we demonstrate that the blurred image can be appreciably corrected by using the numerical correction process based on the Fresnel-Kirchhoff diffraction theory. The proposed correction method is applied to enhance the image of a human hair, which permits the distinct identification of the melanin granules inside the cortex layer of the hair shaft.

  11. [Winter wheat area estimation with MODIS-NDVI time series based on parcel].

    PubMed

    Li, Le; Zhang, Jin-shui; Zhu, Wen-quan; Hu, Tan-gao; Hou, Dong

    2011-05-01

    Several attributes of MODIS (moderate resolution imaging spectrometer) data, especially the short temporal intervals and the global coverage, provide an extremely efficient way to map cropland and monitor its seasonal change. However, the reliability of their measurement results is challenged because of the limited spatial resolution. The parcel data has clear geo-location and obvious boundary information of cropland. Also, the spectral differences and the complexity of mixed pixels are weak in parcels. All of these make that area estimation based on parcels presents more advantage than on pixels. In the present study, winter wheat area estimation based on MODIS-NDVI time series has been performed with the support of cultivated land parcel in Tongzhou, Beijing. In order to extract the regional winter wheat acreage, multiple regression methods were used to simulate the stable regression relationship between MODIS-NDVI time series data and TM samples in parcels. Through this way, the consistency of the extraction results from MODIS and TM can stably reach up to 96% when the amount of samples accounts for 15% of the whole area. The results shows that the use of parcel data can effectively improve the error in recognition results in MODIS-NDVI based multi-series data caused by the low spatial resolution. Therefore, with combination of moderate and low resolution data, the winter wheat area estimation became available in large-scale region which lacks completed medium resolution images or has images covered with clouds. Meanwhile, it carried out the preliminary experiments for other crop area estimation.

  12. Introduction to the local enhancement of underwater imagery

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.

    1995-06-01

    Image-based detection of submerged objects is frequently confounded by optical distortions in the aqueous medium. For example, scattering can severly degrade contrast and resolution in underwater (UW) images when illumination systems and cameras are not range-gated. Prior to the development of range-gated imaging, much research emphasis was placed upon the analysis of greyscale imagery acquired under incoherent illumination. Primarily as a result of current emphasis on coherent optical technologies, the progress of image processing (IP) research that pertains to UW imagery has lagged IP hardware and software development. In this paper, we summarize methods for the digital clarification of images that portray actively illuminated UW scenes, i.e., images of floodlit objects. We model the primary UW image components as: a) contrast degradation resulting from illuminant backscattering from the water column, b) a return signal that results from backscattering of the illuminant from the object of regard, and c) resolution loss, due to forward scattering of the return signal. Letting items a) and c) consititute error sources, one can locally apply the appropriate filters to reduce the contribution of such errors. Our technique emphasized local enhancement, as opposed to the global methods used in previous imaging practice. Our enhancement filters are based upon image-algebraic templates that are designed to compensate for the effects of single and multiple scattering as well as absorption within the water column. Discussion is based upon image clarity, algorithmic complexity, and computational efficiency.

  13. A new collimator for I-123-IMP SPECT imaging of the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyamada, H.; Fukukita, H.; Tanaka, E.

    1985-05-01

    At present, commercially available I-123-IMP is contaminated with I-124 and its concentration on the assay date is said to be approximately 5%. Therefore, the application of medium energy parallel hole collimator (MEPC) used in many places for SPECT results in deterioration of the image quality. Recently, the authors have developed a new collimator for I-123-IMP SPECT imaging comprised of 4 slat type units; ultrahigh resolution (UHR), high resolution (HR), high sensitivity (HS), and ultrahigh sensitivity (UHS). The slit width/septum thickness in mm for UHR, HR, HS, and UHS are 0.9/0.5, 1.5/0.85, 3.2/1.5, and 5.2/2.0, respectively. In practice, either UHR ormore » HR is set to the detector (Shimadzu LFOV-E, modified type) together with either HS or UHS. The former is always set to the detector with the slit direction parallel to the rotation axis, and the latter is set with its slit direction at a right angle to the former. This is based on an idea that, upon sacrifice of resolution to some extent, sensitivity can be gained on the axial direction while the resolution on the transaxial slice will still be sufficiently preserved. Resolutions (transaxial direction/axial direction) in FWHM (mm) for each combination (UHR-HS, UHR-UHS, HR-HS, and HR-UHS) were 15.9/31.4, 15.9/36.5,23.2/33.3, and 23.9/40.7, respectively, whereas the resolution of MEPC was 28.7/29.5. On the other hand, relative sensitivities to MEPC were 0.57, 0.86, 0.80, and 1.16. The authors conclude that the combination of UHR and HS is best suited for clinical practice and, at present they are obtaining I-123-IMP SPECT images of good quality.« less

  14. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jiangang; Annis, James; /Fermilab

    2010-10-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digitalmore » Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of {approx}100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you want) to get some initial images loaded. Then, additional images corresponding to the region you are browsing will be loaded automatically. So far, you have access to all the co-added images. But you still do not have the galaxy cluster position information to look at. In order to see the galaxy clusters, you need to download another kmz file that tell Google Earth where to find the galaxy clusters in the co-added data region. We provide a kmz file for a few galaxy clusters in the stripe 82 region and you can download and open it with Google Earth. In the SDSS co-added region (stripe 82 region), the imagery from Google Earth itself is from the Digitized Sky Survey (2007), which is in very poor quality. In Figure1 and Figure2, we show screenshots of a cluster with and without the new co-added imagery in Google Earth. Much more details have been revealed with the deep images.« less

  15. In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization**

    PubMed Central

    Barskiy, Danila A.; Kovtunov, Kirill V.; Koptyug, Igor V.; He, Ping; Groome, Kirsten A.; Best, Quinn A.; Shi, Fan; Goodson, Boyd M.; Shchepin, Roman V.; Truong, Milton L.; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2015-01-01

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. PMID:25367202

  16. Quiet echo planar imaging for functional and diffusion MRI

    PubMed Central

    Price, Anthony N.; Cordero‐Grande, Lucilio; Malik, Shaihan; Ferrazzi, Giulio; Gaspar, Andreia; Hughes, Emer J.; Christiaens, Daan; McCabe, Laura; Schneider, Torben; Rutherford, Mary A.; Hajnal, Joseph V.

    2017-01-01

    Purpose To develop a purpose‐built quiet echo planar imaging capability for fetal functional and diffusion scans, for which acoustic considerations often compromise efficiency and resolution as well as angular/temporal coverage. Methods The gradient waveforms in multiband‐accelerated single‐shot echo planar imaging sequences have been redesigned to minimize spectral content. This includes a sinusoidal read‐out with a single fundamental frequency, a constant phase encoding gradient, overlapping smoothed CAIPIRINHA blips, and a novel strategy to merge the crushers in diffusion MRI. These changes are then tuned in conjunction with the gradient system frequency response function. Results Maintained image quality, SNR, and quantitative diffusion values while reducing acoustic noise up to 12 dB (A) is illustrated in two adult experiments. Fetal experiments in 10 subjects covering a range of parameters depict the adaptability and increased efficiency of quiet echo planar imaging. Conclusion Purpose‐built for highly efficient multiband fetal echo planar imaging studies, the presented framework reduces acoustic noise for all echo planar imaging‐based sequences. Full optimization by tuning to the gradient frequency response functions allows for a maximally time‐efficient scan within safe limits. This allows ambitious in‐utero studies such as functional brain imaging with high spatial/temporal resolution and diffusion scans with high angular/spatial resolution to be run in a highly efficient manner at acceptable sound levels. Magn Reson Med 79:1447–1459, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28653363

  17. A Concept for a High-Energy Gamma-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Bloser, P. F.; Hunter, S. D.; Depaola, G. O.; Longo, F.

    2003-01-01

    We present a concept for an imaging gamma-ray polarimeter operating from approx. 50 MeV to approx. 1 GeV. Such an instrument would be valuable for the study of high-energy pulsars, active galactic nuclei, supernova remnants, and gamma-ray bursts. The concept makes use of pixelized gas micro-well detectors, under development at Goddard Space Flight Center, to record the electron-positron tracks from pair-production events in a large gas volume. Pixelized micro-well detectors have the potential to form large-volume 3-D track imagers with approx. 100 micron (rms) position resolution at moderate cost. The combination of high spatial resolution and a continuous low-density gas medium permits many thousands of measurements per radiation length, allowing the particle tracks to be imaged accurately before multiple scattering masks their original directions. The polarization of the incoming radiation may then be determined from the azimuthal distribution of the electron-positron pairs. We have performed Geant4 simulations of these processes to estimate the polarization sensitivity as a function of instrument parameters and event selection criteria.

  18. Positional calibrations of the germanium double sided strip detectors for the Compton spectrometer and imager

    NASA Astrophysics Data System (ADS)

    Lowell, A.; Boggs, S.; Chiu, J. L.; Kierans, C.; McBride, S.; Tseng, C. H.; Zoglauer, A.; Amman, M.; Chang, H. K.; Jean, P.; Lin, C. H.; Sleator, C.; Tomsick, J.; von Ballmoos, P.; Yang, C. Y.

    2016-08-01

    The Compton Spectrometer and Imager (COSI) is a medium energy gamma ray (0.2 - 10 MeV) imager designed to observe high-energy processes in the universe from a high altitude balloon platform. At its core, COSI is comprised of twelve high purity germanium double sided strip detectors which measure particle interaction energies and locations with high precision. This manuscript focuses on the positional calibrations of the COSI detectors. The interaction depth in a detector is inferred from the charge collection time difference between the two sides of the detector. We outline our previous approach to this depth calibration and also describe a new approach we have recently developed. Two dimensional localization of interactions along the faces of the detector (x and y) is straightforward, as the location of the triggering strips is simply used. However, we describe a possible technique to improve the x/y position resolution beyond the detector strip pitch of 2 mm. With the current positional calibrations, COSI achieves an angular resolution of 5.6 +/- 0.1 degrees at 662 keV, close to our expectations from simulations.

  19. A high-resolution X-ray image of Puppis A - Inhomogeneities in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Petre, R.; Kriss, G. A.; Winkler, P. F.; Canizares, C. R.

    1982-01-01

    Eleven HRI exposures from the Einstein Observatory are assembled into an 0.1-4 keV image of the Puppis A supernova remnant which displays a complex morphology that may reflect the structure of the shocked interstellar medium. In addition to showing a density gradient of a factor greater than four across the approximately 30 pc diameter of the remnant perpendicular to the galactic plane, a shell of X-ray emission is seen surrounding the northern half of Puppis A, coincident with the radio shell, whose edge brightness profile indicates direct hot plasma heating by the blast wave rather than evaporation from clouds. The interior structure of the supernova remnant suggests inhomogeneities whose sizes range over 0.1-5 pc, but with moderate density contrast. Although isolated clouds of 10-30/cu cm density are responsible for the two brightest X-ray features, they represent only a small fraction of the Puppis A mass.

  20. Forced Imbibition in Porous Media: A Fourfold Scenario

    NASA Astrophysics Data System (ADS)

    Odier, Céleste; Levaché, Bertrand; Santanach-Carreras, Enric; Bartolo, Denis

    2017-11-01

    We establish a comprehensive description of the patterns formed when a wetting liquid displaces a viscous fluid confined in a porous medium. Building on model microfluidic experiments, we evidence four imbibition scenarios all yielding different large-scale morphologies. Combining high-resolution imaging and confocal microscopy, we show that they originate from two liquid-entrainment transitions and a Rayleigh-Plateau instability at the pore scale. Finally, we demonstrate and explain the long-time coarsening of the resulting patterns.

  1. Soft x-ray holographic tomography for biological specimens

    NASA Astrophysics Data System (ADS)

    Gao, Hongyi; Chen, Jianwen; Xie, Honglan; Li, Ruxin; Xu, Zhizhan; Jiang, Shiping; Zhang, Yuxuan

    2003-10-01

    In this paper, we present some experimental results on X -ray holography, holographic tomography, and a new holographic tomography method called pre-amplified holographic tomography is proposed. Due to the shorter wavelength and the larger penetration depths, X-rays provide the potential of higher resolution in imaging techniques, and have the ability to image intact, living, hydrated cells w ithout slicing, dehydration, chemical fixation or stain. Recently, using X-ray source in National Synchrotron Radiation Laboratory in Hefei, we have successfully performed some soft X-ray holography experiments on biological specimen. The specimens used in the experiments was the garlic clove epidermis, we got their X-ray hologram, and then reconstructed them by computer programs, the feature of the cell walls, the nuclei and some cytoplasm were clearly resolved. However, there still exist some problems in realization of practical 3D microscopic imaging due to the near-unity refractive index of the matter. There is no X-ray optics having a sufficient high numerical aperture to achieve a depth resolution that is comparable to the transverse resolution. On the other hand, computer tomography needs a record of hundreds of views of the test object at different angles for high resolution. This is because the number of views required for a densely packed object is equal to the object radius divided by the desired depth resolution. Clearly, it is impractical for a radiation-sensitive biological specimen. Moreover, the X-ray diffraction effect makes projection data blur, this badly degrades the resolution of the reconstructed image. In order to observe 3D structure of the biological specimens, McNulty proposed a new method for 3D imaging called "holographic tomography (HT)" in which several holograms of the specimen are recorded from various illumination directions and combined in the reconstruction step. This permits the specimens to be sampled over a wide range of spatial frequencies to improve the depth resolution. In NSRL, we performed soft X-ray holographic tomography experiments. The specimen was the spider filaments and PM M A as recording medium. By 3D CT reconstruction of the projection data, three dimensional density distribution of the specimen was obtained. Also, we developed a new X-ray holographic tomography m ethod called pre-amplified holographic tomography. The method permits a digital real-time 3D reconstruction with high-resolution and a simple and compact experimental setup as well.

  2. Toward the Era of a One-Stop Imaging Service Using an Angiography Suite for Neurovascular Disorders

    PubMed Central

    Hung, Sheng-Che; Lin, Chung-Jung; Chang, Feng-Chi; Luo, Chao-Bao; Teng, Michael Mu-Huo; Chang, Cheng-Yen

    2013-01-01

    Transportation of patients requiring multiple diagnostic and imaging-guided therapeutic modalities is unavoidable in current radiological practice. This clinical scenario causes time delays and increased risk in the management of stroke and other neurovascular emergencies. Since the emergence of flat-detector technology in imaging practice in recent decades, studies have proven that flat-detector X-ray angiography in conjunction with contrast medium injection and specialized reconstruction algorithms can provide not only high-quality and high-resolution CT-like images but also functional information. This improvement in imaging technology allows quantitative assessment of intracranial hemodynamics and, subsequently in the same imaging session, provides treatment guidance for patients with neurovascular disorders by using only a flat-detector angiographic suite—a so-called one-stop quantitative imaging service (OSIS). In this paper, we review the recent developments in the field of flat-detector imaging and share our experience of applying this technology in neurovascular disorders such as acute ischemic stroke, cerebral aneurysm, and stenoocclusive carotid diseases. PMID:23762863

  3. Optimal arrangements of fiber optic probes to enhance the spatial resolution in depth for 3D reflectance diffuse optical tomography with time-resolved measurements performed with fast-gated single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc

    2014-02-01

    Fiber optic probes with a width limited to a few centimeters can enable diffuse optical tomography (DOT) in intern organs like the prostate or facilitate the measurements on extern organs like the breast or the brain. We have recently shown on 2D tomographic images that time-resolved measurements with a large dynamic range obtained with fast-gated single-photon avalanche diodes (SPADs) could push forward the imaged depth range in a diffusive medium at short source-detector separation compared with conventional non-gated approaches. In this work, we confirm these performances with the first 3D tomographic images reconstructed with such a setup and processed with the Mellin- Laplace transform. More precisely, we investigate the performance of hand-held probes with short interfiber distances in terms of spatial resolution and specifically demonstrate the interest of having a compact probe design featuring small source-detector separations. We compare the spatial resolution obtained with two probes having the same design but different scale factors, the first one featuring only interfiber distances of 15 mm and the second one, 10 mm. We evaluate experimentally the spatial resolution obtained with each probe on the setup with fast-gated SPADs for optical phantoms featuring two absorbing inclusions positioned at different depths and conclude on the potential of short source-detector separations for DOT.

  4. A Pair Production Telescope for Medium-Energy Gamma-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Bloser, Peter F.; Depaola, Gerardo; Dion, Michael P.; DeNolfo, Georgia A.; Hanu, Andrei; Iparraguirre, Marcos; Legere, Jason; Longo, Francesco; McConnell, Mark L.; hide

    2014-01-01

    We describe the science motivation and development of a pair production telescope for medium-energy (approximately 5-200 Mega electron Volts) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (approximately 0.6 deg at 70 Mega electron Volts), continuum sensitivity comparable with the Fermi-LAT front detector (is less than 3 x 10(exp -6) Mega electron Volts per square centimeter per second at 70 Mega electron Volts), and minimum detectable polarization less than 10% for a 10 milliCrab source in 10(exp 6) s.

  5. The Environmental Impact of Intra-Cluster Medium on the Interstellar Medium in Early Type Galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, Ginevra

    1993-01-01

    Draft versions of three articles submitted for publication are presented. The first two articles address high resolution X-ray images of early type galaxies observed with the ROSAT HRI and PSPC. Data for NGC 1553 and NGC 5846 indicate that the emission is highly irregular, with interesting features at different scales. The gas temperatures also vary both with the galactocentric radius and in correspondence to regions of higher emission and denser material. Strikingly similar features are observed in the X-ray and H-alpha morphologies of NGC 1553 and NGC 5846, while smooth, regular isophotes are observed in NGC 4649 at both wavelengths. The third article addresses ROSAT PSPC observations of 5 X-ray bright early type galaxies.

  6. Correction of oral contrast artifacts in CT-based attenuation correction of PET images using an automated segmentation algorithm.

    PubMed

    Ahmadian, Alireza; Ay, Mohammad R; Bidgoli, Javad H; Sarkar, Saeed; Zaidi, Habib

    2008-10-01

    Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (mumap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated mumaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in clinical setting. More importantly, correction of oral contrast artifacts improved the readability and interpretation of the PET scan and showed substantial decrease of the SUV (104.3%) after correction. An automated segmentation algorithm for classification of irregular shapes of regions containing contrast medium was developed for wider applicability of the SCC algorithm for correction of oral contrast artifacts during the CTAC procedure. The algorithm is being refined and further validated in clinical setting.

  7. Dust Science with SPICA/MCS

    NASA Astrophysics Data System (ADS)

    Sakon, I.; Onaka, T.; Kataza, H.; Wada, T.; Sarugaku, Y.; Matsuhara, H.; Nakagawa, T.; Kobayashi, N.; Kemper, C.; Ohyama, Y.; Matsumoto, T.; Seok, J. Y.

    Mid-Infrared Camera and Spectrometers (MCS) is one of the Focal-Plane Instruments proposed for the SPICA mission in the pre-project phase. SPICA MCS is equipped with two spectrometers with different spectral resolution powers (R=λ /δ λ ); medium-resolution spectrometer (MRS) which covers 12-38µ m with R≃1100-3000, and high-resolution spectrometer (HRS) which covers either 12-18µ m with R≃30000. MCS is also equipped with Wide Field Camera (WFC), which is capable of performing multi-objects grism spectroscopy in addition to the imaging observation. A small slit aperture for low-resolution slit spectroscopy is planned to be placed just next to the field of view (FOV) aperture for imaging and slit-less spectroscopic observation. MCS covers an important part of the core spectral range of SPICA and, complementary with SAFARI (SpicA FAR-infrared Instrument), can do crucial observations for a number of key science cases to revolutionize our understanding of the lifecycle of dust in the universe. In this article, the latest design specification and the expected performance of the SPICA/MCS are introduced. Key science cases that should be targetted by SPICA/MCS have been discussed by the MCS science working group. Among such science cases, some of those related to dust science are briefly introduced.

  8. Plasticity of Arabidopsis root gravitropism throughout a multidimensional condition space quantified by automated image analysis.

    PubMed

    Brooks, Tessa L Durham; Miller, Nathan D; Spalding, Edgar P

    2010-01-01

    Plant development is genetically determined but it is also plastic, a fundamental duality that can be investigated provided large number of measurements can be made in various conditions. Plasticity of gravitropism in wild-type Arabidopsis (Arabidopsis thaliana) seedling roots was investigated using automated image acquisition and analysis. A bank of computer-controlled charge-coupled device cameras acquired images with high spatiotemporal resolution. Custom image analysis algorithms extracted time course measurements of tip angle and growth rate. Twenty-two discrete conditions defined by seedling age (2, 3, or 4 d), seed size (extra small, small, medium, or large), and growth medium composition (simple or rich) formed the condition space sampled with 1,216 trials. Computational analyses including dimension reduction by principal components analysis, classification by k-means clustering, and differentiation by wavelet convolution showed distinct response patterns within the condition space, i.e. response plasticity. For example, 2-d-old roots (regardless of seed size) displayed a response time course similar to those of roots from large seeds (regardless of age). Enriching the growth medium with nutrients suppressed response plasticity along the seed size and age axes, possibly by ameliorating a mineral deficiency, although analysis of seeds did not identify any elements with low levels on a per weight basis. Characterizing relationships between growth rate and tip swing rate as a function of condition cast gravitropism in a multidimensional response space that provides new mechanistic insights as well as conceptually setting the stage for mutational analysis of plasticity in general and root gravitropism in particular.

  9. Plasticity of Arabidopsis Root Gravitropism throughout a Multidimensional Condition Space Quantified by Automated Image Analysis1[W][OA

    PubMed Central

    Durham Brooks, Tessa L.; Miller, Nathan D.; Spalding, Edgar P.

    2010-01-01

    Plant development is genetically determined but it is also plastic, a fundamental duality that can be investigated provided large number of measurements can be made in various conditions. Plasticity of gravitropism in wild-type Arabidopsis (Arabidopsis thaliana) seedling roots was investigated using automated image acquisition and analysis. A bank of computer-controlled charge-coupled device cameras acquired images with high spatiotemporal resolution. Custom image analysis algorithms extracted time course measurements of tip angle and growth rate. Twenty-two discrete conditions defined by seedling age (2, 3, or 4 d), seed size (extra small, small, medium, or large), and growth medium composition (simple or rich) formed the condition space sampled with 1,216 trials. Computational analyses including dimension reduction by principal components analysis, classification by k-means clustering, and differentiation by wavelet convolution showed distinct response patterns within the condition space, i.e. response plasticity. For example, 2-d-old roots (regardless of seed size) displayed a response time course similar to those of roots from large seeds (regardless of age). Enriching the growth medium with nutrients suppressed response plasticity along the seed size and age axes, possibly by ameliorating a mineral deficiency, although analysis of seeds did not identify any elements with low levels on a per weight basis. Characterizing relationships between growth rate and tip swing rate as a function of condition cast gravitropism in a multidimensional response space that provides new mechanistic insights as well as conceptually setting the stage for mutational analysis of plasticity in general and root gravitropism in particular. PMID:19923240

  10. Effects of small variations of speed of sound in optoacoustic tomographic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deán-Ben, X. Luís; Ntziachristos, Vasilis; Razansky, Daniel, E-mail: dr@tum.de

    2014-07-15

    Purpose: Speed of sound difference in the imaged object and surrounding coupling medium may reduce the resolution and overall quality of optoacoustic tomographic reconstructions obtained by assuming a uniform acoustic medium. In this work, the authors investigate the effects of acoustic heterogeneities and discuss potential benefits of accounting for those during the reconstruction procedure. Methods: The time shift of optoacoustic signals in an acoustically heterogeneous medium is studied theoretically by comparing different continuous and discrete wave propagation models. A modification of filtered back-projection reconstruction is subsequently implemented by considering a straight acoustic rays model for ultrasound propagation. The results obtainedmore » with this reconstruction procedure are compared numerically and experimentally to those obtained assuming a heuristically fitted uniform speed of sound in both full-view and limited-view optoacoustic tomography scenarios. Results: The theoretical analysis showcases that the errors in the time-of-flight of the signals predicted by considering the straight acoustic rays model tend to be generally small. When using this model for reconstructing simulated data, the resulting images accurately represent the theoretical ones. On the other hand, significant deviations in the location of the absorbing structures are found when using a uniform speed of sound assumption. The experimental results obtained with tissue-mimicking phantoms and a mouse postmortem are found to be consistent with the numerical simulations. Conclusions: Accurate analysis of effects of small speed of sound variations demonstrates that accounting for differences in the speed of sound allows improving optoacoustic reconstruction results in realistic imaging scenarios involving acoustic heterogeneities in tissues and surrounding media.« less

  11. Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology

    NASA Astrophysics Data System (ADS)

    Harms, F.; Dalimier, E.; Vermeulen, P.; Fragola, A.; Boccara, A. C.

    2012-03-01

    Optical Coherence Tomography (OCT) is an efficient technique for in-depth optical biopsy of biological tissues, relying on interferometric selection of ballistic photons. Full-Field Optical Coherence Tomography (FF-OCT) is an alternative approach to Fourier-domain OCT (spectral or swept-source), allowing parallel acquisition of en-face optical sections. Using medium numerical aperture objective, it is possible to reach an isotropic resolution of about 1x1x1 ìm. After stitching a grid of acquired images, FF-OCT gives access to the architecture of the tissue, for both macroscopic and microscopic structures, in a non-invasive process, which makes the technique particularly suitable for applications in pathology. Here we report a multimodal approach to FF-OCT, combining two Full-Field techniques for collecting a backscattered endogeneous OCT image and a fluorescence exogeneous image in parallel. Considering pathological diagnosis of cancer, visualization of cell nuclei is of paramount importance. OCT images, even for the highest resolution, usually fail to identify individual nuclei due to the nature of the optical contrast used. We have built a multimodal optical microscope based on the combination of FF-OCT and Structured Illumination Microscopy (SIM). We used x30 immersion objectives, with a numerical aperture of 1.05, allowing for sub-micron transverse resolution. Fluorescent staining of nuclei was obtained using specific fluorescent dyes such as acridine orange. We present multimodal images of healthy and pathological skin tissue at various scales. This instrumental development paves the way for improvements of standard pathology procedures, as a faster, non sacrificial, operator independent digital optical method compared to frozen sections.

  12. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept design update

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Aloezos, Steve; Bly, Vincent T.; Collins, Christine; Crooke, Julie; Dressing, Courtney D.; Fantano, Lou; Feinberg, Lee D.; France, Kevin; Gochar, Gene; Gong, Qian; Hylan, Jason E.; Jones, Andrew; Linares, Irving; Postman, Marc; Pueyo, Laurent; Roberge, Aki; Sacks, Lia; Tompkins, Steven; West, Garrett

    2017-09-01

    In preparation for the 2020 Astrophysics Decadal Survey, NASA has commissioned the study of four large mission concepts, including the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. The LUVOIR Science and Technology Definition Team (STDT) has identified a broad range of science objectives including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. NASA's Goddard Space Flight Center (GSFC) is providing the design and engineering support to develop executable and feasible mission concepts that are capable of the identified science objectives. We present an update on the first of two architectures being studied: a 15- meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100 nm to 2.5 μm. Four instruments are being developed for this architecture: an optical / near-infrared coronagraph capable of 10-10 contrast at inner working angles as small as 2 λ/D the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100 - 400 nm) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-IR imager; and a UV spectro-polarimeter being contributed by Centre National d'Etudes Spatiales (CNES). A fifth instrument, a multi-resolution optical-NIR spectrograph, is planned as part of a second architecture to be studied in late 2017.

  13. Extended Galactic emission at l=312°: a comparison of mid-infrared and radio continuum (843 MHz) images

    NASA Astrophysics Data System (ADS)

    Cohen, Martin; Green, Anne J.

    2001-08-01

    We report on the comparison of images of a region of the Galactic plane (centred on l=312°) as seen by the Midcourse Space Experiment (MSX) at 8.3μm and by the Molonglo Observatory Synthesis Telescope (MOST) at 843MHz in the radio continuum. We note that the survey from each telescope is without peer and occupies a niche in panoramic coverage with high spatial resolution. Using independent classification of sources in the selected region, a detailed comparison of the two surveys was made. The aim of the project was to seek global characteristics for different types of source, with a view to establishing predictive criteria for identification and hence emission mechanisms. Several strong trends were found. There is a complete absence in this field of any detected MSX counterparts to non-thermal radio sources. Almost every Hii region in the radio image has its MSX counterpart, in the form of a polycyclic aromatic hydrocarbon halo in the neutral zone surrounding the ionized gas. Both surveys show large-scale `braided' filamentary structures, extending over 1°, which appear to be produced by thermal processes. These filaments may be structures in the warm ionized phase of the interstellar medium or extended haloes around Hii regions. The comparisons in this paper were made using both preliminary MSX 8.3-μm results with 46-arcsec resolution and final MSX images with the intrinsic 20-arcsec resolution of the instruments.

  14. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc)more » across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.« less

  15. Localization of skeletal and aortic landmarks in trauma CT data based on the discriminative generalized Hough transform

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Hansis, Eberhard; Weese, Jürgen; Carolus, Heike

    2016-03-01

    Computed tomography is the modality of choice for poly-trauma patients to assess rapidly skeletal and vascular integrity of the whole body. Often several scans with and without contrast medium or with different spatial resolution are acquired. Efficient reading of the resulting extensive set of image data is vital, since it is often time critical to initiate the necessary therapeutic actions. A set of automatically found landmarks can facilitate navigation in the data and enables anatomy oriented viewing. Following this intention, we selected a comprehensive set of 17 skeletal and 5 aortic landmarks. Landmark localization models for the Discriminative Generalized Hough Transform (DGHT) were automatically created based on a set of about 20 training images with ground truth landmark positions. A hierarchical setup with 4 resolution levels was used. Localization results were evaluated on a separate test set, consisting of 50 to 128 images (depending on the landmark) with available ground truth landmark locations. The image data covers a large amount of variability caused by differences of field-of-view, resolution, contrast agent, patient gender and pathologies. The median localization error for the set of aortic landmarks was 14.4 mm and for the set of skeleton landmarks 5.5 mm. Median localization errors for individual landmarks ranged from 3.0 mm to 31.0 mm. The runtime performance for the whole landmark set is about 5s on a typical PC.

  16. Digital photography for the light microscope: results with a gated, video-rate CCD camera and NIH-image software.

    PubMed

    Shaw, S L; Salmon, E D; Quatrano, R S

    1995-12-01

    In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.

  17. Characteristics of medium- and large-scale TIDs over Japan derived from OI 630-nm nightglow observation

    NASA Astrophysics Data System (ADS)

    Kubota, M.; Fukunishi, H.; Okano, S.

    2001-07-01

    A new optical instrument for studying upper atmospheric dynamics, called the Multicolor All-sky Imaging System (MAIS), has been developed. The MAIS can obtain all-sky images of airglow emission at two different wavelengths simultaneously with a time resolution of several minutes. Since December 1991, imaging observations with the MAIS have been conducted at the Zao observatory (38.09°N, 140.56°E). From these observations, two interesting events with wave structures have been detected in OI 630-nm nightglow images. The first event was observed on the night of June 2/3, 1992 during a geomagnetically quiet period. Simultaneous data of ionospheric parameters showed that they are caused by propagation of the medium-scale traveling ionospheric disturbance (TID). Phase velocity and horizontal wavelength determined from the image data are 45-100 m/s and ~280 km, and the propagation direction is south-westward. The second event was observed on the night of February 27/28, 1992 during a geomagnetic storm. It is found that a large enhancement of OI 630-nm emission is caused by a propagation of the large-scale TID. Meridional components of phase velocities and wavelengths determined from ionospheric data are 305-695 m/s (southward) and 930-5250 km. The source of this large-scale TID appears to be auroral processes at high latitudes.

  18. Improved Resolution and Reduced Clutter in Ultra-Wideband Microwave Imaging Using Cross-Correlated Back Projection: Experimental and Numerical Results

    PubMed Central

    Jacobsen, S.; Birkelund, Y.

    2010-01-01

    Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved by some selected focusing technique. Image formation algorithms are tailored to enhance tumor responses and reduce early-time and late-time clutter associated with skin reflections and heterogeneity of breast tissue. In this contribution, we evaluate the performance of the so-called cross-correlated back projection imaging scheme by using a scanning system in phantom experiments. Supplementary numerical modeling based on commercial software is also presented. The phantom is synthetically scanned with a broadband elliptical antenna in a mono-static configuration. The respective signals are pre-processed by a data-adaptive RLS algorithm in order to remove artifacts caused by antenna reverberations and signal clutter. Successful detection of a 7 mm diameter cylindrical tumor immersed in a low permittivity medium was achieved in all cases. Selecting the widely used delay-and-sum (DAS) beamforming algorithm as a benchmark, we show that correlation based imaging methods improve the signal-to-clutter ratio by at least 10 dB and improves spatial resolution through a reduction of the imaged peak full-width half maximum (FWHM) of about 40–50%. PMID:21331362

  19. Improved resolution and reduced clutter in ultra-wideband microwave imaging using cross-correlated back projection: experimental and numerical results.

    PubMed

    Jacobsen, S; Birkelund, Y

    2010-01-01

    Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved by some selected focusing technique. Image formation algorithms are tailored to enhance tumor responses and reduce early-time and late-time clutter associated with skin reflections and heterogeneity of breast tissue. In this contribution, we evaluate the performance of the so-called cross-correlated back projection imaging scheme by using a scanning system in phantom experiments. Supplementary numerical modeling based on commercial software is also presented. The phantom is synthetically scanned with a broadband elliptical antenna in a mono-static configuration. The respective signals are pre-processed by a data-adaptive RLS algorithm in order to remove artifacts caused by antenna reverberations and signal clutter. Successful detection of a 7 mm diameter cylindrical tumor immersed in a low permittivity medium was achieved in all cases. Selecting the widely used delay-and-sum (DAS) beamforming algorithm as a benchmark, we show that correlation based imaging methods improve the signal-to-clutter ratio by at least 10 dB and improves spatial resolution through a reduction of the imaged peak full-width half maximum (FWHM) of about 40-50%.

  20. Algorithm and Application of Gcp-Independent Block Adjustment for Super Large-Scale Domestic High Resolution Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Sun, Y. S.; Zhang, L.; Xu, B.; Zhang, Y.

    2018-04-01

    The accurate positioning of optical satellite image without control is the precondition for remote sensing application and small/medium scale mapping in large abroad areas or with large-scale images. In this paper, aiming at the geometric features of optical satellite image, based on a widely used optimization method of constraint problem which is called Alternating Direction Method of Multipliers (ADMM) and RFM least-squares block adjustment, we propose a GCP independent block adjustment method for the large-scale domestic high resolution optical satellite image - GISIBA (GCP-Independent Satellite Imagery Block Adjustment), which is easy to parallelize and highly efficient. In this method, the virtual "average" control points are built to solve the rank defect problem and qualitative and quantitative analysis in block adjustment without control. The test results prove that the horizontal and vertical accuracy of multi-covered and multi-temporal satellite images are better than 10 m and 6 m. Meanwhile the mosaic problem of the adjacent areas in large area DOM production can be solved if the public geographic information data is introduced as horizontal and vertical constraints in the block adjustment process. Finally, through the experiments by using GF-1 and ZY-3 satellite images over several typical test areas, the reliability, accuracy and performance of our developed procedure will be presented and studied in this paper.

  1. Photography in Dermatologic Surgery: Selection of an Appropriate Camera Type for a Particular Clinical Application.

    PubMed

    Chen, Brian R; Poon, Emily; Alam, Murad

    2017-08-01

    Photographs are an essential tool for the documentation and sharing of findings in dermatologic surgery, and various camera types are available. To evaluate the currently available camera types in view of the special functional needs of procedural dermatologists. Mobile phone, point and shoot, digital single-lens reflex (DSLR), digital medium format, and 3-dimensional cameras were compared in terms of their usefulness for dermatologic surgeons. For each camera type, the image quality, as well as the other practical benefits and limitations, were evaluated with reference to a set of ideal camera characteristics. Based on these assessments, recommendations were made regarding the specific clinical circumstances in which each camera type would likely be most useful. Mobile photography may be adequate when ease of use, availability, and accessibility are prioritized. Point and shoot cameras and DSLR cameras provide sufficient resolution for a range of clinical circumstances, while providing the added benefit of portability. Digital medium format cameras offer the highest image quality, with accurate color rendition and greater color depth. Three-dimensional imaging may be optimal for the definition of skin contour. The selection of an optimal camera depends on the context in which it will be used.

  2. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  3. Laser speckle imaging based on photothermally driven convection.

    PubMed

    Regan, Caitlin; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications.

  4. SN 1987A after 18 Years: Mid-Infrared GEMINI and SPITZER Observations of the Remnant

    NASA Technical Reports Server (NTRS)

    Bouchet, Patrice; Dwek, Eli; Danziger, John; Arendt, Richard G.; DeBuizer, James M.; Park, Sangwook; Suntzeff, Nicholas B.; Kirshner, Robert P.; Challis, Peter

    2007-01-01

    We present high resolution 11.7 and 18.3 micron mid-IR images of SN 1987A obtained on day 6526 since the explosion with the Thermal-Region Camera and Spectrograph (T-ReCS) attached to the Gemini South 8m telescope. The 11.7 micron flux has increased significantly since our last observations on day 6067. The images clearly show that all the emission arises from the equatorial ring (ER). Nearly contemporaneous spectra obtained on day 6184 with the MIPS at 24 micron, on day 6130 with the IRAC in 3.6- 8 micron region, and on day 6190 with the IRS in the 12-37 micron instruments on board the Spitzer Space Telescope's show that the emission consists of thermal emission from silicate dust that condensed out in the red giant wind of the progenitor star. The dust temperature is 1662(sup +18) (sub -12) K, and the emitting dust mass is (2.6(sup +2.0 (sub -1.4)) x 10 (exp -6) M(solar). Lines of [Ne II] 12.82 micron and [Ne III] 15.56 pm are clearly present in the Spitzer spectrum, as well as a weak [Si II] 3 34.8 micron line. We also detect two lines near 26 micron which we tentatively ascribe to [Fe II] 25.99 pm and [0 IV] 25.91 micron. Comparison of the mid-IR Gemini 11.7 micron image with X-ray images obtained by Chandra, UV-optical images obtained by HST, and radio synchrotron images obtained by the ATCA show generally good correlation of the images across all wavelengths. Because of the limited resolution of the mid-IR images we cannot uniquely determine the location. or heating mechanism of the dust giving rise to the emission. The dust could be collisionally heated by the X-ray emitting plasma, providing a unique diagnostic of plasma conditions. Alternatively, the dust could be radiatively heated in the dense UV-optical knots that are overrun by the advancing supernova blast wave. In either case the dust-to-gas mass ratio in the circumstellar medium around the supernova is significantly lower than that in the general interstellar medium of the LMC, suggesting either a low condensation efficiency in the wind of the progenitor star, or the efficient destruction of the dust by the SN blast wave. Overall, we are witnessing the interaction of the SN blast wave with its surrounding medium, creating an environment that is rapidly evolving at all wavelengths. Continuous multiwavelength observations of SN 1987A such as these provide unique snapshots of the very early evolution of supernova remnants.

  5. Targeting Cancer Protein Profiles with Split-Enzyme Reporter Fragments to Achieve Chemical Resolution for Molecular Imaging

    DTIC Science & Technology

    2014-11-01

    near-infrared fluorophore, Cy5.5, linked with up to three units of amino-ethoxy-ethoxy- acid (AEEA) at the N-terminal amine of the peptide. Table 1...RPMI or Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco), respectively, and supplemented with 10% FBS and 1% penicillin–streptomycin. The cells were...peptide, compound 6, using the amino acid residues of the parent peptide (compound 5) in random order. Compound 2 targeted the tumor efficiently

  6. A Cross-Dispersed Medium-Resolution Spectrograph for Appalachian State Univeristy's 32-inch Telescope

    NASA Astrophysics Data System (ADS)

    Kluttz, K. A.; Gray, R. O.

    2003-12-01

    We have designed and constructed an economical medium-resolution spectrograph to be used on the 32-inch telescope of Appalachian State University's Dark Sky Observatory (DSO). The primary function of this instrument will be to study shell and emission-line stars. However, we will also use this instrument for chemical abundance studies and radial velocities. The basic design is that of an Ebert spectrograph with a single 6-inch mirror acting as both the collimator and camera. The primary dispersion is accomplished by a reflection grating, and order separation is accomplished by a grism. The spectrograph has been designed so that three wavelength regions are simultaneously imaged on the CCD camera. When the Hα line is centered in the third order, Hβ and lines of Fe II multiplet 42 -- often enhanced in shell and emission-line stars -- appear in the fourth order and the fifth order contains both the Ca II K & H lines. To facilitate abundance measurements, a telluric-free region near 6400Å is available in the third order by tilting the main diffraction grating. Preliminary tests have shown that the resolution of the new spectrograph is 0.42Å in the third order (R ≈ 15,000). This relatively high resolution will allow studies to be conducted at DSO which have not previously been possible with the instrumentation currently in use. Several optical components for this spectrograph were purchased with grants from the Fund for Astrophysical Research and the University Research Council.

  7. VLA observations of the supernova remnant Puppus A at 327 and 1515 MHz

    NASA Technical Reports Server (NTRS)

    Dubner, G. M.; Braun, R.; Winkler, P. F.; Goss, W. M.

    1991-01-01

    Very Large Array radio images of Puppis A at 327 and 1515 MHz are presented. The observations were performed with the VLA in the C/D and B/C configurations, respectively. The angular resolution is about 77 arcsec x 43 arcsec. The observed radio shell shows signs of interaction between the expanding shock front and the inhomogeneous surrounding medium. An excellent correlation is found between radio and X-ray emission, mainly toward the NE border of the remnant. There is little correspondence between the optical and radio images, suggesting a different origin for the emission. A region of steeper radio spectral index is associated with the highly decelerated eastern periphery.

  8. Influence of the active nucleus on the multiphase interstellar medium in NGC 1068

    NASA Technical Reports Server (NTRS)

    Bland-Hawthorn, Jonathan; Weisheit, Jon; Cecil, Gerald; Sokolowski, James

    1993-01-01

    The luminous spiral NGC 1068 has now been imaged from x-ray to radio wavelengths at comparably high resolution (approximately less than 5 in. FWHM). The bolometric luminosity of this well-known Seyfert is shared almost equally between the active nucleus and an extended 'starburst' disk. In an ongoing study, we are investigating the relative importance of the nucleus and the disk in powering the wide range of energetic activity observed throughout the galaxy. Our detailed analysis brings together a wealth of data: ROSAT HRI observations, VLA lambda lambda 6-20 cu cm and OVRO interferometry, lambda lambda 0.4-10.8 micron imaging, and Fabry-Perot spectrophotometry.

  9. Assessment of a liquid lens enabled in vivo optical coherence microscope.

    PubMed

    Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P

    2010-06-01

    The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.

  10. NEW CONSTRAINTS ON THE ABUNDANCES OF SILICATE AND OXIDE STARDUST FROM SUPERNOVAE IN THE ACFER 094 METEORITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Peter; Leitner, Jan; Kodolányi, János, E-mail: peter.hoppe@mpic.de

    2015-07-20

    We studied about 5000 μm{sup 2} of fine-grained matrix material in the Acfer 094 meteorite by high-resolution (nominal 50 nm) NanoSIMS ion imaging for the presence of O-rich presolar (stardust) grains. This approach permits identifying presolar grains down to <100 nm in size, compared to >150 nm in lower-resolution (nominal 100 nm) ion imaging surveys. The number density of identified presolar grains is a about a factor of two to three higher than what was found by lower-resolution ion imaging studies. The abundances of grains of O isotope Group 3 and 4 are higher than previously found. None of themore » presolar grains shows the strong enrichments in {sup 16}O expected from model predictions for the majority of supernova (SN) grains. Other potential O-rich SN grains, the Group 4 and some of the Group 3 grains, make up 33% by number and 19% by mass. This is clearly higher than the ∼10% (by number) inferred before and the 5% (by mass) estimated by a model for stellar dust in the interstellar medium. Our work shows that O-rich SN grains might be more abundant among the population of presolar grains in primitive solar system materials than currently thought, even without the {sup 16}O-rich grains as predominantly expected from SN models.« less

  11. Imaging Performance of Quantitative Transmission Ultrasound

    PubMed Central

    Lenox, Mark W.; Wiskin, James; Lewis, Matthew A.; Darrouzet, Stephen; Borup, David; Hsieh, Scott

    2015-01-01

    Quantitative Transmission Ultrasound (QTUS) is a tomographic transmission ultrasound modality that is capable of generating 3D speed-of-sound maps of objects in the field of view. It performs this measurement by propagating a plane wave through the medium from a transmitter on one side of a water tank to a high resolution receiver on the opposite side. This information is then used via inverse scattering to compute a speed map. In addition, the presence of reflection transducers allows the creation of a high resolution, spatially compounded reflection map that is natively coregistered to the speed map. A prototype QTUS system was evaluated for measurement and geometric accuracy as well as for the ability to correctly determine speed of sound. PMID:26604918

  12. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors.

    PubMed

    Russ, M; Shankar, A; Setlur Nagesh, S V; Ionita, C N; Bednarek, D R; Rudin, S

    2017-02-11

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  13. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  14. Photometric study of the Moon with SMART-1/AMIE

    NASA Astrophysics Data System (ADS)

    Naranen, Jyri; Parviainen, Hannu; Muinonen, Karri; Josset, Jean-Luc; Beauvivre, Stephane; Koschny, Detlef; Foing, Bernard H.; Krieger, Bjoern; Amie Team

    The Advanced Moon micro-Imager Experiment (AMIE) onboard the ESA SMART-1 lunar mission performed imaging of the Moon between November 2004 and September 2006, when the mission was ended by crashing the spacecraft into the lunar surface. AMIE was a 1024X1024 pixel miniaturized CCD camera with three colour filters and a panchromatic channel (clear filter). The images are of medium-to-high resolution, e.g. at 300 km pericenter altitude the resolution was 27 m/pix. We selected four different regions on the lunar surface imaged by AMIE for the photometric investigation reported here. These regions were selected so that as large phase angle coverage as possible was available, including the opposition geometry. Each of the regions cover a few hundred square kilometers of the lunar surface and were imaged by AMIE several tens of times. The regions examined include, e.g., Reiner gamma and Oceanus Procellarum near the crater Mairan. We utilized the latest in-flight calibration data available and we also georetrified the images to account for the aspect distortions. For the study reported here, the panchromatic filter was chosen since it is the best calibrated channel at the moment. The data was analyzed by implementing a numerical light scattering model with which we have inverted the regolith porosity and macroscopic surface roughness properties for the target areas. The model computes the bidirectional reflectance function using the geometric-optics approximation from a particulate medium constrained by a self-affine fractal random fields mimicking the regolith-covered lunar surface. Fractal description of the surface roughness is used, since it gives a more realistic way to model the true macroscopic surface roughness than the often used Gaussian correlation-model. Unlike in the previous studies, the azimuthal shadowing effects are taken into account, allowing for a more reliable inversion of surface statistics from images with large phase angles. In addition, we have fitted an empirical photometric function to the data which can be used to perform photometric correction to the images in, e.g., image mosaicking. A comparison with the results from the relevant previous photometric studies of the Moon is given. We end by presenting plans for future studies, especially the possible multi-colour photometry.

  15. Photoacoustics with coherent light

    PubMed Central

    Bossy, Emmanuel; Gigan, Sylvain

    2016-01-01

    Since its introduction in the mid-nineties, photoacoustic imaging of biological tissue has been one of the fastest growing biomedical imaging modality, and its basic principles are now considered as well established. In particular, light propagation in photoacoustic imaging is generally considered from the perspective of transport theory. However, recent breakthroughs in optics have shown that coherent light propagating through optically scattering medium could be manipulated towards novel imaging approaches. In this article, we first provide an introduction to the relevant concepts in the field, and then review the recent works showing that it is possible to exploit the coherence of light in conjunction with photoacoustics. We illustrate how the photoacoustic effect can be used as a powerful feedback mechanism for optical wavefront shaping in complex media, and conversely show how the coherence of light can be exploited to enhance photoacoustic imaging, for instance in terms of spatial resolution or for designing minimally invasive endoscopic devices. Finally, we discuss the current challenges and perspectives down the road towards practical applications in the field of photoacoustic imaging. PMID:27069874

  16. Experimental study of a DMD based compressive line sensing imaging system in the turbulence environment

    NASA Astrophysics Data System (ADS)

    Ouyang, Bing; Hou, Weilin; Gong, Cuiling; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.

    2016-05-01

    The Compressive Line Sensing (CLS) active imaging system has been demonstrated to be effective in scattering mediums, such as turbid coastal water through simulations and test tank experiments. Since turbulence is encountered in many atmospheric and underwater surveillance applications, a new CLS imaging prototype was developed to investigate the effectiveness of the CLS concept in a turbulence environment. Compared with earlier optical bench top prototype, the new system is significantly more robust and compact. A series of experiments were conducted at the Naval Research Lab's optical turbulence test facility with the imaging path subjected to various turbulence intensities. In addition to validating the system design, we obtained some unexpected exciting results - in the strong turbulence environment, the time-averaged measurements using the new CLS imaging prototype improved both SNR and resolution of the reconstructed images. We will discuss the implications of the new findings, the challenges of acquiring data through strong turbulence environment, and future enhancements.

  17. SIMBIO-SYS for BepiColombo: status and issues.

    NASA Astrophysics Data System (ADS)

    Flamini, E.; Capaccioni, F.; Cremonese, G.; Palumbo, P.; Formaro, R.; Mugnuolo, R.; Debei, S.; Ficai Veltroni, I.; Dami, M.; Tommasi, L.; SIMBIO-SYS Team

    The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon+ science program. The BepiColombo mission is compose by two scientific satellites on, Mercury Magnetic Orbiter-MMO, realized by the Japanese Space Agency JAXA, devoted to the study of the planet environment and the other, the Mercury Planetary Orbiter realized by ESA, devoted to the detailed study of the Hermean surface and interior. The SIMBIOSYS instrument will provide all the science imaging capability of the Bepicolombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with broad spectral band in the 400-950 nm range and medium spatial resolution (up to 50 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (up to 5 m/px), that will provide high resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (up to 6 nm) in the 400-2000 nm range and spatial resolution up to 100 m/px, it will provide the global covergae at 400 m/px with the spectral information. SIMBIO-SYS will provide unprecedented high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition in wide spectral range, at resolutions and coverage higher than the MESSENGER mission with a full co-alignememt of the three channels. The main scientific objectives can be summarized as follows: Definition of the impact flux in the inner Solar System: based on the impact crater population records Understanding of the accretional model of an end member of the Solar System: based on the type and distribution of mineral species Reconstruction of the surface geology and stratigraphic history: based on the combination of stereo and high- resolution imaging along with compositional information coming from the spectrometer Relative surface age by impact craters population density and distribution: based on the global imaging including the high-resolution mode Surface degradation processes and global resurfacing: derived from the erosional status of the impact crater and ejecta Identification of volcanic landforms and style: using the morphological and compositional information Crustal dynamics and mechanical properties of the lithosphere: based on the identification and classification of tectonic structures from visible images and detailed DTM Surface composition and crustal differentiation: based on the identification and distribution of mineral species as seen by the NIR hyperspectral imager Soil maturity and alteration processes: based on the measure of the spectral slope derived by the hyperspectral imager and the colour capabilities of the stereo camera Determination of moment of inertia of the planet: the high-resolution imaging channel as landmark pairs of surface features that can be observed on the periside as support for the libration experiment Surface-Atmosphere interaction processes and origin of the exosphere: knowledge of the surface composition is also crucial to unambiguously identify the source minerals for each of the constituents of the Mercury.s exosphere The instrument has been realized by Selex-ES under the contract and management of the Italian Space Agency (ASI) that have signed an MoU with CNES for the development of VIHI Proximity Electronics, the Main Electronics, and the instrument final calibration . All the realization and calibration has been carried on under the scientific supervision of the SIMBIO-SYS science team SIMBIOSYS has been delivered to ESA on April 2015 for the final integration on the BepiColombo MPO spacecraft.

  18. Magnetoacoustic Tomography with Magnetic Induction: Bioimepedance reconstruction through vector source imaging

    PubMed Central

    Mariappan, Leo; He, Bin

    2013-01-01

    Magneto acoustic tomography with magnetic induction (MAT-MI) is a technique proposed to reconstruct the conductivity distribution in biological tissue at ultrasound imaging resolution. A magnetic pulse is used to generate eddy currents in the object, which in the presence of a static magnetic field induces Lorentz force based acoustic waves in the medium. This time resolved acoustic waves are collected with ultrasound transducers and, in the present work, these are used to reconstruct the current source which gives rise to the MAT-MI acoustic signal using vector imaging point spread functions. The reconstructed source is then used to estimate the conductivity distribution of the object. Computer simulations and phantom experiments are performed to demonstrate conductivity reconstruction through vector source imaging in a circular scanning geometry with a limited bandwidth finite size piston transducer. The results demonstrate that the MAT-MI approach is capable of conductivity reconstruction in a physical setting. PMID:23322761

  19. Woods Hole Image Processing System Software implementation; using NetCDF as a software interface for image processing

    USGS Publications Warehouse

    Paskevich, Valerie F.

    1992-01-01

    The Branch of Atlantic Marine Geology has been involved in the collection, processing and digital mosaicking of high, medium and low-resolution side-scan sonar data during the past 6 years. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. With the need to process sidescan data in the field with increased power and reduced cost of major workstations, a need to have an image processing package on a UNIX based computer system which could be utilized in the field as well as be more generally available to Branch personnel was identified. This report describes the initial development of that package referred to as the Woods Hole Image Processing System (WHIPS). The software was developed using the Unidata NetCDF software interface to allow data to be more readily portable between different computer operating systems.

  20. The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design

    NASA Astrophysics Data System (ADS)

    France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason

    2017-08-01

    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2 arcminute field-of-view) that will employ a complement of narrow- and medium-band filters. The instrument definition, design, and development are being carried out by an instrument study team led by the University of Colorado, Goddard Space Flight Center, and the LUVOIR Science and Technology Definition Team. LUMOS has recently completed a preliminary design in Goddard's Instrument Design Laboratory and is being incorporated into the working LUVOIR mission concept. In this proceeding, we describe the instrument requirements for LUMOS, the instrument design, and technology development recommendations to support the hardware required for LUMOS. We present an overview of LUMOS' observing modes and estimated performance curves for effective area, spectral resolution, and imaging performance. Example "LUMOS 100-hour Highlights" observing programs are presented to demonstrate the potential power of LUVOIR's ultraviolet spectroscopic capabilities.

  1. Los Alamos Fires From Landsat 7

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 9, 2000, the Landsat 7 satellite acquired an image of the area around Los Alamos, New Mexico. The Landsat 7 satellite acquired this image from 427 miles in space through its sensor called the Enhanced Thematic Mapper Plus (ETM+). Evident within the imagery is a view of the ongoing Cerro Grande fire near the town of Los Alamos and the Los Alamos National Laboratory. Combining the high-resolution (30 meters per pixel in this scene) imaging capacity of ETM+ with its multi-spectral capabilities allows scientists to penetrate the smoke plume and see the structure of the fire on the surface. Notice the high-level of detail in the infrared image (bottom), in which burn scars are clearly distinguished from the hotter smoldering and flaming parts of the fire. Within this image pair several features are clearly visible, including the Cerro Grande fire and smoke plume, the town of Los Alamos, the Los Alamos National Laboratory and associated property, and Cerro Grande peak. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false color image where vegetation appears as bright to dark green (bottom image). Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. The areas recently burned appear black. Dark red to bright red patches, or linear features within the burned area, are the hottest and possibly actively burning areas of the fire. The fire is spreading downslope and the front of the fire is readily detectable about 2 kilometers to the west and south of Los Alamos. Combining ETM+ channels 3, 2, and 1 provides a true-color image of the greater Los Alamos region (top image). Vegetation is generally dark to medium green. Forested areas are very dark green while herbaceous vegetation is medium green. Rangeland or more open areas appear as tan or light brown. Areas with extensive pavement or urban development appear white to light green. Less densely-developed residential areas appear medium green and golf courses are medium green. The fires and areas recently burned are obscured by smoke plumes which are white to light blue. Landsat 7 data are archived and available from EDC. Image by Rob Simmon, Earth Observatory, NASA Goddard Space Flight Center. Data courtesy Randy McKinley, EROS Data Center (EDC)

  2. Rabi cropped area forecasting of parts of Banaskatha District,Gujarat using MRS RISAT-1 SAR data

    NASA Astrophysics Data System (ADS)

    Parekh, R. A.; Mehta, R. L.; Vyas, A.

    2016-10-01

    Radar sensors can be used for large-scale vegetation mapping and monitoring using backscatter coefficients in different polarisations and wavelength bands. Due to cloud and haze interference, optical images are not always available at all phonological stages important for crop discrimination. Moreover, in cloud prone areas, exclusively SAR approach would provide operational solution. This paper presents the results of classifying the cropped and non cropped areas using multi-temporal SAR images. Dual polarised C- band RISAT MRS (Medium Resolution ScanSAR mode) data were acquired on 9thDec. 2012, 28thJan. 2013 and 22nd Feb. 2013 at 18m spatial resolution. Intensity images of two polarisations (HH, HV) were extracted and converted into backscattering coefficient images. Cross polarisation ratio (CPR) images and Radar fractional vegetation density index (RFDI) were created from the temporal data and integrated with the multi-temporal images. Signatures of cropped and un-cropped areas were used for maximum likelihood supervised classification. Separability in cropped and umcropped classes using different polarisation combinations and classification accuracy analysis was carried out. FCC (False Color Composite) prepared using best three SAR polarisations in the data set was compared with LISS-III (Linear Imaging Self-Scanning System-III) image. The acreage under rabi crops was estimated. The methodology developed was for rabi cropped area, due to availability of SAR data of rabi season. Though, the approach is more relevant for acreage estimation of kharif crops when frequent cloud cover condition prevails during monsoon season and optical sensors fail to deliver good quality images.

  3. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    NASA Astrophysics Data System (ADS)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the information derived from image classification. The research will be applied to the Kuwait's southern coral reefs: Kubbar and Um Al-Maradim.

  4. Compensated individually addressable array technology for human breast imaging

    DOEpatents

    Lewis, D. Kent

    2003-01-01

    A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.

  5. In situ and ex situ low-field NMR spectroscopy and MRI endowed by SABRE hyperpolarization.

    PubMed

    Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Shchepin, Roman V; Truong, Milton L; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y

    2014-12-15

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 10(5)-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), a new-generation of 3D spectro-imager dedicated to night astronomy

    NASA Astrophysics Data System (ADS)

    Sayède, Frédéric; Puech, Mathieu; Mein, Pierre; Bonifacio, Piercarlo; Malherbe, Jean-Marie; Galicher, Raphaël.; Amans, Jean-Philippe; Fasola, Gilles

    2014-07-01

    Multichannel Subtractive Double Pass (MSDP) spectrographs have been widely used in solar spectroscopy because of their ability to provide an excellent compromise between field of view and spatial and spectral resolutions. Compared with other types of spectrographs, MSDP can deliver simultaneous monochromatic images at higher spatial and spectral resolutions without any time-scanning requirement (as with Fabry-Perot spectrographs), and with limited loss of flux. These performances are obtained thanks to a double pass through the dispersive element. Recent advances with VPH (Volume phase holographic) Grisms as well as with image slicers now make MSDP potentially sensitive to much smaller fluxes. We present S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), which is a new concept for extending MSDP to night-time astronomy. It is based on new generation reflecting plane image slicers working with large apertures specific to night-time telescopes. The resulting design could be potentially very attractive and innovative for different domains of astronomy, e.g., the simultaneous spatial mapping of accurately flux-calibrated emission lines between OH sky lines in extragalactic astronomy or the simultaneous imaging of stars, exoplanets and interstellar medium. We present different possible MSDP/S4EI configurations for these science cases and expected performances on telescopes such as the VLT.

  7. Alba Patera

    NASA Image and Video Library

    1998-06-08

    A color image of the Alba Patera region of Mars; north toward top. The scene shows a central circular depression surrounded by splays of fractures, named Alba Fossae (west of Alba Patera) and Tantalus Fossae (east of Alba Patera). A patera (Latin for shallow dish or saucer) is a volcano of broad areal extent with little vertical relief; a fossa is a linear depression. This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 30 degrees N. to 50 degrees N. and from longitude 95 degrees to 125 degrees; Lambert projection. Alba Patera has a 100-km-diameter caldera at its center surrounded by a fracture ring. In total, the approximately 1,200- km-diameter Alba Patera far exceeds any other known volcano in areal extent; it covers eight times the area of Olympus Mons (the highest volcano in the Solar System) but reaches only about 6 km in height. The patera lies directly north of the Tharsis bulge, which encompasses the most intensely and most recently active volcanic region of the planet. The fossae of the Alba area are fault-bound graben that can be traced south through the Tharsis bulge and therefore likely formed by upwarping of the Tharsis bulge as well as the coeval upwelling of Alba Pateria magma. http://photojournal.jpl.nasa.gov/catalog/PIA00409

  8. Regional forest land cover characterisation using medium spatial resolution satellite data

    USGS Publications Warehouse

    Huang, Chengquan; Homer, Collin G.; Yang, Limin; Wulder, Michael A.; Franklin, Steven E.

    2003-01-01

    Increasing demands on forest resources require comprehensive, consistent and up-to-date information on those resources at spatial scales appropriate for management decision-making and for scientific analysis. While such information can be derived using coarse spatial resolution satellite data (e.g. Tucker et al. 1984; Zhu and Evans 1994; Cihlar et al. 1996; Cihlar et al., Chapter 12), many regional applications require more spatial and thematic details than can be derived by using coarse resolution imagery. High spatial resolution satellite data such as IKONOS and Quick Bird images (Aplin et al. 1997), though usable for deriving detailed forest information (Culvenor, Chapter 9), are currently not feasible for wall-to-wall regional applications because of extremely high data cost, huge data volume, and lack of contiguous coverage over large areas. Forest studies over large areas have often been accomplished using data acquired by intermediate spatial resolution sensor systems, including the Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+) of Landsat, the High Resolution Visible (HRV) of the Systeme Pour l'Observation de la Terre (SPOT), and the Linear Image Self-Scanner (LISS) of the Indian Remote Sensing satellite. These sensor systems are more appropriate for regional applications because they can routinely produce spatially contiguous data over large areas at relatively low cost, and can be used to derive a host of forest attributes (e.g. Cohen et al. 1995; Kimes et al. 1999; Cohen et al. 2001; Huang et al. 2001; Sugumaran 2001). Of the above intermediate spatial resolution satellites, Landsat is perhaps the most widely used in various types of land remote sensing applications, in part because it has provided more extensive spatial and temporal coverage of the globe than any other intermediate resolution satellite. Spatially contiguous Landsat data have been developed for many regions of the globe (e.g. Lunetta and Sturdevant 1993; Fuller et al. 1994b; Skole et al. 1997), and a circa 1990 Landsat image data set covering the entire land area of the globe has also been developed recently (Jones and Smith 2001). An acquisition strategy aimed at acquiring at least one cloud free image per year for the entire land area of the globe has been initiated for Landsat-7 (Arvidson et al. 2001). This will probably ensure the continued dominance of Landsat in the near future.

  9. The study on the parallel processing based time series correlation analysis of RBC membrane flickering in quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Lee, Minsuk; Won, Youngjae; Park, Byungjun; Lee, Seungrag

    2017-02-01

    Not only static characteristics but also dynamic characteristics of the red blood cell (RBC) contains useful information for the blood diagnosis. Quantitative phase imaging (QPI) can capture sample images with subnanometer scale depth resolution and millisecond scale temporal resolution. Various researches have been used QPI for the RBC diagnosis, and recently many researches has been developed to decrease the process time of RBC information extraction using QPI by the parallel computing algorithm, however previous studies are interested in the static parameters such as morphology of the cells or simple dynamic parameters such as root mean square (RMS) of the membrane fluctuations. Previously, we presented a practical blood test method using the time series correlation analysis of RBC membrane flickering with QPI. However, this method has shown that there is a limit to the clinical application because of the long computation time. In this study, we present an accelerated time series correlation analysis of RBC membrane flickering using the parallel computing algorithm. This method showed consistent fractal scaling exponent results of the surrounding medium and the normal RBC with our previous research.

  10. A new acoustic lens material for large area detectors in photoacoustic breast tomography☆

    PubMed Central

    Xia, Wenfeng; Piras, Daniele; van Hespen, Johan C.G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Objectives We introduce a new acoustic lens material for photoacoustic tomography (PAT) to improve lateral resolution while possessing excellent acoustic acoustic impedance matching with tissue to minimize lens induced image artifacts. Background A large surface area detector due to its high sensitivity is preferable to detect weak signals in photoacoustic mammography. The lateral resolution is then limited by the narrow acceptance angle of such detectors. Acoustic lenses made of acrylic plastic (PMMA) have been used to enlarge the acceptance angle of such detectors and improve lateral resolution. However, such PMMA lenses introduce image artifacts due to internal reflections of ultrasound within the lenses, the result of acoustic impedance mismatch with the coupling medium or tissue. Methods A new lens is proposed based on the 2-component resin Stycast 1090SI. We characterized the acoustic properties of the proposed lens material in comparison with commonly used PMMA, inspecting the speed of sound, acoustic attenuation and density. We fabricated acoustic lenses based on the new material and PMMA, and studied the effect of the acoustic lenses on detector performance comparing finite element (FEM) simulations and measurements of directional sensitivity, pulse-echo response and frequency response. We further investigated the effect of using the acoustic lenses on the image quality of a photoacoustic breast tomography system using k-Wave simulations and experiments. Results Our acoustic characterization shows that Stycast 1090SI has tissue-like acoustic impedance, high speed of sound and low acoustic attenuation. These acoustic properties ensure an excellent acoustic lens material to minimize the acoustic insertion loss. Both acoustic lenses show significant enlargement of detector acceptance angle and lateral resolution improvement from modeling and experiments. However, the image artifacts induced by the presence of an acoustic lens are reduced using the proposed lens compared to PMMA lens, due to the minimization of internal reflections. Conclusions The proposed Stycast 1090SI acoustic lens improves the lateral resolution of photoacoustic tomography systems while not suffering from internal reflection-induced image artifacts compared a lens made of PMMA. PMID:25302146

  11. Incorporation of satellite remote sensing pan-sharpened imagery into digital soil prediction and mapping models to characterize soil property variability in small agricultural fields

    NASA Astrophysics Data System (ADS)

    Xu, Yiming; Smith, Scot E.; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P.

    2017-01-01

    Soil prediction models based on spectral indices from some multispectral images are too coarse to characterize spatial pattern of soil properties in small and heterogeneous agricultural lands. Image pan-sharpening has seldom been utilized in Digital Soil Mapping research before. This research aimed to analyze the effects of pan-sharpened (PAN) remote sensing spectral indices on soil prediction models in smallholder farm settings. This research fused the panchromatic band and multispectral (MS) bands of WorldView-2, GeoEye-1, and Landsat 8 images in a village in Southern India by Brovey, Gram-Schmidt and Intensity-Hue-Saturation methods. Random Forest was utilized to develop soil total nitrogen (TN) and soil exchangeable potassium (Kex) prediction models by incorporating multiple spectral indices from the PAN and MS images. Overall, our results showed that PAN remote sensing spectral indices have similar spectral characteristics with soil TN and Kex as MS remote sensing spectral indices. There is no soil prediction model incorporating the specific type of pan-sharpened spectral indices always had the strongest prediction capability of soil TN and Kex. The incorporation of pan-sharpened remote sensing spectral data not only increased the spatial resolution of the soil prediction maps, but also enhanced the prediction accuracy of soil prediction models. Small farms with limited footprint, fragmented ownership and diverse crop cycle should benefit greatly from the pan-sharpened high spatial resolution imagery for soil property mapping. Our results show that multiple high and medium resolution images can be used to map soil properties suggesting the possibility of an improvement in the maps' update frequency. Additionally, the results should benefit the large agricultural community through the reduction of routine soil sampling cost and improved prediction accuracy.

  12. Image processing with the radial Hilbert transform of photo-thermal imaging for carious detection

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Yasser H.

    2014-03-01

    Knowledge of heat transfer in biological bodies has many diagnostic and therapeutic applications involving either raising or lowering of temperature, and often requires precise monitoring of the spatial distribution of thermal histories that are produced during a treatment protocol. The present paper therefore aims to design and implementation of laser therapeutic and imaging system used for carious tracking and drilling by develop a mathematical algorithm using Hilbert transform for edge detection of photo-thermal imaging. photothermal imaging has the ability to penetrate and yield information about an opaque medium well beyond the range of conventional optical imaging. Owing to this ability, Q- switching Nd:YAG laser at wavelength 1064 nm has been extensively used in human teeth to study the sub-surface deposition of laser radiation. The high absorption coefficient of the carious rather than normal region rise its temperature generating IR thermal radiation captured by high resolution thermal camera. Changing the pulse repetition frequency of the laser pulses affects the penetration depth of the laser, which can provide three-dimensional (3D) images in arbitrary planes and allow imaging deep within a solid tissue.

  13. Laser speckle imaging based on photothermally driven convection

    PubMed Central

    Regan, Caitlin; Choi, Bernard

    2016-01-01

    Abstract. Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications. PMID:26927221

  14. Live-cell imaging of conidial anastomosis tube fusion during colony initiation in Fusarium oxysporum

    PubMed Central

    Kurian, Smija M.; Di Pietro, Antonio

    2018-01-01

    Fusarium oxysporum exhibits conidial anastomosis tube (CAT) fusion during colony initiation to form networks of conidial germlings. Here we determined the optimal culture conditions for this fungus to undergo CAT fusion between microconidia in liquid medium. Extensive high resolution, confocal live-cell imaging was performed to characterise the different stages of CAT fusion, using genetically encoded fluorescent labelling and vital fluorescent organelle stains. CAT homing and fusion were found to be dependent on adhesion to the surface, in contrast to germ tube development which occurs in the absence of adhesion. Staining with fluorescently labelled concanavalin A indicated that the cell wall composition of CATs differs from that of microconidia and germ tubes. The movement of nuclei, mitochondria, vacuoles and lipid droplets through fused germlings was observed by live-cell imaging. PMID:29734342

  15. The Hazards Data Distribution System update

    USGS Publications Warehouse

    Jones, Brenda K.; Lamb, Rynn M.

    2010-01-01

    After a major disaster, a satellite image or a collection of aerial photographs of the event is frequently the fastest, most effective way to determine its scope and severity. The U.S. Geological Survey (USGS) Emergency Operations Portal provides emergency first responders and support personnel with easy access to imagery and geospatial data, geospatial Web services, and a digital library focused on emergency operations. Imagery and geospatial data are accessed through the Hazards Data Distribution System (HDDS). HDDS historically provided data access and delivery services through nongraphical interfaces that allow emergency response personnel to select and obtain pre-event baseline data and (or) event/disaster response data. First responders are able to access full-resolution GeoTIFF images or JPEG images at medium- and low-quality compressions through ftp downloads. USGS HDDS home page: http://hdds.usgs.gov/hdds2/

  16. Live-cell imaging of conidial anastomosis tube fusion during colony initiation in Fusarium oxysporum.

    PubMed

    Kurian, Smija M; Di Pietro, Antonio; Read, Nick D

    2018-01-01

    Fusarium oxysporum exhibits conidial anastomosis tube (CAT) fusion during colony initiation to form networks of conidial germlings. Here we determined the optimal culture conditions for this fungus to undergo CAT fusion between microconidia in liquid medium. Extensive high resolution, confocal live-cell imaging was performed to characterise the different stages of CAT fusion, using genetically encoded fluorescent labelling and vital fluorescent organelle stains. CAT homing and fusion were found to be dependent on adhesion to the surface, in contrast to germ tube development which occurs in the absence of adhesion. Staining with fluorescently labelled concanavalin A indicated that the cell wall composition of CATs differs from that of microconidia and germ tubes. The movement of nuclei, mitochondria, vacuoles and lipid droplets through fused germlings was observed by live-cell imaging.

  17. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Yang, Dan-Qing; Liu, Shi-Lei; Yu, Si-Yuan; Lu, Ming-Hui; Zhu, Jie; Zhang, Shan-Tao; Zhu, Ming-Wei; Guo, Xia-Sheng; Wu, Hao-Dong; Wang, Xin-Long; Chen, Yan-Feng

    2017-02-01

    High-quality broadband ultrasound transducers yield superior imaging performance in biomedical ultrasonography. However, proper design to perfectly bridge the energy between the active piezoelectric material and the target medium over the operating spectrum is still lacking. Here, we demonstrate a new anisotropic cone-structured acoustic metamaterial matching layer that acts as an inhomogeneous material with gradient acoustic impedance along the ultrasound propagation direction. When sandwiched between the piezoelectric material unit and the target medium, the acoustic metamaterial matching layer provides a broadband window to support extraordinary transmission of ultrasound over a wide frequency range. We fabricated the matching layer by etching the peeled silica optical fibre bundles with hydrofluoric acid solution. The experimental measurement of an ultrasound transducer equipped with this acoustic metamaterial matching layer shows that the corresponding -6 dB bandwidth is able to reach over 100%. This new material fully enables new high-end piezoelectric materials in the construction of high-performance ultrasound transducers and probes, leading to considerably improved resolutions in biomedical ultrasonography and compact harmonic imaging systems.

  18. Neutron imaging with bubble chambers for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Ghilea, Marian C.

    One of the main methods to obtain energy from controlled thermonuclear fusion is inertial confinement fusion (ICF), a process where nuclear fusion reactions are initiated by heating and compressing a fuel target, typically in the form of a pellet that contains deuterium and tritium, relying on the inertia of the fuel mass to provide confinement. In inertial confinement fusion experiments, it is important to distinguish failure mechanisms of the imploding capsule and unambiguously diagnose compression and hot spot formation in the fuel. Neutron imaging provides such a technique and bubble chambers are capable of generating higher resolution images than other types of neutron detectors. This thesis explores the use of a liquid bubble chamber to record high yield 14.1 MeV neutrons resulting from deuterium-tritium fusion reactions on ICF experiments. A design tool to deconvolve and reconstruct penumbral and pinhole neutron images was created, using an original ray tracing concept to simulate the neutron images. The design tool proved that misalignment and aperture fabrication errors can significantly decrease the resolution of the reconstructed neutron image. A theoretical model to describe the mechanism of bubble formation was developed. A bubble chamber for neutron imaging with Freon 115 as active medium was designed and implemented for the OMEGA laser system. High neutron yields resulting from deuterium-tritium capsule implosions were recorded. The bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The research done in here shows that bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility (NIF).

  19. Cryo-imaging in a toxicological study on mouse fetuses

    NASA Astrophysics Data System (ADS)

    Roy, Debashish; Gargesha, Madhusudhana; Sloter, Eddie; Watanabe, Michiko; Wilson, David

    2010-03-01

    We applied the Case cryo-imaging system to detect signals of developmental toxicity in transgenic mouse fetuses resulting from maternal exposure to a developmental environmental toxicant (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). We utilized a fluorescent transgenic mouse model that expresses Green Fluorescent Protein (GFP) exclusively in smooth muscles under the control of the smooth muscle gamma actin (SMGA) promoter (SMGA/EGFP mice kindly provided by J. Lessard, U. Cincinnati). Analysis of cryo-image data volumes, comprising of very high-resolution anatomical brightfield and molecular fluorescence block face images, revealed qualitative and quantitative morphological differences in control versus exposed fetuses. Fetuses randomly chosen from pregnant females euthanized on gestation day (GD) 18 were either manually examined or cryo-imaged. For cryo-imaging, fetuses were embedded, frozen and cryo-sectioned at 20 μm thickness and brightfield color and fluorescent block-face images were acquired with an in-plane resolution of ~15 μm. Automated 3D volume visualization schemes segmented out the black embedding medium and blended fluorescence and brightfield data to produce 3D reconstructions of all fetuses. Comparison of Treatment groups TCDD GD13, TCDD GD14 and control through automated analysis tools highlighted differences not observable by prosectors performing traditional fresh dissection. For example, severe hydronephrosis, suggestive of irreversible kidney damage, was detected by cryoimaging in fetuses exposed to TCDD. Automated quantification of total fluorescence in smooth muscles revealed suppressed fluorescence in TCDD-exposed fetuses. This application demonstrated that cryo-imaging can be utilized as a routine high-throughput screening tool to assess the effects of potential toxins on the developmental biology of small animals.

  20. High-spatial-resolution mapping of precipitable water vapour using SAR interferograms, GPS observations and ERA-Interim reanalysis

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin

    2016-09-01

    A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.

  1. Uncertainties in mapping forest carbon in urban ecosystems.

    PubMed

    Chen, Gang; Ozelkan, Emre; Singh, Kunwar K; Zhou, Jun; Brown, Marilyn R; Meentemeyer, Ross K

    2017-02-01

    Spatially explicit urban forest carbon estimation provides a baseline map for understanding the variation in forest vertical structure, informing sustainable forest management and urban planning. While high-resolution remote sensing has proven promising for carbon mapping in highly fragmented urban landscapes, data cost and availability are the major obstacle prohibiting accurate, consistent, and repeated measurement of forest carbon pools in cities. This study aims to evaluate the uncertainties of forest carbon estimation in response to the combined impacts of remote sensing data resolution and neighborhood spatial patterns in Charlotte, North Carolina. The remote sensing data for carbon mapping were resampled to a range of resolutions, i.e., LiDAR point cloud density - 5.8, 4.6, 2.3, and 1.2 pt s/m 2 , aerial optical NAIP (National Agricultural Imagery Program) imagery - 1, 5, 10, and 20 m. Urban spatial patterns were extracted to represent area, shape complexity, dispersion/interspersion, diversity, and connectivity of landscape patches across the residential neighborhoods with built-up densities from low, medium-low, medium-high, to high. Through statistical analyses, we found that changing remote sensing data resolution introduced noticeable uncertainties (variation) in forest carbon estimation at the neighborhood level. Higher uncertainties were caused by the change of LiDAR point density (causing 8.7-11.0% of variation) than changing NAIP image resolution (causing 6.2-8.6% of variation). For both LiDAR and NAIP, urban neighborhoods with a higher degree of anthropogenic disturbance unveiled a higher level of uncertainty in carbon mapping. However, LiDAR-based results were more likely to be affected by landscape patch connectivity, and the NAIP-based estimation was found to be significantly influenced by the complexity of patch shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Europa 'Ice Rafts' in local and color context

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of Jupiter's icy satellite Europa shows surface features such as domes and ridges, as well as a region of disrupted terrain including crustal plates which are thought to have broken apart and 'rafted' into new positions. The image covers an area of Europa's surface about 250 by 200 kilometer (km) and is centered at 10 degrees latitude, 271 degrees longitude. The color information allows the surface to be divided into three distinct spectral units. The bright white areas are ejecta rays from the relatively young crater Pwyll, which is located about 1000 km to the south (bottom) of this image. These patchy deposits appear to be superposed on other areas of the surface, and thus are thought to be the youngest features present. Also visible are reddish areas which correspond to locations where non-ice components are present. This coloring can be seen along the ridges, in the region of disrupted terrain in the center of the image, and near the dome-like features where the surface may have been thermally altered. Thus, areas associated with internal geologic activity appear reddish. The third distinct color unit is bright blue, and corresponds to the relatively old icy plains.

    This product combines data taken by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during three separate flybys of Europa. Low resolution color data (violet, green, and 1 micron) acquired in September 1996 were combined with medium resolution images from December 1996, to produce synthetic color images. These were then combined with a high resolution mosaic of images acquired in February 1997.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  3. Nilosyrtis Mensae

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A color image of part of the Nilosyrtis Mensae region of Mars containing the impact craters Antoniadi and Baldet (south to north) in the lower left corner; north toward top. The scene shows heavily cratered highlands on the south separated from the relatively smooth lowland plains on the northeast corner by a belt of dissected terrain, containing flat-floored valleys, mesas, buttes, and channels. The channels are (left to right) Auqakuh and Huo Hsing Valles; Nili Fossae lie in lower right corner of image.

    This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 20 degrees N. to 40 degrees N. and from longitude 280 degrees to 305 degrees. Mercator projection is used below 30 degrees N.; Lambert projection is used above 30 degrees N.

    The dissected terrain along the highlands/lowlands boundary consist of the flat-floored valleys (mensae) and farther north the small, rounded hills of knobby terrain. Flows on the mensa floors contain striae that run parallel to valley walls; where valleys meet, the striae merge, similar to medial moraines on glaciers. Terraces within the valley hills have been interpreted as either layer rocks or wave terraces. The knobby terrain has been interpreted as remnants of the old, densely cratered highland terrain perhaps eroded by mass wasting. Auqakuh and Huo Hsing Valles and Nili Fossae are fretted channels and linear depressions that likely formed by sapping and mass wasting along lines of structural weakness.

  4. Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy

    PubMed Central

    Harpel, Kaitlin; Baker, Robert Dawson; Amirsolaimani, Babak; Mehravar, Soroush; Vagner, Josef; Matsunaga, Terry O.; Banerjee, Bhaskar; Kieu, Khanh

    2016-01-01

    The use of receptor-targeted lipid microbubbles imaged by ultrasound is an innovative method of detecting and localizing disease. However, since ultrasound requires a medium between the transducer and the object being imaged, it is impractical to apply to an exposed surface in a surgical setting where sterile fields need be maintained and ultrasound gel may cause the bubbles to collapse. Multiphoton microscopy (MPM) is an emerging tool for accurate, label-free imaging of tissues and cells with high resolution and contrast. We have recently determined a novel application of MPM to be used for detecting targeted microbubble adherence to the upregulated plectin-receptor on pancreatic tumor cells. Specifically, the third-harmonic generation response can be used to detect bound microbubbles to various cell types presenting MPM as an alternative and useful imaging method. This is an interesting technique that can potentially be translated as a diagnostic tool for the early detection of cancer and inflammatory disorders. PMID:27446711

  5. Accurate color images: from expensive luxury to essential resource

    NASA Astrophysics Data System (ADS)

    Saunders, David R.; Cupitt, John

    2002-06-01

    Over ten years ago the National Gallery in London began a program to make digital images of paintings in the collection using a colorimetric imaging system. This was to provide a permanent record of the state of paintings against which future images could be compared to determine if any changes had occurred. It quickly became apparent that such images could be used not only for scientific purposes, but also in applications where transparencies were then being used, for example as source materials for printed books and catalogues or for computer-based information systems. During the 1990s we were involved in the development of a series of digital cameras that have combined the high color accuracy of the original 'scientific' imaging system with the familiarity and portability of a medium format camera. This has culminated in the program of digitization now in progress at the National Gallery. By the middle of 2001 we will have digitized all the major paintings in the collection at a resolution of 10,000 pixels along their longest dimension and with calibrated color; we are on target to digitize the whole collection by the end of 2002. The images are available on-line within the museum for consultation and so that Gallery departments can use the images in printed publications and on the Gallery's web- site. We describe the development of the imaging systems used at National Gallery and how the research we have conducted into high-resolution accurate color imaging has developed from being a peripheral, if harmless, research activity to becoming a central part of the Gallery's information and publication strategy. Finally, we discuss some outstanding issues, such as interfacing our color management procedures with the systems used by external organizations.

  6. A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI)

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; McCabe, Matthew F.; Gao, Feng

    2016-05-01

    Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77-0.94 compared to 0.01-0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0.86) over a range of plant development stages. Overall, STEM-LAI represents an effective downscaling and temporal enhancement mechanism that predicts in-situ measured LAI better than estimates derived through linear interpolation between Landsat acquisitions. This is particularly true when the in-situ measurement date is greater than 10 days from the nearest Landsat acquisition, with prediction errors reduced by up to 50%. With a streamlined and completely automated processing interface, STEM-LAI represents a flexible tool for LAI disaggregation in space and time that is adaptable to different land cover types, landscape heterogeneities, and cloud cover conditions.

  7. A new MAP for Mars

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Price, Steve; Clark, Ben; Cantrell, Jim; Bourke, Roger

    1993-01-01

    A Mars Aerial Platform (MAP) mission capable of generating thousands of very-high-resolution (20 cm/pixel) pictures of the Martian surface is considered. The MAP entry vehicle will map the global circulation of the planet's atmosphere and examine the surface and subsurface. Data acquisition will use instruments carried aboard balloons flying at nominal altitude of about 7 km over the Martian surface. The MAP balloons will take high- and medium-resolution photographs of Mars, sound its surface with radar, and provide tracking data to chart its winds. Mars vehicle design is based on the fourth-generation NTP, NEP, SEP vehicle set that provides a solid database for determining transportation system costs. Interference analysis and 3D image generation are performed using manual system sizing and sketching in conjunction with precise CAD modeling.

  8. Development of High-Speed Fluorescent X-Ray Micro-Computed Tomography

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Tsuchiya, Y.; Kuroe, T.; Zeniya, T.; Wu, J.; Lwin, Thet-Thet; Yashiro, T.; Yuasa, T.; Hyodo, K.; Matsumura, K.; Dilmanian, F. A.; Itai, Y.; Akatsuka, T.

    2004-05-01

    A high-speed fluorescent x-ray CT (FXCT) system using monochromatic synchrotron x rays was developed to detect very low concentration of medium-Z elements for biomedical use. The system is equipped two types of high purity germanium detectors, and fast electronics and software. Preliminary images of a 10mm diameter plastic phantom containing channels field with iodine solutions of different concentrations showed a minimum detection level of 0.002 mg I/ml at an in-plane spatial resolution of 100μm. Furthermore, the acquisition time was reduced about 1/2 comparing to previous system. The results indicate that FXCT is a highly sensitive imaging modality capable of detecting very low concentration of iodine, and that the method has potential in biomedical applications.

  9. Optical recording of information on paper by CO2 and YAG-lasers

    NASA Astrophysics Data System (ADS)

    Bayev, S. G.; Bessemltsev, V. P.; Koronkevich, D. V.; Tkachuk, Y. N.

    1984-09-01

    Methods for outputting information from computers that have the advantages of typographic printing processes, but are distinguished by the lack of an intermediate medium are investigated. Methods for recording graphic and half-tone images are investigated that are based on layers of ink deposited on the paper in advance, as well as fixing a temperature-sensitive dye on the paper by using a focused laser beam with radiation power density of .000001 w/sq.cm. to heat the surface. IR process lasers provide good efficiency and resolution.

  10. Enhanced tagging of light utilizing acoustic radiation force with speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Vakili, Ali; Hollmann, Joseph L.; Holt, R. Glynn; DiMarzio, Charles A.

    2017-10-01

    In optical imaging, the depth and resolution are limited due to scattering. Unlike light, scattering of ultrasound (US) waves in tissue is negligible. Hybrid imaging methods such as US-modulated optical tomography (UOT) use the advantages of both modalities. UOT tags light by inducing phase change caused by modulating the local index of refraction of the medium. The challenge in UOT is detecting the small signal. The displacement induced by the acoustic radiation force (ARF) is another US effect that can be utilized to tag the light. It induces greater phase change, resulting in a stronger signal. Moreover, the absorbed acoustic energy generates heat, resulting in change in the index of refraction and a strong phase change. The speckle pattern is governed by the phase of the interfering scattered waves; hence, speckle pattern analysis can obtain information about displacement and temperature changes. We have presented a model to simulate the insonation processes. Simulation results based on fixed-particle Monte Carlo and experimental results show that the signal acquired by utilizing ARF is stronger compared to UOT. The introduced mean irradiance change (MIC) signal reveals both thermal and mechanical effects of the focused US beam in different timescales. Simulation results suggest that variation in the MIC signal can be used to generate a displacement image of the medium.

  11. Overall design of imaging spectrometer on-board light aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhongqi, H.; Zhengkui, C.; Changhua, C.

    1996-11-01

    Aerial remote sensing is the earliest remote sensing technical system and has gotten rapid development in recent years. The development of aerial remote sensing was dominated by high to medium altitude platform in the past, and now it is characterized by the diversity platform including planes of high-medium-low flying altitude, helicopter, airship, remotely controlled airplane, glider, and balloon. The widely used and rapidly developed platform recently is light aircraft. Early in the close of 1970s, Beijing Research Institute of Uranium Geology began aerial photography and geophysical survey using light aircraft, and put forward the overall design scheme of light aircraftmore » imaging spectral application system (LAISAS) in 19905. LAISAS is comprised of four subsystem. They are called measuring platform, data acquiring subsystem, ground testing and data processing subsystem respectively. The principal instruments of LAISAS include measuring platform controlled by inertia gyroscope, aerial spectrometer with high spectral resolution, imaging spectrometer, 3-channel scanner, 128-channel imaging spectrometer, GPS, illuminance-meter, and devices for atmospheric parameters measuring, ground testing, data correction and processing. LAISAS has the features of integrity from data acquisition to data processing and to application; of stability which guarantees the image quality and is comprised of measuring, ground testing device, and in-door data correction system; of exemplariness of integrated the technology of GIS, GPS, and Image Processing System; of practicality which embodied LAISAS with flexibility and high ratio of performance to cost. So, it can be used in the fields of fundamental research of Remote Sensing and large-scale mapping for resource exploration, environmental monitoring, calamity prediction, and military purpose.« less

  12. Clean image synthesis and target numerical marching for optical imaging with backscattering light

    PubMed Central

    Pu, Yang; Wang, Wubao

    2011-01-01

    Scanning backscattering imaging and independent component analysis (ICA) are used to probe targets hidden in the subsurface of a turbid medium. A new correction procedure is proposed and used to synthesize a “clean” image of a homogeneous host medium numerically from a set of raster-scanned “dirty” backscattering images of the medium with embedded targets. The independent intensity distributions on the surface of the medium corresponding to individual targets are then unmixed using ICA of the difference between the set of dirty images and the clean image. The target positions are localized by a novel analytical method, which marches the target to the surface of the turbid medium until a match with the retrieved independent component is accomplished. The unknown surface property of the turbid medium is automatically accounted for by this method. Employing clean image synthesis and target numerical marching, three-dimensional (3D) localization of objects embedded inside a turbid medium using independent component analysis in a backscattering geometry is demonstrated for the first time, using as an example, imaging a small piece of cancerous prostate tissue embedded in a host consisting of normal prostate tissue. PMID:21483608

  13. PUMA: the first results of a nebular spectrograph for the study of the kinematics of interstellar medium

    NASA Astrophysics Data System (ADS)

    Langarica, Rosalia; Bernal, Abel; Rosado, Margarita; Cobos Duenas, Francisco J.; Garfias, Fernando; Gutierrez, Leonel; Le Coarer, Etienne; Tejada, Carlos; Tinoco, Silvio J.

    1998-07-01

    The kinematics of the interstellar medium may be studied by means of a scanning Fabry-Perot interferometer (SFPI). This allows the coverage of a wider field of view with higher spatial and spectral resolution than when a high-dispersion classical spectrograph is used. The system called PUMA consists of a focal reducer and a SFPI installed in the 2.1 m telescope of the San Pedro Martir National Astronomical Observatory (SPM), Mexico, in its f/7.5 configuration. It covers a field of view of 10 arcmin providing direct images as well as interferograms which are focused on a 1024 X 1024 Tektronix CCD, covering a wide spectral range. It is considered the integration of other optical elements for further developments. The optomechanical system and the developed software allow exact, remote positioning of all movable parts and control the FPI scanning and data acquisition. The parallelism of the interferometer plates is automatically achieved by a custom method. The PUMA provides spectral resolutions of 0.414 Angstrom and a free spectral range of 19.8 Angstrom. Results of high quality that compete with those obtained by similar systems in bigger telescopes, are presented.

  14. The Environmental Impact of Intra-Cluster Medium on the Interstellar Medium in Early Type Galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, Ginevra

    1997-01-01

    High resolution X-ray images of three early type galaxies observed with the ROSAT HRI are presented. Data for NGC 1553 and NGC 5846 indicate that the emission is highly irregular, with interesting features on scales from a few arcsec to a few arcmin. The gas temperatures also vary both with the galactocentric radius and in correspondence to regions of higher emission and denser material. Strikingly similar features are observed in the X-ray and H(alpha) morphologies of NGC 1553 and NGC 5846, while smoother, more regular isophotes are observed in NGC 4649 at both wavelengths. A connection between these two kinds of emission therefore seems likely. In the light of our observations we discuss possible scenarios that can and account for the connection between X-ray and H(alpha) emissions.

  15. Variable bright-darkfield-contrast, a new illumination technique for improved visualizations of complex structured transparent specimens.

    PubMed

    Piper, Timm; Piper, Jörg

    2012-04-01

    Variable bright-darkfield contrast (VBDC) is a new technique in light microscopy which promises significant improvements in imaging of transparent colorless specimens especially when characterized by a high regional thickness and a complex three-dimensional architecture. By a particular light pathway, two brightfield- and darkfield-like partial images are simultaneously superimposed so that the brightfield-like absorption image based on the principal zeroth order maximum interferes with the darkfield-like reflection image which is based on the secondary maxima. The background brightness and character of the resulting image can be continuously modulated from a brightfield-dominated to a darkfield-dominated appearance. When the weighting of the dark- and brightfield components is balanced, medium background brightness will result showing the specimen in a phase- or interference contrast-like manner. Specimens can either be illuminated axially/concentrically or obliquely/eccentrically. In oblique illumination, the angle of incidence and grade of eccentricity can be continuously changed. The condenser aperture diaphragm can be used for improvements of the image quality in the same manner as usual in standard brightfield illumination. By this means, the illumination can be optimally adjusted to the specific properties of the specimen. In VBDC, the image contrast is higher than in normal brightfield illumination, blooming and scattering are lower than in standard darkfield examinations, and any haloing is significantly reduced or absent. Although axial resolution and depth of field are higher than in concurrent standard techniques, the lateral resolution is not visibly reduced. Three dimensional structures, reliefs and fine textures can be perceived in superior clarity. Copyright © 2011 Wiley-Liss, Inc.

  16. Innovations in Nuclear Imaging Instrumentation: Cerenkov Imaging.

    PubMed

    Tamura, Ryo; Pratt, Edwin C; Grimm, Jan

    2018-07-01

    Cerenkov luminescence (CL) is blue glow light produced by charged subatomic particles travelling faster than the phase velocity of light in a dielectric medium such as water or tissue. CL was first discovered in 1934, but for biomedical research it was recognized only in 2009 after advances in optical camera sensors brought the required high sensitivity. Recently, applications of CL from clinical radionuclides have been rapidly expanding to include not only preclinical and clinical biomedical imaging but also an approach to therapy. Cerenkov Luminescence Imaging (CLI) utilizes CL generated from clinically relevant radionuclides alongside optical imaging instrumentation. CLI is advantageous over traditional nuclear imaging methods in terms of infrastructure cost, resolution, and imaging time. Furthermore, CLI is a truly multimodal imaging method where the same agent can be detected by two independent modalities, with optical (CL) imaging and with positron emission tomography (PET) imaging. CL has been combined with small molecules, biomolecules and nanoparticles to improve diagnosis and therapy in cancer research. Here, we cover the fundamental breakthroughs and recent advances in reagents and instrumentation methods for CLI as well as therapeutic application of CL. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. A cross-platform survey of CT image quality and dose from routine abdomen protocols and a method to systematically standardize image quality

    PubMed Central

    Favazza, Christopher P.; Duan, Xinhui; Zhang, Yi; Yu, Lifeng; Leng, Shuai; Kofler, James M.; Bruesewitz, Michael R.; McCollough, Cynthia H.

    2015-01-01

    Through this investigation we developed a methodology to evaluate and standardize CT image quality from routine abdomen protocols across different manufacturers and models. The influence of manufacturer-specific automated exposure control systems on image quality was directly assessed to standardize performance across a range of patient sizes. We evaluated 16 CT scanners across our health system, including Siemens, GE, and Toshiba models. Using each practice’s routine abdomen protocol, we measured spatial resolution, image noise, and scanner radiation output (CTDIvol). Axial and in-plane spatial resolutions were assessed through slice sensitivity profile (SSP) and modulation transfer function (MTF) measurements, respectively. Image noise and CTDIvol values were obtained for three different phantom sizes. SSP measurements demonstrated a bimodal distribution in slice widths: an average of 6.2 ± 0.2 mm using GE’s “Plus” mode reconstruction setting and 5.0 ± 0.1 mm for all other scanners. MTF curves were similar for all scanners. Average spatial frequencies at 50%, 10%, and 2% MTF values were 3.24 ± 0.37, 6.20 ± 0.34, and 7.84 ± 0.70 lp/cm, respectively. For all phantom sizes, image noise and CTDIvol varied considerably: 6.5–13.3 HU (noise) and 4.8–13.3 mGy (CTDIvol) for the smallest phantom; 9.1–18.4 HU and 9.3–28.8 mGy for the medium phantom; and 7.8–23.4 HU and 16.0–48.1 mGy for the largest phantom. Using these measurements and benchmark SSP, MTF, and image noise targets, CT image quality can be standardized across a range of patient sizes. PMID:26459751

  18. On-target labeling of intracellular metabolites combined with chemical mapping of individual hyphae revealing cytoplasmic relocation of isotopologues.

    PubMed

    Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L

    2012-06-05

    A microscale analytical platform integrating microbial cell culture, isotopic labeling, along with visual and mass spectrometric imaging with single-cell resolution has been developed and applied in the monitoring of cellular metabolism in fungal mycelium. The method implements open chips with a two-dimensional surface pattern composed of hydrophobic and hydrophilic zones. Two hydrophilic islands are used as medium reservoirs, while the hydrophobic area constitutes the support for the growing aerial hyphae, which do not have direct contact with the medium. The first island, containing (12)C(6)-glucose medium, was initially inoculated with the mycelium (Neurospora crassa), and following the initial incubation period, the hyphae progressed toward the second medium island, containing an isotopically labeled substrate ((13)C(6)-glucose). The (13)C atoms were gradually incorporated into cellular metabolites, which was revealed by MALDI-MS. The fate of the chitin-biosynthesis precursor, uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), was monitored by recording mass spectra with characteristic isotopic patterns, which indicated the presence of various (12)C/(13)C isotopologues. The method enabled mapping the (13)C-labeled UDP-GlcNAc in fungal mycelium and recording its redistribution in hyphae, directly on the chip.

  19. Subwavelength resolution from multilayered structure (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cheng, Bo Han; Jen, Yi-Jun; Liu, Wei-Chih; Lin, Shan-wen; Lan, Yung-Chiang; Tsai, Din Ping

    2016-10-01

    Breaking optical diffraction limit is one of the most important issues needed to be overcome for the demand of high-density optoelectronic components. Here, a multilayered structure which consists of alternating semiconductor and dielectric layers for breaking optical diffraction limitation at THz frequency region are proposed and analyzed. We numerically demonstrate that such multilayered structure not only can act as a hyperbolic metamaterial but also a birefringence material via the control of the external temperature (or magnetic field). A practical approach is provided to control all the diffraction signals toward a specific direction by using transfer matrix method and effective medium theory. Numerical calculations and computer simulation (based on finite element method, FEM) are carried out, which agree well with each other. The temperature (or magnetic field) parameter can be tuned to create an effective material with nearly flat isofrequency feature to transfer (project) all the k-space signals excited from the object to be resolved to the image plane. Furthermore, this multilayered structure can resolve subwavelength structures at various incident THz light sources simultaneously. In addition, the resolution power for a fixed operating frequency also can be tuned by only changing the magnitude of external magnetic field. Such a device provides a practical route for multi-functional material, photolithography and real-time super-resolution image.

  20. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    NASA Astrophysics Data System (ADS)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  1. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site

    NASA Technical Reports Server (NTRS)

    Mishra, Nischal; Helder, Dennis; Angal, Amit; Choi, Jason; Xiong, Xiaoxiong

    2014-01-01

    The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55 deg, +23.39 deg) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as the radiometer to develop an absolute calibration model for the spectral channels covered by this instrument from visible to shortwave infrared. Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm, was used to extend the model to cover visible and near-infrared regions. A simple Bidirectional Reflectance Distribution function (BRDF) model was generated using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Libya 4 and the resulting model was validated with nadir data acquired from satellite sensors such as Aqua MODIS and Landsat 7 (L7) Enhanced Thematic Mapper (ETM+). The improvements in the absolute calibration model to account for the BRDF due to off-nadir measurements and annual variations in the atmosphere are summarized. BRDF models due to off-nadir viewing angles have been derived using the measurements from EO-1 Hyperion. In addition to L7 ETM+, measurements from other sensors such as Aqua MODIS, UK-2 Disaster Monitoring Constellation (DMC), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and Operational Land Imager (OLI) onboard Landsat 8 (L8), which was launched in February 2013, were employed to validate the model. These satellite sensors differ in terms of the width of their spectral bandpasses, overpass time, off-nadir-viewing capabilities, spatial resolution and temporal revisit time, etc. The results demonstrate that the proposed empirical calibration model has accuracy of the order of 3% with an uncertainty of about 2% for the sensors used in the study.

  2. Measurement of water colour using AVIRIS imagery to assess the potential for an operational monitoring capability in the Pamlico Sound Estuary, USA

    PubMed Central

    Ross, S. Lunetta; Joseph, F. Knight; Hans, W. Paerl; John, J. Streicher; Benjamin, L. Peierls; Tom, Gallo; John, G. Lyon; Thomas, H. Mace; Christopher, P. Buzzelli

    2009-01-01

    The monitoring of water colour parameters can provide an important diagnostic tool for the assessment of aquatic ecosystem condition. Remote sensing has long been used to effectively monitor chlorophyll concentrations in open ocean systems; however, operational monitoring in coastal and estuarine areas has been limited because of the inherent complexities of coastal systems, and the coarse spectral and spatial resolutions of available satellite systems. Data were collected using the National Aeronautics and Space Administration (NASA) Advanced Visible-Infrared Imaging Spectrometer (AVIRIS) flown at an altitude of approximately 20000 m to provide hyperspectral imagery and simulate both MEdium Resolution Imaging Spectrometer (MERIS) and Moderate Resolution Imaging Spectrometer (MODIS) data. AVIRIS data were atmospherically corrected using a radiative transfer modelling approach and analysed using band ratio and linear regression models. Regression analysis was performed with simultaneous field measurements data in the Neuse River Estuary (NRE) and Pamlico Sound on 15 May 2002. Chlorophyll a (Chl a) concentrations were optimally estimated using AVIRIS bands (9.5 nm) centred at 673.6 and 692.7 nm, resulting in a coefficient of determination (R2) of 0.98. Concentrations of Chromophoric Dissolved Organic Matter (CDOM), Total Suspended Solids (TSS) and Fixed Suspended Solids (FSS) were also estimated, resulting in coefficients of determination of R2=0.90, 0.59 and 0.64, respectively. Ratios of AVIRIS bands centred at or near those corresponding to the MERIS and MODIS sensors indicated that relatively good satellite-based estimates could potentially be derived for water colour constituents at a spatial resolution of 300 and 500 m, respectively. PMID:25937680

  3. Imaging with Second-Harmonic Generation Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hsieh, Chia-Lung

    Second-harmonic generation nanoparticles show promise as imaging probes due to their coherent and stable signal with a broad flexibility in the choice of excitation wavelength. In this thesis, we developed and demonstrated barium titanate nanoparticles as second-harmonic radiation imaging probes. We studied the absolute second-harmonic generation efficiency of the nanoparticles on single-particle level. The polarization dependent second-harmonic signal of single nanoparticles was studied in detail. From the measured polar response, we were able to find the orientation of the nanoparticle. We developed a biochemical interface for using the second-harmonic nanoprobes as biomarkers, including in vitro cellular imaging and in vivo live animal imaging. The nanoparticles were surface functionalized with primary amine groups for stable colloidal dispersion. We achieved specific labeling of the second-harmonic nanoprobes via immunostaining where the antibodies were covalently conjugated onto the nanoparticles. We observed no toxicity of the functionalized nanoparticles to biological cells. The coherent second-harmonic signal radiated from the nanoparticles offers opportunities for new imaging techniques. Using interferometric detection, namely harmonic holography, both amplitude and phase of the second-harmonic field can be captured. Through digital beam propagation, three-dimensional field distribution, reflecting three-dimensional distribution of the nanoparticles, can be reconstructed. We achieved a scan-free three-dimensional imaging of nanoparticles in biological cells with sub-micron spatial resolution by using the harmonic holographic microscope. We further exploited the coherent second-harmonic signal for imaging through scattering media by performing optical phase conjugation of the second-harmonic signal. We demonstrated an all-digital optical phase conjugation of the second-harmonic signal originated from a nanoparticle by combining harmonic holography and dynamic computer generated holography using a spatial light modulator. The phase-conjugated second-harmonic scattered field retraced the scattering trajectory and formed a clean focus on the nanoparticle placed inside a scattering medium. The nanoparticle acted as a beacon of light; it helped us find the tailored wavefront for concentrating light at the nanoparticle inside the scattering medium. We also demonstrated imaging through a thin scattering medium by raster-scanning the phase-conjugated focus in the vicinity of the beacon nanoparticle, in which a clear image of a target placed behind a ground glass diffuser was obtained.

  4. How does c-view image quality compare with conventional 2D FFDM?

    PubMed

    Nelson, Jeffrey S; Wells, Jered R; Baker, Jay A; Samei, Ehsan

    2016-05-01

    The FDA approved the use of digital breast tomosynthesis (DBT) in 2011 as an adjunct to 2D full field digital mammography (FFDM) with the constraint that all DBT acquisitions must be paired with a 2D image to assure adequate interpretative information is provided. Recently manufacturers have developed methods to provide a synthesized 2D image generated from the DBT data with the hope of sparing patients the radiation exposure from the FFDM acquisition. While this much needed alternative effectively reduces the total radiation burden, differences in image quality must also be considered. The goal of this study was to compare the intrinsic image quality of synthesized 2D c-view and 2D FFDM images in terms of resolution, contrast, and noise. Two phantoms were utilized in this study: the American College of Radiology mammography accreditation phantom (ACR phantom) and a novel 3D printed anthropomorphic breast phantom. Both phantoms were imaged using a Hologic Selenia Dimensions 3D system. Analysis of the ACR phantom includes both visual inspection and objective automated analysis using in-house software. Analysis of the 3D anthropomorphic phantom includes visual assessment of resolution and Fourier analysis of the noise. Using ACR-defined scoring criteria for the ACR phantom, the FFDM images scored statistically higher than c-view according to both the average observer and automated scores. In addition, between 50% and 70% of c-view images failed to meet the nominal minimum ACR accreditation requirements-primarily due to fiber breaks. Software analysis demonstrated that c-view provided enhanced visualization of medium and large microcalcification objects; however, the benefits diminished for smaller high contrast objects and all low contrast objects. Visual analysis of the anthropomorphic phantom showed a measureable loss of resolution in the c-view image (11 lp/mm FFDM, 5 lp/mm c-view) and loss in detection of small microcalcification objects. Spectral analysis of the anthropomorphic phantom showed higher total noise magnitude in the FFDM image compared with c-view. Whereas the FFDM image contained approximately white noise texture, the c-view image exhibited marked noise reduction at midfrequency and high frequency with far less noise suppression at low frequencies resulting in a mottled noise appearance. Their analysis demonstrates many instances where the c-view image quality differs from FFDM. Compared to FFDM, c-view offers a better depiction of objects of certain size and contrast, but provides poorer overall resolution and noise properties. Based on these findings, the utilization of c-view images in the clinical setting requires careful consideration, especially if considering the discontinuation of FFDM imaging. Not explicitly explored in this study is how the combination of DBT + c-view performs relative to DBT + FFDM or FFDM alone.

  5. Image quality improvement in cone-beam CT using the super-resolution technique.

    PubMed

    Oyama, Asuka; Kumagai, Shinobu; Arai, Norikazu; Takata, Takeshi; Saikawa, Yusuke; Shiraishi, Kenshiro; Kobayashi, Takenori; Kotoku, Jun'ichi

    2018-04-05

    This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evaluate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used super-resolution technique to improve the CBCT image quality.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecomte, Roger; Arpin, Louis; Beaudoin, Jean-Franç

    Purpose: LabPET II is a new generation APD-based PET scanner designed to achieve sub-mm spatial resolution using truly pixelated detectors and highly integrated parallel front-end processing electronics. Methods: The basic element uses a 4×8 array of 1.12×1.12 mm{sup 2} Lu{sub 1.9}Y{sub 0.1}SiO{sub 5}:Ce (LYSO) scintillator pixels with one-to-one coupling to a 4×8 pixelated monolithic APD array mounted on a ceramic carrier. Four detector arrays are mounted on a daughter board carrying two flip-chip, 64-channel, mixed-signal, application-specific integrated circuits (ASIC) on the backside interfacing to two detector arrays each. Fully parallel signal processing was implemented in silico by encoding time andmore » energy information using a dual-threshold Time-over-Threshold (ToT) scheme. The self-contained 128-channel detector module was designed as a generic component for ultra-high resolution PET imaging of small to medium-size animals. Results: Energy and timing performance were optimized by carefully setting ToT thresholds to minimize the noise/slope ratio. ToT spectra clearly show resolved 511 keV photopeak and Compton edge with ToT resolution well below 10%. After correction for nonlinear ToT response, energy resolution is typically 24±2% FWHM. Coincidence time resolution between opposing 128-channel modules is below 4 ns FWHM. Initial imaging results demonstrate that 0.8 mm hot spots of a Derenzo phantom can be resolved. Conclusion: A new generation PET scanner featuring truly pixelated detectors was developed and shown to achieve a spatial resolution approaching the physical limit of PET. Future plans are to integrate a small-bore dedicated mouse version of the scanner within a PET/CT platform.« less

  7. In Vivo Optical Imaging for Targeted Drug Kinetics and Localization for Oral Surgery and Super-Resolution, Facilitated by Printed Phantoms

    NASA Astrophysics Data System (ADS)

    Bentz, Brian Z.

    Many human cancer cell types over-express folate receptors, and this provides an opportunity to develop targeted anti-cancer drugs. For these drugs to be effective, their kinetics must be well understood in vivo and in deep tissue where tumors occur. We demonstrate a method for imaging these parameters by incorporating a kinetic compartment model and fluorescence into optical diffusion tomography (ODT). The kinetics were imaged in a live mouse, and found to be in agreement with previous in vitro studies, demonstrating the validity of the method and its feasibility as an effective tool in preclinical drug development studies. Progress in developing optical imaging for biomedical applications requires customizable and often complex objects known as "phantoms" for testing and evaluation. We present new optical phantoms fabricated using inexpensive 3D printing methods with multiple materials, allowing for the placement of complex inhomogeneities in heterogeneous or anatomically realistic geometries, as opposed to previous phantoms which were limited to simple shapes formed by molds or machining. Furthermore, we show that Mie theory can be used to design the optical properties to match a target tissue. The phantom fabrication methods are versatile, can be applied to optical imaging methods besides diffusive imaging, and can be used in the calibration of live animal imaging data. Applications of diffuse optical imaging in the operating theater have been limited in part due to computational burden. We present an approach for the fast localization of arteries in the roof of the mouth that has the potential to reduce complications. Furthermore, we use the extracted position information to fabricate a custom surgical guide using 3D printing that could protect the arteries during surgery. The resolution of ODT is severely limited by the attenuation of high spatial frequencies. We present a super-resolution method achieved through the point localization of fluorescent inhomogeneities in a tissue-like scattering medium, and examine the localization uncertainty numerically and experimentally. Furthermore, we show numerical results for the localization of multiple fluorescent inhomogeneities by distinguishing them based on temporal characteristics. Potential applications include imaging neuron activation in the brain.

  8. New beam line for time-of-flight medium energy ion scattering with large area position sensitive detector

    NASA Astrophysics Data System (ADS)

    Linnarsson, M. K.; Hallén, A.; Åström, J.; Primetzhofer, D.; Legendre, S.; Possnert, G.

    2012-09-01

    A new beam line for medium energy ion mass scattering (MEIS) has been designed and set up at the Ångström laboratory, Uppsala University, Sweden. This MEIS system is based on a time-of-flight (ToF) concept and the electronics for beam chopping relies on a 4 MHz function generator. Repetition rates can be varied between 1 MHz and 63 kHz and pulse widths below 1 ns are typically obtained by including beam bunching. A 6-axis goniometer is used at the target station. Scattering angle and energy of backscattered ions are extracted from a time-resolved and position-sensitive detector. Examples of the performance are given for three kinds of probing ions, 1H+, 4He+, and 11B+. Depth resolution is in the nanometer range and 1 and 2 nm thick Pt layers can easily be resolved. Mass resolution between nearby isotopes can be obtained as illustrated by Ga isotopes in GaAs. Taking advantage of the large size detector, a direct imaging (blocking pattern) of crystal channels are shown for hexagonal, 4H-SiC. The ToF-MEIS system described in this paper is intended for use in semiconductor and thin film areas. For example, depth profiling in the sub nanometer range for device development of contacts and dielectric interfaces. In addition to applied projects, fundamental studies of stopping cross sections in this medium energy range will also be conducted.

  9. Enhanced visualization of abnormalities in digital-mammographic images

    NASA Astrophysics Data System (ADS)

    Young, Susan S.; Moore, William E.

    2002-05-01

    This paper describes two new presentation methods that are intended to improve the ability of radiologists to visualize abnormalities in mammograms by enhancing the appearance of the breast parenchyma pattern relative to the fatty-tissue surroundings. The first method, referred to as mountain- view, is obtained via multiscale edge decomposition through filter banks. The image is displayed in a multiscale edge domain that causes the image to have a topographic-like appearance. The second method displays the image in the intensity domain and is referred to as contrast-enhancement presentation. The input image is first passed through a decomposition filter bank to produce a filtered output (Id). The image at the lowest resolution is processed using a LUT (look-up table) to produce a tone scaled image (I'). The LUT is designed to optimally map the code value range corresponding to the parenchyma pattern in the mammographic image into the dynamic range of the output medium. The algorithm uses a contrast weight control mechanism to produce the desired weight factors to enhance the edge information corresponding to the parenchyma pattern. The output image is formed using a reconstruction filter bank through I' and enhanced Id.

  10. A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images.

    PubMed

    Christodoulidis, Argyrios; Hurtut, Thomas; Tahar, Houssem Ben; Cheriet, Farida

    2016-09-01

    Segmenting the retinal vessels from fundus images is a prerequisite for many CAD systems for the automatic detection of diabetic retinopathy lesions. So far, research efforts have concentrated mainly on the accurate localization of the large to medium diameter vessels. However, failure to detect the smallest vessels at the segmentation step can lead to false positive lesion detection counts in a subsequent lesion analysis stage. In this study, a new hybrid method for the segmentation of the smallest vessels is proposed. Line detection and perceptual organization techniques are combined in a multi-scale scheme. Small vessels are reconstructed from the perceptual-based approach via tracking and pixel painting. The segmentation was validated in a high resolution fundus image database including healthy and diabetic subjects using pixel-based as well as perceptual-based measures. The proposed method achieves 85.06% sensitivity rate, while the original multi-scale line detection method achieves 81.06% sensitivity rate for the corresponding images (p<0.05). The improvement in the sensitivity rate for the database is 6.47% when only the smallest vessels are considered (p<0.05). For the perceptual-based measure, the proposed method improves the detection of the vasculature by 7.8% against the original multi-scale line detection method (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Tomographic imaging of non-local media based on space-fractional diffusion models

    NASA Astrophysics Data System (ADS)

    Buonocore, Salvatore; Semperlotti, Fabio

    2018-06-01

    We investigate a generalized tomographic imaging framework applicable to a class of inhomogeneous media characterized by non-local diffusive energy transport. Under these conditions, the transport mechanism is well described by fractional-order continuum models capable of capturing anomalous diffusion that would otherwise remain undetected when using traditional integer-order models. Although the underlying idea of the proposed framework is applicable to any transport mechanism, the case of fractional heat conduction is presented as a specific example to illustrate the methodology. By using numerical simulations, we show how complex inhomogeneous media involving non-local transport can be successfully imaged if fractional order models are used. In particular, results will show that by properly recognizing and accounting for the fractional character of the host medium not only allows achieving increased resolution but, in case of strong and spatially distributed non-locality, it represents the only viable approach to achieve a successful reconstruction.

  12. Imaging spectroscopy of solar radio burst fine structures.

    PubMed

    Kontar, E P; Yu, S; Kuznetsov, A A; Emslie, A G; Alcock, B; Jeffrey, N L S; Melnik, V N; Bian, N H; Subramanian, P

    2017-11-15

    Solar radio observations provide a unique diagnostic of the outer solar atmosphere. However, the inhomogeneous turbulent corona strongly affects the propagation of the emitted radio waves, so decoupling the intrinsic properties of the emitting source from the effects of radio wave propagation has long been a major challenge in solar physics. Here we report quantitative spatial and frequency characterization of solar radio burst fine structures observed with the Low Frequency Array, an instrument with high-time resolution that also permits imaging at scales much shorter than those corresponding to radio wave propagation in the corona. The observations demonstrate that radio wave propagation effects, and not the properties of the intrinsic emission source, dominate the observed spatial characteristics of radio burst images. These results permit more accurate estimates of source brightness temperatures, and open opportunities for quantitative study of the mechanisms that create the turbulent coronal medium through which the emitted radiation propagates.

  13. Method and apparatus for molecular imaging using x-rays at resonance wavelengths

    DOEpatents

    Chapline, G.F. Jr.

    Holographic x-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent x-rays upon the object to produce scattering of the x-rays by the object, producing interference on a recording medium between the scattered x-rays from the object and unscattered coherent x-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent x-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent x-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  14. A new compact representation of morphological profiles: report on first massive VHR image processing at the JRC

    NASA Astrophysics Data System (ADS)

    Pesaresi, Martino; Ouzounis, Georgios K.; Gueguen, Lionel

    2012-06-01

    A new compact representation of dierential morphological prole (DMP) vector elds is presented. It is referred to as the CSL model and is conceived to radically reduce the dimensionality of the DMP descriptors. The model maps three characteristic parameters, namely scale, saliency and level, into the RGB space through a HSV transform. The result is a a medium abstraction semantic layer used for visual exploration, image information mining and pattern classication. Fused with the PANTEX built-up presence index, the CSL model converges to an approximate building footprint representation layer in which color represents building class labels. This process is demonstrated on the rst high resolution (HR) global human settlement layer (GHSL) computed from multi-modal HR and VHR satellite images. Results of the rst massive processing exercise involving several thousands of scenes around the globe are reported along with validation gures.

  15. Method and apparatus for molecular imaging using X-rays at resonance wavelengths

    DOEpatents

    Chapline, Jr., George F.

    1985-01-01

    Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  16. Validation assessment of shoreline extraction on medium resolution satellite image

    NASA Astrophysics Data System (ADS)

    Manaf, Syaifulnizam Abd; Mustapha, Norwati; Sulaiman, Md Nasir; Husin, Nor Azura; Shafri, Helmi Zulhaidi Mohd

    2017-10-01

    Monitoring coastal zones helps provide information about the conditions of the coastal zones, such as erosion or accretion. Moreover, monitoring the shorelines can help measure the severity of such conditions. Such measurement can be performed accurately by using Earth observation satellite images rather than by using traditional ground survey. To date, shorelines can be extracted from satellite images with a high degree of accuracy by using satellite image classification techniques based on machine learning to identify the land and water classes of the shorelines. In this study, the researchers validated the results of extracted shorelines of 11 classifiers using a reference shoreline provided by the local authority. Specifically, the validation assessment was performed to examine the difference between the extracted shorelines and the reference shorelines. The research findings showed that the SVM Linear was the most effective image classification technique, as evidenced from the lowest mean distance between the extracted shoreline and the reference shoreline. Furthermore, the findings showed that the accuracy of the extracted shoreline was not directly proportional to the accuracy of the image classification.

  17. Lake Ice Detection in Low-Resolution Optical Satellite Images

    NASA Astrophysics Data System (ADS)

    Tom, M.; Kälin, U.; Sütterlin, M.; Baltsavias, E.; Schindler, K.

    2018-05-01

    Monitoring and analyzing the (decreasing) trends in lake freezing provides important information for climate research. Multi-temporal satellite images are a natural data source to survey ice on lakes. In this paper, we describe a method for lake ice monitoring, which uses low spatial resolution (250 m-1000 m) satellite images to determine whether a lake is frozen or not. We report results on four selected lakes in Switzerland: Sihl, Sils, Silvaplana and St. Moritz. These lakes have different properties regarding area, altitude, surrounding topography and freezing frequency, describing cases of medium to high difficulty. Digitized Open Street Map (OSM) lake outlines are back-projected on to the image space after generalization. As a pre-processing step, the absolute geolocation error of the lake outlines is corrected by matching the projected outlines to the images. We define the lake ice detection as a two-class (frozen, non-frozen) semantic segmentation problem. Several spectral channels of the multi-spectral satellite data are used, both reflective and emissive (thermal). Only the cloud-free (clean) pixels which lie completely inside the lake are analyzed. The most useful channels to solve the problem are selected with xgboost and visual analysis of histograms of reference data, while the classification is done with non-linear support vector machine (SVM). We show experimentally that this straight-forward approach works well with both MODIS and VIIRS satellite imagery. Moreover, we show that the algorithm produces consistent results when tested on data from multiple winters.

  18. CHARACTERIZING THE ATMOSPHERES OF THE HR8799 PLANETS WITH HST/WFC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, Abhijith; Patience, Jennifer; Barman, Travis

    We present results from a Hubble Space Telescope (HST) program characterizing the atmospheres of the outer two planets in the HR8799 system. The images were taken over 15 orbits in three near-infrared (near-IR) medium-band filters—F098M, F127M, and F139M—using the Wide Field Camera 3. One of the three filters is sensitive to a water absorption band inaccessible from ground-based observations, providing a unique probe of the thermal emission from the atmospheres of these young giant planets. The observations were taken at 30 different spacecraft rolls to enable angular differential imaging (ADI), and the full data set was analyzed with the Karhunen–Loévemore » Image Projection routine, an advanced image processing algorithm adapted to work with HST data. To achieve the required high contrast at subarcsecond resolution, we utilized the pointing accuracy of HST in combination with an improved pipeline designed to combine the dithered ADI data with an algorithm designed to both improve the image resolution and accurately measure the photometry. The results include F127M (J) detections of the outer planets, HR8799b and c, and the first detection of HR8799b in the water-band (F139M) filter. The F127M photometry for HR8799c agrees well with fitted atmospheric models, resolving the longstanding difficulty in consistently modeling the near-IR flux of the planet.« less

  19. Using Rose’s metal alloy as a pinhole collimator material in preclinical small-animal imaging: A Monte Carlo evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mikael, E-mail: Mikael.Peterson@med.lu.se; Strand, Sven-Erik; Ljungberg, Michael

    Purpose: Pinhole collimation is the most common method of high-resolution preclinical single photon emission computed tomography imaging. The collimators are usually constructed from dense materials with high atomic numbers, such as gold and platinum, which are expensive and not always flexible in the fabrication step. In this work, the authors have investigated the properties of a fusible alloy called Rose’s metal and its potential in pinhole preclinical imaging. When compared to current standard pinhole materials such as gold and platinum, Rose’s metal has a lower density and a relatively low effective atomic number. However, it is inexpensive, has a lowmore » melting point, and does not contract when solidifying. Once cast, the piece can be machined with high precision. The aim of this study was to evaluate the imaging properties for Rose’s metal and compare them with those of standard materials. Methods: After validating their Monte Carlo code by comparing its results with published data and the results from analytical calculations, they investigated different pinhole geometries by varying the collimator material, acceptance angle, aperture diameter, and photon incident angle. The penetration-to-scatter and penetration-to-total component ratios, sensitivity, and the spatial resolution were determined for gold, tungsten, and Rose’s metal for two radionuclides, {sup 99}Tc{sup m} and {sup 125}I. Results: The Rose’s metal pinhole-imaging simulations show higher penetration/total and scatter/total ratios. For example, the penetration/total is 50% for gold and 75% for Rose’s metal when simulating {sup 99}Tc{sup m} with a 0.3 mm aperture diameter and a 60° acceptance angle. However, the degradation in spatial resolution remained below 10% relative to the spatial resolution for gold for acceptance angles below 40° and aperture diameters larger than 0.5 mm. Conclusions: Extra penetration and scatter associated with Rose’s metal contribute to degradation in the spatial resolution, but this degradation is not always substantial. The most important factor besides the collimator material was the acceptance angle. This should be kept to a minimum to prevent unnecessary scatter and penetration. For {sup 125}I, the difference in spatial resolution between gold and Rose’s metal is very small, 2.2% in the worst-case scenario. Based on these results, the authors conclude that Rose’s metal is an alternative to standard materials not only for low-energy photon imaging but also for medium-energy applications that require low-cost, flexible pinhole configurations and designs, and that can tolerate a degraded spatial resolution.« less

  20. Effects of spatial resolution ratio in image fusion

    USGS Publications Warehouse

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2008-01-01

    In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.

  1. Example-Based Super-Resolution Fluorescence Microscopy.

    PubMed

    Jia, Shu; Han, Boran; Kutz, J Nathan

    2018-04-23

    Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.

  2. Sensitivity of STIS First-OrderMedium Resolution Modes

    NASA Astrophysics Data System (ADS)

    Proffitt, Charles R.

    2006-07-01

    The sensitivities for STIS first-order medium resolution modes were redetermined usingon-orbit observations of the standard DA white dwarfs G 191-B2B, GD 71, and GD 153.We review the procedures and assumptions used to derive the adopted throughputs, and discuss the remaining errors and uncertainties.

  3. Discretization limits of multi-component lattice-Boltzmann methods and implications on the real porous media simulations

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Li, Z.; Middleton, J.; Varslot, T.; McClure, J. E.; Sheppard, A.

    2017-12-01

    Multicomponent lattice-Boltzmann (LB) modeling is widely applied to study two-phase flow in various porous media. However, the impact on LB modeling of the fundamental trade-off between image resolution and field of view has received relatively little attention. This is important since 3D images of geological samples rarely have both sufficient resolution to capture fine structure and sufficient field of view to capture a full representative elementary volume of the medium. To optimize the simulations, it is important to know the minimum number of grid points that LB methods require to deliver physically meaningful results, and allow for the sources of measurement uncertainty to be appropriately balanced. In this work, we study the behavior of the Shan-Chen (SC) and Rothman-Keller (RK) models when the phase interfacial radius of curvature and the feature size of the medium approach the discrete unit size of the computational grid. Both simple, small-scale test geometries and real porous media are considered. Models' behavior in the extreme discrete limit is classified ranging from gradual loss of accuracy to catastrophic numerical breakdown. Based on this study, we provide guidance for experimental data collection and how to apply the LBM to accurately resolve physics of interest for two-fluid flow in porous media. Resolution effects are particularly relevant to the study of low-porosity systems, including fractured materials, when the typical pore width may only be a few voxels across.Overall, we find that the shortcoming of the SC model predominantly arises from the strongly pressure-dependent miscibility of the fluid components, where small droplets with high interfacial curvature have an exaggerated tendency to dissolve into the surrounding fluid. For the RK model, the most significant shortcoming is unphysical flow of non-wetting phase through narrow channels and crevices (2 voxels across or smaller), which we observed both in simple capillary tube and realistic porous medium. This process generates unphysical non-wetting phase ganglia that are hard to distinguish from ganglia of physical origin (e.g. arising from snap-off). While both methods have advantages and shortcomings, the RK model with modern enhancements seems to exhibit fewer instabilities, and is more suitable for system of low miscibility.

  4. Autonomous Navigation Performance During The Hartley 2 Comet Flyby

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J; Kennedy, Brian A.; Bhaskaran, Shyam

    2012-01-01

    On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance.

  5. Ultrasonic superlensing jets and acoustic-fork sheets

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-05-01

    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on ;hyper; or ;super; lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical 'snail-fork' shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices.

  6. Importance of Laser Scanning Resolution in the Process of Recreating the Architectural Details of Historical Buildings

    NASA Astrophysics Data System (ADS)

    Pawłowicz, Joanna A.

    2017-10-01

    The TLS method (Terrestrial Laser Scanning) may replace the traditional building survey methods, e.g. those requiring the use measuring tapes or range finders. This technology allows for collecting digital data in the form of a point cloud, which can be used to create a 3D model of a building. In addition, it allows for collecting data with an incredible precision, which translates into the possibility to reproduce all architectural features of a building. This data is applied in reverse engineering to create a 3D model of an object existing in a physical space. This study presents the results of a research carried out using a point cloud to recreate the architectural features of a historical building with the application of reverse engineering. The research was conducted on a two-storey residential building with a basement and an attic. Out of the building’s façade sticks a veranda featuring a complicated, wooden structure. The measurements were taken at the medium and the highest resolution using a ScanStation C10 laser scanner by Leica. The data obtained was processed using specialist software, which allowed for the application of reverse engineering, especially for reproducing the sculpted details of the veranda. Following digitization, all redundant data was removed from the point cloud and the cloud was subjected to modelling. For testing purposes, a selected part of the veranda was modelled by means of two methods: surface matching and Triangulated Irregular Network. Both modelling methods were applied in the case of data collected at medium and the highest resolution. Creating a model based on data obtained at medium resolution, both by means of the surface matching and the TIN method, does not allow for a precise recreation of architectural details. The study presents certain sculpted elements recreated based on the highest resolution data with superimposed TIN juxtaposed against a digital image. The resulting model is very precise. Creating good models requires highly accurate field data. It is important to properly choose the distance between the measuring station and the measured object in order to ensure that the angles of incidence (horizontal and vertical) of the laser beam are as straight as possible. The model created based on medium resolution offers very poor quality of details, i.e. only the bigger, basic elements of each detail are clearly visible, while the smaller ones are blurred. This is why in order to obtain data sufficient to reproduce architectural details laser scanning should be performed at the highest resolution. In addition, modelling by means of the surface matching method should be avoided - a better idea is to use the TIN method. In addition to providing a realistically-looking visualization, the method has one more important advantage - it is 4 times faster than the surface matching method.

  7. Graphene-based ultrasonic detector for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Song, Wei; Zhang, Chonglei; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2018-03-01

    Taking advantage of optical absorption imaging contrast, photoacoustic imaging technology is able to map the volumetric distribution of the optical absorption properties within biological tissues. Unfortunately, traditional piezoceramics-based transducers used in most photoacoustic imaging setups have inadequate frequency response, resulting in both poor depth resolution and inaccurate quantification of the optical absorption information. Instead of the piezoelectric ultrasonic transducer, we develop a graphene-based optical sensor for detecting photoacoustic pressure. The refractive index in the coupling medium is modulated due to photoacoustic pressure perturbation, which creates the variation of the polarization-sensitive optical absorption property of the graphene. As a result, the photoacoustic detection is realized through recording the reflectance intensity difference of polarization light. The graphene-based detector process an estimated noise-equivalentpressure (NEP) sensitivity of 550 Pa over 20-MHz bandwidth with a nearby linear pressure response from 11.0 kPa to 53.0 kPa. Further, a graphene-based photoacoustic microscopy is built, and non-invasively reveals the microvascular anatomy in mouse ears label-freely.

  8. Vegetation Coverage and Impervious Surface Area Estimated Based on the Estarfm Model and Remote Sensing Monitoring

    NASA Astrophysics Data System (ADS)

    Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun

    2018-04-01

    Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  9. Coastal habitat mapping in the Aegean Sea using high resolution orthophoto maps

    NASA Astrophysics Data System (ADS)

    Topouzelis, Konstantinos; Papakonstantinou, Apostolos; Doukari, Michaela; Stamatis, Panagiotis; Makri, Despina; Katsanevakis, Stelios

    2017-09-01

    The significance of coastal habitat mapping lies in the need to prevent from anthropogenic interventions and other factors. Until 2015, Landsat-8 (30m) imagery were used as medium spatial resolution satellite imagery. So far, Sentinel-2 satellite imagery is very useful for more detailed regional scale mapping. However, the use of high resolution orthophoto maps, which are determined from UAV data, is expected to improve the mapping accuracy. This is due to small spatial resolution of the orthophoto maps (30 cm). This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. Additionally, the produced orthophoto maps analyzed through an object-based image analysis (OBIA) and nearest-neighbor classification for mapping the coastal habitats. Classification classes included the main general habitat types, i.e. seagrass, soft bottom, and hard bottom The developed methodology applied at the Koumbara beach (Ios Island - Greece). Results showed that UAS's data revealed the sub-bottom complexity in large shallow areas since they provide such information in the spatial resolution that permits the mapping of seagrass meadows with extreme detail. The produced habitat vectors are ideal as reference data for studies with satellite data of lower spatial resolution.

  10. Hyperspectral and multispectral satellite sensors for mapping chlorophyll content in a Mediterranean Pinus sylvestris L. plantation

    NASA Astrophysics Data System (ADS)

    Navarro-Cerrillo, Rafael Mª; Trujillo, Jesus; de la Orden, Manuel Sánchez; Hernández-Clemente, Rocío

    2014-02-01

    A new generation of narrow-band hyperspectral remote sensing data offers an alternative to broad-band multispectral data for the estimation of vegetation chlorophyll content. This paper examines the potential of some of these sensors comparing red-edge and simple ratio indices to develop a rapid and cost-effective system for monitoring Mediterranean pine plantations in Spain. Chlorophyll content retrieval was analyzed with the red-edge R750/R710 index and the simple ratio R800/R560 index using the PROSPECT-5 leaf model and the Discrete Anisotropic Radiative Transfer (DART) and experimental approach. Five sensors were used: AHS, CHRIS/Proba, Hyperion, Landsat and QuickBird. The model simulation results obtained with synthetic spectra demonstrated the feasibility of estimating Ca + b content in conifers using the simple ratio R800/R560 index formulated with different full widths at half maximum (FWHM) at the leaf level. This index yielded a r2 = 0.69 for a FWHM of 30 nm and r2 = 0.55 for a FWHM of 70 nm. Experimental results compared the regression coefficients obtained with various multispectral and hyperspectral images with different spatial resolutions at the stand level. The strongest relationships where obtained using high-resolution hyperspectral images acquired with the AHS sensor (r2 = 0.65) while coarser spatial and spectral resolution images yielded a lower root mean square error (QuickBird r2 = 0.42; Landsat r2 = 0.48; Hyperion r2 = 0.56; CHRIS/Proba r2 = 0.57). This study shows the need to estimate chlorophyll content in forest plantations at the stand level with high spatial and spectral resolution sensors. Nevertheless, these results also show the accuracy obtained with medium-resolution sensors when monitoring physiological processes. Generating biochemical maps at the stand level could play a critical rule in the early detection of forest decline processes enabling their use in precision forestry.

  11. Schlieren System and method for moving objects

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1995-01-01

    A system and method are provided for recording density changes in a flow field surrounding a moving object. A mask having an aperture for regulating the passage of images is placed in front of an image recording medium. An optical system is placed in front of the mask. A transition having a light field-of-view and a dark field-of-view is located beyond the test object. The optical system focuses an image of the transition at the mask such that the aperture causes a band of light to be defined on the image recording medium. The optical system further focuses an image of the object through the aperture of the mask so that the image of the object appears on the image recording medium. Relative motion is minimized between the mask and the transition. Relative motion is also minimized between the image recording medium and the image of the object. In this way, the image of the object and density changes in a flow field surrounding the object are recorded on the image recording medium when the object crosses the transition in front of the optical system.

  12. Monitoring rangeland dynamics in Senegal with advanced very high resolution radiometer data

    USGS Publications Warehouse

    Tappan, G. Gray; Tyler, Dean J.; Wehde, M. E.; Moore, Donald G.

    1992-01-01

    Time‐series Normalized Difference Vegetation Index (NDVI) data, computed from Advanced Very High Resolution Radiometer data, are being used by regional and national programs in the African Sahel to monitor seasonal rangeland conditions. The data are often used as indicators of grazing conditions and drought. However, distinguishing rangelands from other vegetation cover types on NDVI images is difficult. A second complication is that rangeland types and their associated productivity vary geographically by soil type. To effectively assess rangeland conditions, seasonal fluctuations (due to climatic cycles) must be isolated from long‐term production characteristics associated with vegetation type and soil differences. Rangeland NDVI dynamics, including qualitative assessments of rangeland production, and the timing and length of the growing season in Senegal were examined by using 7.4‐km global area coverage satellite data. Analyses were based on 10‐day NDVI composite image data from 1982 through 1989. The NDVI image data were stratified by rangeland and soil polygons derived from locally available resource maps. Time‐series NDVI statistics were calculated from the resource polygons that had been interpreted into high, medium, and low production rangelands. Analysts monitoring rangeland conditions can better identify seasonal anomalies such as drought by comparing production potential within homogeneous; resource polygons with the current NDVI data.

  13. Pore-scale micro-computed-tomography imaging: Nonwetting-phase cluster-size distribution during drainage and imbibition

    NASA Astrophysics Data System (ADS)

    Georgiadis, A.; Berg, S.; Makurat, A.; Maitland, G.; Ott, H.

    2013-09-01

    We investigated the cluster-size distribution of the residual nonwetting phase in a sintered glass-bead porous medium at two-phase flow conditions, by means of micro-computed-tomography (μCT) imaging with pore-scale resolution. Cluster-size distribution functions and cluster volumes were obtained by image analysis for a range of injected pore volumes under both imbibition and drainage conditions; the field of view was larger than the porosity-based representative elementary volume (REV). We did not attempt to make a definition for a two-phase REV but used the nonwetting-phase cluster-size distribution as an indicator. Most of the nonwetting-phase total volume was found to be contained in clusters that were one to two orders of magnitude larger than the porosity-based REV. The largest observed clusters in fact ranged in volume from 65% to 99% of the entire nonwetting phase in the field of view. As a consequence, the largest clusters observed were statistically not represented and were found to be smaller than the estimated maximum cluster length. The results indicate that the two-phase REV is larger than the field of view attainable by μCT scanning, at a resolution which allows for the accurate determination of cluster connectivity.

  14. Solving the Secondary Structure Matching Problem in Cryo-EM De Novo Modeling Using a Constrained K-Shortest Path Graph Algorithm.

    PubMed

    Al Nasr, Kamal; Ranjan, Desh; Zubair, Mohammad; Chen, Lin; He, Jing

    2014-01-01

    Electron cryomicroscopy is becoming a major experimental technique in solving the structures of large molecular assemblies. More and more three-dimensional images have been obtained at the medium resolutions between 5 and 10 Å. At this resolution range, major α-helices can be detected as cylindrical sticks and β-sheets can be detected as plain-like regions. A critical question in de novo modeling from cryo-EM images is to determine the match between the detected secondary structures from the image and those on the protein sequence. We formulate this matching problem into a constrained graph problem and present an O(Δ(2)N(2)2(N)) algorithm to this NP-Hard problem. The algorithm incorporates the dynamic programming approach into a constrained K-shortest path algorithm. Our method, DP-TOSS, has been tested using α-proteins with maximum 33 helices and α-β proteins up to five helices and 12 β-strands. The correct match was ranked within the top 35 for 19 of the 20 α-proteins and all nine α-β proteins tested. The results demonstrate that DP-TOSS improves accuracy, time and memory space in deriving the topologies of the secondary structure elements for proteins with a large number of secondary structures and a complex skeleton.

  15. Hyperspectral CMOS imager

    NASA Astrophysics Data System (ADS)

    Jerram, P. A.; Fryer, M.; Pratlong, J.; Pike, A.; Walker, A.; Dierickx, B.; Dupont, B.; Defernez, A.

    2017-11-01

    CCDs have been used for many years for Hyperspectral imaging missions and have been extremely successful. These include the Medium Resolution Imaging Spectrometer (MERIS) [1] on Envisat, the Compact High Resolution Imaging Spectrometer (CHRIS) on Proba and the Ozone Monitoring Instrument operating in the UV spectral region. ESA are also planning a number of further missions that are likely to use CCD technology (Sentinel 3, 4 and 5). However CMOS sensors have a number of advantages which means that they will probably be used for hyperspectral applications in the longer term. There are two main advantages with CMOS sensors: First a hyperspectral image consists of spectral lines with a large difference in intensity; in a frame transfer CCD the faint spectral lines have to be transferred through the part of the imager illuminated by intense lines. This can lead to cross-talk and whilst this problem can be reduced by the use of split frame transfer and faster line rates CMOS sensors do not require a frame transfer and hence inherently will not suffer from this problem. Second, with a CMOS sensor the intense spectral lines can be read multiple times within a frame to give a significant increase in dynamic range. We will describe the design, and initial test of a CMOS sensor for use in hyperspectral applications. This device has been designed to give as high a dynamic range as possible with minimum cross-talk. The sensor has been manufactured on high resistivity epitaxial silicon wafers and is be back-thinned and left relatively thick in order to obtain the maximum quantum efficiency across the entire spectral range

  16. Rise to SUMMIT: the Sydney University Multiple-Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Moore, Anna M.; Davis, John

    2000-07-01

    The Sydney University Multiple Mirror Telescope (SUMMIT) is a medium-sized telescope designed specifically for high resolution stellar spectroscopy. Throughout the design emphasis has been placed on high efficiency at low cost. The telescope consists of four 0.46 m diameter mirrors mounted on a single welded steel frame. Specially designed mirror cells support and point each mirror, allowing accurate positioning of the images on optical fibers located at the foci of the mirrors. Four fibers convey the light to the future location of a high resolution spectrograph away from the telescope in a stable environment. An overview of the commissioning of the telescope is presented, including the guidance and automatic mirror alignment and focussing systems. SUMMIT is located alongside the Sydney University Stellar Interferometer at the Paul Wild Observatory, near Narrabri, Northern New South Wales.

  17. First on-sky demonstration of the piezoelectric adaptive secondary mirror.

    PubMed

    Guo, Youming; Zhang, Ang; Fan, Xinlong; Rao, Changhui; Wei, Ling; Xian, Hao; Wei, Kai; Zhang, Xiaojun; Guan, Chunlin; Li, Min; Zhou, Luchun; Jin, Kai; Zhang, Junbo; Deng, Jijiang; Zhou, Longfeng; Chen, Hao; Zhang, Xuejun; Zhang, Yudong

    2016-12-15

    We propose using a piezoelectric adaptive secondary mirror (PASM) in the medium-sized adaptive telescopes with a 2-4 m aperture for structure and control simplification by utilizing the piezoelectric actuators in contrast with the voice-coil adaptive secondary mirror. A closed-loop experimental setup was built for on-sky demonstration of the 73-element PASM developed by our laboratory. In this Letter, the PASM and the closed-loop adaptive optics system are introduced. High-resolution stellar images were obtained by using the PASM to correct high-order wavefront errors in May 2016. To the best of our knowledge, this is the first successful on-sky demonstration of the PASM. The results show that with the PASM as the deformable mirror, the angular resolution of the 1.8 m telescope can be effectively improved.

  18. Using MODIS Terra 250 m Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; McKee, Brent A.

    2004-01-01

    High concentrations of suspended particulate matter in coastal waters directly effect or govern numerous water column and benthic processes. The concentration of suspended sediments derived from bottom sediment resuspension or discharge of sediment-laden rivers is highly variable over a wide range of time and space scales. Although there has been considerable effort to use remotely sensed images to provide synoptic maps of suspended particulate matter, there are limited routine applications of this technology due in-part to the low spatial resolution, long revisit period, or cost of most remotely sensed data. In contrast, near daily coverage of medium-resolution data is available from the MODIS Terra instrument without charge from several data distribution gateways. Equally important, several display and processing programs are available that operate on low cost computers.

  19. The interaction of the halo around the butterfly planetary nebula NGC 650-1 with the interstellar medium

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Guerrero, M. A.; Nigoche-Netro, A.; Olguín, L.; Gómez-Muñoz, M. A.; Sabin, L.; Vázquez, R.; Akras, S.; Ramírez Vélez, J. C.; Chávez, M.

    2018-03-01

    With its bright and wide equatorial waist seen almost edge-on (`the butterfly body') and the faint and broad bipolar extensions (`the butterfly wings'), NGC 650-1 is the archetypical example of bipolar planetary nebula (PN) with butterfly morphology. We present here deep high-resolution broad- and narrow-band optical images that expose the rich and intricate fine structure of this bipolar PN, with small-scale bubble-like features and collimated outflows. A SHAPE spatio-kinematic model indicates that NGC 650-1 has a broad central torus with an inclination angle of 75° with respect to the line of sight, whereas that of the bipolar lobes, which are clearly seen in the position-velocity maps, is 85°. Large field of view deep images show, for first time, an arc-like diffuse envelope in low- and high-excitation emission lines located up to 180 arcsec towards the east-south-east of the central star, well outside the main nebula. This morphological component is confirmed by Spitzer MIPS and WISE infrared imaging, as well as by long-slit low- and high-dispersion optical spectroscopic observations. Hubble Space Telescope images of NGC 650-1 obtained at two different epochs ˜14 yr apart reveal the proper motion of the central star along this direction. We propose that this motion of the star through the interstellar medium compresses the remnant material of a slow asymptotic giant branch wind, producing this bow-shock-like feature.

  20. Revealing Asymmetries in the HD181327 Debris Disk: A Recent Massive Collision or Interstellar Medium Warping

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.

    2014-01-01

    New multi-roll coronagraphic images of the HD181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/ deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain.We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass greater than 1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  1. Revealing asymmetries in the HD 181327 debris disk: A recent massive collision or interstellar medium warping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Christopher C.; Kuchner, Marc J.; Schneider, Glenn

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for themore » disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.« less

  2. Revealing Asymmetries in the HD 181327 Debris Disk: A Recent Massive Collision or Interstellar Medium Warping

    NASA Astrophysics Data System (ADS)

    Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.

    2014-07-01

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  3. Focusing light in a bianisotropic slab with negatively refracting materials.

    PubMed

    Liu, Yan; Guenneau, Sebastien; Gralak, Boris; Ramakrishna, S Anantha

    2013-04-03

    We investigate the electromagnetic response of a pair of complementary bianisotropic media, which consist of a medium with positive refractive index (+ε, +μ, +ξ) and a medium with negative refractive index(-ε, -μ, -ξ). We show that this idealized system has peculiar imaging properties in that it reproduces images of a source, in principle, with unlimited resolution. We then consider an infinite array of line sources regularly spaced in a 1D photonic crystal (PC) consisting of 2n layers of bianisotropic complementary media. Using coordinate transformations, we map this system into 2D corner chiral lenses of 2n heterogeneous anisotropic complementary media sharing a vertex, within which light circles around closed trajectories. Alternatively, one can consider corner lenses with homogeneous isotropic media and map them into 1D PCs with heterogeneous bianisotropic layers. Interestingly, such complementary media are described by scalar, or matrix valued, sign-shifting parameters, which satisfy a new version of the generalized lens theorem of Pendry and Ramakrishna. This theorem can be derived using Fourier series solutions of the Maxwell-Tellegen equations, or from space-time symmetry arguments. Also of interest are 2D periodic checkerboards consisting of alternating rectangular cells of complementary media which are such that one point source in one cell gives rise to an infinite set of images with an image in every other cell. Such checkerboards can themselves be mapped into a class of 3D corner lenses of complementary bianisotropic media. These theoretical results are illustrated by finite element computations.

  4. All-optical optoacoustic microscopy system based on probe beam deflection technique

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  5. Application of nonlinear phenomena induced by focused ultrasound to bone imaging.

    PubMed

    Callé, Samuel; Remenieras, Jean-Pierre; Bou Matar, Olivier; Defontaine, Marielle; Patat, Frederic

    2003-03-01

    A tissue deformability image is obtained with the vibroacoustography imaging method using mechanical low-frequency (LF) excitation. This ultrasonic excitation is created locally by means of a focused annular array emitting two primary beams at two close frequencies, f(1) and f(2) (f(2) = f(1) + f(LF)). The LF acoustic emission resulting from the vibration of the medium is detected by a sensitive hydrophone and then used to form the image. This noninvasive imaging method was demonstrated in this study to be suitable for bone imaging, with x and y transverse resolutions less than 300 micro m. Two bone sites susceptible to demineralization were tested: the calcaneus and the neck of the femur. The vibroacoustic method provides valuable ultrasonic images regarding the structure and the elastic properties of bone tissue. Correlation was made between vibroacoustic bone images, performed in vitro, and images acquired by other imaging methods (i.e., bone ultrasound attenuation and x-ray computerized tomography (CT)). Moreover, the amplitudes of vibroacoustic signals radiating from phosphocalcic ceramic samples (bone substitute) of different porosity were evaluated. The good correlation between these results and the description of our images and the quality of vibroacoustic images indicate that bone decalcification could be detected using vibroacoustography.

  6. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  7. Detecting Water Bodies in LANDSAT8 Oli Image Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Jiang, W.; He, G.; Long, T.; Ni, Y.

    2018-04-01

    Water body identifying is critical to climate change, water resources, ecosystem service and hydrological cycle. Multi-layer perceptron(MLP) is the popular and classic method under deep learning framework to detect target and classify image. Therefore, this study adopts this method to identify the water body of Landsat8. To compare the performance of classification, the maximum likelihood and water index are employed for each study area. The classification results are evaluated from accuracy indices and local comparison. Evaluation result shows that multi-layer perceptron(MLP) can achieve better performance than the other two methods. Moreover, the thin water also can be clearly identified by the multi-layer perceptron. The proposed method has the application potential in mapping global scale surface water with multi-source medium-high resolution satellite data.

  8. Laser confocal feedback tomography and nano-step height measurement

    PubMed Central

    Tan, Yidong; Wang, Weiping; Xu, Chunxin; Zhang, Shulian

    2013-01-01

    A promising method for tomography and step height measurement is proposed, which combines the high sensitivity of the frequency-shifted feedback laser and the axial positioning ability of confocal microscopy. By demodulating the feedback-induced intensity modulation signals, the obtained amplitude and phase information are used to respectively determine the coarse and fine measurement of the samples. Imaging the micro devices and biological samples by the demodulated amplitude, this approach is proved to be able to achieve the cross-sectional image in highly scattered mediums. And then the successful height measurement of nano-step on a glass-substrate grating by combination of both amplitude and phase information indicates its axial high resolution (better than 2 nm) in a non-ambiguous range of about ten microns. PMID:24145717

  9. Medium Altitude Endurance Unmanned Air Vehicle

    NASA Astrophysics Data System (ADS)

    Ernst, Larry L.

    1994-10-01

    The medium altitude endurance unmanned air vehicle (MAE UAV) program (formerly the tactical endurance TE UAV) is a new effort initiated by the Department of Defense to develop a ground launched UAV that can fly out 500 miles, remain on station for 24 hours, and return. It will transmit high resolution optical, infrared, and synthetic aperture radar (SAR) images of well-defended target areas through satellite links. It will provide near-real-time, releasable, low cost/low risk surveillance, targeting and damage assessment complementary to that of satellites and manned aircraft. The paper describes specific objectives of the MAE UAV program (deliverables and schedule) and the program's unique position as one of several programs to streamline the acquisition process under the cognizance of the newly established Airborne Reconnaissance Office. I discuss the system requirements and operational concept and describe the technical capabilities and characteristics of the major subsystems (airframe, propulsion, navigation, sensors, communication links, ground station, etc.) in some detail.

  10. Soft x-ray holography and microscopy of biological cells

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Gao, Hongyi; Xie, Honglan; Li, Ruxin; Xu, Zhizhan

    2003-10-01

    Some experimental results on soft X-ray microscopy and holography imaging of biological specimens are presented in the paper. As we know, due to diffraction effects, there exists a resolution limit determined by wavelength λ and numerical aperture NA in conventional optical microscopy. In order to improve resolution, the num erical aperture should be made as large as possible and the wavelength as short as possible. Owing to the shorter wavelength, X-rays provide the potential of higher resolution in X-ray microscopy, holography image and allow for exam ination the interior structures of thicker specimens. In the experiments, we used synchrotron radiation source in Hefei as light source. Soft X-rays come from a bending magnet in 800 M eV electron storage ring with characteristic wavelength of 2.4 nm. The continuous X-ray spectrums are monochromatized by a zone-plate and a pinhole with 300 m diameter. The experimental set-up is typical contact microscopic system, its main advantage is simplicity and no special optical element is needed. The specimens used in the experiments of microscopic imaging are the colibacillus, the gingko vascular hundle and the fritillaries ovary karyon. The specimen for holographic imaging is the spider filam ents. The basic structures of plant cells such as the cell walls, the cytoplasm and the karyon especially the joint structures between the cells are observed clearly. An experimental study on a thick biological specimen that is a whole sporule w ith the thickness of about 30 μm is performed. In the holographic experiments, the experimental setup is typical Gabor in-line holography. The specimen is placed in line with X-ray source, which provides both the reference w aves and specimen illum ination. The specimen is some spider filament, which adhere to a Si3N4 film. The recording medium is PM M A, which is placed at recording distance of about 400 μm from the specimen. The hologram s were reconstructed by digital method with 300 nm resolutions. A novel method for recording in-line hologram is proposed which is called X-ray in-line holography with zone-plate magnification in this paper. The magnification factor of the micro zone plate imaging is about 103. The transverse resolution can be 48 nm in this method.

  11. Medium Resolution Spectroscopy of Boyajian's Star (KIC 8462852)

    NASA Astrophysics Data System (ADS)

    Steele, I. A.; Lamb, G. P.; Copperwheat, C. M.; Jermak, H. E.

    2017-05-01

    ATel #10405 reports that a several percent dip in the brightness of KIC 8462852 is underway. We report medium resolution spectroscopy (R=2500) taken with the FRODOSpec fibre fed integral field spectrograph of the 2.0 meter Liverpool Telescope, La Palma obtained on 20th May 2017 starting at 01:20UT.

  12. Flow in Coal Seams: An Unconventional Challenge

    NASA Astrophysics Data System (ADS)

    Armstrong, R. T.; Mostaghimi, P.; Jing, Y.; Gerami, A.

    2016-12-01

    A significant unconventional resource for energy is the methane gas stored in shallow coal beds, known as coal seam gas. An integrated imaging and modelling framework is developed for analysing petrophysical behaviour of coals. X-ray micro-computed tomography (micro-CT) is applied using a novel contrast agent method for visualising micrometer-sized fractures in coal. The technique allows for the visualisation of coal features not visible with conventional imaging methods. A Late Permian medium volatile bituminous coal from Moura Coal Mine (Queensland, Australia) is imaged and the resulting three-dimensional coal fracture system is extracted for fluid flow simulations. The results demonstrate a direct relationship between coal lithotype and permeability. Scanning electron microscope and energy dispersive spectrometry (SEM-EDS) together with X-ray diffraction (XRD) methods are used for identifying mineral matters at high resolution. SEM high-resolution images are also used to calibrate the micro-CT images and measure the exact aperture size of fractures. This leads to a more accurate estimation of permeability using micro-CT images. To study the significance of geometry and topology of the fracture system, a fracture reconstruction method based on statistical properties of coal is also developed. The network properties including the frequency, aperture size distribution, length, and spacing of the imaged coal fracture system. This allows for a sensitivity analysis on the effects that coal fracture topology and geometry has on coal petrophysical properties. Furthermore, we generate microfluidic chips based on coal fracture observations. The chip is used for flow experiments to visualise multi-fluid processes and measure recovery of gas. A combined numerical and experimental approach is applied to obtain relative permeability curves for different regions of interest. A number of challenges associated with coal samples are discussed and insights are provided for better understanding of these complex porous media systems.

  13. Low-radio-frequency eclipses of the redback pulsar J2215+5135 observed in the image plane with LOFAR.

    PubMed

    Broderick, J W; Fender, R P; Breton, R P; Stewart, A J; Rowlinson, A; Swinbank, J D; Hessels, J W T; Staley, T D; van der Horst, A J; Bell, M E; Carbone, D; Cendes, Y; Corbel, S; Eislöffel, J; Falcke, H; Grießmeier, J-M; Hassall, T E; Jonker, P; Kramer, M; Kuniyoshi, M; Law, C J; Markoff, S; Molenaar, G J; Pietka, M; Scheers, L H A; Serylak, M; Stappers, B W; Ter Veen, S; van Leeuwen, J; Wijers, R A M J; Wijnands, R; Wise, M W; Zarka, P

    2016-07-01

    The eclipses of certain types of binary millisecond pulsars (i.e. 'black widows' and 'redbacks') are often studied using high-time-resolution, 'beamformed' radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of two weeks - six months, we find preliminary evidence that the eclipse duration is frequency dependent (∝ν -0.4 ), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.

  14. Biological Studies with Laser-Polarized ^129Xe

    NASA Astrophysics Data System (ADS)

    Tseng, C. H.; Oteiza, E. R.; Wong, G. A.; Walsworth, R. L.; Albert, M. S.; Nascimben, L.; Peled, S.; Sakai, K.; Jolesz, F. A.

    1996-05-01

    We have studied several biological systems using laser-polarized ^129Xe. In certain tissues magnetic resonance imaging (MRI) using inhaled laser-polarized noble gases may provide images superior to those from conventional proton MRI. High resolution laser-polarized ^3He images of air spaces in the human lung were recently obtained by the Princeton/Duke group. However, ^3He is not very soluble in tissue. Therefore, we are using laser polarized ^129Xe (tissue-soluble), with the long term goal of biomedical functional imaging. We have investigated multi-echo and multi-excitation magnetic resonance detection schemes to exploit the highly non-thermal ^129Xe magnetization produced by the laser polarization technique. We have inhalated live rats with laser-polarized ^129Xe gas and measured three distinct ^129Xe tissue resonances that last 20 to 40 sec. As a demonstration, we obtained a laser polarized ^129Xe image of the human oral cavity. Currently we are measuring the polarization lifetime of ^129Xe dissolved in human blood, the biological transporting medium. These studies and other recent developments will be reported.

  15. Time-Series Photographs of the Sea Floor in Western Massachusetts Bay: June 1998 to May 1999

    USGS Publications Warehouse

    Butman, Bradford; Alexander, P. Soupy; Bothner, Michael H.

    2004-01-01

    This report presents time-series photographs of the sea floor obtained from an instrumented tripod deployed at Site A in western Massachusetts Bay (42? 22.6' N., 70? 47.0' W., 30 m water depth, figure 1) from June 1998 through May 1999. Site A is approximately 1 km south of an ocean outfall that began discharging treated sewage effluent from the Boston metropolitan area into Massachusetts Bay in September 2000. Time-series photographs and oceanographic observations were initiated at Site A in December 1989 and are anticipated to continue to September 2005. This one of a series of reports that present these images in digital form. The objective of these reports is to enable easy and rapid viewing of the photographs and to provide a medium-resolution digital archive. The images, obtained every 4 hours, are presented as a movie (in .avi format, which may be viewed using an image viewer such as QuickTime or Windows Media Player) and as individual images (.tif format). The images provide time-series observations of changes of the sea floor and near-bottom water properties.

  16. Using redundancy of round-trip ultrasound signal for non-continuous arrays: Application to gap and blockage compensation.

    PubMed

    Robert, Jean-Luc; Erkamp, Ramon; Korukonda, Sanghamithra; Vignon, François; Radulescu, Emil

    2015-11-01

    In ultrasound imaging, an array of elements is used to image a medium. If part of the array is blocked by an obstacle, or if the array is made from several sub-arrays separated by a gap, grating lobes appear and the image is degraded. The grating lobes are caused by missing spatial frequencies, corresponding to the blocked or non-existing elements. However, in an active imaging system, where elements are used both for transmitting and receiving, the round trip signal is redundant: different pairs of transmit and receive elements carry similar information. It is shown here that, if the gaps are smaller than the active sub-apertures, this redundancy can be used to compensate for the missing signals and recover full resolution. Three algorithms are proposed: one is based on a synthetic aperture method, a second one uses dual-apodization beamforming, and the third one is a radio frequency (RF) data based deconvolution. The algorithms are evaluated on simulated and experimental data sets. An application could be imaging through ribs with a large aperture.

  17. On-orbit performance of the Landsat 8 Operational Land Imager

    USGS Publications Warehouse

    Micijevic, Esad; Vanderwerff, Kelly; Scaramuzza, Pat; Morfitt, Ron; Barsi, Julia A.; Levy, Raviv

    2014-01-01

    The Landsat 8 satellite was launched on February 11, 2013, to systematically collect multispectral images for detection and quantitative analysis of changes on the Earth’s surface. The collected data are stored at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and continue the longest archive of medium resolution Earth images. There are two imaging instruments onboard the satellite: the Operational Land Imager (OLI) and the Thermal InfraRed Sensor (TIRS). This paper summarizes radiometric performance of the OLI including the bias stability, the system noise, saturation and other artifacts observed in its data during the first 1.5 years on orbit. Detector noise levels remain low and Signal-To-Noise Ratio high, largely exceeding the requirements. Impulse noise and saturation are present in imagery, but have negligible effect on Landsat 8 products. Oversaturation happens occasionally, but the affected detectors quickly restore their nominal responsivity. Overall, the OLI performs very well on orbit and provides high quality products to the user community. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  18. Portable concealed weapon detection using millimeter-wave FMCW radar imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Michael A.; Chang, Yu-Wen

    2001-02-01

    Unobtrusive detection of concealed weapons on persons or in abandoned bags would provide law enforcement a powerful tool to focus resources and increase traffic throughput in high- risk situations. We have developed a fast image scanning 94 GHz radar system that is suitable for portable operation and remote viewing of radar data. This system includes a novel fast image-scanning antenna that allows for the acquisition of medium resolution 3D millimeter wave images of stationary targets with frame times on order of one second. The 3D radar data allows for potential isolation of concealed weapons from body and environmental clutter such as nearby furniture or other people. The radar is an active system so image quality is not affected indoors, emitted power is however very low so there are no health concerns for operator or targets. The low power operation is still sufficient to penetrate heavy clothing or material. Small system size allows for easy transport and rapid deployment of the system as well as an easy migration path to future hand held systems.

  19. Hubble space telescope imaging of decoupled dust clouds in the ram pressure stripped Virgo spirals NGC 4402 and NGC 4522

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramson, Anne; Kenney, Jeffrey D. P., E-mail: anne.abramson@yale.edu, E-mail: jeff.kenney@yale.edu

    We present the highest-resolution study to date of the interstellar medium (ISM) in galaxies undergoing ram pressure stripping, using Hubble Space Telescope BVI imaging of NGC 4522 and NGC 4402, Virgo Cluster spirals that are well known to be experiencing intracluster medium (ICM) ram pressure. We find that throughout most of both galaxies, the main dust lane has a fairly well-defined edge, with a population of giant molecular cloud (GMC) sized (tens- to hundreds-of-pc scale), isolated, highly extincting dust clouds located up to ∼1.5 kpc radially beyond it. Outside of these dense clouds, the area has little or no diffusemore » dust extinction, indicating that the clouds have decoupled from the lower-density ISM material that has already been stripped. Several of the dust clouds have elongated morphologies that indicate active ram pressure, including two large (kpc scale) filaments in NGC 4402 that are elongated in the projected ICM wind direction. We calculate a lower limit on the H I + H{sub 2} masses of these clouds based on their dust extinctions and find that a correction factor of ∼10 gives cloud masses consistent with those measured in CO for clouds of similar diameters, probably due to the complicating factors of foreground light, cloud substructure, and resolution limitations. Assuming that the clouds' actual masses are consistent with those of GMCs of similar diameters (∼10{sup 4}-10{sup 5} M {sub ☉}), we estimate that only a small fraction (∼1%-10%) of the original H I + H{sub 2} remains in the parts of the disks with decoupled clouds. Based on Hα images, a similar fraction of star formation persists in these regions, 2%-3% of the estimated pre-stripping star formation rate. We find that the decoupled cloud lifetimes may be up to 150-200 Myr.« less

  20. Acousto-optical imaging using a powerful long pulse laser

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre

    2008-06-01

    Acousto-optical imaging is an emerging biodiagnostic technique which provides an optical spectroscopic signature and a spatial localization of an optically absorbing target embedded in a strongly scattering medium. The transverse resolution of the technique is determined by the lateral extent of ultrasound beam focal zone while the axial resolution is obtained by using short ultrasound pulses. Although very promising for medical diagnostic, the practical application of this technique is presently limited by its poor sensitivity. Moreover, any method to enhance the signal-to-noise ratio must obviously satisfy the in vivo safety limits regarding the acceptable power level of both the ultrasonic pressure wave and the laser beam. In this paper, we propose to improve the sensitivity by using a pulsed single-frequency laser source to raise the optical peak power applied to the scattering medium and to collect more ultrasonically tagged photons. Such a laser source also allows illuminating the tissues mainly during the transit time of the ultrasonic wave to maintain the average optical power below the maximum permissible exposure. In our experiment, a single-frequency Nd:YAG laser emitting 500-μs pulses with a peak power superior to 100 W was used. Photons were tagged in few-cm thick optical phantoms with tone bursts generated by an ultrasonic transducer. Tagged photons were detected with a GaAs photorefractive interferometer characterized by a large optical etendue to process simultaneously a large number of speckle grains. When pumped by high intensity laser pulses, such an interferometer also provides the fast response time essential to obtain an apparatus insensitive to the speckle decorrelation due to mechanical vibrations or tissues movements. The use of a powerful long pulse laser appears promising to enhance the signal level in ultrasound modulated optical imaging. When combined with a photorefractive interferometer of large optical etendue, such a source could allow obtaining both the sensitivity and the fast response time necessary for biodiagnostic applications.

  1. Towards pH-sensitive imaging of small animals with photon-counting difference diffuse fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Li, Jiao; Wang, Xin; Yi, Xi; Zhang, Limin; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng

    2012-09-01

    The importance of cellular pH has been shown clearly in the study of cell activity, pathological feature, and drug metabolism. Monitoring pH changes of living cells and imaging the regions with abnormal pH-values, in vivo, could provide invaluable physiological and pathological information for the research of the cell biology, pharmacokinetics, diagnostics, and therapeutics of certain diseases such as cancer. Naturally, pH-sensitive fluorescence imaging of bulk tissues has been attracting great attentions from the realm of near infrared diffuse fluorescence tomography (DFT). Herein, the feasibility of quantifying pH-induced fluorescence changes in turbid medium is investigated using a continuous-wave difference-DFT technique that is based on the specifically designed computed tomography-analogous photon counting system and the Born normalized difference image reconstruction scheme. We have validated the methodology using two-dimensional imaging experiments on a small-animal-sized phantom, embedding an inclusion with varying pH-values. The results show that the proposed approach can accurately localize the target with a quantitative resolution to pH-sensitive variation of the fluorescent yield, and might provide a promising alternative method of pH-sensitive fluorescence imaging in addition to the fluorescence-lifetime imaging.

  2. X-Ray Scattering Echoes and Ghost Halos from the Intergalactic Medium: Relation to the Nature of AGN Variability

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2015-05-01

    X-ray bright quasars might be used to trace dust in the circumgalactic and intergalactic medium through the phenomenon of X-ray scattering, which is observed around Galactic objects whose light passes through a sufficient column of interstellar gas and dust. Of particular interest is the abundance of gray dust larger than 0.1 μ m, which is difficult to detect at other wavelengths. To calculate X-ray scattering from large grains, one must abandon the traditional Rayleigh-Gans approximation. The Mie solution for the X-ray scattering optical depth of the universe is ∼ 1%. This presents a great difficulty for distinguishing dust scattered photons from the point source image of Chandra, which is currently unsurpassed in imaging resolution. The variable nature of AGNs offers a solution to this problem, as scattered light takes a longer path and thus experiences a time delay with respect to non-scattered light. If an AGN dims significantly (≳ 3 dex) due to a major feedback event, the Chandra point source image will be suppressed relative to the scattering halo, and an X-ray echo or ghost halo may become visible. I estimate the total number of scattering echoes visible by Chandra over the entire sky: {{N}ech}∼ {{10}3}({{ν }fb}/y{{r}-1}), where {{ν }fb} is the characteristic frequency of feedback events capable of dimming an AGN quickly.

  3. Image resolution enhancement via image restoration using neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangteng; Lu, Yihong

    2011-04-01

    Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.

  4. Single image super-resolution via an iterative reproducing kernel Hilbert space method.

    PubMed

    Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu

    2016-11-01

    Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.

  5. Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging

    PubMed Central

    Raval, Shailesh B.; Britton, Cynthia A.; Zhao, Tiejun; Krishnamurthy, Narayanan; Santini, Tales; Gorantla, Vijay S.; Ibrahim, Tamer S.

    2017-01-01

    Objective The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity]. Materials and method A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization]. Results High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]—images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by fiber tractography. The proper digital palmar arteries and superficial palmar arch could also be clearly visualized using TOF nCE 7T MRI. Conclusion Ultra-high resolution neurovascular imaging in upper extremities is possible at 7T without use of renal toxic intravenous contrast. 7T MRI can provide superior peripheral nerve [based on fiber anisotropy and diffusion coefficient parameters derived from diffusion tensor/spectrum imaging] and vascular [nCE MRA and vessel segmentation] imaging. PMID:28662061

  6. A novel super-resolution camera model

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  7. Applications based on restored satellite images

    NASA Astrophysics Data System (ADS)

    Arbel, D.; Levin, S.; Nir, M.; Bhasteker, I.

    2005-08-01

    Satellites orbit the earth and obtain imagery of the ground below. The quality of satellite images is affected by the properties of the atmospheric imaging path, which degrade the image by blurring it and reducing its contrast. Applications involving satellite images are many and varied. Imaging systems are also different technologically and in their physical and optical characteristics such as sensor types, resolution, field of view (FOV), spectral range of the acquiring channels - from the visible to the thermal IR (TIR), platforms (mobilization facilities; aircrafts and/or spacecrafts), altitude above ground surface etc. It is important to obtain good quality satellite images because of the variety of applications based on them. The more qualitative is the recorded image, the more information is yielded from the image. The restoration process is conditioned by gathering much data about the atmospheric medium and its characterization. In return, there is a contribution to the applications based on those restorations i.e., satellite communication, warfare against long distance missiles, geographical aspects, agricultural aspects, economical aspects, intelligence, security, military, etc. Several manners to use restored Landsat 7 enhanced thematic mapper plus (ETM+) satellite images are suggested and presented here. In particular, using the restoration results for few potential geographical applications such as color classification and mapping (roads and streets localization) methods.

  8. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection.

    PubMed

    Kojima, Akihiro; Gotoh, Kumiko; Shimamoto, Masako; Hasegawa, Koki; Okada, Seiji

    2016-02-01

    Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV). The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned. Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image. We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.

  9. How does C-VIEW image quality compare with conventional 2D FFDM?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Jeffrey S., E-mail: nelson.jeffrey@duke.edu; Wells, Jered R.; Baker, Jay A.

    Purpose: The FDA approved the use of digital breast tomosynthesis (DBT) in 2011 as an adjunct to 2D full field digital mammography (FFDM) with the constraint that all DBT acquisitions must be paired with a 2D image to assure adequate interpretative information is provided. Recently manufacturers have developed methods to provide a synthesized 2D image generated from the DBT data with the hope of sparing patients the radiation exposure from the FFDM acquisition. While this much needed alternative effectively reduces the total radiation burden, differences in image quality must also be considered. The goal of this study was to comparemore » the intrinsic image quality of synthesized 2D C-VIEW and 2D FFDM images in terms of resolution, contrast, and noise. Methods: Two phantoms were utilized in this study: the American College of Radiology mammography accreditation phantom (ACR phantom) and a novel 3D printed anthropomorphic breast phantom. Both phantoms were imaged using a Hologic Selenia Dimensions 3D system. Analysis of the ACR phantom includes both visual inspection and objective automated analysis using in-house software. Analysis of the 3D anthropomorphic phantom includes visual assessment of resolution and Fourier analysis of the noise. Results: Using ACR-defined scoring criteria for the ACR phantom, the FFDM images scored statistically higher than C-VIEW according to both the average observer and automated scores. In addition, between 50% and 70% of C-VIEW images failed to meet the nominal minimum ACR accreditation requirements—primarily due to fiber breaks. Software analysis demonstrated that C-VIEW provided enhanced visualization of medium and large microcalcification objects; however, the benefits diminished for smaller high contrast objects and all low contrast objects. Visual analysis of the anthropomorphic phantom showed a measureable loss of resolution in the C-VIEW image (11 lp/mm FFDM, 5 lp/mm C-VIEW) and loss in detection of small microcalcification objects. Spectral analysis of the anthropomorphic phantom showed higher total noise magnitude in the FFDM image compared with C-VIEW. Whereas the FFDM image contained approximately white noise texture, the C-VIEW image exhibited marked noise reduction at midfrequency and high frequency with far less noise suppression at low frequencies resulting in a mottled noise appearance. Conclusions: Their analysis demonstrates many instances where the C-VIEW image quality differs from FFDM. Compared to FFDM, C-VIEW offers a better depiction of objects of certain size and contrast, but provides poorer overall resolution and noise properties. Based on these findings, the utilization of C-VIEW images in the clinical setting requires careful consideration, especially if considering the discontinuation of FFDM imaging. Not explicitly explored in this study is how the combination of DBT + C-VIEW performs relative to DBT + FFDM or FFDM alone.« less

  10. Mapping Woody Plant Encroachment in Grassland Using Multiple Source Remote Sensing images: Case Study in Oklahoma

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Zhang, Y.; Zou, Z.; Zhou, Y.; Wu, X.; Bajgain, R.

    2015-12-01

    Woody plant encroachment (mainly Juniperus virginiana, a coniferous evergreen tree) in the native grassland has been rapidly increasing in the U.S. Southern Great Plains, largely triggered by overgrazing domestic livestock, fire suppression, and changing rainfall regimes. Increasing dense woody plants have significant implications for local grassland ecosystem dynamics, such as carbon storage, soil nutrient availability, herbaceous forage production, livestock, watershed hydrology and wildlife habitats. However, very limited data are available about the spatio-temporal dynamics of woody plant encroachment to the native grassland at regional scale. Data from remotes sensing could potentially provide relevant information and improve the conversion of native grassland to woody plant encroachment. Previous studies on woody detection in grassland mainly conducted at rangeland scale using airborne or high resolution images, which is sufficient to monitor the dynamics of woody plant encroachment in local grassland. This study examined the potential of medium resolution images to detect the woody encroachment in tallgrass prairie. We selected Cleveland county, Oklahoma, US. as case study area, where eastern area has higher woody coverage than does the western area. A 25-m Phased Array Type L-band Synthetic Aperture Radar (PALSAR, N36W98) image was used to map the trees distributed in the grassland. Then, maximum enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) in the winter calculated from time-series Landsat images was used to identify the invaded woody species (Juniperus virginiana) through phenology-based algorithm. The resulting woody plant encroachment map was compared with the results extracted from the high resolution images provided by the National Agriculture Imagery Program (NAIP). Field photos were also used to validate the accuracy. These results showed that integrating PALSAR and Landsat had good performance to identify the woody encroachment in the study area. This study demonstrates the potential to monitor the dynamics of dense woody plant encroachment at the region scale using PALSAR and Landsat images and improves our understanding about the spatio-temporal dynamics of woody plant encroachment to native grasslands.

  11. In situ ultrahigh-resolution optical coherence tomography characterization of eye bank corneal tissue processed for lamellar keratoplasty.

    PubMed

    Brown, Jamin S; Wang, Danling; Li, Xiaoli; Baluyot, Florence; Iliakis, Bernie; Lindquist, Thomas D; Shirakawa, Rika; Shen, Tueng T; Li, Xingde

    2008-08-01

    To use optical coherence tomography (OCT) as a noninvasive tool to perform in situ characterization of eye bank corneal tissue processed for lamellar keratoplasty. A custom-built ultrahigh-resolution OCT (UHR-OCT) was used to characterize donor corneal tissue that had been processed for lamellar keratoplasty. Twenty-seven donor corneas were analyzed. Four donor corneas were used as controls, whereas the rest were processed into donor corneal buttons for lamellar transplantation by using hand dissection, a microkeratome, or a femtosecond laser. UHR-OCT was also used to noninvasively characterize and monitor the viable corneal tissue immersed in storage medium over 3 weeks. The UHR-OCT captured high-resolution images of the donor corneal tissue in situ. This noninvasive technique showed the changes in donor corneal tissue morphology with time while in storage medium. The characteristics of the lamellar corneal tissue with each processing modality were clearly visible by UHR-OCT. The in situ characterization of the femtosecond laser-cut corneal tissue was noted to have more interface debris than shown by routine histology. The effects of the femtosecond laser microcavitation bubbles on the corneal tissue were well visualized at the edges of the lamellar flap while in storage medium. The results of our feasibility study show that UHR-OCT can provide superb, in situ microstructural characterization of eye bank corneal tissue noninvasively. The UHR-OCT interface findings and corneal endothelial disc thickness uniformity analysis are valuable information that may be used to optimize the modalities and parameters for lamellar tissue processing. The UHR-OCT is a powerful approach that will allow us to further evaluate the tissue response to different processing techniques for posterior lamellar keratoplasty. It may also provide information that can be used to correlate with postoperative clinical outcomes. UHR-OCT has the potential to become a routine part of tissue analysis for any eye bank or centers creating customized lamellar corneal tissue for transplantation.

  12. Satellite monitoring of cyanobacterial harmful algal bloom ...

    EPA Pesticide Factsheets

    Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of exposure to toxins in both recreational waters and drinking source waters. Successful cyanoHAB assessment by satellites may provide a first-line of defense indicator for human and ecological health protection. In this study, assessment methods were developed to determine the utility of satellite technology for detecting cyanoHAB occurrence frequency at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent Sentinel-3 Ocean and Land Colour Imager (OLCI) launched in 2016. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, there were 275,897 lakes and reservoirs greater than 1 hectare in the 48 U.S. states. Results from this evaluation show that 5.6 % of waterbodies were resolvable by satellites with 300 m single pixel resolution and 0.7 % of waterbodies were resolvable when a 3x3 pixel array was applied based on minimum Euclidian distance from shore. Satellite data was also spatially joined to US public water surface intake (PWSI) locations, where single pixel resolution resolved 57% of PWSI and a 3x3 pixel array resolved 33% of

  13. Comparative studies of the interaction between the Sun and planetary near space environments with the Solar Connections Observatory for Planetary Environments (SCOPE)

    NASA Astrophysics Data System (ADS)

    Harris, W. M.; Scope Team

    2003-04-01

    The Solar Connections Observatory for Planetary Environments (SCOPE) is a remote sensing facility designed to probe the nature of the relationship of planetary bodies and the local interstellar medium to the solar wind and UV-EUV radiation field. In particular, the SCOPE program seeks to comparatively monitor the near space environments and thermosphere/ionospheres of planets, planetesimals, and satellites under different magnetospheric configurations and as a function of heliocentric distance and solar activity. In addition, SCOPE will include the Earth as a science target, providing new remote observations of auroral and upper atmospheric phenomena and utilizing it as baseline for direct comparison with other planetary bodies. The observatory will be scheduled into discrete campaigns interleaving Target-Terrestrial observations to provide a comparative annual activity map over the course of a solar half cycle. The SCOPE science instrument consists of binocular UV (115-310 nm) and EUV (500-120 nm) telescopes and a side channel sky-mapping interferometer on a spacecraft stationed in a remote orbit. The telescope instruments provide a mix of capabilities including high spatial resolution narrow band imaging, moderate resolution broadband spectro-imaging, and high-resolution line spectroscopy. The side channel instrument will be optimized for line profile measurements of diagnostic terrestrial upper atmospheric, comet, interplanetary, and interstellar extended emissions.

  14. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines

    PubMed Central

    Peterson, Brittni M.; Mermelstein, Paul G.; Meisel, Robert L.

    2015-01-01

    Background Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. New Method Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Results Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Comparison with Existing Method Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Conclusion Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. PMID:25601477

  15. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.

    PubMed

    Peterson, Brittni M; Mermelstein, Paul G; Meisel, Robert L

    2015-03-15

    Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Low-power noncontact photoacoustic microscope for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Sathiyamoorthy, Krishnan; Strohm, Eric M.; Kolios, Michael C.

    2017-04-01

    An inexpensive noncontact photoacoustic (PA) imaging system using a low-power continuous wave laser and a kilohertz-range microphone has been developed. The system operates in both optical and PA imaging modes and is designed to be compatible with conventional optical microscopes. Aqueous coupling fluids are not required for the detection of the PA signals; air is used as the coupling medium. The main component of the PA system is a custom designed PA imaging sensor that consists of an air-filled sample chamber and a resonator chamber that isolates a standard kilohertz frequency microphone from the input laser. A sample to be examined is placed on the glass substrate inside the chamber. A laser focused to a small spot by a 40× objective onto the substrate enables generation of PA signals from the sample. Raster scanning the laser over the sample with micrometer-sized steps enables high-resolution PA images to be generated. A lateral resolution of 1.37 μm was achieved in this proof of concept study, which can be further improved using a higher numerical aperture objective. The application of the system was investigated on a red blood cell, with a noise-equivalent detection sensitivity of 43,887 hemoglobin molecules (72.88×10-21 mol or 72.88 zeptomol). The minimum pressure detectable limit of the system was 19.1 μPa. This inexpensive, compact noncontact PA sensor is easily integrated with existing commercial optical microscopes, enabling optical and PA imaging of the same sample. Applications include forensic measurements, blood coagulation tests, and monitoring the penetration of drugs into human membrane.

  17. The fragmented nature of tundra landscape

    NASA Astrophysics Data System (ADS)

    Virtanen, Tarmo; Ek, Malin

    2014-04-01

    The vegetation and land cover structure of tundra areas is fragmented when compared to other biomes. Thus, satellite images of high resolution are required for producing land cover classifications, in order to reveal the actual distribution of land cover types across these large and remote areas. We produced and compared different land cover classifications using three satellite images (QuickBird, Aster and Landsat TM5) with different pixel sizes (2.4 m, 15 m and 30 m pixel size, respectively). The study area, in north-eastern European Russia, was visited in July 2007 to obtain ground reference data. The QuickBird image was classified using supervised segmentation techniques, while the Aster and Landsat TM5 images were classified using a pixel-based supervised classification method. The QuickBird classification showed the highest accuracy when tested against field data, while the Aster image was generally more problematic to classify than the Landsat TM5 image. Use of smaller pixel sized images distinguished much greater levels of landscape fragmentation. The overall mean patch sizes in the QuickBird, Aster, and Landsat TM5-classifications were 871 m2, 2141 m2 and 7433 m2, respectively. In the QuickBird classification, the mean patch size of all the tundra and peatland vegetation classes was smaller than one pixel of the Landsat TM5 image. Water bodies and fens in particular occur in the landscape in small or elongated patches, and thus cannot be realistically classified from larger pixel sized images. Land cover patterns vary considerably at such a fine-scale, so that a lot of information is lost if only medium resolution satellite images are used. It is crucial to know the amount and spatial distribution of different vegetation types in arctic landscapes, as carbon dynamics and other climate related physical, geological and biological processes are known to vary greatly between vegetation types.

  18. Reconstructed high-resolution scatterometer data: a comparison with AVHRR vegetation index images for regional-scale monitoring of tropical rain forests

    NASA Astrophysics Data System (ADS)

    Hardin, Perry J.; Long, David G.

    1993-08-01

    There is considerable interest in utilizing microwave and visible spectrum imagery for the assessment of tropical rain forests. Because rain forest spans large sub-continental areas, medium resolution (1 - 16 km) imagery will play an important role in providing a global perspective of any forest removal or change. Since 1978, AVHRR imagery from NOAA polar orbiters has provided coverage of tropical regions at this desirable resolution, but much of the imagery is plagued with heavy cloud cover typical of equatorial regions. In contrast, no historical source of active microwave imagery at native 1 - 16 km resolution exists for all the global rain forest regions. In this paper, the authors compare the utility of Seasat scatterometer (SASS) ku-band microwave data to early-date AVHRR vegetation index products for discrimination of tropical vegetation formations. When considered separately, both the AVHRR imagery and the SASS imagery could be used to distinguish between broad categories of equatorial land cover, but the AVHRR imagery was slightly superior. When combined, the two data sets provided discrimination capability superior than could be obtained by using either set alone.

  19. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.

    PubMed

    Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi

    2018-04-12

    Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.

  20. Imaging of idle breast implants with ultrasound-strain elastography- A first experimental study to establish criteria for accurate imaging of idle implants via ultrasound-strain elastography.

    PubMed

    Kuehlmann, Britta; Prantl, Lukas; Michael Jung, Ernst

    2016-01-01

    To investigate whether there are fundamental sonographic and elastographic criteria to precisely assess different surfaces and fillings of idle breast implants and to determine their most distinctive parameters. This was a comparative study of different unused breast implant materials, neighter in animals nor in humans. This knowledge should be transferred in vivo to develop an objective measurement tool. Nine idle breast implants-silicone and polyurethane (PU)-were examined in an experimental study by using ultrasound B-mode with tissue harmonic imaging (THI), speckle reduction imaging (SRI, level 0-4), cross-beam (CB, low, medium, high), photopic and the colour coded ultrasound-strain elastography with a multifrequency probe (9-15 MHz).Using a standardised protocol the implants' centre as well as the edge were analysed by one experienced examiner. Two independent readers performed analysis and evaluation. For image interpretation a score was created (score 0:inadequate image, score 5:best image quality). The highest score result for the centre was achieved by using ultrasound with B-mode in addition with CB level medium, SRI level 2, THI and photopic (mean:3.22±SD:1.56), but without any statistic significant difference (t-value = 0.71). With elastography the implants' edge in general was represented without disruptive artefacts (3.89±0.60) with statistic significant difference (t-value = 5.29). Implants filled with inner cohesive silicone gel II° showed best imaging conditions for their centre via ultrasound (5±0) as well as for their edge via elastography (4.50±0.71). Ultrasound-strain elastography and high resolution ultrasound represent a valuable measurement tool to evaluate different properties of idle breast implants. These modified ultrasound examinations could be an additional help for clinical investigations and be correlated with Baker's Classification.

  1. Using high-resolution radar images to determine vegetation cover for soil erosion assessments.

    PubMed

    Bargiel, D; Herrmann, S; Jadczyszyn, J

    2013-07-30

    Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The Solar Connections Observatory for Planetary Environments

    NASA Astrophysics Data System (ADS)

    Oliversen, R. J.; Harris, W. M.

    2002-05-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative studies of planetary, cometary, and local interstellar medium (LISM) interaction with the Sun and solar variability. Through such studies, we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the STP, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap, we propose a mission to study the solar interaction with bodies throughout our solar system and the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/UV telescope operating from a heliocentric, Earth-trailing orbit that provides high observing efficiency, sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high resolution (R>105) H Ly-α emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. The other planets and comets will be monitored in long duration campaigns centered, when possible, on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using the combination of SCOPE observations and models including MHD, general circulation, and radiative transfer, we will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.

  3. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-09-01

    Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a significantly reduced imaging dose, enhancing the imaging signal-to-noise ratio (SNR) and leading to high DQE. While thick detectors usually suffer from reduced spatial resolution, the KCD provides good spatial resolution due to high gas pressure that limits the spread of scattered electrons, and a strip-collimated beam that significantly reduces the inclusion of scatter in the imaging signal. A 10 cm wide small-field-of-view (SFOV) prototype of the KCD is presented with a complete analysis of its imaging performance. Measurements of modulation transfer function (MTF), noise power spectrum (NPS), and DQE were in good agreement with Monte Carlo simulations. Imaging signal loss from recombination within the KCD chamber was measured at different gas pressures, ion drift velocities, and strip-collimation widths. Image quality for the prototype KCD was also observed with anthropomorphic phantom imaging in comparison with various commercial and research portal imaging systems, including VEPID, flat-panel imager, and conventional and high contrast film systems. KCD-based imaging provided very good contrast and good spatial resolution at very low imaging dose (0.1 cGy per image). For the prototype KCD, measurements yielded DQE(0)=0.19 and DQE(1 cy/mm)=0.004.

  4. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL

    USGS Publications Warehouse

    Hu, Chuanmin; Chen, Zhiqiang; Clayton, Tonya D.; ,; Brock, John C.; Muller-Karger, Frank E.

    2004-01-01

    Using Tampa Bay, FL as an example, we explored the potential for using MODIS medium-resolution bands (250- and 500-m data at 469-, 555-, and 645-nm) for estuarine monitoring. Field surveys during 21–22 October 2003 showed that Tampa Bay has Case-II waters, in that for the salinity range of 24–32 psu, (a) chlorophyll concentration (11 to 23 mg m−3), (b) colored dissolved organic matter (CDOM) absorption coefficient at 400 nm (0.9 to 2.5 m−1), and (c) total suspended sediment concentration (TSS: 2 to 11 mg L−1) often do not co-vary. CDOM is the only constituent that showed a linear, inverse relationship with surface salinity, although the slope of the relationship changed with location within the bay. The MODIS medium-resolution bands, although designed for land use, are 4–5 times more sensitive than Landsat-7/ETM+ data and are comparable to or higher than those of CZCS. Several approaches were used to derive synoptic maps of water constituents from concurrent MODIS medium-resolution data. We found that application of various atmospheric-correction algorithms yielded no significant differences, due primarily to uncertainties in the sensor radiometric calibration and other sensor artifacts. However, where each scene could be groundtruthed, simple regressions between in situ observations of constituents and at-sensor radiances provided reasonable synoptic maps. We address the need for improvements of sensor calibration/characterization, atmospheric correction, and bio-optical algorithms to make operational and quantitative use of these medium-resolution bands.

  5. The Prisma Hyperspectra Mission

    NASA Astrophysics Data System (ADS)

    Loizzo, R.; Ananasso, C.; Guarini, R.; Lopinto, E.; Candela, L.; Pisani, A. R.

    2016-08-01

    PRISMA (PRecursore IperSpettrale della Missione Applicativa) is an Italian Space Agency (ASI) hyperspectral mission currently scheduled for the lunch in 2018. PRISMA is a single satellite placed on a sun- synchronous Low Earth Orbit (620 km altitude) with an expected operational lifetime of 5 years. The hyperspectral payload consists of a high spectral resolution (VNIR-SWIR) imaging spectrometer, optically integrated with a medium resolution Panchromatic camera. PRISMA will acquire data on areas of 30 km Swath width and with a Ground Sampling Distance (GSD) of 30 m (hyperspectral) and of 5 m Panchromatic (PAN). The PRISMA Ground Segment will be geographically distributed between Fucino station and ASI Matera Space Geodesy Centre and will include the Mission Control Centre, the Satellite Control Centre and the Instrument Data Handling System. The science community supports the overall lifecycle of the mission, being involved in algorithms definition, calibration and validation activities, research and applications development.

  6. Proceedings of the 2006 Civil Commercial Imagery Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas; Pagnutti, Mary

    2007-01-01

    The Joint Agency Commercial Imagery Evaluation (JACIE) team is a collaborative interagency working group formed to leverage different government agencies' capabilities for the characterization of commercial remote sensing products. The team is composed of staff from the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA), and the U.S. Geological Survey (USGS). Each JACIE agency has a vested interest in the purchase and use of commercial imagery to support government research and operational applications. The intent of the 2006 workshop is to exchange information regarding the characterization and application of commercial imagery used by the government. The main focus of previous workshops has been on high-resolution satellite imagery from systems; such as, IKONOS (Space Imaging, Inc.), QuickBird (DigitalGlobe, Inc.), and OrbView-3 (ORBIMAGE). This workshop is being expanded to cover all civil medium- and high-resolution commercial imagery used by the government.

  7. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS.

    PubMed

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-11-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation. Graphical Abstract ᅟ.

  8. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-07-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation.

  9. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture.

    PubMed

    Yamamoto, Kyosuke; Togami, Takashi; Yamaguchi, Norio

    2017-11-06

    Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture-in cooperation with image processing technologies-for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.

  10. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture

    PubMed Central

    Togami, Takashi; Yamaguchi, Norio

    2017-01-01

    Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture—in cooperation with image processing technologies—for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis. PMID:29113104

  11. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT.

    PubMed

    Umehara, Kensuke; Ota, Junko; Ishida, Takayuki

    2017-10-18

    In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.

  12. Color image analysis of contaminants and bacteria transport in porous media

    NASA Astrophysics Data System (ADS)

    Rashidi, Mehdi; Dehmeshki, Jamshid; Daemi, Mohammad F.; Cole, Larry; Dickenson, Eric

    1997-10-01

    Transport of contaminants and bacteria in aqueous heterogeneous saturated porous systems have been studied experimentally using a novel fluorescent microscopic imaging technique. The approach involves color visualization and quantification of bacterium and contaminant distributions within a transparent porous column. By introducing stained bacteria and an organic dye as a contaminant into the column and illuminating the porous regions with a planar sheet of laser beam, contaminant and bacterial transport processes through the porous medium can be observed and measured microscopically. A computer controlled color CCD camera is used to record the fluorescent images as a function of time. These images are recorded by a frame accurate high resolution VCR and are then analyzed using a color image analysis code written in our laboratories. The color images are digitized this way and simultaneous concentration and velocity distributions of both contaminant and bacterium are evaluated as a function of time and pore characteristics. The approach provides a unique dynamic probe to observe these transport processes microscopically. These results are extremely valuable in in-situ bioremediation problems since microscopic particle-contaminant- bacterium interactions are the key to understanding and optimization of these processes.

  13. Three‐dimensional motion corrected sensitivity encoding reconstruction for multi‐shot multi‐slice MRI: Application to neonatal brain imaging

    PubMed Central

    Hughes, Emer J.; Hutter, Jana; Price, Anthony N.; Hajnal, Joseph V.

    2017-01-01

    Purpose To introduce a methodology for the reconstruction of multi‐shot, multi‐slice magnetic resonance imaging able to cope with both within‐plane and through‐plane rigid motion and to describe its application in structural brain imaging. Theory and Methods The method alternates between motion estimation and reconstruction using a common objective function for both. Estimates of three‐dimensional motion states for each shot and slice are gradually refined by improving on the fit of current reconstructions to the partial k‐space information from multiple coils. Overlapped slices and super‐resolution allow recovery of through‐plane motion and outlier rejection discards artifacted shots. The method is applied to T 2 and T 1 brain scans acquired in different views. Results The procedure has greatly diminished artifacts in a database of 1883 neonatal image volumes, as assessed by image quality metrics and visual inspection. Examples showing the ability to correct for motion and robustness against damaged shots are provided. Combination of motion corrected reconstructions for different views has shown further artifact suppression and resolution recovery. Conclusion The proposed method addresses the problem of rigid motion in multi‐shot multi‐slice anatomical brain scans. Tests on a large collection of potentially corrupted datasets have shown a remarkable image quality improvement. Magn Reson Med 79:1365–1376, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28626962

  14. Study on polarization image methods in turbid medium

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Mo, Chunhe; Liu, Boyu; Duan, Jin; Zhang, Su; Zhu, Yong

    2014-11-01

    Polarization imaging detection technology in addition to the traditional imaging information, also can get polarization multi-dimensional information, thus improve the probability of target detection and recognition.Image fusion in turbid medium target polarization image research, is helpful to obtain high quality images. Based on visible light wavelength of light wavelength of laser polarization imaging, through the rotation Angle of polaroid get corresponding linear polarized light intensity, respectively to obtain the concentration range from 5% to 10% of turbid medium target stocks of polarization parameters, introduces the processing of image fusion technology, main research on access to the polarization of the image by using different polarization image fusion methods for image processing, discusses several kinds of turbid medium has superior performance of polarization image fusion method, and gives the treatment effect and analysis of data tables. Then use pixel level, feature level and decision level fusion algorithm on three levels of information fusion, DOLP polarization image fusion, the results show that: with the increase of the polarization Angle, polarization image will be more and more fuzzy, quality worse and worse. Than a single fused image contrast of the image be improved obviously, the finally analysis on reasons of the increase the image contrast and polarized light.

  15. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-07

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency of SPECT imaging simulations.

  16. Comparing Different Approaches for Mapping Urban Vegetation Cover from Landsat ETM+ Data: A Case Study on Brussels

    PubMed Central

    Van de Voorde, Tim; Vlaeminck, Jeroen; Canters, Frank

    2008-01-01

    Urban growth and its related environmental problems call for sustainable urban management policies to safeguard the quality of urban environments. Vegetation plays an important part in this as it provides ecological, social, health and economic benefits to a city's inhabitants. Remotely sensed data are of great value to monitor urban green and despite the clear advantages of contemporary high resolution images, the benefits of medium resolution data should not be discarded. The objective of this research was to estimate fractional vegetation cover from a Landsat ETM+ image with sub-pixel classification, and to compare accuracies obtained with multiple stepwise regression analysis, linear spectral unmixing and multi-layer perceptrons (MLP) at the level of meaningful urban spatial entities. Despite the small, but nevertheless statistically significant differences at pixel level between the alternative approaches, the spatial pattern of vegetation cover and estimation errors is clearly distinctive at neighbourhood level. At this spatially aggregated level, a simple regression model appears to attain sufficient accuracy. For mapping at a spatially more detailed level, the MLP seems to be the most appropriate choice. Brightness normalisation only appeared to affect the linear models, especially the linear spectral unmixing. PMID:27879914

  17. Spatio-temporal dynamics of alpine snow algae measured with multi-year imaging spectrometer data

    NASA Astrophysics Data System (ADS)

    Painter, T.; Thomas, W. H.; Duval, B.

    2003-04-01

    The spatio-temporal dynamics of alpine snow algae have not been documented at the basin scale. This study focuses on the interannual variability of the concentration of alga chlamydomonas nivalis as mapped with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) over the Sierra Nevada, California, USA in the springs of 2000, 2001, and 2002. AVIRIS was flown at high spatial resolution (1.5 m) and medium spatial resolution (8 m) on board the NOAA Twin Otter and the NASA ER-2. AVIRIS data were atmospherically-corrected to apparent surface reflectance using a non-linear least squares vapor-fitting algorithm coupled with the atmospheric transmission MODTRAN4. We calculated algal concentration using a model that relates concentration to the continuum-normalized integral of the coupled chlorophyll-a, b absorption features with peak at 680 nm wavelength in the snow spectral reflectance signatures (Painter et al., 2001, Applied and Environmental Microbiology). The AVIRIS data were georeferenced to a digital elevation model of the Tioga Pass, CA region generated in the NASA Shuttle Radar Topography Mission. Interannual variability in basin-wide concentration and pixel-by-pixel concentration trajectories were evaluated.

  18. Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results.

    PubMed

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P; Levy, Robert C; Lotz, Wolfhardt

    2017-08-01

    The MEdium Resolution Imaging Spectrometer (MERIS) instrument on board ESA Envisat made measurements from 2002 to 2012. Although MERIS was limited in spectral coverage, accurate Aerosol Optical Thickness (AOT) from MERIS data are retrieved by using appropriate additional information. We introduce a new AOT retrieval algorithm for MERIS over land surfaces, referred to as eXtensible Bremen AErosol Retrieval (XBAER). XBAER is similar to the "dark-target" (DT) retrieval algorithm used for Moderate-resolution Imaging Spectroradiometer (MODIS), in that it uses a lookup table (LUT) to match to satellite-observed reflectance and derive the AOT. Instead of a global parameterization of surface spectral reflectance, XBAER uses a set of spectral coefficients to prescribe surface properties. In this manner, XBAER is not limited to dark surfaces (vegetation) and retrieves AOT over bright surface (desert, semiarid, and urban areas). Preliminary validation of the MERIS-derived AOT and the ground-based Aerosol Robotic Network (AERONET) measurements yield good agreement, the resulting regression equation is y = (0.92 × ± 0.07) + (0.05 ± 0.01) and Pearson correlation coefficient of R = 0.78. Global monthly means of AOT have been compared from XBAER, MODIS and other satellite-derived datasets.

  19. Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features.

    PubMed

    Szantoi, Zoltan; Escobedo, Francisco J; Abd-Elrahman, Amr; Pearlstine, Leonard; Dewitt, Bon; Smith, Scot

    2015-05-01

    Mapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge fromremotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery. There are only a few studies using highspatial resolutionimagery and machine learning image classification algorithms for mapping heterogeneouswetland plantcommunities. This study addresses this void by analyzing whether machine learning classifierssuch as decisiontrees (DT) and artificial neural networks (ANN) can accurately classify graminoid/sedgecommunities usinghigh resolution aerial imagery and image texture data in the Everglades National Park, Florida.In addition tospectral bands, the normalized difference vegetation index, and first- and second-order texturefeatures derivedfrom the near-infrared band were analyzed. Classifier accuracies were assessed using confusiontablesand the calculated kappa coefficients of the resulting maps. The results indicated that an ANN(multilayerperceptron based on backpropagation) algorithm produced a statistically significantly higheraccuracy(82.04%) than the DT (QUEST) algorithm (80.48%) or the maximum likelihood (80.56%)classifier (α<0.05). Findings show that using multiple window sizes provided the best results. First-ordertexture featuresalso provided computational advantages and results that were not significantly different fromthose usingsecond-order texture features.

  20. Review and latest news from the VEGA/CHARA facility

    NASA Astrophysics Data System (ADS)

    Nardetto, N.; Mourard, D.; Perraut, K.; Tallon-Bosc, I.; Meilland, A.; Stee, P.; Ligi, R.; Challouf, M.; Clausse, J.-M.; Berio, P.; Spang, A.

    2014-12-01

    The VEGA instrument located at the focus of the Center for High Angular Resolution Astronomy (CHARA) array in California is a collaborating project between the Lagrange laboratory in Nice, where it has been developed (Mourard et al. 2009, 2011), the IPAG (Grenoble) and CRAL (Lyon) laboratories, and the CHARA group at Mount Wilson Observatory. The outcome from this international collaboration is to provide to the community a visible spectro-interferometer with an unprecedented angular resolution of 0.3 milli-second of arc (mas) together with a spectral resolution of 5000 or 30000. With such an instrument it becomes possible to determine simultaneously the size and the kinematic of the photosphere and/or of the circumstellar environment of the star as a function of the wavelength, which basically means for each spectral channel in the continuum and/or within spectral lines (in Hα for instance). The only limitation is to get enough signal to noise ratio in each spectral channel. We can currently reach a limiting magnitude of 8 in visible in medium spectral resolution (5000) and 4.5 in high resolution (30000). In this proceeding, we illustrate the two main subjects studied with the VEGA instrument, namely (1) how angular diameters are useful to accurately derive the fundamental parameters of stars, (2) how the spectral resolution can allow to study the kinematical structure of stars or even to derive chromatic images of stellar objects.

  1. Satellite image fusion based on principal component analysis and high-pass filtering.

    PubMed

    Metwalli, Mohamed R; Nasr, Ayman H; Allah, Osama S Farag; El-Rabaie, S; Abd El-Samie, Fathi E

    2010-06-01

    This paper presents an integrated method for the fusion of satellite images. Several commercial earth observation satellites carry dual-resolution sensors, which provide high spatial resolution or simply high-resolution (HR) panchromatic (pan) images and low-resolution (LR) multi-spectral (MS) images. Image fusion methods are therefore required to integrate a high-spectral-resolution MS image with a high-spatial-resolution pan image to produce a pan-sharpened image with high spectral and spatial resolutions. Some image fusion methods such as the intensity, hue, and saturation (IHS) method, the principal component analysis (PCA) method, and the Brovey transform (BT) method provide HR MS images, but with low spectral quality. Another family of image fusion methods, such as the high-pass-filtering (HPF) method, operates on the basis of the injection of high frequency components from the HR pan image into the MS image. This family of methods provides less spectral distortion. In this paper, we propose the integration of the PCA method and the HPF method to provide a pan-sharpened MS image with superior spatial resolution and less spectral distortion. The experimental results show that the proposed fusion method retains the spectral characteristics of the MS image and, at the same time, improves the spatial resolution of the pan-sharpened image.

  2. In vivo ultrasound imaging of the bone cortex

    NASA Astrophysics Data System (ADS)

    Renaud, Guillaume; Kruizinga, Pieter; Cassereau, Didier; Laugier, Pascal

    2018-06-01

    Current clinical ultrasound scanners cannot be used to image the interior morphology of bones because these scanners fail to address the complicated physics involved for exact image reconstruction. Here, we show that if the physics is properly addressed, bone cortex can be imaged using a conventional transducer array and a programmable ultrasound scanner. We provide in vivo proof for this technique by scanning the radius and tibia of two healthy volunteers and comparing the thickness of the radius bone with high-resolution peripheral x-ray computed tomography. Our method assumes a medium that is composed of different homogeneous layers with unique elastic anisotropy and ultrasonic wave-speed values. The applicable values of these layers are found by optimizing image sharpness and intensity over a range of relevant values. In the algorithm of image reconstruction we take wave refraction between the layers into account using a ray-tracing technique. The estimated values of the ultrasonic wave-speed and anisotropy in cortical bone are in agreement with ex vivo studies reported in the literature. These parameters are of interest since they were proposed as biomarkers for cortical bone quality. In this paper we discuss the physics involved with ultrasound imaging of bone and provide an algorithm to successfully image the first segment of cortical bone.

  3. A cross-platform survey of CT image quality and dose from routine abdomen protocols and a method to systematically standardize image quality.

    PubMed

    Favazza, Christopher P; Duan, Xinhui; Zhang, Yi; Yu, Lifeng; Leng, Shuai; Kofler, James M; Bruesewitz, Michael R; McCollough, Cynthia H

    2015-11-07

    Through this investigation we developed a methodology to evaluate and standardize CT image quality from routine abdomen protocols across different manufacturers and models. The influence of manufacturer-specific automated exposure control systems on image quality was directly assessed to standardize performance across a range of patient sizes. We evaluated 16 CT scanners across our health system, including Siemens, GE, and Toshiba models. Using each practice's routine abdomen protocol, we measured spatial resolution, image noise, and scanner radiation output (CTDIvol). Axial and in-plane spatial resolutions were assessed through slice sensitivity profile (SSP) and modulation transfer function (MTF) measurements, respectively. Image noise and CTDIvol values were obtained for three different phantom sizes. SSP measurements demonstrated a bimodal distribution in slice widths: an average of 6.2  ±  0.2 mm using GE's 'Plus' mode reconstruction setting and 5.0  ±  0.1 mm for all other scanners. MTF curves were similar for all scanners. Average spatial frequencies at 50%, 10%, and 2% MTF values were 3.24  ±  0.37, 6.20  ±  0.34, and 7.84  ±  0.70 lp cm(-1), respectively. For all phantom sizes, image noise and CTDIvol varied considerably: 6.5-13.3 HU (noise) and 4.8-13.3 mGy (CTDIvol) for the smallest phantom; 9.1-18.4 HU and 9.3-28.8 mGy for the medium phantom; and 7.8-23.4 HU and 16.0-48.1 mGy for the largest phantom. Using these measurements and benchmark SSP, MTF, and image noise targets, CT image quality can be standardized across a range of patient sizes.

  4. Hot, metastable hydronium ion in the Galactic centre: formation pumping in X-ray-irradiated gas?

    PubMed

    Lis, Dariusz C; Schilke, Peter; Bergin, Edwin A; Emprechtinger, Martin

    2012-11-13

    With a 3.5 m diameter telescope passively cooled to approximately 80 K, and a science payload comprising two direct detection cameras/medium resolution imaging spectrometers (PACS and SPIRE) and a very high spectral resolution heterodyne spectrometer (HIFI), the Herschel Space Observatory is providing extraordinary observational opportunities in the 55-670 μm spectral range. HIFI has opened for the first time to high-resolution spectroscopy the submillimetre band that includes the fundamental rotational transitions of interstellar hydrides, the basic building blocks of astrochemistry. We discuss a recent HIFI discovery of metastable rotational transitions of the hydronium ion (protonated water, H(3)O(+)), with rotational level energies up to 1200 K above the ground state, in absorption towards Sagittarius B2(N) in the Galactic centre. Hydronium is an important molecular ion in the oxygen chemical network. Earlier HIFI observations have indicated a general deficiency of H(3)O(+) in the diffuse gas in the Galactic disc. The presence of hot H(3)O(+) towards Sagittarius B2(N) thus appears to be related to the unique physical conditions in the central molecular zone, manifested, for example, by the widespread presence of abundant H(3)(+). One intriguing theory for the high rotational temperature characterizing the population of the H(3)O(+) metastable levels may be formation pumping in molecular gas irradiated by X-rays emitted by the Galactic centre black hole. Alternatively, the pervasive presence of enhanced turbulence in the central molecular zone may give rise to shocks in the lower-density medium that is exposed to energetic radiation.

  5. The Value of Context Images at the Mars Surveyor Landing Sites: Insights from Deep Ocean Exploration on Earth

    NASA Astrophysics Data System (ADS)

    Gregg, T. K.; Bulmer, M. H.

    1999-06-01

    Exploration of the Martian surface with a rover is similar to investigation of Earth's oceans using remotely operated vehicles (ROVs) or deep submergence vehicles (DSVs). In the case of Mars, the techniques required to perform a robust scientific survey are similar to those that have been developed by the deep ocean research community. In both instances, scientists are challenged by having to choose and characterize a target site, identify favorable sites for detailed analysis and possible sample collection, only being able to maneuver within a few meters of the landing site and integrating data sets with a range of spatial resolutions that span 1-2 orders of magnitude (rover data versus satellite data, or submersible data versus bathymetric data). In the search for biologic communities at Earth's mid-ocean ridges, it is important to note that the vast majority of the terrain is completely barren of life: no microbes live in the thousands to hundreds of thousands of meters that separate the life-sustaining hydrothermal vent fields. In attempts to better understanding the origin and emplacement of geologic and biologic features on the seafloor, techniques have been developed to select sites of special interest (target sites), by combining the low-resolution, high spatial-coverage data with medium-resolution, higher spatial-coverage data. Once individual sites are selected, then a DSV or ROV is used to obtain high-resolution, low-spatial-coverage data. By integrating the different resolution data sets, the individual target sites can be placed into the larger context of the regional and global geologic system. Methods of exploration of the oceans are pertinent to the Mars Lander Missions because they highlight the importance and value of the acquisition of 'context' images. Over 60% of Earth's mid-ocean ridge crests have been surveyed using multibeam bathymetry. The typical resolution of such data is 100 m in the vertical and 20 m in the horizontal. This data set is comparable to the Viking Orbiter images of Mars. Only 7% of Earth's seafloor has been imaged using side-scan sonar systems which are towed behind a surface ship at an altitude of approx. 20 m to 200 m above the seafloor. This data set provides textural information on the target surface. The resolution of these instruments varies from 50 m for GLORIA to 1 m across and 2-4 m in the vertical for the DSL-120. Higher resolution is provided by camera sleds such as ARGO II, which is towed at altitudes of about 3 - 15 m above the seafloor. Videos on these instrument platforms can provide continuous real-time video imagery via a fiber-optic tether. Still and video photographic and digital images are typically collected every approx. 10 - 15 seconds. The typical field of view of images from these cameras is 5 m. Added flexibility is provided when DSVs such as Alvin are used since they are capable of more autonomous exploration and can collect and return samples.

  6. Innovative compact focal plane array for wide field vis and ir orbiting telescopes

    NASA Astrophysics Data System (ADS)

    Hugot, Emmanuel; Vives, Sébastien; Ferrari, Marc; Gaeremynck, Yann; Jahn, Wilfried

    2017-11-01

    The future generation of high angular resolution space telescopes will require breakthrough technologies to combine large diameters and large focal plane arrays with compactness and lightweight mirrors and structures. Considering the allocated volume medium-size launchers, short focal lengths are mandatory, implying complex optical relays to obtain diffraction limited images on large focal planes. In this paper we present preliminary studies to obtain compact focal plane arrays (FPA) for earth observations on low earth orbits at high angular resolution. Based on the principle of image slicers, we present an optical concept to arrange a 1D FPA into a 2D FPA, allowing the use of 2D detector matrices. This solution is particularly attractive for IR imaging requiring a cryostat, which volume could be considerably reduced as well as the relay optics complexity. Enabling the use of 2D matrices for such an application offers new possibilities. Recent developments on curved FPA allows optimization without concerns on the field curvature. This innovative approach also reduces the complexity of the telescope optical combination, specifically for fast telescopes. This paper will describe the concept and optical design of an F/5 - 1.5m telescope equipped with such a FPA, the performances and the impact on the system with a comparison with an equivalent 1.5m wide field Korsch telescope.

  7. Invetigation of Travelling Ionospheric Disturbances during the Memorial Day Weekend Geomagnetic Storm of 27 - 28 OF may, 2017 Over North America.

    NASA Astrophysics Data System (ADS)

    Jonah, O. F.; Coster, A. J.; Zhang, S.; Goncharenko, L. P.; Bhatt, A.; Kendall, E. A.

    2017-12-01

    Using the large GNSS network over North America (70 - 125oW and 25 - 50oN) with a spatial resolution of 0.1 x 0.1o in latitude and longitude and temporal resolution of 1min, we investigate the ionospheric perturbations associated with Traveling Ionospheric Disturbances (TIDs) on 2017 Memorial Day weekend's geomagnetic storm that occurred on the 27 and 28 of May, 2017. Our results were compared with images from the Mid-latitude All-Sky-imager Network for GeoSpace Observation (MANGO) and radio occultation satellite data. The storm was intense, featuring a southward interplanetary field (Bz) below 20 nT for about 4 hr, with a strong increase in the AE from 200 to 1300 nT and the Dst and kp indies were below 120 nT, and above 7 units, respectively. Both medium and large scale TIDs were observed, and their velocity, wavelength, wavefront and period throughout the storm are analyzed. Results show the presence of both poleward and equator-ward propagation of the TIDs. The features of TIDs obtained from keograms and 2-D TEC maps from GNSS-TEC are compared with those obtained from the all-sky imaging system during storm period. Finally, we compared the behavior of TIDs during Memorial Day weekend geomagnetic storm with the TIDs during the May quiet periods.

  8. VizieR Online Data Catalog: Arches cluster: IR phot., extinction and masses (Habibi+, 2013)

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Stolte, A.; Brandner, W.; Hussmann, B.; Motohara, K.

    2013-05-01

    We observed the Arches cluster out to its tidal radius using Ks-band and H-band imaging obtained on June 6-10 2008 with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. The acquired Ks-band images cover four fields of 27.8*27.8(arcsec) each, provided by the medium resolution camera (S27) with a pixel scale of 0.027(arcsec). During the Ks-band observations, the natural visual seeing varied from 0.61" to 0.98". We achieved typical spatial resolutions of 0.081-0.135(arcsec) on individual frames using this AO setup. Seeing-limited J-band observations, on July 17, 2000, were performed with the CISCO spectrograph and camera which provided a pixel scale of 0.116(arcsec) and a field of view of 2*2(arcmin). An average seeing of 0.49(arcsec) resulted into a Full Width at Half Maximum (FWHM) of the point-spread function (PSF) of 0.39(arcsec) on the combined image. The catalogue includes derived infrared-photometry in J, H and Ks bands as well as derived individual extinction value and stellar masses. We used the NAOS-CONICA observations obtained in March 2002 in the central part of the Arches cluster to cover the whole cluster area. (1 data file).

  9. On the impact of different volcanic hot spot detection methods on eruption energy quantification

    NASA Astrophysics Data System (ADS)

    Pergola, Nicola; Coviello, Irina; Falconieri, Alfredo; Lacava, Teodosio; Marchese, Francesco; Tramutoli, Valerio

    2016-04-01

    Several studies have shown that sensors like the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) may be effectively used to identify volcanic hotspots. These sensors offer in fact some spectral channels in the Medium Infrared (MIR) and Thermal Infrared (TIR) bands together with a good compromise between spatial and temporal resolution suited to study and monitor thermal volcanic activity. Many algorithms were developed to identify volcanic thermal anomalies from space with some of them that were extensively tested in very different geographich areas. In this work, we analyze the volcanic radiative power (VRP) representing one of parameters of major interest for volcanologists that may be estimated by satellite. In particular, we compare the radiative power estimations driven by some well-established state of the art hotspot detection methods (e.g. RSTVOLC, MODVOLC, HOTSAT). Differences in terms of radiative power estimations achieved during recent Mt. Etna (Italy) eruptions will be evaluated, assessing how much the VRP retrieved during effusive eruptions is affected by the sensitivity of hotspot detection methods.

  10. Improving the axial resolution in time-reversed ultrasonically encoded (TRUE) optical focusing with dual ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Yang, Qiang; Xu, Xiao; Lai, Puxiang; Sang, Xinzhu; Wang, Lihong V.

    2014-03-01

    Focusing light inside highly scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging, manipulation, and therapy. This challenge can be overcome by time reversing ultrasonically encoded (TRUE) diffuse light to the ultrasonic focus inside a turbid medium. In TRUE optical focusing, a photorefractive crystal or polymer is used as the phase conjugate mirror for optical time reversal. Accordingly, a relatively long ultrasound burst, whose duration matches the response time of the photorefractive material, is used to encode the diffuse light. With this long ultrasound burst, the resolution of the TRUE focus along the acoustic axis is poor. In this work, we used two transducers, emitting two intersecting ultrasound beams at 3.4 MHz and 3.6 MHz respectively, to modulate the diffuse light within their intersection volume at the beat frequency. We show that light encoded at the beat frequency can be time-reversed and converge to the intersection volume. Experimentally, TRUE focusing with an acoustic axial resolution of ~1.1 mm was demonstrated inside turbid media, agreeing with the theoretical estimation.

  11. Image super-resolution via sparse representation.

    PubMed

    Yang, Jianchao; Wright, John; Huang, Thomas S; Ma, Yi

    2010-11-01

    This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.

  12. A super resolution framework for low resolution document image OCR

    NASA Astrophysics Data System (ADS)

    Ma, Di; Agam, Gady

    2013-01-01

    Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.

  13. Efficient kinetic resolution of secondary alcohols using an organic solvent-tolerant esterase in non-aqueous medium.

    PubMed

    Gao, Wenyuan; Fan, Haiyang; Chen, Lifeng; Wang, Hualei; Wei, Dongzhi

    2016-07-01

    To identify an esterase-mediated kinetic resolution of secondary alcohols in non-aqueous medium. An esterase, EST4, from a marine mud metagenomic library, showed high activity and enantioselectivity for the kinetic resolution of secondary alcohols in non-aqueous medium. Using 1-phenylethanol as the model alcohol, the effects of organic solvents, acyl donors, molar ratio, temperatures and biocatalyst loading on the kinetic resolution catalyzed by the EST4 whole-cell biocatalyst were investigated and optimized. The optimized methodology was effective on resolving 16 various racemic secondary alcohols in neat n-hexane, providing excellent enantiomeric excess (up to 99.9 % ee). Moreover, EST4 exhibited a strong tolerance for high substrate concentration (up to 1 M), and the optical purity of the desired secondary alcohols was kept above 99 % ee. The esterase EST4 is a promising biocatalyst for the enantioselective synthesis of various alcohols and esters with interesting practical applications.

  14. The HI/OH/Recombination line survey of the inner Milky Way (THOR). Survey overview and data release 1

    NASA Astrophysics Data System (ADS)

    Beuther, H.; Bihr, S.; Rugel, M.; Johnston, K.; Wang, Y.; Walter, F.; Brunthaler, A.; Walsh, A. J.; Ott, J.; Stil, J.; Henning, Th.; Schierhuber, T.; Kainulainen, J.; Heyer, M.; Goldsmith, P. F.; Anderson, L. D.; Longmore, S. N.; Klessen, R. S.; Glover, S. C. O.; Urquhart, J. S.; Plume, R.; Ragan, S. E.; Schneider, N.; McClure-Griffiths, N. M.; Menten, K. M.; Smith, R.; Roy, N.; Shanahan, R.; Nguyen-Luong, Q.; Bigiel, F.

    2016-10-01

    Context. The past decade has witnessed a large number of Galactic plane surveys at angular resolutions below 20''. However, no comparable high-resolution survey exists at long radio wavelengths around 21 cm in line and continuum emission. Aims: We remedy this situation by studying the northern Galactic plane at 20'' resolution in emission of atomic, molecular, and ionized gas. Methods: Employing the Karl G. Jansky Very Large Array (VLA) in the C-array configuration and a large program, we observe the HI 21 cm line, four OH lines, nineteen Hnα radio recombination lines as well as the continuum emission from 1 to 2 GHz in full polarization over a large part of the first Galactic quadrant. Results: Covering Galactic longitudes from 14.5 to 67.4 deg and latitudes between ± 1.25 deg, we image all of these lines and the continuum at 20'' resolution. These data allow us to study the various components of the interstellar medium (ISM): from the atomic phase, traced by the HI line, to the molecular phase, observed by the OH transitions, to the ionized medium, revealed by the cm continuum and the Hnα radio recombination lines. Furthermore, the polarized continuum emission enables magnetic field studies. In this overview paper, we discuss the survey outline and present the first data release as well as early results from the different datasets. We now release the first half of the survey; the second half will follow later after the ongoing data processing has been completed. The data in fits format (continuum images and line data cubes) can be accessed through the project web-page. Conclusions: The HI/OH/Recombination line survey of the Milky Way (THOR) opens a new window to the different parts of the ISM. It enables detailed studies of molecular cloud formation, conversion of atomic to molecular gas, and feedback from Hii regions as well as the magnetic field in the Milky Way. It is highly complementary to other surveys of our Galaxy, and comparing the different datasets will allow us to address many open questions. Based on observations carried out with the Karl Jansky Very Large Array (VLA). http://www.mpia.de/thor

  15. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE-MAP algorithm resulted in comparable regional mean values to those from the maximum likelihood algorithm while reducing noise. Achieving robust performance in various noise-level simulation and patient studies, the WJE-MAP algorithm demonstrates its potential in clinical quantitative PET imaging.

  16. The Wide Field Imager instrument for Athena

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Barbera, Marco; Emberger, Valentin; Fürmetz, Maria; Manhart, Markus; Müller-Seidlitz, Johannes; Nandra, Kirpal; Plattner, Markus; Rau, Arne; Treberspurg, Wolfgang

    2017-08-01

    ESA's next large X-ray mission ATHENA is designed to address the Cosmic Vision science theme 'The Hot and Energetic Universe'. It will provide answers to the two key astrophysical questions how does ordinary matter assemble into the large-scale structures we see today and how do black holes grow and shape the Universe. The ATHENA spacecraft will be equipped with two focal plane cameras, a Wide Field Imager (WFI) and an X-ray Integral Field Unit (X-IFU). The WFI instrument is optimized for state-of-the-art resolution spectroscopy over a large field of view of 40 amin x 40 amin and high count rates up to and beyond 1 Crab source intensity. The cryogenic X-IFU camera is designed for high-spectral resolution imaging. Both cameras share alternately a mirror system based on silicon pore optics with a focal length of 12 m and large effective area of about 2 m2 at an energy of 1 keV. Although the mission is still in phase A, i.e. studying the feasibility and developing the necessary technology, the definition and development of the instrumentation made already significant progress. The herein described WFI focal plane camera covers the energy band from 0.2 keV to 15 keV with 450 μm thick fully depleted back-illuminated silicon active pixel sensors of DEPFET type. The spatial resolution will be provided by one million pixels, each with a size of 130 μm x 130 μm. The time resolution requirement for the WFI large detector array is 5 ms and for the WFI fast detector 80 μs. The large effective area of the mirror system will be completed by a high quantum efficiency above 90% for medium and higher energies. The status of the various WFI subsystems to achieve this performance will be described and recent changes will be explained here.

  17. A comprehensive study on the relationship between the image quality and imaging dose in low-dose cone beam CT

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Cervino, Laura; Jia, Xun; Jiang, Steve B.

    2012-04-01

    While compressed sensing (CS)-based algorithms have been developed for the low-dose cone beam CT (CBCT) reconstruction, a clear understanding of the relationship between the image quality and imaging dose at low-dose levels is needed. In this paper, we qualitatively investigate this subject in a comprehensive manner with extensive experimental and simulation studies. The basic idea is to plot both the image quality and imaging dose together as functions of the number of projections and mAs per projection over the whole clinically relevant range. On this basis, a clear understanding of the tradeoff between the image quality and imaging dose can be achieved and optimal low-dose CBCT scan protocols can be developed to maximize the dose reduction while minimizing the image quality loss for various imaging tasks in image-guided radiation therapy (IGRT). Main findings of this work include (1) under the CS-based reconstruction framework, image quality has little degradation over a large range of dose variation. Image quality degradation becomes evident when the imaging dose (approximated with the x-ray tube load) is decreased below 100 total mAs. An imaging dose lower than 40 total mAs leads to a dramatic image degradation, and thus should be used cautiously. Optimal low-dose CBCT scan protocols likely fall in the dose range of 40-100 total mAs, depending on the specific IGRT applications. (2) Among different scan protocols at a constant low-dose level, the super sparse-view reconstruction with the projection number less than 50 is the most challenging case, even with strong regularization. Better image quality can be acquired with low mAs protocols. (3) The optimal scan protocol is the combination of a medium number of projections and a medium level of mAs/view. This is more evident when the dose is around 72.8 total mAs or below and when the ROI is a low-contrast or high-resolution object. Based on our results, the optimal number of projections is around 90 to 120. (4) The clinically acceptable lowest imaging dose level is task dependent. In our study, 72.8 mAs is a safe dose level for visualizing low-contrast objects, while 12.2 total mAs is sufficient for detecting high-contrast objects of diameter greater than 3 mm.

  18. Joint estimation of high resolution images and depth maps from light field cameras

    NASA Astrophysics Data System (ADS)

    Ohashi, Kazuki; Takahashi, Keita; Fujii, Toshiaki

    2014-03-01

    Light field cameras are attracting much attention as tools for acquiring 3D information of a scene through a single camera. The main drawback of typical lenselet-based light field cameras is the limited resolution. This limitation comes from the structure where a microlens array is inserted between the sensor and the main lens. The microlens array projects 4D light field on a single 2D image sensor at the sacrifice of the resolution; the angular resolution and the position resolution trade-off under the fixed resolution of the image sensor. This fundamental trade-off remains after the raw light field image is converted to a set of sub-aperture images. The purpose of our study is to estimate a higher resolution image from low resolution sub-aperture images using a framework of super-resolution reconstruction. In this reconstruction, these sub-aperture images should be registered as accurately as possible. This registration is equivalent to depth estimation. Therefore, we propose a method where super-resolution and depth refinement are performed alternatively. Most of the process of our method is implemented by image processing operations. We present several experimental results using a Lytro camera, where we increased the resolution of a sub-aperture image by three times horizontally and vertically. Our method can produce clearer images compared to the original sub-aperture images and the case without depth refinement.

  19. Shear wave elasticity imaging based on acoustic radiation force and optical detection.

    PubMed

    Cheng, Yi; Li, Rui; Li, Sinan; Dunsby, Christopher; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing

    2012-09-01

    Tissue elasticity is closely related to the velocity of shear waves within biologic tissue. Shear waves can be generated by an acoustic radiation force and tracked by, e.g., ultrasound or magnetic resonance imaging (MRI) measurements. This has been shown to be able to noninvasively map tissue elasticity in depth and has great potential in a wide range of clinical applications including cancer and cardiovascular diseases. In this study, a highly sensitive optical measurement technique is proposed as an alternative way to track shear waves generated by the acoustic radiation force. A charge coupled device (CCD) camera was used to capture diffuse photons from tissue mimicking phantoms illuminated by a laser source at 532 nm. CCD images were recorded at different delays after the transmission of an ultrasound burst and were processed to obtain the time of flight for the shear wave. A differential measurement scheme involving generation of shear waves at two different positions was used to improve the accuracy and spatial resolution of the system. The results from measurements on both homogeneous and heterogeneous phantoms were compared with measurements from other instruments and demonstrate the feasibility and accuracy of the technique for imaging and quantifying elasticity. The relative error in estimation of shear wave velocity can be as low as 3.3% with a spatial resolution of 2 mm, and increases to 8.8% with a spatial resolution of 1 mm for the medium stiffness phantom. The system is shown to be highly sensitive and is able to track shear waves propagating over several centimetres given the ultrasound excitation amplitude and the phantom material used in this study. It was also found that the reflection of shear waves from boundaries between regions with different elastic properties can cause significant bias in the estimation of elasticity, which also applies to other shear wave tracking techniques. This bias can be reduced at the expense of reduced spatial resolution. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. High-resolution Ceres HAMO Atlas derived from Dawn FC Images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K. D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    Introduction: NASA's Dawn spacecraft will orbit the dwarf planet Ceres in August and September 2015 in HAMO (High Altitude Mapping Orbit) with an altitude of about 1,500 km to characterize for instance the geology, topography, and shape of Ceres before it will be transferred to the lowest orbit. One of the major goals of this mission phase is the global mapping of Ceres. Data: The Dawn mission is equipped with a fram-ing camera (FC). The framing camera will take about 2600 clear filter images with a resolution of about 120 m/pixel and different viewing angles and different illumination conditions. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the target. Both, improved orientation and high-resolution shape models, are provided by stereo processing of the HAMO dataset. Ceres' HAMO shape model is used for the calculation of the ray intersection points while the map projection itself will be done onto a reference sphere for Ceres. The final step is the controlled mosaicking of all nadir images to a global mosaic of Ceres, the so called basemap. Ceres map tiles: The Ceres atlas will be produced in a scale of 1:750,000 and will consist of 15 tiles that conform to the quadrangle schema for small planets and medium size Icy satellites. A map scale of 1:750,000 guarantees a mapping at the highest availa-ble Dawn resolution in HAMO. Nomenclature: The Dawn team proposed to the International Astronomical Union (IAU) to use the names of gods and goddesses of agriculture and vege-tation from world mythology as names for the craters. This proposal was accepted by the IAU and the team proposed names for geological features to the IAU based on the HAMO mosaic. These feature names will be applied to the map tiles.

  1. The PILOT optical alignment for its first flight

    NASA Astrophysics Data System (ADS)

    Mot, B.; Longval, Y.; Bernard, J.-Ph.; Ade, P.; André, Y.; Aumont, J.; Bautista, L.; Bray, N.; deBernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Chaigneau, M.; Coudournac, C.; Crane, B.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P.; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Mangilli, A.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Saccoccio, M.; Salatino, M.; Savini, G.; Stever, S.; Simonella, O.; Tapie, P.; Tauber, J.; Tibbs, C.; Torre, J.-P.; Tucker, C.

    2017-12-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 and 550 µm with an angular resolution of about two arc-min. PILOT optics is composed of an off-axis Gregorian telescope and a refractive re-imager system. All these optical elements, except the primary mirror, are in a cryostat cooled to 3K. We used optical and 3D measurements combined with thermo-elastic modeling to perform the optical alignment. This paper describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015

  2. Nanospectrofluorometry inside single living cell by scanning near-field optical microscopy

    NASA Astrophysics Data System (ADS)

    Lei, F. H.; Shang, G. Y.; Troyon, M.; Spajer, M.; Morjani, H.; Angiboust, J. F.; Manfait, M.

    2001-10-01

    Near-field fluorescence spectra with subdiffraction limit spatial resolution have been taken in the proximity of mitochondrial membrane inside breast adenocarcinoma cells (MCF7) treated with the fluorescent dye (JC-1) by using a scanning near-field optical microscope coupled with a confocal laser microspectrofluorometer. The probe-sample distance control is based on a piezoelectric bimorph shear force sensor having a static spring constant k=5 μN/nm and a quality factor Q=40 in a physiological medium of viscosity η=1.0 cp. The sensitivity of the force sensor has been tested by imaging a MCF7 cell surface.

  3. Effect of subaperture beamforming on phase coherence imaging.

    PubMed

    Hasegawa, Hideyuki; Kanai, Hiroshi

    2014-11-01

    High-frame-rate echocardiography using unfocused transmit beams and parallel receive beamforming is a promising method for evaluation of cardiac function, such as imaging of rapid propagation of vibration of the heart wall resulting from electrical stimulation of the myocardium. In this technique, high temporal resolution is realized at the expense of spatial resolution and contrast. The phase coherence factor has been developed to improve spatial resolution and contrast in ultrasonography. It evaluates the variance in phases of echo signals received by individual transducer elements after delay compensation, as in the conventional delay-andsum beamforming process. However, the phase coherence factor suppresses speckle echoes because phases of speckle echoes fluctuate as a result of interference of echoes. In the present study, the receiving aperture was divided into several subapertures, and conventional delay-and-sum beamforming was performed with respect to each subaperture to suppress echoes from scatterers except for that at a focal point. After subaperture beamforming, the phase coherence factor was obtained from beamformed RF signals from respective subapertures. By means of this procedure, undesirable echoes, which can interfere with the echo from a focal point, can be suppressed by subaperture beamforming, and the suppression of the phase coherence factor resulting from phase fluctuation caused by such interference can be avoided. In the present study, the effect of subaperture beamforming in high-frame-rate echocardiography with the phase coherence factor was evaluated using a phantom. By applying subaperture beamforming, the average intensity of speckle echoes from a diffuse scattering medium was significantly higher (-39.9 dB) than that obtained without subaperture beamforming (-48.7 dB). As for spatial resolution, the width at half-maximum of the lateral echo amplitude profile obtained without the phase coherence factor was 1.06 mm. By using the phase coherence factor, spatial resolution was improved significantly, and subaperture beamforming achieved a better spatial resolution of 0.75 mm than that of 0.78 mm obtained without subaperture beamforming.

  4. Natural Environment Characterization Using Hybrid Tomographic Aproaches

    NASA Astrophysics Data System (ADS)

    Huang, Yue; Ferro-Famil, Laurent; Reigber, Andreas

    2011-03-01

    SAR tomography (SARTOM) is the extension of conventional two-dimensional SAR imaging principle to three dimensions [1]. A real 3D imaging of a scene is achieved by the formation of an additional synthetic aperture in elevation and the coherent combination of images acquired from several parallel flight tracks. This imaging technique allows a direct localization of multiple scattering contributions in a same resolution cell, leading to a refined analysis of volume structures, like forests or dense urban areas. In order to improve the vertical resolution with respect to classical Fourier-based methods, High-Resolution (HR) approaches are used in this paper to perform SAR tomography. Both nonparametric spectral estimators, like Beamforming and Capon and parametric ones, like MUSIC, Maximum Likelihood, are applied to real data sets and compared in terms of scatterer location accuracy and resolution. It is known that nonparametric approaches are in general more robust to focusing artefacts, whereas parametric approaches are characterized by a better vertical resolution. It has been shown [2], [3] that the performance of these spectral analysis approaches is conditioned by the nature of the scattering response of the observed objects. In the scenario of hybrid environments where objects with a deterministic response are embedded in a speckle affected environment, the parameter estimation for this type of scatterers becomes a problem of mixed-spectrum estimation. The impenetrable medium like the ground or object, possesses an isolated localized phase center in the vertical direction, leading to a discrete (line) spectrum. This type of scatterers can be considered as 'h-localized', named 'Isolated Scatterers' (IS). Whereas natural environments consist of a large number of elementary scatterers successively distributed in the vertical direction. This type of scatterers can be described as 'h-distributed' scatterers and characterized by a continuous spectrum. Therefore, the usual spectral estimators may reach some limitations due to their lack of adaptation to both the statistical features of the backscattered information and the type of spectrum of the considered media. In order to overcome this problem, a tomographic focusing approach based on hybrid spectral estimators is introduced and extended to the polarimetric case. It contains two parallel procedures: one is to detect and localize isolated scatterers and the other one is to characterize the natural environment by estimating the heights of the ground and the tree top. These two decoupled procedures permit to more precisely characterize the scenario of hybrid environments.

  5. Light in flight photography and applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Faccio, Daniele

    2017-02-01

    The first successful attempts (Abramson) at capturing light in flight relied on the holographic interference between the ``object'' beam scattered from a screen and a short reference pulse propagating at an angle, acting as an ultrafast shutter cite{egg}. This interference pattern was recorded on a photographic plate or film and allowed the visualisation of light as it propagated through complex environments with unprecedented temporal and spatial resolution. More recently, advances in ultrafast camera technology and in particular the use of picosecond resolution streak cameras allowed the direct digital recording of a light pulse propagating through a plastic bottle (Rasker at el.). This represented a remarkable step forward as it provided the first ever video recording (in the traditional sense with which one intends a video, i.e. something that can be played back directly on a screen and saved in digital format) of a pulse of light in flight. We will discuss a different technology that is based on an imaging camera with a pixel array in which each individual pixel is a single photon avalanche diode (SPAD). SPADs offer both sensitivity to single photons and picosecond temporal resolution of the photon arrival time (with respect to a trigger event). When adding imaging capability, SPAD arrays can deliver videos of light pulse propagating in free space, without the need for a scattering medium or diffuser as in all previous work (Gariepy et al). This capability can then be harnessed for a variety of applications. We will discuss the details of SPAD camera detection of moving objects (e.g. human beings) that are hidden from view and then conclude with a discussion of future perspectives in the field of bio-imaging.

  6. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Magnetohydrodynamics Simulation Module for the Global Solar Corona.

    PubMed

    Hayashi, K; Hoeksema, J T; Liu, Y; Bobra, M G; Sun, X D; Norton, A A

    Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.

  7. Time‐efficient and flexible design of optimized multishell HARDI diffusion

    PubMed Central

    Tournier, J. Donald; Price, Anthony N.; Cordero‐Grande, Lucilio; Hughes, Emer J.; Malik, Shaihan; Steinweg, Johannes; Bastiani, Matteo; Sotiropoulos, Stamatios N.; Jbabdi, Saad; Andersson, Jesper; Edwards, A. David; Hajnal, Joseph V.

    2017-01-01

    Purpose Advanced diffusion magnetic resonance imaging benefits from collecting as much data as is feasible but is highly sensitive to subject motion and the risk of data loss increases with longer acquisition times. Our purpose was to create a maximally time‐efficient and flexible diffusion acquisition capability with built‐in robustness to partially acquired or interrupted scans. Our framework has been developed for the developing Human Connectome Project, but different application domains are equally possible. Methods Complete flexibility in the sampling of diffusion space combined with free choice of phase‐encode‐direction and the temporal ordering of the sampling scheme was developed taking into account motion robustness, internal consistency, and hardware limits. A split‐diffusion‐gradient preparation, multiband acceleration, and a restart capacity were added. Results The framework was used to explore different parameters choices for the desired high angular resolution diffusion imaging diffusion sampling. For the developing Human Connectome Project, a high‐angular resolution, maximally time‐efficient (20 min) multishell protocol with 300 diffusion‐weighted volumes was acquired in >400 neonates. An optimal design of a high‐resolution (1.2 × 1.2 mm2) two‐shell acquisition with 54 diffusion weighted volumes was obtained using a split‐gradient design. Conclusion The presented framework provides flexibility to generate time‐efficient and motion‐robust diffusion magnetic resonance imaging acquisitions taking into account hardware constraints that might otherwise result in sub‐optimal choices. Magn Reson Med 79:1276–1292, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28557055

  8. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy

    NASA Astrophysics Data System (ADS)

    Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.

    2018-03-01

    Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.

  9. High-resolution ophthalmic imaging system

    DOEpatents

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  10. Computed tomography coronary stent imaging with iterative reconstruction: a trade-off study between medium kernel and sharp kernel.

    PubMed

    Zhou, Qijing; Jiang, Biao; Dong, Fei; Huang, Peiyu; Liu, Hongtao; Zhang, Minming

    2014-01-01

    To evaluate the improvement of iterative reconstruction in image space (IRIS) technique in computed tomographic (CT) coronary stent imaging with sharp kernel, and to make a trade-off analysis. Fifty-six patients with 105 stents were examined by 128-slice dual-source CT coronary angiography (CTCA). Images were reconstructed using standard filtered back projection (FBP) and IRIS with both medium kernel and sharp kernel applied. Image noise and the stent diameter were investigated. Image noise was measured both in background vessel and in-stent lumen as objective image evaluation. Image noise score and stent score were performed as subjective image evaluation. The CTCA images reconstructed with IRIS were associated with significant noise reduction compared to that of CTCA images reconstructed using FBP technique in both of background vessel and in-stent lumen (the background noise decreased by approximately 25.4% ± 8.2% in medium kernel (P

  11. Explorer of Enceladus and Titan (E2T): Investigating ocean worlds' evolution and habitability in the solar system

    NASA Astrophysics Data System (ADS)

    Mitri, Giuseppe; Postberg, Frank; Soderblom, Jason M.; Wurz, Peter; Tortora, Paolo; Abel, Bernd; Barnes, Jason W.; Berga, Marco; Carrasco, Nathalie; Coustenis, Athena; Paul de Vera, Jean Pierre; D'Ottavio, Andrea; Ferri, Francesca; Hayes, Alexander G.; Hayne, Paul O.; Hillier, Jon K.; Kempf, Sascha; Lebreton, Jean-Pierre; Lorenz, Ralph D.; Martelli, Andrea; Orosei, Roberto; Petropoulos, Anastassios E.; Reh, Kim; Schmidt, Juergen; Sotin, Christophe; Srama, Ralf; Tobie, Gabriel; Vorburger, Audrey; Vuitton, Véronique; Wong, Andre; Zannoni, Marco

    2018-06-01

    Titan, with its organically rich and dynamic atmosphere and geology, and Enceladus, with its active plume, both harbouring global subsurface oceans, are prime environments in which to investigate the habitability of ocean worlds and the conditions for the emergence of life. We present a space mission concept, the Explorer of Enceladus and Titan (E2T), which is dedicated to investigating the evolution and habitability of these Saturnian satellites. E2T is proposed as a medium-class mission led by ESA in collaboration with NASA in response to ESA's M5 Cosmic Vision Call. E2T proposes a focused payload that would provide in-situ composition investigations and high-resolution imaging during multiple flybys of Enceladus and Titan using a solar-electric powered spacecraft in orbit around Saturn. The E2T mission would provide high-resolution mass spectrometry of the plume currently emanating from Enceladus' south polar terrain and of Titan's changing upper atmosphere. In addition, high-resolution infrared (IR) imaging would detail Titan's geomorphology at 50-100 m resolution and the temperature of the fractures on Enceladus' south polar terrain at meter resolution. These combined measurements of both Titan and Enceladus would enable the E2T mission scenario to achieve two major scientific goals: 1) Study the origin and evolution of volatile-rich ocean worlds; and 2) Explore the habitability and potential for life in ocean worlds. E2T's two high-resolution time-of-flight mass spectrometers would enable resolution of the ambiguities in chemical analysis left by the NASA/ESA/ASI Cassini-Huygens mission regarding the identification of low-mass organic species, detect high-mass organic species for the first time, further constrain trace species such as the noble gases, and clarify the evolution of solid and volatile species. The high-resolution IR camera would reveal the geology of Titan's surface and the energy dissipated by Enceladus' fractured south polar terrain and plume in detail unattainable by the Cassini mission.

  12. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  13. Density‐weighted concentric circle trajectories for high resolution brain magnetic resonance spectroscopic imaging at 7T

    PubMed Central

    Hingerl, Lukas; Moser, Philipp; Považan, Michal; Hangel, Gilbert; Heckova, Eva; Gruber, Stephan; Trattnig, Siegfried; Strasser, Bernhard

    2017-01-01

    Purpose Full‐slice magnetic resonance spectroscopic imaging at ≥7 T is especially vulnerable to lipid contaminations arising from regions close to the skull. This contamination can be mitigated by improving the point spread function via higher spatial resolution sampling and k‐space filtering, but this prolongs scan times and reduces the signal‐to‐noise ratio (SNR) efficiency. Currently applied parallel imaging methods accelerate magnetic resonance spectroscopic imaging scans at 7T, but increase lipid artifacts and lower SNR‐efficiency further. In this study, we propose an SNR‐efficient spatial‐spectral sampling scheme using concentric circle echo planar trajectories (CONCEPT), which was adapted to intrinsically acquire a Hamming‐weighted k‐space, thus termed density‐weighted‐CONCEPT. This minimizes voxel bleeding, while preserving an optimal SNR. Theory and Methods Trajectories were theoretically derived and verified in phantoms as well as in the human brain via measurements of five volunteers (single‐slice, field‐of‐view 220 × 220 mm2, matrix 64 × 64, scan time 6 min) with free induction decay magnetic resonance spectroscopic imaging. Density‐weighted‐CONCEPT was compared to (a) the originally proposed CONCEPT with equidistant circles (here termed e‐CONCEPT), (b) elliptical phase‐encoding, and (c) 5‐fold Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration accelerated elliptical phase‐encoding. Results By intrinsically sampling a Hamming‐weighted k‐space, density‐weighted‐CONCEPT removed Gibbs‐ringing artifacts and had in vivo +9.5%, +24.4%, and +39.7% higher SNR than e‐CONCEPT, elliptical phase‐encoding, and the Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration accelerated elliptical phase‐encoding (all P < 0.05), respectively, which lead to improved metabolic maps. Conclusion Density‐weighted‐CONCEPT provides clinically attractive full‐slice high‐resolution magnetic resonance spectroscopic imaging with optimal SNR at 7T. Magn Reson Med 79:2874–2885, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:29106742

  14. SOLARNET & LAIME: Imaging & Spectroscopy in the Far Ultraviolet

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Koutchmy, Serge

    SOLARNET is a medium size high resolution solar physics mission proposed to CNES and ESA for a new start in 2007 and a possible launch in 2012 (CNES) or later (ESA Cosmic Vision framework: 2015-2016). Partnerships with India and China are under discussion, and several European contributions are considered. At the center of the SOLARNET mission is a 3-telescope interferometer of 1 meter baseline capable to provide 40 times the best ever spatial resolution achieved in Space with previous, current or even planned solar missions: 20 mas - 20 km on the Sun in the FUV. The interferometer is associated to an on-axis Subtractive Double Monochromator coupled to an Imaging Fourier Transform Spectrometer capable of high spectral (0.01 nm) and high temporal resolutions (50 ms) on a field of view of 40 arcsec and covering the FUV and UV spectral domains (from 117.5 to 400 nm). This will allow to access process scales of magnetic reconnection, dissipation, emerging flux and much more, from the chromosphere to the low corona with emphasis on the transition zone where the magnetic confinement is expected to be maximum. A whole new chapter of the physics of solar magnetic field structuring, evolution and mapping from the photosphere to the high atmosphere will be opened. The interferometer is completed by instruments providing larger field of view and higher temperature (EUV-XUV coronal imaging & spectroscopy) to define the context and extension of the solar phenomena. The 3-telescope interferometer design results of an extensive laboratory demonstration program of interferometric imaging of extended objects. We will review the scientific program of SOLARNET, describe the interferometer concept and design, present the results of the breadboard and give a short overview of the mission aspects. In a different category, LAIME, the Lyman Alpha Imaging-Monitor Experiment, is a remarkably simple (no mechanisms) and compact full Sun imager to be flown with TESIS on the CORONAS-PHOTON mission in 2008. It could be the only chromospheric imager to be flown in the next years, supporting Solar-B, STEREO, SDO and the Belgian LYRA Lyman Alpha flux monitor. We will give a short description of this unique 60 mm aperture imaging telescope, dedicated to the investigation of the UV sources of solar variability and of the chromospheric and coronal disruptive events (Moreton waves, prominences, CMEs, etc.).

  15. Network-linked long-time recording high-speed video camera system

    NASA Astrophysics Data System (ADS)

    Kimura, Seiji; Tsuji, Masataka

    2001-04-01

    This paper describes a network-oriented, long-recording-time high-speed digital video camera system that utilizes an HDD (Hard Disk Drive) as a recording medium. Semiconductor memories (DRAM, etc.) are the most common image data recording media with existing high-speed digital video cameras. They are extensively used because of their advantage of high-speed writing and reading of picture data. The drawback is that their recording time is limited to only several seconds because the data amount is very large. A recording time of several seconds is sufficient for many applications. However, a much longer recording time is required in some applications where an exact prediction of trigger timing is hard to make. In the Late years, the recording density of the HDD has been dramatically improved, which has attracted more attention to its value as a long-recording-time medium. We conceived an idea that we would be able to build a compact system that makes possible a long time recording if the HDD can be used as a memory unit for high-speed digital image recording. However, the data rate of such a system, capable of recording 640 X 480 pixel resolution pictures at 500 frames per second (fps) with 8-bit grayscale is 153.6 Mbyte/sec., and is way beyond the writing speed of the commonly used HDD. So, we developed a dedicated image compression system and verified its capability to lower the data rate from the digital camera to match the HDD writing rate.

  16. SU-E-T-588: Optimization of Imaging Following 223Ra Administration in Targeted Alpha-Emitting Radionuclide Therapy of Bone Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benabdallah, N; Bernardini, M; Desbree, A

    Purpose: With a growing demand of alpha-emitting radiopharmaceuticals, especially Xofigo ({sup 223}RaCl{sub 2}) which is used in the treatment of metastatic bone disease, the optimization of dosimetry becomes necessary. Indeed, in Europe, as stated on the council directive 2013/59/euratom, exposures of target volumes for radiotherapeutic purposes shall be individually planned taking into account that doses to non-target volumes and tissues shall be as low as reasonably achievable. To that aim, the possibility of imaging {sup 223}Ra was first investigated. Methods: The experiments were conducted at the Hopital Europeen Georges Pompidou with an Infinia Hawkeye 4 gamma camera, equipped with amore » medium-energy collimator. Imaging parameters, such as sensibility, spatial resolution and energy spectrum, were determined using several physical phantoms with a source of 6 MBq of {sup 223}Ra. Bone metastases were modeled with a NEMA Body Phantom to investigate image degradation based on the concentration of {sup 223}Ra. Results: The acquired energy spectrum allowed to visualize several photon peaks: at 85, 154 and 270 keV. Camera sensitivity measured from the phantom study was 102.3 cps/MBq for the 85 keV ± 20 %, 89.9 cps/MBq for the 154 ± 20 % window and 65.4 cps/MBq for the 270 ± 10 % window. The spatial resolution (full-width at half-maximum) was respectively 1.7, 1.9 and 1.8 cm for the three energy windows. SPECT/CT images of NEMA Body Phantom without and with attenuation have permitted to determine the best reconstruction parameters. Conclusion: This study has demonstrated that it is possible to obtain clinically relevant information from images of {sup 223}Ra. All these results will be valuable to analyze biodistribution imaging of the radiopharmaceutical in the patient body and go further in the reconstruction of patient images in order to personalize the dosimetry.« less

  17. Diseño, Construcción Y Desarrollo De Un Sistema Limitado Por Difracción Para Telescopios Terrestres: Fastcam

    NASA Astrophysics Data System (ADS)

    Lopez Lopez, Roberto

    2013-02-01

    This work describes the concept, design, development, evolution and application of the FastCam instrument. FastCam is an image photometer for astronomy with image capture in a high-frequency range and diraction limited, in order to apply the Lucky Imaging technique to medium- and large-sized ( 1.5 to 4 m) telescopes. The Lucky Imaging technique allows, for ground-based telescopes, to achieve the resolution limit for astronomical images under suitable conditions. This work describes the atmospheric problems and the active and adaptive optics techniques to solve them, as well as the Lucky Imaging fundamentals. A description of the considerations to the project development and design parameters is performed. Then, the optical design and dierent adaptations to several telescopes will be revised. In a next step, some of the scientic results obtained thanks to this project are shown, both in position astronomy and complex structures in globular cluster and binary systems. Dierent designs arising from the basic idea and the instruments now in development that are expanding the system's capabilities and the technique are explained. Some other possible applications to other elds in which the image sharpness is necessary despite uctuations or instabilities of the observing system will be also pointed out: ophthalmology, video-control, etc.

  18. Bacterial Immobilization for Imaging by Atomic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, David P; Sullivan, Claretta; Mortensen, Ninell P

    2011-01-01

    AFM is a high-resolution (nm scale) imaging tool that mechanically probes a surface. It has the ability to image cells and biomolecules, in a liquid environment, without the need to chemically treat the sample. In order to accomplish this goal, the sample must sufficiently adhere to the mounting surface to prevent removal by forces exerted by the scanning AFM cantilever tip. In many instances, successful imaging depends on immobilization of the sample to the mounting surface. Optimally, immobilization should be minimally invasive to the sample such that metabolic processes and functional attributes are not compromised. By coating freshly cleaved micamore » surfaces with porcine (pig) gelatin, negatively charged bacteria can be immobilized on the surface and imaged in liquid by AFM. Immobilization of bacterial cells on gelatin-coated mica is most likely due to electrostatic interaction between the negatively charged bacteria and the positively charged gelatin. Several factors can interfere with bacterial immobilization, including chemical constituents of the liquid in which the bacteria are suspended, the incubation time of the bacteria on the gelatin coated mica, surface characteristics of the bacterial strain and the medium in which the bacteria are imaged. Overall, the use of gelatin-coated mica is found to be generally applicable for imaging microbial cells.« less

  19. High-resolution inverse synthetic aperture radar imaging for large rotation angle targets based on segmented processing algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan

    2017-01-01

    In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.

  20. Adaptive Markov Random Fields for Example-Based Super-resolution of Faces

    NASA Astrophysics Data System (ADS)

    Stephenson, Todd A.; Chen, Tsuhan

    2006-12-01

    Image enhancement of low-resolution images can be done through methods such as interpolation, super-resolution using multiple video frames, and example-based super-resolution. Example-based super-resolution, in particular, is suited to images that have a strong prior (for those frameworks that work on only a single image, it is more like image restoration than traditional, multiframe super-resolution). For example, hallucination and Markov random field (MRF) methods use examples drawn from the same domain as the image being enhanced to determine what the missing high-frequency information is likely to be. We propose to use even stronger prior information by extending MRF-based super-resolution to use adaptive observation and transition functions, that is, to make these functions region-dependent. We show with face images how we can adapt the modeling for each image patch so as to improve the resolution.

  1. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface.

    PubMed

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-06-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging.

  2. Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan

    2016-03-01

    Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.

  3. O-space with high resolution readouts outperforms radial imaging.

    PubMed

    Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi

    2017-04-01

    While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Flow-Signature Analysis of Water Consumption in Nonresidential Building Water Networks Using High-Resolution and Medium-Resolution Smart Meter Data: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Clifford, Eoghan; Mulligan, Sean; Comer, Joanne; Hannon, Louise

    2018-01-01

    Real-time monitoring of water consumption activities can be an effective mechanism to achieve efficient water network management. This approach, largely enabled by the advent of smart metering technologies, is gradually being practiced in domestic and industrial contexts. In particular, identifying water consumption habits from flow-signatures, i.e., the specific end-usage patterns, is being investigated as a means for conservation in both the residential and nonresidential context. However, the quality of meter data is bivariate (dependent on number of meters and data temporal resolution) and as a result, planning a smart metering scheme is relatively difficult with no generic design approach available. In this study, a comprehensive medium-resolution to high-resolution smart metering program was implemented at two nonresidential trial sites to evaluate the effect of spatial and temporal data aggregation. It was found that medium-resolution water meter data were capable of exposing regular, continuous, peak use, and diurnal patterns which reflect group wide end-usage characteristics. The high-resolution meter data permitted flow-signature at a personal end-use level. Through this unique opportunity to observe water usage characteristics via flow-signature patterns, newly defined hydraulic-based design coefficients determined from Poisson rectangular pulse were developed to intuitively aid in the process of pattern discovery with implications for automated activity recognition applications. A smart meter classification and siting index was introduced which categorizes meter resolution in terms of their suitable application.

  5. Time-series photographs of the sea floor in western Massachusetts Bay: June 1997 to June 1998

    USGS Publications Warehouse

    Butman, Bradford; Alexander, P. Soupy; Bothner, Michael H.

    2004-01-01

    This report presents time-series photographs of the sea floor obtained from an instrumented tripod deployed at Site A in western Massachusetts Bay (42° 22.6' N., 70? 47.0' W., 30 m water depth, from June 1997 through June 1998. Site A is approximately 1 km south of an ocean outfall that began discharging treated sewage effluent from the Boston metropolitan area into Massachusetts Bay in September 2000. Time-series photographs and oceanographic observations were initiated at Site A in December 1989 and are anticipated to continue to September 2005. This is the first in a series of reports planned to summarize and distribute these images in digital form. The objective of these reports is to enable easy and rapid viewing of the photographs and to provide a medium-resolution digital archive. The images, obtained every 4 hours, are presented as a movie (in .avi format, which may be viewed using an image viewer such as QuickTime or Windows Media Player) and as individual images (.tif format). The images provide time-series observations of changes of the sea floor and near-bottom water properties.

  6. Scaled Anatomical Model Creation of Biomedical Tomographic Imaging Data and Associated Labels for Subsequent Sub-surface Laser Engraving (SSLE) of Glass Crystals.

    PubMed

    Betts, Aislinn M; McGoldrick, Matthew T; Dethlefs, Christopher R; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W M

    2017-04-25

    Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings.

  7. Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array.

    PubMed

    Xia, Jun; Huang, Chao; Maslov, Konstantin; Anastasio, Mark A; Wang, Lihong V

    2013-08-15

    Photoacoustic computed tomography (PACT) is a hybrid technique that combines optical excitation and ultrasonic detection to provide high-resolution images in deep tissues. In the image reconstruction, a constant speed of sound (SOS) is normally assumed. This assumption, however, is often not strictly satisfied in deep tissue imaging, due to acoustic heterogeneities within the object and between the object and the coupling medium. If these heterogeneities are not accounted for, they will cause distortions and artifacts in the reconstructed images. In this Letter, we incorporated ultrasonic computed tomography (USCT), which measures the SOS distribution within the object, into our full-ring array PACT system. Without the need for ultrasonic transmitting electronics, USCT was performed using the same laser beam as for PACT measurement. By scanning the laser beam on the array surface, we can sequentially fire different elements. As a first demonstration of the system, we studied the effect of acoustic heterogeneities on photoacoustic vascular imaging. We verified that constant SOS is a reasonable approximation when the SOS variation is small. When the variation is large, distortion will be observed in the periphery of the object, especially in the tangential direction.

  8. A Scalable Framework For Segmenting Magnetic Resonance Images

    PubMed Central

    Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar

    2009-01-01

    A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893

  9. Exploring multi-scale forest above ground biomass estimation with optical remote sensing imageries

    NASA Astrophysics Data System (ADS)

    Koju, U.; Zhang, J.; Gilani, H.

    2017-02-01

    Forest shares 80% of total exchange of carbon between the atmosphere and the terrestrial ecosystem. Due to this monitoring of forest above ground biomass (as carbon can be calculated as 0.47 part of total biomass) has become very important. Forest above ground biomass as being the major portion of total forest biomass should be given a very careful consideration in its estimation. It is hoped to be useful in addressing the ongoing problems of deforestation and degradation and to gain carbon mitigation benefits through mechanisms like Reducing Emissions from Deforestation and Forest Degradation (REDD+). Many methods of above ground biomass estimation are in used ranging from use of optical remote sensing imageries of very high to very low resolution to SAR data and LIDAR. This paper describes a multi-scale approach for assessing forest above ground biomass, and ultimately carbon stocks, using very high imageries, open source medium resolution and medium resolution satellite datasets with a very limited number of field plots. We found this method is one of the most promising method for forest above ground biomass estimation with higher accuracy and low cost budget. Pilot study was conducted in Chitwan district of Nepal on the estimation of biomass using this technique. The GeoEye-1 (0.5m), Landsat (30m) and Google Earth (GE) images were used remote sensing imageries. Object-based image analysis (OBIA) classification technique was done on Geo-eye imagery for the tree crown delineation at the watershed level. After then, crown projection area (CPA) vs. biomass model was developed and validated at the watershed level. Open source GE imageries were used to calculate the CPA and biomass from virtual plots at district level. Using data mining technique, different parameters from Landsat imageries along with the virtual sample biomass were used for upscaling biomass estimation at district level. We found, this approach can considerably reduce field data requirements for estimation of biomass and carbon in comparison with inventory methods based on enumeration of all trees in a plot. The proposed methodology is very cost effective and can be replicated with limited resources and time.

  10. Recalescence during crystallization of stardust: Resolution of the amorphous interstellar medium paradox

    NASA Astrophysics Data System (ADS)

    Whittington, A. G.; Sehlke, A.; Speck, A. K.

    2017-12-01

    Dust that coalesces to form planetary systems originates around dying stars, before passing into the interstellar medium (ISM). Historically, observations of broad smooth features in the 10-µm region suggested that dust in circumstellar regions, and in the ISM, was mostly amorphous rather than crystalline. With improved space telescope capabilities, crystalline silicates were discovered in the circumstellar regions around both young and old stars, although they remain undetected in the ISM. Despite intensive study the precise conditions that lead to the formation of crystalline silicates are still unknown, and their absence in the ISM remains problematic. Here we show that recalescence (spontaneous reheating) of rapidly crystallizing dust can explain the formation and apparent disappearance of crystalline silicates in space. We have documented recalescence in rapidly crystallizing Mg-rich silicate melts, with local heating at the crystallization front exceeding 160˚C in some cases. In circumstellar dust shells, amorphous grains with similar compositions condense at temperatures near their glass transition, and if they crystallize, they will recalesce. The higher temperature (T) of newly crystallized dust allows crystalline spectral features to be seen, because flux emitted depends on T4. After cooling to ambient temperature, crystalline spectral features in the ISM are concealed by volumetrically dominant amorphous dust. Our results explain the existence of crystalline silicate pre-solar grains, which are older than the solar system, and have implications for radiative transfer modeling and hydrodynamics of dusty environments, which are sensitive to small variations in optical properties. Our observations of mm-scale temperature differences up to 100˚C in cooling lava suggest that thermal imaging of basaltic lava flows needs to be conducted with mm-scale spatial resolution (see figure; crucible is 5mm diameter). Temperatures recorded with low spatial resolution, which average cooler melt and hotter crystals in a single pixel, will systematically overestimate the temperature of the liquid phase. Only the surface of a lava flow is likely to cool quickly enough for recalescence to occur, but this is precisely the part of the lava that is monitored by thermal imaging.

  11. Phase object retrieval through scattering medium

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Zhao, Meijing; Wu, Houde; Xu, Wenhai

    2018-05-01

    Optical imaging through a scattering medium has been an interesting and important research topic, especially in the field of biomedical imaging. However, it is still a challenging task due to strong scattering. This paper proposes to recover the phase object behind the scattering medium from one single-shot speckle intensity image using calibrated transmission matrices (TMs). We construct the forward model as a non-linear mapping, since the intensity image loses the phase information, and then a generalized phase retrieval algorithm is employed to recover the hidden object. Moreover, we show that a phase object can be reconstructed with a small portion of the speckle image captured by the camera. The simulation is performed to demonstrate our scheme and test its performance. Finally, a real experiment is set up, we measure the TMs from the scattering medium, and then use it to reconstruct the hidden object. We show that a phase object of size 32 × 32 is retrieved from 150 × 150 speckle grains, which is only 1/50 of the speckles area. We believe our proposed method can benefit the community of imaging through the scattering medium.

  12. An evaluation of the stability of image quality parameters of Elekta X-ray volume imager and iViewGT imaging systems.

    PubMed

    Stanley, Dennis N; Rasmussen, Karl; Kirby, Neil; Papanikolaou, Nikos; Gutiérrez, Alonso N

    2018-05-01

    A robust image quality assurance and analysis methodology for image-guided localization systems is crucial to ensure the accurate localization and visualization of target tumors. In this study, the long-term stability of selected image parameters was assessed and evaluated for the cone-beam computed tomography (CBCT) mode, planar radiographic kV mode, and the radiographic MV mode of an Elekta VersaHD. The CATPHAN, QckV-1, and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50), contrast to noise ratio (CNR) and noise being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for uniformity, noise, spatial resolution, and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F low detector for the kV planar radiographic mode. For each metric, values were normalized to the mean and the standard deviations were recorded. A total of 30 measurements were performed on a single Elekta VersaHD linear accelerator over an 18-month period without significant adjustment or recalibration to the XVI or iViewGT systems during the evaluated time frame. For the planar radiographic spatial resolution, the normalized standard deviation values of the f30, f40, and f50 were 0.004, 0.003, and 0.003 and 0.015, 0.009, and 0.017 for kV and MV, respectively. The average recorded dose for kV was 67.96 μGy. The standard deviations of the evaluated metrics for the S20 acquisition were 0.083(f30), 0.058(f40), 0.056(f50), 0.021(Water/poly-HU constancy), 0.029(uniformity) and 0.028(noise). The standard deviations for the M20 acquisition were 0.093(f30), 0.043(f40), 0.037(f50), 0.016(Water/poly-HU constancy), 0.010(uniformity) and 0.011(Noise). A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iViewGT imaging systems. The two systems show consistent imaging and dosimetric properties over the evaluated time frame. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  13. Relationship between perception of image resolution and peripheral visual field in stereoscopic images

    NASA Astrophysics Data System (ADS)

    Ogawa, Masahiko; Shidoji, Kazunori

    2011-03-01

    High-resolution stereoscopic images are effective for use in virtual reality and teleoperation systems. However, the higher the image resolution, the higher is the cost of computer processing and communication. To reduce this cost, numerous earlier studies have suggested the use of multi-resolution images, which have high resolution in region of interests and low resolution in other areas. However, observers can perceive unpleasant sensations and incorrect depth because they can see low-resolution areas in their field of vision. In this study, we conducted an experiment to research the relationship between the viewing field and the perception of image resolution, and determined respective thresholds of image-resolution perception for various positions of the viewing field. The results showed that participants could not distinguish between the high-resolution stimulus and the decreased stimulus, 63 ppi, at positions more than 8 deg outside the gaze point. Moreover, with positions shifted a further 11 and 13 deg from the gaze point, participants could not distinguish between the high-resolution stimulus and the decreased stimuli whose resolution densities were 42 and 25 ppi. Hence, we will propose the composition of multi-resolution images in which observers do not perceive unpleasant sensations and incorrect depth with data reduction (compression).

  14. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging.

    PubMed

    Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R

    2017-11-01

    The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.

  15. The Highest Resolution Chandra View of Photoionization and Jet-Cloud Interaction in the Nuclear Region of NGC 4151

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.

    2009-10-01

    We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra High Resolution Camera (HRC) observation. The HRC image resolves the emission on spatial scales of 0farcs5, ~30 pc, showing an extended X-ray morphology overall consistent with the narrow-line region (NLR) seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution techniques both reveal X-ray enhancements that closely match the substructures seen in the Hubble Space Telescope [O III] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [O III]/soft X-ray ratio ~10, despite the distance of the clouds from the nucleus. This ratio is consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density decreasing as r -2 as expected for a nuclear wind scenario. The [O III]/X-ray ratios at the location of radio knots show an excess of X-ray emission, suggesting shock heating in addition to photoionization. We examine various mechanisms for the X-ray emission and find that, in contrast to jet-related X-ray emission in more powerful active galactic nucleus, the observed jet parameters in NGC 4151 are inconsistent with synchrotron emission, synchrotron self-Compton, inverse Compton of cosmic microwave background photons or galaxy optical light. Instead, our results favor thermal emission from the interaction between radio outflow and NLR gas clouds as the origin for the X-ray emission associated with the jet. This supports previous claims that frequent jet-interstellar medium interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated, distinct from those kpc-scale jets in the radio galaxies.

  16. Quality evaluation of pansharpened hyperspectral images generated using multispectral images

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masayuki; Yoshioka, Hiroki

    2012-11-01

    Hyperspectral remote sensing can provide a smooth spectral curve of a target by using a set of higher spectral resolution detectors. The spatial resolution of the hyperspectral images, however, is generally much lower than that of multispectral images due to the lower energy of incident radiation. Pansharpening is an image-fusion technique that generates higher spatial resolution multispectral images by combining lower resolution multispectral images with higher resolution panchromatic images. In this study, higher resolution hyperspectral images were generated by pansharpening of simulated lower hyperspectral and higher multispectral data. Spectral and spatial qualities of pansharpened images, then, were accessed in relation to the spectral bands of multispectral images. Airborne hyperspectral data of AVIRIS was used in this study, and it was pansharpened using six methods. Quantitative evaluations of pansharpened image are achieved using two frequently used indices, ERGAS, and the Q index.

  17. Length of intact plasma membrane determines the diffusion properties of cellular water.

    PubMed

    Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi

    2016-01-11

    Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = -0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death.

  18. Length of intact plasma membrane determines the diffusion properties of cellular water

    PubMed Central

    Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi

    2016-01-01

    Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = −0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death. PMID:26750342

  19. Assessment of the spatial extent and height of flooding in Lake Champlain during May 2011, using satellite remote sensing and ground-based information

    USGS Publications Warehouse

    Bjerklie, David M.; Trombley, Thomas J.; Olson, Scott A.

    2014-01-01

    Landsat 5 and moderate resolution imaging spectro-radiometer satellite imagery were used to map the area of inundation of Lake Champlain, which forms part of the border between New York and Vermont, during May 2011. During this month, the lake’s water levels were record high values not observed in the previous 150 years. Lake inundation area determined from the satellite imagery is correlated with lake stage measured at three U.S. Geological Survey lake level gages to provide estimates of lake area at different lake levels (stage/area rating) and also compared with the levels of the high-water marks (HWMs) located on the Vermont side of the lake. The rating developed from the imagery shows a somewhat different relation than a similar stage/area rating developed from a medium-resolution digital elevation model (DEM) of the region. According to the rating derived from the imagery, the lake surface area during the peak lake level increased by about 17 percent above the average or “normal” lake level. By using a comparable rating developed from the DEM, the increase above average is estimated to be about 12 percent. The northern part of the lake (north of Burlington) showed the largest amount of flooding. Based on intersecting the inundation maps with the medium-resolution DEM, lake levels were not uniform around the lake. This is also evident from the lake level gage measurements and HWMs. The gage data indicate differences up to 0.5 feet between the northern and southern end of the lake. Additionally, the gage data show day-to-day and intradaily variation of the same range (0.5 foot). The high-water mark observations show differences up to 2 feet around the lake, with the highest level generally along the south- and west-facing shorelines. The data suggest that during most of May 2011, water levels were slightly higher and less variable in the northern part of the lake. These phenomena may be caused by wind effects as well as proximity to major river inputs to the lake. The inundation areas generated from the imagery generally coincide with flood mapping as estimated by the Federal Emergency Management Agency (FEMA) and shown on its digital flood insurance rate maps. Where areas in the flood inundation map derived from the imagery and the FEMA estimated flooded areas differ substantially, this difference may be due to differences between the flood magnitude at the time of the image and the assumed flood condition used for the FEMA modeling and mapping, wind/storage effects not accounted for by the FEMA modeling, and the resolution of the image compared to the DEM used in the FEMA mapping.

  20. Preliminary assessment of the GOES-R ABI hourly land surface albedo and reflectance products prototyped with Himawari AHI data

    NASA Astrophysics Data System (ADS)

    He, T.; Liang, S.; Zhang, Y.; Yu, Y.

    2016-12-01

    Land surface albedo and reflectance are critical geophysical variables used in climate and environmental applications. The multispectral Advanced Baseline Imager (ABI) onboard the next generation geostationary satellites (GOES-R series, set to launch in late 2016) offers high temporal and medium spatial resolution observations, which can be used for monitoring diurnal variation of surface albedo and reflectance. In the GOES-R data processing chain there is no atmospheric correction to generate surface reflectance product, which is usually required for surface albedo estimation. We propose an optimization method to simultaneously retrieve surface bidirectional reflectance distribution function (BRDF) parameters and aerosol optical depth with GOES-R ABI data on a daily-basis, which are used for estimating surface albedo and reflectance. Before the launch of the GOES-R satellite, our algorithm was prototyped with data from the Advanced Himawari Imager (AHI) onboard the Japanese Himawari-8 satellite, which has spectral bands and spatial resolutions similar to GOES-R ABI. Cal/val activities were carried out against ground measurements at the OzFlux sites in Australia and satellite data including albedo/BRDF products from MODIS and Landsat. The preliminary accuracy assessment showed promising results for both the surface albedo and reflectance estimates. The GOES-R surface albedo and reflectance products will serve as critical inputs for downstream GOES-R satellite products and also help improve climate modeling and weather forecasting with a high temporal resolution.

Top