Sample records for medium resolution mode

  1. Sensitivity of STIS First-OrderMedium Resolution Modes

    NASA Astrophysics Data System (ADS)

    Proffitt, Charles R.

    2006-07-01

    The sensitivities for STIS first-order medium resolution modes were redetermined usingon-orbit observations of the standard DA white dwarfs G 191-B2B, GD 71, and GD 153.We review the procedures and assumptions used to derive the adopted throughputs, and discuss the remaining errors and uncertainties.

  2. Fabry-Perot observations of comet Austin

    NASA Technical Reports Server (NTRS)

    Schultz, David; Scherb, F.; Roesler, F. L.; Li, G.; Harlander, J.; Roberts, T. P. P.; Vandenberk, D.; Nossal, S.; Coakley, M.; Oliversen, Ronald J.

    1990-01-01

    Preliminary results of a program to observe Comet Austin (1990c1) from 16 April to 4 May and from 11 May to 27 May 1990 using the West Auxiliary of the McMath Solar Telescope on Kitt Peak, Arizona were presetned. The observations were made with a 15 cm duel-etalon Fabry-Perot scanning and imaging spectrometer with two modes of operation: a high resolution mode with a velocity resolution of 1.2 km/s and a medium resolution mode with a velocity resolution 10 km/s. Scanning data was obtained with an RCA C31034A photomultiplier tube and imaging data was obtained with a Photometrics LN2 cooled CCD camera with a 516 by 516 Ford chip. The results include: (1) information on the coma outflow velocity from high resolution spectral profiles of (OI)6300 and NH2 emissions, (2) gaseous water production rates from medium resolution observation of (OI)6300, (3) spectra of H2O(+) emissions in order to study the ionized component of the coma, (4) spatial distribution of H2O(+) emission features from sequences of velocity resolved images (data cubes), and (5) spatial distribution of (OI)6300 and NH2 emissions from medium resolution images. The field of view on the sky was 10.5 arcminutes in diameter. In the imaging mode the CCD was binned 4 by 4 resulting in 7.6 sec power pixel and a subarray readout for a field of view of 10.5 min.

  3. New On-Orbit Sensitivity Calibrationfor All STIS Echelle Modes

    NASA Astrophysics Data System (ADS)

    Aloisi, Alessandra; Bohlin, Ralph; Quijano, Jessica Kim

    2007-01-01

    On-orbit sensitivities for the 32 medium- and high-resolution STIS echelle secondarymodes were determined for the rst time using observations of the fundamental DAwhite dwarf standard star G191-B2B. Revised on-orbit sensitivities for the 12 mediumandhigh-resolution echelle prime modes based on observations of the same standardstar are also presented. We review the procedures and assumptions used to derive theadopted throughputs and implement them into the pipeline.

  4. New HST/COS FUV Modes G140L/800 and G160M/1533

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi; De Rosa, Gisella; Fischer, William J.; Fix, Mees B.; Fox, Andrew; Indriolo, Nick; James, Bethan; Magness, Camellia; Oliveira, Cristina M.; Penton, Steven V.; Plesha, Rachel; Rafelski, Marc; Roman-Duval, Julia; Sahnow, David J.; Snyder, Elaine M.; Taylor, Joanna M.; White, James

    2018-06-01

    We present two new observing modes that are being offered for the far-ultraviolet (FUV) channel on the Cosmic Origins Spectrograph (COS), and an initial overview of the science investigations they enable. The FUV channel on COS currently operates in the 900-2150 A wavelength region. It consists of two medium resolution gratings G130M and G160M, and a low resolution grating G140L. The detector consists of two segments (FUVB, shortward and FUVA, longward wavelengths) with a gap between them. Each grating has a number of central wavelength settings (cenwaves) available. The settings place different portions of the spectrum on the detector segments, and the focus at each cenwave is set to optimize spectral resolution in the middle of its wavelength range.The first new mode is G140L/800, which places 800-1950 A on FUVA. The grating rotation and focus for this mode are set to minimize the height of the spectrum on the detector, and thereby the background, in the region below 1100 A. This results in an increased sensitivity at these wavelengths compared to the 1280 cenwave. The second mode, G160M/1533, extends the short-wavelength coverage of the grating by 44 A to overlap with the longest wavelengths covered by the G130M/1222 setting. This allows a broad wavelength range to be covered using just two medium resolution settings without placing the key gain-sag contributor, Ly-alpha, on the detector.

  5. Mauna Kea Spectrographic Explorer (MSE): a conceptual design for multi-object high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.

  6. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction.

    PubMed

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-04-01

    We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (p<0.01). Contrast medium in the injection syringe was scanned to analyse image quality; ASIR did not suppress the severe artefacts of contrast medium. In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode.

  7. Multi-object medium resolution optical spectroscopy at the E-ELT

    NASA Astrophysics Data System (ADS)

    Spanò, Paolo; Bonifacio, Piercarlo

    2008-07-01

    We present the design of a compact medium resolution spectrograph (R~15,000-20,000), intended to operate on a 42m telescope in seeing-limited mode. Our design takes full advantage of some new technology optical components, like volume phase holographic (VPH) gratings. At variance with the choice of complex large echelle spectrographs, which have been the standard on 8m class telescopes, we selected an efficient VPH spectrograph with a limited beam diameter, in order to keep overall dimensions and costs low, using proven available technologies. To obtain such a resolution, we need to moderately slice the telescope image plane onto the spectrograph entrance slit (5-6 slices). Then, standard telescope AO-mode (GLAO, Ground Layer Adaptive Optics) can be used over a large field of view (~10 arcmin), without loosing efficiency. Multiplex capabilities can greatly increase the observing efficiency. A robotic pick-up mirror system can be implemented, within conventional environmental conditions (temperature, pressure, gravity, size), demanding only standard mechanical and optical tolerances. A modular approach allows us scaling multiplex capabilities on overall costs and available space.

  8. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction

    PubMed Central

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-01-01

    Objective We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Methods Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. Results The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (p<0.01). Contrast medium in the injection syringe was scanned to analyse image quality; ASIR did not suppress the severe artefacts of contrast medium. Conclusion In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode. PMID:21081572

  9. Renal stone characterization using high resolution imaging mode on a photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Ferrero, A.; Gutjahr, R.; Henning, A.; Kappler, S.; Halaweish, A.; Abdurakhimova, D.; Peterson, Z.; Montoya, J.; Leng, S.; McCollough, C.

    2017-03-01

    In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm x 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same subelements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.

  10. Renal Stone Characterization using High Resolution Imaging Mode on a Photon Counting Detector CT System.

    PubMed

    Ferrero, A; Gutjahr, R; Henning, A; Kappler, S; Halaweish, A; Abdurakhimova, D; Peterson, Z; Montoya, J; Leng, S; McCollough, C

    2017-03-09

    In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm × 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same sub-elements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.

  11. Second generation spectrograph for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  12. 3D-NTT: a versatile integral field spectro-imager for the NTT

    NASA Astrophysics Data System (ADS)

    Marcelin, M.; Amram, P.; Balard, P.; Balkowski, C.; Boissin, O.; Boulesteix, J.; Carignan, C.; Daigle, O.; de Denus Baillargeon, M.-M.; Epinat, B.; Gach, J.-L.; Hernandez, O.; Rigaud, F.; Vallée, P.

    2008-07-01

    The 3D-NTT is a visible integral field spectro-imager offering two modes. A low resolution mode (R ~ 300 to 6 000) with a large field of view Tunable Filter (17'x17') and a high resolution mode (R ~ 10 000 to 40 000) with a scanning Fabry-Perot (7'x7'). It will be operated as a visitor instrument on the NTT from 2009. Two large programmes will be led: "Characterizing the interstellar medium of nearby galaxies with 2D maps of extinction and abundances" (PI M. Marcelin) and "Gas accretion and radiative feedback in the early universe" (PI J. Bland Hawthorn). Both will be mainly based on the Tunable Filter mode. This instrument is being built as a collaborative effort between LAM (Marseille), GEPI (Paris) and LAE (Montreal). The website adress of the instrument is : http://www.astro.umontreal.ca/3DNTT

  13. JWST DD ERS Team Update: Decoding Smoke Signals from WR140 using NIRISS+AMI and MIRI/MRS

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Hankins, Matt; WR DustERS Team

    2018-06-01

    Dust is a key component of the interstellar medium and plays and important role in the formation of stars and planets. However, the dominant channels of dust production throughout cosmic time are uncertain. With its unprecedented sensitivity and spatial resolution in the mid-IR, the James Webb Space Telescope (JWST) is the ideal platform to address this issue by investigating the dust abundance, composition, and production rates of various dusty sources. In particular, colliding-wind Wolf-Rayet (WR) binaries are known to be efficient dust producers in the local Universe and likely existed in the earliest galaxies. In our Early Release Science (ERS) program, we will use JWST to observe the archetypal colliding-wind binary, WR 140, to study its dust composition, abundance, and formation mechanisms. We will utilize two key JWST observing modes with the medium-resolution spectrometer (MRS) on the Mid-Infrared Instrument (MIRI) and the Aperture Masking Interferometry (AMI) mode with the Near Infrared Imager and Slitless Spectrograph (NIRISS).Our planned observations will establish a benchmark for key observing modes for imaging bright sources with faint extended emission at high spatial resolutions. This will be valuable in various astrophysical contexts including mass-loss from evolved stars, dusty tori around active galactic nuclei, and protoplanetary disks. We are committed to delivering science-enabling products for the JWST community that include high-level pipeline tools to mitigate bright source artifacts and image reconstruction tools compatible with NIRISS+AMI data.

  14. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    PubMed Central

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  15. The Observing Modes of JWST/NIRISS

    NASA Astrophysics Data System (ADS)

    Taylor, Joanna M.; NIRISS Team

    2018-06-01

    The Near Infrared Imager and Slitless Spectrograph (NIRISS) is a contribution of the Canadian Space Agency to the James Webb Space Telescope (JWST). NIRISS complements the other near-infrared science instruments onboard JWST by providing capabilities for (a) low resolution grism spectroscopy between 0.8 and 2.2 µm over the entire field of view, with the possibility of observing the same scene with orthogonal dispersion directions to disentangle blended objects; (b) medium-resolution grism spectroscopy between 0.6 and 2.8 µm that has been optimized to provide high spectrophotometric stability for time-series observations of transiting exoplanets; (c) aperture masking interferometry that provides high angular resolution of 70 - 400 mas at wavelengths between 2.8 and 4.8 µm and (d) parallel imaging through a set of filters that are closely matched to NIRCam's.In this poster, we discuss each of these modes and present simulations of how they might typically be used to address specific scientific questions.

  16. Development and characterization of a compact hand-held gamma probe system, SURGEOGUIDE, based on NEMA NU3-2004 standards

    NASA Astrophysics Data System (ADS)

    Kaviani, S.; Zeraatkar, N.; Sajedi, S.; Gorjizadeh, N.; Farahani, M. H.; Ghafarian, P.; El Fakhri, G.; Sabet, H.; Ay, M. R.

    2016-12-01

    Using an intra-operative gamma probe after periareolar or peritumoral injection of a radiotracer during surgery helps the surgeon to identify the sentinel, or first, nodal site of regional metastasis in clinically node-negative patients. The pathological analysis of this node can have an important influence on the treatment staging in various cancers. This paper reports the design and performance evaluation of a gamma probe recently developed in our department. The detector unit of this system consists of an 8 mm diameter and 10 mm thickness monolithic CsI(Tl) scintillator optically, coupled to a Silicon Photomultiplier (SiPM) with an active area of 6×6 mm2, and a single-hole collimator. The unit is shielded using tungsten. The system can operate in three different modes for Tc-99m, I-131, or F-18 isotopes. The following measurements were carried out to evaluate the performance of the probe: sensitivity in air and scatter medium, spatial resolution in scatter medium, angular resolution in scatter medium, and side and back shielding effectiveness. All experiments have been performed based on the NEMA NU3-2004 standard set up. The measured system sensitivities in air and scatter medium (water) are 1700 cps/MBq and 1770 cps/MBq, respectively, both measured at 3 cm from the collimator. The spatial resolution in the scatter medium is about 45 mm at 3 cm distance from the collimator. Also, the angular resolution of the probe is 74o FWHM. Finally, a shielding effectiveness of 99.5% is measured. The results show that the probe can potentially be used for sentinel lymph node localization during the surgery.

  17. A combined Compton and coded-aperture telescope for medium-energy gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Galloway, Michelle; Zoglauer, Andreas; Boggs, Steven E.; Amman, Mark

    2018-06-01

    A future mission in medium-energy gamma-ray astrophysics would allow for many scientific advancements, such as a possible explanation for the excess positron emission from the Galactic center, a better understanding of nucleosynthesis and explosion mechanisms in Type Ia supernovae, and a look at the physical forces at play in compact objects such as black holes and neutron stars. Additionally, further observation in this energy regime would significantly extend the search parameter space for low-mass dark matter. In order to achieve these objectives, an instrument with good energy resolution, good angular resolution, and high sensitivity is required. In this paper we present the design and simulation of a Compton telescope consisting of cubic-centimeter cadmium zinc telluride detectors as absorbers behind a silicon tracker with the addition of a passive coded mask. The goal of the design was to create a very sensitive instrument that is capable of high angular resolution. The simulated telescope achieved energy resolutions of 1.68% FWHM at 511 keV and 1.11% at 1809 keV, on-axis angular resolutions in Compton mode of 2.63° FWHM at 511 keV and 1.30° FWHM at 1809 keV, and is capable of resolving sources to at least 0.2° at lower energies with the use of the coded mask. An initial assessment of the instrument in Compton-imaging mode yields an effective area of 183 cm2 at 511 keV and an anticipated all-sky sensitivity of 3.6 × 10-6 photons cm-2 s-1 for a broadened 511 keV source over a two-year observation time. Additionally, combining a coded mask with a Compton imager to improve point-source localization for positron detection has been demonstrated.

  18. VizieR Online Data Catalog: Abundances of Population II stars in NGC 6397 (Lind+, 2008)

    NASA Astrophysics Data System (ADS)

    Lind, K.; Korn, A. J.; Barklem, P. S.; Grundahl, F.

    2010-03-01

    The target selection for the spectroscopic study is based on Stroemgren uvby photometry. The photometric observations were collected with the DFOSC instrument on the 1.5m telescope on La Silla, Chile, in 1997. Additional BVI photometric data were obtained in 2005. All spectroscopic data were collected in Service Mode, with the fibre-fed, multi-object, medium-high resolution spectrograph FLAMES/GIRAFFE at ESO-VLT. FLAMES allows for 132 objects to be observed simultaneously, with GIRAFFE in MEDUSA mode, between 2005 Mar 23 and Apr 04. (2 data files).

  19. High brilliance negative ion and neutral beam source

    DOEpatents

    Compton, Robert N.

    1991-01-01

    A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.

  20. Ultraviolet observations of the gas phase abundances in the diffuse clouds toward Zeta Ophiuchi at 3.5 kilometers per second resolution

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Cardelli, Jason A.; Sofia, Ulysses J.

    1992-01-01

    Goddard High Resolution Spectrograph echelle mode measurements at 3.5 km/s resolution are presented for interstellar absorption produced by C II, O I, Mg I, Mg II, Al III, P II, Cr II, Mn II, Fe II, Ni II, Cu II, Zn II, Ga II, Ge II, and Kr I. The absorption line measurements are converted into representations of apparent column density per unit velocity in order to study the multicomponent nature of the absorption. The high spectral resolution of the measurements allows a comparative study of gas phase abundances for many species in the absorbing clouds near -27 and -15 km/s with a typical precision of about 0.05 dex. The matter absorbing near -27 km/s is situated in the local interstellar medium and has log N(H I) of about 19.74. This absorption provides information about the modest 'base' depletion associated with the lower density interstellar medium. The depletion results suggest that accretion processes are operating interstellar clouds that exhibit similar depletion efficiencies for some elements but much higher depletion efficiencies for others.

  1. S-NPP CrIS Full Resolution Sensor Data Record Processing and Evaluations

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Han, Y.; Wang, L.; Tremblay, D. A.; Jin, X.; Weng, F.

    2014-12-01

    The Cross-track Infrared Sounder (CrIS) on Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer. It provides a total of 1305 channels in the normal mode for sounding the atmosphere. CrIS can also be operated in the full spectral resolution (FSR) mode, in which the MWIR and SWIR band interferograms are recorded with the same maximum path difference as the LWIR band and with spectral resolution of 0.625 cm-1 for all three bands (total 2211 channels). NOAA will operate CrIS in FSR mode in December 2014 and the Joint Polar Satellite System (JPSS). Up to date, the FSR mode has been commanded three times in-orbit (02/23/2012, 03/12/2013, and 08/27/2013). Based on CrIS Algorithm Development Library (ADL), CrIS full resolution Processing System (CRPS) has developed to generate the FSR Sensor Data Record (SDR). This code can also be run for normal mode and truncation mode SDRs with recompiling. Different calibration approaches are implemented in the code in order to study the ringing effect observed in CrIS normal mode SDR and to support to select the best calibration algorithm for J1. We develop the CrIS FSR SDR Validation System to quantify the CrIS radiometric and spectral accuracy, since they are crucial for improving its data assimilation in the numerical weather prediction, and for retrieving atmospheric trace gases. In this study, CrIS full resolution SDRs are generated from CRPS using the data collected from FSR mode of S-NPP, and the radiometric and spectral accuracy are assessed by using the Community Radiative Transfer Model (CRTM) and European Centre for Medium-Range Weather Forecasts (ECMWF) forecast fields. The biases between observation and simulations are evaluated to estimate the FOV-2-FOV variability and bias under clear sky over ocean. Double difference method and Simultaneous Nadir Overpass (SNO) method are also used to assess the CrIS radiance consistency with well-validated IASI. Two basic frequency validation methods (absolute and relative spectral validations) are used to assess the CrIS spectral accuracy. Results show that CrIS SDRs from FSR have similar radiometric and spectral accuracy as those from normal mode.

  2. Design, development, and performance of the fibres of MOONS

    NASA Astrophysics Data System (ADS)

    Guinouard, Isabelle; Avila, Gerardo; Lee, David; Amans, Jean-Philippe; Rees, Phil; Taylor, William; Oliva, Ernesto

    2016-07-01

    The Multi-Object Optical and Near-infrared Spectrograph (MOONS) will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.64μm-1.8μm, with a multiplex capability of over 1000 fibres. Each spectrograph will produce spectra for 500 targets simultaneously, each with its own dedicated sky fibre for optimal sky subtraction. The system will have both a medium resolution (R 4000-6000) mode and a high resolution (R 20000) mode. The fibres are used to pick off each sub field of 1" and are used to transport the light from the instrument focal plane to the two spectrographs. Each fibre has a microlens to focus the beam into the fibre at a relative fast focal ratio of F/3.65 to reduce the Focal Ratio Degradation (FRD).

  3. High-frequency and time resolution rocket observations of structured low- and medium-frequency whistler mode emissions in the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    LaBelle, J.; McAdams, K. L.; Trimpi, M. L.

    High bandwidth electric field waveform measurements on a recent auroral sounding rocket reveal structured whistler mode signals at 400-800 kHz. These are observed intermittently between 300 and 500 km with spectral densities 0-10 dB above the detection threshold of 1.5×10-11V2/m2Hz. The lack of correlation with local particle measurements suggests a remote source. The signals are composed of discrete structures, in one case having bandwidths of about 10 kHz and exhibiting rapid frequency variations of the order of 200 kHz per 100 ms. In one case, emissions near the harmonic of the whistler mode signals are detected simultaneously. Current theories of auroral zone whistler mode emissions have not been applied to explain quantitatively the fine structure of these signals, which resemble auroral kilometric radiation (AKR) rather than auroral hiss.

  4. A New Precision Measurement of the Small-scale Line-of-sight Power Spectrum of the Lyα Forest

    NASA Astrophysics Data System (ADS)

    Walther, Michael; Hennawi, Joseph F.; Hiss, Hector; Oñorbe, Jose; Lee, Khee-Gan; Rorai, Alberto; O’Meara, John

    2018-01-01

    We present a new measurement of the Lyα forest power spectrum at 1.8 < z < 3.4 using 74 Keck/HIRES and VLT/UVES high-resolution, high-signal-to-noise-ratio quasar spectra. We developed a custom pipeline to measure the power spectrum and its uncertainty, which fully accounts for finite resolution and noise and corrects for the bias induced by masking missing data, damped Lyα absorption systems, and metal absorption lines. Our measurement results in unprecedented precision on the small-scale modes k> 0.02 {{s}} {{km}}-1, inaccessible to previous SDSS/BOSS analyses. It is well known that these high-k modes are highly sensitive to the thermal state of the intergalactic medium, but contamination by narrow metal lines is a significant concern. We quantify the effect of metals on the small-scale power and find a modest effect on modes with k< 0.1 {{s}} {{km}}-1. As a result, by masking metals and restricting to k< 0.1 {{s}} {{km}}-1, their impact is completely mitigated. We present an end-to-end Bayesian forward-modeling framework whereby mock spectra with the same noise, resolution, and masking as our data are generated from Lyα forest simulations. These mock spectra are used to build a custom emulator, enabling us to interpolate between a sparse grid of models and perform Markov chain Monte Carlo fits. Our results agree well with BOSS on scales k< 0.02 {{s}} {{km}}-1, where the measurements overlap. The combination of the percent-level low-k precision of BOSS with our 5%–15% high-k measurements results in a powerful new data set for precisely constraining the thermal history of the intergalactic medium, cosmological parameters, and the nature of dark matter. The power spectra and their covariance matrices are provided as electronic tables.

  5. MEGARA: large pupil element tests and performance

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, I.; Sánchez-Blanco, E.; Pérez-Calpena, A.; García-Vargas, M. L.; Maldonado, X. M.; Gil de Paz, A.; Carrasco, E.; Gallego, J.; Iglesias-Páramo, J.; Sánchez-Moreno, F. M.

    2016-07-01

    MEGARA is a third generation spectrograph for the Spanish 10.4m telescope (GTC) providing two observing modes: a large central Integral Field Unit (IFU), called the Large Compact Bundle (LCB), covering a FOV of 12.5 × 11.3 arcsec2, and a Multi-Object Spectrograph (MOS) with a FOV of 3.5 × 3.5 arcmin2. MEGARA will observe the whole visible range from 3650A to 10000A allowing different spectral resolutions (low, medium and high) with R = 6000, 11000 and 18000 respectively. The dispersive elements are placed at the spectrograph pupil position in the path of the collimated beam and they are composed of a set of volume phase hologram gratings (VPHs) sandwiched between two flat windows and coupled in addition to two prisms in the case of the medium- and high-resolution units. We will describe the tests and setups developed to check the requirements of all units, as well as the obtained performance at laboratory

  6. Eye-safe digital 3-D sensing for space applications

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Blais, Francois; Rioux, Marc; Cournoyer, Luc; Laurin, Denis G.; MacLean, Steve G.

    2000-01-01

    This paper focuses on the characteristics and performance of an eye-safe laser range scanner (LARS) with short- and medium-range 3D sensing capabilities for space applications. This versatile LARS is a precision measurement tool that will complement the current Canadian Space Vision System. The major advantages of the LARS over conventional video- based imaging are its ability to operate with sunlight shining directly into the scanner and its immunity to spurious reflections and shadows, which occur frequently in space. Because the LARS is equipped with two high-speed galvanometers to steer the laser beam, any spatial location within the field of view of the camera can be addressed. This versatility enables the LARS to operate in two basis scan pattern modes: (1) variable-scan-resolution mode and (2) raster-scan mode. In the variable-resolution mode, the LARS can search and track targets and geometrical features on objects located within a field of view of 30 by 30 deg and with corresponding range from about 0.5 to 2000 m. The tracking mode can reach a refresh rate of up to 130 Hz. The raster mode is used primarily for the measurement of registered range and intensity information on large stationary objects. It allows, among other things, target- based measurements, feature-based measurements, and surface- reflectance monitoring. The digitizing and modeling of human subjects, cargo payloads, and environments are also possible with the LARS. Examples illustrating its capabilities are presented.

  7. SPICA, Stellar Parameters and Images with a Cophased Array: a 6T visible combiner for the CHARA array.

    PubMed

    Mourard, Denis; Bério, Philippe; Perraut, Karine; Clausse, Jean-Michel; Creevey, Orlagh; Martinod, Marc-Antoine; Meilland, Anthony; Millour, Florentin; Nardetto, Nicolas

    2017-05-01

    High angular resolution studies of stars in the optical domain have highly progressed in recent years. After the results obtained with the visible instrument Visible spEctroGraph and polArimeter (VEGA) on the Center for High Angular Resolution Astronomy (CHARA) array and the recent developments on adaptive optics and fibered interferometry, we have started the design and study of a new six-telescope visible combiner with single-mode fibers. It is designed as a low spectral resolution instrument for the measurement of the angular diameter of stars to make a major step forward in terms of magnitude and precision with respect to the present situation. For a large sample of bright stars, a medium spectral resolution mode will allow unprecedented spectral imaging of stellar surfaces and environments for higher accuracy on stellar/planetary parameters. To reach the ultimate performance of the instrument in terms of limiting magnitude (Rmag≃8 for diameter measurements and Rmag≃4 to 5 for imaging), Stellar Parameters and Images with a Cophased Array (SPICA) includes the development of a dedicated fringe tracking system in the H band to reach "long" (200 ms to 30 s) exposures of the fringe signal in the visible.

  8. A Novel Method for Profiling and Quantifying Short- and Medium-Chain Chlorinated Paraffins in Environmental Samples Using Comprehensive Two-Dimensional Gas Chromatography-Electron Capture Negative Ionization High-Resolution Time-of-Flight Mass Spectrometry.

    PubMed

    Xia, Dan; Gao, Lirong; Zheng, Minghui; Tian, Qichang; Huang, Huiting; Qiao, Lin

    2016-07-19

    Chlorinated paraffins (CPs) are complex technical mixtures containing thousands of isomers. Analyzing CPs in environmental matrices is extremely challenging. CPs have broad, unresolved profiles when analyzed by one-dimensional gas chromatography (GC). Comprehensive two-dimensional GC (GC×GC) can separate CPs with a high degree of orthogonality. A novel method for simultaneously profiling and quantifying short- and medium-chain CPs, using GC×GC coupled with electron capture negative ionization high-resolution time-of-flight mass spectrometry, was developed. The method allowed 48 CP formula congener groups to be analyzed highly selectively in one injection through accurate mass measurements of the [M - Cl](-) ions in full scan mode. The correlation coefficients (R(2)) for the linear calibration curves for different chlorine contents were 0.982 for short-chain CPs and 0.945 for medium-chain CPs. The method was successfully used to determine CPs in sediment and fish samples. By using this method, with enhanced chromatographic separation and high mass resolution, interferences between CP congeners and other organohalogen compounds, such as toxaphene, are minimized. New compounds, with the formulas C9H14Cl6 and C9H13Cl7, were found in sediment and biological samples for the first time. The method was shown to be a powerful tool for the analysis of CPs in environmental samples.

  9. The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design

    NASA Astrophysics Data System (ADS)

    France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason

    2017-08-01

    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2 arcminute field-of-view) that will employ a complement of narrow- and medium-band filters. The instrument definition, design, and development are being carried out by an instrument study team led by the University of Colorado, Goddard Space Flight Center, and the LUVOIR Science and Technology Definition Team. LUMOS has recently completed a preliminary design in Goddard's Instrument Design Laboratory and is being incorporated into the working LUVOIR mission concept. In this proceeding, we describe the instrument requirements for LUMOS, the instrument design, and technology development recommendations to support the hardware required for LUMOS. We present an overview of LUMOS' observing modes and estimated performance curves for effective area, spectral resolution, and imaging performance. Example "LUMOS 100-hour Highlights" observing programs are presented to demonstrate the potential power of LUVOIR's ultraviolet spectroscopic capabilities.

  10. Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems.

    PubMed

    Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei

    2015-01-01

    The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode.

  11. Probing the Spatial Distribution of the Interstellar Dust Medium by High Angular Resolution X-ray Halos of Point Sources

    NASA Astrophysics Data System (ADS)

    Xiang, Jingen

    X-rays are absorbed and scattered by dust grains when they travel through the interstellar medium. The scattering within small angles results in an X-ray ``halo''. The halo properties are significantly affected by the energy of radiation, the optical depth of the scattering, the grain size distributions and compositions, and the spatial distribution of dust along the line of sight (LOS). Therefore analyzing the X-ray halo properties is an important tool to study the size distribution and spatial distribution of interstellar grains, which plays a central role in the astrophysical study of the interstellar medium, such as the thermodynamics and chemistry of the gas and the dynamics of star formation. With excellent angular resolution, good energy resolution and broad energy band, the Chandra ACIS is so far the best instrument for studying the X-ray halos. But the direct images of bright sources obtained with ACIS usually suffer from severe pileup which prevents us from obtaining the halos in small angles. We first improve the method proposed by Yao et al to resolve the X-ray dust scattering halos of point sources from the zeroth order data in CC-mode or the first order data in TE mode with Chandra HETG/ACIS. Using this method we re-analyze the Cygnus X-1 data observed with Chandra. Then we studied the X-ray dust scattering halos around 17 bright X-ray point sources using Chandra data. All sources were observed with the HETG/ACIS in CC-mode or TE-mode. Using the interstellar grain models of WD01 model and MRN model to fit the halo profiles, we get the hydrogen column densities and the spatial distributions of the scattering dust grains along the line of sights (LOS) to these sources. We find there is a good linear correlation not only between the scattering hydrogen column density from WD01 model and the one from MRN model, but also between N_{H} derived from spectral fits and the one derived from the grain models WD01 and MRN (except for GX 301-2 and Vela X-1): N_{H,WD01} = (0.720±0.009) × N_{H,abs} + (0.051±0.013) and N_{H, MRN} = (1.156±0.016) × N_{H,abs} + (0.062±0.024) in the units 10^{22} cm^{-2}. Then the correlation between FHI and N_{H} is obtained. Both WD01 model and MRN model fits show that the scattering dust density very close to these sources is much higher than the normal interstellar medium and we consider it is the evidence of molecular clouds around these X-ray binaries. We also find that there is the linear correlation between the effective distance through the galactic dust layer and hydrogen scattering olumn density N_{H} excluding the one in x=0.99-1.0 but the correlation does not exist between he effective distance and the N_{H} in x=0.99-1.0. It shows that the dust nearby the X-ray sources is not the dust from galactic disk. Then we estimate the structure and density of the stellar wind around the special X-ray pulsars Vela X-1 and GX 301-2. Finally we discuss the possibility of probing the three dimensional structure of the interstellar using the X-ray halos of the transient sources, probing the spatial distributions of interstellar dust medium nearby the point sources, even the structure of the stellar winds using higher angular resolution X-ray dust scattering halos and testing the model that the black hole can be formed from the direct collapse of a massive star without supernova using the statistical distribution of the dust density nearby the X-ray binaries.

  12. Chandra/HETG Observations of NGC1275

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher

    2017-09-01

    NGC1275 is the active galactic nucleus (AGN) at the heart of the Perseus cluster of galaxies responsible for the mechanical heating of the intracluster medium (ICM) cool core. We propose a deep (500ks) HETG observation of NGC1275, allowing the first high-S/N, high resolution spectrum of this AGN free from contamination by the bright ICM. We will seek the signatures of powerful winds, answering the central question of whether galactic-scale quasar-mode feedback is occuring simultaneously with cluster-scale radio-mode feedback. We also probe circumnuclear gas (i.e. the fuel supply) through the 6.4keV line previously seen by XMM and Hitomi. These issues are crucial unknowns in our models for the evolution of the most massive galaxies and cluster cores.

  13. Superlensing effect for surface acoustic waves in a pillar-based phononic crystal with negative refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addouche, Mahmoud, E-mail: mamoud.addouche@femto-st.fr; Al-Lethawe, Mohammed A., E-mail: mohammed.abdulridha@femto-st.fr; Choujaa, Abdelkrim, E-mail: achoujaa@femto-st.fr

    2014-07-14

    We demonstrate super resolution imaging for surface acoustic waves using a phononic structure displaying negative refractive index. This phononic structure is made of a monolithic square lattice of cylindrical pillars standing on a semi-infinite medium. The pillars act as acoustic resonator and induce a surface propagating wave with unusual dispersion. We found, under specific geometrical parameters, one propagating mode that exhibits negative refraction effect with negative effective index close to −1. Furthermore, a flat lens with finite number of pillars is designed to allow the focusing of an acoustic point source into an image with a resolution of (λ)/3 ,more » overcoming the Rayleigh diffraction limit.« less

  14. Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems

    PubMed Central

    Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei

    2015-01-01

    The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode. PMID:26427063

  15. Short- and medium-range 3D sensing for space applications

    NASA Astrophysics Data System (ADS)

    Beraldin, J. A.; Blais, Francois; Rioux, Marc; Cournoyer, Luc; Laurin, Denis G.; MacLean, Steve G.

    1997-07-01

    This paper focuses on the characteristics and performance of a laser range scanner (LARS) with short and medium range 3D sensing capabilities for space applications. This versatile laser range scanner is a precision measurement tool intended to complement the current Canadian Space Vision System (CSVS). Together, these vision systems are intended to be used during the construction of the International Space Station (ISS). Integration of the LARS to the CSVS will allow 3D surveying of a robotic work-site, identification of known objects from registered range and intensity images, and object detection and tracking relative to the orbiter and ISS. The data supplied by the improved CSVS will be invaluable in Orbiter rendez-vous and in assisting the Orbiter/ISS Remote Manipulator System operators. The major advantages of the LARS over conventional video-based imaging are its ability to operate with sunlight shining directly into the scanner and its immunity to spurious reflections and shadows which occur frequently in space. Because the LARS is equipped with two high-speed galvanometers to steer the laser beam, any spatial location within the field of view of the camera can be addressed. This level of versatility enables the LARS to operate in two basic scan pattern modes: (1) variable scan resolution mode and (2) raster scan mode. In the variable resolution mode, the LARS can search and track targets and geometrical features on objects located within a field of view of 30 degrees X 30 degrees and with corresponding range from about 0.5 m to 2000 m. This flexibility allows implementations of practical search and track strategies based on the use of Lissajous patterns for multiple targets. The tracking mode can reach a refresh rate of up to 137 Hz. The raster mode is used primarily for the measurement of registered range and intensity information of large stationary objects. It allows among other things: target-based measurements, feature-based measurements, and, image-based measurements like differential inspection in 3D space and surface reflectance monitoring. The digitizing and modeling of human subjects, cargo payloads, and environments are also possible with the LARS. A number of examples illustrating the many capabilities of the LARS are presented in this paper.

  16. Low cost paths to binary optics

    NASA Technical Reports Server (NTRS)

    Nelson, Arthur; Domash, Lawrence

    1993-01-01

    Application of binary optics has been limited to a few major laboratories because of the limited availability of fabrication facilities such as e-beam machines and the lack of standardized design software. Foster-Miller has attempted to identify low cost approaches to medium-resolution binary optics using readily available computer and fabrication tools, primarily for the use of students and experimenters in optical computing. An early version of our system, MacBEEP, made use of an optimized laser film recorder from the commercial typesetting industry with 10 micron resolution. This report is an update on our current efforts to design and build a second generation MacBEEP, which aims at 1 micron resolution and multiple phase levels. Trails included a low cost scanning electron microscope in microlithography mode, and alternative laser inscribers or photomask generators. Our current software approach is based on Mathematica and PostScript compatibility.

  17. Application of digital control techniques for satellite medium power DC-DC converters

    NASA Astrophysics Data System (ADS)

    Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman

    2010-09-01

    The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.

  18. High resolution atomic force microscopy of double-stranded RNA.

    PubMed

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-09

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.

  19. Second harmonic generation in resonant optical structures

    DOEpatents

    Eichenfield, Matt; Moore, Jeremy; Friedmann, Thomas A.; Olsson, Roy H.; Wiwi, Michael; Padilla, Camille; Douglas, James Kenneth; Hattar, Khalid Mikhiel

    2018-01-09

    An optical second-harmonic generator (or spontaneous parametric down-converter) includes a microresonator formed of a nonlinear optical medium. The microresonator supports at least two modes that can be phase matched at different frequencies so that light can be converted between them: A first resonant mode having substantially radial polarization and a second resonant mode having substantially vertical polarization. The first and second modes have the same radial order. The thickness of the nonlinear medium is less than one-half the pump wavelength within the medium.

  20. Axial interface optical phonon modes in a double-nanoshell system.

    PubMed

    Kanyinda-Malu, C; Clares, F J; de la Cruz, R M

    2008-07-16

    Within the framework of the dielectric continuum (DC) model, we analyze the axial interface optical phonon modes in a double system of nanoshells. This system is constituted by two identical equidistant nanoshells which are embedded in an insulating medium. To illustrate our results, typical II-VI semiconductors are used as constitutive polar materials of the nanoshells. Resolution of Laplace's equation in bispherical coordinates for the potentials derived from the interface vibration modes is made. By imposing the usual electrostatic boundary conditions at the surfaces of the two-nanoshell system, recursion relations for the coefficients appearing in the potentials are obtained, which entails infinite matrices. The problem of deriving the interface frequencies is reduced to the eigenvalue problem on infinite matrices. A truncating method for these matrices is used to obtain the interface phonon branches. Dependences of the interface frequencies on the ratio of inter-nanoshell separation to core size are obtained for different systems with several values of nanoshell interdistance. Effects due to the change of shell and embedding materials are also investigated in interface phonon modes.

  1. Compact SAR and Small Satellite Solutions for Earth Observation

    NASA Astrophysics Data System (ADS)

    LaRosa, M.; L'Abbate, M.

    2016-12-01

    Requirements for near and short term mission applications (Observation and Reconnaissance, SIGINT, Early Warning, Meteorology,..) are increasingly calling for spacecraft operational responsiveness, flexible configuration, lower cost satellite constellations and flying formations, to improve both the temporal performance of observation systems (revisit, response time) and the remote sensing techniques (distributed sensors, arrays, cooperative sensors). In answer to these users' needs, leading actors in Space Systems for EO are involved in development of Small and Microsatellites solutions. Thales Alenia Space (TAS) has started the "COMPACT-SAR" project to develop a SAR satellite characterized by low cost and reduced mass while providing, at the same time, high image quality in terms of resolution, swath size, and radiometric performance. Compact SAR will embark a X-band SAR based on a deployable reflector antenna fed by an active phased array feed. This concept allows high performance, providing capability of electronic beam steering both in azimuth and elevation planes, improving operational performance over a purely mechanically steered SAR system. Instrument provides both STRIPMAP and SPOTLIGHT modes, and thanks to very high gain antenna, can also provide a real maritime surveillance mode based on a patented Low PRF radar mode. Further developments are in progress considering missions based on Microsatellites technology, which can provide effective solutions for different user needs, such as Operational responsiveness, low cost constellations, distributed observation concept, flying formations, and can be conceived for applications in the field of Observation, Atmosphere sensing, Intelligence, Surveillance, Reconnaissance (ISR), Signal Intelligence. To satisfy these requirements, flexibility of small platforms is a key driver and especially new miniaturization technologies able to optimize the performance. An overview new micros-satellite (based on NIMBUS platform) and mission concepts is provided, such as passive SAR for multi-static imaging and tandem, Medium swath/medium resolution dual pol MICROSAR for in L-C-X band multi-application for maritime surveillance and land monitoring, applications for Space Debris monitoring, precision farming, Atmosphere sensing.

  2. High-dose MVCT image guidance for stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerly, David C.; Schefter, Tracey E.; Kavanagh, Brian D.

    Purpose: Stereotactic body radiation therapy (SBRT) is a potent treatment for early stage primary and limited metastatic disease. Accurate tumor localization is essential to administer SBRT safely and effectively. Tomotherapy combines helical IMRT with onboard megavoltage CT (MVCT) imaging and is well suited for SBRT; however, MVCT results in reduced soft tissue contrast and increased image noise compared with kilovoltage CT. The goal of this work was to investigate the use of increased imaging doses on a clinical tomotherapy machine to improve image quality for SBRT image guidance. Methods: Two nonstandard, high-dose imaging modes were created on a tomotherapy machinemore » by increasing the linear accelerator (LINAC) pulse rate from the nominal setting of 80 Hz, to 160 Hz and 300 Hz, respectively. Weighted CT dose indexes (wCTDIs) were measured for the standard, medium, and high-dose modes in a 30 cm solid water phantom using a calibrated A1SL ion chamber. Image quality was assessed from scans of a customized image quality phantom. Metrics evaluated include: contrast-to-noise ratios (CNRs), high-contrast spatial resolution, image uniformity, and percent image noise. In addition, two patients receiving SBRT were localized using high-dose MVCT scans. Raw detector data collected after each scan were used to reconstruct standard-dose images for comparison. Results: MVCT scans acquired using a pitch of 1.0 resulted in wCTDI values of 2.2, 4.7, and 8.5 cGy for the standard, medium, and high-dose modes respectively. CNR values for both low and high-contrast materials were found to increase with the square root of dose. Axial high-contrast spatial resolution was comparable for all imaging modes at 0.5 lp/mm. Image uniformity was improved and percent noise decreased as the imaging dose increased. Similar improvements in image quality were observed in patient images, with decreases in image noise being the most notable. Conclusions: High-dose imaging modes are made possible on a clinical tomotherapy machine by increasing the LINAC pulse rate. Increasing the imaging dose results in increased CNRs; making it easier to distinguish the boundaries of low contrast objects. The imaging dose levels observed in this work are considered acceptable at our institution for SBRT treatments delivered in 3-5 fractions.« less

  3. High-dose MVCT image guidance for stereotactic body radiation therapy.

    PubMed

    Westerly, David C; Schefter, Tracey E; Kavanagh, Brian D; Chao, Edward; Lucas, Dan; Flynn, Ryan T; Miften, Moyed

    2012-08-01

    Stereotactic body radiation therapy (SBRT) is a potent treatment for early stage primary and limited metastatic disease. Accurate tumor localization is essential to administer SBRT safely and effectively. Tomotherapy combines helical IMRT with onboard megavoltage CT (MVCT) imaging and is well suited for SBRT; however, MVCT results in reduced soft tissue contrast and increased image noise compared with kilovoltage CT. The goal of this work was to investigate the use of increased imaging doses on a clinical tomotherapy machine to improve image quality for SBRT image guidance. Two nonstandard, high-dose imaging modes were created on a tomotherapy machine by increasing the linear accelerator (LINAC) pulse rate from the nominal setting of 80 Hz, to 160 Hz and 300 Hz, respectively. Weighted CT dose indexes (wCTDIs) were measured for the standard, medium, and high-dose modes in a 30 cm solid water phantom using a calibrated A1SL ion chamber. Image quality was assessed from scans of a customized image quality phantom. Metrics evaluated include: contrast-to-noise ratios (CNRs), high-contrast spatial resolution, image uniformity, and percent image noise. In addition, two patients receiving SBRT were localized using high-dose MVCT scans. Raw detector data collected after each scan were used to reconstruct standard-dose images for comparison. MVCT scans acquired using a pitch of 1.0 resulted in wCTDI values of 2.2, 4.7, and 8.5 cGy for the standard, medium, and high-dose modes respectively. CNR values for both low and high-contrast materials were found to increase with the square root of dose. Axial high-contrast spatial resolution was comparable for all imaging modes at 0.5 lp∕mm. Image uniformity was improved and percent noise decreased as the imaging dose increased. Similar improvements in image quality were observed in patient images, with decreases in image noise being the most notable. High-dose imaging modes are made possible on a clinical tomotherapy machine by increasing the LINAC pulse rate. Increasing the imaging dose results in increased CNRs; making it easier to distinguish the boundaries of low contrast objects. The imaging dose levels observed in this work are considered acceptable at our institution for SBRT treatments delivered in 3-5 fractions.

  4. A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance.

    PubMed

    Kubicek, Markus; Holzlechner, Gerald; Opitz, Alexander K; Larisegger, Silvia; Hutter, Herbert; Fleig, Jürgen

    2014-01-15

    A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compared to established ToF-SIMS operation modes. Several examples of application featuring novel scientific results show the capabilities of the operation mode in terms of lateral resolution, accuracy of isotope analysis of oxygen, and combination of high lateral and mass resolution. The relationship between high lateral resolution and operation of SIMS in static mode is discussed.

  5. iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates.

    PubMed

    Lopéz-Blanco, José Ramón; Chacón, Pablo

    2013-11-01

    Here, we employed the collective motions extracted from Normal Mode Analysis (NMA) in internal coordinates (torsional space) for the flexible fitting of atomic-resolution structures into electron microscopy (EM) density maps. The proposed methodology was validated using a benchmark of simulated cases, highlighting its robustness over the full range of EM resolutions and even over coarse-grained representations. A systematic comparison with other methods further showcased the advantages of this proposed methodology, especially at medium to lower resolutions. Using this method, computational costs and potential overfitting problems are naturally reduced by constraining the search in low-frequency NMA space, where covalent geometry is implicitly maintained. This method also effectively captures the macromolecular changes of a representative set of experimental test cases. We believe that this novel approach will extend the currently available EM hybrid methods to the atomic-level interpretation of large conformational changes and their functional implications. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Polishing techniques for MEGARA pupil elements optics

    NASA Astrophysics Data System (ADS)

    Izazaga, R.; Carrasco, E.; Aguirre, D.; Salas, A.; Gil de Paz, A.; Gallego, J.; Iglesias, J.; Arroyo, J. M.; Hernández, M.; López, N.; López, V.; Quechol, J. T.; Salazar, M. F.; Carballo, C.; Cruz, E.; Arriaga, J.; De la Luz, J. A.; Huepa, A.; Jaimes, G. L.; Reyes, J.

    2016-07-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral-field and multi-object optical spectrograph for the 10.4m Gran Telescopio Canarias.. It will offer RFWHM 6,000, 12,000 and 18,700 for the low- , mid- and high-resolution, respectively in the wavelength range 3650-9700Å. .The dispersive elements are volume phase holographic (VPH) gratings, sandwiched between two flat Fused Silica windows of high optical precision in large apertures. The design, based in VPHs in combination with Ohara PBM2Y prisms allows to keep the collimator and camera angle fixed. Seventy three optical elements are being built in Mexico at INAOE and CIO. For the low resolution modes, the VPHs windows specifications in irregularity is 1 fringe in 210mm x 170mm and 0.5 fringe in 190mm x 160mm. for a window thickness of 25 mm. For the medium and high resolution modes the irregularity specification is 2 fringes in 220mm x 180mm and 1 fringe in 205mm x 160mm, for a window thickness of 20mm. In this work we present a description of the polishing techniques developed at INAOE optical workshop to fabricate the 36 Fused Silica windows and 24 PBM2Y prisms that allows us to achieve such demanding specifications. We include the processes of mounting, cutting, blocking, polishing and testing.

  7. Development of the fibres of MOONS

    NASA Astrophysics Data System (ADS)

    Guinouard, Isabelle; Lee, David; Schnetler, Hermine; Taylor, William; Amans, Jean-Philippe; Montgomery, David; Oliva, Ernesto

    2014-07-01

    MOONS will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.8 - 1.8 μm, with a multiplex capability of approximately 1000 fibres. Each triple arm spectrograph will produce spectra for half of the targets simultaneously. The system will have both a medium resolution (R~4000-6000) mode and a high resolution (R~20000) mode. The fibres are used to pick off each sub field of 1.05 arcseconds and are used to transport the light from the instrument focal plane to the two spectrographs. Each fibre has a microlens to focus the beam into the fibre at a relative fast focal ratio of F/3.65 to reduce the Focal Ratio Degradation (FRD). This paper presents the overall design of the fibre system and describes the specific developments required to optimise its performance. The design of the fibre input optics, the choice of the fibre connector, and the layout of the slit end are described. The results of preliminary tests to measure the effect of twisting on the FRD performance of prototype fibres are also discussed.

  8. Development of the fibre positioning unit of MOONS

    NASA Astrophysics Data System (ADS)

    Montgomery, David; Atkinson, David; Beard, Stephen; Cochrane, William; Drass, Holger; Guinouard, Isabelle; Lee, David; Taylor, William; Rees, Phil; Watson, Steve

    2016-08-01

    The Multi-Object Optical and Near-Infrared Spectrograph (MOONS) will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.64μm-1.8μm, with a multiplex capability of over 1000 fibres. This can be configured to produce spectra for chosen targets and have close proximity sky subtraction if required. The system will have both a medium resolution (R 4000-6000) mode and a high resolution (R 20000) mode. The fibre positioning units are used to position each fibre independently in order to pick off each sub field of 1.0" within a circular patrol area of 85" on sky (50mm physical diameter). The nominal physical separation between FPUs is 25mm allowing a 100% overlap in coverage between adjacent units. The design of the fibre positioning units allows parallel and rapid reconfiguration between observations. The kinematic geometry is such that pupil alignment is maintained over the patrol area. This paper presents the design of the Fibre Positioning Units at the preliminary design review and the results of verification testing of the advanced prototypes.

  9. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the sea ice in response to current and wind forcing and iceberg barriers. These are closely related to continental-shelf or central basin regimes, in which tidal forcing or barotropic circulation patterns appear to influence the sea-ice motion, respectively. These regimes provide valuable information about the regions of most prolific ice growth and influence of ice conditions upon air-sea-ice exchange processes in the Weddell Sea.

  10. Polariton condensation, superradiance and difference combination parametric resonance in mode-locked laser

    NASA Astrophysics Data System (ADS)

    Bagayev, S. N.; Arkhipov, R. M.; Arkhipov, M. V.; Egorov, V. S.; Chekhonin, I. A.; Chekhonin, M. A.

    2017-11-01

    The generation of the ring mode-locked laser containing resonant absorption medium in the cavity was investigated. It is shown that near the strong resonant absorption lines a condensation of polaritons arises. Intensive radiation looks like as superradiance in a medium without population inversion. We studied theoretically the microscopic mechanism of these phenomena. It was shown that in this system in absorbing medium a strong self-induced difference combination parametric resonance exists. Superradiance on polaritonic modes in the absorbing medium are due to the emergence of light-induced resonant polarization as a result of fast periodic nonadiabatic quantum jumps in the absorber.

  11. Immunosensing with Near-Infrared Plasmonic Optical Fiber Gratings.

    PubMed

    Caucheteur, Christophe; Ribaut, Clotilde; Malachovska, Viera; Wattiez, Ruddy

    2017-01-01

    Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. They are usually obtained from a gold-coated fiber segment for which the core-guided light is brought into contact with the surrounding medium, either by etching (or side-polishing) or by using grating coupling. Recently, SPR generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute the unique configuration able to probe all the fiber cladding modes individually, with high Q-factors. We use these unique spectral features in our work to sense proteins and extra-cellular membrane receptors that are both overexpressed in cancerous tissues. Impressive limit of detection (LOD) and sensitivity are reported, which paves the way for the further use of such immunosensors for cancer diagnosis.

  12. Identification of spectral units on Phoebe

    USGS Publications Warehouse

    Coradini, A.; Tosi, F.; Gavrishin, A.I.; Capaccioni, F.; Cerroni, P.; Filacchione, G.; Adriani, A.; Brown, R.H.; Bellucci, G.; Formisano, V.; D'Aversa, E.; Lunine, J.I.; Baines, K.H.; Bibring, J.-P.; Buratti, B.J.; Clark, R.N.; Cruikshank, D.P.; Combes, M.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Hedman, M.M.; Hansen, G.B.; Hibbitts, C.A.; Showalter, M.; Griffith, C.; Strazzulla, G.

    2008-01-01

    We apply a multivariate statistical method to the Phoebe spectra collected by the VIMS experiment onboard the Cassini spacecraft during the flyby of June 2004. The G-mode clustering method, which permits identification of the most important features in a spectrum, is used on a small subset of data, characterized by medium and high spatial resolution, to perform a raw spectral classification of the surface of Phoebe. The combination of statistics and comparative analysis of the different areas using both the VIMS and ISS data is explored in order to highlight possible correlations with the surface geology. In general, the results by Clark et al. [Clark, R.N., Brown, R.H., Jaumann, R., Cruikshank, D.P., Nelson, R.M., Buratti, B.J., McCord, T.B., Lunine, J., Hoefen, T., Curchin, J.M., Hansen, G., Hibbitts, K., Matz, K.-D., Baines, K.H., Bellucci, G., Bibring, J.-P., Capaccioni, F., Cerroni, P., Coradini, A., Formisano, V., Langevin, Y., Matson, D.L., Mennella, V., Nicholson, P.D., Sicardy, B., Sotin, C., 2005. Nature 435, 66-69] are confirmed; but we also identify new signatures not reported before, such as the aliphatic CH stretch at 3.53 ??m and the ???4.4 ??m feature possibly related to cyanide compounds. On the basis of the band strengths computed for several absorption features and for the homogeneous spectral types isolated by the G-mode, a strong correlation of CO2 and aromatic hydrocarbons with exposed water ice, where the uniform layer covering Phoebe has been removed, is established. On the other hand, an anti-correlation of cyanide compounds with CO2 is suggested at a medium resolution scale. ?? 2007 Elsevier Inc. All rights reserved.

  13. 150-μm Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images.

    PubMed

    Leng, Shuai; Rajendran, Kishore; Gong, Hao; Zhou, Wei; Halaweish, Ahmed F; Henning, Andre; Kappler, Steffen; Baer, Matthias; Fletcher, Joel G; McCollough, Cynthia H

    2018-05-28

    The aims of this study were to quantitatively assess two new scan modes on a photon-counting detector computed tomography system, each designed to maximize spatial resolution, and to qualitatively demonstrate potential clinical impact using patient data. This Health Insurance Portability Act-compliant study was approved by our institutional review board. Two high-spatial-resolution scan modes (Sharp and UHR) were evaluated using phantoms to quantify spatial resolution and image noise, and results were compared with the standard mode (Macro). Patients were scanned using a conventional energy-integrating detector scanner and the photon-counting detector scanner using the same radiation dose. In first patient images, anatomic details were qualitatively evaluated to demonstrate potential clinical impact. Sharp and UHR modes had a 69% and 87% improvement in in-plane spatial resolution, respectively, compared with Macro mode (10% modulation-translation-function values of 16.05, 17.69, and 9.48 lp/cm, respectively). The cutoff spatial frequency of the UHR mode (32.4 lp/cm) corresponded to a limiting spatial resolution of 150 μm. The full-width-at-half-maximum values of the section sensitivity profiles were 0.41, 0.44, and 0.67 mm for the thinnest image thickness for each mode (0.25, 0.25, and 0.5 mm, respectively). At the same in-plane spatial resolution, Sharp and UHR images had up to 15% lower noise than Macro images. Patient images acquired in Sharp mode demonstrated better delineation of fine anatomic structures compared with Macro mode images. Phantom studies demonstrated superior resolution and noise properties for the Sharp and UHR modes relative to the standard Macro mode and patient images demonstrated the potential benefit of these scan modes for clinical practice.

  14. Image-receptor performance: a comparison of Trophy RVG UI sensor and Kodak Ektaspeed Plus film.

    PubMed

    Ludlow, J; Mol, A

    2001-01-01

    Objective. This study compares the physical characteristics of the RVG UI sensor (RVG) with Ektaspeed Plus film. Dose-response curves were generated for film and for each of 6 available RVG modes. An aluminum step-wedge was used to evaluate exposure latitude. Spatial resolution was assessed by using a line-pair test tool. Latitude and resolution were assessed by observers for both modalities. The RVG was further characterized by its modulation transfer function. Exposure latitude was equal for film and RVG in the periodontal mode. Other gray scale modes demonstrated much lower latitude. The average maximum resolution was 15.3 line-pairs per millimeter (lp/mm) for RVG in high-resolution mode, 10.5 lp/mm for RVG in low-resolution mode, and 20 lp/mm for film (P <.0001). Modulation transfer function measurements supported the subjective assessments. In periodontal mode, the RVG UI sensor demonstrates exposure latitude similar to that of Ektaspeed Plus film. Film images exhibit significantly higher spatial resolution than the RVG images acquired in high-resolution mode.

  15. Effects of whispering gallery mode in microsphere super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Song; Deng, Yongbo; Zhou, Wenchao; Yu, Muxin; Urbach, H. P.; Wu, Yihui

    2017-09-01

    Whispering Gallery modes have been presented in microscopic glass spheres or toruses with many applications. In this paper, the possible approaches to enhance the imaging resolution by Whispering Gallery modes are discussed, including evanescent waves coupling, transformed and illustration by Whispering Gallery modes. It shows that the high-order scattering modes play the dominant role in the reconstructed virtual image when the Whispering Gallery modes exist. Furthermore, we find that the high image resolution of electric dipoles can be achieved, when the out-of-phase components exist from the illustration of Whispering Gallery modes. Those results of our simulation could contribute to the knowledge of microsphere-assisted super-resolution imaging and its potential applications.

  16. All-optical optoacoustic microscopy system based on probe beam deflection technique

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  17. Inter-laboratory verification of European pharmacopoeia monograph on derivative spectrophotometry method and its application for chitosan hydrochloride.

    PubMed

    Marković, Bojan; Ignjatović, Janko; Vujadinović, Mirjana; Savić, Vedrana; Vladimirov, Sote; Karljiković-Rajić, Katarina

    2015-01-01

    Inter-laboratory verification of European pharmacopoeia (EP) monograph on derivative spectrophotometry (DS) method and its application for chitosan hydrochloride was carried out on two generation of instruments (earlier GBC Cintra 20 and current technology TS Evolution 300). Instruments operate with different versions of Savitzky-Golay algorithm and modes of generating digital derivative spectra. For resolution power parameter, defined as the amplitude ratio A/B in DS method EP monograph, comparable results were obtained only with algorithm's parameters smoothing points (SP) 7 and the 2nd degree polynomial and those provided corresponding data with other two modes on TS Evolution 300 Medium digital indirect and Medium digital direct. Using quoted algorithm's parameters, the differences in percentages between the amplitude ratio A/B averages, were within accepted criteria (±3%) for assay of drug product for method transfer. The deviation of 1.76% for the degree of deacetylation assessment of chitosan hydrochloride, determined on two instruments, (amplitude (1)D202; the 2nd degree polynomial and SP 9 in Savitzky-Golay algorithm), was acceptable, since it was within allowed criteria (±2%) for assay deviation of drug substance, for method transfer in pharmaceutical analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. VizieR Online Data Catalog: Draco nebula Herschel 250um map (Miville-Deschenes+, 2017)

    NASA Astrophysics Data System (ADS)

    Miville-Deschenes, M.-A.; Salome, Q.; Martin, P. G.; Joncas, G.; Blagrave, K.; Dassas, K.; Abergel, A.; Beelen, A.; Boulanger, F.; Lagache, G.; Lockman, F. J.; Marshall, D. J.

    2017-03-01

    Draco was observed with Herschel PACS (110 and 170um) and SPIRE (250, 350 and 500um) as part of the open-time program "First steps toward star formation: unveiling the atomic to molecular transition in the diffuse interstellar medium" (P.I. M-A Miville-Deschenes). A field of 3.85x3.85 was observed in parallel mode. Unfortunately, an error occurred during the acquisition of the PACS data making them unusable. Therefore, the results presented here are solely based on SPIRE data, especially the 250um map that has the highest angular resolution. (2 data files).

  19. Thermodynamic derivatives of infrared absorptance

    NASA Technical Reports Server (NTRS)

    Broersma, S.; Walls, W. L.

    1974-01-01

    Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.

  20. Establishing Extreme Dynamic Range with JWST: Decoding Smoke Signals in the Glare of a Wolf-Rayet Binary

    NASA Astrophysics Data System (ADS)

    Lau, Ryan; Hankins, M.; Kasliwal, M.; Sivaramakrishnan, A.; Thatte, D.

    2017-11-01

    Dust is a key ingredient in the formation of stars and planets. However, the dominant channels of dust production throughout cosmic time are still unclear. With its unprecedented sensitivity and spatial resolution in the mid-IR, the James Webb Space Telescope (JWST) is the ideal platform to address this issue by investigating the dust abundance, composition, and production rates of various dusty sources. In particular, colliding-wind Wolf-Rayet (WR) binaries are efficient dust producers in the local Universe, and likely existed in the earliest galaxies. To study these interesting objects, we propose JWST observations of the archetypal colliding-wind binary WR 140 to study its dust composition, abundance, and formation mechanisms. We will utilize two key JWST observing modes with the medium resolution spectrometer (MRS) on the Mid-Infrared Instrument (MIRI) and the Aperture Masking Interferometry (AMI) mode with the Near Infrared Imager and Slitless Spectrograph (NIRISS). Our proposed observations will yield high impact scientific results on the dust forming properties WR binaries, and establish a benchmark for key observing modes for imaging bright sources with faint extended emission. This will be valuable in various astrophysical contexts including mass-loss from evolved stars, dusty tori around active galactic nuclei, and protoplanetary disks. We are committed to designing and delivering science-enabling products for the JWST community that address technical issues such as bright source artifacts that will limit the maximum achievable image contrast.

  1. Transceiver Design for CMUT-Based Super-Resolution Ultrasound Imaging.

    PubMed

    Behnamfar, Parisa; Molavi, Reza; Mirabbasi, Shahriar

    2016-04-01

    A recently introduced structure for the capacitive micromachined ultrasonic transducers (CMUTs) has focused on the applications of the asymmetric mode of vibration and has shown promising results in construction of super-resolution ultrasound images. This paper presents the first implementation and experimental results of a transceiver circuit to interface such CMUT structures. The multiple input/multiple output receiver in this work supports both fundamental and asymmetric modes of operation and includes transimpedance amplifiers and low-power variable-gain stages. These circuit blocks are designed considering the trade-offs between gain, input impedance, noise, linearity and power consumption. The high-voltage transmitter can generate pulse voltages up to 60 V while occupying a considerably small area. The overall circuit is designed and laid out in a 0.35 μm CMOS process and a four-channel transceiver occupies 0.86 × 0.38 mm(2). The prototype chip is characterized in both electrical and mechanical domains. Measurement results show that each receiver channel has a nominal gain of 110 dBΩ with a 3 dB bandwidth of 9 MHz while consuming 1.02 mW from a 3.3 V supply. The receiver is also highly linear, with 1 dB compression point of minimum 1.05 V which is considerably higher than the previously reported designs. The transmitter consumes 98.1 mW from a 30 V supply while generating 1.38 MHz, 30 V pulses. The CMOS-CMUT system is tested in the transmit mode and shows full functionality in air medium.

  2. Plasma Waves Observed in the Cusp Turbulent Boundary Layer: An Analysis of High Time Resolution Wave and Particle Measurements from the Polar Spacecraft

    NASA Technical Reports Server (NTRS)

    Pickett, J. S.; Franz, J. R.; Scudder, J. D.; Menietti, J. D.; Gurnett, D. A.; Hospodarsky, G. B.; Braunger, R. M.; Kintner, P. M.; Kurth, W. S.

    2001-01-01

    The boundary layer located in the cusp and adjacent to the magnetopause is a region that is quite turbulent and abundant with waves. The Polar spacecraft's orbit and sophisticated instrumentation are ideal for studying this region of space. Our analysis of the waveform data obtained in this turbulent boundary layer shows broadband magnetic noise extending up to a few kilohertz (but less than the electron cyclotron frequency); sinusoidal bursts (a few tenths of a second) of whistler mode waves at around a few tens of hertz, a few hundreds of hertz, and just below the electron cyclotron frequency; and bipolar pulses, interpreted as electron phase-space holes. In addition, bursts of electron cyclotron harmonic waves are occasionally observed with magnetic components. We show evidence of broadband electrostatic bursts covering a range of approx. 3 to approx. 25 kHz (near but less than the plasma frequency) occurring in packets modulated at the frequency of some of the whistler mode waves. On the basis of high time resolution particle data from the Polar HYDRA instrument, we show that these bursts are consistent with generation by the resistive medium instability. The most likely source of the whistler mode waves is the magnetic reconnection site closest to the spacecraft, since the waves are observed propagating both toward and away from the Earth, are bursty, which is often the case with reconnection, and do not fit on the theoretical cold plasma dispersion relation curve.

  3. An actively mode-locked fiber laser for sampling in a wide-bandwidth opto-electronic analog-to-digital converter

    NASA Astrophysics Data System (ADS)

    Powers, John P.; Pace, Phillip E.

    2008-02-01

    We have designed, built and tested an actively mode-locked fiber laser, operating at 1550 nm, for use as the sampling waveform in an opto-electronic analog-to-digital converter (ADC). Analysis shows that, in order to digitize a 10-GHz signal to 10 bits of resolution, the sampling pulsewidth must be less than 2.44 ps, the RMS timing jitter must be below 31.0 fs, and the RMS amplitude jitter must be below 0.195%. Fiber lasers have proven to have the capability to narrowly exceed these operating requirements. The fiber laser is a "sigma" laser consisting of Er-doped gain medium, dispersion-compensating fiber, nonlinear fiber, a Faraday rotation mirror, polarization-maintaining fiber and components, and diode pump lasers. The active mode-locking is achieved by a Mach-Zehnder interferometer modulator, driven by a frequency synthesizer operating at the desired sampling rate. A piezo-electric element is used in a feedback control loop to stabilize the output PRF against environmental changes. Measurements of the laser output revealed the maximum nominal PRF to be 16 GHz, the nominal pulsewidth to be 7.2 ps, and the nominal RNS timing jitter to be 386 fs. Incorporating this laser into a sampling ADC would allow us to sample a 805-MHz bandwidth signal to a resolution of 10 bits as limited by timing jitter. Techniques to reduce the timing-jitter bottleneck are discussed.

  4. Fourier mode analysis of slab-geometry transport iterations in spatially periodic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, E; Zika, M

    1999-04-01

    We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonantmore » wave numbers, in which case the material heterogeneities most strongly affect iterative performance.« less

  5. A patch-based convolutional neural network for remote sensing image classification.

    PubMed

    Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di

    2017-11-01

    Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. EFFECTS OF FLUID AND COMPUTED TOMOGRAPHIC TECHNICAL FACTORS ON CONSPICUITY OF CANINE AND FELINE NASAL TURBINATES

    PubMed Central

    Uosyte, Raimonda; Shaw, Darren J; Gunn-Moore, Danielle A; Fraga-Manteiga, Eduardo; Schwarz, Tobias

    2015-01-01

    Turbinate destruction is an important diagnostic criterion in canine and feline nasal computed tomography (CT). However decreased turbinate visibility may also be caused by technical CT settings and nasal fluid. The purpose of this experimental, crossover study was to determine whether fluid reduces conspicuity of canine and feline nasal turbinates in CT and if so, whether CT settings can maximize conspicuity. Three canine and three feline cadaver heads were used. Nasal slabs were CT-scanned before and after submerging them in a water bath; using sequential, helical, and ultrahigh resolution modes; with images in low, medium, and high frequency image reconstruction kernels; and with application of additional posterior fossa optimization and high contrast enhancing filters. Visible turbinate length was measured by a single observer using manual tracing. Nasal density heterogeneity was measured using the standard deviation (SD) of mean nasal density from a region of interest in each nasal cavity. Linear mixed-effect models using the R package ‘nlme’, multivariable models and standard post hoc Tukey pair-wise comparisons were performed to investigate the effect of several variables (nasal content, scanning mode, image reconstruction kernel, application of post reconstruction filters) on measured visible total turbinate length and SD of mean nasal density. All canine and feline water-filled nasal slabs showed significantly decreased visibility of nasal turbinates (P < 0.001). High frequency kernels provided the best turbinate visibility and highest SD of aerated nasal slabs, whereas medium frequency kernels were optimal for water-filled nasal slabs. Scanning mode and filter application had no effect on turbinate visibility. PMID:25867935

  7. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2015-03-01

    Aboveground biomass estimation is critical in understanding forest contribution to regional carbon cycles. Despite the successful application of high spatial and spectral resolution sensors in aboveground biomass (AGB) estimation, there are challenges related to high acquisition costs, small area coverage, multicollinearity and limited availability. These challenges hamper the successful regional scale AGB quantification. The aim of this study was to assess the utility of the newly-launched medium-resolution multispectral Landsat 8 Operational Land Imager (OLI) dataset with a large swath width, in quantifying AGB in a forest plantation. We applied different sets of spectral analysis (test I: spectral bands; test II: spectral vegetation indices and test III: spectral bands + spectral vegetation indices) in testing the utility of Landsat 8 OLI using two non-parametric algorithms: stochastic gradient boosting and the random forest ensembles. The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis and Pinus taeda especially when using the extracted spectral information together with the derived spectral vegetation indices. We also noted that incorporating the optimal subset of the most important selected medium-resolution multispectral Landsat 8 OLI bands improved AGB accuracies. We compared medium-resolution multispectral Landsat 8 OLI AGB estimates with Landsat 7 ETM + estimates and the latter yielded lower estimation accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the relatively affordable and readily available newly-launched medium-resolution Landsat 8 OLI dataset, with a large swath width (185-km) in precisely estimating AGB. This strength of the Landsat OLI dataset is crucial especially in sub-Saharan Africa where high-resolution remote sensing data availability remains a challenge.

  8. Pressure jump relaxation setup with IR detection and millisecond time resolution

    NASA Astrophysics Data System (ADS)

    Schiewek, Martin; Krumova, Marina; Hempel, Günter; Blume, Alfred

    2007-04-01

    An instrument is described that allows the use of Fourier transform infrared (FTIR) spectroscopy as a detection system for kinetic processes after a pressure jump of up to 100bars. The pressure is generated using a high performance liquid chromatography (HPLC) pump and water as a pressure transducing medium. A flexible membrane separates the liquid sample in the IR cell from the pressure transducing medium. Two electromagnetic switching valves in the setup enable pressure jumps with a decay time of 4ms. The FTIR spectrometer is configured to measure time resolved spectra in the millisecond time regime using the rapid scan mode. All components are computer controlled. For a demonstration of the capability of the method first results on the kinetics of a phase transition between two lamellar phases of an aqueous phospholipid dispersion are presented. This combination of FTIR spectroscopy with the pressure jump relaxation technique can also be used for other systems which display cooperative transitions with concomitant volume changes.

  9. Ultra-high spatial resolution multi-energy CT using photon counting detector technology

    NASA Astrophysics Data System (ADS)

    Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.

    2017-03-01

    Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.

  10. Cladding for transverse-pumped solid-state laser

    NASA Technical Reports Server (NTRS)

    Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)

    1989-01-01

    In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.

  11. Rayleigh-wave mode separation by high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  12. Linear analysis of active-medium two-beam accelerator

    NASA Astrophysics Data System (ADS)

    Voin, Miron; Schächter, Levi

    2015-07-01

    We present detailed development of the linear theory of wakefield amplification by active medium and its possible application to a two-beam accelerator (TBA) is discussed. A relativistic train of triggering microbunches traveling along a vacuum channel in an active medium confined by a cylindrical waveguide excites Cherenkov wake in the medium. The wake is a superposition of azimuthally symmetric transverse magnetic modes propagating along a confining waveguide, with a phase velocity equal to the velocity of the triggering bunches. The structure may be designed in such a way that the frequency of one of the modes is close to active-medium resonant frequency, resulting in amplification of the former and domination of a single mode far behind the trigger bunches. Another electron bunch placed in proper phase with the amplified wakefield may be accelerated by the latter. Importantly, the energy for acceleration is provided by the active medium and not the drive bunch as in a traditional TBA. Based on a simplified model, we analyze extensively the impact of various parameters on the wakefield amplification process.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, B. N.; Dunlap, B. H.; Clemens, J. C.

    We report the discovery of oscillations in the hot subdwarf B (sdB) star JL 166 from time-series photometry using the Goodman Spectrograph on the 4.1 m Southern Astrophysical Research Telescope. Previous spectroscopic and photometric observations place the star near the hot end of the empirical sdB instability strip and imply the presence of a cool companion. Amplitude spectra of the stellar light curve reveal at least 10 independent pulsation modes with periods ranging from 97 to 178 s and amplitudes from 0.9 to 4 mma. We adopt atmospheric parameters of T {sub eff} = 34,350 K and log g =more » 5.75 from a model atmosphere analysis of our time-averaged, medium-resolution spectrum.« less

  14. Single-mode fiber systems for deep space communication network

    NASA Technical Reports Server (NTRS)

    Lutes, G.

    1982-01-01

    The present investigation is concerned with the development of single-mode optical fiber distribution systems. It is pointed out that single-mode fibers represent potentially a superior medium for the distribution of frequency and timing reference signals and wideband (400 MHz) IF signals. In this connection, single-mode fibers have the potential to improve the capability and precision of NASA's Deep Space Network (DSN). Attention is given to problems related to precise time synchronization throughout the DSN, questions regarding the selection of a transmission medium, and the function of the distribution systems, taking into account specific improvements possible by an employment of single-mode fibers.

  15. An image quality comparison study between XVI and OBI CBCT systems.

    PubMed

    Kamath, Srijit; Song, William; Chvetsov, Alexei; Ozawa, Shuichi; Lu, Haibin; Samant, Sanjiv; Liu, Chihray; Li, Jonathan G; Palta, Jatinder R

    2011-02-04

    The purpose of this study is to evaluate and compare image quality characteristics for two commonly used and commercially available CBCT systems: the X-ray Volumetric Imager and the On-Board Imager. A commonly used CATPHAN image quality phantom was used to measure various image quality parameters, namely, pixel value stability and accuracy, noise, contrast to noise ratio (CNR), high-contrast resolution, low contrast resolution and image uniformity. For the XVI unit, we evaluated the image quality for four manufacturer-supplied protocols as a function of mAs. For the OBI unit, we did the same for the full-fan and half-fan scanning modes, which were respectively used with the full bow-tie and half bow-tie filters. For XVI, the mean pixel values of regions of interest were found to generally decrease with increasing mAs for all protocols, while they were relatively stable with mAs for OBI. Noise was slightly lower on XVI and was seen to decrease with increasing mAs, while CNR increased with mAs for both systems. For XVI and OBI, the high-contrast resolution was approximately limited by the pixel resolution of the reconstructed image. On OBI images, up to 6 and 5 discs of 1% and 0.5% contrast, respectively, were visible for a high mAs setting using the full-fan mode, while none of the discs were clearly visible on the XVI images for various mAs settings when the medium resolution reconstruction was used. In conclusion, image quality parameters for XVI and OBI have been quantified and compared for clinical protocols under various mAs settings. These results need to be viewed in the context of a recent study that reported the dose-mAs relationship for the two systems and found that OBI generally delivered higher imaging doses than XVI.

  16. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section

    PubMed Central

    Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian

    2015-01-01

    A high-sensitivity Mach-Zehnder interferometer (MZI) biochemical sensing platform based on Silicon-in-insulator (SOI) rib waveguide with large cross section is proposed in this paper. Based on the analyses of the evanescent field intensity, the mode polarization and cross section dimensions of the SOI rib waveguide are optimized through finite difference method (FDM) simulation. To realize high-resolution MZI read-out configuration based on the SOI rib waveguide, medium-filled trenches are employed and their performances are simulated through two-dimensional finite-difference-time domain (2D-FDTD) method. With the fundamental EH-polarized mode of the SOI rib waveguide with a total rib height of 10 μm, an outside rib height of 5 μm and a rib width of 2.5 μm at the operating wavelength of 1550 nm, when the length of the sensitive window in the MZI configuration is 10 mm, a homogeneous sensitivity of 7296.6%/refractive index unit (RIU) is obtained. Supposing the resolutions of the photoelectric detectors connected to the output ports are 0.2%, the MZI sensor can achieve a detection limit of 2.74 × 10−6 RIU. Due to high coupling efficiency of SOI rib waveguide with large cross section with standard single-mode glass optical fiber, the proposed MZI sensing platform can be conveniently integrated with optical fiber communication systems and (opto-) electronic systems, and therefore has the potential to realize remote sensing, in situ real-time detecting, and possible applications in the internet of things. PMID:26343678

  17. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  18. The Missing Link Coupling the Foreshock to the Magnetosphere?: Impact of the Magnetosheath Velocity Fluctuations on the Growth of the Kelvin-Helmholtz instability.

    NASA Astrophysics Data System (ADS)

    Nykyri, K.; Dimmock, A. P.; Pulkkinen, T. I.; Otto, A.; Ma, X.

    2014-12-01

    Our statistical study of magnetosheath velocity fluctuations using 6+ years of THEMIS spacecraft measurements in Magnetosheath InterPlanetary Medium (MIPM) reference frame show that amplitudes of the velocity fluctuations are enhanced in the magnetosheath downstream of the quasi-parallel shock. The fluctuation amplitudes can be substantial and frequencies of these flcutuations can vary. We have examined the role of the i) amplitude, ii) frequency, iii) number of the modes, iv) as well as mode combinations of magnetosheath velocity fluctuations on the growth of Kelvin-Helmholtz Instability (KHI) using high-resolution macro-scale MHD simulations in magnetospheric inertial frame. The results show that even for the same magnetic field and plasma parameters across the magnetopause there can be major differences due to 'magnetosheath fluctuation state' on the growth and dynamical evolution of the KHI. This may provide the missing link how foreshock fluctuations couple to the magnetosphere and into the ionosphere

  19. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs

    PubMed Central

    Caucheteur, Christophe; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques

    2016-01-01

    Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture—a gold-coated highly tilted Bragg grating—that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10−8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas. PMID:27834366

  20. Coherent Raman and Infrared Studies of Sulfur Trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrysostom, Engelene; Vulpanovici, Nicolae; Masiello, Anthony

    2001-07-02

    High resolution (0.001 cm-1) coherent anti-Stokes Raman scattering (CARS) was used to observe the Q-branch structure of the IR-inactive n1 symmetric stretching mode of 32S 16O3 and its various 18O isotopomers. The v1 spectrum of 32S 16O3 reveals two intense Q-branch regions in the 1065-1067 cm-1 region, with surprisingly complex vibrational-rotational structure not resolved in earlier studies. Efforts to simulate this with a simple Fermi-resonance model involving v1 and 2v4 do not reproduce the spectral detail nor yield reasonable spectroscopic parameters. A more subtle combination of Fermi resonance and indirect Coriolis interactions with nearby states; 2v4 (l = 0, ?more » 2), v2+v4 (l = ? 1), 2v2 (l =0) is suspected and a determination of the location of these coupled states by high resolution infrared measurements is underway. At medium resolution (0.125 cm-1), the infrared spectra reveal Q-branch features from which approximate band origins are estimated for the v2, v3, v4 fundamental modes of 32S 18O3, 32S 18O2 16O and 32S 18O 16O2. These and literature data for 32S 16O3 are used to calculate force constants for SO3 and a comparison is made with similar values for SO2 and SO. The frequencies and force constants are in excellent agreement with a recent ab initio calculation by Martin. *In memory of Dr. Nicolae Vulpanovici (1968-2001)« less

  1. Dynamic characteristics of two new vibration modes of the disk-shell shaped gear

    NASA Astrophysics Data System (ADS)

    Yan, Litang; Qiu, Shijung; Gao, Xiangqung

    1992-10-01

    Two new vibration modes of the disk-shell-shaped big medium gears placed on three separate medium shafts of a turboprop engine have been found. They have the same nodal diameters as the conventional ones, but their frequencies are higher. The tooth ring vibrates both radially and axially and has greater deflection than the gear hub. The resonance of these two new nodal diameter modes is much more dangerous than that of the conventional nodal diameter modes. Moreover, they occur nearly at the upper and the lower bounds of the gear operating speed range. A special detuning method is developed for removing the resonance of these two new modes out of the upper and the lower bounds, respectively, and the effectiveness of the damping rings in this case has been researched. The vibration responses measured on the reductor casing have been then reduced to a quite low level after the damping rings were applied to the three big medium gears.

  2. Subterahertz Longitudinal Phonon Modes Propagating in a Lipid Bilayer Immersed in an Aqueous Medium

    NASA Astrophysics Data System (ADS)

    Zakhvataev, V. E.

    2018-04-01

    The properties of subterahertz longitudinal acoustic phonon modes in the hydrophobic region of a lipid bilayer immersed in a compressible viscous aqueous medium are investigated theoretically. An approximate expression is obtained for the Mandelstam-Brillouin components of the dynamic structure factor of a bilayer. The analysis is based on a generalized hydrodynamic model of the "two-dimensional lipid bilayer + three-dimensional fluid medium" system, as well as on known sharp estimates for the frequencies and lifetimes of long-wavelength longitudinal acoustic phonons in a free hydrated lipid bilayer and in water, obtained from inelastic X-ray scattering experiments and molecular dynamics simulations. It is shown that, for characteristic values of the parameters of the membrane system, subterahertz longitudinal phonon-like excitations in the hydrophobic part of the bilayer are underdamped. In this case, the contribution of the viscous flow of the aqueous medium to the damping of a longitudinal membrane mode is small compared with the contribution of the lipid bilayer. Quantitative estimates of the damping ratio agree well with the experimental results for the vibration mode of the enzyme lysozyme in aqueous solution [1]. It is also shown that a coupling between longitudinal phonon modes of the bilayer and relaxation processes in its fluid environment gives rise to an additional peak in the scattering spectrum, which corresponds to a non-propagating mode.

  3. Quantification of short- and medium-chain chlorinated paraffins in environmental samples by gas chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Gao, Wei; Wu, Jing; Wang, Yawei; Jiang, Guibin

    2016-06-24

    Chlorinated paraffins (CPs) are technical products produced and used in bulk for a number of purposes. However, the analysis of CPs is challenging, as they are complex mixtures of compounds and isomers. We herein report the development of an analytical method for the analysis of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) using quadrupole time-of-flight high-resolution mass spectrometry (GC-NCI-qTOF-HRMS). This method employs gas chromatography with a chemical ionization source working in negative mode. The linear relationship between chlorination and the CP total response factors was applied to quantify the CP content and the congener group distribution patterns. In a single injection, 24 SCCP formula groups and 24 MCCP formula groups were quantified. Extraction of accurate masses using qTOF-HRMS allowed the SCCPs and MCCPs to be distinguished, with interference from other chemicals (e.g., PCBs) being largely avoided. The SCCP and MCCP detection limits were 24-81ng/mL and 27-170ng/mL, respectively. Comparison of the obtained results with analytical results from gas chromatography coupled with electron capture negative ionization low-resolution mass spectrometry (GC-ECNI-LRMS) indicate that the developed technique is a more accurate and convenient method for the analysis of CPs in samples from a range of matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A Constructive Replication of the Lawrence and Lorsch Conflict Resolution Methodology.

    ERIC Educational Resources Information Center

    Fry, Louis W.; And Others

    1980-01-01

    A replication of Lawrence and Lorsch's (1967) findings of three modes of conflict resolution did not yield a clear factor structure. The validity of the scale for purposes of measuring conflict resolution modes is seriously questioned as is what is taught in the area of conflict resolution. (Author)

  5. Process studies with airborne GLORIA limb-imaging FTS observations during the Arctic winter 2015/16

    NASA Astrophysics Data System (ADS)

    Woiwode, W.; Bramberger, M.; Braun, M.; Dörnbrack, A.; Friedl-Vallon, F.; Grooss, J. U.; Hoepfner, M.; Johansson, S.; Latzko, T.; Oelhaf, H.; Orphal, J.; Preusse, P.; Sinnhuber, B. M.; Suminska-Ebersoldt, O.; Ungermann, J.

    2017-12-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) limb-imaging infrared Fourier-Transform Spectrometer (FTS) was deployed on board the High Altitude and LOng range research aircraft (HALO) from December 2015 until March 2016 for process studies in the Arctic and mid-latitudes. Operations were carried out from Kiruna (Sweden, 68°N) and Oberpfaffenhofen (Germany, 48°N) in the framework of the combined POLSTRACC/GW-LCYCLE/SALSA (PGS) campaigns, including 18 scientific HALO flights and about 156 flight hours. After a brief overview of the instrument, examples of process studies using GLORIA high spectral resolution mode observations will be given: (1) Strong nitrification of the Arctic lowermost stratosphere during the exceptionally cold stratospheric winter 2015/16 and comparisons with CLaMS (Chemical Lagrangian Model of the Stratosphere) chemistry transport simulations. (ii) A case study involving high-resolution ECMWF (European Centre for Medium-Range Weather Forecasts) IFS (Integrated Forecasting System) data, investigating the meridional structure of a tropopause fold interfering with a mountain wave.

  6. Development of DNP-Enhanced High-Resolution Solid-State NMR System for the Characterization of the Surface Structure of Polymer Materials

    NASA Astrophysics Data System (ADS)

    Horii, Fumitaka; Idehara, Toshitaka; Fujii, Yutaka; Ogawa, Isamu; Horii, Akifumi; Entzminger, George; Doty, F. David

    2012-07-01

    A dynamic nuclear polarization (DNP)-enhanced cross-polarization/magic-angle spinning (DNP/CP/MAS) NMR system has been developed by combining a 200 MHz Chemagnetics CMX-200 spectrometer operating at 4.7 T with a high-power 131.5 GHz Gyrotron FU CW IV. The 30 W sub-THz wave generated in a long pulse TE _{{41}}^{{(1)}} mode with a frequency of 5 Hz was successfully transmitted to the modified Doty Scientific low-temperature CP/MAS probe through copper smooth-wall circular waveguides. Since serious RF noises on NMR signals by arcing in the electric circuit of the probe and undesired sample heating were induced by the continuous sub-THz wave pulse irradiation with higher powers, the on-off sub-THz wave pulse irradiation synchronized with the NMR detection was developed and the appropriate setting of the irradiation time and the cooling time corresponding to the non-irradiation time was found to be very effective for the suppression of the arcing and the sample heating. The attainable maximum DNP enhancement was more than 30 folds for C1 13 C-enriched D-glucose dissolved in the frozen medium containing mono-radical 4-amino-TEMPO. The first DNP/CP/MAS 13 C NMR spectra of poly(methyl methacrylate) (PMMA) sub-micron particles were obtained at the dispersed state in the same frozen medium, indicating that DNP-enhanced 1H spins effectively diffuse from the medium to the PMMA particles through their surface and are detected as high-resolution 13 C spectra in the surficial region to which the 1H spins reach. On the basis of these results, the possibility of the DNP/CP/MAS NMR characterization of the surface structure of nanomaterials including polymer materials was discussed.

  7. Efficient analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method.

    PubMed

    Khoo, E H; Ahmed, I; Goh, R S M; Lee, K H; Hung, T G G; Li, E P

    2013-03-11

    The dynamic-thermal electron-quantum medium finite-difference time-domain (DTEQM-FDTD) method is used for efficient analysis of mode profile in elliptical microcavity. The resonance peak of the elliptical microcavity is studied by varying the length ratio. It is observed that at some length ratios, cavity mode is excited instead of whispering gallery mode. This depicts that mode profiles are length ratio dependent. Through the implementation of the DTEQM-FDTD on graphic processing unit (GPU), the simulation time is reduced by 300 times as compared to the CPU. This leads to an efficient optimization approach to design microcavity lasers for wide range of applications in photonic integrated circuits.

  8. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance

    PubMed Central

    Cruz-Bastida, Juan P.; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P.; Chen, Guang-Hong

    2016-01-01

    Purpose: The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. Methods: A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0–16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. Results: At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. Conclusions: The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions. PMID:27147351

  9. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance.

    PubMed

    Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong

    2016-05-01

    The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions.

  10. On-off intermittency and intermingledlike basins in a granular medium.

    PubMed

    Schmick, Malte; Goles, Eric; Markus, Mario

    2002-12-01

    Molecular dynamic simulations of a medium consisting of disks in a periodically tilted box yield two dynamic modes differing considerably in the total potential and kinetic energies of the disks. Depending on parameters, these modes display the following features: (i) hysteresis (coexistence of the two modes in phase space); (ii) intermingledlike basins of attraction (uncertainty exponent indistinguishable from zero); (iii) two-state on-off intermittency; and (iv) bimodal velocity distributions. Bifurcations are defined by a cross-shaped phase diagram.

  11. Off-axis electron holography combining summation of hologram series with double-exposure phase-shifting: Theory and application.

    PubMed

    Boureau, Victor; McLeod, Robert; Mayall, Benjamin; Cooper, David

    2018-06-04

    In this paper we discuss developments for Lorentz mode or "medium resolution" off-axis electron holography such that it is now routinely possible obtain very high sensitivity phase maps with high spatial resolution whilst maintaining a large field of view. Modifications of the usual Fourier reconstruction procedure have been used to combine series of holograms for sensitivity improvement with a phase-shifting method for doubling the spatial resolution. In the frame of these developments, specific attention is given to the phase standard deviation description and its interaction with the spatial resolution as well as the processing of reference holograms. An experimental study based on Dark-Field Electron Holography (DFEH), using a SiGe/Si multilayer epitaxy sample is compared with theory. The method's efficiency of removing the autocorrelation term during hologram reconstruction is discussed. Software has been written in DigitalMicrograph that can be used to routinely perform these tasks. To illustrate the real improvements made using these methods we show that a strain measurement sensitivity of  ±  0.025 % can be achieved with a spatial resolution of 2 nm and  ±  0.13 % with a spatial resolution of 1 nm whilst maintaining a useful field of view of 300 nm. In the frame of these measurements a model of strain noise for DFEH has also been developed. Copyright © 2018. Published by Elsevier B.V.

  12. The physics of brown dwarfs and exoplanets - JWST/NIRSpec GTO program overview

    NASA Astrophysics Data System (ADS)

    Birkmann, Stephan; Alves de Oliveira, Catarina; Valenti, Jeff A.; Ferruit, Pierre; NIRSpec GTO Team

    2017-06-01

    The Near Infrared Spectrograph (NIRSpec) is one of the science instruments on the James Webb Space Telescope that is scheduled for launch in October 2018. The NIRSpec guaranteed time observer (GTO) team will use ~70 hours of NIRSpec guaranteed time to carry out spectroscopic observations of brown dwarfs as well as transiting and directly imaged exoplanets with NIRSpec. The instrument offers four distinct observing modes to proposers that will all be exercised by the GTO programs presented here: 1) multi object spectroscopy (MOS) of 10s to 100s of sources in a ~9 arcmin field of view (FOV), 2) integral field spectroscopy (IFS) with a 3” x 3” FOV, 3) high contrast slit spectroscopy of individual objects and 4) time series observations of bright sources, e.g. transiting exoplanets host stars. Seven dispersers are available in all observing modes: a prism covering the wavelength range from 0.6 to 5.3 micron with a spectral resolution R of ~30 to 300, and two sets of three gratings covering 0.7 to 5.2 micron with medium (R~1000) and high (R~2700) spectral resolution.We will present the science goals and targets for the brown dwarf and exoplanet GTO programs and discuss the planned implementation of the observations. The latter might be of particular interest to future JWST/NIRSpec proposers.

  13. Hubble Space Telescope: Goddard high resolution spectrograph instrument handbook. Version 2.1

    NASA Technical Reports Server (NTRS)

    Duncan, Douglas K.; Ebbets, Dennis

    1990-01-01

    The Goddard High Resolution Spectrograph (GHRS) is an ultraviolet spectrometer which has been designed to exploit the imaging and pointing capabilities of the Hubble Space Telescope. It will obtain observations of astronomical sources with greater spectral, spatial and temporal resolution than has been possible with previous space-based instruments. Data from the GHRS will be applicable to many types of scientific investigations, including studies of the interstellar medium, stellar winds, chromospheres and coronae, the byproducts and endproducts of stellar evolution, planetary atmospheres, comets, and many kinds of extragalactic sources. This handbook is intended to introduce the GHRS to potential users. The main purpose is to provide enough information to explore the feasibility of possible research projects and to plan, propose and execute a set of observations. An overview of the instrument performance, which should allow one to evaluate the suitability of the GHRS to specific projects, and a somewhat more detailed description of the GHRS hardware are given. How observing programs will be carried out, the various operating modes of the instrument, and the specific information about the performance of the instrument needed to plan an observation are discussed.

  14. Crop Monitoring Using European and Chinese Medium Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Fan, Jinlong; Defourny, Pierre

    2016-08-01

    The European medium resolution satellite data ENVISAT/MERIS were available in 2002 while the Chinese medium resolution spectrometer data with 5 bands in 250m spatial resolution and 15 bands in 1000m onboard Fengyun 3 series satellites became a new data source at the end of the year 2008. Under the framework of Dragon program 3, both teams demonstrated the utilization of medium resolution satellite data in crop monitoring. The Chinese team has made efforts to improve the processing of the Chinese Medium resolution satellite data (MERSI) in order to promote its applications in crop monitoring. The European team has checked and evaluated the processed FY3A/3B MERSI data and inspiring findings have found in terms of the imaging quality and the performance of retrieving LAI and GAI etc. The Chinese team has mapped the winter wheat area in North China Plain in the growing season from 2009 to 2014 with the finely processed FY3A MERSI 250m data. The LAI retrieval algorithm with the FY3 MERSI data was developed based on the in-situ data and other satellite products. The participation of young scientists is critical for the implementation of the project. 4 Chinese master students were involving in this project and the Chinese team hosted a European young master student to carry out research in China in the spring of 2014. Both research teams are looking forward to successful and productive achievements for this Dragon project and new deep cooperation in Dragon 4.

  15. Frequency Tunable Wire Lasers

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor)

    2013-01-01

    The present invention provides frequency tunable solid-state radiation-generating devices, such as lasers and amplifiers, whose active medium has a size in at least one transverse dimension (e.g., its width) that is much smaller than the wavelength of radiation generated and/or amplified within the active medium. In such devices, a fraction of radiation travels as an evanescent propagating mode outside the active medium. It has been discovered that in such devices the radiation frequency can be tuned by the interaction of a tuning mechanism with the propagating evanescent mode.

  16. Hybrid-mode read-in integrated circuit for infrared scene projectors

    NASA Astrophysics Data System (ADS)

    Cho, Min Ji; Shin, Uisub; Lee, Hee Chul

    2017-05-01

    The infrared scene projector (IRSP) is a tool for evaluating infrared sensors by producing infrared images. Because sensor testing with IRSPs is safer than field testing, the usefulness of IRSPs is widely recognized at present. The important performance characteristics of IRSPs are the thermal resolution and the thermal dynamic range. However, due to an existing trade-off between these requirements, it is often difficult to find a workable balance between them. The conventional read-in integrated circuit (RIIC) can be classified into two types: voltage-mode and current-mode types. An IR emitter driven by a voltage-mode RIIC offers a fine thermal resolution. On the other hand, an emitter driven by the current-mode RIIC has the advantage of a wide thermal dynamic range. In order to provide various scenes, i.e., from highresolution scenes to high-temperature scenes, both of the aforementioned advantages are required. In this paper, a hybridmode RIIC which is selectively operated in two modes is proposed. The mode-selective characteristic of the proposed RIIC allows users to generate high-fidelity scenes regardless of the scene content. A prototype of the hybrid-mode RIIC was fabricated using a 0.18-μm 1-poly 6-metal CMOS process. The thermal range and the thermal resolution of the IR emitter driven by the proposed circuit were calculated based on measured data. The estimated thermal dynamic range of the current mode was from 261K to 790K, and the estimated thermal resolution of the voltage mode at 300K was 23 mK with a 12-bit gray-scale resolution.

  17. ESA Sentinel-1 Mission and Products

    NASA Astrophysics Data System (ADS)

    Floury, Nicolas; Attema, Evert; Davidson, Malcolm; Levrini, Guido; Rommen, Björn; Rosich, Betlem; Snoeij, Paul

    The global Monitoring for Environment and Security (GMES) space component relies on existing and planned space assets by European States, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the European Space Agency (ESA), as well as new complementary developments by ESA. The new developments are implemented in terms of five families of satellites called Sentinels. The Sentinel-1 mission is an imaging synthetic aperture radar (SAR) mission at C-band designed to supply all-weather day-and-night imagery to a number of operational Earth observation based services. Three priorities (fasttrack services) for the mission have been identified by user consultation working groups of the European Union: Marine Core Services, Land Monitoring and Emergency Services. These cover applications such as: - monitoring sea ice zones and the arctic environment, - surveillance of marine environment, - monitoring land surface motion risks, - mapping of land surfaces: forest, water and soil, agriculture, - mapping in support of humanitarian aid in crisis situations. Sentinel-1 has been designed to address medium resolution applications. It includes a main mode of operation that features a wide swath (250 km) and a medium resolution (5 m x 20 m). The two-satellite constellation offers six days exact repeat and the conflict-free operations based on the main operational mode allow exploiting every single data take. This paper describes the Sentinel-1 mission, provides an overview of the mission requirements, and presents some of the key user driven information products, the crucial requirements for operational sustainable services being continuity of data supply, frequent revisit, geographical coverage and timeliness. As data products from the Agency‘s successful ERS-1, ERS-2 and Envisat missions form the basis for many of the pilot GMES services, Sentinel-1 data products need to maintain and in some ways to improve data quality levels of the Agency‘s previous SAR missions. Based on mission analysis work in preparation of Sentinel-1, this paper presents the results of investigations on the impact of some of the new mission and system requirements (such as spatial and radiometric resolution, calibration accuracy, revisit, . . . ) on the accuracy of key information products (wind speed measurement, ship detection, flood mapping, rice crop monitoring, soil moisture measurement, forest mapping, land surface movement measurement, . . . ).

  18. Spatial resolution versus contrast trade-off enhancement in high-resolution surface plasmon resonance imaging (SPRI) by metal surface nanostructure design.

    PubMed

    Banville, Frederic A; Moreau, Julien; Sarkar, Mitradeep; Besbes, Mondher; Canva, Michael; Charette, Paul G

    2018-04-16

    Surface plasmon resonance imaging (SPRI) is an optical near-field method used for mapping the spatial distribution of chemical/physical perturbations above a metal surface without exogenous labeling. Currently, the majority of SPRI systems are used in microarray biosensing, requiring only modest spatial resolution. There is increasing interest in applying SPRI for label-free near-field imaging of biological cells to study cell/surface interactions. However, the required resolution (sub-µm) greatly exceeds what current systems can deliver. Indeed, the attenuation length of surface plasmon polaritons (SPP) severely limits resolution along one axis, typically to tens of µm. Strategies to date for improving spatial resolution result in a commensurate deterioration in other imaging parameters. Unlike the smooth metal surfaces used in SPRI that support purely propagating surface modes, nanostructured metal surfaces support "hybrid" SPP modes that share attributes from both propagating and localized modes. We show that these hybrid modes are especially well-suited to high-resolution imaging and demonstrate how the nanostructure geometry can be designed to achieve sub-µm resolution while mitigating the imaging parameter trade-off according to an application-specific optimum.

  19. Strain relaxation of CdTe on Ge studied by medium energy ion scattering

    NASA Astrophysics Data System (ADS)

    Pillet, J. C.; Pierre, F.; Jalabert, D.

    2016-10-01

    We have used the medium energy ion scattering (MEIS) technique to assess the strain relaxation in molecular-beam epitaxial (MBE) grown CdTe (2 1 1)/Ge (2 1 1) system. A previous X-ray diffraction study, on 10 samples of the same heterostructure having thicknesses ranging from 25 nm to 10 μm has allowed the measurement of the strain relaxation on a large scale. However, the X-ray diffraction measurements cannot achieve a stress measurement in close proximity to the CdTe/Ge interface at the nanometer scale. Due to the huge lattice misfit between the CdTe and Ge, a high degree of disorder is expected at the interface. The MEIS in channeling mode is a good alternative in order to profile defects with a high depth resolution. For a 21 nm thick CdTe layer, we observed, at the interface, a high density of Cd and/or Te atoms moved from their expected crystallographic positions followed by a rapid recombination of defects. Strain relaxation mechanisms in the vicinity of the interface are discussed

  20. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    PubMed

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  1. RESONATORS. MODES: Modes of a plano - spherical laser resonator with the Gaussian gain distribution of the active medium

    NASA Astrophysics Data System (ADS)

    Malyutin, A. A.

    2007-03-01

    Modes of a laser with plano-spherical degenerate and nondegenerate resonators are calculated upon diode pumping producing the Gaussian gain distribution in the active medium. Axially symmetric and off-axis pumpings are considered. It is shown that in the first case the lowest Hermite-Gaussian mode is excited with the largest weight both in the degenerate and nondegenerate resonator if the pump level is sufficiently high or the characteristic size wg of the amplifying region greatly exceeds the mode radius w0. The high-order Ince-Gaussian modes are excited upon weak off-axis pumping in the nondegenerate resonator both in the absence and presence of the symmetry of the gain distribution with respect to the resonator axis. It is found that when the level of off-axis symmetric pumping of the resonator is high enough, modes with the parameters of the TEM00 mode periodically propagating over a closed path in the resonator can exist. The explanation of this effect is given.

  2. Quasi-most unstable modes: a window to 'À la carte' ensemble diversity?

    NASA Astrophysics Data System (ADS)

    Homar Santaner, Victor; Stensrud, David J.

    2010-05-01

    The atmospheric scientific community is nowadays facing the ambitious challenge of providing useful forecasts of atmospheric events that produce high societal impact. The low level of social resilience to false alarms creates tremendous pressure on forecasting offices to issue accurate, timely and reliable warnings.Currently, no operational numerical forecasting system is able to respond to the societal demand for high-resolution (in time and space) predictions in the 12-72h time span. The main reasons for such deficiencies are the lack of adequate observations and the high non-linearity of the numerical models that are currently used. The whole weather forecasting problem is intrinsically probabilistic and current methods aim at coping with the various sources of uncertainties and the error propagation throughout the forecasting system. This probabilistic perspective is often created by generating ensembles of deterministic predictions that are aimed at sampling the most important sources of uncertainty in the forecasting system. The ensemble generation/sampling strategy is a crucial aspect of their performance and various methods have been proposed. Although global forecasting offices have been using ensembles of perturbed initial conditions for medium-range operational forecasts since 1994, no consensus exists regarding the optimum sampling strategy for high resolution short-range ensemble forecasts. Bred vectors, however, have been hypothesized to better capture the growing modes in the highly nonlinear mesoscale dynamics of severe episodes than singular vectors or observation perturbations. Yet even this technique is not able to produce enough diversity in the ensembles to accurately and routinely predict extreme phenomena such as severe weather. Thus, we propose a new method to generate ensembles of initial conditions perturbations that is based on the breeding technique. Given a standard bred mode, a set of customized perturbations is derived with specified amplitudes and horizontal scales. This allows the ensemble to excite growing modes across a wider range of scales. Results show that this approach produces significantly more spread in the ensemble prediction than standard bred modes alone. Several examples that illustrate the benefits from this approach for severe weather forecasts will be provided.

  3. Solidification of a liquid crystal: Morphologies and transitions. Ph.D. thesis, Simon Fraser University (Canada)

    NASA Astrophysics Data System (ADS)

    Hutter, Jeffrey Lee

    When a material freezes, the form it takes depends on the solidification conditions. For instance, as the undercooling is increased, one typically sees solidification into less-ordered forms. The resulting growth modes appear to be generic, with qualitative similarities between systems whose microscopic details are quite dissimilar. I have used both optical and atomic-force microscopy to study the transitions between different growth morphologies during the solidification of a particular liquid crystal, 10 OCB. We have observed six different solidification modes, each with a distinct micro and meso structure. The front-velocity-vs.-undercooling curve has a discontinuity in its slope and, in some cases, in the curve itself at mode transitions, suggesting that these transitions are analogous to phase transitions. Such transitions have been seen in other systems, but no general rule has been found that can predict which morphology will be selected. We show that, contrary to intuition and widespread speculation, the fastest-growing mode is not always the one selected. One of the growth modes exhibited by 10 OCB is known as banded spherulitic growth. Spherulites have been seen in a wide variety of materials including minerals, pure elements, polymers, biomolecules, and metal alloys. However, despite a century of study, there is no generally accepted theory of spherulitic growth. In particular, the cause of the concentric banding seen in many spherulites remains a mystery. Our studies of banded spherulites in 10 OCB using both optical and atomic-force microscopy show that the bands are associated with a density modulation and thus are not merely the result of a birefringent effect, as is commonly believed. As the atomic-force microscope (AFM) is a relatively new tool, some time was spent studying its capabilities. We found that because the AFM resolution is largely determined by attractive forces between the tip of the probe and the sample, resolution can be improved by imaging in a suitable liquid medium. We also developed a simple method for calibrating AFM cantilevers--a crucial step in using the AFM to obtain quantitative force data. This work is presented in an appendix.

  4. [Myocardial perfusion imaging by digital subtraction angiography].

    PubMed

    Kadowaki, H; Ishikawa, K; Ogai, T; Katori, R

    1986-03-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; at the R wave of the electrocardiogram, 100 msec before the R wave, and 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes.

    PubMed

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-11

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  6. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  7. MERLIN - A meV Resolution Beamline at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reininger, Ruben; Bozek, John; Chuang, Y.-D.

    2007-01-19

    An ultra-high resolution beamline is being constructed at the Advanced Light Source (ALS) for the study of low energy excitations in strongly correlated systems with the use of high-resolution inelastic scattering and angle-resolved photoemission. This new beamline, given the acronym Merlin (for meV resolution line), will cover the energy range 10-150 eV. The monochromator has fixed entrance and exit slits and a plane mirror that can illuminate a spherical grating at the required angle of incidence (as in the SX-700 mechanism). The monochromator can be operated in two different modes. In the highest resolution mode, the energy scanning requires translatingmore » the monochromator chamber (total travel 1.1 m) as well as rotating the grating and the plane mirror in front of the grating. The resolution in this mode is practically determined by the slits width. In the second mode, the scanning requires rotating the grating and the plane mirror. This mode can be used to scan a few eV without a significant resolution loss. The source for the beamline is a 1.9 m long, 90 mm period quasi periodic EPU. The expected flux at the sample is higher than 1011 photons/s at a resolving power of 5 x 104 in the energy range 16-130 eV. A second set of gratings can be used to obtain higher flux at the expense of resolution.« less

  8. SU-E-J-50: An Evaluation of the Stability of Image Quality Parameters of the Elekta XVI and IView Imaging Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, D; Papanikolaou, N; Gutierrez, A

    2015-06-15

    Introduction Quality assurance of the image quality for image guided localization systems is crucial to ensure accurate visualization and localization of target volumes. In this study, the long term stability of selected image parameters was assessed and evaluated for CBCT mode, planar radiographic kV mode and MV mode. Methods and Materials: The CATPHAN, QckV-1 and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50) being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for Uniformity,more » Noise, Spatial Resolution and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F Low Detector for the kV planar radiographic mode. Results A total of 20 and 10 measurements were acquired for the planar radiographic and CBCT systems respectively over a two month period. Values were normalized to the mean and the standard deviations (STD) were recorded. For the planar radiographic spatial resolution, the STD for f30, f40, f50 were 0.004, 0.002, 0.002 and 0.005, 0.007, 0.008 for the kV and MV, respectively. The average recorded dose for kV was 38.7±2.7 μGy. The STD of the evaluated metrics for the S20 acquisition were: 0.444(f30), 0.067(f40), 0.062(f50), 0.018(Water/poly-HU constancy), 0.028(uniformity) and 0.106(noise). The standard deviations for the M20 acquisition were: 0.108(f30), 0.073(f40), 0.091(f50), 0.008(Water/poly-HU constancy), 0.005(uniformity) and 0.005(noise). Using these, tolerances can be reported as a warning and action threshold of 1σ and 2σ. Conclusion A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iView imaging systems. Consistent imaging and dosimetric properties over the evaluated time frame were noted. This work was funded in part by the Cancer Prevention Research Institute of Texas Pre doctoral fellowship training grant (RP140105) to Dennis N. Stanley M.Sc.« less

  9. An evaluation of the stability of image quality parameters of Elekta X-ray volume imager and iViewGT imaging systems.

    PubMed

    Stanley, Dennis N; Rasmussen, Karl; Kirby, Neil; Papanikolaou, Nikos; Gutiérrez, Alonso N

    2018-05-01

    A robust image quality assurance and analysis methodology for image-guided localization systems is crucial to ensure the accurate localization and visualization of target tumors. In this study, the long-term stability of selected image parameters was assessed and evaluated for the cone-beam computed tomography (CBCT) mode, planar radiographic kV mode, and the radiographic MV mode of an Elekta VersaHD. The CATPHAN, QckV-1, and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50), contrast to noise ratio (CNR) and noise being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for uniformity, noise, spatial resolution, and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F low detector for the kV planar radiographic mode. For each metric, values were normalized to the mean and the standard deviations were recorded. A total of 30 measurements were performed on a single Elekta VersaHD linear accelerator over an 18-month period without significant adjustment or recalibration to the XVI or iViewGT systems during the evaluated time frame. For the planar radiographic spatial resolution, the normalized standard deviation values of the f30, f40, and f50 were 0.004, 0.003, and 0.003 and 0.015, 0.009, and 0.017 for kV and MV, respectively. The average recorded dose for kV was 67.96 μGy. The standard deviations of the evaluated metrics for the S20 acquisition were 0.083(f30), 0.058(f40), 0.056(f50), 0.021(Water/poly-HU constancy), 0.029(uniformity) and 0.028(noise). The standard deviations for the M20 acquisition were 0.093(f30), 0.043(f40), 0.037(f50), 0.016(Water/poly-HU constancy), 0.010(uniformity) and 0.011(Noise). A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iViewGT imaging systems. The two systems show consistent imaging and dosimetric properties over the evaluated time frame. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. The nonlinear interaction of convection modes in a box of a saturated porous medium

    NASA Astrophysics Data System (ADS)

    Florio, Brendan J.; Bassom, Andrew P.; Fowkes, Neville; Judd, Kevin; Stemler, Thomas

    2015-05-01

    A plethora of convection modes may occur within a confined box of porous medium when the associated dimensionless Rayleigh number R is above some critical value dependent on the geometry. In many cases the crucial Rayleigh number Rc for onset is different for each mode, and in practice the mode with the lowest associated Rc is likely to be the dominant one. For particular sizes of box, however, it is possible for multiple modes (typically three) to share a common Rc. For box shapes close to these special geometries the modes interact and compete nonlinearly near the onset of convection. Here this mechanism is explored and it is shown that generically the dynamics of the competition takes on one of two possible structures. A specific example of each is described, while the general properties of the system enables us to compare our results with some previous calculations for particular box dimensions.

  11. Using one-dimensional waveguide resonators to measure phase velocities in bubbly liquids.

    PubMed

    Dolder, Craig N; Wilson, Preston S

    2017-04-01

    Resonator techniques can be successfully used to extract effective medium properties from dispersive materials. However, in some cases the dispersion can cause modes to repeat. If repeated modes are not taken into account, the useful range of the resonator technique is limited. A resonance tube containing tethered balloons is used to create a dispersive effective medium. Resonator measurements show that modes do repeat. Direct measurement of the mode shapes allows exploitation of all longitudinal radially symmetric modes and expands the frequency range of the technique. A theoretical model is also used to predict when modes repeat. For the presented data set this method increases the measurement range from below 160 Hz to 3000 Hz excluding the stop band where resonances are damped. A means to account for non-ideal resonator boundary conditions often found in highly dispersive systems is discussed.

  12. Data-resolution matrix and model-resolution matrix for Rayleigh-wave inversion using a damped least-squares method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.

    2008-01-01

    Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (>2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. We employed a data-resolution matrix to select data that would be well predicted and we find that there are advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher-mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher-mode data are normally more accurately predicted than fundamental-mode data because of restrictions on the data kernel for the inversion system. We used synthetic and real-world examples to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher-mode data in inversion can provide better results. We also calculated model-resolution matrices in these examples to show the potential of increasing model resolution with selected surface-wave data. ?? Birkhaueser 2008.

  13. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves.

    PubMed

    Samaitis, Vykintas; Mažeika, Liudas

    2017-08-08

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system.

  14. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves

    PubMed Central

    Samaitis, Vykintas; Mažeika, Liudas

    2017-01-01

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system. PMID:28786924

  15. Medium Resolution Spectroscopy of Boyajian's Star (KIC 8462852)

    NASA Astrophysics Data System (ADS)

    Steele, I. A.; Lamb, G. P.; Copperwheat, C. M.; Jermak, H. E.

    2017-05-01

    ATel #10405 reports that a several percent dip in the brightness of KIC 8462852 is underway. We report medium resolution spectroscopy (R=2500) taken with the FRODOSpec fibre fed integral field spectrograph of the 2.0 meter Liverpool Telescope, La Palma obtained on 20th May 2017 starting at 01:20UT.

  16. Cryogenic wheel mechanisms for the Mid-Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST): detailed design and test results from the qualification program

    NASA Astrophysics Data System (ADS)

    Krause, O.; Birkmann, S.; Blümchen, T.; Böhm, A.; Ebert, M.; Grözinger, U.; Henning, Th.; Hofferbert, R.; Huber, A.; Lemke, D.; Rohloff, R.-R.; Scheithauer, S.; Gross, T.; Luichtel, G.; Stein, C.; Stott, R.; Übele, M.; Amiaux, J.; Auguères, J.-L.; Glauser, A.; Zehnder, A.; Meijers, M.; Jager, R.; Parr-Burrman, P.; Wright, G.

    2008-07-01

    The Mid-Infrared Instrument (MIRI) of the James Webb Space Telescope, scheduled for launch in 2013, will provide a variety of observing modes such as broad/narrow-band imaging, coronagraphy and low/medium resolution spectroscopy. One filter wheel and two dichroic-grating wheel mechanisms allow to configure the instrument between the different observing modes and wavelength ranges. The main requirements for the three mechanisms with up to 18 positions on the wheel include: (1) reliable operation at T ~ 7 K, (2) optical precision, (3) low power dissipation, (4) high vibration capability, (5) functionality at 6 K < T < 300 K and (6) long lifetime (5-10 years). To meet these stringent requirement, a space-proven mechanism design based on the European ISO mission and consisting of a central bearing carrying the optical wheels, a central torque motor for wheel actuation, a ratchet system for precise and powerless positioning and a magnetoresistive position sensor has been selected. We present here the detailed design of the flight models and report results from the extensive component qualification.

  17. Photonic Crystal Fiber Mach-Zehnder Interferometer for Refractive Index Sensing

    PubMed Central

    Wang, Jian-Neng; Tang, Jaw-Luen

    2012-01-01

    We report on a refractive index sensor using a photonic crystal fiber (PCF) interferometer which was realized by fusion splicing a short section of PCF (Blaze Photonics, LMA-10) between two standard single mode fibers. The fully collapsed air holes of the PCF at the spice regions allow the coupling of PCF core and cladding modes that makes a Mach-Zehnder interferometer. The transmission spectrum exhibits sinusoidal interference pattern which shifts differently when the cladding/core surface of the PCF is immersed with different RI of the surrounding medium. Experimental results using wavelength-shift interrogation for sensing different concentrations of sucrose solution show that a resolution of 1.62 × 10−4–8.88 × 10−4 RIU or 1.02 × 10−4–9.04 × 10−4 RIU (sensing length for 3.50 or 5.00 cm, respectively) was achieved for refractive indices in the range of 1.333 to 1.422, suggesting that the PCF interferometer are attractive for chemical, biological, biochemical sensing with aqueous solutions, as well as for civil engineering and environmental monitoring applications. PMID:22736988

  18. Photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing.

    PubMed

    Wang, Jian-Neng; Tang, Jaw-Luen

    2012-01-01

    We report on a refractive index sensor using a photonic crystal fiber (PCF) interferometer which was realized by fusion splicing a short section of PCF (Blaze Photonics, LMA-10) between two standard single mode fibers. The fully collapsed air holes of the PCF at the spice regions allow the coupling of PCF core and cladding modes that makes a Mach-Zehnder interferometer. The transmission spectrum exhibits sinusoidal interference pattern which shifts differently when the cladding/core surface of the PCF is immersed with different RI of the surrounding medium. Experimental results using wavelength-shift interrogation for sensing different concentrations of sucrose solution show that a resolution of 1.62 × 10(-4)-8.88 × 10(-4) RIU or 1.02 × 10(-4)-9.04 × 10(-4) RIU (sensing length for 3.50 or 5.00 cm, respectively) was achieved for refractive indices in the range of 1.333 to 1.422, suggesting that the PCF interferometer are attractive for chemical, biological, biochemical sensing with aqueous solutions, as well as for civil engineering and environmental monitoring applications.

  19. A Method for the Estimation of p-Mode Parameters from Averaged Solar Oscillation Power Spectra

    NASA Astrophysics Data System (ADS)

    Reiter, J.; Rhodes, E. J., Jr.; Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Larson, T. P.

    2015-04-01

    A new fitting methodology is presented that is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from m-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the “Windowed, MuLTiple-Peak, averaged-spectrum” or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run, using weights from a leakage matrix that takes into account observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method, which employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure, which is based upon 6366 modes that we computed using the WMLTP method on the 66 day 2010 Solar and Heliospheric Observatory/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion, we developed a new procedure for the identification and correction of outliers in a frequency dataset. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle 24 during mid-2010.

  20. The Origin of Compressible Magnetic Turbulence in the Very Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Du, S.; Hunana, P.

    2017-06-01

    Voyager 1 observed compressible magnetic turbulence in the very local interstellar medium (VLISM). We show that inner heliosheath (IHS) fast- and slow-mode waves incident on the heliopause (HP) generate VLISM fast-mode waves only that propagate into the VLISM. We suggest that this is the origin of compressible turbulence in the VLISM. We show that fast- and slow-mode waves transmitted across a tangential discontinuity such as the HP are strongly refracted on crossing the HP and subsequently propagate at highly oblique angles to the VLISM magnetic field. Thus, fast-mode waves in the VLISM contribute primarily to the compressible and not the transverse components of the VLISM fluctuating magnetic field variance < δ {\\hat{B}}2> since < δ {\\hat{B}}{fz}2> \

  1. High-power terahertz lasers with excellent beam quality for local oscillator sources

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin

    Many molecular species that compose the interstellar medium have strong spectral features in the 2-5 THz range, and heterodyne spectroscopy is required to obtain ~km/s velocity resolution to resolve their complicated lineshapes and disentangle them from the background. Understanding the kinetics and energetics within the gas clouds of the interstellar medium is critical to understanding star formation processes and validating theories of galactic evolution. Herschel Observatory's heterodyne HIFI instrument provided several years of high-spectral-resolution measurements of the interstellar medium, although only up to 1.9 THz. The next frontier for heterodyne spectroscopy is the 2-6 THz region. However, development of heterodyne receivers above 2 THz has been severely hindered by a lack of convenient coherent sources of sufficient power to serve as local oscillators (LOs). The recently developed quantum-cascade (QC) lasers are emerging as candidates for LOs in the 1.5-5 THz range. The current generation of single-mode THz QC-lasers can provide a few milliwatts of power in a directive beam, and will be sufficient to pump single pixels and small-format heterodyne arrays (~10 elements). This proposal looks beyond the state-of-the-art, to the development of large format heterodyne arrays which contain on the order of 100-1000 elements. LO powers on the order of 10-100 mW delivered in a high-quality Gaussian beam will be needed to pump the mixer array - not only because of the microwatt mixer power requirement, but to account for large anticipated losses in LO coupling and distribution. Large format heterodyne array instruments are attractive for a dramatic speedup of mapping of the interstellar medium, particularly on airborne platforms such as the Stratospheric Observatory for Infrared Astronomy (SOFIA), and on long duration balloon platforms such as the Stratospheric Terahertz Observatory (STO), where observation time is limited. The research goal of this proposal is to demonstrate a new concept for terahertz quantum-cascade (QC) lasers designed to deliver scalable continuous-wave output power in the range of 10 to 100 mW or more in a near-diffraction limited output beam: a chip-scale THz quantum-cascade vertical-external-cavity-surface-emitting-laser (QC-VECSEL). We focus here on the development of a chip-scale version of size < 1 cm3 that oscillates in a single mode and can readily fit on a cold stage. The enabling technology for this proposed laser is an active metasurface reflector, which is comprised of a sparse array of antenna-coupled THz QC-laser sub-cavities. The metasurface reflector is part of the laser cavity such that multiple THz QC-laser sub-cavities are locked to a high-quality-factor cavity mode, which allows for scalable power combining with a favorable geometry for thermal dissipation and continuous-wave operation. We propose an integrated design, modeling, and experimental approach to design, fabricate, and characterize amplifying reflective QC metasurfaces and QC-VECSEL lasers. Demonstration laser devices will be developed at 2.7 THz and 4.7 THz, near the important frequencies for HD at 2.675 THz (for measurements of the hydrogen deuterium ratio and probing past star formation), and OI at 4.745 THz (a major coolant for photo-dissociation regions in giant molecular clouds). High resolution frequency measurements will be performed on a demonstration device at 2.7 THz will using downconversion with a Schottky diode sub-harmonic mixer to characterize the spectral purity, linewidth, and fine frequency tuning of this new type of QC-laser. This proposed laser is supporting technology for next-generation terahertz detectors.

  2. Multi-scale investigation of shrub encroachment in southern Africa

    NASA Astrophysics Data System (ADS)

    Aplin, Paul; Marston, Christopher; Wilkinson, David; Field, Richard; O'Regan, Hannah

    2016-04-01

    There is growing speculation that savannah environments throughout Africa have been subject to shrub encroachment in recent years, whereby grassland is lost to woody vegetation cover. Changes in the relative proportions of grassland and woodland are important in the context of conservation of savannah systems, with implications for faunal distributions, environmental management and tourism. Here, we focus on southern Kruger National Park, South Africa, and investigate whether or not shrub encroachment has occurred over the last decade and a half. We use a multi-scale approach, examining the complementarity of medium (e.g. Landsat TM and OLI) and fine (e.g. QuickBird and WorldView-2) spatial resolution satellite sensor imagery, supported by intensive field survey in 2002 and 2014. We employ semi-automated land cover classification, involving a hybrid unsupervised clustering approach with manual class grouping and checking, followed by change detection post-classification comparison analysis. The results show that shrub encroachment is indeed occurring, a finding evidenced through three fine resolution replicate images plus medium resolution imagery. The results also demonstrate the complementarity of medium and fine resolution imagery, though some thematic information must be sacrificed to maintain high medium resolution classification accuracy. Finally, the findings have broader implications for issues such as vegetation seasonality, spatial transferability and management practices.

  3. Performance of RVGui sensor and Kodak Ektaspeed Plus film for proximal caries detection.

    PubMed

    Abreu, M; Mol, A; Ludlow, J B

    2001-03-01

    A high-resolution charge-coupled device was used to compare the diagnostic performances obtained with Trophy's new RVGui sensor and Kodak Ektaspeed Plus film with respect to caries detection. Three acquisition modes of the Trophy RVGui sensor were compared with Kodak Ektaspeed Plus film. Images of the proximal surfaces of 40 extracted posterior teeth were evaluated by 6 observers. The presence or absence of caries was scored by means of a 5-point confidence scale. The actual caries status of each surface was determined through ground-section histology. Responses were evaluated by means of receiver operating characteristic analysis. Areas under receiver operating characteristic curves (A(Z)) were assessed through analysis of variance. The mean A(Z) scores were 0.85 for film, 0.84 for the high-resolution caries mode, and 0.82 for both the low resolution caries mode and the high-resolution periodontal mode. These differences were not statistically significant (P =.70). The differences among observers also were not statistically significant (P =.23). The performance of the RVGui sensor in high- and low-resolution modes for proximal caries detection is comparable to that of Ektaspeed Plus film.

  4. A Millimetre-Wave Cuboid Solid Immersion Lens with Intensity-Enhanced Amplitude Mask Apodization

    NASA Astrophysics Data System (ADS)

    Yue, Liyang; Yan, Bing; Monks, James N.; Dhama, Rakesh; Wang, Zengbo; Minin, Oleg V.; Minin, Igor V.

    2018-06-01

    Photonic jet is a narrow, highly intensive, weak-diverging beam propagating into a background medium and can be produced by a cuboid solid immersion lens (SIL) in both transmission and reflection modes. Amplitude mask apodization is an optical method to further improve the spatial resolution of a SIL imaging system via reduction of waist size of photonic jet, but always leading to intensity loss due to central masking of the incoming plane wave. In this letter, we report a particularly sized millimetre-wave cuboid SIL with the intensity-enhanced amplitude mask apodization for the first time. It is able to simultaneously deliver extra intensity enhancement and waist narrowing to the produced photonic jet. Both numerical simulation and experimental verification of the intensity-enhanced apodization effect are demonstrated using a copper-masked Teflon cuboid SIL with 22-mm side length under radiation of a plane wave with 8-mm wavelength. Peak intensity enhancement and the lateral resolution of the optical system increase by about 36.0% and 36.4% in this approach, respectively.

  5. Pushing the plasmonic imaging nanolithography to nano-manufacturing

    NASA Astrophysics Data System (ADS)

    Gao, Ping; Li, Xiong; Zhao, Zeyu; Ma, Xiaoliang; Pu, Mingbo; Wang, Changtao; Luo, Xiangang

    2017-12-01

    Suffering from the so-called diffraction limit, the minimum resolution of conventional photolithography is limited to λ / 2 or λ / 4, where λ is the incident wavelength. The physical mechanism of this limit lies at the fact that the evanescent waves that carry subwavelength information of the object decay exponentially in a medium, and cannot reach the image plane. Surface plasmons (SPs) are non-radiative electromagnetic waves that propagate along the interface between metal and dielectric, which exhibits unique sub-diffraction optical characteristics. In recent years, benefiting from SPs' features, researchers have proposed a variety of plasmonic lithography methods in the manner of interference, imaging and direct writing, and have demonstrated that sub-diffraction resolution could be achieved by theoretical simulations or experiments. Among the various plasmonic lithography modes, plasmonic imaging lithography seems to be of particular importance for applications due to its compatibility with conventional lithography. Recent results show that the half pitch of nanograting can be shrinked down to 22 nm and even 16 nm. This paper will give an overview of research progress, representative achievements of plasmonic imaging lithography, the remained problems and outlook of further developments.

  6. Global-Mode Analysis of Full-Disk Data from the Michelson Doppler Imager and the Helioseismic and Magnetic Imager

    NASA Astrophysics Data System (ADS)

    Larson, Timothy P.; Schou, Jesper

    2018-02-01

    Building upon our previous work, in which we analyzed smoothed and subsampled velocity data from the Michelson Doppler Imager (MDI), we extend our analysis to unsmoothed, full-resolution MDI data. We also present results from the Helioseismic and Magnetic Imager (HMI), in both full resolution and processed to be a proxy for the low-resolution MDI data. We find that the systematic errors that we saw previously, namely peaks in both the high-latitude rotation rate and the normalized residuals of odd a-coefficients, are almost entirely absent in the two full-resolution analyses. Furthermore, we find that both systematic errors seem to depend almost entirely on how the input images are apodized, rather than on resolution or smoothing. Using the full-resolution HMI data, we confirm our previous findings regarding the effect of using asymmetric profiles on mode parameters, and also find that they occasionally result in more stable fits. We also confirm our previous findings regarding discrepancies between 360-day and 72-day analyses. We further investigate a six-month period previously seen in f-mode frequency shifts using the low-resolution datasets, this time accounting for solar-cycle dependence using magnetic-field data. Both HMI and MDI saw prominent six-month signals in the frequency shifts, but we were surprised to discover that the strongest signal at that frequency occurred in the mode coverage for the low-resolution proxy. Finally, a comparison of mode parameters from HMI and MDI shows that the frequencies and a-coefficients agree closely, encouraging the concatenation of the two datasets.

  7. A Mobile Automated Tomographic Gamma Scanning System - 13231

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, J.M.; LeBlanc, P.J.; Nakazawa, D.

    2013-07-01

    Canberra Industries have recently designed and built a new automated Tomographic Gamma Scanning (TGS) system for mobile deployment. The TGS technique combines high-resolution gamma spectroscopy with low spatial resolution 3-dimensional image reconstruction to provide increased accuracy over traditional approaches for the assay of non-uniform source distributions in low-to medium-density, non-heterogeneous matrices. Originally pioneered by R. Estep at Los Alamos National Laboratory (LANL), the TGS method has been further developed and commercialized by Canberra Industries in recent years. The present system advances the state of the art on several fronts: it is designed to be housed in a standard cargo transportmore » container for ease of transport, allowing waste characterization at multiple facilities under the purview of a single operator. Conveyor feed, drum rotator, and detector and collimator positioning mechanisms operated by programmable logic control (PLC) allow automated batch mode operation. The variable geometry settings can accommodate a wide range of waste packaging, including but not limited to standard 220 liter drums, 380 liter overpack drums, and smaller 20 liter cans. A 20 mCi Eu-152 transmission source provides attenuation corrections for drum matrices up to 1 g/cm{sup 3} in TGS mode; the system can be operated in Segmented Gamma Scanning (SGS) mode to measure higher density drums. To support TGS assays at higher densities, the source shield is sufficient to house an alternate Co-60 transmission source of higher activity, up to 250 mCi. An automated shutter and attenuator assembly is provided for operating the system with a dual intensity transmission source. The system's 1500 kg capacity rotator turntable can handle heavy containers such as concrete lined 380 liter overpack drums. Finally, data acquisition utilizes Canberra's Broad Energy Germanium (BEGE) detector and Lynx MCA, with 32 k channels, providing better than 0.1 keV/channel resolution to support both isotopic analysis with the MGA/MGAU software and a wide 3 MeV dynamic range. The calibration and verification of the system is discussed, and quantitative results are presented for a variety of drum types and matrices. (authors)« less

  8. Three-dimensional imaging of sulfides in silicate rocks at submicron resolution with multiphoton microscopy.

    PubMed

    Bénard, Antoine; Palle, Sabine; Doucet, Luc Serge; Ionov, Dmitri A

    2011-12-01

    We report the first application of multiphoton microscopy (MPM) to generate three-dimensional (3D) images of natural minerals (micron-sized sulfides) in thick (∼120 μm) rock sections. First, reflection mode (RM) using confocal laser scanning microscopy (CLSM), combined with differential interference contrast (DIC), was tested on polished sections. Second, two-photon fluorescence (TPF) and second harmonic signal (SHG) images were generated using a femtosecond-laser on the same rock section without impregnation by a fluorescent dye. CSLM results show that the silicate matrix is revealed with DIC and RM, while sulfides can be imaged in 3D at low resolution by RM. Sulfides yield strong autofluorescence from 392 to 715 nm with TPF, while SHG is only produced by the embedding medium. Simultaneous recording of TPF and SHG images enables efficient discrimination between different components of silicate rocks. Image stacks obtained with MPM enable complete reconstruction of the 3D structure of a rock slice and of sulfide morphology at submicron resolution, which has not been previously reported for 3D imaging of minerals. Our work suggests that MPM is a highly efficient tool for 3D studies of microstructures and morphologies of minerals in silicate rocks, which may find other applications in geosciences.

  9. A Study of the Unstable Modes in High Mach Number Gaseous Jets and Shear Layers

    NASA Astrophysics Data System (ADS)

    Bassett, Gene Marcel

    1993-01-01

    Instabilities affecting the propagation of supersonic gaseous jets have been studied using high resolution computer simulations with the Piecewise-Parabolic-Method (PPM). These results are discussed in relation to jets from galactic nuclei. These studies involve a detailed treatment of a single section of a very long jet, approximating the dynamics by using periodic boundary conditions. Shear layer simulations have explored the effects of shear layers on the growth of nonlinear instabilities. Convergence of the numerical approximations has been tested by comparing jet simulations with different grid resolutions. The effects of initial conditions and geometry on the dominant disruptive instabilities have also been explored. Simulations of shear layers with a variety of thicknesses, Mach numbers and densities perturbed by incident sound waves imply that the time for the excited kink modes to grow large in amplitude and disrupt the shear layer is taug = (546 +/- 24) (M/4)^{1.7 } (Apert/0.02) ^{-0.4} delta/c, where M is the jet Mach number, delta is the half-width of the shear layer, and A_ {pert} is the perturbation amplitude. For simulations of periodic jets, the initial velocity perturbations set up zig-zag shock patterns inside the jet. In each case a single zig-zag shock pattern (an odd mode) or a double zig-zag shock pattern (an even mode) grows to dominate the flow. The dominant kink instability responsible for these shock patterns moves approximately at the linear resonance velocity, nu_ {mode} = cextnu_ {relative}/(cjet + c_ {ext}). For high resolution simulations (those with 150 or more computational zones across the jet width), the even mode dominates if the even penetration is higher in amplitude initially than the odd perturbation. For low resolution simulations, the odd mode dominates even for a stronger even mode perturbation. In high resolution simulations the jet boundary rolls up and large amounts of external gas are entrained into the jet. In low resolution simulations this entrainment process is impeded by numerical viscosity. The three-dimensional jet simulations behave similarly to two-dimensional jet runs with the same grid resolutions.

  10. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL

    USGS Publications Warehouse

    Hu, Chuanmin; Chen, Zhiqiang; Clayton, Tonya D.; ,; Brock, John C.; Muller-Karger, Frank E.

    2004-01-01

    Using Tampa Bay, FL as an example, we explored the potential for using MODIS medium-resolution bands (250- and 500-m data at 469-, 555-, and 645-nm) for estuarine monitoring. Field surveys during 21–22 October 2003 showed that Tampa Bay has Case-II waters, in that for the salinity range of 24–32 psu, (a) chlorophyll concentration (11 to 23 mg m−3), (b) colored dissolved organic matter (CDOM) absorption coefficient at 400 nm (0.9 to 2.5 m−1), and (c) total suspended sediment concentration (TSS: 2 to 11 mg L−1) often do not co-vary. CDOM is the only constituent that showed a linear, inverse relationship with surface salinity, although the slope of the relationship changed with location within the bay. The MODIS medium-resolution bands, although designed for land use, are 4–5 times more sensitive than Landsat-7/ETM+ data and are comparable to or higher than those of CZCS. Several approaches were used to derive synoptic maps of water constituents from concurrent MODIS medium-resolution data. We found that application of various atmospheric-correction algorithms yielded no significant differences, due primarily to uncertainties in the sensor radiometric calibration and other sensor artifacts. However, where each scene could be groundtruthed, simple regressions between in situ observations of constituents and at-sensor radiances provided reasonable synoptic maps. We address the need for improvements of sensor calibration/characterization, atmospheric correction, and bio-optical algorithms to make operational and quantitative use of these medium-resolution bands.

  11. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS.

    PubMed

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-11-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation. Graphical Abstract ᅟ.

  12. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-07-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation.

  13. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography

    USGS Publications Warehouse

    Husak, G.J.; Marshall, M. T.; Michaelsen, J.; Pedreros, Diego; Funk, Christopher C.; Galu, G.

    2008-01-01

    Reliable estimates of cropped area (CA) in developing countries with chronic food shortages are essential for emergency relief and the design of appropriate market-based food security programs. Satellite interpretation of CA is an effective alternative to extensive and costly field surveys, which fail to represent the spatial heterogeneity at the country-level. Bias-corrected, texture based classifications show little deviation from actual crop inventories, when estimates derived from aerial photographs or field measurements are used to remove systematic errors in medium resolution estimates. In this paper, we demonstrate a hybrid high-medium resolution technique for Central Ethiopia that combines spatially limited unbiased estimates from IKONOS images, with spatially extensive Landsat ETM+ interpretations, land-cover, and SRTM-based topography. Logistic regression is used to derive the probability of a location being crop. These individual points are then aggregated to produce regional estimates of CA. District-level analysis of Landsat based estimates showed CA totals which supported the estimates of the Bureau of Agriculture and Rural Development. Continued work will evaluate the technique in other parts of Africa, while segmentation algorithms will be evaluated, in order to automate classification of medium resolution imagery for routine CA estimation in the future.

  14. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Marshall, M. T.; Michaelsen, J.; Pedreros, D.; Funk, C.; Galu, G.

    2008-07-01

    Reliable estimates of cropped area (CA) in developing countries with chronic food shortages are essential for emergency relief and the design of appropriate market-based food security programs. Satellite interpretation of CA is an effective alternative to extensive and costly field surveys, which fail to represent the spatial heterogeneity at the country-level. Bias-corrected, texture based classifications show little deviation from actual crop inventories, when estimates derived from aerial photographs or field measurements are used to remove systematic errors in medium resolution estimates. In this paper, we demonstrate a hybrid high-medium resolution technique for Central Ethiopia that combines spatially limited unbiased estimates from IKONOS images, with spatially extensive Landsat ETM+ interpretations, land-cover, and SRTM-based topography. Logistic regression is used to derive the probability of a location being crop. These individual points are then aggregated to produce regional estimates of CA. District-level analysis of Landsat based estimates showed CA totals which supported the estimates of the Bureau of Agriculture and Rural Development. Continued work will evaluate the technique in other parts of Africa, while segmentation algorithms will be evaluated, in order to automate classification of medium resolution imagery for routine CA estimation in the future.

  15. Reversed Cherenkov-transition radiation in a waveguide partly filled with a left-handed medium

    NASA Astrophysics Data System (ADS)

    Alekhina, Tatiana Yu.; Tyukhtin, Andrey V.

    2018-04-01

    We analyze the electromagnetic field of a charged particle that moves uniformly in a circular waveguide and crosses a boundary between a vacuum area and an area filled with a left-handed medium exhibiting resonant frequency dispersion. The investigation of the waveguide mode components is performed analytically and numerically. The reversed Cherenkov radiation in the filled area of the waveguide and the reversed Cherenkov-transition radiation (RCTR) in the vacuum area are analyzed. The conditions for the excitation of RCTR are obtained. It is shown that the number of modes of RCTR is always finite; in particular, under certain conditions, the RCTR is composed of the first waveguide mode only. Plots of the typical fields of the excited waveguide mode are presented.

  16. Spatially detailed retrievals of spring phenology from single-season high-resolution image time series

    NASA Astrophysics Data System (ADS)

    Vrieling, Anton; Skidmore, Andrew K.; Wang, Tiejun; Meroni, Michele; Ens, Bruno J.; Oosterbeek, Kees; O'Connor, Brian; Darvishzadeh, Roshanak; Heurich, Marco; Shepherd, Anita; Paganini, Marc

    2017-07-01

    Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.

  17. SAR (Synthetic Aperture Radar). Earth observing system. Volume 2F: Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The scientific and engineering requirements for the Earth Observing System (EOS) imaging radar are provided. The radar is based on Shuttle Imaging Radar-C (SIR-C), and would include three frequencies: 1.25 GHz, 5.3 GHz, and 9.6 GHz; selectable polarizations for both transmit and receive channels; and selectable incidence angles from 15 to 55 deg. There would be three main viewing modes: a local high-resolution mode with typically 25 m resolution and 50 km swath width; a regional mapping mode with 100 m resolution and up to 200 km swath width; and a global mapping mode with typically 500 m resolution and up to 700 km swath width. The last mode allows global coverage in three days. The EOS SAR will be the first orbital imaging radar to provide multifrequency, multipolarization, multiple incidence angle observations of the entire Earth. Combined with Canadian and Japanese satellites, continuous radar observation capability will be possible. Major applications in the areas of glaciology, hydrology, vegetation science, oceanography, geology, and data and information systems are described.

  18. A trade-off between model resolution and variance with selected Rayleigh-wave data

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.

    2008-01-01

    Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (??? 2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. First, we employed a data-resolution matrix to select data that would be well predicted and to explain advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher mode data are normally more accurately predicted than fundamental mode data because of restrictions on the data kernel for the inversion system. Second, we obtained an optimal damping vector in a vicinity of an inverted model by the singular value decomposition of a trade-off function of model resolution and variance. In the end of the paper, we used a real-world example to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher mode data in inversion can provide better results. We also calculated model-resolution matrices of these examples to show the potential of increasing model resolution with selected surface-wave data. With the optimal damping vector, we can improve and assess an inverted model obtained by a damped least-square method.

  19. Development of the Advanced Energetic Pair Telescope (AdEPT) for Medium-Energy Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Bloser, Peter F.; Dion, Michael P.; McConnell, Mark L.; deNolfo, Georgia A.; Son, Seunghee; Ryan, James M.; Stecker, Floyd W.

    2011-01-01

    Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI. These instruments, however, are not optimized for observations in the medium-energy (approx.0.3< E(sub gamma)< approx.200 MeV) regime where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. We outline some of the major science goals of a medium-energy mission. These science goals are best achieved with a combination of two telescopes, a Compton telescope and a pair telescope, optimized to provide significant improvements in angular resolution and sensitivity. In this paper we describe the design of the Advanced Energetic Pair Telescope (AdEPT) based on the Three-Dimensional Track Imager (3-DTI) detector. This technology achieves excellent, medium-energy sensitivity, angular resolution near the kinematic limit, and gamma-ray polarization sensitivity, by high resolution 3-D electron tracking. We describe the performance of a 30x30x30 cm3 prototype of the AdEPT instrument.

  20. Thermal neutron detector and gamma-ray spectrometer utilizing a single material

    DOEpatents

    Stowe, Ashley; Burger, Arnold; Lukosi, Eric

    2017-05-02

    A combined thermal neutron detector and gamma-ray spectrometer system, including: a detection medium including a lithium chalcopyrite crystal operable for detecting thermal neutrons in a semiconductor mode and gamma-rays in a scintillator mode; and a photodetector coupled to the detection medium also operable for detecting the gamma rays. Optionally, the detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the detection medium comprises a compound formed by the process of: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound and heating; wherein the Group I element includes lithium.

  1. On the amplification of magnetic fields in cosmic filaments and galaxy clusters

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brüggen, M.; Gheller, C.; Wang, P.

    2014-12-01

    The amplification of primordial magnetic fields via a small-scale turbulent dynamo during structure formation might be able to explain the observed magnetic fields in galaxy clusters. The magnetization of more tenuous large-scale structures such as cosmic filaments is more uncertain, as it is challenging for numerical simulations to achieve the required dynamical range. In this work, we present magnetohydrodynamical cosmological simulations on large uniform grids to study the amplification of primordial seed fields in the intracluster medium (ICM) and in the warm-hot-intergalactic medium (WHIM). In the ICM, we confirm that turbulence caused by structure formation can produce a significant dynamo amplification, even if the amplification is smaller than what is reported in other papers. In the WHIM inside filaments, we do not observe significant dynamo amplification, even though we achieve Reynolds numbers of Re ˜ 200-300. The maximal amplification for large filaments is of the order of ˜100 for the magnetic energy, corresponding to a typical field of a few ˜nG starting from a primordial weak field of 10-10 G (comoving). In order to start a small-scale dynamo, we found that a minimum of ˜102 resolution elements across the virial radius of galaxy clusters was necessary. In filaments we could not find a minimum resolution to set off a dynamo. This stems from the inefficiency of supersonic motions in the WHIM in triggering solenoidal modes and small-scale twisting of magnetic field structures. Magnetic fields this small will make it hard to detect filaments in radio observations.

  2. The Cosmic Origins Spectrograph

    NASA Technical Reports Server (NTRS)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; hide

    2010-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F(sub lambda) approximates 1.0 X 10(exp -14) ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  3. The Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; Siegmund, Oswald H. W.; Snow, Theodore P.; Spencer, John; Stern, S. Alan; Stocke, John; Welsh, Barry; Béland, Stéphane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Keeney, Brian; McPhate, Jason; Penton, Steven V.; Andrews, John; Brownsberger, Kenneth; Morse, Jon; Wilkinson, Erik

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F λ ≈ 1.0 × 10-14 erg cm-2 s-1 Å-1, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Lyα absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  4. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    PubMed

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  5. System and method of infrared matrix-assisted laser desorption/ionization mass spectrometry in polyacrylamide gels

    DOEpatents

    Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee

    2004-11-30

    A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.

  6. Towards an ultra-thin medical endoscope: multimode fibre as a wide-field image transferring medium

    NASA Astrophysics Data System (ADS)

    Duriš, Miroslav; Bradu, Adrian; Podoleanu, Adrian; Hughes, Michael

    2018-03-01

    Multimode optical fibres are attractive for biomedical and industrial applications such as endoscopes because of the small cross section and imaging resolution they can provide in comparison to widely-used fibre bundles. However, the image is randomly scrambled by propagation through a multimode fibre. Even though the scrambling is unpredictable, it is deterministic, and therefore the scrambling can be reversed. To unscramble the image, we treat the multimode fibre as a linear, disordered scattering medium. To calibrate, we scan a focused beam of coherent light over thousands of different beam positions at the distal end and record complex fields at the proximal end of the fibre. This way, the inputoutput response of the system is determined, which then allows computational reconstruction of reflection-mode images. However, there remains the problem of illuminating the tissue via the fibre while avoiding back reflections from the proximal face. To avoid this drawback, we provide here the first preliminary confirmation that an image can be transferred through a 2x2 fibre coupler, with the sample at its distal port interrogated in reflection. Light is injected into one port for illumination and then collected from a second port for imaging.

  7. Efficient kinetic resolution of secondary alcohols using an organic solvent-tolerant esterase in non-aqueous medium.

    PubMed

    Gao, Wenyuan; Fan, Haiyang; Chen, Lifeng; Wang, Hualei; Wei, Dongzhi

    2016-07-01

    To identify an esterase-mediated kinetic resolution of secondary alcohols in non-aqueous medium. An esterase, EST4, from a marine mud metagenomic library, showed high activity and enantioselectivity for the kinetic resolution of secondary alcohols in non-aqueous medium. Using 1-phenylethanol as the model alcohol, the effects of organic solvents, acyl donors, molar ratio, temperatures and biocatalyst loading on the kinetic resolution catalyzed by the EST4 whole-cell biocatalyst were investigated and optimized. The optimized methodology was effective on resolving 16 various racemic secondary alcohols in neat n-hexane, providing excellent enantiomeric excess (up to 99.9 % ee). Moreover, EST4 exhibited a strong tolerance for high substrate concentration (up to 1 M), and the optical purity of the desired secondary alcohols was kept above 99 % ee. The esterase EST4 is a promising biocatalyst for the enantioselective synthesis of various alcohols and esters with interesting practical applications.

  8. Minimal modeling of the extratropical general circulation

    NASA Technical Reports Server (NTRS)

    O'Brien, Enda; Branscome, Lee E.

    1989-01-01

    The ability of low-order, two-layer models to reproduce basic features of the mid-latitude general circulation is investigated. Changes in model behavior with increased spectral resolution are examined in detail. Qualitatively correct time-mean heat and momentum balances are achieved in a beta-plane channel model which includes the first and third meridional modes. This minimal resolution also reproduces qualitatively realistic surface and upper-level winds and mean meridional circulations. Higher meridional resolution does not result in substantial changes in the latitudinal structure of the circulation. A qualitatively correct kinetic energy spectrum is produced when the resolution is high enough to include several linearly stable modes. A model with three zonal waves and the first three meridional modes has a reasonable energy spectrum and energy conversion cycle, while also satisfying heat and momentum budget requirements. This truncation reproduces the basic mechanisms and zonal circulation features that are obtained at higher resolution. The model performance improves gradually with higher resolution and is smoothly dependent on changes in external parameters.

  9. Facial identification in very low-resolution images simulating prosthetic vision.

    PubMed

    Chang, M H; Kim, H S; Shin, J H; Park, K S

    2012-08-01

    Familiar facial identification is important to blind or visually impaired patients and can be achieved using a retinal prosthesis. Nevertheless, there are limitations in delivering the facial images with a resolution sufficient to distinguish facial features, such as eyes and nose, through multichannel electrode arrays used in current visual prostheses. This study verifies the feasibility of familiar facial identification under low-resolution prosthetic vision and proposes an edge-enhancement method to deliver more visual information that is of higher quality. We first generated a contrast-enhanced image and an edge image by applying the Sobel edge detector and blocked each of them by averaging. Then, we subtracted the blocked edge image from the blocked contrast-enhanced image and produced a pixelized image imitating an array of phosphenes. Before subtraction, every gray value of the edge images was weighted as 50% (mode 2), 75% (mode 3) and 100% (mode 4). In mode 1, the facial image was blocked and pixelized with no further processing. The most successful identification was achieved with mode 3 at every resolution in terms of identification index, which covers both accuracy and correct response time. We also found that the subjects recognized a distinctive face especially more accurately and faster than the other given facial images even under low-resolution prosthetic vision. Every subject could identify familiar faces even in very low-resolution images. And the proposed edge-enhancement method seemed to contribute to intermediate-stage visual prostheses.

  10. Application of high-resolution linear Radon transform for Rayleigh-wave dispersive energy imaging and mode separating

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.

  11. Electromagnetic Considerations for Planar Bolometer Arrays in the Single Mode Limit

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.; Chuss, David T.; Moseley, Samuel

    2006-01-01

    Filled arrays of planar bolometers are finding astronomical applications at wavelengths as long as several millimeters. In an effort to keep focal planes to a reasonable size while maintaining large numbers of detectors, a common strategy is to push these arrays to operate close to or at the single mode limit. Doing so introduces several new challenges that are not experienced in the multi-mode case of far-infrared detectors having similar pixel sizes. First, diffractive effects of the pixels themselves are no longer insignificant and will ultimately contribute to the resolution limit of the optical system in which they reside. We use the method of Withlngton et al. (2003) to model the polarized diffraction in this limit. Second, it is necessary to re-examine the coupling between the radiation and the absorbing element that is thermally connected to the bolometers. The small f-numbers that are often employed to make use of large focal planes makes backshort construction problematic. We introduce a new strategy to increase detector efficiency that uses an antireflective layer on the front side of the detector array. In addition, typical methods for stray light control that rely on multiple reflections in a lossy medium fail due to physical size constraints. For this application, we find that resonant absorbers are a more effective strategy that can be implemented in the space available.

  12. ASAP progress and expenditure report for the month of December 1--31, 1995. Joint UK/US radar program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twogood, R.E.; Brase, J.M.; Chambers, D.H.

    1996-01-19

    The RAR/SAR is a high-priority radar system for the joint US/UK Program. Based on previous experiment results and coordination with the UK, specifications needed for future radar experiments were identified as follows: dual polarimetric (HH and VV) with medium to high resolution in SAR mode. Secondary airborne installation requirements included; high power (circa 10kw) and SLIER capability to emulate Tupelev-134 type system; initially x-band but easily extendible to other frequencies. In FY96 we intended to enhance the radar system`s capabilities by providing a second polarization (VV), spotlight imaging mode, extended frequency of operation to include S- band, increase power, andmore » interface to an existing infrared sensor. Short term objectives are: continue to evaluate and characterize the radar system; upgrade navigation and real-time processing capability to refine motion compensation; upgrade to dual polarimetry (add VV); and develop a ``spotlight`` mode capability. Accomplishments this reporting period: design specifications for the SAR system polarimetric upgrade are complete. The upgrade is ready to begin the procurement cycle when funds become available. System characterization is one of the highest priority tasks for the SAR. Although the radar is dedicated for our use, Hughes is waiting for contract funding before allowing us access to the hardware« less

  13. Exploring the Angstrom Excursion of Au Nanoparticles Excited away from a Metal Surface by an Impulsive Acoustic Perturbation.

    PubMed

    Kim, Ji-Wan; Kovalenko, Oleksandr; Liu, Yu; Bigot, Jean-Yves

    2016-12-27

    We report the anharmonic angstrom dynamics of self-assembled Au nanoparticles (Au:NPs) away from a nickel surface on top of which they are coupled by their near-field interaction. The deformation and the oscillatory excursion away from the surface are induced by picosecond acoustic pulses and probed at the surface plasmon resonance with femtosecond laser pulses. The overall dynamics are due to an efficient transfer of translational momentum from the Ni surface to the Au:NPs, therefore avoiding usual thermal effects and energy redistribution among the electronic states. Two modes are clearly revealed by the oscillatory shift of the Au:NPs surface plasmon resonance-the quadrupole deformation mode due to the transient ellipsoid shape and the excursion mode when the Au:NPs bounce away from the surface. We find that, contrary to the quadrupole mode, the excursion mode is sensitive to the distance between Au:NPs and Ni. Importantly, the excursion dynamics display a nonsinusoidal motion that cannot be explained by a standard harmonic potential model. A detailed modeling of the dynamics using a Hamaker-type Lennard-Jones potential between two media is performed, showing that each Au:NPs coherently evolves in a nearly one-dimensional anharmonic potential with a total excursion of ∼1 Å. This excursion induces a shift of the surface plasmon resonance detectable because of the strong near-field interaction. This general method of observing the spatiotemporal dynamics with angstrom and picosecond resolutions can be directly transposed to many nanostructures or biosystems to reveal the interaction and contact mechanism with their surrounding medium while remaining in their fundamental electronic states.

  14. Millisecond resolution electron fluxes from the Cluster satellites: Calibrated EDI ambient electron data

    NASA Astrophysics Data System (ADS)

    Förster, Matthias; Rashev, Mikhail; Haaland, Stein

    2017-04-01

    The Electron Drift Instrument (EDI) onboard Cluster can measure 500 eV and 1 keV electron fluxes with high time resolution during passive operation phases in its Ambient Electron (AE) mode. Data from this mode is available in the Cluster Science Archive since October 2004 with a cadence of 16 Hz in the normal mode or 128 Hz for burst mode telemetry intervals. The fluxes are recorded at pitch angles of 0, 90, and 180 degrees. This paper describes the calibration and validation of these measurements. The high resolution AE data allow precise temporal and spatial diagnostics of magnetospheric boundaries and will be used for case studies and statistical studies of low energy electron fluxes in the near-Earth space. We show examples of applications.

  15. An optical channel modeling of a single mode fiber

    NASA Astrophysics Data System (ADS)

    Nabavi, Neda; Liu, Peng; Hall, Trevor James

    2018-05-01

    The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.

  16. Optimization of an on-board imaging system for extremely rapid radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry Kemmerling, Erica M.; Wu, Meng, E-mail: mengwu@stanford.edu; Yang, He

    2015-11-15

    Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors aremore » proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration deformation fields was computed. Results: By most global metrics (e.g., mean, median, and maximum pointwise distance), the high-resolution detector had the best performance but the medium-resolution detector was comparable. For all medium- and high-resolution detector registrations, mean error between the realistic and gold standard deformation fields was less than 4 mm. By pointwise metrics (e.g., tracking a small lesion), the high- and medium-resolution detectors performed similarly. For these detectors, the smallest error between the realistic and gold standard registrations was 0.6 mm and the largest error was 3.6 mm. Conclusions: The medium-resolution CT detector was selected as the best for an extremely rapid radiation therapy system. In essentially all test cases, data from this detector produced a significantly better registration than data from the low-resolution detector and a comparable registration to data from the high-resolution detector. The medium-resolution detector provides an appropriate compromise between registration accuracy and system cost.« less

  17. The STIS MAMA status: Current detector performance

    NASA Technical Reports Server (NTRS)

    Danks, A. C.; Joseph, C.; Bybee, R.; Argebright, V.; Abraham, J.; Kimble, R.; Woodgate, B.

    1992-01-01

    The STIS (Space Telescope Imaging Spectrograph) is a second generation Hubble instrument scheduled to fly in 1997. Through a variety of modes, the instrument will provide spectral resolutions from R approximately 50 in the objective spectroscopy mode to 100,000 in the high resolution echelle mode in the wavelength region from 115 to 1000 nm. In the UV the instrument employs two MAMA (Multimode Anode Microchannel plate Arrays) 1024 by 1024 pixel detectors, which provide high DQE (Detective Quantum Efficiency), and good dynamic range and resolution. The current progress and performance of these detectors are reported, illustrating that the technology is mature and that the performance is very close to flight requirements.

  18. Flow-Signature Analysis of Water Consumption in Nonresidential Building Water Networks Using High-Resolution and Medium-Resolution Smart Meter Data: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Clifford, Eoghan; Mulligan, Sean; Comer, Joanne; Hannon, Louise

    2018-01-01

    Real-time monitoring of water consumption activities can be an effective mechanism to achieve efficient water network management. This approach, largely enabled by the advent of smart metering technologies, is gradually being practiced in domestic and industrial contexts. In particular, identifying water consumption habits from flow-signatures, i.e., the specific end-usage patterns, is being investigated as a means for conservation in both the residential and nonresidential context. However, the quality of meter data is bivariate (dependent on number of meters and data temporal resolution) and as a result, planning a smart metering scheme is relatively difficult with no generic design approach available. In this study, a comprehensive medium-resolution to high-resolution smart metering program was implemented at two nonresidential trial sites to evaluate the effect of spatial and temporal data aggregation. It was found that medium-resolution water meter data were capable of exposing regular, continuous, peak use, and diurnal patterns which reflect group wide end-usage characteristics. The high-resolution meter data permitted flow-signature at a personal end-use level. Through this unique opportunity to observe water usage characteristics via flow-signature patterns, newly defined hydraulic-based design coefficients determined from Poisson rectangular pulse were developed to intuitively aid in the process of pattern discovery with implications for automated activity recognition applications. A smart meter classification and siting index was introduced which categorizes meter resolution in terms of their suitable application.

  19. High resolution electron energy loss spectroscopy of spin waves in ultra-thin film - The return of the adiabatic approximation?

    NASA Astrophysics Data System (ADS)

    Ibach, Harald

    2014-12-01

    The paper reports on recent considerable improvements in electron energy loss spectroscopy (EELS) of spin waves in ultra-thin films. Spin wave spectra with 4 meV resolution are shown. The high energy resolution enables the observation of standing modes in ultra-thin films in the wave vector range of 0.15 Å- 1 < q|| < 0.3 Å- 1. In this range, Landau damping is comparatively small and standing spin wave modes are well-defined Lorentzians for which the adiabatic approximation is well suited, an approximation which was rightly dismissed by Mills and collaborators for spin waves near the Brillouin zone boundary. With the help of published exchange coupling constants, the Heisenberg model, and a simple model for the spectral response function, experimental spectra for Co-films on Cu(100) as well as for Co films capped with further copper layers are successfully simulated. It is shown that, depending on the wave vector and film thickness, the most prominent contribution to the spin wave spectrum may come from the first standing mode, not from the so-called surface mode. In general, the peak position of a low-resolution spin wave spectrum does not correspond to a single mode. A discussion of spin waves based on the "dispersion" of the peak positions in low resolution spectra is therefore subject to errors.

  20. Transmission mode acoustic time-reversal imaging for nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Lehman, Sean K.; Devaney, Anthony J.

    2002-11-01

    In previous ASA meetings and JASA papers, the extended and formalized theory of transmission mode time reversal in which the transceivers are noncoincident was presented. When combined with the subspace concepts of a generalized MUltiple SIgnal Classification (MUSIC) algorithm, this theory is used to form super-resolution images of scatterers buried in a medium. These techniques are now applied to ultrasonic nondestructive evaluation (NDE) of parts, and shallow subsurface seismic imaging. Results are presented of NDE experiments on metal and epoxy blocks using data collected from an adaptive ultrasonic array, that is, a ''time-reversal machine,'' at Lawrence Livermore National Laboratory. Also presented are the results of seismo-acoustic subsurface probing of buried hazardous waste pits at the Idaho National Engineering and Environmental Laboratory. [Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.] [Work supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the NSF (award number EEC-9986821) as well as from Air Force Contracts No. F41624-99-D6002 and No. F49620-99-C0013.

  1. First light of the CHARIS high-contrast integral-field spectrograph

    NASA Astrophysics Data System (ADS)

    Groff, Tyler; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien; Currie, Thayne; Takato, Naruhisa; Hayashi, Masahiko

    2017-09-01

    One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has `high' and `low' resolution operating modes. The high-resolution mode is used to characterize targets in J, H, and K bands at R70. The low-resolution prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS has completed commissioning and is open for science observations.

  2. Interface Instabilities in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Hunter, J. H., Jr.; Siopis, C.; Whitaker, R. W.; Lovelace, R. V. E.

    1995-01-01

    In the present communication, we reexamine two limiting cases of star-forming mechanisms involving self-gravity, thermodynamics, and velocity fields, that we believe must be ubiquitous in the ISM -- the generally oblique collision of supersonic gas streams or turbulent eddies. The general case of oblique collisions has not yet been examined. However, two limiting cases have been studied in detail: (1) The head-on collision of two identical gas streams that form dense, cool accretion shocks that become unstable and may form Jeans mass clouds, which subsequently undergo collapse. (2) Linearly unstable tangential velocity discontinuities, which result in Kelvin-Helmholtz (K-H) instabilities and related phenomena. The compressible K-H instabilities exhibit rich and unexpected behaviors. Moreover a new thermal-dynamic (T-D) mode was discovered that arises from the coupling of the perturbed thermal behavior and the unperturbed flow. The T-D mode has the curious characteristic that it may be strongly unstable to interface modes when the global modes in either medium are absolutely thermally stable. In the present communication additional models of case 1 are described and discussed, and self-gravity is added in the linear theory of tangential discontinuities, case 2. We prove that self-gravity fundamentally changes the behavior of interfacial modes -- density discontinuities (or steps) are inherently unstable on roughly the free-fall timescale of the denser medium to perturbations of all wavelengths.

  3. Signal transmissibility in marginal granular materials

    NASA Astrophysics Data System (ADS)

    Pinson, Matthew B.; Witten, Thomas A.

    2016-12-01

    We examine the ‘transmissibility’ of a simulated two-dimensional pack of frictionless disks formed by confining dilute disks in a shrinking, periodic box to the point of mechanical stability. Two opposite boundaries are then removed, thus allowing a set of free motions. Small free displacements on one boundary then induce proportional displacements on the opposite boundary. Transmissibility is the ability to distinguish different perturbations by their distant responses. We assess transmissibility by successively identifying free orthonormal modes of motion that have the smallest distant responses. The last modes to be identified in this ‘pessimistic’ basis are the most transmissive. The transmitted amplitudes of these most transmissive modes fall off exponentially with mode number. Similar exponential falloff is seen in a simple elastic medium, though the responsible modes differ greatly in structure in the two systems. Thus the marginal pack’s transmissibility is qualitatively similar to that of a simple elastic medium. We compare our results with recent findings based on the projection of the space of free motion onto interior sites.

  4. Absolute instability of polaron mode in semiconductor magnetoplasma

    NASA Astrophysics Data System (ADS)

    Paliwal, Ayushi; Dubey, Swati; Ghosh, S.

    2018-01-01

    Using coupled mode theory under hydrodynamic regime, a compact dispersion relation is derived for polaron mode in semiconductor magnetoplasma. The propagation and amplification characteristics of the wave are explored in detail. The analysis deals with the behaviour of anomalous threshold and amplification derived from dispersion relation, as function of external parameters like doping concentration and applied magnetic field. The results of this investigation are hoped to be useful in understanding electron-longitudinal optical phonon interplay in polar n-type semiconductor plasmas under the influence of coupled collective cyclotron excitations. The best results in terms of smaller threshold and higher gain of polaron mode could be achieved by choosing moderate doping concentration in the medium at higher magnetic field. For numerical appreciation of the results, relevant data of III-V n-GaAs compound semiconductor at 77 K is used. Present study provides a qualitative picture of polaron mode in magnetized n-type polar semiconductor medium duly shined by a CO2 laser.

  5. Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects

    PubMed Central

    Kim, Seung Jun; Kim, Sung-Eun; Kim, Hyo Eun; Han, Kiwan; Jeong, Bumseok; Kim, Jae-Jin; Namkoong, Kee

    2017-01-01

    Empathy is the ability to identify with or make a vicariously experience of another person's feelings or thoughts based on memory and/or self-referential mental simulation. The default mode network in particular is related to self-referential empathy. In order to elucidate the possible neural mechanisms underlying empathy, we investigated the functional connectivity of the default mode network in subjects from a general population. Resting state functional magnetic resonance imaging data were acquired from 19 low-empathy subjects and 18 medium-empathy subjects. An independent component analysis was used to identify the default mode network, and differences in functional connectivity strength were compared between the two groups. The low-empathy group showed lower functional connectivity of the medial prefrontal cortex and anterior cingulate cortex (Brodmann areas 9 and 32) within the default mode network, compared to the medium-empathy group. The results of the present study suggest that empathy is related to functional connectivity of the medial prefrontal cortex/anterior cingulate cortex within the default mode network. Functional decreases in connectivity among low-empathy subjects may reflect an impairment of self-referential mental simulation. PMID:28792155

  6. Radiation dose and image quality for paediatric interventional cardiology

    NASA Astrophysics Data System (ADS)

    Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.

    2008-08-01

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  7. How Many Grid Points are Required for Time Accurate Simulations Scheme Selection and Scale-Discriminant Stabilization

    DTIC Science & Technology

    2015-11-24

    spatial concerns: ¤ how well are gradients captured? (resolution requirement) spatial/temporal concerns: ¤ dispersion and dissipation error...distribution is unlimited. Gradient Capture vs. Resolution: Single Mode FFT: Solution/Derivative: Convergence: f x( )= sin(x) with x∈[0,2π ] df dx...distribution is unlimited. Gradient Capture vs. Resolution: 
 Multiple Modes FFT: Solution/Derivative: Convergence: 6 __ CD02 __ CD04 __ CD06

  8. PN-CCD camera for XMM: performance of high time resolution/bright source operating modes

    NASA Astrophysics Data System (ADS)

    Kendziorra, Eckhard; Bihler, Edgar; Grubmiller, Willy; Kretschmar, Baerbel; Kuster, Markus; Pflueger, Bernhard; Staubert, Ruediger; Braeuninger, Heinrich W.; Briel, Ulrich G.; Meidinger, Norbert; Pfeffermann, Elmar; Reppin, Claus; Stoetter, Diana; Strueder, Lothar; Holl, Peter; Kemmer, Josef; Soltau, Heike; von Zanthier, Christoph

    1997-10-01

    The pn-CCD camera is developed as one of the focal plane instruments for the European photon imaging camera (EPIC) on board the x-ray multi mirror (XMM) mission to be launched in 1999. The detector consists of four quadrants of three pn-CCDs each, which are integrated on one silicon wafer. Each CCD has 200 by 64 pixels (150 micrometer by 150 micrometers) with 280 micrometers depletion depth. One CCD of a quadrant is read out at a time, while the four quadrants can be processed independently of each other. In standard imaging mode the CCDs are read out sequentially every 70 ms. Observations of point sources brighter than 1 mCrab will be effected by photon pile- up. However, special operating modes can be used to observe bright sources up to 150 mCrab in timing mode with 30 microseconds time resolution and very bright sources up to several crab in burst mode with 7 microseconds time resolution. We have tested one quadrant of the EPIC pn-CCD camera at line energies from 0.52 keV to 17.4 keV at the long beam test facility Panter in the focus of the qualification mirror module for XMM. In order to test the time resolution of the system, a mechanical chopper was used to periodically modulate the beam intensity. Pulse periods down to 0.7 ms were generated. This paper describes the performance of the pn-CCD detector in timing and burst readout modes with special emphasis on energy and time resolution.

  9. Coherent imaging with incoherent light in digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Chmelik, Radim

    2012-01-01

    Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.

  10. Experimental Studies of the He-Ne Laser: Resonators and Self-Locking.

    ERIC Educational Resources Information Center

    Ruddock, I. S.

    1980-01-01

    He-Ne laser experiments suitable for an undergraduate laboratory are described. The topics covered are cavity stability, self-mode-locking coherent interactions between pulses and laser medium, and spontaneous transverse mode locking. (Author/DS)

  11. Mode-medium instability and its correction with a Gaussian-reflectivity mirror

    NASA Technical Reports Server (NTRS)

    Webster, K. L.; Sung, C. C.

    1992-01-01

    A high-power CO2 laser beam is known to deteriorate after a few microseconds due to a mode-medium instability (MMI) which results from an intensity-dependent heating rate related to the vibrational-to-translational decay of the upper and lower CO2 lasing levels. An iterative numerical technique is developed to model the time evolution of the beam as it is affected by the MMI. The technique is used to study the MMI in an unstable CO2 resonator with a hard-edge output mirror for different parameters like the Fresnel number and the gas density. The results show that the mode of the hard edge unstable resonator deteriorates because of the diffraction ripples in the mode. A Gaussian-reflectivity mirror was used to correct the MMI. This mirror produces a smoother intensity profile which significantly reduces the effects of the MMI. Quantitative results on peak density variation and beam quality are presented.

  12. Mode-medium instability and its correction with a Gaussian reflectivity mirror

    NASA Technical Reports Server (NTRS)

    Webster, K. L.; Sung, C. C.

    1990-01-01

    A high power CO2 laser beam is known to deteriorate after a few microseconds due to a mode-medium instability (MMI) which results from an intensity dependent heating rate related to the vibrational-to-translational decay of the upper and lower CO2 lasing levels. An iterative numerical technique is developed to model the time evolution of the beam as it is affected by the MMI. The technique is used to study the MMI in an unstable CO2 resonator with a hard-edge output mirror for different parameters like the Fresnel number and the gas density. The results show that the mode of the hard edge unstable resonator deteriorates because of the diffraction ripples in the mode. A Gaussian-reflectivity mirror was used to correct the MMI. This mirror produces a smoother intensity profile which significantly reduces the effects of the MMI. Quantitative results on peak density variation and beam quality are presented.

  13. Virtual interface substructure synthesis method for normal mode analysis of super-large molecular complexes at atomic resolution.

    PubMed

    Chen, Xuehui; Sun, Yunxiang; An, Xiongbo; Ming, Dengming

    2011-10-14

    Normal mode analysis of large biomolecular complexes at atomic resolution remains challenging in computational structure biology due to the requirement of large amount of memory space and central processing unit time. In this paper, we present a method called virtual interface substructure synthesis method or VISSM to calculate approximate normal modes of large biomolecular complexes at atomic resolution. VISSM introduces the subunit interfaces as independent substructures that join contacting molecules so as to keep the integrity of the system. Compared with other approximate methods, VISSM delivers atomic modes with no need of a coarse-graining-then-projection procedure. The method was examined for 54 protein-complexes with the conventional all-atom normal mode analysis using CHARMM simulation program and the overlap of the first 100 low-frequency modes is greater than 0.7 for 49 complexes, indicating its accuracy and reliability. We then applied VISSM to the satellite panicum mosaic virus (SPMV, 78,300 atoms) and to F-actin filament structures of up to 39-mer, 228,813 atoms and found that VISSM calculations capture functionally important conformational changes accessible to these structures at atomic resolution. Our results support the idea that the dynamics of a large biomolecular complex might be understood based on the motions of its component subunits and the way in which subunits bind one another. © 2011 American Institute of Physics

  14. Aluminum-based metal-air batteries

    DOEpatents

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  15. Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Wysocki, Gerard; Curl, Robert F.; Tittel, Frank K.

    2010-01-01

    The external-cavity quantum cascade laser (EC-QCL) system is based on an optical configuration of the Littrow type. It is a room-temperature, continuous wave, widely tunable, mode-hop-free, mid-infrared, EC-QCL spectroscopic source. It has a single-mode tuning range of 155 cm(exp -1) (approximately equal to 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm(exp -1) (approximately equal to 15% of the center wavelength), and a maximum power of 50 mW as demonstrated for 5.3 micron and 8.4 micron EC-QCLs, respectively. This technology is particularly suitable for high-resolution spectroscopic applications, multi-species tracegas detection, and spectroscopic measurements of broadband absorbers. Wavelength tuning of EC-QCL spectroscopic source can be implemented by varying three independent parameters of the laser: (1) the optical length of the gain medium (which, in this case, is equivalent to QCL injection current modulation), (2) the length of the EC (which can be independently varied in the Rice EC-QCL setup), and (3) the angle of beam incidence at the diffraction grating (frequency tuning related directly to angular dispersion of the grating). All three mechanisms of frequency tuning have been demonstrated and are required to obtain a true mode-hop-free laser frequency tuning. The precise frequency tuning characteristics of the EC-QCL output have been characterized using a variety of diagnostic tools available at Rice University (e.g., a monochromator, FTIR spectrometer, and a Fabry-Perot spectrometer). Spectroscopic results were compared with available databases (such as HITRAN, PNNL, EPA, and NIST). These enable precision verification of complete spectral parameters of the EC-QCL, such as wavelength, tuning range, tuning characteristics, and line width. The output power of the EC-QCL is determined by the performance of the QC laser chip, its operating conditions, and parameters of the QC laser cavity such as mirror reflectivity or intracavity losses. In order to maximize the output power, an analysis and optimization of the EC laser parameters has been performed. The parameters of the beam emitted from the gain medium, such as divergence angle, beam profile, and astigmatism, have been investigated. The gain medium has been fully characterized before and after each stage of modification. The main modification steps are coating one facet of the gain chip with a high reflectivity mirror and the other facet with an anti-reflection layer. Then the chip is mounted in the EC-QCL. The optomechanical design has been reviewed and improved to provide for precise collimation of the strongly divergent beam of the QCL and the tuning diffraction grating.

  16. Renormalization group theory outperforms other approaches in statistical comparison between upscaling techniques for porous media

    NASA Astrophysics Data System (ADS)

    Hanasoge, Shravan; Agarwal, Umang; Tandon, Kunj; Koelman, J. M. Vianney A.

    2017-09-01

    Determining the pressure differential required to achieve a desired flow rate in a porous medium requires solving Darcy's law, a Laplace-like equation, with a spatially varying tensor permeability. In various scenarios, the permeability coefficient is sampled at high spatial resolution, which makes solving Darcy's equation numerically prohibitively expensive. As a consequence, much effort has gone into creating upscaled or low-resolution effective models of the coefficient while ensuring that the estimated flow rate is well reproduced, bringing to the fore the classic tradeoff between computational cost and numerical accuracy. Here we perform a statistical study to characterize the relative success of upscaling methods on a large sample of permeability coefficients that are above the percolation threshold. We introduce a technique based on mode-elimination renormalization group theory (MG) to build coarse-scale permeability coefficients. Comparing the results with coefficients upscaled using other methods, we find that MG is consistently more accurate, particularly due to its ability to address the tensorial nature of the coefficients. MG places a low computational demand, in the manner in which we have implemented it, and accurate flow-rate estimates are obtained when using MG-upscaled permeabilities that approach or are beyond the percolation threshold.

  17. Performance Evaluation of a PEM Scanner Using the NEMA NU 4—2008 Small Animal PET Standards

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Anashkin, Edward; Matthews, Christopher G.

    2010-02-01

    The recently published NEMA NU 4-2008 Standards has been specially designed for evaluating the performance of small animal PET scanners used in preclinical applications. In this paper, we report on the NU 4 performance of a clinical positron emission mammography (PEM) system. Since there are no PEM specific performance test protocols available, and the NU 2 protocol (intended for whole-body PET scanners) cannot be applied without modification due to the compact design of the PEM scanner, we decided to evaluate the NU 4 Standards as an alternative. We obtained the following results: Trans-axial spatial resolution 1.8 mm FWHM for high resolution reconstruction mode and 2.4 mm FWHM for standard resolution reconstruction mode with no significant variation within the field of view. The total system sensitivity was 0.16 cps/Bq. In image quality testing, the uniformity was found to be 3.9% STD at the standard resolution mode and 5.6% at the high resolution mode when measured with a 34 mm paddle separation. The NEMA NU 4-2008 Standards were found to be a practicable tool to evaluate the performance of the PEM scanner after some modifications to address the specifics of its detector configuration. Furthermore, the PEM scanner's in-plane spatial resolution was comparable to other small animal PET scanners with good image quality.

  18. The neglected Indo-Gangetic Plains low-level jet and its importance for moisture transport and precipitation during the peak summer monsoon

    NASA Astrophysics Data System (ADS)

    Acosta, R. P.; Huber, M.

    2017-08-01

    Accurately simulating the Indo-Asian monsoon (IAM) using atmospheric general circulation models (AGCMs) is challenging but crucial. This study uses reanalysis products European Centre of Medium-Range Forecast Interim reanalysis, Japanese Reanalysis year 55, and High Asia Reanalysis to highlight an easterly, low-level barrier jet along the Indo-Gangetic Plain (referred from here as IG LLJ), which we identify as the primary moisture transport mechanism for the northeastern branch of the IAM. We show that the NCAR family of AGCMs (Community Atmospheric Model (CAM)) does not capture this circulation until 1/2° or greater spatial horizontal resolution is used. The IG LLJ develops due to a persistent low-pressure system centered over the Ganges basin and is enhanced by the Himalayas. Using diabatic heating rates and the moist Froude number as diagnostics, we find that in CAM, this branch of the IAM displays two different dynamical regimes as a function of resolution. At low resolution, the atmosphere near the Himalayas is statically unstable, diabatic heating is strong, and the moisture flow is southwesterly from the Arabian Sea and moves over the terrain (unblocked). At high resolution, the moist static stability near the Himalayan Mountains is stable, diabatic heating is weak, and the flow primarily enters easterly from the Bay of Bengal and moves parallel to the terrain (blocked). During the summer season, the low-resolution CAM is locked into the unblocked mode, which has serious implications for interpreting topography-monsoon interactions. For a broader context, we demonstrate that more than half of the CMIP5 models do not capture the IG LLJ, which further highlights model-data mismatch across the IAM region.

  19. Active chiral control of GHz acoustic whispering-gallery modes

    NASA Astrophysics Data System (ADS)

    Mezil, Sylvain; Fujita, Kentaro; Otsuka, Paul H.; Tomoda, Motonobu; Clark, Matt; Wright, Oliver B.; Matsuda, Osamu

    2017-10-01

    We selectively generate chiral surface-acoustic whispering-gallery modes in the gigahertz range on a microscopic disk by means of an ultrafast time-domain technique incorporating a spatial light modulator. Active chiral control is achieved by making use of an optical pump spatial profile in the form of a semicircular arc, positioned on the sample to break the symmetry of clockwise- and counterclockwise-propagating modes. Spatiotemporal Fourier transforms of the interferometrically monitored two-dimensional acoustic fields measured to micron resolution allow individual chiral modes and their azimuthal mode order, both positive and negative, to be distinguished. In particular, for modes with 15-fold rotational symmetry, we demonstrate ultrafast chiral control of surface acoustic waves in a micro-acoustic system with picosecond temporal resolution. Applications include nondestructive testing and surface acoustic wave devices.

  20. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  1. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  2. Combining image processing and modeling to generate traces of beta-strands from cryo-EM density images of beta-barrels.

    PubMed

    Si, Dong; He, Jing

    2014-01-01

    Electron cryo-microscopy (Cryo-EM) technique produces 3-dimensional (3D) density images of proteins. When resolution of the images is not high enough to resolve the molecular details, it is challenging for image processing methods to enhance the molecular features. β-barrel is a particular structure feature that is formed by multiple β-strands in a barrel shape. There is no existing method to derive β-strands from the 3D image of a β-barrel at medium resolutions. We propose a new method, StrandRoller, to generate a small set of possible β-traces from the density images at medium resolutions of 5-10Å. StrandRoller has been tested using eleven β-barrel images simulated to 10Å resolution and one image isolated from the experimentally derived cryo-EM density image at 6.7Å resolution. StrandRoller was able to detect 81.84% of the β-strands with an overall 1.5Å 2-way distance between the detected and the observed β-traces, if the best of fifteen detections is considered. Our results suggest that it is possible to derive a small set of possible β-traces from the β-barrel cryo-EM image at medium resolutions even when no separation of the β-strands is visible in the images.

  3. Few-mode fiber based Raman distributed temperature sensing.

    PubMed

    Wang, Meng; Wu, Hao; Tang, Ming; Zhao, Zhiyong; Dang, Yunli; Zhao, Can; Liao, Ruolin; Chen, Wen; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-03-06

    We proposed and experimentally demonstrated a few mode fiber (FMF) based Raman distributed temperature sensor (RDTS) to extend the sensing distance with enhanced signal-to-noise ratio (SNR) of backscattered anti-Stokes spontaneous Raman scattering. Operating in the quasi-single mode (QSM) with efficient fundamental mode excitement, the FMF allows much larger input pump power before the onset of stimulated Raman scattering compared with the standard single mode fiber (SSMF) and mitigates the detrimental differential mode group delay (DMGD) existing in the conventional multimode fiber (MMF) based RDTS system. Comprehensive theoretical analysis has been conducted to reveal the benefits of RDTS brought by QSM operated FMFs with the consideration of geometric/optical parameters of different FMFs. The measurement uncertainty of FMF based scheme has also been evaluated. Among fibers being investigated and compared (SSMF, 2-mode and 4-mode FMFs, respectively), although an ideal 4-mode FMF based RDTS has the largest SNR enhancement in principle, real fabrication imperfections and larger splicing loss degrade its performance. While the 2-mode FMF based system outperforms in longer distance measurement, which agrees well with the theoretical calculations considering real experimental parameters. Using the conventional RDTS hardware, a 30-ns single pulse at 1550nm has been injected as the pump; the obtained temperature resolutions at 20km distance are estimated to be about 10°C, 7°C and 6°C for the SSMF, 4-mode and 2-mode FMFs, respectively. About 4°C improvement over SSMF on temperature resolution at the fiber end with 3m spatial resolution within 80s measuring time over 20km 2-mode FMFs have been achieved.

  4. Peculiarities of spike multimode generation of a superradiant distributed feedback laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharovskaya, E R; Ginzburg, N S; Sergeev, A S

    2011-08-31

    Using one-dimensional semiclassical Maxwell - Bloch equations with account for the coherent polarisation dynamics, we have studied spike generation regimes of a superradiant distributed feedback laser in the case of inhomogeneous broadening of the spectral line of an active medium. By analysing the dynamic spectra of inversion of the active medium and laser radiation, we have revealed the relationship of individual spikes of radiation and their modulation with specific parts in the spectral line of the active medium and mode beatings. It has been shown that the broadening and shift of the lasing spectrum with respect to the initial electromagneticmore » Bragg-cavity modes is accompanied by a strong spectral gradient of inversion that is typical of the superradiant regimes. (control of radiation parameters)« less

  5. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance

    NASA Astrophysics Data System (ADS)

    Singh, K. P.; Stewart, G. C.; Westergaard, N. J.; Bhattacharayya, S.; Chandra, S.; Chitnis, V. R.; Dewangan, G. C.; Kothare, A. T.; Mirza, I. M.; Mukerjee, K.; Navalkar, V.; Shah, H.; Abbey, A. F.; Beardmore, A. P.; Kotak, S.; Kamble, N.; Vishwakarama, S.; Pathare, D. P.; Risbud, V. M.; Koyande, J. P.; Stevenson, T.; Bicknell, C.; Crawford, T.; Hansford, G.; Peters, G.; Sykes, J.; Agarwal, P.; Sebastian, M.; Rajarajan, A.; Nagesh, G.; Narendra, S.; Ramesh, M.; Rai, R.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Subbarao, K.; Gupta, T.; Thakkar, N.; Singh, A. K.; Bajpai, A.

    2017-06-01

    The Soft X-ray focusing Telescope (SXT), India's first X-ray telescope based on the principle of grazing incidence, was launched aboard the AstroSat and made operational on October 26, 2015. X-rays in the energy band of 0.3-8.0 keV are focussed on to a cooled charge coupled device thus providing medium resolution X-ray spectroscopy of cosmic X-ray sources of various types. It is the most sensitive X-ray instrument aboard the AstroSat. In its first year of operation, SXT has been used to observe objects ranging from active stars, compact binaries, supernova remnants, active galactic nuclei and clusters of galaxies in order to study its performance and quantify its characteriztics. Here, we present an overview of its design, mechanical hardware, electronics, data modes, observational constraints, pipeline processing and its in-orbit performance based on preliminary results from its characterization during the performance verification phase.

  6. Distributed condition monitoring techniques of optical fiber composite power cable in smart grid

    NASA Astrophysics Data System (ADS)

    Sun, Zhihui; Liu, Yuan; Wang, Chang; Liu, Tongyu

    2011-11-01

    Optical fiber composite power cable such as optical phase conductor (OPPC) is significant for the development of smart grid. This paper discusses the distributed cable condition monitoring techniques of the OPPC, which adopts embedded single-mode fiber as the sensing medium. By applying optical time domain reflection and laser Raman scattering, high-resolution spatial positioning and high-precision distributed temperature measurement is executed. And the OPPC cable condition parameters including temperature and its location, current carrying capacity, and location of fracture and loss can be monitored online. OPPC cable distributed condition monitoring experimental system is set up, and the main parts including pulsed fiber laser, weak Raman signal reception, high speed acquisition and cumulative average processing, temperature demodulation and current carrying capacity analysis are introduced. The distributed cable condition monitoring techniques of the OPPC is significant for power transmission management and security.

  7. NIRcam-NIRSpec GTO Observations of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Rieke, Marcia J.; Ferruit, Pierre; Alberts, Stacey; Bunker, Andrew; Charlot, Stephane; Chevallard, Jacopo; Dressler, Alan; Egami, Eiichi; Eisenstein, Daniel; Endsley, Ryan; Franx, Marijn; Frye, Brenda L.; Hainline, Kevin; Jakobsen, Peter; Lake, Emma Curtis; Maiolino, Roberto; Rix, Hans-Walter; Robertson, Brant; Stark, Daniel; Williams, Christina; Willmer, Christopher; Willott, Chris J.

    2017-06-01

    The NIRSpec and and NIRCam GTO Teams are planning a joint imaging and spectroscopic study of the high redshift universe. By virtue of planning a joint program which includes medium and deep near- and mid-infrared imaging surveys and multi-object spectroscopy (MOS) of sources in the same fields, we have learned much about planning observing programs for each of the instruments and using them in parallel mode to maximize photon collection time. The design and rationale for our joint program will be explored in this talk with an emphasis on why we have chosen particular suites of filters and spectroscopic resolutions, why we have chosen particular exposure patterns, and how we have designed the parallel observations. The actual observations that we intend on executing will serve as examples of how to layout mosaics and MOS observations to maximize observing efficiency for surveys with JWST.

  8. Neutral Hydrogen Structures Trace Dust Polarization Angle: Implications for Cosmic Microwave Background Foregrounds.

    PubMed

    Clark, S E; Hill, J Colin; Peek, J E G; Putman, M E; Babler, B L

    2015-12-11

    Using high-resolution data from the Galactic Arecibo L-Band Feed Array HI (GALFA-Hi) survey, we show that linear structure in Galactic neutral hydrogen (Hi) correlates with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. At high Galactic latitudes, where the Planck data are noise dominated, the Hi data provide an independent constraint on the Galactic magnetic field orientation, and hence the local dust polarization angle. We detect strong cross-correlations between template maps constructed from estimates of dust intensity combined with either Hi-derived angles, starlight polarization angles, or Planck 353 GHz angles. The Hi data thus provide a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination.

  9. Simulations of a micro-PET system based on liquid xenon

    NASA Astrophysics Data System (ADS)

    Miceli, A.; Glister, J.; Andreyev, A.; Bryman, D.; Kurchaninov, L.; Lu, P.; Muennich, A.; Retiere, F.; Sossi, V.

    2012-03-01

    The imaging performance of a high-resolution preclinical micro-positron emission tomography (micro-PET) system employing liquid xenon (LXe) as the gamma-ray detection medium was simulated. The arrangement comprises a ring of detectors consisting of trapezoidal LXe time projection ionization chambers and two arrays of large area avalanche photodiodes for the measurement of ionization charge and scintillation light. A key feature of the LXePET system is the ability to identify individual photon interactions with high energy resolution and high spatial resolution in three dimensions and determine the correct interaction sequence using Compton reconstruction algorithms. The simulated LXePET imaging performance was evaluated by computing the noise equivalent count rate, the sensitivity and point spread function for a point source according to the NEMA-NU4 standard. The image quality was studied with a micro-Derenzo phantom. Results of these simulation studies included noise equivalent count rate peaking at 1326 kcps at 188 MBq (705 kcps at 184 MBq) for an energy window of 450-600 keV and a coincidence window of 1 ns for mouse (rat) phantoms. The absolute sensitivity at the center of the field of view was 12.6%. Radial, tangential and axial resolutions of 22Na point sources reconstructed with a list-mode maximum likelihood expectation maximization algorithm were ⩽0.8 mm (full-width at half-maximum) throughout the field of view. Hot-rod inserts of <0.8 mm diameter were resolvable in the transaxial image of a micro-Derenzo phantom. The simulations show that a LXe system would provide new capabilities for significantly enhancing PET images.

  10. bHROS: A New High-Resolution Spectrograph Available on Gemini South

    NASA Astrophysics Data System (ADS)

    Margheim, S. J.; Gemini bHROS Team

    2005-12-01

    The Gemini bench-mounted High-Resolution Spectrograph (bHROS) is available for science programs beginning in 2006A. bHROS is the highest resolution (R=150,000) optical echelle spectrograph optimized for use on an 8-meter telescope. bHROS is fiber-fed via GMOS-S from the Gemini South focal plane and is available in both a dual-fiber Object/Sky mode and a single (larger) Object-only mode. Instrument characteristics and sample data taken during commissioning will be presented.

  11. Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye.

    PubMed

    Salas, Matthias; Augustin, Marco; Felberer, Franz; Wartak, Andreas; Laslandes, Marie; Ginner, Laurin; Niederleithner, Michael; Ensher, Jason; Minneman, Michael P; Leitgeb, Rainer A; Drexler, Wolfgang; Levecq, Xavier; Schmidt-Erfurth, Ursula; Pircher, Michael

    2018-04-01

    Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive optics (AO). The FoV of this second operation mode (AO-OCT mode) is 3.0° × 2.8° and enables the visualization of individual retinal cells such as cone photoreceptors or choriocapillaris. The OCT engine is based on an akinetic swept source at 1060 nm and provides an A-scan rate of 200 kHz. Structural as well as angiographic information can be retrieved from the retina and choroid in both operational modes. The capabilities of the prototype are demonstrated in healthy and diseased eyes.

  12. Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye

    PubMed Central

    Salas, Matthias; Augustin, Marco; Felberer, Franz; Wartak, Andreas; Laslandes, Marie; Ginner, Laurin; Niederleithner, Michael; Ensher, Jason; Minneman, Michael P.; Leitgeb, Rainer A.; Drexler, Wolfgang; Levecq, Xavier; Schmidt-Erfurth, Ursula; Pircher, Michael

    2018-01-01

    Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive optics (AO). The FoV of this second operation mode (AO-OCT mode) is 3.0° × 2.8° and enables the visualization of individual retinal cells such as cone photoreceptors or choriocapillaris. The OCT engine is based on an akinetic swept source at 1060 nm and provides an A-scan rate of 200 kHz. Structural as well as angiographic information can be retrieved from the retina and choroid in both operational modes. The capabilities of the prototype are demonstrated in healthy and diseased eyes. PMID:29675326

  13. Transmission function properties for multi-layered structures: application to super-resolution.

    PubMed

    Mattiucci, N; D'Aguanno, G; Scalora, M; Bloemer, M J; Sibilia, C

    2009-09-28

    We discuss the properties of the transmission function in the k-space for a generic multi-layered structure. In particular we analytically demonstrate that a transmission greater than one in the evanescent spectrum (amplification of the evanescent modes) can be directly linked to the guided modes supported by the structure. Moreover we show that the slope of the phase of the transmission function in the propagating spectrum is inversely proportional to the ability of the structure to compensate the diffraction of the propagating modes. We apply these findings to discuss several examples where super-resolution is achieved thanks to the simultaneous availability of the amplification of the evanescent modes and the diffraction compensation of the propagating modes.

  14. Mode Tracker for Mode-Hop-Free Operation of a Laser

    NASA Technical Reports Server (NTRS)

    Wysocki, Gerard; Tittel, Frank K.; Curl, Robert F.

    2010-01-01

    A mode-tracking system that includes a mode-controlling subsystem has been incorporated into an external-cavity (EC) quantum cascade laser that operates in a mid-infrared wavelength range. The mode-tracking system makes it possible to perform mode-hop-free wavelength scans, as needed for high-resolution spectroscopy and detection of trace gases. The laser includes a gain chip, a beam-collimating lens, and a diffraction grating. The grating is mounted on a platform, the position of which can be varied to effect independent control of the EC length and the grating angle. The position actuators include a piezoelectric stage for translation control and a motorized stage for coarse rotation control equipped with a piezoelectric actuator for fine rotation control. Together, these actuators enable control of the EC length over a range of about 90 m with a resolution of 0.9 nm, and control of the grating angle over a coarse-tuning range of +/-6.3deg and a fine-tuning range of +/-520 microrad with a resolution of 10 nrad. A mirror mounted on the platform with the grating assures always the same direction of the output laser beam.

  15. Energy resolution of pulsed neutron beam provided by the ANNRI beamline at the J-PARC/MLF

    NASA Astrophysics Data System (ADS)

    Kino, K.; Furusaka, M.; Hiraga, F.; Kamiyama, T.; Kiyanagi, Y.; Furutaka, K.; Goko, S.; Hara, K. Y.; Harada, H.; Harada, M.; Hirose, K.; Kai, T.; Kimura, A.; Kin, T.; Kitatani, F.; Koizumi, M.; Maekawa, F.; Meigo, S.; Nakamura, S.; Ooi, M.; Ohta, M.; Oshima, M.; Toh, Y.; Igashira, M.; Katabuchi, T.; Mizumoto, M.; Hori, J.

    2014-02-01

    We studied the energy resolution of the pulsed neutron beam of the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) at the Japan Proton Accelerator Research Complex/Materials and Life Science Experimental Facility (J-PARC/MLF). A simulation in the energy region from 0.7 meV to 1 MeV was performed and measurements were made at thermal (0.76-62 meV) and epithermal energies (4.8-410 eV). The neutron energy resolution of ANNRI determined by the time-of-flight technique depends on the time structure of the neutron pulse. We obtained the neutron energy resolution as a function of the neutron energy by the simulation in the two operation modes of the neutron source: double- and single-bunch modes. In double-bunch mode, the resolution deteriorates above about 10 eV because the time structure of the neutron pulse splits into two peaks. The time structures at 13 energy points from measurements in the thermal energy region agree with those of the simulation. In the epithermal energy region, the time structures at 17 energy points were obtained from measurements and agree with those of the simulation. The FWHM values of the time structures by the simulation and measurements were found to be almost consistent. In the single-bunch mode, the energy resolution is better than about 1% between 1 meV and 10 keV at a neutron source operation of 17.5 kW. These results confirm the energy resolution of the pulsed neutron beam produced by the ANNRI beamline.

  16. Numerical study on refractive index sensor based on hybrid-plasmonic mode

    NASA Astrophysics Data System (ADS)

    Yun, Jeong-Geun; Kim, Joonsoo; Lee, Kyookeun; Lee, Yohan; Lee, Byoungho

    2017-04-01

    We propose a highly sensitive hybrid-plasmonic sensor based on thin-gold nanoslit arrays. The transmission characteristics of gold nanoslit arrays are analyzed as changing the thickness of gold layer. The surface plasmon polariton mode excited on the sensing medium, which is sensitive to refractive index change of the sensing medium, is strengthened by reducing the thickness of the gold layer. A design rule is suggested that steeper dispersion curve of the surface plasmon polariton mode leads to higher sensitivity. For the dispersion engineering, hybrid-plasmonic structure, which consists of thin-gold nanoslit arrays, sensing region and high refractive index dielectric space is introduced. The proposed sensor structure with period of 700 nm shows the improved sensitivity up to 1080 nm/RIU (refractive index unit), and the surface sensitivity is extremely enhanced.

  17. Dynamics of a multimode semiconductor laser with optical feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koryukin, I. V.

    A new model of a multi-longitudinal-mode semiconductor laser with weak optical feedback is proposed. This model generalizes the well-known Tang-Statz-deMars equations, which are derived from the first principles and adequately describe solid-state lasers to a semiconductor active medium. Steady states of the model and the spectrum of relaxation oscillations are found, and the laser dynamics in the chaotic regime of low-frequency fluctuations of intensity is investigated. It is established that the dynamic properties of the proposed model depend mainly on the carrier diffusion, which controls mode-mode coupling in the active medium via spread of gratings of spatial inversion. The resultsmore » obtained are compared with the predictions of previous semiphenomenological models and the scope of applicability of these models is determined.« less

  18. Dynamic MTF, an innovative test bench for detector characterization

    NASA Astrophysics Data System (ADS)

    Emmanuel, Rossi; Raphaël, Lardière; Delmonte, Stephane

    2017-11-01

    PLEIADES HR are High Resolution satellites for Earth observation. Placed at 695km they reach a 0.7m spatial resolution. To allow such performances, the detectors are working in a TDI mode (Time and Delay Integration) which consists in a continuous charge transfer from one line to the consecutive one while the image is passing on the detector. The spatial resolution, one of the most important parameter to test, is characterized by the MTF (Modulation Transfer Function). Usually, detectors are tested in a staring mode. For a higher level of performances assessment, a dedicated bench has been set-up, allowing detectors' MTF characterization in the TDI mode. Accuracy and reproducibility are impressive, opening the door to new perspectives in term of HR imaging systems testing.

  19. Dipping-interface mapping using mode-separated Rayleigh waves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.

  20. Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode.

    PubMed

    Shen, Shijian; Nie, Xin; Zhang, Xinggan

    2018-02-03

    Gaofen-3 (GF-3) is China' first C-band multi-polarization synthetic aperture radar (SAR) satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP) and PFA (Polar Format Algorithm) imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.

  1. Epistemic Beliefs about Justification Employed by Physics Students and Faculty in Two Different Problem Contexts

    NASA Astrophysics Data System (ADS)

    Çağlayan Mercan, Fatih

    2012-06-01

    This study examines the epistemic beliefs about justification employed by physics undergraduate and graduate students and faculty in the context of solving a standard classical physics problem and a frontier physics problem. Data were collected by a think-aloud problem solving session followed by a semi-structured interview conducted with 50 participants, 10 participants at freshmen, seniors, masters, PhD, and faculty levels. Seven modes of justification were identified and used for exploring the relationships between each justification mode and problem context, and expertise level. The data showed that justification modes were not mutually exclusive and many respondents combined different modes in their responses in both problem contexts. Success on solving the standard classical physics problem was not related to any of the justification modes and was independent of expertise level. The strength of the association across the problem contexts for the authoritative, rational, and empirical justification modes fell in the medium range and for the modeling justification mode fell in the large range of practical significance. Expertise level was not related with the empirical and religious justification modes. The strength of the association between the expertise level and the authoritative, rational, experiential, and relativistic justification modes fell in the medium range, and the modeling justification mode fell in the large range of practical significance. The results provide support for the importance of context for the epistemic beliefs about justification and are discussed in terms of the implications for teaching and learning science.

  2. Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects.

    PubMed

    Kim, Seung Jun; Kim, Sung Eun; Kim, Hyo Eun; Han, Kiwan; Jeong, Bumseok; Kim, Jae Jin; Namkoong, Kee; Kim, Ji Woong

    2017-09-01

    Empathy is the ability to identify with or make a vicariously experience of another person's feelings or thoughts based on memory and/or self-referential mental simulation. The default mode network in particular is related to self-referential empathy. In order to elucidate the possible neural mechanisms underlying empathy, we investigated the functional connectivity of the default mode network in subjects from a general population. Resting state functional magnetic resonance imaging data were acquired from 19 low-empathy subjects and 18 medium-empathy subjects. An independent component analysis was used to identify the default mode network, and differences in functional connectivity strength were compared between the two groups. The low-empathy group showed lower functional connectivity of the medial prefrontal cortex and anterior cingulate cortex (Brodmann areas 9 and 32) within the default mode network, compared to the medium-empathy group. The results of the present study suggest that empathy is related to functional connectivity of the medial prefrontal cortex/anterior cingulate cortex within the default mode network. Functional decreases in connectivity among low-empathy subjects may reflect an impairment of self-referential mental simulation. © Copyright: Yonsei University College of Medicine 2017.

  3. On the ''excess spontaneous emission factor'' in gainguided laser amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haus, H.A.; Kawakami, S.

    1985-01-01

    Petermann computed an ''excess spontaneous emission factor'' for gain-guided laser. In this paper, the authors investigate further the role of this factor. Such a factor also appears in the treatment of thermodynamic equilibrium in an attenuating medium-a seeming paradox. Further investigation shows that the excess spontaneous emission excitation at thermal equilibrium is cancelled by the excitations in the other modes which are correlated with that in the fundamental mode. In a medium with gain, cancellation also occurs in a short amplifier in which there is no gain discrimination among modes. The ''excess spontaneous emission factor'' is fully present only inmore » a system in which the different higher order modes have an appreciably smaller gain than the lowest order mode, a high gain amplifier. An analysis of the signal-tonoise ratio of a high gain amplifier reveals that the excess noise factor can be fully compensated by proper input excitation by a lens arrangement. The lens arrangement provides the signal with an ''excess gain'' factor. An ''excess gain'' factor is also present when a thermal source is used.« less

  4. Tapping mode SPM local oxidation nanolithography with sub-10 nm resolution

    NASA Astrophysics Data System (ADS)

    Nishimura, S.; Ogino, T.; Takemura, Y.; Shirakashi, J.

    2008-03-01

    Tapping mode SPM local oxidation nanolithography with sub-10 nm resolution is investigated by optimizing the applied bias voltage (V), scanning speed (S) and the oscillation amplitude of the cantilever (A). We fabricated Si oxide wires with an average width of 9.8 nm (V = 17.5 V, S = 250 nm/s, A = 292 nm). In SPM local oxidation with tapping mode operation, it is possible to decrease the size of the water meniscus by enhancing the oscillation amplitude of cantilever. Hence, it seems that the water meniscus with sub-10 nm dimensions could be formed by precisely optimizing the oxidation conditions. Moreover, we quantitatively explain the size (width and height) of Si oxide wires with a model based on the oxidation ratio, which is defined as the oxidation time divided by the period of the cantilever oscillation. The model allows us to understand the mechanism of local oxidation in tapping mode operation with amplitude modulation. The results imply that the sub-10 nm resolution could be achieved using tapping mode SPM local oxidation technique with the optimization of the cantilever dynamics.

  5. High-resolution imaging and target designation through clouds or smoke

    DOEpatents

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  6. Few-cycle solitons in the medium with permanent dipole moment under conditions of the induced birefringence

    NASA Astrophysics Data System (ADS)

    Sazonov, S. V.

    2016-12-01

    Propagation of electromagnetic pulse in the birefringent medium consisting of symmetric and asymmetrical molecules is investigated. Stationary quantum states of asymmetrical molecules have the permanent dipole moment. Under considered conditions the ordinary pulse component excites quantum transitions between stationary states. The extraordinary component, besides, causes a dynamic chirp of frequencies of these transitions. The new solitonic modes of propagation of the half- and single-period pulses are found. The solitonic mechanism of simultaneous generation of the second and zero harmonics in the modes of "bright" and "dark" solitons is analyzed.

  7. The Advanced Energetic Pair Telescope (AdEPT}: A Future Medium-Energy Gamma-Ray Balloon (and Explorer?) Mission

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2011-01-01

    Gamma-ray astrophysics probes the highest energy, exotic phenomena in astrophysics. In the medium-energy regime, 0.1-200 MeV, many astrophysical objects exhibit unique and transitory behavior such as the transition from electron dominated to hadron dominated processes, spectral breaks, bursts, and flares. Medium-energy gamma-ray imaging however, continues to be a major challenge particularly because of high background, low effective area, and low source intensities. The sensitivity and angular resolution required to address these challenges requires a leap in technology. The Advance Energetic Pair Telescope (AdEPT) being developed at GSFC is designed to image gamma rays above 5 MeV via pair production with angular resolution of 1-10 deg. In addition AdEPT will, for the first time, provide high polarization sensitivity in this energy range. This performance is achieved by reducing the effective area in favor of enhanced angular resolution through the use of a low-density gaseous conversion medium. AdEPT is based on the Three-Dimensional Track Imager (3-DTI) technology that combines a large volume Negative Ion Time Projection Chamber (NITPC) with 2-D Micro-Well Detector (MWD) readout. I will review the major science topics addressable with medium-energy gamma-rays and discuss the current status of the AdEPT technology, a proposed balloon instrument, and the design of a future satellite mission.

  8. Three-Dimensional Recording of Bastion Middleburg Monument Using Terrestrial Laser Scanner

    NASA Astrophysics Data System (ADS)

    Majid, Z.; Lau, C. L.; Yusoff, A. R.

    2016-06-01

    This paper describes the use of terrestrial laser scanning for the full three-dimensional (3D) recording of historical monument, known as the Bastion Middleburg. The monument is located in Melaka, Malaysia, and was built by the Dutch in 1660. This monument serves as a major hub for the community when conducting commercial activities in estuaries Malacca and the Dutch build this monument as a control tower or fortress. The monument is located on the banks of the Malacca River was built between Stadhuys or better known as the Red House and Mill Quayside. The breakthrough fort on 25 November 2006 was a result of the National Heritage Department through in-depth research on the old map. The recording process begins with the placement of measuring targets at strategic locations around the monument. Spherical target was used in the point cloud data registration. The scanning process is carried out using a laser scanning system known as a terrestrial scanner Leica C10. This monument was scanned at seven scanning stations located surrounding the monument with medium scanning resolution mode. Images of the monument have also been captured using a digital camera that is setup in the scanner. For the purposes of proper registration process, the entire spherical target was scanned separately using a high scanning resolution mode. The point cloud data was pre-processed using Leica Cyclone software. The pre-processing process starting with the registration of seven scan data set through overlapping spherical targets. The post-process involved in the generation of coloured point cloud model of the monument using third-party software. The orthophoto of the monument was also produced. This research shows that the method of laser scanning provides an excellent solution for recording historical monuments with true scale of and texture.

  9. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems.

    PubMed

    Kim, Daehyeok; Song, Minkyu; Choe, Byeongseong; Kim, Soo Youn

    2017-06-25

    In this paper, we present a multi-resolution mode CMOS image sensor (CIS) for intelligent surveillance system (ISS) applications. A low column fixed-pattern noise (CFPN) comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC) for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS) is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution) with supply voltages of 3.3 V (analog) and 1.8 V (digital) and 14 frame/s of frame rates.

  10. Experimental study on microsphere assisted nanoscope in non-contact mode

    NASA Astrophysics Data System (ADS)

    Ling, Jinzhong; Li, Dancui; Liu, Xin; Wang, Xiaorui

    2018-07-01

    Microsphere assisted nanoscope was proposed in existing literatures to capture super-resolution images of the nano-structures beneath the microsphere attached on sample surface. In this paper, a microsphere assisted nanoscope working in non-contact mode is designed and demonstrated, in which the microsphere is controlled with a gap separated to sample surface. With a gap, the microsphere is moved in parallel to sample surface non-invasively, so as to observe all the areas of interest. Furthermore, the influence of gap size on image resolution is studied experimentally. Only when the microsphere is close enough to the sample surface, super-resolution image could be obtained. Generally, the resolution decreases when the gap increases as the contribution of evanescent wave disappears. To keep an appropriate gap size, a quantitative method is implemented to estimate the gap variation by observing Newton's rings around the microsphere, serving as a real-time feedback for tuning the gap size. With a constant gap, large-area image with high resolution can be obtained during microsphere scanning. Our study of non-contact mode makes the microsphere assisted nanoscope more practicable and easier to implement.

  11. Cavity BPM with Dipole-Mode-Selective Coupler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zenghai; Johnson, Ronald; Smith, Stephen R.

    2006-06-21

    In this paper, we present a novel position sensitive signal pickup scheme for a cavity BPM. The scheme utilizes the H-plane of the waveguide to couple magnetically to the side of the cavity, which results in a selective coupling to the dipole mode and a total rejection of the monopole mode. This scheme greatly simplifies the BPM geometry and relaxes machining tolerances. We will present detailed numerical studies on such a cavity BPM, analyze its resolution limit and tolerance requirements for a nanometer resolution. Finally present the measurement results of a X-band prototype.

  12. SAFARI optical system architecture and design concept

    NASA Astrophysics Data System (ADS)

    Pastor, Carmen; Jellema, Willem; Zuluaga-Ramírez, Pablo; Arrazola, David; Fernández-Rodriguez, M.; Belenguer, Tomás.; González Fernández, Luis M.; Audley, Michael D.; Evers, Jaap; Eggens, Martin; Torres Redondo, Josefina; Najarro, Francisco; Roelfsema, Peter

    2016-07-01

    SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.

  13. Determining the average path length of amplified spontaneous emission in a four-level laser near the 1/3 mode-degeneracy cavity configurations

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Hsu; Lu, Ming-Lun; Tai, Po-Tse

    2015-08-01

    We determine the average path length ls of amplified spontaneous emission (ASE) by comparing the numerical slope of a straight line with the experimental slope in the graph of the square of relaxation oscillation frequency versus normalized pump ratio. The simple method is applied in an end-pumped Nd:YVO4 laser with the 1/3 mode-degeneracy cavity having the transverse mode spacing equal to 1/3 of the longitudinal mode spacing. We find that ls is larger at the degeneracy than that far from the degeneracy. This result indicates the existence of stronger ASE at the degeneracy, which is confirmed below the threshold. This is because many spontaneous emission photons can undergo amplification not only before escaping from the gain medium but also after leaving the gain medium, owing to cavity reflection. Our method can be applied in the situations where the Auger upconversion effect is absent, weak, or well-known.

  14. High resolution Fourier interferometer-spectrophotopolarimeter

    NASA Technical Reports Server (NTRS)

    Fymat, A. L. (Inventor)

    1976-01-01

    A high-resolution Fourier interferometer-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an interferometer to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the interferometer. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the interferometer; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the interferometer.

  15. Inversion of high frequency surface waves with fundamental and higher modes

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Tian, G.

    2003-01-01

    The phase velocity of Rayleigh-waves of a layered earth model is a function of frequency and four groups of earth parameters: compressional (P)-wave velocity, shear (S)-wave velocity, density, and thickness of layers. For the fundamental mode of Rayleigh waves, analysis of the Jacobian matrix for high frequencies (2-40 Hz) provides a measure of dispersion curve sensitivity to earth model parameters. S-wave velocities are the dominant influence of the four earth model parameters. This thesis is true for higher modes of high frequency Rayleigh waves as well. Our numerical modeling by analysis of the Jacobian matrix supports at least two quite exciting higher mode properties. First, for fundamental and higher mode Rayleigh wave data with the same wavelength, higher modes can "see" deeper than the fundamental mode. Second, higher mode data can increase the resolution of the inverted S-wave velocities. Real world examples show that the inversion process can be stabilized and resolution of the S-wave velocity model can be improved when simultaneously inverting the fundamental and higher mode data. ?? 2002 Elsevier Science B.V. All rights reserved.

  16. Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution.

    PubMed

    Dwyer, C; Aoki, T; Rez, P; Chang, S L Y; Lovejoy, T C; Krivanek, O L

    2016-12-16

    We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.

  17. High Resolution Spectroscopy of 1,2-Difluoroethane in a Molecular Beam: A Case Study of Vibrational Mode-Coupling

    DTIC Science & Technology

    1992-05-29

    Spectroscopy of 1,2- Difluoroethane in a Molecular Beam: A Case Study of Vibrational Mode-Coupling by Steven W. Mork, C. Cameron Miller, and Laura A...and sale; its distribution is unlimited. 92-14657 l9lll l l l , II a HIGH RESOLUTION SPECTROSCOPY OF 1,2- DIFLUOROETHANE IN A MOLECULAR BEAM: A CASE...14853-1301 Abstract The high resolution infrared spectrum of 1,2- difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1

  18. The ALMA correlator

    NASA Astrophysics Data System (ADS)

    Escoffier, R. P.; Comoretto, G.; Webber, J. C.; Baudry, A.; Broadwell, C. M.; Greenberg, J. H.; Treacy, R. R.; Cais, P.; Quertier, B.; Camino, P.; Bos, A.; Gunst, A. W.

    2007-02-01

    Aims: The Atacama Large Millimeter Array (ALMA) is an international astronomy facility to be used for detecting and imaging all types of astronomical sources at millimeter and submillimeter wavelengths at a 5000-m elevation site in the Atacama Desert of Chile. Our main aims are: describe the correlator sub-system which is that part of the ALMA system that combines the signal from up to 64 remote individual radio antennas and forms them into a single instrument; emphasize the high spectral resolution and the configuration flexibility available with the ALMA correlator. Methods: The main digital signal processing features and a block diagram of the correlator being constructed for the ALMA radio astronomy observatory are presented. Tables of observing modes and spectral resolutions offered by the correlator system are given together with some examples of multi-resolution spectral modes. Results: The correlator is delivered by quadrants and the first quadrant is being tested while most of the other printed circuit cards required by the system have been produced. In its final version the ALMA correlator will process the outputs of up to 64 antennas using an instantaneous bandwidth of 8 GHz in each of two polarizations per antenna. In the frequency division mode, unrivalled spectral flexibility together with very high resolution (3.8 kHz) and up to 8192 spectral points are achieved. In the time division mode high time resolution is available with minimum data dump rates of 16 ms for all cross-products.

  19. Reconstruction of refractive index profile of a stratified medium

    NASA Astrophysics Data System (ADS)

    Vogelzang, E.; Ferwerda, H. A.; Yevick, D.

    In this paper, a method for determining the permittivity profile of a stratified medium terminated by a perfect conductor from the (complex) reflectivity is presented. The calculations are based on the Gelfand-Levitan and the Marchenko equations. The bound modes of the system are explicitly taken into account.

  20. Impact of laser phase and amplitude noises on streak camera temporal resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wlotzko, V., E-mail: wlotzko@optronis.com; Optronis GmbH, Ludwigstrasse 2, 77694 Kehl; Uhring, W.

    2015-09-15

    Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement withmore » a streak camera combined with a Ti:Al{sub 2}O{sub 3} solid state laser oscillator and also a fiber oscillator.« less

  1. Spectroscopic mode identification of γ Doradus stars

    NASA Astrophysics Data System (ADS)

    Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; Cat, P. De

    2017-09-01

    The g-mode pulsations in γ Doradus stars are identified using time-series colour photometry and high-resolution spectroscopy. For 22 class members the pulsational frequencies and modes are compared. Ground-based spectroscopic and photometric results show good agreement. The prevalence of (1, |1|) modes is noted and examined.

  2. Instability of supersonic cold streams feeding galaxies - I. Linear Kelvin-Helmholtz instability with body modes

    NASA Astrophysics Data System (ADS)

    Mandelker, Nir; Padnos, Dan; Dekel, Avishai; Birnboim, Yuval; Burkert, Andreas; Krumholz, Mark R.; Steinberg, Elad

    2016-12-01

    Massive galaxies at high redshift are predicted to be fed from the cosmic web by narrow, dense streams of cold gas that penetrate through the hot medium encompassed by a stable shock near the virial radius of the dark-matter halo. Our long-term goal is to explore the heating and dissipation rate of the streams and their fragmentation and possible breakup, in order to understand how galaxies are fed, and how this affects their star formation rate and morphology. We present here the first step, where we analyse the linear Kelvin-Helmholtz instability (KHI) of a cold, dense slab or cylinder in 3D flowing supersonically through a hot, dilute medium. The current analysis is limited to the adiabatic case with no gravity. By analytically solving the linear dispersion relation, we find a transition from a dominance of the familiar rapidly growing surface modes in the subsonic regime to more slowly growing body modes in the supersonic regime. The system is parametrized by three parameters: the density contrast between stream and medium, the Mach number of stream velocity with respect to the medium and the stream width with respect to the halo virial radius. A realistic choice for these parameters places the streams near the mode transition, with the KHI exponential-growth time in the range 0.01-10 virial crossing times for a perturbation wavelength comparable to the stream width. We confirm our analytic predictions with idealized hydrodynamical simulations. Our linear estimates thus indicate that KHI may be effective in the evolution of streams before they reach the galaxy. More definite conclusions await the extension of the analysis to the non-linear regime and the inclusion of cooling, thermal conduction, the halo potential well, self-gravity and magnetic fields.

  3. Few-mode optical fiber based simultaneously distributed curvature and temperature sensing.

    PubMed

    Wu, Hao; Tang, Ming; Wang, Meng; Zhao, Can; Zhao, Zhiyong; Wang, Ruoxu; Liao, Ruolin; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-05-29

    The few-mode fiber (FMF) based Brillouin sensing operated in quasi-single mode (QSM) has been reported to achieve the distributed curvature measurement by monitoring the bend-induced strain variation. However, its practicality is limited by the inherent temperature-strain cross-sensitivity of Brillouin sensors. Here we proposed and experimentally demonstrated an approach for simultaneously distributed curvature and temperature sensing, which exploits a hybrid QSM operated Raman-Brillouin system in FMFs. Thanks to the larger spot size of the fundamental mode in the FMF, the Brillouin frequency shift change of the FMF is used for curvature estimation while the temperature variation is alleviated through Raman signals with the enhanced signal-to-noise ratio (SNR). Within 2 minutes measuring time, a 1.5 m spatial resolution is achieved along a 2 km FMF. The worst resolution of the square of fiber curvature is 0.333 cm -2 while the temperature resolution is 1.301 °C at the end of fiber.

  4. Pump-probe experiments at the TEMPO beamline using the low-α operation mode of Synchrotron SOLEIL.

    PubMed

    Silly, Mathieu G; Ferté, Tom; Tordeux, Marie Agnes; Pierucci, Debora; Beaulieu, Nathan; Chauvet, Christian; Pressacco, Federico; Sirotti, Fausto; Popescu, Horia; Lopez-Flores, Victor; Tortarolo, Marina; Sacchi, Maurizio; Jaouen, Nicolas; Hollander, Philippe; Ricaud, Jean Paul; Bergeard, Nicolas; Boeglin, Christine; Tudu, Bharati; Delaunay, Renaud; Luning, Jan; Malinowski, Gregory; Hehn, Michel; Baumier, Cédric; Fortuna, Franck; Krizmancic, Damjan; Stebel, Luigi; Sergo, Rudi; Cautero, Giuseppe

    2017-07-01

    The SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump-probe experiments. Among others, the low-α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low-α mode of the experimental set-ups developed at the TEMPO beamline to perform pump-probe experiments with soft X-rays based on photoelectron or photon detection are presented. A 282 kHz repetition-rate femtosecond laser is synchronized with the synchrotron radiation time structure to induce fast electronic and/or magnetic excitations. Detection is performed using a two-dimensional space resolution plus time resolution detector based on microchannel plates equipped with a delay line. Results of time-resolved photoelectron spectroscopy, circular dichroism and magnetic scattering experiments are reported, and their respective advantages and limitations in the framework of high-time-resolution pump-probe experiments compared and discussed.

  5. Knowledge discovery from high-frequency stream nitrate concentrations: hydrology and biology contributions.

    PubMed

    Aubert, Alice H; Thrun, Michael C; Breuer, Lutz; Ultsch, Alfred

    2016-08-30

    High-frequency, in-situ monitoring provides large environmental datasets. These datasets will likely bring new insights in landscape functioning and process scale understanding. However, tailoring data analysis methods is necessary. Here, we detach our analysis from the usual temporal analysis performed in hydrology to determine if it is possible to infer general rules regarding hydrochemistry from available large datasets. We combined a 2-year in-stream nitrate concentration time series (time resolution of 15 min) with concurrent hydrological, meteorological and soil moisture data. We removed the low-frequency variations through low-pass filtering, which suppressed seasonality. We then analyzed the high-frequency variability component using Pareto Density Estimation, which to our knowledge has not been applied to hydrology. The resulting distribution of nitrate concentrations revealed three normally distributed modes: low, medium and high. Studying the environmental conditions for each mode revealed the main control of nitrate concentration: the saturation state of the riparian zone. We found low nitrate concentrations under conditions of hydrological connectivity and dominant denitrifying biological processes, and we found high nitrate concentrations under hydrological recession conditions and dominant nitrifying biological processes. These results generalize our understanding of hydro-biogeochemical nitrate flux controls and bring useful information to the development of nitrogen process-based models at the landscape scale.

  6. The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes

    DOE PAGES

    Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; ...

    2015-07-28

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less

  7. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational mode has been identified as containing C-C torsion, CCF bend and CH_2 rock. As in 2FE, DFE undergoes an isomerization reaction upon excitation of the C-H stretch. Coupling between the C-H stretch and C-C torsion is addressed with respect to the reaction mechanism.

  8. The CHARIS High-Contrast Integral-Field Spectrograph

    NASA Technical Reports Server (NTRS)

    Groff, Tyler D.; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja; hide

    2017-01-01

    One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has 'high' and 'low' resolution operating modes. The "high-resolution" mode is used to characterize targets in J, H, and K bands at R70. The "low-resolution" prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS is in the final stages of commissioning, with the instrument open for science observations beginning February 2017. Here we review the science case, design, on-sky performance, engineering observations of exoplanet and disk targets, and specific lessons learned for extremely high contrast imagers. Key design aspects that will be demonstrated are crosstalk optimization, wavefront correction using the IFS image, lenslet tolerancing, the required spectral resolution to fit exoplanet atmospheres, and the utility of the spectrum in achieving higher contrast detection limits.

  9. Cloaks for suppression or enhancement of scattering of diffuse photon density waves

    NASA Astrophysics Data System (ADS)

    Renthlei, Lalruatfela; Ramakrishna, S. Anantha; Wanare, Harshawardhan

    2018-07-01

    Enhancement of wave-like characteristics of heavily damped diffuse photon density waves in a random medium by amplification can induce strongly localised resonances. These resonances can be used to either suppress or enhance scattering from an inhomogeneity in the random medium by cloaking the inhomogeneous region by a shell of random medium with the correct levels of absorption or amplification. A spherical core-shell structure consisting of a shell of a random amplifying medium is shown to enhance or suppress specific resonant modes. A shell with an absorbing random medium is also shown to suppress scattering which can also be used for cloaking the core region.

  10. Performance tests for ray-scan 64 PET/CT based on NEMA NU-2 2007

    NASA Astrophysics Data System (ADS)

    Li, Suying; Zhou, Kun; Zhang, Qiushi; Zhang, Jinming; Yang, Kun; Xu, Baixuan; Ren, Qiushi

    2015-03-01

    This paper focuses on evaluating the performance of the Ray-Scan 64 PET/CT system, a newly developed PET/CT in China. It combines a 64 slice helical CT scanner with a high resolution PET scanner based on BGO crystals assembled in 36 rings. The energy window is 350~ 650 keV, and the coincidence window is set at 12 ns in both 2D and 3D mode. The transaxial field of view (FOV) is 600 mm in diameter, and the axial FOV is 163 mm. Method: Performance measurements were conducted focusing on PET scanners based on NEMA NU-2 2007 standard. We reported the full characterization (spatial resolution, sensitivity, count rate performance, scatter fraction, accuracy of correction, and image quality) in both 2D and 3D mode. In addition, the clinical images from two patients of different types of tumor were presented to further demonstrate this PET/CT system performance in clinical application. Results: using the NEMA NU-2 2007 standard, the main results: (1) the transaxial resolution at 1cm from the gantry center for 2D and 3D was both 4.5mm (FWHM), and at 10cm from the gantry center, the radial (tangential) resolution were 5.6mm (5.3mm) and 5.4mm (5.2mm) in 2D and 3D mode respectively. The axial resolution at 1cm and 10cm off axis was 3.4mm (4.8mm) and 5.5mm (5.8mm) in 2D (3D) mode respectively; (2) the sensitivity for the radial position R0(r=0mm) and R100(r=100mm) were 1.741 kcps/MBq and 1.767 kcps/MBq respectively in 2D mode and 7.157 kcps/MBq and 7.513 kcps/MBq in 3D mode; (3) the scatter fraction was calculated as 18.36% and 42.92% in 2D and 3D mode, respectively; (4) contrast of hot spheres in the image quality phantom in 2D mode was 50.33% (52.87%), 33.34% (40.86%), 20.64% (26.36%), and 10.99% (15.82%), respectively, in N=4 (N=8). Besides, in clinical study, the diameter of lymph tumor was about 2.4 cm, and the diameter of lung cancer was 4.2 cm. This PET/CT system can distinguish the position of cancer easily. Conclusion: The results show that the performance of the newly developed PET/CT system is of high resolution, and low scatter characteristics, and is suitable for clinical applications.

  11. High-resolution imaging of living mammalian cells bound by nanobeads-connected antibodies in a medium using scanning electron-assisted dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Ogura, Toshihiko

    2017-02-01

    Nanometre-scale-resolution imaging technologies for liquid-phase specimens are indispensable tools in various scientific fields. In biology, observing untreated living cells in a medium is essential for analysing cellular functions. However, nanoparticles that bind living cells in a medium are hard to detect directly using traditional optical or electron microscopy. Therefore, we previously developed a novel scanning electron-assisted dielectric microscope (SE-ADM) capable of nanoscale observations. This method enables observation of intact cells in aqueous conditions. Here, we use this SE-ADM system to clearly observe antibody-binding nanobeads in liquid-phase. We also report the successful direct detection of streptavidin-conjugated nanobeads binding to untreated cells in a medium via a biotin-conjugated anti-CD44 antibody. Our system is capable of obtaining clear images of cellular organelles and beads on the cells at the same time. The direct observation of living cells with nanoparticles in a medium allowed by our system may contribute the development of carriers for drug delivery systems (DDS).

  12. Visible light optical coherence microscopy imaging of the mouse cortex with femtoliter volume resolution

    NASA Astrophysics Data System (ADS)

    Merkle, Conrad W.; Chong, Shau Poh; Kho, Aaron M.; Zhu, Jun; Kholiqov, Oybek; Dubra, Alfredo; Srinivasan, Vivek J.

    2018-02-01

    Most flying-spot Optical Coherence Tomography (OCT) and Optical Coherence Microscopy (OCM) systems use a symmetric confocal geometry, where the detection path retraces the illumination path starting from and ending with the spatial mode of a single mode optical fiber. Here, we describe a visible light OCM instrument that breaks this symmetry to improve transverse resolution without sacrificing collection efficiency in scattering tissue. This was achieved by overfilling a 0.3 numerical aperture (NA) water immersion objective on the illumination path, while maintaining a conventional Gaussian mode detection path (1/e2 intensity diameter 0.82 Airy disks), enabling 1.1 μm full-width at half-maximum (FWHM) transverse resolution. At the same time, a 0.9 μm FWHM axial resolution in tissue, achieved by a broadband visible light source, enabled femtoliter volume resolution. We characterized this instrument according to paraxial coherent microscopy theory, and then used it to image the meningeal layers, intravascular red blood cell-free layer, and myelinated axons in the mouse neocortex in vivo through the thinned skull. Finally, by introducing a 0.8 NA water immersion objective, we improved the lateral resolution to 0.44 μm FWHM, which provided a volumetric resolution of 0.2 fL, revealing cell bodies in cortical layer I of the mouse brain with OCM for the first time.

  13. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing.

    PubMed

    Ren, Yongxiong; Huang, Hao; Xie, Guodong; Ahmed, Nisar; Yan, Yan; Erkmen, Baris I; Chandrasekaran, Nivedita; Lavery, Martin P J; Steinhoff, Nicholas K; Tur, Moshe; Dolinar, Samuel; Neifeld, Mark; Padgett, Miles J; Boyd, Robert W; Shapiro, Jeffrey H; Willner, Alan E

    2013-10-15

    We experimentally investigate the performance of an orbital angular momentum (OAM) multiplexed free space optical (FSO) communication link through emulated atmospheric turbulence. The turbulence effects on the crosstalk and system power penalty of the FSO link are characterized. The experimental results show that the power of the transmitted OAM mode will tend to spread uniformly onto the neighboring mode in medium-to-strong turbulence, resulting in severe crosstalk at the receiver. The power penalty is found to exceed 10 dB in a weak-to-medium turbulence condition due to the turbulence-induced crosstalk and power fluctuation of the received signal.

  14. Coherent virtual absorption for discretized light

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    2018-05-01

    Coherent virtual absorption (CVA) is a recently-introduced phenomenon for which exponentially growing waves incident onto a conservative optical medium are neither reflected nor transmitted, at least transiently. CVA has been associated to complex zeros of the scattering matrix and can be regarded as the time reversal of the decay process of a quasi-mode sustained by the optical medium. Here we consider CVA for discretized light transport in coupled resonator optical waveguides or waveguide arrays and show that a distinct kind of CVA, which is not related to complex zero excitation of quasi-modes, can be observed. This result suggests that scattering matrix analysis can not fully capture CVA phenomena.

  15. Hybrid Pulsed Nd:YAG Laser

    NASA Astrophysics Data System (ADS)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  16. Numerical simulation of failure behavior of granular debris flows based on flume model tests.

    PubMed

    Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na

    2013-01-01

    In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.

  17. Harmonically mode-locked erbium-doped waveguide laser

    NASA Astrophysics Data System (ADS)

    Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.

    2004-08-01

    The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.

  18. Power-induced evolution and increased dimensionality of nonlinear modes in reorientational soft matter.

    PubMed

    Laudyn, Urszula A; Jung, Paweł S; Zegadło, Krzysztof B; Karpierz, Miroslaw A; Assanto, Gaetano

    2014-11-15

    We demonstrate the evolution of higher order one-dimensional guided modes into two-dimensional solitary waves in a reorientational medium. The observations, carried out at two different wavelengths in chiral nematic liquid crystals, are in good agreement with a simple nonlocal nonlinear model.

  19. The Interplay of International Students' Acculturative Stress, Social Support, and Acculturation Modes

    ERIC Educational Resources Information Center

    Sullivan, Christopher; Kashubeck-West, Susan

    2015-01-01

    This study examined the relationship between acculturation modes (assimilation, integration, separation and marginalization), social support, and acculturative stress in undergraduate and graduate international students (N=104) at a medium-sized public university in the Midwestern United States. The study found that international students with…

  20. The Medium Resolution Survey Spectrometer (MRSS) for the Origins Space Telescope: Enabling 3-D Surveys of the Universe in the Far-IR.

    NASA Astrophysics Data System (ADS)

    Bradford, Charles Matt; Origins Space Telescope Study Team

    2018-01-01

    The Medium-Resolution Survey Spectrometer (MRSS) is a multi-purpose wideband spectrograph being designed for the Origins Space Telescope (OST -- the NASA-funded far-IR flagship mission study being prepared for the 2020 Decadal Survey). The sensitivity possible with the combination of the actively-cooled OST telescope and new-generation far-IR direct detector arrays is outstanding; potentially offering a 10,000x improvement in speed over the Herschel, SOFIA for point-source measurements, and factor of more than 1,000,000 for spatial-spectral mapping. Massive galaxy detection rates are possible via the rest-frame mid- and far-IR spectral features, overcoming continuum confusion and reaching back to the epoch of reionization. The MRSS covers the full 30 to 670 micron band instantaneously at a resolving power (R) of 500 using 6 logarithmically-spaced grating modules. Each module couples at least 60 and up to 200 spatial beams simultaneously, enabling true 3-D spectral mapping, both for the blind extragalactic surveys and for mapping all phases of interstellar matter in the Milky Way and nearby galaxies. Furthermore, a high-resolution mode inserts a long-path Fourier-transform interferometer into the light path in advance of the grating backends, enabling R up to 38,000 x [100 microns / lambda], while preserving the basic grating sensitivity for line detection.Maximum scientific return with the MRSS on OST will require large arrays of direct detectors with sensitivity meeting or exceeding the photon background limit due to zodiacal and Galactic dust: NEP~3e-20 W/sqrt(Hz). The total pixel count for all 6 bands is ~200,000 pixels. These sensitive far-IR detector arrays are not provided by the kind of industrial efforts producing the the optical and near-IR detectors, but they are being developed by NASA scientists, including OST team members. We outline the rapid progress in this area, briefly highlighting a) recent low-NEP single-pixel measurements which meet the sensitivity requirement, and b) the progress in implementing the large array formats using RF multiplexing with micro-resonators.

  1. Architectures for Device Aware Network

    DTIC Science & Technology

    2005-03-01

    68 b. PDA in DAN Mode ............................................................. 69 c. Cell Phone in DAN Mode...68 Figure 15. PDA in DAN Mode - Reduced Resolution Image ..................................... 69 Figure 16. Cell Phone in DAN Mode -No Image...computer, notebook computer, cell phone and a host of networked embedded systems) may have extremely differing capabilities and resources to retrieve and

  2. Studying Star and Planet Formation with the Submillimeter Probe of the Evolution of Cosmic Structure

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2005-01-01

    The Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) is a far- infrared/submillimeter (40-640 micrometers) spaceborne interferometry concept, studied through the NASA Vision Missions program. SPECS is envisioned as a 1-km baseline Michelson interferometer with two 4- meter collecting mirrors. To maximize science return, SPECS will have three operational modes: a photometric imaging mode, an intermediate spectral resolution mode (R approximately equal to 1000-3000), and a high spectral resolution mode (R approximately equal to 3 x 10(exp 5)). The first two of these modes will provide information on all sources within a 1 arcminute field-of-view (FOV), while the the third will include sources in a small (approximately equal to 5 arcsec) FOV. With this design, SPECS will have angular resolution comparable to the Hubble Space Telescope (50 mas) and sensitivity more than two orders of magnitude better than Spitzer (5sigma in 10ks of approximately equal to 3 x 10(exp 7) Jy Hz). We present here some of the results of the recently-completed Vision Mission Study for SPECS, and discuss the application of this mission to future studies of star and planet formation.

  3. Hybrid setup for micro- and nano-computed tomography in the hard X-ray range

    NASA Astrophysics Data System (ADS)

    Fella, Christian; Balles, Andreas; Hanke, Randolf; Last, Arndt; Zabler, Simon

    2017-12-01

    With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of ever-increasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding, and quality assurance of microscopic samples, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volume via computed tomography (CT). The following article describes a compact X-ray microscope in the hard X-ray regime around 9 keV, based on a highly brilliant liquid-metal-jet source. In comparison to commercially available instruments, it is a hybrid that works in two different modes. The first one is a micro-CT mode without optics, which uses a high-resolution detector to allow scans of samples in the millimeter range with a resolution of 1 μm. The second mode is a microscope, which contains an X-ray optical element to magnify the sample and allows resolving 150 nm features. Changing between the modes is possible without moving the sample. Thus, the instrument represents an important step towards establishing high-resolution laboratory-based multi-mode X-ray microscopy as a standard investigation method.

  4. On Thermal Instability of Kuvshiniski Fluid with Suspended Particles Saturated in a Porous Medium in the Presence of a Magnetic Field June 13, 2017

    NASA Astrophysics Data System (ADS)

    Singh, M.

    2017-12-01

    The thermal instability of a Kuvshiniski viscoelastic fluid is considered to include the effects of a uniform horizontal magnetic field, suspended particles saturated in a porous medium. The analysis is carried out within the framework of the linear stability theory and normal mode technique. For the case of stationary convection, the Kuvshiniski viscoelastic fluid behaves like a Newtonian fluid and the magnetic field has a stabilizing effect, whereas medium permeability and suspended particles are found to have a destabilizing effect on the system, oscillatory modes are introduced in the system, in the absence of these the principle of exchange of stabilities is valid. Graphs in each case have been plotted by giving numerical values to the parameters, depicting the stability characteristics. Sufficient conditions for the avoidance of overstability are also obtained.

  5. Some (Little) Thing(s) about VISIR

    NASA Astrophysics Data System (ADS)

    Pantin, E.; Vanzi, L.; Weilenmann, U.

    VISIR is the VLT mid-infrared Imager and Spectrometer. It offers a comprehensive set of observing modes, imaging in N and Q bands, at the limits of the telescope diffraction, as well as spectroscopy in the same bands. In particular, VISIR provides a very high-resolution spectroscopy mode with an achieved resolution up to 30000 in N band; this mode is so far unique in the southern hemisphere. VISIR calibration is quite specific when compared to standard visible/near-infrared ones. Various dedicated methods have to be developed to remove the instrumental signatures and obtain the best scientific return.

  6. Helium Ion Secondary Electron Mode Microscopy For Interconnect Material Imaging

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinichi; Thompson, William; Stern, Lewis; Scipioni, Larry; Notte, John; Farkas, Lou; Barriss, Louise

    2010-04-01

    The recently developed helium ion microscope (HIM) is now capable of 0.35 nm secondary electron (SE) mode image resolution. When low-k dielectrics or copper interconnects in ultra large scale integrated circuits (ULSI) interconnect structures were imaged in this mode, it was found that unique pattern dimension and fidelity information at sub-nanometer resolution was available for the first time. This paper will discuss the helium ion microscope architecture and the SE imaging techniques that make the HIM observation method of particular value to the low-k dielectric and dual damascene copper interconnect technologies.

  7. Segmentation of arterial vessel wall motion to sub-pixel resolution using M-mode ultrasound.

    PubMed

    Fancourt, Craig; Azer, Karim; Ramcharan, Sharmilee L; Bunzel, Michelle; Cambell, Barry R; Sachs, Jeffrey R; Walker, Matthew

    2008-01-01

    We describe a method for segmenting arterial vessel wall motion to sub-pixel resolution, using the returns from M-mode ultrasound. The technique involves measuring the spatial offset between all pairs of scans from their cross-correlation, converting the spatial offsets to relative wall motion through a global optimization, and finally translating from relative to absolute wall motion by interpolation over the M-mode image. The resulting detailed wall distension waveform has the potential to enhance existing vascular biomarkers, such as strain and compliance, as well as enable new ones.

  8. An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations

    NASA Astrophysics Data System (ADS)

    Bernede, Adrien; Poëtte, Gaël

    2018-02-01

    In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose composition evolves with time due to interactions. As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. A common resolution strategy consists in a splitting between the MC/transport phase and the time discretization scheme/medium evolution phase. After going over and illustrating the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new solver is essentially based on a Monte Carlo scheme with time dependent cross sections implying the on-the-fly resolution of a reduced model for each MC particle describing the time evolution of the matter along their flight path.

  9. Television experiment for Mariner Mars 1971

    USGS Publications Warehouse

    Masursky, H.; Batson, R.; Borgeson, W.; Carr, M.; McCauley, J.; Milton, D.; Wildey, R.; Wilhelms, D.; Murray, B.; Horowitz, N.; Leighton, R.; Sharp, R.; Thompson, W.; Briggs, G.; Chandeysson, P.; Shipley, E.; Sagan, C.; Pollack, J.; Lederberg, J.; Levinthal, E.; Hartmann, W.; McCord, T.; Smith, B.; Davies, M.; De Vaucouleurs, G.; Leovy, C.

    1970-01-01

    The Television Experiment objectives are to provide imaging data which will complement previously gathered data and extend our knowledge of Mars. The two types of investigations will be fixed-feature (for mapping) and variable-feature (for surface and atmospheric changes). Two cameras with a factor-of-ten difference in resolution will be used on each spacecraft for medium- and high-resolution imagery. Mapping of 70% of the planet's surface will be provided by medium-resolution imagery. Spot coverage of about 5% of the surface will be possible with the high-resolution imagery. The experiment's 5 Principal Investigators and 21 Co-Investigators are organized into a team. Scientific disciplines and technical task groups have been formed to provide the formulation of experiment requirements for mission planning and instrument development. It is expected that the team concept will continue through the operational and reporting phases of the Mariner Mars 1971 Project. ?? 1970.

  10. On the mechanism of transverse-mode beatings in a Fabry - Perot laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, N; Ledenev, V I

    2010-06-23

    The mechanism of emergence of fundamental-mode and first-mode beatings in the case of a step-wise increase in the pump rate is studied under the stationary single-mode lasing conditions. Investigation is based on the numerical solution of nonstationary wave equations in a resonator in the quasi-optic approximation and on the equation for a relaxation-type medium as well as on the use of the first two Hermite - Gaussian polynomials {psi}{sub 0,1}(x) to obtain the distribution projections I{sub 0,1}(t), g{sub 0,1}(t) of the radiation intensity and gain, respectively. It is shown that the transverse-mode beatings emerge at early stages of two-mode lasing,more » the appearance of radiation intensity oscillations in the active medium preceding the development of the gain oscillations. The time of the passage of two-mode lasing to the stationary regime is determined. The phase shift {pi}/2 between the oscillations I{sub 1}(t) and g{sub 1}(t) is found for the established beating regime and the modulation depth {Delta}I averaged over the output aperture of the radiation intensity in the established two-mode regime is shown to be proportional to the pump rate excess k over the single-mode lasing threshold. A scheme for controlling the mode composition of laser radiation is proposed, which is based on the rules for determining I{sub 0,1}(t) by the sensor signals. The efficiency of the scheme is studied. The scheme employs two field intensity sensors mounted inside the resonator behind the output aperture. (resonators. modes)« less

  11. FOLD-EM: automated fold recognition in medium- and low-resolution (4-15 Å) electron density maps.

    PubMed

    Saha, Mitul; Morais, Marc C

    2012-12-15

    Owing to the size and complexity of large multi-component biological assemblies, the most tractable approach to determining their atomic structure is often to fit high-resolution radiographic or nuclear magnetic resonance structures of isolated components into lower resolution electron density maps of the larger assembly obtained using cryo-electron microscopy (cryo-EM). This hybrid approach to structure determination requires that an atomic resolution structure of each component, or a suitable homolog, is available. If neither is available, then the amount of structural information regarding that component is limited by the resolution of the cryo-EM map. However, even if a suitable homolog cannot be identified using sequence analysis, a search for structural homologs should still be performed because structural homology often persists throughout evolution even when sequence homology is undetectable, As macromolecules can often be described as a collection of independently folded domains, one way of searching for structural homologs would be to systematically fit representative domain structures from a protein domain database into the medium/low resolution cryo-EM map and return the best fits. Taken together, the best fitting non-overlapping structures would constitute a 'mosaic' backbone model of the assembly that could aid map interpretation and illuminate biological function. Using the computational principles of the Scale-Invariant Feature Transform (SIFT), we have developed FOLD-EM-a computational tool that can identify folded macromolecular domains in medium to low resolution (4-15 Å) electron density maps and return a model of the constituent polypeptides in a fully automated fashion. As a by-product, FOLD-EM can also do flexible multi-domain fitting that may provide insight into conformational changes that occur in macromolecular assemblies.

  12. Polyacrylamide medium for the electrophoretic separation of biomolecules

    DOEpatents

    Madabhushi, Ramakrishna S.; Gammon, Stuart A.

    2003-11-11

    A polyacryalmide medium for the electrophoretic separation of biomolecules. The polyacryalmide medium comprises high molecular weight polyacrylamides (PAAm) having a viscosity average molecular weight (M.sub.v) of about 675-725 kDa were synthesized by conventional red-ox polymerization technique. Using this separation medium, capillary electrophoresis of BigDye DNA sequencing standard was performed. A single base resolution of .about.725 bases was achieved in .about.60 minute in a non-covalently coated capillary of 50 .mu.m i.d., 40 cm effective length, and a filed of 160 V/cm at 40.degree. C. The resolution achieved with this formulation to separate DNA under identical conditions is much superior (725 bases vs. 625 bases) and faster (60 min. vs. 75 min.) to the commercially available PAAm, such as supplied by Amersham. The formulation method employed here to synthesize PAAm is straight-forward, simple and does not require cumbersome methods such as emulsion polymerizaiton in order to achieve very high molecular weights. Also, the formulation here does not require separation of PAAm from the reaction mixture prior to reconstituting the polymer to a final concentration. Furthermore, the formulation here is prepared from a single average mol. wt. PAAm as opposed to the mixture of two different average mo. wt. PAAm previously required to achieve high resolution.

  13. 2-D inner-shelf current observations from a single VHF WEllen RAdar (WERA) station

    USGS Publications Warehouse

    Voulgaris, G.; Kumar, N.; Gurgel, K.-W.; Warner, J.C.; List, J.H.

    2011-01-01

    The majority of High Frequency (HF) radars used worldwide operate at medium to high frequencies (8 to 30 MHz) providing spatial resolutions ranging from 3 to 1.5 km and ranges from 150 to 50 km. This paper presents results from the deployment of a single Very High Frequency (VHF, 48 MHz) WEllen RAdar (WERA) radar with spatial resolution of 150 m and range 10-15 km, used in the nearshore off Cape Hatteras, NC, USA. It consisted of a linear array of 12 antennas operating in beam forming mode. Radial velocities were estimated from radar backscatter for a variety of wind and nearshore wave conditions. A methodology similar to that used for converting acoustically derived beam velocities to an orthogonal system is presented for obtaining 2-D current fields from a single station. The accuracy of the VHF radar-derived radial velocities is examined using a new statistical technique that evaluates the system over the range of measured velocities. The VHF radar velocities showed a bias of 3 to 7 cm/s over the experimental period explainable by the differences in radar penetration and in-situ measurement height. The 2-D current field shows good agreement with the in-situ measurements. Deviations and inaccuracies are well explained by the geometric dilution analysis. ?? 2011 IEEE.

  14. Medical imaging feasibility in body fluids using Markov chains

    NASA Astrophysics Data System (ADS)

    Kavehrad, M.; Armstrong, A. D.

    2017-02-01

    A relatively wide field-of-view and high resolution imaging is necessary for navigating the scope within the body, inspecting tissue, diagnosing disease, and guiding surgical interventions. As the large number of modes available in the multimode fibers (MMF) provides higher resolution, MMFs could replace the millimeters-thick bundles of fibers and lenses currently used in endoscopes. However, attributes of body fluids and obscurants such as blood, impose perennial limitations on resolution and reliability of optical imaging inside human body. To design and evaluate optimum imaging techniques that operate under realistic body fluids conditions, a good understanding of the channel (medium) behavior is necessary. In most prior works, Monte-Carlo Ray Tracing (MCRT) algorithm has been used to analyze the channel behavior. This task is quite numerically intensive. The focus of this paper is on investigating the possibility of simplifying this task by a direct extraction of state transition matrices associated with standard Markov modeling from the MCRT computer simulations programs. We show that by tracing a photon's trajectory in the body fluids via a Markov chain model, the angular distribution can be calculated by simple matrix multiplications. We also demonstrate that the new approach produces result that are close to those obtained by MCRT and other known methods. Furthermore, considering the fact that angular, spatial, and temporal distributions of energy are inter-related, mixing time of Monte- Carlo Markov Chain (MCMC) for different types of liquid concentrations is calculated based on Eigen-analysis of the state transition matrix and possibility of imaging in scattering media are investigated. To this end, we have started to characterize the body fluids that reduce the resolution of imaging [1].

  15. Atomic Force Microscopy in Imaging of Viruses and Virus-Infected Cells

    PubMed Central

    Kuznetsov, Yurii G.; McPherson, Alexander

    2011-01-01

    Summary: Atomic force microscopy (AFM) can visualize almost everything pertinent to structural virology and at resolutions that approach those for electron microscopy (EM). Membranes have been identified, RNA and DNA have been visualized, and large protein assemblies have been resolved into component substructures. Capsids of icosahedral viruses and the icosahedral capsids of enveloped viruses have been seen at high resolution, in some cases sufficiently high to deduce the arrangement of proteins in the capsomeres as well as the triangulation number (T). Viruses have been recorded budding from infected cells and suffering the consequences of a variety of stresses. Mutant viruses have been examined and phenotypes described. Unusual structural features have appeared, and the unexpectedly great amount of structural nonconformity within populations of particles has been documented. Samples may be imaged in air or in fluids (including culture medium or buffer), in situ on cell surfaces, or after histological procedures. AFM is nonintrusive and nondestructive, and it can be applied to soft biological samples, particularly when the tapping mode is employed. In principle, only a single cell or virion need be imaged to learn of its structure, though normally images of as many as is practical are collected. While lateral resolution, limited by the width of the cantilever tip, is a few nanometers, height resolution is exceptional, at approximately 0.5 nm. AFM produces three-dimensional, topological images that accurately depict the surface features of the virus or cell under study. The images resemble common light photographic images and require little interpretation. The structures of viruses observed by AFM are consistent with models derived by X-ray crystallography and cryo-EM. PMID:21646429

  16. 76 FR 17364 - Airworthiness Directives; Dassault-Aviation Model FALCON 7X Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... a negative distance to the ground despite the aircraft was flying at medium or high altitude. A... despite the aircraft was flying at medium or high altitude. A locked radio-altimeter 1 leads to untimely... certain abnormal conditions while the avionic system switches into landing mode during altitude cruise...

  17. Characterization and Applications of a CdZnTe-Based Gamma-Ray Imager

    NASA Astrophysics Data System (ADS)

    Galloway, Michelle Lee

    Detection of electromagnetic radiation in the form of gamma rays provides a means to discover the presence of nuclear sources and the occurrence of highly-energetic events that occur in our terrestrial and astrophysical environment. The highly penetrative nature of gamma rays allows for probing into objects and regions that are obscured at other wavelengths. The detection and imaging of gamma rays relies upon an understanding of the ways in which these high-energy photons interact with matter. The applications of gamma-ray detection and imaging are numerous. Astrophysical observation of gamma rays expands our understanding of the Universe in which we live. Terrestrial detection and imaging of gamma rays enable environmental monitoring of radioactivity. This allows for identification and localization of nuclear materials to prevent illicit trafficking and to ultimately protect against harmful acts. This dissertation focusses on the development and characterization of a gamma-ray detection and imaging instrument and explores its capabilities for the aforementioned applications. The High Efficiency Multimode Imager, HEMI, is a prototype instrument that is based on Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The detectors are arranged in a two-planar configuration to allow for both Compton and coded-aperture imaging. HEMI was initially developed as a prototype instrument to demonstrate its capabilities for nuclear threat detection, spectroscopy, and imaging. The 96-detector instrument was developed and fully characterized within the laboratory environment, yielding a system energy resolution of 2.4% FWHM at 662 keV, an angular resolution of 9.5 deg. FWHM at 662 keV in Compton mode, and a 10.6 deg. angular resolution in coded aperture mode. After event cuts, the effective area for Compton imaging of the 662 keV photopeak is 0.1 cm 22. Imaging of point sources in both Compton and coded aperture modes have been demonstrated. The minimum detectable activity of a 137Cs at a 20 m distance with 20 seconds of observation time is estimated to be ˜0.2 mCi in spectral mode and ˜20 mCi in Compton imaging mode. These performance parameters fulfilled the requirements of the nuclear security program. Following the Fukushima Dai-ichi Nuclear Power Plant accident of March, 2011, efficient methods to assess levels of radioactive contamination over large areas are needed to aid in clean-up efforts. Although a field study was not initially intended for the HEMI prototype, its portability, low mass, and low power requirements made it a good candidate to test Compton imaging from an aerial platform. The instrument was brought to Japan in August, 2013, allowing for the first test of a Compton imager from a helicopter. The instrument and detectors proved reliable and performed well under high temperature, high humidity, and vibrations. Single-detector hit energy resolutions ranged from 2.5 - 2.8% FWHM at 662 keV. The field testing of the HEMI instrument in Fukushima revealed areas of higher activity of cesium among a diffuse background through aerial-based countrate mapping and through ground measurements. Although the Compton reconstructed events were dominated by random coincidences, preliminary Compton imaging results are promising. A future mission in medium-energy gamma-ray astrophysics would allow for many scientific advancements, e.g., a possible explanation for the excess positron emission from the Galactic Center, a better understanding of nucleosynthesis and explosion mechanisms in Type Ia supernovae, and a look at the physical forces at play in compact objects such as black holes and neutron stars. A next-generation telescope requires good energy resolution, good angular resolution, and high sensitivity in order to achieve these objectives. Large-volume CdZnTe detectors are an attractive candidate for a future instrument because of their good absorption, simple design, and minimal or no cooling requirements. Using the benchmarked HEMI CdZnTe detectors, a Compton telescope with a passive coded mask was designed and simulated with the goal of creating a very sensitive instrument that is capable of high angular resolution. The simulated telescope showed achievable energy resolutions of 1.68% FWHM at 511 keV and 1.11% at 1809 keV, on-axis angular resolutions in Compton mode of 2.63 deg. FWHM at 511 keV and 1.30 deg. FWHM at 1809 keV, and is capable of resolving sources to at least 0.2 deg. at lower energies with the use of the coded mask. An initial assessment of the instrument yields an effective area of 183 cm 2 at 511 keV and an anticipated all-sky sensitivity of 3.6 x 10 -6 photons/cm2/s for a broadened 511 keV source over a 2 year observation time. Additionally, combining a coded mask with a Compton imager to improve point source localization for positron detection has been demonstrated. (Abstract shortened by UMI.)

  18. Kinetics of the Active Medium of a Copper Vapor Brightness Amplifier

    NASA Astrophysics Data System (ADS)

    Kulagin, A. E.; Torgaev, S. N.; Evtushenko, G. S.; Trigub, M. V.

    2018-03-01

    A spatiotemporal kinetics of the active medium of a copper vapor brightness amplifier is described that allows gain characteristics to be investigated during the pump pulse. Model calculations show that changing the discharge parameters allows the radial gain profiles to be improved significantly, as well as the gain and the inversion duration to be increased. The data obtained will be used to choose the operating conditions for the active medium in the brightness amplifier mode.

  19. Monitoring of oil pollution in the Arabian Gulf based on medium resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Ghedira, H.

    2013-12-01

    A large number of inland and offshore oil fields are located in the Arabian Gulf where about 25% of the world's oil is produced by the countries surrounding the Arabian Gulf region. Almost all of this oil production is shipped by sea worldwide through the Strait of Hormuz making the region vulnerable to environmental and ecological threats that might arise from accidental or intentional oil spills. Remote sensing technologies have the unique capability to detect and monitor oil pollutions over large temporal and spatial scales. Synoptic satellite imaging can date back to 1972 when Landsat-1 was launched. Landsat satellite missions provide long time series of imagery with a spatial resolution of 30 m. MODIS sensors onboard NASA's Terra and Aqua satellites provide a wide and frequent coverage at medium spatial resolution, i.e. 250 m and 500, twice a day. In this study, the capability of medium resolution MODIS and Landsat data in detecting and monitoring oil pollutions in the Arabian Gulf was tested. Oil spills and slicks show negative or positive contrasts in satellite derived RGB images compared with surrounding clean waters depending on the solar/viewing geometry, oil thickness and evolution, etc. Oil-contaminated areas show different spectral characteristics compared with surrounding waters. Rayleigh-corrected reflectance at the seven medium resolution bands of MODIS is lower in oil affected areas. This is caused by high light absorption of oil slicks. 30-m Landsat image indicated the occurrence of oil spill on May 26 2000 in the Arabian Gulf. The oil spill showed positive contrast and lower temperature than surrounding areas. Floating algae index (FAI) images are also used to detect oil pollution. Oil-contaminated areas were found to have lower FAI values. To track the movement of oil slicks found on October 21 2007, ocean circulations from a HYCOM model were examined and demonstrated that the oil slicks were advected toward the coastal areas of United Arab Emirates (UAE). This can help to enable an early alarm for oil pollution and minimize the potential adverse effects. Remote sensing provides an effective tool for monitoring oil pollution. Medium resolution MODIS and Landsat data have shown to be effective in detecting oil pollution over small areas. Combined with remote sensing imagery, ocean circulation models demonstrate their unique value for developing a warning and forecasting system for oil pollution management.

  20. Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Miller, Joseph D.; Jiang, Naibo; Slipchenko, Mikhail N.; Mance, Jason G.; Meyer, Terrence R.; Roy, Sukesh; Gord, James R.

    2016-12-01

    100-kHz particle image velocimetry (PIV) is demonstrated using a double-pulsed, burst-mode laser with a burst duration up to 100 ms. This enables up to 10,000 time-sequential vector fields for capturing a temporal dynamic range spanning over three orders of magnitude in high-speed turbulent flows. Pulse doublets with inter-pulse spacing of 2 µs and repetition rate of 100 kHz are generated using a fiber-based oscillator and amplified through an all-diode-pumped, burst-mode amplifier. A physics-based model of pulse doublet amplification in the burst-mode amplifier is developed and used to accurately predict oscillator pulse width and pulse intensity inputs required to generate equal-energy pulse doublets at 532 nm for velocity measurements. The effect of PIV particle response and high-speed-detector limitations on the spatial and temporal resolution are estimated in subsonic turbulent jets. An effective spatial resolution of 266-275 µm and temporal resolution of 10 µs are estimated from the 8 × 8 pixel correlation window and inter-doublet time spacing, respectively. This spatiotemporal resolution is sufficient for quantitative assessment of integral time and length scales in highly turbulent jets with Reynolds numbers in the range 15,000-50,000. The temporal dynamic range of the burst-mode PIV measurement is 1200, limited by the 85-ms high-energy portion of the burst and 30-kHz high-frequency noise limit.

  1. A High Spatial Resolution Depth Sensing Method Based on Binocular Structured Light

    PubMed Central

    Yao, Huimin; Ge, Chenyang; Xue, Jianru; Zheng, Nanning

    2017-01-01

    Depth information has been used in many fields because of its low cost and easy availability, since the Microsoft Kinect was released. However, the Kinect and Kinect-like RGB-D sensors show limited performance in certain applications and place high demands on accuracy and robustness of depth information. In this paper, we propose a depth sensing system that contains a laser projector similar to that used in the Kinect, and two infrared cameras located on both sides of the laser projector, to obtain higher spatial resolution depth information. We apply the block-matching algorithm to estimate the disparity. To improve the spatial resolution, we reduce the size of matching blocks, but smaller matching blocks generate lower matching precision. To address this problem, we combine two matching modes (binocular mode and monocular mode) in the disparity estimation process. Experimental results show that our method can obtain higher spatial resolution depth without loss of the quality of the range image, compared with the Kinect. Furthermore, our algorithm is implemented on a low-cost hardware platform, and the system can support the resolution of 1280 × 960, and up to a speed of 60 frames per second, for depth image sequences. PMID:28397759

  2. Historical Analysis of Melt Pond Fraction on Arctic Sea Ice Through the Synthesis of High- and Medium- Resolution Optical Satellite Remote Sensing.

    NASA Astrophysics Data System (ADS)

    Wright, N.; Polashenski, C. M.

    2017-12-01

    Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces exert tremendous influence over the energy balance of the Arctic Ocean by controlling the absorption of solar radiation. Here we demonstrate the use of a newly released, open source, image classification algorithm designed to identify surface features in high resolution optical satellite imagery of sea ice. Through explicitly resolving individual features on the surface, the algorithm can determine the percentage of ice that is covered by melt ponds with a high degree of certainty. We then compare observations of melt pond fraction extracted from these images with an established method of estimating melt pond fraction from medium resolution satellite images (e.g. MODIS). Because high resolution satellite imagery does not provide the spatial footprint needed to examine the entire Arctic basin, we propose a method of synthesizing both high and medium resolution satellite imagery for an improved determination of melt pond fraction across whole Arctic. We assess the historical trends of melt pond fraction in the Arctic ocean, and address the question: Is pond coverage changing in response to changing ice conditions? Furthermore, we explore the image area that must be observed in order to get a locally representative sample (i.e. the aggregate scale), and show that it is possible to determine accurate estimates of melt pond fraction by observing sample areas significantly smaller than the typical footprint of high-resolution satellite imagery.

  3. A Multi-object Exoplanet Detecting Technique

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    2011-05-01

    Exoplanet exploration is not only a meaningful astronomical action, but also has a close relation with the extra-terrestrial life. High resolution echelle spectrograph is the key instrument for measuring stellar radial velocity (RV). But with higher precision, better environmental stability and higher cost are required. An improved technique of RV means invented by David J. Erskine in 1997, External Dispersed Interferometry (EDI), can increase the RV measuring precision by combining the moderate resolution spectrograph with a fixed-delay Michelson interferometer. LAMOST with large aperture and large field of view is equipped with 16 multi-object low resolution fiber spectrographs. And these spectrographs are capable to work in medium resolution mode (R=5{K}˜10{K}). LAMOST will be one of the most powerful exoplanet detecting systems over the world by introducing EDI technique. The EDI technique is a new technique for developing astronomical instrumentation in China. The operating theory of EDI was generally verified by a feasibility experiment done in 2009. And then a multi-object exoplanet survey system based on LAMOST spectrograph was proposed. According to this project, three important tasks have been done as follows: Firstly, a simulation of EDI operating theory contains the stellar spectrum model, interferometer transmission model, spectrograph mediation model and RV solution model. In order to meet the practical situation, two detecting modes, temporal and spatial phase-stepping methods, are separately simulated. The interference spectrum is analyzed with Fourier transform algorithm and a higher resolution conventional spectrum is resolved. Secondly, an EDI prototype is composed of a multi-object interferometer prototype and the LAMOST spectrograph. Some ideas are used in the design to reduce the effect of central obscuration, for example, modular structure and external/internal adjusting frames. Another feasibility experiment was done at Xinglong Station in 2010. A related spectrum reduction program and the instrumental stability were tested by obtaining some multi-object interference spectrum. Thirdly, studying the parameter optimization of fixed-delay Michelson interferometer is helpful to increase its inner thermal stability and reduce the external environmental requirement. Referring to Wide-angle Michelson Interferometer successfully used in Upper Atmospheric Wind field, a glass pair selecting scheme is given. By choosing a suitable glass pair of interference arms, the RV error can be stable as several hundred m\\cdots^{-1}\\cdot{dg}C^{-1}. Therefore, this work is helpful to deeply study EDI technique and speed up the development of multi-object exoplanet survey system. LAMOST will make a greater contribution to astronomy when the combination between its spectrographs and EDI technique comes true.

  4. A high resolution cavity BPM for the CLIC Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chritin, N.; Schmickler, H.; Soby, L.

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  5. Dual-modal three-dimensional imaging of single cells with isometric high resolution using an optical projection tomography microscope

    NASA Astrophysics Data System (ADS)

    Miao, Qin; Rahn, J. Richard; Tourovskaia, Anna; Meyer, Michael G.; Neumann, Thomas; Nelson, Alan C.; Seibel, Eric J.

    2009-11-01

    The practice of clinical cytology relies on bright-field microscopy using absorption dyes like hematoxylin and eosin in the transmission mode, while the practice of research microscopy relies on fluorescence microscopy in the epi-illumination mode. The optical projection tomography microscope is an optical microscope that can generate 3-D images of single cells with isometric high resolution both in absorption and fluorescence mode. Although the depth of field of the microscope objective is in the submicron range, it can be extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. Cells suspended in optical gel flow through a custom-designed microcapillary. Multiple pseudoprojection images are taken by rotating the microcapillary. After these pseudoprojection images are further aligned, computed tomography methods are applied to create 3-D reconstruction. 3-D reconstructed images of single cells are shown in both absorption and fluorescence mode. Fluorescence spatial resolution is measured at 0.35 μm in both axial and lateral dimensions. Since fluorescence and absorption images are taken in two different rotations, mechanical error may cause misalignment of 3-D images. This mechanical error is estimated to be within the resolution of the system.

  6. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal.

    PubMed

    Qin, Z P; Xie, G Q; Ma, J; Ge, W Y; Yuan, P; Qian, L J; Su, L B; Jiang, D P; Ma, F K; Zhang, Q; Cao, Y X; Xu, J

    2014-04-01

    We have demonstrated a diode-pumped passively mode-locked femtosecond Nd,Y:CaF2 disordered crystal laser for the first time to our knowledge. By choosing appropriate Y-doping concentration, a broad fluorescence linewidth of 31 nm has been obtained from the gain linewidth-variable Nd,Y:CaF2 crystal. With the Nd,Y:CaF2 disordered crystal as gain medium, the mode-locked laser generated pulses with pulse duration as short as 103 fs, average output power of 89 mW, and repetition rate of 100 MHz. To our best knowledge, this is the shortest pulse generated from Nd-doped crystal lasers so far. The research results show that the Nd,Y:CaF2 disordered crystal will be a potential alternative as gain medium of repetitive chirped pulse amplification for high-peak-power lasers.

  7. Spectroscopic mode identification in gamma Doradus stars

    NASA Astrophysics Data System (ADS)

    Rylvia Pollard, Karen

    2015-08-01

    The MUSICIAN programme at the University of Canterbury has been successfully identifying frequencies and pulsation modes in many gamma Doradus stars using hundreds of precise, high resolution spectroscopic observations. This paper describes some of these frequency and mode identifications and the emerging patterns of the programme.

  8. Medium resolution spectroscopy and chemical composition of Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    We used integrated-light medium-resolution spectra of six Galactic globular clusters and model stellar atmospheres to carry out population synthesis and to derive chemical composition and age of the clusters. We used medium-resolution spectra of globular clusters published by Schiavon et al. (2005), as well as our long-slit observations with the 1.93 m telescope of the Haute Provence Observatory. The observed spectra were fitted to the theoretical ones interactively. As an initial approach, we used masses, radii and log g of stars in the clusters corresponding to the best fitting isochrones in the observed color-magnitude diagrams. The computed synthetic blanketed spectra of stars were summed according to the Chabrier mass function. To improve the determination of age and helium content, the shape and depth of the Balmer absorption lines was analysed. The abundances of Mg, Ca, C and several other elements were derived. A reasonable agreement with the literature data both in chemical composition and in age of the clusters is found. Our method might be useful for the development of stellar population models and for a better understanding of extragalactic star clusters.

  9. Free-space to few-mode-fiber coupling under atmospheric turbulence.

    PubMed

    Zheng, Donghao; Li, Yan; Chen, Erhu; Li, Beibei; Kong, Deming; Li, Wei; Wu, Jian

    2016-08-08

    High speed free space optical communication (FSOC) has taken advantages of components developed for fiber-optic communication systems. Recently, with the rapid development of few-mode-fiber based fiber communication systems, few-mode-fiber components might further promote their applications in FSOC system. The coupling efficiency between free space optical beam and few-mode fibers under atmospheric turbulence effect are investigated in this paper. Both simulation and experimental results show that, compared with single-mode fiber, the coupling efficiencies for a 2-mode fiber and a 4-mode fiber are improved by ~4 dB and ~7 dB respectively in the presence of medium moderate and strong turbulence. Compared with single-mode fiber, the relative standard deviation of received power is restrained by 51% and 66% respectively with a 4-mode and 2-mode fiber.

  10. Large tuning of narrow-beam terahertz plasmonic lasers operating at 78 K

    DOE PAGES

    Wu, Chongzhao; Jin, Yuan; Reno, John L.; ...

    2016-12-19

    A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ~57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs), which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide) on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning rangemore » compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7°) is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.« less

  11. Compositing Visualization Tools for Improving Design Decisions

    ERIC Educational Resources Information Center

    Chung, Wayne C.

    2005-01-01

    Today's designers deal with a range of communication modes. These modes vary from hand gestures to sketches, physical models, and computer-generated images. It has been the norm to use these mediums throughout the process to visualize the intended design so that the potential users, designers, team members, and clients can understand the end…

  12. Photonic crystal fiber as lab-in-fiber optofluidic platform for sensing and process monitoring

    NASA Astrophysics Data System (ADS)

    Tian, Fei

    The ability to design and fabricate photonic crystal fiber (PCF) of vastly different microstructural and optical characteristics is arguably one of the most significant recent advances in the field of fiber optics. This dissertation aims to advance the PCF research frontier by exploring long-period fiber gratings (LPG) inscribed in PCF for sensing and process monitoring via combined numerical and experimental investigation. Specifically, a mode solver based on the Finite Element Method (FEM) has been employed to calculate the mode field distribution, the phase matching condition, and the dispersive characteristics associated with LPG-induced coupling of the fundamental core mode (LP01) to various cladding modes (LPmn, m=0,1; n=2,3, ...) in an endlessly single mode PCF. The numerical results have been used to guide the design and fabrication of LPG in PCF by CO2 laser inscription to maximize index sensitivity in gas or liquid medium. Cascaded PCF-LPG has been fabricated and shown to exhibit record sensitivity in excess of 1700 nm/RIU with high resolution for index measurements of gas phase. The inherent interference fringes in the transmission spectrum of cascaded PCF-LPG have been utilized to analyze mode coupling behaviour. In addition, we have developed and implemented a reflective mirror-aided method to allow symmetrical CO2 laser irradiation of PCF during LPG inscription. Both numerical analysis and experimental measurements have shown significantly improved mode coupling behaviour, mode field distribution, as well as reproducibility in LPG fabrication, critical for practical exploitation of the PCF-LPG platform. We have further exploited the high index sensitivity of PCF-LPG to monitor layer-by-layer (LbL) self-assembly of poly(vinyl pyrrolidone) (PVPON) and poly(methacrylic acid) (PMAA) polyelectrolyte layers as well as the pH responsiveness of the cross-linked PMAA hydrogel films. A shift of ˜1.625 nm in the resonance wavelength per polyelectrolyte layer deposited inside PCF-LPG has been registered with robust pH response of the hydrogel. These findings have demonstrated the significant potential of PCF-LPG as a novel lab-in-fiber optofluidic platform for basic and applied studies of LbL in confined geometry for nanosensors and nano-actuators based on stimuli-responsive polyelectrolyte thin films.

  13. A Case Study of Chinese College Students' Attitudes toward Only English-Medium Teaching in EFL Classrooms

    ERIC Educational Resources Information Center

    Yue, Sun; Ying, Wang; Jingxia, Liu

    2015-01-01

    Facing the current situation that Chinese students are poor in English productive ability, the mode of only English-medium teaching is put forward to completely improve students' English abilities and comprehensive competence by creating second language acquisition atmosphere. Since few studies have been conducted on students' attitudes toward…

  14. Sentinel-1A - Launching the first satellite and launching the operational Copernicus programme

    NASA Astrophysics Data System (ADS)

    Aschbacher, Josef; Milagro Perez, Maria Pilar

    2014-05-01

    The first Copernicus satellite, Sentinel-1A, is prepared for launch in April 2014. It will provide continuous, systematic and highly reliable radar images of the Earth. Sentinel-1B will follow around 18 months later to increase observation frequency and establish an operational system. Sentinel-1 is designed to work in a pre-programmed conflict-free operation mode ensuring the reliability required by operational services and creating a consistent long-term data archive for applications based on long time series. This mission will ensure the continuation and improvement of SAR operational services and applications addressing primarily medium- to high-resolution applications through a main mode of operation that features both a wide swath (250 km) and high geometric (5 × 20 m) and radiometric resolution, allowing imaging of global landmasses, coastal zones, sea ice, polar areas, and shipping routes at high resolution. The Sentinel-1 main operational mode (Interferometric Wide Swath) will allow to have a complete coverage of the Earth in 6 days in the operational configuration when the two Sentinel-1 spacecraft will be in orbit simultaneously. High priority areas like Europe, Canada and some shipping routes will be covered almost daily. This high global observation frequency is unprecedented and cannot be reached with any other current radar mission. Envisat, for example, which was the 'workhorse' in this domain up to April 2012, reached global coverage every 35 days. Sentinel-1 data products will be made available systematically and free of charge to all users including institutional users, the general public, scientific and commercial users. The transition of the Copernicus programme from the development to operational phase will take place at about the same time when the first Sentinel-1 satellite will be launched. During the operational phase, funding of the programme will come from the European Union Multiannual Financial Framework (MFF) for the years 2014-2020. The EU Copernicus Regulation, laying down the legal basis for the EU operational Copernicus programme, is currently in its final phase of approval by the European Parliament and Council. Based on this, the future EU-ESA Copernicus Agreement will define the modalities for the cooperation between ESA and the EU for the period 2014-2020 and will regulate the budget implementation tasks entrusted to ESA by the EU for the accomplishment of the space segment and the programme operations phase. The agreement, once signed, will pave the way for important procurements over the next seven years in the Earth observation domain.

  15. Validation of Mode-S Meteorological Routine Air Report aircraft observations

    NASA Astrophysics Data System (ADS)

    Strajnar, B.

    2012-12-01

    The success of mesoscale data assimilation depends on the availability of three-dimensional observations with high spatial and temporal resolution. This paper describes an example of such observations, available through Mode-S air traffic control system composed of ground radar and transponders on board the aircraft. The meteorological information is provided by interrogation of a dedicated meteorological data register, called Meteorological Routine Air Report (MRAR). MRAR provides direct measurements of temperature and wind, but is only returned by a small fraction of aircraft. The quality of Mode-S MRAR data, collected at the Ljubljana Airport, Slovenia, is assessed by its comparison with AMDAR and high-resolution radiosonde data sets, which enable high- and low-level validation, respectively. The need for temporal smoothing of raw Mode-S MRAR data is also studied. The standard deviation of differences between smoothed Mode-S MRAR and AMDAR is 0.35°C for temperature, 0.8 m/s for wind speed and below 10 degrees for wind direction. The differences with respect to radiosondes are larger, with standard deviations of approximately 1.7°C, 3 m/s and 25 degrees for temperature, wind speed and wind direction, respectively. It is concluded that both wind and temperature observations from Mode-S MRAR are accurate and therefore potentially very useful for data assimilation in numerical weather prediction models.

  16. Inelastic Tunneling Spectroscopy of Alkanethiol Molecules: High-Resolution Spectroscopy and Theoretical Simulations

    NASA Astrophysics Data System (ADS)

    Okabayashi, Norio; Paulsson, Magnus; Ueba, Hiromu; Konda, Youhei; Komeda, Tadahiro

    2010-02-01

    We investigate inelastic electron tunneling spectroscopy (IETS) for alkanethiol self-assembled monolayers (SAM) with a scanning tunneling microscope and compare it to first-principles calculations. Using a combination of partial deuteration of the molecule and high-resolution measurements, we identify and differentiate between methyl (CH3) and methylene (CH2) groups and their symmetric and asymmetric C-H stretch modes. The calculations agree quantitatively with the measured IETS in producing the weight of the symmetric and asymmetric C-H stretch modes while the methylene stretch mode is largely underestimated. We further show that inelastic intermolecular scattering is important in the SAM by plotting the theoretical current densities.

  17. Modeling the depth-sectioning effect in reflection-mode dynamic speckle-field interferometric microscopy

    PubMed Central

    Zhou, Renjie; Jin, Di; Hosseini, Poorya; Singh, Vijay Raj; Kim, Yang-hyo; Kuang, Cuifang; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.

    2017-01-01

    Unlike most optical coherence microscopy (OCM) systems, dynamic speckle-field interferometric microscopy (DSIM) achieves depth sectioning through the spatial-coherence gating effect. Under high numerical aperture (NA) speckle-field illumination, our previous experiments have demonstrated less than 1 μm depth resolution in reflection-mode DSIM, while doubling the diffraction limited resolution as under structured illumination. However, there has not been a physical model to rigorously describe the speckle imaging process, in particular explaining the sectioning effect under high illumination and imaging NA settings in DSIM. In this paper, we develop such a model based on the diffraction tomography theory and the speckle statistics. Using this model, we calculate the system response function, which is used to further obtain the depth resolution limit in reflection-mode DSIM. Theoretically calculated depth resolution limit is in an excellent agreement with experiment results. We envision that our physical model will not only help in understanding the imaging process in DSIM, but also enable better designing such systems for depth-resolved measurements in biological cells and tissues. PMID:28085800

  18. Optimized undulator to generate low energy photons from medium to high energy accelerators

    NASA Astrophysics Data System (ADS)

    Chung, Ting-Yi; Chiu, Mau-Sen; Luo, Hao-Wen; Yang, Chin-Kang; Huang, Jui-Che; Jan, Jyh-Chyuan; Hwang, Ching-Shiang

    2017-07-01

    While emitting low energy photons from a medium or high energy storage ring, the on-axis heat load on the beam line optics can become a critical issue. In addition, the heat load in the bending magnet chamber, especially in the vertical and circular polarization mode of operation may cause some concern. In this work, we compare the heat loads for the APPLE-II and the Knot-APPLE, both optimized to emit 10 eV photons from the 3 GeV TPS. Under this constraint the heat load analysis, synchrotron radiation performance and features in various polarization modes are presented. Additional consideration is given to beam dynamics effect.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulchin, Yurii N; Vitrik, O B; Gurbatov, S O

    The phase of light propagating through a bent optical fibre is shown to depend on the refractive index of the medium surrounding the fibre cladding when there is resonance coupling between the guided core mode and cladding modes. This shifts the spectral maxima in the bent fibre-optic Fabry - Perot interferometer. The highest phase and spectral sensitivities achieved with this interferometer configuration are 0.71 and 0.077, respectively, and enable changes in the refractive index of the ambient medium down to 5 Multiplication-Sign 10{sup -6} to be detected. This makes the proposed approach potentially attractive for producing highly stable, precision refractivemore » index sensors capable of solving a wide range of liquid refractometry problems.« less

  20. Characterizing individual scattering events by measuring the amplitude and phase of the electric field diffusing through a random medium.

    PubMed

    Jian, Zhongping; Pearce, Jeremy; Mittleman, Daniel M

    2003-07-18

    We describe observations of the amplitude and phase of an electric field diffusing through a three-dimensional random medium, using terahertz time-domain spectroscopy. These measurements are spatially resolved with a resolution smaller than the speckle spot size and temporally resolved with a resolution better than one optical cycle. By computing correlation functions between fields measured at different positions and with different temporal delays, it is possible to obtain information about individual scattering events experienced by the diffusing field. This represents a new method for characterizing a multiply scattered wave.

  1. Capturing Pressure Oscillations in Numerical Simulations of Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubba, Sreenivasa Rao; Jupudi, Ravichandra S.; Pasunurthi, Shyam Sundar

    In an earlier publication, the authors compared numerical predictions of the mean cylinder pressure of diesel and dual-fuel combustion, to that of measured pressure data from a medium-speed, large-bore engine. In these earlier comparisons, measured data from a flush-mounted in-cylinder pressure transducer showed notable and repeatable pressure oscillations which were not evident in the mean cylinder pressure predictions from computational fluid dynamics (CFD). In this paper, the authors present a methodology for predicting and reporting the local cylinder pressure consistent with that of a measurement location. Such predictions for large-bore, medium-speed engine operation demonstrate pressure oscillations in accordance with thosemore » measured. The temporal occurrences of notable pressure oscillations were during the start of combustion and around the time of maximum cylinder pressure. With appropriate resolutions in time steps and mesh sizes, the local cell static pressure predicted for the transducer location showed oscillations in both diesel and dual-fuel combustion modes which agreed with those observed in the experimental data. Fast Fourier transform (FFT) analysis on both experimental and calculated pressure traces revealed that the CFD predictions successfully captured both the amplitude and frequency range of the oscillations. Furthermore, resolving propagating pressure waves with the smaller time steps and grid sizes necessary to achieve these results required a significant increase in computer resources.« less

  2. Capturing Pressure Oscillations in Numerical Simulations of Internal Combustion Engines

    DOE PAGES

    Gubba, Sreenivasa Rao; Jupudi, Ravichandra S.; Pasunurthi, Shyam Sundar; ...

    2018-04-09

    In an earlier publication, the authors compared numerical predictions of the mean cylinder pressure of diesel and dual-fuel combustion, to that of measured pressure data from a medium-speed, large-bore engine. In these earlier comparisons, measured data from a flush-mounted in-cylinder pressure transducer showed notable and repeatable pressure oscillations which were not evident in the mean cylinder pressure predictions from computational fluid dynamics (CFD). In this paper, the authors present a methodology for predicting and reporting the local cylinder pressure consistent with that of a measurement location. Such predictions for large-bore, medium-speed engine operation demonstrate pressure oscillations in accordance with thosemore » measured. The temporal occurrences of notable pressure oscillations were during the start of combustion and around the time of maximum cylinder pressure. With appropriate resolutions in time steps and mesh sizes, the local cell static pressure predicted for the transducer location showed oscillations in both diesel and dual-fuel combustion modes which agreed with those observed in the experimental data. Fast Fourier transform (FFT) analysis on both experimental and calculated pressure traces revealed that the CFD predictions successfully captured both the amplitude and frequency range of the oscillations. Furthermore, resolving propagating pressure waves with the smaller time steps and grid sizes necessary to achieve these results required a significant increase in computer resources.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Schulz, Carl; Konijnenburg, Marco

    High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging enables the spatial mapping and identification of biomolecules from complex surfaces. The need for long time-domain transients, and thus large raw file sizes, results in a large amount of raw data (“big data”) that must be processed efficiently and rapidly. This can be compounded by largearea imaging and/or high spatial resolution imaging. For FT-ICR, data processing and data reduction must not compromise the high mass resolution afforded by the mass spectrometer. The continuous mode “Mosaic Datacube” approach allows high mass resolution visualization (0.001 Da) of mass spectrometry imaging data, butmore » requires additional processing as compared to featurebased processing. We describe the use of distributed computing for processing of FT-ICR MS imaging datasets with generation of continuous mode Mosaic Datacubes for high mass resolution visualization. An eight-fold improvement in processing time is demonstrated using a Dutch nationally available cloud service.« less

  4. Cascade Raman sidebands generation and orbital angular momentum relations for paraxial beam modes

    NASA Astrophysics Data System (ADS)

    Strohaber, James; Schuessler, Hans; Kolomenskii, Alexandre; Zhu, Feng

    2015-05-01

    In this work, the nonlinear parametric interaction of optical radiation in various transverse modes in a Raman-active medium is investigated both experimentally and theoretically. Verification of the orbital angular momentum algebra (OAM-algebra) was performed for high-order Laguerre Gaussian modes. It was found that this same algebra also describes the coherent transfer of OAM when Ince-Gaussian modes were used. New theoretical considerations extend the OAM-algebra to even and odd Laguerre Gaussian, and Hermite Gaussian beam modes through a change of basis. The results of this work provide details in the spatiotemporal synthesis of custom broadband pulses of radiation from Raman sideband generation.

  5. The Time-Dependent Sensitivity of the MAMA and CCD Long-Slit Gratings

    NASA Astrophysics Data System (ADS)

    Holland, Stephen T.; Aloisi, Alessandra; Bostroem, Azalee; Oliveria, Cristina; Proffitt, Charles

    2014-12-01

    We present the results of observing flux standard stars used to determine trends in the sensitivities of the five STIS low-resolution, long-slit gratings between 1997 and 2013. Also, the assumption that the sensitivity trends for the medium-resolution and echelle gratings are the same as those for the corresponding low-resolution gratings is tested.

  6. Using object-oriented classification and high-resolution imagery to map fuel types in a Mediterranean region.

    Treesearch

    L. Arroyo; S.P. Healey; W.B. Cohen; D. Cocero; J.A. Manzanera

    2006-01-01

    Knowledge of fuel load and composition is critical in fighting, preventing, and understanding wildfires. Commonly, the generation of fuel maps from remotely sensed imagery has made use of medium-resolution sensors such as Landsat. This paper presents a methodology to generate fuel type maps from high spatial resolution satellite data through object-oriented...

  7. Spatial Resolution Versus Data Acquisition Efficiency in Mapping an Inhomogeneous System with Species Diffusion

    DOE PAGES

    Chen, Fengxiang; Zhang, Yong; Gfroerer, T. H.; ...

    2015-06-02

    Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the twomore » modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer – where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) – whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.« less

  8. Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Alak; Loeb, Abraham, E-mail: akr@tifr.res.in, E-mail: aloeb@cfa.harvard.edu

    We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The shortmore » temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.« less

  9. Amateur Spectroscopy: What is Achievable from the Backyard?

    NASA Astrophysics Data System (ADS)

    Mais, D. E.; Stencel, R. E.

    2004-05-01

    Recent advances in technology have opened the doors for amateurs to potentially contribute in the area of spectroscopy. This is due to both a shift in the use of more sensitive CCD detectors and the recent availability of powerful and versatile spectrometers aimed at the amateur community. We will focus on the instrument produced by Santa Barbara Instrument Group (SBIG), the Self-Guided Spectrometer (SGS). This instrument appeared on the market about four years ago aimed at a sub group of amateurs. In conjunction with SBIG CCD cameras, the SGS is self-guiding in that it keeps the image of an object locked onto the entrance slit, which allows for long exposures to be taken. The SGS allows spectra to be obtained with only modest aperture instruments of stars down to 10-12 magnitude. In addition, the SGS features a dual grating carousal which, with the flip of a lever, allows you to obtain dispersions in the low-resolution mode ( 4 Angstroms/pixel) or higher resolution mode ( 1 Angstrom/pixel). In the low-resolution mode, about 3000 Angstrom coverage is obtained whereas in the high-resolution mode, about 750 Angstroms. The area of the visible and near infrared part of the spectrum you decide to obtain a spectrum is dialed in by the user. More recently, swappable grating carousals have allowed for gratings with even higher dispersions (0.5 -0.3 Angstroms/pixel). The lower resolution mode is useful for stellar classification and obtaining spectra of planetary nebula. In the high-resolution modes, many absorption lines are visible of atoms, ions and simple molecules. In addition, one can measure the Doppler shift of absorption and emission lines to determine velocities of approach or recession of objects along with rotation velocities of stars and planets. Our particular interests have focused on identifying chemical elements/ions and compounds in the atmospheres of stars and nebulae. The resolution and sensitivity of the instrument is such that we have been able to identify the unstable element technetium in certain S and C type stars along with anomalous 12C/13C ratios as measured by absorption bands of diatomic carbon (C2). Measurements of certain line intensity ratios in planetary nebula allows for the calculation of both the nebula temperature and electron density. Our presentation will go into detail on the use of the SGS, its calibration and some of the kinds of measurements that can be made with an amateur sized telescope equipped with such "off the shelf" instrument.

  10. A Large Scale Code Resolution Service Network in the Internet of Things

    PubMed Central

    Yu, Haining; Zhang, Hongli; Fang, Binxing; Yu, Xiangzhan

    2012-01-01

    In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT's advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS. PMID:23202207

  11. A large scale code resolution service network in the Internet of Things.

    PubMed

    Yu, Haining; Zhang, Hongli; Fang, Binxing; Yu, Xiangzhan

    2012-11-07

    In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT’s advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS.

  12. Theoretical and Experimental Photoelectron Spectroscopy Characterization of the Ground State of Thymine Cation.

    PubMed

    Majdi, Youssef; Hochlaf, Majdi; Pan, Yi; Lau, Kai-Chung; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Al-Mogren, Muneerah Mogren; Schwell, Martin

    2015-06-11

    We report on the vibronic structure of the ground state X̃(2)A″ of the thymine cation, which has been measured using a threshold photoelectron photoion coincidence technique and vacuum ultraviolet synchrotron radiation. The threshold photoelectron spectrum, recorded over ∼0.7 eV above the ionization potential (i.e., covering the whole ground state of the cation) shows rich vibrational structure that has been assigned with the help of calculated anharmonic modes of the ground electronic cation state at the PBE0/aug-cc-pVDZ level of theory. The adiabatic ionization energy has been experimentally determined as AIE = 8.913 ± 0.005 eV, in very good agreement with previous high resolution results. The corresponding theoretical value of AIE = 8.917 eV has been calculated in this work with the explicitly correlated method/basis set (R)CCSD(T)-F12/cc-pVTZ-F12, which validates the theoretical approach and benchmarks its accuracy for future studies of medium-sized biological molecules.

  13. A combined phase contrast imaging-interferometer system for the detection of multiscale density fluctuations on DIII-D

    NASA Astrophysics Data System (ADS)

    Davis, E. M.; Rost, J. C.; Porkolab, M.; Marinoni, A.; van Zeeland, M. A.

    2016-10-01

    A heterodyne interferometer channel has been added to the DIII-D phase contrast imaging (PCI) system. Both measurements share a single 10.6 μm probe beam. Whereas the PCI excels at detecting medium- to high- k fluctuations (1.5 cm-1 <= k <= 20 cm-1), the interferometer extends the system sensitivity to low- k fluctuations (k <= 5 cm-1), allowing simultaneous measurement of electron- and ion-scale instabilities with sub-microsecond resolution. Further, correlating measurements from the interferometer channel with those from DIII-D's pre-existing, toroidally separated interferometer (Δ∅ = 45°) allows identification of low- n modes. This new capability has been corroborated against magnetic measurements and may allow novel investigations of core - localized MHD that is otherwise inaccessible via external magnetic measurements, with potential applications to fast particle transport and disruptions. Work supported by USDOE under DE-FG02-94ER54235, DE-FC02-04ER54698, and DE-FC02-99ER54512.

  14. Pc3 activity at low geomagnetic latitudes - A comparison with solar wind observations

    NASA Technical Reports Server (NTRS)

    Villante, U.; Lepidi, S.; Vellante, M.; Lazarus, A. J.; Lepping, R. P.

    1992-01-01

    On an hourly time-scale the different roles of the solar wind and interplanetary magnetic field (IMF) parameters on ground micropulsation activity can be better investigated than at longer time-scales. A long-term comparison between ground measurements made at L'Aquila and IMP 8 observations confirms the solar wind speed as the key parameter for the onset of pulsations even at low latitudes, although additional control of the energy transfer from the interplanetary medium to the earth's magnetosphere is clearly exerted by the cone angle. Above about 20 mHz the frequency of pulsations is confirmed to be closely related to the IMF magnitude while, in agreement with model predictions, the IMF magnitude is related to the amplitude of the local fundamental resonant mode. We provide an interesting example in which high resolution measurements simultaneously obtained in the foreshock region and on the ground show that external transversal fluctuations do not penetrate deep into the low latitude magnetosphere.

  15. Evidence of atmospheric gravity wave perturbations of the Brunt-Vaisala frequency in the atmosphere

    NASA Technical Reports Server (NTRS)

    Good, R. E.; Beland, R. W.; Brown, J. H.; Dewan, E. M.

    1986-01-01

    A series of high altitude, medium resolution, measurements of temperature, pressure and turbulence have been performed by the Air Force Geophysics Laboratory. These measurements were conducted using the VIZ Manufacturing Co. microsondes with attached micro-thermal probes measuring the temperature structure coefficient. A typical atmospheric temperature measurement is given. Several small temperature inversions are evident in the troposphere. The stratosphere is marked with numerous fluctuations in the temperature profile. Microsondes provide temperature and pressure measurements every 4 seconds up to a maximum altitude of 30 km (MSL). Since the average ascent rate is 5 m/s, the altitude interval between the measurement reports is 20 m. The potential temperature is calculated from the temperature and pressure. Spectral analysis of atmospheric Brunt-Vaisala frequencies reveal spectra similiar to the velocity spectra of Dewan et al. (1984), Daniels (1982), and Endlich and Singleton (1969). The Brunt-Vaisala spectra indicate the existence of separate, distinguishable wave modes.

  16. Analyzing the Multiscale Processes in Tropical Cyclone Genesis Associated with African Easterly Waves using the PEEMD. Part I: Downscaling Processes

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Shen, B. W.; Cheung, S.

    2016-12-01

    Recent advance in high-resolution global hurricane simulations and visualizations have collectively suggested the importance of both downscaling and upscaling processes in the formation and intensification of TCs. To reveal multiscale processes from massive volume of global data for multiple years, a scalable Parallel Ensemble Empirical Mode Decomposition (PEEMD) method has been developed for the analysis. In this study, the PEEMD is applied to analyzing 10-year (2004-2013) ERA-Interim global 0.750 resolution reanalysis data to explore the role of the downscaling processes in tropical cyclogenesis associated with African Easterly Waves (AEWs). Using the PEEMD, raw data are decomposed into oscillatory Intrinsic Function Modes (IMFs) that represent atmospheric systems of the various length scales and the trend mode that represents a non-oscillatory large scale environmental flow. Among oscillatory modes, results suggest that the third oscillatory mode (IMF3) is statistically correlated with the TC/AEW scale systems. Therefore, IMF3 and trend mode are analyzed in details. Our 10-year analysis shows that more than 50% of the AEW associated hurricanes reveal the association of storms' formation with the significant downscaling shear transfer from the larger-scale trend mode to the smaller scale IMF3. Future work will apply the PEEMD to the analysis of higher-resolution datasets to explore the role of the upscaling processes provided by the convection (or TC) in the development of the TC (or AEW). Figure caption: The tendency for horizontal wind shear for the total winds (black line), IMF3 (blue line), and trend mode (red line) and SLP (black dotted line) along the storm track of Helene (2006).

  17. A protocol for EBT3 radiochromic film dosimetry using reflection scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papaconstadopoulos, Pavlos, E-mail: pavpapac@gmail.com; Hegyi, Gyorgy; Seuntjens, Jan

    2014-12-15

    Purpose: To evaluate the performance of the EBT3 radiochromic film dosimetry system using reflection measurements and to suggest a calibration protocol for precise and accurate reflection film dosimetry. Methods: A set of 14 Gafchromic EBT3 film pieces were irradiated to various doses ranging from 0 to 8 Gy and subsequently scanned using both the reflection and transmission mode. Scanning resolution varied from 50 to 508 dpi (0.5–0.05 mm/pixel). Both the red and green color channels of scanned images were used to relate the film response to the dose. A sensitivity, uncertainty, and accuracy analysis was performed for all scanning modesmore » and color channels. The total uncertainty, along with the fitting and experimental uncertainty components, was identified and analyzed. A microscope resolution target was used to evaluate possible resolution losses under reflection scanning. The calibration range was optimized for reflection scanning in the low (<2 Gy) and high (>2 Gy) dose regions based on the reported results. Results: Reflection scanning using the red channel exhibited the highest sensitivity among all modes, being up to 150% higher than transmission mode in the red channel for the lowest dose level. Furthermore, there was no apparent loss in resolution between the two modes. However, higher uncertainties and reduced accuracy were observed for the red channel under reflection mode, especially at dose levels higher than 2 Gy. These uncertainties were mainly attributed to saturation effects which were translated in poor fitting results. By restricting the calibration to the 0–2 Gy dose range, the situation is reversed and the red reflection mode was superior to the transmission mode. For higher doses, the green channel in reflection mode presented comparable results to the red transmission. Conclusions: A two-color reflection scanning protocol can be suggested for EBT3 radiochromic film dosimetry using the red channel for doses less than 2 Gy and the green channel for higher doses. The precision and accuracy are significantly improved in the low dose region following such a protocol.« less

  18. Imaging of idle breast implants with ultrasound-strain elastography- A first experimental study to establish criteria for accurate imaging of idle implants via ultrasound-strain elastography.

    PubMed

    Kuehlmann, Britta; Prantl, Lukas; Michael Jung, Ernst

    2016-01-01

    To investigate whether there are fundamental sonographic and elastographic criteria to precisely assess different surfaces and fillings of idle breast implants and to determine their most distinctive parameters. This was a comparative study of different unused breast implant materials, neighter in animals nor in humans. This knowledge should be transferred in vivo to develop an objective measurement tool. Nine idle breast implants-silicone and polyurethane (PU)-were examined in an experimental study by using ultrasound B-mode with tissue harmonic imaging (THI), speckle reduction imaging (SRI, level 0-4), cross-beam (CB, low, medium, high), photopic and the colour coded ultrasound-strain elastography with a multifrequency probe (9-15 MHz).Using a standardised protocol the implants' centre as well as the edge were analysed by one experienced examiner. Two independent readers performed analysis and evaluation. For image interpretation a score was created (score 0:inadequate image, score 5:best image quality). The highest score result for the centre was achieved by using ultrasound with B-mode in addition with CB level medium, SRI level 2, THI and photopic (mean:3.22±SD:1.56), but without any statistic significant difference (t-value = 0.71). With elastography the implants' edge in general was represented without disruptive artefacts (3.89±0.60) with statistic significant difference (t-value = 5.29). Implants filled with inner cohesive silicone gel II° showed best imaging conditions for their centre via ultrasound (5±0) as well as for their edge via elastography (4.50±0.71). Ultrasound-strain elastography and high resolution ultrasound represent a valuable measurement tool to evaluate different properties of idle breast implants. These modified ultrasound examinations could be an additional help for clinical investigations and be correlated with Baker's Classification.

  19. Multi-mode phase speed measurements with array-based analysis: Application to the North American continent

    NASA Astrophysics Data System (ADS)

    Matsuzawa, H.; Yoshizawa, K.

    2017-12-01

    Recent high-density broad-band seismic networks allow us to construct improved 3-D upper mantle models with unprecedented horizontal resolution using surface waves. Such dispersion measurements have been primarily based on the analysis of fundamental mode. Higher-mode information can be of help in enhancing vertical resolution of 3-D models, but their dispersion analysis is intrinsically difficult, since wave-packets of several modes are overlapped each other in an observed seismogram. In this study, we measure phase dispersion of multi-mode surface waves with an array-based analysis. Our method is modeled on a one-dimensional frequency-wavenumber method originally developed by Nolet (1975, GRL), which can be applied to a set of broadband seismic records observed in a linear array along a great circle path. Through this analysis, we can obtain a spectrogram in c-T (phase speed - period) domain, which is characterized by mode-branch dispersion curves and relative spectral powers for each mode. Synthetic experiments indicate that we can separate the modal contribution using a long linear array with typical array length of about 2000 to 4000 km. The method is applied to a large data set from USArray using nearly 400 seismic events in 2007 - 2014 with Mw 6.5 or greater. Our phase-speed maps for the fundamental-mode Love and Rayleigh waves and the first higher-mode Rayleigh waves match well with the earlier models. The phase speed maps reflect typical large-scale features of regional seismic structure in North America, but smaller-scale variations are less constrained in our model, since our measured phase speeds represent path-average features over a long path (about a few thousands kilometers). Our multi-mode dispersion measurements can also be used for the extraction of mode-branch waveforms for the first a few modes. This can be done by applying a narrow filter around the dispersion curves of a target mode in c-T spectrogram. The mode-branch waveforms can then be reconstructed based on a linear Radon transform (e.g., Luo et al., 2015, GJI). Synthetic experiments suggest that we can successfully retrieve the mode-branch waveforms for several mode branches, which can be used in the secondary analysis for constraining local-scale heterogeneity with enhanced depth resolution.

  20. Laser dissection sampling modes for direct mass spectral analysis [using a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2016-02-01

    Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less

  1. Laser dissection sampling modes for direct mass spectral analysis [using a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less

  2. Occurrence, homologue patterns and source apportionment of short- and medium-chain chlorinated paraffins in suburban soils of Shanghai, China.

    PubMed

    Wang, Xue-Tong; Xu, Si-Yue; Wang, Xi-Kui; Hu, Bao-Ping; Jia, Hao-Hao

    2017-08-01

    In order to systematically investigate the spatial distribution, homologue profiles, and sources of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in suburban soils in Shanghai, SCCPs and MCCPs in soils were analyzed using gas chromatography coupled with low resolution mass spectrometry in electron capture negative ion (ECNI) mode (GC-ECNI-MS). The CP concentrations in soils were between not detected (ND) - 697 ng g -1 with a median value of 3.52 ng g -1 for SCCPs, and ND - 666 ng g -1 with a median value of 15.3 ng g -1 for MCCPs, respectively. The concentrations of MCCPs in most soils were higher than that of SCCPs. The total CP concentrations (sum of SCCPs and MCCPs) in soils varied from ND to 964 ng g -1 with a median value of 20.5 ng g -1 . The concentration of MCCPs was higher than that of SCCPs in most soils. The levels of SCCPs and MCCPs in suburban soils in Shanghai were at the medium level when compared to other areas around the world. No significant correlation was observed between soil CP concentrations and total organic carbon contents (p > 0.05). For different use type of soils, the median concentrations of CPs in soils were found higher in greenland than that in other areas probably due to busy traffic, sewage sludge application and/or wastewater irrigation. All soils were divided into two groups by hierarchical cluster analysis (HCA) both for SCCPs and MCCPs. Three discharge sources of CPs in suburban soil of Shanghai were identified by PMF model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A modal approach based on perfectly matched layers for the forced response of elastic open waveguides

    NASA Astrophysics Data System (ADS)

    Gallezot, M.; Treyssède, F.; Laguerre, L.

    2018-03-01

    This paper investigates the computation of the forced response of elastic open waveguides with a numerical modal approach based on perfectly matched layers (PML). With a PML of infinite thickness, the solution can theoretically be expanded as a discrete sum of trapped modes, a discrete sum of leaky modes and a continuous sum of radiation modes related to the PML branch cuts. Yet with numerical methods (e.g. finite elements), the waveguide cross-section is discretized and the PML must be truncated to a finite thickness. This truncation transforms the continuous sum into a discrete set of PML modes. To guarantee the uniqueness of the numerical solution of the forced response problem, an orthogonality relationship is proposed. This relationship is applicable to any type of modes (trapped, leaky and PML modes) and hence allows the numerical solution to be expanded on a discrete sum in a convenient manner. This also leads to an expression for the modal excitability valid for leaky modes. The physical relevance of each type of mode for the solution is clarified through two numerical test cases, a homogeneous medium and a circular bar waveguide example, excited by a point source. The former is favourably compared to a transient analytical solution, showing that PML modes reassemble the bulk wave contribution in a homogeneous medium. The latter shows that the PML mode contribution yields the long-term diffraction phenomenon whereas the leaky mode contribution prevails closer to the source. The leaky mode contribution is shown to remain accurate even with a relatively small PML thickness, hence reducing the computational cost. This is of particular interest for solving three-dimensional waveguide problems, involving two-dimensional cross-sections of arbitrary shapes. Such a problem is handled in a third numerical example by considering a buried square bar.

  4. Crack Identification in CFRP Laminated Beams Using Multi-Resolution Modal Teager–Kaiser Energy under Noisy Environments

    PubMed Central

    Xu, Wei; Cao, Maosen; Ding, Keqin; Radzieński, Maciej; Ostachowicz, Wiesław

    2017-01-01

    Carbon fiber reinforced polymer laminates are increasingly used in the aerospace and civil engineering fields. Identifying cracks in carbon fiber reinforced polymer laminated beam components is of considerable significance for ensuring the integrity and safety of the whole structures. With the development of high-resolution measurement technologies, mode-shape-based crack identification in such laminated beam components has become an active research focus. Despite its sensitivity to cracks, however, this method is susceptible to noise. To address this deficiency, this study proposes a new concept of multi-resolution modal Teager–Kaiser energy, which is the Teager–Kaiser energy of a mode shape represented in multi-resolution, for identifying cracks in carbon fiber reinforced polymer laminated beams. The efficacy of this concept is analytically demonstrated by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability is validated by diagnosing cracks in a carbon fiber reinforced polymer laminated beam, whose mode shapes are precisely acquired via non-contact measurement using a scanning laser vibrometer. The analytical and experimental results show that multi-resolution modal Teager–Kaiser energy is capable of designating the presence and location of cracks in these beams under noisy environments. This proposed method holds promise for developing crack identification systems for carbon fiber reinforced polymer laminates. PMID:28773016

  5. Time-frequency analysis of neuronal populations with instantaneous resolution based on noise-assisted multivariate empirical mode decomposition.

    PubMed

    Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E

    2016-07-15

    Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Effects of Communication Mode on Negotiation of Meaning and Its Noticing

    ERIC Educational Resources Information Center

    Yuksel, Dogan; Inan, Banu

    2014-01-01

    This study examined the effects of communication mode ("i.e.", face to face versus computer mediated communication) on the instances of negotiation of meaning (NofM) and its level of noticing by learners. Sixty-four participants (32 dyads) completed two jigsaw tasks in two different mediums (one in each) and four days after the tasks…

  7. Motion of fine-spray liquid droplets in hot gas flow

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Kuibin, P. A.; Strizhak, P. A.

    2014-12-01

    Experimental study was performed on motion of fine-spray liquid (water) droplets in a high-temperature (above 1000 K) gases. The study distinguishes three modes of droplet motion through gas medium under condition of intensive evaporation. Experiments defined the ranges of gas velocity, droplets sizes, and velocities that correspond to the droplet motion modes.

  8. Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach

    DOE PAGES

    Jarrell, Mark; Moreno, Juana; Raja Mondal, Wasim; ...

    2017-07-20

    The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this article, we employ a Green's function based approach, namely, the dynamical cluster approximation (DCA), to investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used to validate the method in a wide parameter space. An extension of the method, namely, the typical medium DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system, while heavier impuritiesmore » lead to a partial localization of the low-frequency acoustic modes. For a uniform (box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.« less

  9. Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Mark; Moreno, Juana; Raja Mondal, Wasim

    The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this article, we employ a Green's function based approach, namely, the dynamical cluster approximation (DCA), to investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used to validate the method in a wide parameter space. An extension of the method, namely, the typical medium DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system, while heavier impuritiesmore » lead to a partial localization of the low-frequency acoustic modes. For a uniform (box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.« less

  10. High resolution interrogation system for fiber Bragg grating (FBG) sensor application using radio frequency spectrum analyser

    NASA Astrophysics Data System (ADS)

    Muhammad, F. D.; Zulkifli, M. Z.; Harun, S. W.; Ahmad, H.

    2013-05-01

    In this paper, we propose a fiber Bragg grating (FBG) interrogation system for high resolution sensor application based on radio frequency (RF) generation technique by beating a single longitudinal mode (SLM) fiber ring laser with an external tunable laser source (TLS). The external TLS provides a constant wavelength (CW), functioning as the reference signal for the frequency beating technique. The TLS used has a constant output power and wavelength over time. The sensor signal is provided by the reflected wavelength of a typical fiber Bragg grating (FBG) in the SLM fiber ring laser, which consists of a 1 m long highly doped Erbium doped fiber as the gain medium. The key to ensure the SLM laser oscillation is the role of graphene as saturable absorber which is opposed to the commonly used unpumped erbiumdoped fiber and this consequently contributes to the simple and short cavity design of our proposed system. The signal from the SLM fiber ring laser, which is generated by the FBG in response to external changes, such as temperature, strain, air humidity and air movement, is heterodyned with the CW signal from the TLS at a 6 GHz photodetector using a 3-dB fused coupler to generate the frequency beating. This proposed system is experimentally demonstrated as a temperature sensor and the results shows that the frequency response of the system towards the changes in temperature is about 1.3 GHz/°C, taking into account the resolution bandwidth of 3 MHz of the radio frequency spectrum analyzer (RFSA).

  11. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  12. Pluto in Hi-Def

    NASA Image and Video Library

    2008-01-24

    This image demonstrates the first detection of Pluto using the high-resolution mode on the NASA New Horizons Long-Range Reconnaissance Imager. The mode provides a clear separation between Pluto and numerous nearby background stars.

  13. Bubbles in Sediments

    DTIC Science & Technology

    1997-09-30

    modeled as either an effective fluid, effective viscoelastic solid, or a saturated poroelastic medium. The analysis included only the breathing mode...separated for each model . Finally, if a sediment is modeled by Biot theory, which describes wave propagation in a saturated poroelastic medium, then two...theory to sediment acoustics . The predicted resonance behavior under each model is distinct, so an optical extinction measurement may provide an

  14. Polarization Dependent Whispering Gallery Modes in Microspheres

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)

    2016-01-01

    A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.

  15. FIBER AND INTEGRAL OPTICS: Mode composition of radiation in graded-index waveguides with random microbending of the axis

    NASA Astrophysics Data System (ADS)

    Valyaev, A. B.; Krivoshlykov, S. G.

    1989-06-01

    It is shown that the problem of investigating the mode composition of a partly coherent radiation beam in a randomly inhomogeneous medium can be reduced to a study of evolution of the energy of individual modes and of the coefficients of correlations between the modes. General expressions are obtained for the coupling coefficients of modes in a parabolic waveguide with a random microbending of the axis and an analysis is made of their evolution as a function of the excitation conditions. An estimate is obtained of the distance in which a steady-state energy distribution between the modes is established. Explicit expressions are obtained for the correlation function in the case when a waveguide is excited by off-axial Gaussian beams or Gauss-Hermite modes.

  16. Intracavity dispersion effect on timing jitter of ultralow noise mode-locked semiconductor based external-cavity laser.

    PubMed

    Gee, S; Ozharar, S; Plant, J J; Juodawlkis, P W; Delfyett, P J

    2009-02-01

    We report the generation of optical pulse trains with 380 as of residual timing jitter (1 Hz-1 MHz) from a mode-locked external-cavity semiconductor laser, through a combination of optimizing the intracavity dispersion and utilizing a high-power, low-noise InGaAsP quantum-well slab-coupled optical waveguide amplifier gain medium. This is, to our knowledge, the lowest residual timing jitter reported to date from an actively mode-locked laser.

  17. Single transverse mode protein laser

    NASA Astrophysics Data System (ADS)

    Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat

    2017-12-01

    Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.

  18. Attenuation characteristics of the fundamental modes that propagate in buried iron water pipes.

    PubMed

    Long, R; Lowe, M; Cawley, P

    2003-09-01

    The attenuation of the fundamental non-torsional modes that propagate down buried iron water pipes has been studied. The mode shapes, mode attenuation due to leakage into the surrounding medium and the scattering of the modes as they interact with pipe joints and fittings have been investigated. In the low frequency region the mode predicted to dominate over significant propagation distances approximates a plane wave in the water within the pipe. The established acoustic technique used to locate leaks in buried iron water pipes assumes that leak noise propagates as a single non-dispersive mode at a velocity related to the low frequency asymptote of this water borne mode. Experiments have been conducted on buried water mains at test sites in the UK to verify the attenuation and velocity dispersion predictions.

  19. Imaging of sub-wavelength structures radiating coherently near microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslov, Alexey V., E-mail: avmaslov@yandex.ru; Astratov, Vasily N., E-mail: astratov@uncc.edu

    2016-02-01

    Using a two-dimensional model, we show that the optical images of a sub-wavelength object depend strongly on the excitation of its electromagnetic modes. There exist modes that enable the resolution of the object features smaller than the classical diffraction limit, in particular, due to the destructive interference. We propose to use such modes for super-resolution of resonant structures such as coupled cavities, metal dimers, or bowties. A dielectric microsphere in contact with the object forms its magnified image in a wide range of the virtual image plane positions. It is also suggested that the resonances may significantly affect the resolutionmore » quantification in recent experimental studies.« less

  20. Improving axial resolution in confocal microscopy with new high refractive index mounting media.

    PubMed

    Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne

    2015-01-01

    Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

  1. Understanding climate variability and global climate change using high-resolution GCM simulations

    NASA Astrophysics Data System (ADS)

    Feng, Xuelei

    In this study, three climate processes are examined using long-term simulations from multiple climate models with increasing horizontal resolutions. These simulations include the European Center for Medium-range Weather Forecasts (ECMWF) atmospheric general circulation model (AGCM) runs forced with observed sea surface temperatures (SST) (the Athena runs) and a set of coupled ocean-atmosphere seasonal hindcasts (the Minerva runs). Both sets of runs use different AGCM resolutions, the highest at 16 km. A pair of the Community Climate System Model (CCSM) simulations with ocean general circulation model (OGCM) resolutions at 100 and 10 km are also examined. The higher resolution CCSM run fully resolves oceanic mesoscale eddies. The resolution influence on the precipitation climatology over the Gulf Stream (GS) region is first investigated. In the Athena simulations, the resolution increase generates enhanced mean GS precipitation moderately in both large-scale and sub-scale rainfalls in the North Atlantic, with the latter more tightly confined near the oceanic front. However, the non-eddy resolving OGCM in the Minerva runs simulates a weaker oceanic front and weakens the mean GS precipitation response. On the other hand, an increase in CCSM oceanic resolutions from non-eddy-resolving to eddy resolving regimes greatly improves the model's GS precipitation climatology, resulting in both stronger intensity and more realistic structure. Further analyses show that the improvement of the GS precipitation climatology due to resolution increases is caused by the enhanced atmospheric response to an increased SST gradient near the oceanic front, which leads to stronger surface convergence and upper level divergence. Another focus of this study is on the global warming impacts on precipitation characteristic changes using the high-resolution Athena simulations under the SST forcing from the observations and a global warming scenario. As a comparison, results from the coarse resolution simulation are also analyzed to examine the dependence on resolution. The increasing rates of globally averaged precipitation amount for the high and low resolution simulations are 1.7%/K-1 and 1.8%/K-1, respectively. The sensitivities for heavy, moderate, light and drizzle rain are 6.8, -1.2, 0.0, 0.2%/K-1 for low and 6.3, -1.5, 0.4, -0.2%/K -1 for high resolution simulations. The number of rainy days decreases in a warming scenario, by 3.4 and 4.2 day/year-1, respectively. The most sensitive response of 6.3-6.8%/K-1 for the heavy rain approaches that of the 7%/K-1 for the Clausius-Clapeyron scaling limit. During the twenty-first century simulation, the increases in precipitation are larger over high latitude and wet regions in low and mid-latitudes. Over the dry regions, such as the subtropics, the precipitation amount and frequency decrease. There is a higher occurrence of low and heavy rain from the tropics to mid-latitudes at the expense of the decreases in the frequency of moderate rain. In the third part, the inter-annual variability of the northern hemisphere storm tracks is examined. In the Athena simulations, the leading modes of the observed storm track variability are reproduced realistically by all runs. In general, the fluctuations of the model storm tracks in the North Pacific and Atlantic basins are largely independent of each other. Within each basin, the variations are characterized by the intensity change near the climatological center and the meridional shift of the storm track location. These two modes are associated with major teleconnection patterns of the low frequency atmospheric variations. These model results are not sensitive to resolution. Using the Minerva hindcast initialized in November, it is shown that a portion of the winter (December-January) storm track variability is predictable, mainly due to the influences of the atmospheric wave trains induced by the El Nino and Southern Oscillation.

  2. A Latin-cross-shaped integrated resonant cantilever with second torsion-mode resonance for ultra-resoluble bio-mass sensing

    NASA Astrophysics Data System (ADS)

    Xia, Xiaoyuan; Zhang, Zhixiang; Li, Xinxin

    2008-03-01

    Second torsion-mode resonance is proposed for microcantilever biosensors for ultra-high mass-weighing sensitivity and resolution. By increasing both the resonant frequency and Q-factor, the higher mode torsional resonance is favorable for improving the mass-sensing performance. For the first time, a Latin-cross-shaped second-mode resonant cantilever is constructed and optimally designed for both signal-readout and resonance-exciting elements. The cantilever sensor is fabricated by using silicon micromachining techniques. The transverse piezoresistive sensing element and the specific-shaped resonance-exciting loop are successfully integrated in the cantilever. Alpha-fetoprotein (AFP) antibody-antigen specific binding is implemented for the sensing experiment. The proposed cantilever sensor is designed with significantly superior sensitivity to the previously reported first torsion-mode one. After analysis with an Allan variance algorithm, which can be easily embedded in the sensing system, the Latin-cross-shaped second torsion-mode resonant cantilever is evaluated with ultra-high mass resolution. Therefore, the high-performance integrated micro-sensor is promising for on-the-spot bio-molecule detection.

  3. Mode coupling in vortex beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2018-05-01

    We examine the mode coupling in vortex beams. Mode coupling also known as the crosstalk takes place due to turbulent characteristics of the atmospheric communication medium. This way, the transmitted intrinsic mode of the vortex beam leaks power to other extrinsic modes, thus preventing the correct detection of the transmitted symbol which is usually encoded into the mode index or the orbital angular momentum state of the vortex beam. Here we investigate the normalized power mode coupling ratios of several types of vortex beams, namely, Gaussian vortex beam, Bessel Gaussian beam, hypergeometric Gaussian beam and Laguerre Gaussian beam. It is found that smaller mode numbers lead to less mode coupling. The same is partially observed for increasing source sizes. Comparing the vortex beams amongst themselves, it is seen that hypergeometric Gaussian beam is the one retaining the most power in intrinsic mode during propagation, but only at lowest mode index of unity. At higher mode indices this advantage passes over to the Gaussian vortex beam.

  4. Inhibitive effect of Xylopia ferruginea extract on the corrosion of mild steel in 1M HCl medium

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Osman, Hasnah; Awang, Khalijah

    2011-08-01

    The alkaloid content of the leaves and stem bark of Xylopia ferruginea plant was isolated and tested for its anticorrosion potential on mild steel corrosion in a hydrochloric acid medium by using electrochemical impedance spectroscopy, potentiodynamic polarization measurement, scanning electron microscopy (SEM), and Fourier transform infra red (FTIR) analysis. The experimental results reveal the effective anticorrosion potential of the plant extract. The mixed mode of action exhibited by the plant extract is evidenced from the polarization study. SEM images proof the formation of a protective layer over the mild steel surface, and this is supported by the FTIR study. The possible mode of the corrosion inhibition mechanism has also been discussed.

  5. Properties of Spectral Shapes of Whistler-Mode Emissions

    NASA Astrophysics Data System (ADS)

    Macusova, E.; Santolik, O.; Pickett, J. S.; Gurnett, D. A.; Cornilleau-Wehrlin, N.

    2014-12-01

    Whistler-mode emissions play an important role in wave-particle interactions occurring in the radiation belt region. Whistler mode chorus emissions consist of discrete wave packets which exhibit different spectral shapes. Rising tones (events with positive value of the frequency sweep rate) are frequently observed. Other categories of chorus spectral shapes, such as falling tones, hooks, broadband patterns, are also known. Whistler-mode emissions can additionally occur as hiss or combinations of hiss with discrete patterns. In this study, we have analyzed more than 11 years of high-time resolution measurements provided by the Wideband Data (WBD) instrument onboard four Cluster spacecraft to identify different spectral shapes of whistler mode emissions. We determine the distribution of individual groups of chorus spectral shapes in the Earth's magnetosphere and the effect of the different geomagnetic conditions on their occurrence. We focus on average polarization and propagation properties of the different types of spectral shapes, obtained during visually identified time intervals from multicomponent measurements of the STAFF-SA instrument recorded with a time resolution of 4 seconds.

  6. Counterbalancing hydrodynamic sample distortion effects increases resolution of free-flow zone electrophoresis.

    PubMed

    Weber, G; Bauer, J

    1998-06-01

    On fractionation of highly heterogeneous protein mixtures, optimal resolution was achieved by forcing proteins to migrate through a preestablished pH gradient, until they entered a medium with a pH similar but not equal to their pIs. For this purpose, up to seven different media were pumped through the electrophoresis chamber so that they were flowing adjacently to each other, forming a pH gradient declining stepwise from the cathode to the anode. This gradient had a sufficiently strong band-focusing effect to counterbalance sample distortion effects of the flowing medium as proteins approached their isoelectric medium closer than 0.5 pH units. Continuous free-flow zone electrophoresis (FFZE) with high throughput capability was applicable if proteins did not precipitate or aggregate in these media. If components of heterogeneous protein mixtures had already started to precipitate or aggregate, in a medium with a pH exceeding their pI by more than 0.5 pH units, the application of interval modus and media forming flat pH gradients appeared advantageous.

  7. Dual mode scanner-tracker

    NASA Astrophysics Data System (ADS)

    Mongeon, R. J.

    1984-11-01

    The beam of a laser radar is moved over the field of view by means of a pair of scanner/trackers arranged in cascade along the laser beam. One of the scanner/trackers operates at high speed, with high resolution and a wide field and is located in the demagnified portion of the laser beam. The two scanner/trackers complement each other to achieve high speed, high resolution scanning as well as tracking of moving targets. A beam steering telescope for an airborne laser radar which incorporates the novel dual mode scanner/tracker is also shown. The other scanner/tracker operates at low speed with low resolution and a wide field and is located in the magnified portion of the laser beam.

  8. Effects of Trophic Modes, Carbon Sources, and Salinity on the Cell Growth and Lipid Accumulation of Tropic Ocean Oilgae Strain Desmodesmus sp. WC08.

    PubMed

    Zhao, Zhenyu; Ma, Shasha; Li, Ang; Liu, Pinghuai; Wang, Meng

    2016-10-01

    The effects of trophic modes, carbon sources, and salinity on the growth and lipid accumulation of a marine oilgae Desmodesmus sp. WC08 in different trophic cultures were assayed by single factor experiment based on the blue-green algae medium (BG-11). The results implied that biomass and lipid accumulation culture process were optimized depending on the tophic modes, sorts, and concentration of carbon sources and salinity in the cultivation. There was no significant difference in growth or lipid accumulation with Na 2 CO 3 amendment or NaHCO 3 amendment. However, Na 2 CO 3 amendment did enhance the biomass and lipid accumulation to some extent. The highest Desmodesmus sp. WC08 biomass and lipid accumulation was achieved in the growth medium with photoautotrophic cultivation, 0.08 g L -1 Na 2 CO 3 amendment and 15 g L -1 sea salt, respectively.

  9. Tunable Spin dependent beam shift by simultaneously tailoring geometric and dynamical phases of light in inhomogeneous anisotropic medium

    PubMed Central

    Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K.; Ghosh, Nirmalya

    2016-01-01

    Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices. PMID:28004825

  10. An Investigation of the Cold Interstellar Medium of the Outer Galaxy

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.

    1997-01-01

    The primary objective of this proposal was to determine the relationship between the molecular gas and dust components of the interstellar medium of the Outer Galaxy. It made use of the High Resolution IRAS Galaxy Atlas and the FCRAO CO Survey of the Outer Galaxy. These HIRES images greatly augment the spatial dynamic range of the IRAS Survey data and the ability to discriminate multiple point sources within a compact region. Additionally, the HIRES far infrared images allow for more direct comparisons with molecular line data observed at 45 sec resolution. From funding of this proposal, we have completed two papers for publication in a refereed journal.

  11. The Occurence of Nuclear Starbursts in Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.

    2001-05-01

    Medium resolution H and K band spectra with high angular reesolution were obtained for a small sample of nearby Seyfert galaxies using NIRSPEC at the Keck telescope. Recent studies with medium resolution have found evidence for a lack of powerful starbursts in Seyfert1 galaxies. Differences between the two Seyfert types might provide a challenge for the unified scheme proposed for Seyfert galaxies. A preliminary analysis indicates that most of the Seyfert1 galaxies do indeed show signs of circumnuclar star formation. Detailed modelling using population synthesis in conjunction with NIR spectral synthesis will allow to estimate the age, star formation history and mass of these stellar population.

  12. Medium resolution spectra of the shuttle glow in the visible region of the spectrum

    NASA Technical Reports Server (NTRS)

    Viereck, R. A.; Murad, E.; Pike, C. P.; Mende, S. B.; Swenson, G. R.; Culbertson, F. L.; Springer, B. C.

    1992-01-01

    Recent spectral measurements of the visible shuttle glow (lambda = 400 - 800 nm) at medium resolution (1 nm) reveal the same featureless continuum with a maximum near 680 nm that was reported previously. This is also in good agreement with recent laboratory experiments that attribute the glow to the emissions of NO2 formed by the recombination of O + NO. The data that are presented were taken from the aft flight deck with a hand-held spectrograph and from the shuttle bay with a low-light-level television camera. Shuttle glow images and spectra are presented and compared with laboratory data and theory.

  13. Ultrasound modulation of bioluminescence generated inside a turbid medium

    NASA Astrophysics Data System (ADS)

    Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.

    2017-03-01

    In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep ( 20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.

  14. The Transfer Function Model (TFM) as a Tool for Simulating Gravity Wave Phenomena in the Mesosphere

    NASA Astrophysics Data System (ADS)

    Porter, H.; Mayr, H.; Moore, J.; Wilson, S.; Armaly, A.

    2008-12-01

    The Transfer Function Model (TFM) is semi-analytical and linear, and it is designed to describe the acoustic gravity waves (GW) propagating over the globe and from the ground to 600 km under the influence of vertical temperature variations. Wave interactions with the flow are not accounted for. With an expansion in terms of frequency-dependent spherical harmonics, the time consuming vertical integration of the conservation equations is reduced to computing the transfer function (TF). (The applied lower and upper boundary conditions assure that spurious wave reflections will not occur.) The TF describes the dynamical properties of the medium divorced from the complexities of the temporal and horizontal variations of the excitation source. Given the TF, the atmospheric response to a chosen source is then obtained in short order to simulate the GW propagating through the atmosphere over the globe. In the past, this model has been applied to study auroral processes, which produce distinct wave phenomena such as: (1) standing lamb modes that propagate horizontally in the viscous medium of the thermosphere, (2) waves generated in the auroral oval that experience geometric amplification propagating to the pole where constructive interference generates secondary waves that propagate equatorward, (3) ducted modes propagating through the middle atmosphere that leak back into the thermosphere, and (4) GWs reflected from the Earth's surface that reach the thermosphere in a narrow propagation cone. Well-defined spectral features characterize these wave modes in the TF to provide analytical understanding. We propose the TFM as a tool for simulating GW in the mesosphere and in particular the features observed in Polar Mesospheric Clouds (PMC). With present-day computers, it takes less than one hour to compute the TF, so that there is virtually no practical limitation on the source configurations that can be applied and tested in the lower atmosphere. And there is no limitation on the temporal and spatial resolutions the model simulations can provide. We shall discuss the concept and organization of the TFM and present samples of GW simulations that illustrate the capabilities of the model and its user interface. We shall discuss in particular the waves that leak into the mesopause from the thermosphere above and propagate into the region from tropospheric weather systems below.

  15. Hubble Space Telescope Medium Deep Survey. 2: Deconvolution of Wide Field Camera field galaxy images in the 13 hour + 43 deg field

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Schmidtke, P. C.; Pascarelle, S. M.; Gordon, J. M.; Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G.; Glazebrook, K.

    1994-01-01

    We present isophotal profiles of six faint field galaxies from some of the first deep images taken for the Hubble Space Telescope (HST) Medium Deep Survey (MDS). These have redshifts in the range z = 0.126 to 0.402. The images were taken with the Wide Field Camera (WFC) in `parallel mode' and deconvolved with the Lucy method using as the point-spread function nearby stars in the image stack. The WFC deconvolutions have a dynamic range of 16 to 20 dB (4 to 5 mag) and an effective resolution approximately less than 0.2 sec (FWHM). The multiorbit HST images allow us to trace the morphology, light profiles, and color gradients of faint field galaxies down to V approximately equal to 22 to 23 mag at sub-kpc resolution, since the redshift range covered is z = 0.1 to 0.4. The goals of the MDS are to study the sub-kpc scale morphology, light profiles, and color gradients for a large samole of faint field galaxies down to V approximately equal to 23 mag, and to trace the fraction of early to late-type galaxies as function of cosmic time. In this paper we study the brighter MDS galaxies in the 13 hour + 43 deg MDS field in detail, and investigate to what extent model fits with pure exponential disks or a(exp 1/4) bulges are justified at V approximately less than 22 mag. Four of the six field galaxies have light profiles that indicate (small) inner bulges following r(exp 1/4) laws down to 0.2 sec resolution, plus a dominant surrounding exponential disk with little or no color gradients. Two occur in a group at z = 0.401, two are barred spiral galaxies at z = 0.179 and z = 0.302, and two are rather subluminous (and edge-on) disk galaxies at z = 0.126 and z = 0.179. Our deep MDS images can detect galaxies down to V, I approximately less than 25 to 26 mag, and demonstrate the impressive potential of HST--even with its pre-refurbished optics--to resolve morphological details in galaxies at cosmologically significant distances (v approximately less than 23 mag). Since the median redshift of these galaxies is approximately less than 0.4, the HST resolution allows us to study sub kpc size scales at the galaxy, which cannot be done with stable images over wide fields from the best ground-based sites.

  16. Microwave heat treating of manufactured components

    DOEpatents

    Ripley, Edward B.

    2007-01-09

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  17. Laplace-Gauss and Helmholtz-Gauss paraxial modes in media with quadratic refraction index.

    PubMed

    Kiselev, Aleksei P; Plachenov, Alexandr B

    2016-04-01

    The scalar theory of paraxial wave propagation in an axisymmetric medium where the refraction index quadratically depends on transverse variables is addressed. Exact solutions of the corresponding parabolic equation are presented, generalizing the Laplace-Gauss and Helmholtz-Gauss modes earlier known for homogeneous media. Also, a generalization of a zero-order asymmetric Bessel-Gauss beam is given.

  18. Understanding Attitudes towards Proenvironmental Travel: An Empirical Study from Tangshan City in China

    PubMed Central

    Chen, Weiya

    2014-01-01

    Understanding people's attitudes towards proenvironmental travel will help to encourage people to adopt proenvironmental travel behavior. Revealed preference theory assumes that the consumption preference of consumers can be revealed by their consumption behavior. In order to investigate the influences on citizens' travel decision and analyze the difficulties of promoting proenvironmental travel behavior in medium-sized cities in China, based on revealed preference theory, this paper uses the RP survey method and disaggregate model to analyze how individual characteristics, situational factors, and trip features influence the travel mode choice. The field investigation was conducted in Tangshan City to obtain the RP data. An MNL model was built to deal with the travel mode choice. SPSS software was used to calibrate the model parameters. The goodness-of-fit tests and the predicted outcome demonstrate the validation of the parameter setting. The results show that gender, occupation, trip purpose, and distance have an obvious influence on the travel mode choice. In particular, the male gender, high income, and business travel show a high correlation with carbon-intensive travel, while the female gender and a medium income scored higher in terms of proenvironmental travel modes, such as walking, cycling, and public transport. PMID:25435872

  19. Understanding attitudes towards proenvironmental travel: an empirical study from Tangshan City in China.

    PubMed

    Fang, Xiaoping; Xu, Yajing; Chen, Weiya

    2014-01-01

    Understanding people's attitudes towards proenvironmental travel will help to encourage people to adopt proenvironmental travel behavior. Revealed preference theory assumes that the consumption preference of consumers can be revealed by their consumption behavior. In order to investigate the influences on citizens' travel decision and analyze the difficulties of promoting proenvironmental travel behavior in medium-sized cities in China, based on revealed preference theory, this paper uses the RP survey method and disaggregate model to analyze how individual characteristics, situational factors, and trip features influence the travel mode choice. The field investigation was conducted in Tangshan City to obtain the RP data. An MNL model was built to deal with the travel mode choice. SPSS software was used to calibrate the model parameters. The goodness-of-fit tests and the predicted outcome demonstrate the validation of the parameter setting. The results show that gender, occupation, trip purpose, and distance have an obvious influence on the travel mode choice. In particular, the male gender, high income, and business travel show a high correlation with carbon-intensive travel, while the female gender and a medium income scored higher in terms of proenvironmental travel modes, such as walking, cycling, and public transport.

  20. Modal radiation patterns of baffled circular plates and membranes.

    PubMed

    Christiansen, Thomas Lehrmann; Hansen, Ole; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2014-05-01

    The far field velocity potential and radiation pattern of baffled circular plates and membranes are found analytically using the full set of modal velocity profiles derived from the corresponding equation of motion. The derivation is valid for a plate or membrane subjected to an external excitation force, which is used as a sound receiver in any medium or as a sound transmitter in a gaseous medium. A general, concise expression is given for the radiation pattern of any mode of the membrane and the plate with arbitrary boundary conditions. Specific solutions are given for the four special cases of a plate with clamped, simply supported, and free edge boundary conditions as well as for the membrane. For all non-axisymmetric modes, the velocity potential along the axis of the radiator is found to be strictly zero. In the long wavelength limit, the radiation pattern of all axisymmetric modes approaches that of a monopole, while the non-axisymmetric modes exhibit multipole behavior. Numerical results are also given, demonstrating the implications of having non-axisymmetric excitation using both a point excitation with varying eccentricity and a homogeneous excitation acting on half of the circular radiator.

  1. Equilibrium-phase MR angiography: Comparison of unspecific extracellular and protein-binding gadolinium-based contrast media with respect to image quality.

    PubMed

    Erb-Eigner, Katharina; Taupitz, Matthias; Asbach, Patrick

    2016-01-01

    The purpose of this study was to compare contrast and image quality of whole-body equilibrium-phase high-spatial-resolution MR angiography using a non-protein-binding unspecific extracellular gadolinium-based contrast medium with that of two contrast media with different protein-binding properties. 45 patients were examined using either 15 mL of gadobutrol (non-protein-binding, n = 15), 32 mL of gadobenate dimeglumine (weakly protein binding, n = 15) or 11 mL gadofosveset trisodium (protein binding, n = 15) followed by equilibrium-phase high-spatial-resolution MR-angiography of four consecutive anatomic regions. The time elapsed between the contrast injection and the beginning of the equilibrium-phase image acquisition in the respective region was measured and was up to 21 min. Signal intensity was measured in two vessels per region and in muscle tissue. Relative contrast (RC) values were calculated. Vessel contrast, artifacts and image quality were rated by two radiologists in consensus on a five-point scale. Compared with gadobutrol, gadofosveset trisodium revealed significantly higher RC values only when acquired later than 15 min after bolus injection. Otherwise, no significant differences between the three contrast media were found regarding vascular contrast and image quality. Equilibrium-phase high-spatial-resolution MR-angiography using a weakly protein-binding or even non-protein-binding contrast medium is equivalent to using a stronger protein-binding contrast medium when image acquisition is within the first 15 min after contrast injection, and allows depiction of the vasculature with high contrast and image quality. The protein-binding contrast medium was superior for imaging only later than 15 min after contrast medium injection. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Design, Fabrication and Characterization of A Bi-Frequency Co-Linear Array

    PubMed Central

    Wang, Zhuochen; Li, Sibo; Czernuszewicz, Tomasz J; Gallippi, Caterina M.; Liu, Ruibin; Geng, Xuecang

    2016-01-01

    Ultrasound imaging with high resolution and large penetration depth has been increasingly adopted in medical diagnosis, surgery guidance, and treatment assessment. Conventional ultrasound works at a particular frequency, with a −6 dB fractional bandwidth of ~70 %, limiting the imaging resolution or depth of field. In this paper, a bi-frequency co-linear array with resonant frequencies of 8 MHz and 20 MHz was investigated to meet the requirements of resolution and penetration depth for a broad range of ultrasound imaging applications. Specifically, a 32-element bi-frequency co-linear array was designed and fabricated, followed by element characterization and real-time sectorial scan (S-scan) phantom imaging using a Verasonics system. The bi-frequency co-linear array was tested in four different modes by switching between low and high frequencies on transmit and receive. The four modes included the following: (1) transmit low, receive low, (2) transmit low, receive high, (3) transmit high, receive low, (4) transmit high, receive high. After testing, the axial and lateral resolutions of all modes were calculated and compared. The results of this study suggest that bi-frequency co-linear arrays are potential aids for wideband fundamental imaging and harmonic/sub-harmonic imaging. PMID:26661069

  3. Atomic force microscopy as a tool for the investigation of living cells.

    PubMed

    Morkvėnaitė-Vilkončienė, Inga; Ramanavičienė, Almira; Ramanavičius, Arūnas

    2013-01-01

    Atomic force microscopy is a valuable and useful tool for the imaging and investigation of living cells in their natural environment at high resolution. Procedures applied to living cell preparation before measurements should be adapted individually for different kinds of cells and for the desired measurement technique. Different ways of cell immobilization, such as chemical fixation on the surface, entrapment in the pores of a membrane, or growing them directly on glass cover slips or on plastic substrates, result in the distortion or appearance of artifacts in atomic force microscopy images. Cell fixation allows the multiple use of samples and storage for a prolonged period; it also increases the resolution of imaging. Different atomic force microscopy modes are used for the imaging and analysis of living cells. The contact mode is the best for cell imaging because of high resolution, but it is usually based on the following: (i) image formation at low interaction force, (ii) low scanning speed, and (iii) usage of "soft," low resolution cantilevers. The tapping mode allows a cell to behave like a very solid material, and destructive shear forces are minimized, but imaging in liquid is difficult. The force spectroscopy mode is used for measuring the mechanical properties of cells; however, obtained results strongly depend on the cell fixation method. In this paper, the application of 3 atomic force microscopy modes including (i) contact, (ii) tapping, and (iii) force spectroscopy for the investigation of cells is described. The possibilities of cell preparation for the measurements, imaging, and determination of mechanical properties of cells are provided. The applicability of atomic force microscopy to diagnostics and other biomedical purposes is discussed.

  4. A coupler for parasitic mode diagnosis in an X-band triaxial klystron amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ju, Jin-chuan; Zhang, Jun; Qi, Zu-min; Zhong, Hui-huang

    2017-10-01

    The traditional methods of parasitic mode excitation diagnosis in an X-band triaxial klystron amplifier (TKA) meet two difficulties: limited installation space and vacuum sealing. In order to solve these issues, a simple and compact coupler with good sealing performance, which can prevent air flow between the main and the auxiliary waveguides, is proposed and investigated experimentally. The coupler is designed with the aperture diffraction theory and the finite-different time-domain (FDTD) method. The designed coupler consists of a main coaxial waveguide (for microwave transmission) and a rectangular auxiliary waveguide (for parasitic mode diagnosis). The entire coupler structure has been fabricated by macromolecule polymer which is transparent to microwave signal in frequency range of X-band. The metal coating of about 200 microns has been performed through electroplating technique to ensure that the device operates well at high power. A small aperture is made in the metal coating. Hence, microwave can couple through the hole and the wave-transparent medium, whereas air flow is blocked by the wave-transparent medium. The coupling coefficient is analyzed and simulated with CST software. The coupler model is also included in particle-in-cell (PIC) simulation with CHIPIC software and the associated parasitic mode excitation is studied. A frequency component of 11.46 GHz is observed in the FFT of the electric field of the drift tube and its corresponding competition mode appears as TE61 mode according to the electric field distribution. Besides, a frequency component of 10.8 GHz is also observed in the FFT of the electric field. After optimization of TE61 mode suppression, an experiment of the TKA with the designed coupler is carried out and the parasitic mode excitation at 10.8 GHz is observed through the designed coupler.

  5. Fast range estimation based on active range-gated imaging for coastal surveillance

    NASA Astrophysics Data System (ADS)

    Kong, Qingshan; Cao, Yinan; Wang, Xinwei; Tong, Youwan; Zhou, Yan; Liu, Yuliang

    2012-11-01

    Coastal surveillance is very important because it is useful for search and rescue, illegal immigration, or harbor security and so on. Furthermore, range estimation is critical for precisely detecting the target. Range-gated laser imaging sensor is suitable for high accuracy range especially in night and no moonlight. Generally, before detecting the target, it is necessary to change delay time till the target is captured. There are two operating mode for range-gated imaging sensor, one is passive imaging mode, and the other is gate viewing mode. Firstly, the sensor is passive mode, only capturing scenes by ICCD, once the object appears in the range of monitoring area, we can obtain the course range of the target according to the imaging geometry/projecting transform. Then, the sensor is gate viewing mode, applying micro second laser pulses and sensor gate width, we can get the range of targets by at least two continuous images with trapezoid-shaped range intensity profile. This technique enables super-resolution depth mapping with a reduction of imaging data processing. Based on the first step, we can calculate the rough value and quickly fix delay time which the target is detected. This technique has overcome the depth resolution limitation for 3D active imaging and enables super-resolution depth mapping with a reduction of imaging data processing. By the two steps, we can quickly obtain the distance between the object and sensor.

  6. Single photons from a gain medium below threshold

    NASA Astrophysics Data System (ADS)

    Ghosh, Sanjib; Liew, Timothy C. H.

    2018-06-01

    The emission from a nonlinear photonic mode coupled weakly to a gain medium operating below threshold is predicted to exhibit antibunching. In the steady state regime, analytical solutions for the relevant observable quantities are found in accurate agreement with exact numerical results. Under pulsed excitation, the unequal time second-order correlation function demonstrates the triggered probabilistic generation of single photons well separated in time.

  7. How Structure Defines Affinity in Protein-Protein Interactions

    PubMed Central

    Erijman, Ariel; Rosenthal, Eran; Shifman, Julia M.

    2014-01-01

    Protein-protein interactions (PPI) in nature are conveyed by a multitude of binding modes involving various surfaces, secondary structure elements and intermolecular interactions. This diversity results in PPI binding affinities that span more than nine orders of magnitude. Several early studies attempted to correlate PPI binding affinities to various structure-derived features with limited success. The growing number of high-resolution structures, the appearance of more precise methods for measuring binding affinities and the development of new computational algorithms enable more thorough investigations in this direction. Here, we use a large dataset of PPI structures with the documented binding affinities to calculate a number of structure-based features that could potentially define binding energetics. We explore how well each calculated biophysical feature alone correlates with binding affinity and determine the features that could be used to distinguish between high-, medium- and low- affinity PPIs. Furthermore, we test how various combinations of features could be applied to predict binding affinity and observe a slow improvement in correlation as more features are incorporated into the equation. In addition, we observe a considerable improvement in predictions if we exclude from our analysis low-resolution and NMR structures, revealing the importance of capturing exact intermolecular interactions in our calculations. Our analysis should facilitate prediction of new interactions on the genome scale, better characterization of signaling networks and design of novel binding partners for various target proteins. PMID:25329579

  8. SCINTILLATION ARCS IN LOW-FREQUENCY OBSERVATIONS OF THE TIMING-ARRAY MILLISECOND PULSAR PSR J0437–4715

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.

    2016-02-10

    Low-frequency observations of pulsars provide a powerful means for probing the microstructure in the turbulent interstellar medium (ISM). Here we report on high-resolution dynamic spectral analysis of our observations of the timing-array millisecond pulsar PSR J0437–4715 with the Murchison Widefield Array (MWA), enabled by our recently commissioned tied-array beam processing pipeline for voltage data recorded from the high time resolution mode of the MWA. A secondary spectral analysis reveals faint parabolic arcs akin to those seen in high-frequency observations of pulsars with the Green Bank and Arecibo telescopes. Data from Parkes observations at a higher frequency of 732 MHz revealmore » a similar parabolic feature with a curvature that scales approximately as the square of the observing wavelength (λ{sup 2}) to the MWA's frequency of 192 MHz. Our analysis suggests that scattering toward PSR J0437–4715 predominantly arises from a compact region about 115 pc from the Earth, which matches well with the expected location of the edge of the Local Bubble that envelopes the local Solar neighborhood. As well as demonstrating new and improved pulsar science capabilities of the MWA, our analysis underscores the potential of low-frequency pulsar observations for gaining valuable insights into the local ISM and for characterizing the ISM toward timing-array pulsars.« less

  9. UrtheCast Second-Generation Earth Observation Sensors

    NASA Astrophysics Data System (ADS)

    Beckett, K.

    2015-04-01

    UrtheCast's Second-Generation state-of-the-art Earth Observation (EO) remote sensing platform will be hosted on the NASA segment of International Space Station (ISS). This platform comprises a high-resolution dual-mode (pushbroom and video) optical camera and a dual-band (X and L) Synthetic Aperture RADAR (SAR) instrument. These new sensors will complement the firstgeneration medium-resolution pushbroom and high-definition video cameras that were mounted on the Russian segment of the ISS in early 2014. The new cameras are expected to be launched to the ISS in late 2017 via the Space Exploration Technologies Corporation Dragon spacecraft. The Canadarm will then be used to install the remote sensing platform onto a CBM (Common Berthing Mechanism) hatch on Node 3, allowing the sensor electronics to be accessible from the inside of the station, thus limiting their exposure to the space environment and allowing for future capability upgrades. The UrtheCast second-generation system will be able to take full advantage of the strengths that each of the individual sensors offers, such that the data exploitation capabilities of the combined sensors is significantly greater than from either sensor alone. This represents a truly novel platform that will lead to significant advances in many other Earth Observation applications such as environmental monitoring, energy and natural resources management, and humanitarian response, with data availability anticipated to begin after commissioning is completed in early 2018.

  10. Daily monitoring of vegetation conditions and evapotranspiration at field scale by fusing multi-satellite images

    USDA-ARS?s Scientific Manuscript database

    Vegetation monitoring requires frequent remote sensing observations. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for vegetation monitoring. The medium spatial resolution (10-100m) sensors are su...

  11. A boundary condition for layer to level ocean model interaction

    NASA Astrophysics Data System (ADS)

    Mask, A.; O'Brien, J.; Preller, R.

    2003-04-01

    A radiation boundary condition based on vertical normal modes is introduced to allow a physical transition between nested/coupled ocean models that are of differing vertical structure and/or differing physics. In this particular study, a fine resolution regional/coastal sigma-coordinate Naval Coastal Ocean Model (NCOM) has been successfully nested to a coarse resolution (in the horizontal and vertical) basin scale NCOM and a coarse resolution basin scale Navy Layered Ocean Model (NLOM). Both of these models were developed at the Naval Research Laboratory (NRL) at Stennis Space Center, Mississippi, USA. This new method, which decomposes the vertical structure of the models into barotropic and baroclinic modes, gives improved results in the coastal domain over Orlanski radiation boundary conditions for the test cases. The principle reason for the improvement is that each mode has the radiation boundary condition applied individually; therefore, the packet of information passing through the boundary is allowed to have multiple phase speeds instead of a single-phase speed. Allowing multiple phase speeds reduces boundary reflections, thus improving results.

  12. Mode identification from spectroscopy of gravity-mode pulsators

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Brunsden, E.; Cottrell, P. L.; Davie, M.; Greenwood, A.; Wright, D. J.; De Cat, P.

    2014-02-01

    The gravity modes present in γ Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. For the MUSICIAN programme at the University of Canterbury, we obtain extensive high-resolution echelle spectra of γ Dor stars from the Mt John University Observatory in New Zealand. We analyze these to obtain the pulsational frequencies and identify these with the multiple pulsational modes excited in the star. A summary of recent results from our spectroscopic mode-identification programme is given.

  13. Enlarged-taper tailored Fiber Bragg grating with polyvinyl alcohol coating for humidity sensing

    NASA Astrophysics Data System (ADS)

    Liang, Yanhong; Yan, Guofeng; He, Sailing

    2015-08-01

    In this paper, a novel optical fiber sensor based on an enlarged-taper tailored fiber Bragg grating (FBG) is proposed and experimentally demonstrated for the measurement of relative humidity. The enlarged-taper works as a multifunctional joint that not only excites cladding modes but also recouples the cladding modes reflected by the FBG back into the leading single mode fiber. Due to the fact that cladding modes have a strong evanescent field penetrating into the ambient medium, the intensity of the reflected cladding modes is greatly influenced by the refractive index (RI) of the ambient medium. Polyvinyl alcohol (PVA) film is plated on the fiber surface by dip-coating technique, as a humidity-to-refractive index transducer, whose RI variance from 1.49 to 1.34 when the ambient humidity increases from 20%RH to 95%RH. The relative humidity response of the sensing structure is investigated in our home-made humidity chamber with a commercial hygrometer. By monitoring the intensity of the reflected cladding modes, the RH variance can be demodulated. Experimental results show that RH sensitivity depends on the RH value, and a sensitivity up to 1.2 dB/%RH can be achieved within the RH range of 30-90%. A fast and reversible time response has also been investigated. Such a probe-type and reusable fiber-optic RH sensor is a very promising technology for biochemical sensing applications, e.g., breath analysis, chemical reaction monitoring.

  14. High-resolution resonant and nonresonant fiber-scanning confocal microscope.

    PubMed

    Hendriks, Benno H W; Bierhoff, Walter C J; Horikx, Jeroen J L; Desjardins, Adrien E; Hezemans, Cees A; 't Hooft, Gert W; Lucassen, Gerald W; Mihajlovic, Nenad

    2011-02-01

    We present a novel, hand-held microscope probe for acquiring confocal images of biological tissue. This probe generates images by scanning a fiber-lens combination with a miniature electromagnetic actuator, which allows it to be operated in resonant and nonresonant scanning modes. In the resonant scanning mode, a circular field of view with a diameter of 190 μm and an angular frequency of 127 Hz can be achieved. In the nonresonant scanning mode, a maximum field of view with a width of 69 μm can be achieved. The measured transverse and axial resolutions are 0.60 and 7.4 μm, respectively. Images of biological tissue acquired in the resonant mode are presented, which demonstrate its potential for real-time tissue differentiation. With an outer diameter of 3 mm, the microscope probe could be utilized to visualize cellular microstructures in vivo across a broad range of minimally-invasive procedures.

  15. Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-08-01

    The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.

  16. Design and test of SX-FEL cavity BPM

    NASA Astrophysics Data System (ADS)

    Yuan, Ren-Xian; Zhou, Wei-Min; Chen, Zhi-Chu; Yu, Lu-Yang; Wang, Bao-Pen; Leng, Yong-Bin

    2013-11-01

    This paper reports the design and cold test of the cavity beam position monitor (CBPM) for SX-FEL to fulfill the requirement of beam position measurement resolution of less than 1 μm, even 0.1 μm. The CBPM was optimized by using a coupling slot to damp the TM010 mode in the output signal. The isolation of TM010 mode is about 117 dB, and the shunt impedance is about 200 Ω@4.65 GHz with the quality factor 80 from MAFIA simulation and test result. A special antenna was designed to load power for reducing excitation of other modes in the cavity. The resulting output power of TM110 mode was about 90 mV/mm when the source was 6 dBm, and the accomplishable minimum voltage was about 200 μV. The resolution of the CBPM was about 0.1 μm from the linear fitting result based on the cold test.

  17. Landslide susceptibility mapping in three selected target zones in Afghanistan

    NASA Astrophysics Data System (ADS)

    Schwanghart, Wolfgang; Seegers, Joe; Zeilinger, Gerold

    2015-04-01

    In May 2014, a large and mobile landslide destroyed the village Ab Barek, a village in Badakshan Province, Afghanistan. The landslide caused several hundred fatalities and once again demonstrated the vulnerability of Afghanistan's population to extreme natural events following more than 30 years of civil war and violent conflict. Increasing the capacity of Afghanistan's population by strengthening the disaster preparedness and management of responsible government authorities and institutions is thus a major component of international cooperation and development strategies. Afghanistan is characterized by high relief and widely varying rock types that largely determine the spatial distribution as well as emplacement modes of mass movements. The major aim of our study is to characterize this variability by conducting a landslide susceptibility analysis in three selected target zones: Greater Kabul Area, Badakhshan Province and Takhar Province. We expand on an existing landslide database by mapping landforms diagnostic for landslides (e.g. head scarps, normal faults and tension cracks), and historical landslide scars and landslide deposits by visual interpretation of high-resolution satellite imagery. We conduct magnitude frequency analysis within subregional physiogeographic classes based on geological maps, climatological and topographic data to identify regional parameters influencing landslide magnitude and frequency. In addition, we prepare a landslide susceptibility map for each area using the Weight-of-Evidence model. Preliminary results show that the three selected target zones vastly differ in modes of landsliding. Low magnitude but frequent rockfall events are a major hazard in the Greater Kabul Area threatening buildings and infrastructure encroaching steep terrain in the city's outskirts. Mass movements in loess covered areas of Badakshan are characterized by medium to large magnitudes. This spatial variability of characteristic landslide magnitudes and modes of emplacement necessitates different strategies to assess, mitigate, and prepare for landslides in the three different target zones.

  18. Elucidation of a side reaction occurring during nitroxide-mediated polymerization of cyclic ketene acetals by tandem mass spectrometric end-group analysis of aliphatic polyesters.

    PubMed

    Albergaria Pereira, Bruna de Fátima; Tardy, Antoine; Monnier, Valérie; Guillaneuf, Yohann; Gigmes, Didier; Charles, Laurence

    2015-12-15

    In order to prevent side reactions while developing new polymerization processes, their mechanism has to be understood and one first key insight is the structure of the end-groups in polymeric by-products. The synthetic method scrutinized here is the nitroxide-mediated polymerization (NMP) of a cyclic ketene acetal, a promising alternative process to the production of polyesters. Polymer end-group characterization was performed by mass spectrometry (MS), combining elemental composition information derived from accurate mass data in the MS mode with fragmentation features recorded in the MS/MS mode. Electrospray was used as the ionization method to ensure the integrity of original chain terminations and a quadrupole time-of-flight (QTOF) instrument was employed for high-resolution mass measurements in both MS and tandem mass spectrometry (MS/MS) modes. Occurrence of side reactions in the studied polymerization method, first evidenced by an unusual increase in dispersity with conversion, was confirmed in MS with the detection of two polymeric impurities in addition to the expected species. Fragmentation rules were first established for this new polyester family in order to derive useful structural information from MS/MS data. In addition to a usual NMP by-product, the initiating group of the second polymeric impurities revealed the degradation of the nitroxide moiety. Unambiguous MS/MS identification of end-groups in by-products sampled from the polymerization medium allowed an unusual side reaction to be identified during the NMP preparation of polyesters. On-going optimization of the polymerization method aims at preventing this undesired process. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  20. Optical Thomas-Reiche-Kuhn sum rules.

    PubMed

    Barnett, Stephen M; Loudon, Rodney

    2012-01-06

    The Thomas-Reiche-Kuhn sum rule is a fundamental consequence of the position-momentum commutation relation for an atomic electron and it provides an important constraint on the transition matrix elements for an atom. Analogously, the commutation relations for the electromagnetic field operators in a magnetodielectric medium constrain the properties of the dispersion relations for the medium through four sum rules for the allowed phase and group velocities for polaritons propagating through the medium. These rules apply to all bulk media including the metamaterials designed to provide negative refractive indices. An immediate consequence of this is that it is not possible to construct a medium in which all the polariton modes for a given wavelength lie in the negative-index region.

  1. Optical Thomas-Reiche-Kuhn Sum Rules

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.; Loudon, Rodney

    2012-01-01

    The Thomas-Reiche-Kuhn sum rule is a fundamental consequence of the position-momentum commutation relation for an atomic electron and it provides an important constraint on the transition matrix elements for an atom. Analogously, the commutation relations for the electromagnetic field operators in a magnetodielectric medium constrain the properties of the dispersion relations for the medium through four sum rules for the allowed phase and group velocities for polaritons propagating through the medium. These rules apply to all bulk media including the metamaterials designed to provide negative refractive indices. An immediate consequence of this is that it is not possible to construct a medium in which all the polariton modes for a given wavelength lie in the negative-index region.

  2. The ICE spectrograph for PEPSI at the LBT: preliminary optical design

    NASA Astrophysics Data System (ADS)

    Pallavicini, Roberto; Zerbi, Filippo M.; Spano, Paolo; Conconi, Paolo; Mazzoleni, Ruben; Molinari, Emilio; Strassmeier, Klaus G.

    2003-03-01

    We present a preliminary design study for a high-resolution echelle spectrograph (ICE) to be used with the spectropolarimeter PEPSI under development at the LBT. In order to meet the scientific requirements and take full advantage of the peculiarities of the LBT (i.e. the binocular nature and the adaptive optics capabilities), we have designed a fiber-fed bench mounted instrument for both high resolution (R ≍ 100,000; non-AO polarimetric and integral light modes) and ultra-high resolution (R ≍ 300,000; AO integral light mode). In both cases, 4 spectra per order (two for each primary mirror) shall be accomodated in a 2-dimensional cross dispersed echelle format. In order to obtain a resolution-slit product of ≍ 100,000 as required by the science case, we have considered two alternative designs, one with two R4 echelles in series and the other with a sigle R4 echelle and fiber slicing. A white-pupil design, VPH cross-dispersers and two cameras of different focal length for the AO and non-AO modes are adopted in both cases. It is concluded that the single-echelle fiber-slicer solution has to be preferred in terms of performances, complexity and cost. It can be implemented at the LBT in two phases, with the long-camera AO mode added in a second phase depending on the availability of funds and the time-scale for implementation of the AO system.

  3. Peace Education and Conflict Resolution through the Expressive Arts in Early Childhood Education and Teacher Education.

    ERIC Educational Resources Information Center

    Hinitz, Blythe F.; Stomfay-Stitz, Aline M.

    Several modes of expressive arts may be especially appropriate for peace education and conflict resolution instruction in early childhood and teacher education classrooms. This paper explores the integration of the concepts and processes of peace education and conflict resolution through an examination of current research and professional…

  4. Investigation to improve the resolution and range of a light imaging system for very thick tissues

    NASA Astrophysics Data System (ADS)

    Wist, Abund O.; Moon, Peter; Herr, Steven L.; Fatouros, Panos P.

    1995-05-01

    A high resolution light imaging system has been developed utilizing an HeNe (628 nm, 32 mW) and a receiver with post collimation mounted on an x, y table to scan the object. The image can be either recorded on a film or stored in a computer for display on a terminal. Tests show that the system in the regular mode is capable of detecting the spine and soft tissues in anesthetized mice, and of transilluminating fully an adult skull bone with a resolution for details better than one third mm. In teeth, all regular carious lesions, including incipient lesions larger than one third of a mm, can be seen in front or in the back of the tooth, none of which could be detected by dental x-ray systems. Applying a new high resolution mode, the resolution can be increased in teeth to less than 0.1 mm. Some difficulty still exists in detecting small lesions on occlusal or approximal surfaces.

  5. Calibration of Herschel SPIRE FTS observations at different spectral resolutions

    NASA Astrophysics Data System (ADS)

    Marchili, N.; Hopwood, R.; Fulton, T.; Polehampton, E. T.; Valtchanov, I.; Zaretski, J.; Naylor, D. A.; Griffin, M. J.; Imhof, P.; Lim, T.; Lu, N.; Makiwa, G.; Pearson, C.; Spencer, L.

    2017-01-01

    The SPIRE Fourier Transform Spectrometer on-board the Herschel Space Observatory had two standard spectral resolution modes for science observations: high resolution (HR) and low resolution (LR), which could also be performed in sequence (H+LR). A comparison of the HR and LR resolution spectra taken in this sequential mode revealed a systematic discrepancy in the continuum level. Analysing the data at different stages during standard pipeline processing demonstrates that the telescope and instrument emission affect HR and H+LR observations in a systematically different way. The origin of this difference is found to lie in the variation of both the telescope and instrument response functions, while it is triggered by fast variation of the instrument temperatures. As it is not possible to trace the evolution of the response functions using housekeeping data from the instrument subsystems, the calibration cannot be corrected analytically. Therefore, an empirical correction for LR spectra has been developed, which removes the systematic noise introduced by the variation of the response functions.

  6. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates

    PubMed Central

    Kolb, Jan Philip; Pfeiffer, Tom; Eibl, Matthias; Hakert, Hubertus; Huber, Robert

    2017-01-01

    We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2∙ 417 kHz  =  834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 µm axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 µm axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others. PMID:29359091

  7. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates.

    PubMed

    Kolb, Jan Philip; Pfeiffer, Tom; Eibl, Matthias; Hakert, Hubertus; Huber, Robert

    2018-01-01

    We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2∙ 417 kHz  =  834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 µm axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 µm axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others.

  8. The role of gas in determining image quality and resolution during in situ scanning transmission electron microscopy experiments

    DOE PAGES

    Zhu, Yuanyuan; Browning, Nigel D.

    2017-05-24

    As gas-solid heterogeneous catalytic reactions are molecular in nature, a full mechanistic understanding of the process requires atomic scale characterization under realistic operating conditions. While atomic resolution imaging has become a routine in modern high-vacuum (scanning) transmission electron microscopy ((S)TEM), both image quality and resolution nominally degrade when reaction gases are introduced. In this work, we systematically assess the effects of different gases at various pressures on the quality and resolution of images obtained at room temperature in the annular dark field STEM imaging mode using a differentially pumped (DP) gas cell. This imaging mode is largely free from inelasticmore » scattering effects induced by the presence of gases and retains good imaging properties over a wide range of gas mass/pressures. Furthermore, we demonstrate the application of the ESTEM with atomic resolution images of a complex oxide alkane oxidation catalyst MoVNbTeOx (M1) immersed in light and heavy gas environments.« less

  9. Parameter dependence of the MCNP electron transport in determining dose distributions.

    PubMed

    Reynaert, N; Palmans, H; Thierens, H; Jeraj, R

    2002-10-01

    In this paper, a detailed study of the electron transport in MCNP is performed, separating the effects of the energy binning technique on the energy loss rate, the scattering angles, and the sub-step length as a function of energy. As this problem is already well known, in this paper we focus on the explanation as to why the default mode of MCNP can lead to large deviations. The resolution dependence was investigated as well. An error in the MCNP code in the energy binning technique in the default mode (DBCN 18 card = 0) was revealed, more specific in the updating of cross sections when a sub-step is performed corresponding to a high-energy loss. This updating error is not present in the ITS mode (DBCN 18 card = 1) and leads to a systematically lower dose deposition rate in the default mode. The effect is present for all energies studied (0.5-10 MeV) and depends on the geometrical resolution of the scoring regions and the energy grid resolution. The effect of the energy binning technique is of the same order of that of the updating error for energies below 2 MeV, and becomes less important for higher energies. For a 1 MeV point source surrounded by homogeneous water, the deviation of the default MCNP results at short distances attains 9% and remains approximately the same for all energies. This effect could be corrected by removing the completion of an energy step each time an electron changes from an energy bin during a sub-step. Another solution consists of performing all calculations in the ITS mode. Another problem is the resolution dependence, even in the ITS mode. The higher the resolution is chosen (the smaller the scoring regions) the faster the energy is deposited along the electron track. It is proven that this is caused by starting a new energy step when crossing a surface. The resolution effect should be investigated for every specific case when calculating dose distributions around beta sources. The resolution should not be higher than 0.85*(1-EFAC)*CSDA, where EFAC is the energy loss per energy step and CSDA a continuous slowing down approximation range. This effect could as well be removed by determining the cross sections for energy loss and multiple scattering at the average energy of an energy step and by sampling the cross sections for each sub-step. Overall, we conclude that MCNP cannot be used without a caution due to possible errors in the electron transport. When care is taken, it is possible to obtain correct results that are in agreement with other Monte Carlo codes.

  10. Design of a Forward Looking Synthetic Aperture Radar for an Autonomous Cryobot for Subsurface Exploration of Europa and Enceladus

    NASA Astrophysics Data System (ADS)

    Pradhan, O.; Gasiewski, A. J.; Stone, W.

    2017-12-01

    We present the design, analyses and field testing of a forward-looking endfire synthetic aperture radar (SAR) for the `Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. The project consists of (1) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form the radiating elements, (2) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (3) field testing of the SAR system. The antennas were designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar analog and digital system were also designed and integrated at CET utilizing rugged RF components and FPGA based digital waveform generation. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. In this presentation we will describe in detail the following aspects pertaining to the design, analysis and testing of the endfire SAR system; (1) Waveform generation capability of the radar as well as transmit and receive channel calibration (2) Theoretical analysis of the radial resolution improvement made possible by using the radar in an endfire SAR mode along with the free space radar tests performed to validate the proposed endfire SAR system (3) A method for azimuth ambiguity resolution by operating the endfire SAR in a bistatic mode (4) Modal analysis of the layered cylindrical LPFSA antenna structure and a forward model of the wave propagation path through planar layered ice medium and (5) Analysis and interpretation of the in-situ measurements of the antennas and endfire SAR operation on the Matanuska glacier.

  11. Calibration and Performance of the Michelson Doppler Imager on SOHO.

    NASA Astrophysics Data System (ADS)

    Zayer, I.; Morrison, M.; Tarbell, T. D.; Title, A.; Wolfson, C. J.; MDI Engineering Team; Bogart, R. S.; Bush, R. I.; Hoeksema, J. T.; Duvall, T.; Sa, L. A. D.; Scherrer, P. H.; Schou, J.

    1996-05-01

    The Michelson Doppler Imager (MDI) instrument probes the interior of the Sun by measuring the photospheric manifestations of solar oscillations. MDI was launched in December, 1995, on the Solar and Heliospheric Observatory (SOHO) and has been successfully observing the Sun since then. The instrument images the Sun on a 1024 x 1024 pixel CCD camera through a series of increasingly narrow spectral filters. The final elements, a pair of tunable Michelson interferometers, enable MDI to record filtergrams with FWHM bandwidth of 94 m Angstroms with a resolution of 4 arcseconds over the whole disk. Images can also be collected in MDI's higher resolution (1.25 arcsecond) field centered about 160 arcseconds north of the equator. An extensive calibration program has verified the end-to-end performance of the instrument in flight. MDI is working very well; we present the most important calibration results and a sample of early science observations. The Image Stabilization System (ISS) maintains overall pointing to better than ca. 0.01 arcsec, while the ISS' diagnostic mode allows us to measure spectrally narrow pointing jitter down to less than 1 mili-arcsec. We have confirmed the linearity of each CCD pixel to lie within 0.5%\\ (the FWHM of the distribution is 0.2% ), and have to date not detected any contamination on the detector, which is cooled to -72 C. The noise in a single Dopplergram is of the order of 20 m/s, and initial measurements of transverse velocities are reliable to 100 m/s. The sensitivity of magnetograms reach 5G in a 10 minute average (15G in a single magnetogram). MDI's primary observable, the p-modes from full-disk medium-l data, are of very high quality out to l=300 as seen in the initial l-nu diagram. The SOI-MDI program is supported by NASA contract NAG5-3077.

  12. Geomorphic Units on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, R. M. C.; Malaska, M. J.; Schoenfeld, A.; Birch, S. P.; Hayes, A. G., Jr.

    2014-12-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail. The Synthetic Aperture Radar (SAR) mode on the Cassini Titan Radar Mapper is able to penetrate clouds and haze to provide high resolution (~350 m spatial resolution at best) views of the surface geology. The instrument's other modes (altimetry, scatterometry, radiometry) also provide valuable data for interpreting the geology, as do other instruments on Cassini, in particular, the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS). Continuing the initial work described in Lopes et al. (2010, Icarus, 212, 744-750), we have established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaux with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between the dunes and lakes but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global distribution on regions not covered by SAR. This is particularly important as SAR data will not provide complete coverage of Titan by the end of the Cassini mission.

  13. Geomorphic Units on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly; Malaska, Michael; Schoenfeld, Ashley; Birch, Samuel; Hayes, Alexander; Solomonidou, Anezina; Radebaugh, Jani

    2015-04-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail. The Synthetic Aperture Radar (SAR) mode on the Cassini Titan Radar Mapper is able to penetrate clouds and haze to provide high resolution (~350 m spatial resolution at best) views of the surface geology. The instrument's other modes (altimetry, scatterometry, radiometry) also provide valuable data for interpreting the geology, as do other instruments on Cassini, in particular, the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS). Continuing the initial work described in Lopes et al. (2010, Icarus, 212, 744-750), we have established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaux with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between the dunes and lakes but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global distribution on regions not covered by SAR. This is particularly important as SAR data will not provide complete coverage of Titan by the end of the Cassini mission.

  14. Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.; Lelieveld, Jos; Zanis, Prodromos; Pöschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios

    2016-11-01

    This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is ˜ 0.22 ± 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for ˜ 51, ˜ 34 and ˜ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ˜ 40, ˜ 34 and ˜ 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations.

  15. Spatiotemporal Variability and Contribution of Different Aerosol Types to the Aerosol Optical Depth over the Eastern Mediterranean

    NASA Technical Reports Server (NTRS)

    Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.; Lelieveld, Jos; Zanis, Prodromos; Poeschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios

    2016-01-01

    This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1deg × 0.1deg gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is approx. 0.22 +/- 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for approx. 51, approx. 34 and approx. 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account approx. 40, approx. 34 and approx. 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations.

  16. Simulation of the Intraseasonal Variability over the Eastern Pacific ITCZ in Climate Models

    NASA Technical Reports Server (NTRS)

    Jiang, Xianan; Waliser, Duane E.; Kim, Daehyun; Zhao, Ming; Sperber, Kenneth R.; Stern, W. F.; Schubert, Siegfried D.; Zhang, Guang J.; Wang, Wanqiu; Khairoutdinov, Marat; hide

    2012-01-01

    During boreal summer, convective activity over the eastern Pacific (EPAC) inter-tropical convergence zone (ITCZ) exhibits vigorous intraseasonal variability (ISV). Previous observational studies identified two dominant ISV modes over the EPAC, i.e., a 40-day mode and a quasi-biweekly mode (QBM). The 40-day ISV mode is generally considered a local expression of the Madden-Julian Oscillation. However, in addition to the eastward propagation, northward propagation of the 40-day mode is also evident. The QBM mode bears a smaller spatial scale than the 40-day mode, and is largely characterized by northward propagation. While the ISV over the EPAC exerts significant influences on regional climate/weather systems, investigation of contemporary model capabilities in representing these ISV modes over the EPAC is limited. In this study, the model fidelity in representing these two dominant ISV modes over the EPAC is assessed by analyzing six atmospheric and three coupled general circulation models (GCMs), including one super-parameterized GCM (SPCAM) and one recently developed high-resolution GCM (GFDL HIRAM) with horizontal resolution of about 50 km. While it remains challenging for GCMs to faithfully represent these two ISV modes including their amplitude, evolution patterns, and periodicities, encouraging simulations are also noted. In general, SPCAM and HIRAM exhibit relatively superior skill in representing the two ISV modes over the EPAC. While the advantage of SPCAM is achieved through explicit representation of the cumulus process by the embedded 2-D cloud resolving models, the improved representation in HIRAM could be ascribed to the employment of a strongly entraining plume cumulus scheme, which inhibits the deep convection, and thus effectively enhances the stratiform rainfall. The sensitivity tests based on HIRAM also suggest that fine horizontal resolution could also be conducive to realistically capture the ISV over the EPAC, particularly for the QBM mode. Further analysis illustrates that the observed 40-day ISV mode over the EPAC is closely linked to the eastward propagating ISV signals from the Indian Ocean/Western Pacific, which is in agreement with the general impression that the 40-day ISV mode over the EPAC could be a local expression of the global Madden-Julian Oscillation (MJO). In contrast, the convective signals associated with the 40-day mode over the EPAC in most of the GCM simulations tend to originate between 150degE and 150degW, suggesting the 40-day ISV mode over the EPAC might be sustained without the forcing by the eastward propagating MJO. Further investigation is warranted towards improved understanding of the origin of the ISV over the EPAC.

  17. Figuring Out Gas in Galaxies In Enzo (FOGGIE): Resolving the Inner Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton

    2018-01-01

    Cosmological hydrodynamical simulations using every common numerical method have struggled to reproduce the multiphase nature of the circumgalactic medium (CGM) revealed by recent observations. However, to date, resolution in these simulations has been aimed at dense regions — the galactic disk and in-falling satellites — while the diffuse CGM never reaches comparable levels of refinement. Taking advantage of the flexible grid structure of the adaptive mesh refinement code Enzo, we force refinement in a region of the CGM of a Milky Way-like galaxy to the same spatial resolution as that of the disk. In this talk, I will present how the physical and structural distributions of the circumgalactic gas change dramatically as a function of the resolution alone. I will also show the implications these changes have for the observational properties of the gas in the context of the observations.

  18. Biophotonic applications of eigenchannels in a scattering medium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Moonseok; Choi, Wonjun; Choi, Youngwoon; Yoon, Changhyeong; Choi, Wonshik

    2016-03-01

    When waves travel through disordered media such as ground glass and skin tissues, they are scattered multiple times. Most of the incoming energy bounces back at the superficial layers and only a small fraction can penetrate deep inside. This has been a limiting factor for the working depth of various optical techniques. We present a systematic method to enhance wave penetration to the scattering media. Specifically, we measured the reflection matrix of a disordered medium with wide angular coverage for each orthogonal polarization states. From the reflection matrix, we identified reflection eigenchannels of the medium, and shaped the incident wave into the reflection eigenchannel with smallest eigenvalue, which we call anti-reflection mode. This makes reflectance reduced and wave penetration increased as a result of the energy conservation. We demonstrated transmission enhancement by more than a factor of 3 by the coupling of the incident waves to the anti-reflection modes. Based on the uneven distribution of eigenvalues of reflection eigenchannels, we further developed an iterative feedback control method for finding and coupling light to anti-reflection modes. Since this adaptive control method can keep up with sample perturbation, it promotes the applicability of exploiting reflection eigenchannels. Our approach of delivering light deep into the scattering media will contribute to enhancing the sensitivity of detecting objects hidden under scattering layers, which is universal problem ranging from geology to life science.

  19. Subjective and objective comparisons of image quality between ultra-high-resolution CT and conventional area detector CT in phantoms and cadaveric human lungs.

    PubMed

    Yanagawa, Masahiro; Hata, Akinori; Honda, Osamu; Kikuchi, Noriko; Miyata, Tomo; Uranishi, Ayumi; Tsukagoshi, Shinsuke; Tomiyama, Noriyuki

    2018-05-29

    To compare the image quality of the lungs between ultra-high-resolution CT (U-HRCT) and conventional area detector CT (AD-CT) images. Image data of slit phantoms (0.35, 0.30, and 0.15 mm) and 11 cadaveric human lungs were acquired by both U-HRCT and AD-CT devices. U-HRCT images were obtained with three acquisition modes: normal mode (U-HRCT N : 896 channels, 0.5 mm × 80 rows; 512 matrix), super-high-resolution mode (U-HRCT SHR : 1792 channels, 0.25 mm × 160 rows; 1024 matrix), and volume mode (U-HRCT SHR-VOL : non-helical acquisition with U-HRCT SHR ). AD-CT images were obtained with the same conditions as U-HRCT N . Three independent observers scored normal anatomical structures (vessels and bronchi), abnormal CT findings (faint nodules, solid nodules, ground-glass opacity, consolidation, emphysema, interlobular septal thickening, intralobular reticular opacities, bronchovascular bundle thickening, bronchiectasis, and honeycombing), noise, artifacts, and overall image quality on a 3-point scale (1 = worst, 2 = equal, 3 = best) compared with U-HRCT N . Noise values were calculated quantitatively. U-HRCT could depict a 0.15-mm slit. Both U-HRCT SHR and U-HRCT SHR-VOL significantly improved visualization of normal anatomical structures and abnormal CT findings, except for intralobular reticular opacities and reduced artifacts, compared with AD-CT (p < 0.014). Visually, U-HRCT SHR-VOL has less noise than U-HRCT SHR and AD-CT (p < 0.00001). Quantitative noise values were significantly higher in the following order: U-HRCT SHR (mean, 30.41), U-HRCT SHR-VOL (26.84), AD-CT (16.03), and U-HRCT N (15.14) (p < 0.0001). U-HRCT SHR and U-HRCT SHR-VOL resulted in significantly higher overall image quality than AD-CT and were almost equal to U-HRCT N (p < 0.0001). Both U-HRCT SHR and U-HRCT SHR-VOL can provide higher image quality than AD-CT, while U-HRCT SHR-VOL was less noisy than U-HRCT SHR . • Ultra-high-resolution CT (U-HRCT) can improve spatial resolution. • U-HRCT can reduce streak and dark band artifacts. • U-HRCT can provide higher image quality than conventional area detector CT. • In U-HRCT, the volume mode is less noisy than the super-high-resolution mode. • U-HRCT may provide more detailed information about the lung anatomy and pathology.

  20. MSE spectrograph optical design: a novel pupil slicing technique

    NASA Astrophysics Data System (ADS)

    Spanò, P.

    2014-07-01

    The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.

  1. High sensitivity, wide coverage, and high-resolution NIR non-cryogenic spectrograph, WINERED

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Otsubo, Shogo; Hamano, Satoshi; Sameshima, Hiroaki; Yoshikawa, Tomoshiro; Fukue, Kei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Kinoshita, Masaomi; Kitano, Ayaka; Asano, Akira; Takenaka, Keiichi; Watase, Ayaka; Mito, Hiroyuki; Yasui, Chikako; Minami, Atsushi; Izumu, Natsuko; Yamamoto, Ryo; Mizumoto, Misaki; Arasaki, Takayuki; Arai, Akira; Matsunaga, Noriyuki; Kawakita, Hideyo

    2016-08-01

    Near-infrared (NIR) high-resolution spectroscopy is a fundamental observational method in astronomy. It provides significant information on the kinematics, the magnetic fields, and the chemical abundances, of astronomical objects embedded in or behind the highly extinctive clouds or at the cosmological distances. Scientific requirements have accelerated the development of the technology required for NIR high resolution spectrographs using 10 m telescopes. WINERED is a near-infrared (NIR) high-resolution spectrograph that is currently mounted on the 1.3 m Araki telescope of the Koyama Astronomical Observatory in Kyoto-Sangyo University, Japan, and has been successfully operated for three years. It covers a wide wavelength range from 0.90 to 1.35 μm (the z-, Y-, and J-bands) with a spectral resolution of R = 28,000 (Wide-mode) and R = 80,000 (Hires-Y and Hires-J modes). WINERED has three distinctive features: (i) optics with no cold stop, (ii) wide spectral coverage, and (iii) high sensitivity. The first feature, originating from the Joyce proposal, was first achieved by WINERED, with a short cutoff infrared array, cold baffles, and custom-made thermal blocking filters, and resulted in reducing the time for development, alignment, and maintenance, as well as the total cost. The second feature is realized with the spectral coverage of Δλ/λ 1/6 in a single exposure. This wide coverage is realized by a combination of a decent optical design with a cross-dispersed echelle and a large format array (2k x 2k HAWAII- 2RG). The Third feature, high sensitivity, is achieved via the high-throughput optics (>60 %) and the very low noise of the system. The major factors affecting the high throughput are the echelle grating and the VPH cross-disperser with high diffraction efficiencies of 83 % and 86 %, respectively, and the high QE of HAWAII-2RG (83 % at 1.23 μm). The readout noise of the electronics and the ambient thermal background radiation at longer wavelengths could be major noise sources. The readout noise is 5.3 e- for NDR = 32, and the ambient thermal background is significantly reduced to 0.05 e- pix-1 sec-1 at 273 K. As a result, the limiting magnitudes of WINERED are estimated to be mJ = 13.8 mag for the 1.3 m telescope, mJ = 16.9 mag for the 3.6 m telescope, and mJ = 19.2 mag for 10 m telescope with adoptive optics, respectively. Finally, we introduce some scientific highlights provided by WINERED for both emission and absorption line objects in the fields of stars, the interstellar medium, and the solar system.

  2. Pressure Dependence of the Radial Breathing Mode of Carbon Nanotubes: The Effect of Fluid Adsorption

    NASA Astrophysics Data System (ADS)

    Longhurst, M. J.; Quirke, N.

    2007-04-01

    The pressure dependence of shifts in the vibrational modes of individual carbon nanotubes is strongly affected by the nature of the pressure transmitting medium as a result of adsorption at the nanotube surface. The adsorbate is treated as an elastic shell which couples with the radial breathing mode (RBM) of the nanotube via van der Waal interactions. Using analytical methods as well as molecular simulation, we observe a low frequency breathing mode for the adsorbed fluid at ˜50cm-1, as well as diameter dependent upshifts in the RBM frequency with pressure, suggesting metallic nanotubes may wet more than semiconducting ones.

  3. Waves in a plane graphene - dielectric waveguide structure

    NASA Astrophysics Data System (ADS)

    Evseev, Dmitry A.; Eliseeva, Svetlana V.; Sementsov, Dmitry I.

    2017-10-01

    The features of the guided TE modes propagation have been investigated on the basis of computer simulations in a planar structure consisting of a set of alternating layers of dielectric and graphene. Within the framework of the effective medium approximation, the dispersion relations have been received for symmetric and antisymmetric waveguide modes, determined by the frequency range of their existence. The wave field distribution by structure, frequency dependences of the constants of propagation and transverse components of the wave vectors, as well as group and phase velocities of waveguide modes have been obtained, the effect of the graphene part in a structure on the waveguide mode behavior has been shown.

  4. Highly efficient passive mode locking of Nd:Lu2.9Gd0.1Al5O12 garnet crystal

    NASA Astrophysics Data System (ADS)

    Di, J. Q.; Xu, X. D.; Xia, C. T.; Tan, W. D.; Zhang, J.; Tang, D. Y.; Li, D. Z.; Zhou, D. H.; Wu, F.; Xu, J.

    2013-05-01

    Passive mode locking of Nd:Lu2.9Gd0.1Al5O12 (Nd:LuGdAG) crystal lasers was experimentally investigated. Stable mode-locked pulses with pulse widths as short as 9.7 ps were obtained for the Nd:LuGdAG crystal; the corresponding maximum output powers were 0.93 W while the mode-locked slope efficiencies were 43%, among the highest efficiencies ever reported for Nd3+ ps lasers. The results demonstrate that Nd:LuGdAG garnet crystal is a promising gain medium for efficient picosecond laser use.

  5. Policy without a Plan: English as a Medium of Instruction in Rwanda

    ERIC Educational Resources Information Center

    Pearson, Pamela

    2014-01-01

    From the time of Belgian colonial rule, French was predominantly the medium of instruction (MOI) in Rwanda. Then, in October 2008, a Rwandan Cabinet resolution called for the immediate implementation of English as the language of instruction in all public schools at all levels--from primary to tertiary. This study reports on ethnographic interview…

  6. Structure and Rotation of the Solar Interior: Initial Results from the MDI Medium-L Program

    NASA Technical Reports Server (NTRS)

    Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Bogart, R. S.; Bush, R. I.; Hoeksema, J. T.; Aloise, J.; Bacon, L.; Burnette, A.; DeForest, C.; hide

    1997-01-01

    The medium-l program of the Michelson Doppler Imager instrument on board SOHO provides continuous observations of oscillation modes of angular degree, l, from 0 to approximately 300. The data for the program are partly processed on board because only about 3% of MDI observations can be transmitted continuously to the ground. The on-board data processing, the main component of which is Gaussian-weighted binning, has been optimized to reduce the negative influence of spatial aliasing of the high-degree oscillation modes. The data processing is completed in a data analysis pipeline at the SOI Stanford Support Center to determine the mean multiplet frequencies and splitting coefficients. The initial results show that the noise in the medium-l oscillation power spectrum is substantially lower than in ground-based measurements. This enables us to detect lower amplitude modes and, thus, to extend the range of measured mode frequencies. This is important for inferring the Sun's internal structure and rotation. The MDI observations also reveal the asymmetry of oscillation spectral lines. The line asymmetries agree with the theory of mode excitation by acoustic sources localized in the upper convective boundary layer. The sound-speed profile inferred from the mean frequencies gives evidence for a sharp variation at the edge of the energy-generating core. The results also confirm the previous finding by the GONG (Gough et al., 1996) that, in a thin layer just beneath the convection zone, helium appears to be less abundant than predicted by theory. Inverting the multiplet frequency splittings from MDI, we detect significant rotational shear in this thin layer. This layer is likely to be the place where the solar dynamo operates. In order to understand how the Sun works, it is extremely important to observe the evolution of this transition layer throughout the 11-year activity cycle.

  7. Vertical resolution of baroclinic modes in global ocean models

    NASA Astrophysics Data System (ADS)

    Stewart, K. D.; Hogg, A. McC.; Griffies, S. M.; Heerdegen, A. P.; Ward, M. L.; Spence, P.; England, M. H.

    2017-05-01

    Improvements in the horizontal resolution of global ocean models, motivated by the horizontal resolution requirements for specific flow features, has advanced modelling capabilities into the dynamical regime dominated by mesoscale variability. In contrast, the choice of the vertical grid remains a subjective choice, and it is not clear that efforts to improve vertical resolution adequately support their horizontal counterparts. Indeed, considering that the bulk of the vertical ocean dynamics (including convection) are parameterized, it is not immediately obvious what the vertical grid is supposed to resolve. Here, we propose that the primary purpose of the vertical grid in a hydrostatic ocean model is to resolve the vertical structure of horizontal flows, rather than to resolve vertical motion. With this principle we construct vertical grids based on their abilities to represent baroclinic modal structures commensurate with the theoretical capabilities of a given horizontal grid. This approach is designed to ensure that the vertical grids of global ocean models complement (and, importantly, to not undermine) the resolution capabilities of the horizontal grid. We find that for z-coordinate global ocean models, at least 50 well-positioned vertical levels are required to resolve the first baroclinic mode, with an additional 25 levels per subsequent mode. High-resolution ocean-sea ice simulations are used to illustrate some of the dynamical enhancements gained by improving the vertical resolution of a 1/10° global ocean model. These enhancements include substantial increases in the sea surface height variance (∼30% increase south of 40°S), the barotropic and baroclinic eddy kinetic energies (up to 200% increase on and surrounding the Antarctic continental shelf and slopes), and the overturning streamfunction in potential density space (near-tripling of the Antarctic Bottom Water cell at 65°S).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yuanyuan; Browning, Nigel D.

    As gas-solid heterogeneous catalytic reactions are molecular in nature, a full mechanistic understanding of the process requires atomic scale characterization under realistic operating conditions. While atomic resolution imaging has become a routine in modern high-vacuum (scanning) transmission electron microscopy ((S)TEM), both image quality and resolution nominally degrade when reaction gases are introduced. In this work, we systematically assess the effects of different gases at various pressures on the quality and resolution of images obtained at room temperature in the annular dark field STEM imaging mode using a differentially pumped (DP) gas cell. This imaging mode is largely free from inelasticmore » scattering effects induced by the presence of gases and retains good imaging properties over a wide range of gas mass/pressures. We demonstrate the application of the ESTEM with atomic resolution images of a complex oxide alkane oxidation catalyst MoVNbTeOx (M1) immersed in light and heavy gas environments.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yuanyuan; Browning, Nigel D.

    As gas-solid heterogeneous catalytic reactions are molecular in nature, a full mechanistic understanding of the process requires atomic scale characterization under realistic operating conditions. While atomic resolution imaging has become a routine in modern high-vacuum (scanning) transmission electron microscopy ((S)TEM), both image quality and resolution nominally degrade when reaction gases are introduced. In this work, we systematically assess the effects of different gases at various pressures on the quality and resolution of images obtained at room temperature in the annular dark field STEM imaging mode using a differentially pumped (DP) gas cell. This imaging mode is largely free from inelasticmore » scattering effects induced by the presence of gases and retains good imaging properties over a wide range of gas mass/pressures. Furthermore, we demonstrate the application of the ESTEM with atomic resolution images of a complex oxide alkane oxidation catalyst MoVNbTeOx (M1) immersed in light and heavy gas environments.« less

  10. Hybrid fiber-rod laser

    DOEpatents

    Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.

    2012-12-18

    Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.

  11. Mode Medium Interaction. A Theoretical Study.

    DTIC Science & Technology

    1980-09-01

    Report) 10. SUPPLEMENTARY NOTES I9. KEY WORDS (Conrlfnue on reverse side II necessary mnd Identify by block rumber) CO, Laser Transfer Function...Chemical Laser Unstable Resonator Brillouin Scattering Instability Supersonic Laser Modes Acoustic Noise Acoustic Instability Perturbed Resonator Gain...end Identify by block number) An instability in the output of a high-power unstable-resonator cw CO2 laser is analyzed in terms of the perturbative

  12. Apparatus with moderating material for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B [Knoxville, TN

    2011-05-10

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  13. Apparatus for microwave heat treatment of manufactured components

    DOEpatents

    Babcock & Wilcox Technical Services Y-12, LLC

    2008-04-15

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  14. Methods for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  15. High-resolution differential mode delay measurement for a multimode optical fiber using a modified optical frequency domain reflectometer.

    PubMed

    Ahn, T-J; Kim, D

    2005-10-03

    A novel differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry (OFDR) has been proposed. We have obtained a high-resolution DMD value of 0.054 ps/m for a commercial multimode optical fiber with length of 50 m by using a modified OFDR in a Mach-Zehnder interferometer structure with a tunable external cavity laser and a Mach-Zehnder interferometer instead of Michelson interferometer. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method. DMD resolution with our proposed OFDR technique is more than an order of magnitude better than a result obtainable with a conventional time-domain method.

  16. Mode S and ADS-B as a Source of Clear-Air Turbulence Measurements

    NASA Astrophysics Data System (ADS)

    Kopeć, Jacek; Kwiatkowski, Kamil; de Haan, Siebren; Malinowski, Szymon

    2016-04-01

    Clear-Air Turbulence (CAT) beside being the most common cause for commercial aircraft incidents in the cruise phase is a complex physical phenomenon. CAT is an effect of various underlying physical mechanisms such as different kinds of hydrodynamic instabilities or large scale forcing. In order to properly understand and correctly forecast it one needs a significant amount of observation data. Up to date the best available observations are the in-situ EDR (from eddy dissipation rate - a measure of turbulence intensity). Those observations are reported every ~1 min of flight (roughly every 15 km). Yet their availability is limited by the willingness of the airlines to cooperate in adjusting on-board software. However there is a class of data that can be accessed more freely. In this communication we present and discuss a feasibility analysis of the three methods of processing Mode S/ADS-B messages into viable turbulence measurements. The Mode S/ADS-B messages are unrestricted navigational data broadcast by most of the commercial aircraft. The unique characteristic of this data is a very high temporal resolution. This allows to employ processing which results in obtaining turbulence information characterized by spatial resolution comparable with the best available data sources. Moreover due to using Mode-S/ASS-B data, the number of aircraft that are providing observations increases significantly. The methods are either using simple positioning information available in the ADS-B or high-resolution wind information from the Mode S. The paper is largely based on the results of the methods application to the data originating from DELICAT flight campaign that took place in 2013. The flight campaign was conducted using NLR operated Cessna Citation II. The reference Mode-S/ADS-B data partly overlapping with the research flights were supplied by the KNMI. Analysis shows very significant potential of the Mode-S wind based methods. J. M. Kopeć, K. Kwiatkowski, S. de Haan, and S. P. Malinowski, Retrieving clear-air turbulence information from regular commercial aircraft using Mode-S and ADS-B broadcast, Atmos. Meas. Tech. Discuss., 8, 11817-11852, doi:10.5194/amtd-8-11817-2015, 2015

  17. Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media

    PubMed Central

    Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne

    2015-01-01

    Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required. PMID:25822785

  18. Electromagnetic fields due to a horizontal electric dipole antenna laid on the surface of a two-layer medium

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.

    1974-01-01

    With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.

  19. Mode/Medium Instability in CO2 Laser

    NASA Technical Reports Server (NTRS)

    Webster, K. L.; Sung, C. C.

    1992-01-01

    Report discribes theoretical study of model/medium instability (MMI) in CO2 laser. Purposes of study to extend, to small Fresnel numbers, previous study of MMI restricted to large Fresnel numbers and to study methods of previous studies, to suppress MMI. Method of primary interest involves replacement of hard edge output mirror in laser resonator with mirror, local reflectivity of which decreases with radial distance from optical axis according to Gaussian profile.

  20. Velocity sensitivity of seismic body waves to the anisotropic parameters of a TTI-medium

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, Stewart

    2008-09-01

    We formulate the derivatives of the phase and group velocities for each of the anisotropic parameters in a tilted transversely isotropic medium (TTI-medium). This is a common geological model in seismic exploration and has five elastic moduli or related Thomsen parameters and two orientation angles defining the axis of symmetry of the rock. We present two independent methods to compute the derivatives and examine the formulae with real anisotropic rocks. The formulations and numerical computations do not encounter any singularity problem when applied to the two quasi shear waves, which is a problem with other approaches. The two methods yield the same results, which show in a quantitative way the sensitivity behaviour of the phase and the group velocities to all of the elastic moduli or Thomsen's anisotropic parameters as well as the orientation angles in the 2D and 3D cases. One can recognize the dominant (strong effect) and weak (or 'dummy') parameters for the three seismic body-wave modes (qP, qSV, qSH) and their effective domains over the whole range of phase-slowness directions. These sensitivity patterns indicate the possibility of nonlinear kinematic inversion with the three wave modes for determining the anisotropic parameters and imaging an anisotropic medium.

  1. Range and azimuth resolution enhancement for 94 GHz real-beam radar

    NASA Astrophysics Data System (ADS)

    Liu, Guoqing; Yang, Ken; Sykora, Brian; Salha, Imad

    2008-04-01

    In this paper, two-dimensional (2D) (range and azimuth) resolution enhancement is investigated for millimeter wave (mmW) real-beam radar (RBR) with linear or non-linear antenna scan in the azimuth dimension. We design a new architecture of super resolution processing, in which a dual-mode approach is used for defining region of interest for 2D resolution enhancement and a combined approach is deployed for obtaining accurate location and amplitude estimations of targets within the region of interest. To achieve 2D resolution enhancement, we first adopt the Capon Beamformer (CB) approach (also known as the minimum variance method (MVM)) to enhance range resolution. A generalized CB (GCB) approach is then applied to azimuth dimension for azimuth resolution enhancement. The GCB approach does not rely on whether the azimuth sampling is even or not and thus can be used in both linear and non-linear antenna scanning modes. The effectiveness of the resolution enhancement is demonstrated by using both simulation and test data. The results of using a 94 GHz real-beam frequency modulation continuous wave (FMCW) radar data show that the overall image quality is significantly improved per visual evaluation and comparison with respect to the original real-beam radar image.

  2. Active mode locking of lasers by piezoelectrically induced diffraction modulation

    NASA Astrophysics Data System (ADS)

    Krausz, F.; Turi, L.; Kuti, Cs.; Schmidt, A. J.

    1990-04-01

    A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 μm and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate of 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.

  3. Possible repetitive pulse operation of diode-pumped alkali laser (DPAL)

    NASA Astrophysics Data System (ADS)

    Endo, Masamori

    2017-01-01

    A theoretical study has been conducted for investigating the possibility of a diode-pumped alkali laser (DPAL) operating in repetitive pulsed mode. A one-dimensional, time-dependent rate-equation simulation of a Cs DPAL was developed to calculate the dynamic behavior of the active medium when Q-switching or cavity dumping was applied. The simulation modeled our small-scale experimental apparatus. In the continuous-wave (CW) mode, the calculated output power was in good agreement with the experimental value. Q-switching was shown to be ineffective because of the short spontaneous lifetime of the active medium, on the order of 10 ns. On the other hand, cavity dumping was proven to be effective. In typical operational conditions, a 54 times increase in peak power with respect to the CW power was predicted.

  4. Fundamental limit of nanophotonic light trapping in solar cells.

    PubMed

    Yu, Zongfu; Raman, Aaswath; Fan, Shanhui

    2010-10-12

    Establishing the fundamental limit of nanophotonic light-trapping schemes is of paramount importance and is becoming increasingly urgent for current solar cell research. The standard theory of light trapping demonstrated that absorption enhancement in a medium cannot exceed a factor of 4n(2)/sin(2)θ, where n is the refractive index of the active layer, and θ is the angle of the emission cone in the medium surrounding the cell. This theory, however, is not applicable in the nanophotonic regime. Here we develop a statistical temporal coupled-mode theory of light trapping based on a rigorous electromagnetic approach. Our theory reveals that the conventional limit can be substantially surpassed when optical modes exhibit deep-subwavelength-scale field confinement, opening new avenues for highly efficient next-generation solar cells.

  5. Enzymatic Resolution and Separation of Secondary Alcohols Based on Fatty Esters as Acylating Agents

    ERIC Educational Resources Information Center

    Monteiro, Carlos M.; Afonso, Carlos A. M.; Lourenco, Nuno M. T.

    2010-01-01

    The enzymatic resolution of "rac"-1-phenylethanol using ethyl myristate as acylating agent and solvent and "Candida antarctica" lipase B (CAL-B) as biocatalyst was demonstrated with catalyst and medium reuse. Both enantiomers of 1-phenylethanol were isolated by sequential enzymatic reactions and product distillations. From the first enzymatic…

  6. Solar collector having a solid transmission medium

    DOEpatents

    Schertz, William W.; Zwerdling, Solomon

    1977-06-14

    There is provided a radiant energy transmission device capable of operation in a concentrative mode in which energy incident on an entrance area is directed toward and concentrated on an exit area of smaller area than the entrance area. The device includes a solid radiant energy transmission medium having surfaces coincident with the entrance and exit areas and particularly contoured reflective side walls. The surface coinciding with the entrance area is coupled to a cover plate formed of a radiant energy transmissive material. An energy transducer is coupled to the surface of the medium coinciding with the exit area.

  7. PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Ilyin, I.; Järvinen, A.; Weber, M.; Woche, M.; Barnes, S. I.; Bauer, S.-M.; Beckert, E.; Bittner, W.; Bredthauer, R.; Carroll, T. A.; Denker, C.; Dionies, F.; DiVarano, I.; Döscher, D.; Fechner, T.; Feuerstein, D.; Granzer, T.; Hahn, T.; Harnisch, G.; Hofmann, A.; Lesser, M.; Paschke, J.; Pankratow, S.; Plank, V.; Plüschke, D.; Popow, E.; Sablowski, D.

    2015-05-01

    PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2×8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3k×10.3k CCDs with 9-μm pixels and peak quantum efficiencies of 94-96 % record a total of 92 échelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 92-96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15 % at 650 nm, and still 11 % and 10 % at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of ≈ 20th mag in V in the low-resolution mode. The R = 120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100-μm fibre through a projected sky aperture of 0.74 arcsec, comparable to the median seeing of the LBT site. The 43 000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Pérot étalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. Its full error propagation through all image-processing steps allows an adaptive selection of parameters by using statistical inferences and robust estimators. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we present the basic instrument design, its realization, and its characteristics. Some pre-commissioning first-light spectra shall demonstrate the basic functionality.

  8. Isotopic substitution of a hydrogen bond: A near infrared study of the intramolecular states in (DF)2

    NASA Astrophysics Data System (ADS)

    Davis, Scott; Anderson, David T.; Farrell, John T., Jr.; Nesbitt, David J.

    1996-06-01

    High resolution near infrared spectra of the two high frequency intramolecular modes in (DF)2 have been characterized using a slit-jet infrared spectrometer. In total, four pairs of vibration-rotation-tunneling (VRT) bands are observed, corresponding to K=0 and K=1 excitation of both the ν2 (``bound'') and ν1 (``free'') intramolecular DF stretching modes. Analysis of the rotationally resolved spectra provides vibrational origins, rotational constants, tunneling splittings and upper state predissociation lifetimes for all four states. The rotational constants indicate that the deuterated hydrogen bond contracts and bends upon intramolecular excitation, analogous to what has been observed for (HF)2. The isotope and K dependence of tunneling splittings for (HF)2 and (DF)2 in both intramolecular modes is interpreted in terms of a semiclassical 1-D tunneling model. High resolution line shape measurements reveal vibrational predissociation broadening in (DF)2: 56(2) and 3(2) MHz for the ν2 (bound) and ν1 (free) intramolecular stretching modes, respectively. This 20-fold mode specific enhancement parallels the ≥30-fold enhancement observed between analogous intramolecular modes of (HF)2, further elucidating the role of nonstatistical predissociation dynamics in such hydrogen bonded clusters.

  9. Mapping Impervious Surface Expansion using Medium-resolution Satellite Image Time Series: A Case Study in the Yangtze River Delta, China

    NASA Technical Reports Server (NTRS)

    Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe

    2012-01-01

    Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived from this study agree well with an existing urban extent polygon data set that was previously developed independently. The overall mapping accuracy was estimated at about 92.5% with 3% commission error and 12% omission error for the impervious type from all images regardless of image quality and initial spatial resolution.

  10. A three-dimensional multivariate representation of atmospheric variability

    NASA Astrophysics Data System (ADS)

    Žagar, Nedjeljka; Jelić, Damjan; Blaauw, Marten; Jesenko, Blaž

    2016-04-01

    A recently developed MODES software has been applied to the ECMWF analyses and forecasts and to several reanalysis datasets to describe the global variability of the balanced and inertio-gravity (IG) circulation across many scales by considering both mass and wind field and the whole model depth. In particular, the IG spectrum, which has only recently become observable in global datasets, can be studied simultaneously in the mass field and wind field and considering the whole model depth. MODES is open-access software that performs the normal-mode function decomposition of the 3D global datasets. Its application to the ERA Interim dataset reveals several aspects of the large-scale circulation after it has been partitioned into the linearly balanced and IG components. The global energy distribution is dominated by the balanced energy while the IG modes contribute around 8% of the total wave energy. However, on subsynoptic scales IG energy dominates and it is associated with the main features of tropical variability on all scales. The presented energy distribution and features of the zonally-averaged and equatorial circulation provide a reference for the intercomparison of several reanalysis datasets and for the validation of climate models. Features of the global IG circulation are compared in ERA Interim, MERRA and JRA reanalysis datasets and in several CMIP5 models. Since October 2014 the operational medium-range forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been analyzed by MODES daily and an online archive of all the outputs is available at http://meteo.fmf.uni-lj.si/MODES. New outputs are made available daily based on the 00 UTC run and subsequent 12-hour forecasts up to 240-hour forecast. In addition to the energy spectra and horizontal circulation on selected levels for the balanced and IG components, the equatorial Kelvin waves are presented in time and space as the most energetic tropical IG modes propagating vertically and along the equator from its main generation regions in the upper troposphere over the Indian and Pacific region. The validation of the 10-day ECMWF forecasts with analyses in the modal space suggests a lack of variability in the tropics in the medium range. Reference: Žagar, N. et al., 2015: Normal-mode function representation of global 3-D data sets: open-access software for the atmospheric research community. Geosci. Model Dev., 8, 1169-1195, doi:10.5194/gmd-8-1169-2015 Žagar, N., R. Buizza, and J. Tribbia, 2015: A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble. J. Atmos. Sci., 72, 4423-4444 The MODES software is available from http://meteo.fmf.uni-lj.si/MODES.

  11. How does ionizing radiation escape from galaxies?

    NASA Astrophysics Data System (ADS)

    Orlitova, Ivana

    2016-10-01

    Search for sources that reionized the Universe from z 15 to z 6 is one of the main drivers of present-day astronomy. Low-mass star-forming galaxies are the most favoured sources of ionizing photons, but the searches of escaping Lyman continuum (LyC) have not been extremely successful. Our team has recently detected prominent LyC escape from five Green Pea galaxies at redshift 0.3, using the HST/COS spectrograph, which represents a significant breakthrough. We propose here to study the LyC escape of the strongest among these leakers, J1152, with spatial resolution. From the comparison of the ionizing and non-ionizing radiation maps, and surface brightness profiles, we will infer the major mode in which LyC is escaping: from the strongest starburst, from the galaxy edge, through a hole along our line-of-sight, through clumpy medium, or directly from all the production sites due to highly ionized medium in the entire galaxy. In parallel, we will test the predictive power of two highly debated indirect indicators of LyC leakage: the [OIII]5007/[OII]3727 ratio, and Lyman-alpha. We predict that their spatial distribution should closely follow that of the ionizing continuum if column densities of the neutral gas are low. This combined study, which relies on the HST unique capabilities, will bring crucial information on the structure of the leaking galaxies, provide constraints for hydrodynamic simulations, and will lead to efficient future searches for LyC leakers across a large range of redshifts.

  12. Coupling of light into the fundamental diffusion mode of a scattering medium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ojambati, Oluwafemi S.; Yılmaz, Hasan; Lagendijk, Ad; Mosk, Allard P.; Vos, Willem L.

    2016-03-01

    Diffusion equation describes the energy density inside a scattering medium such as biological tissues and paint [1]. The solution of the diffusion equation is a sum over a complete set of eigensolutions that shows a characteristic linear decrease with depth in the medium. It is of particular interest if one could launch energy in the fundamental eigensolution, as this opens the opportunity to achieve a much greater internal energy density. For applications in optics, an enhanced energy density is vital for solid-state lighting, light harvesting in solar cells, low-threshold random lasers, and biomedical optics. Here we demonstrate the first ever selective coupling of optical energy into a diffusion eigensolution of a scattering medium of zinc oxide (ZnO) paint. To this end, we exploit wavefront shaping to selectively couple energy into the fundamental diffusion mode, employing fluorescence of nanoparticles randomly positioned inside the medium as a probe of the energy density. We observe an enhanced fluorescence in case of optimized incident wavefronts, and the enhancement increases with sample thickness, a typical mesoscopic control parameter. We interpret successfully our result by invoking the fundamental eigensolution of the diffusion equation, and we obtain excellent agreement with our observations, even in absence of adjustable parameters [2]. References [1] R. Pierrat, P. Ambichl, S. Gigan, A. Haber, R. Carminati, and R. Rotter, Proc. Natl. Acad. Sci. U.S.A. 111, 17765 (2014). [2] O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, arXiv:1505.08103.

  13. Mars Digital Image Mosaic Globe

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The photomosaic that forms the base for this globe was created by merging two global digital image models (DIM's) of Mars-a medium-resolution monochrome mosaic processed to emphasize topographic features and a lower resolution color mosaic emphasizing color and albedo variations.

    The medium-resolution (1/256 or roughly 231 m/pixel) monochromatic image model was constructed from about 6,000 images having resolutions of 150-350 m/pixel and oblique illumination (Sun 20 o -45 o above the horizon). Radiometric processing was intended to suppress or remove the effects of albedo variations through the use of a high-pass divide filter, followed by photometric normalization so that the contrast of a given topographic slope would be approximately the same in all images.

    The global color mosaic was assembled at 1/64 or roughly 864 m/pixel from about 1,000 red- and green-filter images having 500-1,000 m/pixel resolution. These images were first mosaiced in groups, each taken on a single orbit of the Viking spacecraft. The orbit mosaics were then processed to remove spatially and temporally varying atmospheric haze in the overlap regions. After haze removal, the per-orbit mosaics were photometrically normalized to equalize the contrast of albedo features and mosaiced together with cosmetic seam removal. The medium-resolution DIM was used for geometric control of this color mosaic. A green-filter image was synthesized by weighted averaging of the red- and violet-filter mosaics. Finally, the product seen here was obtained by multiplying each color image by the medium-resolution monochrome image. The color balance selected for images in this map series was designed to be close to natural color for brighter, redder regions, such as Arabia Terra and the Tharsis region, but the data have been stretched so that the relatively dark regions appear darker and less red than they actually are.

    The images are presented in a projection that portrays the entire surface of Mars in a manner suitable for the production of a globe; the number, size, and placement of text annotations were chosen for a 12-inch globe. Prominent features are labeled with names approved by the International Astronomical Union. A specialized program was used to create the 'flower petal' appearance of the images; the area of each petal from 0 to 75 degrees latitude is in the Transverse Mercator projection, and the area from 75 to 90 degrees latitude is in the Lambert Azimuthal Equal-Area projection. The northern hemisphere of Mars is shown on the left, and the southern hemisphere on the right.

  14. Spatial Resolution and Refractive Index Contrast of Resonant Photonic Crystal Surfaces for Biosensing

    PubMed Central

    Triggs, G. J.; Fischer, M.; Stellinga, D.; Scullion, M. G.; Evans, G. J. O.; Krauss, T. F.

    2015-01-01

    By depositing a resolution test pattern on top of a Si3N4 photonic crystal resonant surface, we have measured the dependence of spatial resolution on refractive index contrast Δn. Our experimental results and finite-difference time-domain (FDTD) simulations at different refractive index contrasts show that the spatial resolution of our device reduces with reduced contrast, which is an important consideration in biosensing, where the contrast may be of order 10−2. We also compare 1-D and 2-D gratings, taking into account different incidence polarizations, leading to a better understanding of the excitation and propagation of the resonant modes in these structures, as well as how this contributes to the spatial resolution. At Δn = 0.077, we observe resolutions of 2 and 6 μm parallel to and perpendicular to the grooves of a 1-D grating, respectively, and show that for polarized illumination of a 2-D grating, resolution remains asymmetrical. Illumination of a 2-D grating at 45° results in symmetric resolution. At very low index contrast, the resolution worsens dramatically, particularly for Δn < 0.01, where we observe a resolution exceeding 10 μm for our device. In addition, we measure a reduction in the resonance linewidth as the index contrast becomes lower, corresponding to a longer resonant mode propagation length in the structure and contributing to the change in spatial resolution. PMID:26356353

  15. System design of the CRISM (compact reconnaissance imaging spectrometer for Mars) hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Silverglate, Peter R.; Fort, Dennis E.

    2004-01-01

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) in August 2005. The MRO will circle Mars in a polar orbit at a nominal altitude of 325 km. The CRISM spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 400 nm to 4050 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.06º field of view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer light is split by a dichroic into VNIR (visible-near infrared) (λ <= 1.05 μm) and IR (infrared) (λ >= 1.05 μm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.55 nm spectral spacing and an instantaneous field of view of 60 μradians. The orbital motion of the MRO pushbroom scans the spectrometer slit across the Martian surface, allowing the planet to be mapped in 558 spectral bands. There are four major mapping modes: A quick initial multi-spectral mapping of a major portion of the Martian surface in 59 selected spectral bands at a spatial resolution of 600 μradians (10:1 binning); an extended multi-spectral mapping of the entire Martian surface in 59 selected spectral bands at a spatial resolution of 300 μradians (5:1 binning); a high resolution Target Mode, performing hyperspectral mapping of selected targets of interest at full spatial and spectral resolution; and an atmospheric Emission Phase Function (EPF) mode for atmospheric study and correction at full spectral resolution at a spatial resolution of 300 μradians (5:1 binning). The instrument is gimbaled to allow scanning over +/-60° for the EPF and Target modes. The scanning also permits orbital motion compensation, enabling longer integration times and consequently higher signal-to-noise ratios for selected areas on the Martian surface in Target Mode.

  16. System design of the CRISM (compact reconnaissance imaging spectrometer for Mars) hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Silverglate, Peter R.; Fort, Dennis E.

    2003-12-01

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) in August 2005. The MRO will circle Mars in a polar orbit at a nominal altitude of 325 km. The CRISM spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 400 nm to 4050 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.06º field of view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer light is split by a dichroic into VNIR (visible-near infrared) (λ <= 1.05 μm) and IR (infrared) (λ >= 1.05 μm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.55 nm spectral spacing and an instantaneous field of view of 60 μradians. The orbital motion of the MRO pushbroom scans the spectrometer slit across the Martian surface, allowing the planet to be mapped in 558 spectral bands. There are four major mapping modes: A quick initial multi-spectral mapping of a major portion of the Martian surface in 59 selected spectral bands at a spatial resolution of 600 μradians (10:1 binning); an extended multi-spectral mapping of the entire Martian surface in 59 selected spectral bands at a spatial resolution of 300 μradians (5:1 binning); a high resolution Target Mode, performing hyperspectral mapping of selected targets of interest at full spatial and spectral resolution; and an atmospheric Emission Phase Function (EPF) mode for atmospheric study and correction at full spectral resolution at a spatial resolution of 300 μradians (5:1 binning). The instrument is gimbaled to allow scanning over +/-60° for the EPF and Target modes. The scanning also permits orbital motion compensation, enabling longer integration times and consequently higher signal-to-noise ratios for selected areas on the Martian surface in Target Mode.

  17. Patterned thin metal film for the lateral resolution measurement of photoacoustic tomography

    PubMed Central

    2012-01-01

    Background Image quality assessment method of photoacoustic tomography has not been completely standardized yet. Due to the combined nature of photonic signal generation and ultrasonic signal transmission in biological tissue, neither optical nor ultrasonic traditional methods can be used without modification. An optical resolution measurement technique was investigated for its feasibility for resolution measurement of photoacoustic tomography. Methods A patterned thin metal film deposited on silica glass provides high contrast in optical imaging due to high reflectivity from the metal film and high transmission from the glass. It provides high contrast when it is used for photoacoustic tomography because thin metal film can absorb pulsed laser energy. An US Air Force 1951 resolution target was used to generate patterned photoacoustic signal to measure the lateral resolution. Transducer with 2.25 MHz bandwidth and a sample submerged in water and gelatinous block were tested for lateral resolution measurement. Results Photoacoustic signal generated from a thin metal film deposited on a glass can propagate along the surface or through the surrounding medium. First, a series of experiments with tilted sample confirmed that the measured photoacoustic signal is what is propagating through the medium. Lateral resolution of the photoacoustic tomography system was successfully measured for water and gelatinous block as media: 0.33 mm and 0.35 mm in water and gelatinous material, respectively, when 2.25 MHz transducer was used. Chicken embryo was tested for biomedical applications. Conclusions A patterned thin metal film sample was tested for its feasibility of measuring lateral resolution of a photoacoustic tomography system. Lateral resolutions in water and gelatinous material were successfully measured using the proposed method. Measured resolutions agreed well with theoretical values. PMID:22794510

  18. Electron temperature and heat load measurements in the COMPASS divertor using the new system of probes

    NASA Astrophysics Data System (ADS)

    Adamek, J.; Seidl, J.; Horacek, J.; Komm, M.; Eich, T.; Panek, R.; Cavalier, J.; Devitre, A.; Peterka, M.; Vondracek, P.; Stöckel, J.; Sestak, D.; Grover, O.; Bilkova, P.; Böhm, P.; Varju, J.; Havranek, A.; Weinzettl, V.; Lovell, J.; Dimitrova, M.; Mitosinkova, K.; Dejarnac, R.; Hron, M.; The COMPASS Team; The EUROfusion MST1 Team

    2017-11-01

    A new system of probes was recently installed in the divertor of tokamak COMPASS in order to investigate the ELM energy density with high spatial and temporal resolution. The new system consists of two arrays of rooftop-shaped Langmuir probes (LPs) used to measure the floating potential or the ion saturation current density and one array of Ball-pen probes (BPPs) used to measure the plasma potential with a spatial resolution of ~3.5 mm. The combination of floating BPPs and LPs yields the electron temperature with microsecond temporal resolution. We report on the design of the new divertor probe arrays and first results of electron temperature profile measurements in ELMy H-mode and L-mode. We also present comparative measurements of the parallel heat flux using the new probe arrays and fast infrared termography (IR) data during L-mode with excellent agreement between both techniques using a heat power transmission coefficient γ  =  7. The ELM energy density {{\\varepsilon }\\parallel } was measured during a set of NBI assisted ELMy H-mode discharges. The peak values of {{\\varepsilon }\\parallel } were compared with those predicted by model and with experimental data from JET, AUG and MAST with a good agreement.

  19. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    PubMed Central

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352

  20. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  1. Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator

    PubMed Central

    Zhu, Wenqi; Xu, Ting; Wang, Haozhu; Zhang, Cheng; Deotare, Parag B.; Agrawal, Amit; Lezec, Henri J.

    2017-01-01

    Recent years have witnessed a growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface plasmons—electromagnetic modes evanescently confined to metal-dielectric interfaces—offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain medium. We achieve narrow-linewidth visible-frequency lasing at room temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. We show how the lasing threshold and linewidth can be lowered by incorporating a low-profile tapered grating on the cavity floor to couple the excitation beam into a pump surface plasmon polariton providing a strong modal overlap with the gain medium. Low-perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high–figure of merit refractive index sensing of analytes interacting with the open metallic trench. PMID:28989962

  2. A dissipative quantum mechanical beam-splitter.

    PubMed

    Ramakrishna, S A; Bandyopadhyay, A; Rai, J

    1998-01-19

    A dissipative beam-splitter (BS) has been analyzed by modeling the losses in the BS due to the excitation of optical phonons. The losses are obtained in terms of the BS medium properties. The model simplies the picture by treating the loss mechanism as a perturbation on the photon modes in a linear, non-lossy medium in the limit of small losses, instead of using the full field quantization in lossy, dispersive media. The model uses second order perturbation in the Markoff approximation and yields the Beer's law for absorption in the first approximation, thus providing a microscopic description of the absorption coecient. It is shown that the fluctuations in the modes get increased because of the losses. We show the existence of quantum interferences due to phase correlations between the input beams and it is shown that these correlations can result in loss quenching. Hence in spite of having such a dissipative medium, it is possible to design a lossless 50-50 BS at normal incidence which may have potential applications in laser optics and dielectric-coated mirrors.

  3. Resonant absorption of electromagnetic waves in transition anisotropic media.

    PubMed

    Kim, Kihong

    2017-11-27

    We study the mode conversion and resonant absorption phenomena occurring in a slab of a stratified anisotropic medium, optical axes of which are tilted with respect to the direction of inhomogeneity, using the invariant imbedding theory of wave propagation. When the tilt angle is zero, mode conversion occurs if the longitudinal component of the permittivity tensor, which is the one in the direction of inhomogeneity in the non-tilted case, varies from positive to negative values within the medium, while the transverse component plays no role. When the tilt angle is nonzero, the wave transmission and absorption show an asymmetry under the sign change of the incident angle in a range of the tilt angle, while the reflection is always symmetric. We calculate the reflectance, the transmittance and the absorptance for several configurations of the permittivity tensor and find that resonant absorption is greatly enhanced when the medium from the incident surface to the resonance region is hyperbolic than when it is elliptic. For certain configurations, the transmittance and absorptance curves display sharp peaks at some incident angles determined by the tilt angle.

  4. High Resolution Far Infrared Fourier Transform Spectroscopy of the NH_2 Radical.

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Pirali, O.; Balcon, D.; Vervloet, M.

    2011-06-01

    First identified toward Sgr B2, the NH_2 radical has recently been detected in the interstellar medium by the HIFI instrument on board of Herschel. Despite the fact that this radical has not been detected in brown dwarfs and exoplanets yet, it is already included in physical and chemical models of those environments (temperature higher than 2000 K expected in several objects). Its detection in those objects will depend on the existence of a reliable high temperature and high resolution spectroscopic database on the NH_2 radical.The absorption spectrum of NH_2 has been recorded between 15 and 700 Cm-1 at the highest resolution available using the Bruker IFS125HR Fourier transform interferometer connected to the far infrared AILES beamline at SOLEIL (R=0.001 Cm-1). The radical was produced by an electrical discharge (DC) through a continuous flow of NH_3 and He using the White-type discharge cell developped on the beamline (optical path: 24m). Thanks to the brilliance of the synchrotron radiation, more than 700 pure rotational transitions of NH_2 have been identified with high N values (NMax=25) in its fundamental and first excited vibrational modes. By comparison to the previous FT spectroscopic study on that radical in the FIR spectral range, asymmetric splitting as well as fine and hyperfine structure have been resolved for several transitions. E. F. Van Dishoeck, D. J. Jansen, P. Schilke, T. G. Phillips The Astrophysical Journal 416, L83-L86 (1993) C. M. Persson, J. H. Black, J. Cernicharo et al. Astronomy and Astrophysics 521, L45 (2010) K. Lodders and B. Fegley, Jr Icarus 155, 393-424 (2002) I. Morino and K. Kawaguchi Journal of Molecular Spectroscopy 182, 428-438 (1997)

  5. Time series evapotranspiration maps at a regional scale: A methodology, evaluation, and their use in water resources management

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.

    2016-12-01

    Evapotranspiration (ET) is an important process in ecosystems' water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. There are efforts to develop such datasets on a regional to global scale but often faced with the limitations of spatial-temporal resolution tradeoffs in satellite remote sensing technology. In this study, we developed frameworks for generating high and medium resolution daily ET maps from Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data, respectively. For developing high resolution (30-m) daily time series ET maps with Landsat TM data, the series version of Two Source Energy Balance (TSEB) model was used to compute sensible and latent heat fluxes of soil and canopy separately. Landsat 5 (2000-2011) and Landsat 8 (2013-2014) imageries for row 28/35 and 27/36 covering central Oklahoma was used. MODIS data (2001-2014) covering Oklahoma and Texas Panhandle was used to develop medium resolution (250-m), time series daily ET maps with SEBS (Surface Energy Balance System) model. An extensive network of weather stations managed by Texas High Plains ET Network and Oklahoma Mesonet was used to generate spatially interpolated inputs of air temperature, relative humidity, wind speed, solar radiation, pressure, and reference ET. A linear interpolation sub-model was used to estimate the daily ET between the image acquisition days. Accuracy assessment of daily ET maps were done against eddy covariance data from two grassland sites at El Reno, OK. Statistical results indicated good performance by modeling frameworks developed for deriving time series ET maps. Results indicated that the proposed ET mapping framework is suitable for deriving daily time series ET maps at regional scale with Landsat and MODIS data.

  6. High resolution measurements supported by electronic structure calculations of two naphthalene derivatives: [1,5]- and [1,6]-naphthyridine--estimation of the zero point inertial defect for planar polycyclic aromatic compounds.

    PubMed

    Gruet, S; Goubet, M; Pirali, O

    2014-06-21

    Polycyclic aromatic hydrocarbons (PAHs) molecules are suspected to be present in the interstellar medium and to participate to the broad and unresolved emissions features, the so-called unidentified infrared bands. In the laboratory, very few studies report the rotationally resolved structure of such important class of molecules. In the present work, both experimental and theoretical approaches provide the first accurate determination of the rotational energy levels of two diazanaphthalene: [1,5]- and [1,6]-naphthyridine. [1,6]-naphthyridine has been studied at high resolution, in the microwave (MW) region using a Fourier transform microwave spectrometer and in the far-infrared (FIR) region using synchrotron-based Fourier transform spectroscopy. The very accurate set of ground state (GS) constants deduced from the analysis of the MW spectrum allowed the analysis of the most intense modes in the FIR (ν38-GS centered at about 483 cm(-1) and ν34-GS centered at about 842 cm(-1)). In contrast with [1,6]-naphthyridine, pure rotation spectroscopy of [1,5]-naphthyridine cannot be performed for symmetry reasons so the combined study of the two intense FIR modes (ν22-GS centered at about 166 cm(-1) and ν18-GS centered at about 818 cm(-1)) provided the GS and the excited states constants. Although the analysis of the very dense rotational patterns for such large molecules remains very challenging, relatively accurate anharmonic density functional theory calculations appeared as a highly relevant supporting tool to the analysis for both molecules. In addition, the good agreement between the experimental and calculated infrared spectrum shows that the present theoretical approach should provide useful data for the astrophysical models. Moreover, inertial defects calculated in the GS (ΔGS) of both molecules exhibit slightly negative values as previously observed for planar species of this molecular family. We adjusted the semi-empirical relations to estimate the zero-point inertial defect (Δ0) of polycyclic aromatic molecules and confirmed the contribution of low frequency out-of-plane vibrational modes to the GS inertial defects of PAHs, which is indeed a key parameter to validate the analysis of such large molecules.

  7. Probing hydrogen bond potentials via combination band spectroscopy: A near infrared study of the geared bend/van der Waals stretch intermolecular modes in (HF)2

    NASA Astrophysics Data System (ADS)

    Anderson, David T.; Davis, Scott; Nesbitt, David J.

    1996-04-01

    High resolution near infrared spectra of the two lowest frequency intermolecular modes in HF-stretch excited states of (HF)2 have been characterized using a slit-jet infrared spectrometer. In the spectral region surveyed, ten vibration-rotation-tunneling (VRT) bands are observed and assigned to the low frequency ``van der Waals stretch'' (ν4) and ``geared bend'' (ν5) intermolecular modes, in combination with either the hydrogen bond acceptor (ν1) or donor (ν2) high-frequency intramolecular HF stretches. Analysis of the rotationally resolved spectra provide intermolecular frequencies, rotational constants, tunneling splittings, and predissociation rates for the ν4/ν5 intermolecular excited states. The intermolecular vibrational frequencies in the combination states display a systematic dependence on intramolecular redshift that allows far-IR intermolecular frequencies to be reliably extrapolated from the near-IR data. Approximately tenfold increases in the hydrogen bond interconversion tunneling splittings with either ν4 or ν5 excitation indicate that both intermolecular modes correlate strongly to the tunneling coordinate. The high resolution VRT line shapes reveal mode specific predissociation broadening sensitive predominantly to intramolecular excitation, with weaker but significant additional effects due to low frequency intermolecular excitation. Analysis of the high resolution spectroscopic data for these ν4 and ν5 combination bands suggests strong state mixing between what has previously been considered van der Waals stretch and geared bend degrees of freedom.

  8. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jiangang; Annis, James; /Fermilab

    2010-10-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digitalmore » Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of {approx}100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you want) to get some initial images loaded. Then, additional images corresponding to the region you are browsing will be loaded automatically. So far, you have access to all the co-added images. But you still do not have the galaxy cluster position information to look at. In order to see the galaxy clusters, you need to download another kmz file that tell Google Earth where to find the galaxy clusters in the co-added data region. We provide a kmz file for a few galaxy clusters in the stripe 82 region and you can download and open it with Google Earth. In the SDSS co-added region (stripe 82 region), the imagery from Google Earth itself is from the Digitized Sky Survey (2007), which is in very poor quality. In Figure1 and Figure2, we show screenshots of a cluster with and without the new co-added imagery in Google Earth. Much more details have been revealed with the deep images.« less

  9. Validation and Temporal Analysis of Lai and Fapar Products Derived from Medium Resolution Sensor

    NASA Astrophysics Data System (ADS)

    Claverie, M.; Vermote, E. F.; Baret, F.; Weiss, M.; Hagolle, O.; Demarez, V.

    2012-12-01

    Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) have been defined as Essential Climate Variables. Many Earth surface monitoring applications are based on global estimation combined with a relatively high frequency. The medium spatial resolution sensors (MRS), such as SPOT-VGT, MODIS or MERIS, have been widely used to provide land surface products (mainly LAI and FAPAR) to the scientific community. These products require quality assessment and consistency. However, due to consistency of the ground measurements spatial sampling, the medium resolution is not appropriate for direct validation with in situ measurements sampling. It is thus more adequate to use high spatial resolution sensors which can integrate the spatial variability. The recent availability of combined high spatial (8 m) and temporal resolutions (daily) Formosat-2 data allows to evaluate the accuracy and the temporal consistency of medium resolution sensors products. In this study, we proposed to validate MRS products over a cropland area and to analyze their spatial and temporal consistency. As a matter of fact, this study belongs to the Stage 2 of the validation, as defined by the Land Product Validation sub-group of the Earth Observation Satellites. Reference maps, derived from the aggregation of Formosat-2 data (acquired during the 2006-2010 period over croplands in southwest of France), were compared with (i) two existing global biophysical variables products (GEOV1/VGT and MODIS-15 coll. 5), and (ii) a new product (MODdaily) derived from the inversion of PROSAIL radiative transfer model (EMMAH, INRA Avignon) applied on MODIS BRDF-corrected daily reflectance. Their uncertainty was calculated with 105 LAI and FAPAR reference maps, which uncertainties (22 % for LAI and 12% for FAPAR) were evaluated with in situ measurements performed over maize, sunflower and soybean. Inter-comparison of coarse resolution (0.05°) products showed that LAI and FAPAR have consistent phenology (Figure). The GEOLAND-2 showed the smoothest time series due to a 30-day composite, while MODdaily noise was satisfactory (<12%). The RMSE of LAI calculated for the period 2006-2010 were 0.46 for GEOV1/VGT, 0.19 for MODIS-15 and 0.16 for MODdaily. A significant overestimation (bias=0.43) of the LAI peak were observed for GEOV1/VGT products, while MOD-15 showed a small underestimation (bias=-0.14) of highest LAI. Finally, over a larger area (a quarter of France) covered by cropland, grassland and forest, the products displayed a good spatial consistency.; LAI 2006-2010 time-series of a coarse resolution pixel of cropland (extent in upper-left corner). Products are compared to Formosat-2 reference maps.

  10. Kawase & McDermott revisited with a proper ocean model.

    NASA Astrophysics Data System (ADS)

    Jochum, Markus; Poulsen, Mads; Nuterman, Roman

    2017-04-01

    A suite of experiments with global ocean models is used to test the hypothesis that Southern Ocean (SO) winds can modify the strength of the Atlantic Meridional Overturning Circulation (AMOC). It is found that for 3 and 1 degree resolution models the results are consistent with Toggweiler & Samuels (1995): stronger SO winds lead to a slight increase of the AMOC. In the simulations with 1/10 degree resolution, however, stronger SO winds weaken the AMOC. We show that these different outcomes are determined by the models' representation of topographic Rossby and Kelvin waves. Consistent with previous literature based on theory and idealized models, first baroclinic waves are slower in the coarse resolution models, but still manage to establish a pattern of global response that is similar to the one in the eddy-permitting model. Because of its different stratification, however, the Atlantic signal is transmitted by higher baroclinic modes. In the coarse resolution model these higher modes are dissipated before they reach 30N, whereas in the eddy-permitting model they reach the subpolar gyre undiminished. This inability of non-eddy-permitting ocean models to represent planetary waves with higher baroclinic modes casts doubt on the ability of climate models to represent non-local effects of climate change. Ideas on how to overcome these difficulties will be discussed.

  11. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber.

    PubMed

    Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi

    2011-12-19

    A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.

  12. A digital gigapixel large-format tile-scan camera.

    PubMed

    Ben-Ezra, M

    2011-01-01

    Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.

  13. In vivo two-dimensional NMR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraft, Robert A.

    1999-10-01

    The poor resolution of in-vivo one- dimensional nuclear magnetic resonance spectroscopy (NMR) has limited its clinical potential. Currently, only the large singlet methyl resonances arising from N-acetyl aspartate (NAA), choline, and creatine are quantitated in a clinical setting. Other metabolites such as myo- inositol, glutamine, glutamate, lactate, and γ- amino butyric acid (GABA) are of clinical interest but quantitation is difficult due to the overlapping resonances and limited spectral resolution. To improve the spectral resolution and distinguish between overlapping resonances, a series of two- dimensional chemical shift correlation spectroscopy experiments were developed for a 1.5 Tesla clinical imaging magnet. Two-dimensional methods are attractive for in vivo spectroscopy due to their ability to unravel overlapping resonances with the second dimension, simplifying the interpretation and quantitation of low field NMR spectra. Two-dimensional experiments acquired with mix-mode line shape negate the advantages of the second dimension. For this reason, a new experiment, REVOLT, was developed to achieve absorptive mode line shape in both dimensions. Absorptive mode experiments were compared to mixed mode experiments with respect to sensitivity, resolution, and water suppression. Detailed theoretical and experimental calculations of the optimum spin lock and radio frequency power deposition were performed. Two-dimensional spectra were acquired from human bone marrow and human brain tissue. The human brain tissue spectra clearly reveal correlations among the coupled spins of NAA, glutamine, glutamate, lactate, GABA, aspartate and myo-inositol obtained from a single experiment of 23 minutes from a volume of 59 mL. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  14. The first full-resolution measurements of Auroral Medium Frequency Burst Emissions

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J.; Weatherwax, A.; Hughes, J.

    2008-12-01

    Auroral MF burst is a naturally occurring auroral radio emission which appears unstructured on resolution of previous measurements, is observed in the frequency range of 0.8-4.5 MHz, and has typical amplitudes of around 10-14 V2/m2Hz, and durations of a few minutes. The emission occurs at substorm onset. Since Sept 2006, Dartmouth has operated a broadband (0-5 MHz) interferometer at Toolik Lake, Alaska (68° 38' N, 149° 36' W, 68.51 deg. magnetic latitude), designed for the study of auroral MF burst emissions. Normal operation involves taking snapshots of waveforms from four spaced antennas from which wave spectral and directional information is obtained. However, the experiment can also be run in "continuous mode" whereby the signal from a selected antenna is sampled continuously at 10 M samples/second. A "continuous mode" campaign was run 0800-1200 UT (~2200-0200 MLT) daily from March 21 to April 19, 2008. During this campaign more than twenty auroral MF burst emissions were observed, including three extraordinarily intense examples lasting approximately two minutes each. These observations represent the highest time and frequency resolution data ever collected of MF burst emissions. These data allow us to better characterize the null near twice the electron gyrofrequency identified in previous experiments, since examples of this feature observed during this campaign display a strong null ~50 kHz in bandwidth, with sharp boundaries and occasionally coincident with 2 fce auroral roar. These data also allow us to search for frequency-time structures embedded in MF-burst. One prominent feature appears to be a strong single frequency emission which broadens down to lower frequencies over time, spreading to approximately 500 kHz in bandwidth over ~10 ms. Among other features observed are a diffuse and unstructured emission, as well as what could potentially be several separate emission sources, with multiple emissions occurring simultaneously, appearing as weaker "ghosts" behind the main MF burst emission. These data in will additionally allow us to search for the presence of sub-millisecond wave packets, sometimes quasi-periodic, reported by LaBelle et al. [1997, J. Geophys. Res. 102, 22221]. Finally, a search for frequency dispersion or absence thereof will provide a test of theories which speculate that different frequencies originate at different altitudes in the ionosphere.

  15. Special Features of Induction Annealing of Friction Stir Welded Joints of Medium-Alloy Steels

    NASA Astrophysics Data System (ADS)

    Priymak, E. Yu.; Stepanchukova, A. V.; Bashirova, E. V.; Fot, A. P.; Firsova, N. V.

    2018-01-01

    Welded joints of medium-alloy steels XJY750 and 40KhN2MA are studied in the initial condition and after different variants of annealing. Special features of the phase transformations occurring in the welded steels are determined. Optimum modes of annealing are recommended for the studied welded joints of drill pipes, which provide a high level of mechanical properties including the case of impact loading.

  16. Using Power Spectrum Analysis to Evaluate 18O-Water Labeling Data Acquired from Low Resolution Mass Spectrometers

    PubMed Central

    Sadygov, Rovshan G.; Zhao, Yingxin; Haidacher, Sigmund J.; Starkey, Jonathan M.; Tilton, Ronald G.; Denner, Larry

    2010-01-01

    We describe a method for ratio estimations in 18O-water labeling experiments acquired from low resolution isotopically resolved data. The method is implemented in a software package specifically designed for use in experiments making use of zoom-scan mode data acquisition. Zoom-scan mode data allows commonly used ion trap mass spectrometers to attain isotopic resolution, which make them amenable to use in labeling schemes such as 18O-water labeling, but algorithms and software developed for high resolution instruments may not be appropriate for the lower resolution data acquired in zoom-scan mode. The use of power spectrum analysis is proposed as a general approach which may be uniquely suited to these data types. The software implementation uses power spectrum to remove high-frequency noise, and band-filter contributions from co-eluting species of differing charge states. From the elemental composition of a peptide sequence we generate theoretical isotope envelopes of heavy-light peptide pairs in five different ratios; these theoretical envelopes are correlated with the filtered experimental zoom scans. To automate peptide quantification in high-throughput experiments, we have implemented our approach in a computer program, MassXplorer. We demonstrate the application of MassXplorer to two model mixtures of known proteins, and to a complex mixture of mouse kidney cortical extract. Comparison with another algorithm for ratio estimations demonstrates the increased precision and automation of MassXplorer. PMID:20568695

  17. The SALT HRS Spectrograph

    NASA Astrophysics Data System (ADS)

    Tyas, Luke Martin Graham

    2012-05-01

    SALT HRS (Southern African Large Telescope High Resolution Échelle Spectrograph) is a high-resolution, high-efficiency spectrograph for the 11m SALT telescope in Sutherland, South Africa. The initial optical design work was performed at the University of Canterbury, New Zealand. Revisions to the concept, the mechanical design, manufacture, assembly and testing have been handled by the Centre for Advanced Instrumentation, at Durham University in the United Kingdom. SALT HRS is a fibre-fed échelle grating spectrograph with four operational modes: low-, medium- and high-resolution and high-stability modes, having spectral resolutions of R≈16000, 37000, 67000 and 67000 respectively over a wavelength range of 370-890nm. The instrument is of a dual channel, 'white pupil' design, in which the primary mirror acts to collimate light onto a single R4 échelle grating, and also to focus dispersed light to an intermediate focus. A dichroic beam-splitter separates the dispersed light into two separate spectral channels. Spherical pupil mirrors transfer the separated beams via a fold mirror to two wavelength-specific volume-phase holographic gratings (VPHGs) used as cross-dispersers. Cross-dispersed spectra are then imaged by two fully dioptric camera systems onto optimized CCD detectors. This thesis presents the results of the laboratory testing and specification of several critical sub-systems of SALT HRS, as well as the development of key software tools for the design verification and operation at the telescope. In Chapter 1 we first review the technical development of high-resolution spectroscopy and its specific implementation in SALT HRS. In Chapter 2 we develop a comprehensive throughput model of the entire system based on a combination of as-built performance and specific throughput measurements in the laboratory. This is used to make some specific predictions for the on-sky performance of SALT HRS and the magnitude limits for science targets. We also present a graphical exposure time calculator based on these measurements which can be used by an astronomer to plan their observations with SALT HRS. Chapter 3 contains a detailed treatise on the optical fibre system of SALT HRS. Considerations for the use of optical fibres in astronomy are provided, as are details of an optional double scrambler, and the various instrument fibre modes. Extensive measurements of focal ratio degradation (FRD) are also presented, with testing of input beam speed; wavelength; fibre bending; variable pupil mirror illumination; and vacuum tank pressure dependency. The systems for fibre management are reviewed, as is the fibre bundle assembly process. Testing of two further sub-systems is described in Chapter 4. Firstly the long-term stability of the mirror mounting mechanisms is determined. The advantages of cross-dispersion of échelle spectra using volume-phase holographic gratings are then discussed, and the results of diffraction efficiency measurements are given for both red and blue channel gratings. Modern CCD technologies are examined in Chapter 5, and the blue detector is experimentally characterized using photon transfer and quantum efficiency curves. It is also used for an investigation into cosmic ray events in CCDs. Results from shielding the detector using lead are described, as is an attempt to distinguish the source of the events based on their morphology. Finally, Chapter 6 deals with the handling of data produced by SALT HRS. Methods of wavelength calibration of the spectra are discussed, including the use of Thorium-Argon lamps and an iodine absorption cell. The implementation of a Python based quick-look data reduction pipeline is reviewed, with a description of the processes performed. A summary of the thesis is given in Chapter 7.

  18. Laser simulation applying Fox-Li iteration: investigation of reason for non-convergence

    NASA Astrophysics Data System (ADS)

    Paxton, Alan H.; Yang, Chi

    2017-02-01

    Fox-Li iteration is often used to numerically simulate lasers. If a solution is found, the complex field amplitude is a good indication of the laser mode. The case of a semiconductor laser, for which the medium possesses a self-focusing nonlinearity, was investigated. For a case of interest, the iterations did not yield a converged solution. Another approach was needed to explore the properties of the laser mode. The laser was treated (unphysically) as a regenerative amplifier. As the input to the amplifier, we required a smooth complex field distribution that matched the laser resonator. To obtain such a field, we found what would be the solution for the laser field if the strength of the self focusing nonlinearity were α = 0. This was used as the input to the laser, treated as an amplifier. Because the beam deteriorated as it propagated multiple passes in the resonator and through the gain medium (for α = 2.7), we concluded that a mode with good beam quality could not exist in the laser.

  19. Gaussian-windowed frame based method of moments formulation of surface-integral-equation for extended apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il; Lomakin, V., E-mail: vlomakin@eng.ucsd.edu

    2016-03-01

    Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii)more » furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.« less

  20. Photonic Molecule Lasers Revisited

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  1. Multifunctional synchrotron spectrometer of the National Research Center "Kurchatov Institute": I. EXAFS in dispersive mode

    NASA Astrophysics Data System (ADS)

    Aksenov, V. L.; Tyutyunnikov, S. I.; Shalyapin, V. N.; Belyaev, A. D.; Artemiev, A. N.; Artemiev, N. A.; Kirillov, B. F.; Kovalchiuk, M. V.; Demkiv, A. A.; Knyazev, G. A.

    2017-01-01

    The improved X-ray optical scheme, the system of registration, and the measurement procedure of the multifunctional synchrotron radiation spectrometer in the dispersive EXAFS mode are described. The results of the spectrometer energy resolution measurements are given. The advantages and disadvantages of traditional and dispersive EXAFS spectrometers are analyzed. Examples of EXAFS spectra measured in the dispersive mode are given.

  2. Nano Goes to School: A Teaching Model of the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Kovac, Janez

    2008-01-01

    The paper describes a teaching model of the atomic force microscope (AFM), which proved to be successful in the role of an introduction to nanoscience in high school. The model can demonstrate the two modes of operation of the AFM (contact mode and oscillating mode) as well as some basic principles that limit the resolution of the method. It can…

  3. Tunable liquid-crystal microshell-laser based on whispering-gallery modes and photonic band-gap mode lasing.

    PubMed

    Lu, Yuelan; Yang, Yue; Wang, Yan; Wang, Lei; Ma, Ji; Zhang, Lingli; Sun, Weimin; Liu, Yongjun

    2018-02-05

    The lasing behaviors of dye-doped cholesteric liquid crystal (DDCLC) microshells fabricated with silica-glass-microsphere coated DDCLCs were examined. Lasing characteristics were studied in a carrier medium with different refractive indices. The lasing in spherical cholesteric liquid crystals (CLCs) was attributed to two mechanisms, photonic band-gap (PBG) lasing and whispering-gallery modes (WGMs), which can independently exist by varying the chiral agent concentration and pumping energy. It was also found that DDCLC microshells can function as highly sensitive thermal sensors, with a temperature sensitivity of 0.982 nm °C -1 in PBG modes and 0.156 nm °C -1 in WGMs.

  4. Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography

    PubMed Central

    Leblond, Frederic; Tichauer, Kenneth M.; Pogue, Brian W.

    2010-01-01

    The spatial resolution and recovered contrast of images reconstructed from diffuse fluorescence tomography data are limited by the high scattering properties of light propagation in biological tissue. As a result, the image reconstruction process can be exceedingly vulnerable to inaccurate prior knowledge of tissue optical properties and stochastic noise. In light of these limitations, the optimal source-detector geometry for a fluorescence tomography system is non-trivial, requiring analytical methods to guide design. Analysis of the singular value decomposition of the matrix to be inverted for image reconstruction is one potential approach, providing key quantitative metrics, such as singular image mode spatial resolution and singular data mode frequency as a function of singular mode. In the present study, these metrics are used to analyze the effects of different sources of noise and model errors as related to image quality in the form of spatial resolution and contrast recovery. The image quality is demonstrated to be inherently noise-limited even when detection geometries were increased in complexity to allow maximal tissue sampling, suggesting that detection noise characteristics outweigh detection geometry for achieving optimal reconstructions. PMID:21258566

  5. Enhanced Sensitivity for High Spatial Resolution Lipid Analysis by Negative Ion Mode MALDI Imaging Mass Spectrometry

    PubMed Central

    Angel, Peggi M.; Spraggins, Jeffrey M.; Baldwin, H. Scott; Caprioli, Richard

    2012-01-01

    We have achieved enhanced lipid imaging to a ~10 μm spatial resolution using negative ion mode matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry, sublimation of 2,5-dihydroxybenzoic acid as the MALDI matrix and a sample preparation protocol that uses aqueous washes. We report on the effect of treating tissue sections by washing with volatile buffers at different pHs prior to negative ion mode lipid imaging. The results show that washing with ammonium formate, pH 6.4, or ammonium acetate, pH 6.7, significantly increases signal intensity and number of analytes recorded from adult mouse brain tissue sections. Major lipid species measured were glycerophosphoinositols, glycerophosphates, glycerolphosphoglycerols, glycerophosphoethanolamines, glycerophospho-serines, sulfatides, and gangliosides. Ion images from adult mouse brain sections that compare washed and unwashed sections are presented and show up to fivefold increases in ion intensity for washed tissue. The sample preparation protocol has been found to be applicable across numerous organ types and significantly expands the number of lipid species detectable by imaging mass spectrometry at high spatial resolution. PMID:22243218

  6. SEEDS Moving Groups and CHARIS Status Updates

    NASA Technical Reports Server (NTRS)

    McElwain, Michael

    2012-01-01

    We present the status update for the SEEDS Moving Groups category. To date, we have observed 59 targets and currently have more than 20 candidates. We also present the expected scientific capabilities of CHARIS, the Coronagraphic High Angular Resolution Imaging Spectrograph, which is being built for the Subaru 8.2 m telescope of the National Astronomical Observatory of Japan. CHARIS will be implemented behind the new extreme adaptive optics system at Subaru, SCExAO, and the existing 188-actuator system AO188. CHARIS will offer three observing modes over nearinfrared wavelengths from 0.9 to 2.4 microns (the y-, J-, H-, and K-bands), including a low-spectral-resolution mode covering this entire wavelength range and a high-resolution mode within a single band. With these capabilities, CHARIS will offer exceptional sensitivity for discovering giant exoplanets, and will enable detailed characterization of their atmospheres, CHARIS, the only planned high-contrast integral field spectrograph on an 8m-class telescope in the Northern Hemisphere, will complement the similar instruments such as Project 1640 at Palomar, and GPI and SPHERE in Chile.

  7. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    NASA Astrophysics Data System (ADS)

    Basilevsky, M. V.; Odinokov, A. V.; Titov, S. V.; Mitina, E. A.

    2013-12-01

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/kBT where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 < 1 - 3) and for low (ξ0 ≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T → 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode/medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the present approach to the Marcus ET theory and to the quantum-statistical reaction rate theory [V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR, Ser. Fiz. Khim. 124, 213 (1959); J. Ulstrup, Charge Transfer in Condensed Media (Springer, Berlin, 1979); M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999)] underlying it is discussed and illustrated by the results of computations for practically important target systems.

  8. Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios

    NASA Astrophysics Data System (ADS)

    Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.

    2017-12-01

    Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.

  9. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    PubMed

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  10. AIRES: An Airborne Infra-Red Echelle Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie J.; Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Telesco, Charles M.; Pina, Robert K.; Wolf, Juergen; Young, Erick T.

    1999-01-01

    SOFIA will enable astronomical observations with unprecedented angular resolution at infrared wavelengths obscured from the ground. To help open this new chapter in the exploration of the infrared universe, we are building AIRES, an Airborne Infra-Red Echelle Spectrometer. AIRES will be operated as a first generation, general purpose facility instrument by USRA, NASA's prime contractor for SOFIA. AIRES is a long slit spectrograph operating from 17 - 210 microns. In high resolution mode the spectral resolving power is approx. 10(exp 6) microns/A or approx. 10(exp 4) at 100 microns. Unfortunately, since the conference, a low resolution mode with resolving power about 100 times lower has been deleted due to budgetary constraints. AIRES includes a slit viewing camera which operates in broad bands at 18 and 25 microns.

  11. Single mode, short cavity, Pb-salt diode lasers operating in the 5, 10, and 30-microns spectral regions

    NASA Technical Reports Server (NTRS)

    Linden, K. J.

    1985-01-01

    Pb-salt diode lasers are being used as frequency-tunable infrared sources in high resolution spectroscopy and heterodyne detection applications. Recent advances in short cavity, stripe-geometry laser configurations have led to significant increases in maximum CW operating temperature, single mode operation, and increased single mode tuning range. This paper describes short cavity, stripe geometry lasers operating in the 5, 10, and 30-microns spectral regions, with single mode tuning ranges of over 6/cm.

  12. Nonlinear hybridization of the fundamental eigenmodes of microscopic ferromagnetic ellipses.

    PubMed

    Demidov, V E; Buchmeier, M; Rott, K; Krzysteczko, P; Münchenberger, J; Reiss, G; Demokritov, S O

    2010-05-28

    We have studied experimentally with high spatial resolution the nonlinear eigenmodes of microscopic Permalloy elliptical elements. We show that the nonlinearity affects the frequencies of the edge and the center modes in an essentially different way. This leads to repulsion of corresponding resonances and to nonlinear mode hybridization resulting in qualitative modifications of the spatial characteristics of the modes. We find that the nonlinear counterparts of the edge and the center modes simultaneously exhibit features specific for both their linear analogues.

  13. An Evaluation of Recently Developed RANS-Based Turbulence Models for Flow Over a Two-Dimensional Block Subjected to Different Mesh Structures and Grid Resolutions

    NASA Astrophysics Data System (ADS)

    Kardan, Farshid; Cheng, Wai-Chi; Baverel, Olivier; Porté-Agel, Fernando

    2016-04-01

    Understanding, analyzing and predicting meteorological phenomena related to urban planning and built environment are becoming more essential than ever to architectural and urban projects. Recently, various version of RANS models have been established but more validation cases are required to confirm their capability for wind flows. In the present study, the performance of recently developed RANS models, including the RNG k-ɛ , SST BSL k-ω and SST ⪆mma-Reθ , have been evaluated for the flow past a single block (which represent the idealized architecture scale). For validation purposes, the velocity streamlines and the vertical profiles of the mean velocities and variances were compared with published LES and wind tunnel experiment results. Furthermore, other additional CFD simulations were performed to analyze the impact of regular/irregular mesh structures and grid resolutions based on selected turbulence model in order to analyze the grid independency. Three different grid resolutions (coarse, medium and fine) of Nx × Ny × Nz = 320 × 80 × 320, 160 × 40 × 160 and 80 × 20 × 80 for the computational domain and nx × nz = 26 × 32, 13 × 16 and 6 × 8, which correspond to number of grid points on the block edges, were chosen and tested. It can be concluded that among all simulated RANS models, the SST ⪆mma-Reθ model performed best and agreed fairly well to the LES simulation and experimental results. It can also be concluded that the SST ⪆mma-Reθ model provides a very satisfactory results in terms of grid dependency in the fine and medium grid resolutions in both regular and irregular structure meshes. On the other hand, despite a very good performance of the RNG k-ɛ model in the fine resolution and in the regular structure grids, a disappointing performance of this model in the coarse and medium grid resolutions indicates that the RNG k-ɛ model is highly dependent on grid structure and grid resolution. These quantitative validations are essential to access the accuracy of RANS models for the simulation of flow in urban environment.

  14. Active mode locking of lasers by piezoelectrically induced diffraction modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krausz, F.; Turi, L.; Kuti, C.

    A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 {mu}m and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate ofmore » 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.« less

  15. Analogs of solid nanoparticles as precursors of aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gadallah, K. A. K.; Mutschke, H.; Jäger, C.

    2013-06-01

    Context. Aromatic =CH and C=C vibrational bands have been observed within shocked interstellar regions, indicating the presence of aromatic emission carriers such as PAHs, which may have been created from adjacent molecular cloud material by interaction with a shock front. Aims: We investigate the evolution of the aromatic =CH and C=C vibrational modes at 3.3 and 6.2 μm wavelength in heated HAC materials, PAHs and mixed PAHs and HACs, respectively, aiming at an explanation of the evolution of carbonaceous dust grains in the shocked regions. Methods: Materials used in these analogs (HAC and PAH materials) were prepared by the laser ablation and the laser pyrolysis methods, respectively. The transmission electron microscopy (TEM) in high-resolution mode was used as an analytical technique to characterize the aromatic layers in HACs. Spectroscopic analysis was prformed in the mid-IR range. Results: A remarkable destruction of aliphatic structures in HACs has been observed with the thermal processing, while aromatic structures become dominating by increasing the diameters of the graphene layers. The aromatic bands at 3.3 and 6.2 μm, observed in the laboratory spectra of PAHs and of the combination of the PAHs and HAC materials, are also clearly observed in the spectrum of the heated HACs. These bands agree with those of aromatic bands observed in astronomical observations. Conclusions: Aromatization of HACs could be a pre-stage in the decomposition process of hydrocarbons that form PAH-clusters in such hot interstellar medium.

  16. Recent Doppler Backscattering results from EAST tokamak

    NASA Astrophysics Data System (ADS)

    Zhou, Chu; Liu, Adi; Zhang, Xiaohui; Hu, Jianqiang; Wang, Mingyuan; Yu, Changxuan; Liu, Wandong; Li, Hong; Lan, Tao; Sun, Xuan; Xie, Jinlin; Ding, Weixing; CAS Key Laboratory of Geospace Environment, University of Science and Technology of China Team; Department of Physics and Astronomy, University of California at Los Angeles Collaboration

    2013-10-01

    A Doppler reflectometer system has recently been installed in the EAST tokamak. It includes two separated systems, one for Q-band and the other for V-band. The optical system consists of a fixed flat mirror and a steerable parabolic mirror, which enabling the measurement of perpendicular wave number in the range of 4-22/cm, with the wave number resolution around 2/cm, while the radial location can cover the whole minor radius for L mode and the whole pedestal for H mode on EAST. A 2D Gaussion Ray tracing code is used to calculate the scattering location, the perpendicular wave number and the resolution. In EAST last experimental campaign the Doppler shifted signals have been obtained and the radial profiles of the perpendicular propagation velocity during L-mode and H-mode are calculated. The Er evolution during L-H and H-L transition have also been measured. The two separated systems are also used as a poloidal coherent system together to study the GAM in EAST tokamak.

  17. High-Resolution Measurement of the Turbulent Frequency-Wavenumber Power Spectrum in a Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Qian, T. M.; Mauel, M. E.

    2017-10-01

    In a laboratory magnetosphere, plasma is confined by a strong dipole magnet, where interchange and entropy mode turbulence can be studied and controlled in near steady-state conditions. Whole-plasma imaging shows turbulence dominated by long wavelength modes having chaotic amplitudes and phases. Here, we report for the first time, high-resolution measurement of the frequency-wavenumber power spectrum by applying the method of Capon to simultaneous multi-point measurement of electrostatic entropy modes using an array of floating potential probes. Unlike previously reported measurements in which ensemble correlation between two probes detected only the dominant wavenumber, Capon's ``maximum likelihood method'' uses all available probes to produce a frequency-wavenumber spectrum, showing the existence of modes propagating in both electron and ion magnetic drift directions. We also discuss the wider application of this technique to laboratory and magnetospheric plasmas with simultaneous multi-point measurements. Supported by NSF-DOE Partnership in Plasma Science Grant DE-FG02-00ER54585.

  18. Characteristic changes in brain electrical activity due to chronic hypoxia in patients with obstructive sleep apnea syndrome (OSAS): a combined EEG study using LORETA and omega complexity.

    PubMed

    Toth, Marton; Faludi, Bela; Wackermann, Jiri; Czopf, Jozsef; Kondakor, Istvan

    2009-11-01

    EEG background activity of patients with obstructive sleep apnea syndrome (OSAS, N = 25) was compared to that of normal controls (N = 14) to reflect alterations of brain electrical activity caused by chronic intermittent hypoxia in OSAS. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Comparing patients to controls, lower Omega complexity was found globally and in the right hemisphere. Using LORETA, an increased medium frequency activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex. These findings indicate that alterations caused by chronic hypoxia in brain electrical activity in regions associated with influencing emotional regulation, long-term memory and the default mode network. Global synchronization (lower Omega complexity) may indicate a significantly reduced number of relatively independent, parallel neural processes due to chronic global hypoxic state in apneic patients as well as over the right hemisphere.

  19. Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy

    PubMed Central

    Feist, Armin; Rubiano da Silva, Nara; Liang, Wenxi; Ropers, Claus; Schäfer, Sascha

    2018-01-01

    The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distortion on their intrinsic ultrafast time and nanometer length scales are still lacking. Here, we introduce ultrafast convergent beam electron diffraction with a nanoscale probe beam for the quantitative retrieval of the time-dependent local deformation gradient tensor. We demonstrate its capabilities by investigating the ultrafast acoustic deformations close to the edge of a single-crystalline graphite membrane. Tracking the structural distortion with a 28-nm/700-fs spatio-temporal resolution, we observe an acoustic membrane breathing mode with spatially modulated amplitude, governed by the optical near field structure at the membrane edge. Furthermore, an in-plane polarized acoustic shock wave is launched at the membrane edge, which triggers secondary acoustic shear waves with a pronounced spatio-temporal dependency. The experimental findings are compared to numerical acoustic wave simulations in the continuous medium limit, highlighting the importance of microscopic dissipation mechanisms and ballistic transport channels. PMID:29464187

  20. General Astrophysics Science Enabled by the HabEx Ultraviolet Spectrograph (UVS)

    NASA Astrophysics Data System (ADS)

    Scowen, Paul; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Martin, Stefan; Somerville, Rachel; Stern, Daniel; HabEx Science and Technology Definition Team

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of the four large mission concepts being studied by NASA as input to the upcoming 2020 Decadal Survey. The mission implements two world-class General Astrophysics instruments as part of its complement of instrumentation to enable compelling science using the 4m aperture. The Ultraviolet Spectrograph has been designed to address cutting edge far ultraviolet (FUV) science that has not been possible with the Hubble Space Telescope, and to open up a wide range of capabilities that will advance astrophysics as we look into the 2030s. Our poster discusses some of those science drivers and possible applications, which range from Solar System science, to nearby and more distant studies of star formation, to studies of the circumgalactic and intergalactic mediums where the ecology of mass and energy transfer are vital to understanding stellar and galactic evolution. We discuss the performance features of the instrument that include a large 3’x3’ field of view for multi-object spectroscopy, and some 20 grating modes for a variety of spectral resolution and coverage.

  1. Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy.

    PubMed

    Feist, Armin; Rubiano da Silva, Nara; Liang, Wenxi; Ropers, Claus; Schäfer, Sascha

    2018-01-01

    The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distortion on their intrinsic ultrafast time and nanometer length scales are still lacking. Here, we introduce ultrafast convergent beam electron diffraction with a nanoscale probe beam for the quantitative retrieval of the time-dependent local deformation gradient tensor. We demonstrate its capabilities by investigating the ultrafast acoustic deformations close to the edge of a single-crystalline graphite membrane. Tracking the structural distortion with a 28-nm/700-fs spatio-temporal resolution, we observe an acoustic membrane breathing mode with spatially modulated amplitude, governed by the optical near field structure at the membrane edge. Furthermore, an in-plane polarized acoustic shock wave is launched at the membrane edge, which triggers secondary acoustic shear waves with a pronounced spatio-temporal dependency. The experimental findings are compared to numerical acoustic wave simulations in the continuous medium limit, highlighting the importance of microscopic dissipation mechanisms and ballistic transport channels.

  2. High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance.

    PubMed

    Zhu, Zongda; Liu, Lu; Liu, Zhihai; Zhang, Yu; Zhang, Yaxun

    2017-05-15

    We propose and demonstrate a novel optical-fiber micro-displacement sensor based on surface plasmon resonance (SPR) by fabricating a Kretschmann configuration on graded-index multimode fiber (GIMMF). We employ a single-mode fiber to change the radial position of the incident beam as the displacement. In the GIMMF, the angle between the light beam and fiber axis, which is closely related to the resonance angle, is changed by the displacement; thus, the resonance wavelength of the fiber SPR shifts. This micro-displacement fiber sensor has a wide detection range of 0-25 μm, a high sensitivity with maximum up to 10.32 nm/μm, and a nanometer resolution with minimum to 2 nm, which transcends almost all of other optical-fiber micro-displacement sensors. In addition, we also research that increasing the fiber polishing angle or medium refractive index can improve the sensitivity. This micro-displacement sensor will have a great significance in many industrial applications and provide a neoteric, rapid, and accurate optical measurement method in micro-displacement.

  3. Geometric phase and o -mode blueshift in a chiral anisotropic medium inside a Fabry-Pérot cavity

    NASA Astrophysics Data System (ADS)

    Timofeev, Ivan V.; Gunyakov, Vladimir A.; Sutormin, Vitaly S.; Myslivets, Sergey A.; Arkhipkin, Vasily G.; Vetrov, Stepan Ya.; Lee, Wei; Zyryanov, Victor Ya.

    2015-11-01

    Anomalous spectral shift of transmission peaks is observed in a Fabry-Pérot cavity filled with a chiral anisotropic medium. The effective refractive index value resides out of the interval between the ordinary and the extraordinary refractive indices. The spectral shift is explained by contribution of a geometric phase. The problem is solved analytically using the approximate Jones matrix method, numerically using the accurate Berreman method, and geometrically using the generalized Mauguin-Poincaré rolling cone method. The o -mode blueshift is measured for a 4-methoxybenzylidene-4 '-n -butylaniline twisted-nematic layer inside the Fabry-Pérot cavity. The twist is electrically induced due to the homeoplanar-twisted configuration transition in an ionic-surfactant-doped liquid crystal layer. Experimental evidence confirms the validity of the theoretical model.

  4. Entanglement dynamics and position-momentum entropic uncertainty relation of a Λ-type three-level atom interacting with a two-mode cavity field in the presence of nonlinearities

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.; Hooshmandasl, M. R.

    2013-05-01

    In this paper, the interaction between a $\\Lambda$-type three-level atom and two-mode cavity field is discussed. The detuning parameters and cross-Kerr nonlinearity are taken into account and it is assumed that atom-field coupling and Kerr medium to be $f$-deformed. Even though the system seems to be complicated, the analytical form of the state vector of the entire system for considered model is exactly obtained. The time evolution of nonclassical properties such as quantum entanglement and position-momentum entropic uncertainty relation (entropy squeezing) of the field are investigated. In each case, the influences of the detuning parameters, generalized Kerr medium and intensity-dependent coupling on the latter nonclassicality signs are analyzed, in detail.

  5. Effect of fuel injection pressure on a heavy-duty diesel engine nonvolatile particle emission.

    PubMed

    Lähde, Tero; Rönkkö, Topi; Happonen, Matti; Söderström, Christer; Virtanen, Annele; Solla, Anu; Kytö, Matti; Rothe, Dieter; Keskinen, Jorma

    2011-03-15

    The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.

  6. WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya, J; Ferrero, A; Yu, L

    Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150more » and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare.« less

  7. Effect of the doped fibre length on soliton pulses of a bidirectional mode-locked fibre laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Alwi Kutty, N A; Zulkifli, M Z

    A passively bidirectional mode-locked fibre laser is demonstrated using a highly concentrated erbium-doped fibre (EDF) as a gain medium. To accomplish mode-locked operation in a short cavity, use is made of carbon nanotubes (CNTs) as a saturable absorber. Soliton pulses are obtained at a wavelength of 1560 nm with a repetition rate ranging from 43.92 MHz to 46.97 MHz and pulse width stretching from 0.56 ps to 0.41 ps as the EDF length is reduced from 60 cm to 30 cm. (lasers)

  8. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  9. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber.

    PubMed

    Dashti, Pedram Z; Alhassen, Fares; Lee, Henry P

    2006-02-03

    Acousto-optic interaction in optical fiber is examined from the perspective of copropagating optical and acoustic vortex modes. Calculation of the acousto-optic coupling coefficient between different optical modes leads to independent conservation of spin and orbital angular momentum of the interacting photons and phonons. We show that the orbital angular momentum of the acoustic vortex can be transferred to a circularly polarized fundamental optical mode to form a stable optical vortex in the fiber carrying orbital angular momentum. The technique provides a useful way of generating stable optical vortices in the fiber medium.

  10. Gravity and Magnetic Signatures of Different Types of Spreading at the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Alodia, G.; Green, C. M.; McCaig, A. M.; Paton, D.; Campbell, S.

    2017-12-01

    In recent years it has been recognised that parts of slow spreading ridges such as the mid-Atlantic Ridge (MAR) are characterised by typical magmatic spreading, while other parts are characterised by the formation of detachment faults and oceanic core complexes (OCC). These different spreading modes can be clearly identified in the near-ridge environment in the bathymetry, with magmatic mode crust characterised by linear fault-bounded ridges, and detachment mode crust by more chaotic bathymetric signatures. The aim of this project is to characterise the magnetic and gravity signatures of lithosphere created by different modes of spreading, with the aim of using these signatures to identify different modes of spreading in ocean-continent transitions where the bathymetry is often hidden beneath sediment. In this presentation, we first characterise different modes of spreading using available high-resolution bathymetry data in the 28-32 N section of the MAR up to 20 My of age. The identified characteristics are then related to the corresponding ship-borne gravity and magnetic data in the same area. As most magnetic anomalies found in the near-axis environment are caused by the remanent magnetisation, it is found that in places where OCCs are present, magnetic anomalies are not as symmetrical as those found in magmatic mode regions. In both gravity and magnetic data, gradients are strongly clustered in the spreading direction in magmatic mode crust, but much more variable in detachment mode. We present a range of parameters extracted from the data that characterise different spreading modes, and use these to test whether transitions between detachment and magmatic mode crust identified in the bathymetry can be readily identified in gravity and magnetic data with different degrees of resolution.

  11. High-resolution matrix-assisted laser desorption ionization–imaging mass spectrometry of lipids in rodent optic nerve tissue

    PubMed Central

    Anderson, David M. G.; Mills, Daniel; Spraggins, Jeffrey; Lambert, Wendi S.; Calkins, David J.

    2013-01-01

    Purpose To develop a method for generating high spatial resolution (10 µm) matrix-assisted laser desorption ionization (MALDI) images of lipids in rodent optic nerve tissue. Methods Ice-embedded optic nerve tissue from rats and mice were cryosectioned across the coronal and sagittal axes of the nerve fiber. Sections were thaw mounted on gold-coated MALDI plates and were washed with ammonium acetate to remove biologic salts before being coated in 2,5-dihydroxybenzoic acid by sublimation. MALDI images were generated in positive and negative ion modes at 10 µm spatial resolution. Lipid identification was performed with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer. Results Several lipid species were observed with high signal intensity in MALDI images of optic nerve tissue. Several lipids were localized to specific structures including in the meninges surrounding the optic nerve and in the central neuronal tissue. Specifically, phosphatidylcholine species were observed throughout the nerve tissue in positive ion mode while sulfatide species were observed in high abundance in the meninges surrounding the optic nerve in negative ion mode. Accurate mass measurements and fragmentation using sustained off-resonance irradiation with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer instrument allowed for identification of lipid species present in the small structure of the optic nerve directly from tissue sections. Conclusions An optimized sample preparation method provides excellent sensitivity for lipid species present within optic nerve tissue. This allowed the laser spot size and fluence to be reduced to obtain a high spatial resolution of 10 µm. This new imaging modality can now be applied to determine spatial and molecular changes in optic nerve tissue with disease. PMID:23559852

  12. Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    NASA Technical Reports Server (NTRS)

    Mankbadi, Mina R.; Georgiadis, Nicholas J.; DeBonis, James R.

    2015-01-01

    The objective of this work is to compare a high-order solver with a low-order solver for performing Large-Eddy Simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the highorder method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.

  13. Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    NASA Technical Reports Server (NTRS)

    Mankbadi, M. R.; Georgiadis, N. J.; DeBonis, J. R.

    2015-01-01

    The objective of this work is to compare a high-order solver with a low-order solver for performing large-eddy simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the high-order method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.

  14. Tunable blue laser compensates for thermal expansion of the medium in holographic data storage.

    PubMed

    Tanaka, Tomiji; Sako, Kageyasu; Kasegawa, Ryo; Toishi, Mitsuru; Watanabe, Kenjiro

    2007-09-01

    A tunable laser optical source equipped with wavelength and mode-hop monitors was developed to compensate for thermal expansion of the medium in holographic data storage. The laser's tunable range is 402-409 nm, and supplying 90 mA of laser diode current provides an output power greater than 40 mW. The aberration of output light is less than 0.05 lambdarms. The temperature range within which the laser can compensate for thermal expansion of the medium is estimated based on the tunable range, which is +/-13.5 degrees C for glass substrates and +/-17.5 degrees C for amorphous polyolefin substrates.

  15. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    NASA Astrophysics Data System (ADS)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-06-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  16. VizieR Online Data Catalog: Chemical analysis of CH stars. II. (Karinkuzhi+, 2015)

    NASA Astrophysics Data System (ADS)

    Karinkuzhi, D.; Goswami, A.

    2017-10-01

    Low-resolution spectra of these objects obtained from 2m Himalayan Chandra Telescope at the Indian Astronomical Observatory, Hanle using HFOSC clearly show strong features due to carbon. HFOSC is an optical imager cum spectrograph for conducting low- and medium-resolution grism spectroscopy (http://www.iiap.res.in/iao/hfosc.html). High-resolution spectra necessary for abundance analyses of the programme stars are taken from the ELODIE archive (Moultaka et al. 2004PASP..116..693M). (7 data files).

  17. High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2 a1 symmetry C-H stretching modes

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2016-07-01

    A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (˜60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm-1 and 3062.264 80(7) cm-1, respectively, which both agree within 5 cm-1 with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm-1 blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm-1) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions.

  18. Structural health monitoring on medium rise reinforced concrete building using ambient vibration method

    NASA Astrophysics Data System (ADS)

    Kamarudin, A. F.; Mokhatar, S. N.; Zainal Abidin, M. H.; Daud, M. E.; Rosli, M. S.; Ibrahim, A.; Ibrahim, Z.; Noh, M. S. Md

    2018-04-01

    Monitoring of structural health from initial stage of building construction to its serviceability is an ideal practise to assess for any structural defects or damages. Structural integrity could be intruded by natural destruction or structural deterioration, and worse if without remedy action on monitoring, building re-assessment or maintenance is taken. In this study the application of ambient vibration (AV) testing is utilized to evaluate the health of eighth stories medium rise reinforced concrete building in Universiti Tun Hussein Onn Malaysia (UTHM), based comparison made between the predominant frequency, fo, determined in year 2012 and 2017. For determination of fo, popular method of Fourier Amplitude Spectra (FAS) was used to transform the ambient vibration time series by using 1 Hz tri-axial seismometer sensors and City SharkII data recorder. From the results, it shows the first mode frequencies from FAS curves indicate at 2.04 Hz in 2012 and 1.97 Hz in 2017 with only 3.14% of frequency reduction. However, steady state frequencies shown at the second and third modes frequencies of 2.42 Hz and 3.31 Hz by both years. Two translation mode shapes were found at the first and second mode frequencies in the North-South (NS-parallel to building transverse axis) and East-West (EsW-parallel to building longitudinal axis) components, and the torsional mode shape shows as the third mode frequency in both years. No excessive deformation amplitude was found at any selective floors based on comparison made between three mode shapes produced, that could bring to potential feature of structural deterioration. Low percentages of natural frequency disparity within five years of duration interval shown by the first mode frequencies under ambient vibration technique was considered in good health state, according to previous researchers recommendation at acceptable percentages below 5 to 10% over the years.

  19. Edge plasma boundary layer generated by kink modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2011-06-01

    This paper describes the structure of the electric current generated by external wall touching and free boundary kink modes at the plasma edge using the ideally conducting plasma model. Both kinds of modes generate δ-functional surface current at the plasma edge. Free boundary kink modes also perturb the core plasma current, which in the plasma edge compensates the difference between the δ-functional surface currents of free boundary and wall touching kink modes. In addition, the resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  20. Wide spectral range confocal microscope based on endlessly single-mode fiber.

    PubMed

    Hubbard, R; Ovchinnikov, Yu B; Hayes, J; Richardson, D J; Fu, Y J; Lin, S D; See, P; Sinclair, A G

    2010-08-30

    We report an endlessly single mode, fiber-optic confocal microscope, based on a large mode area photonic crystal fiber. The microscope confines a very broad spectral range of excitation and emission wavelengths to a single spatial mode in the fiber. Single-mode operation over an optical octave is feasible. At a magnification of 10 and λ = 900 nm, its resolution was measured to be 1.0 μm (lateral) and 2.5 μm (axial). The microscope's use is demonstrated by imaging single photons emitted by individual InAs quantum dots in a pillar microcavity.

  1. The structure of the ISM in the Zone of Avoidance by high-resolution multi-wavelength observations

    NASA Astrophysics Data System (ADS)

    Tóth, L. V.; Doi, Y.; Pinter, S.; Kovács, T.; Zahorecz, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Onishi, T.

    2018-05-01

    We estimate the column density of the Galactic foreground interstellar medium (GFISM) in the direction of extragalactic sources. All-sky AKARI FIS infrared sky survey data might be used to trace the GFISM with a resolution of 2 arcminutes. The AKARI based GFISM hydrogen column density estimates are compared with similar quantities based on HI 21cm measurements of various resolution and of Planck results. High spatial resolution observations of the GFISM may be important recalculating the physical parameters of gamma-ray burst (GRB) host galaxies using the updated foreground parameters.

  2. Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao

    2016-04-01

    Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.

  3. Impression-Management in the Forced Compliance Paradigm.

    ERIC Educational Resources Information Center

    Saenz, Rogelio; Quigley-Fernandez, Barbara

    In its original formulation, dissonance reduction was postulated as a mode for resolving behavior-attitude discrepancies. One mode of resolution has been demonstrated in the forced compliance paradigm, whereby a subject rectifies a counterattitudinal behavior with an actual belief, resulting in moderating beliefs. A forced compliance situation was…

  4. DICOM to print, 35-mm slides, web, and video projector: tutorial using Adobe Photoshop.

    PubMed

    Gurney, Jud W

    2002-10-01

    Preparing images for publication has dealt with film and the photographic process. With picture archiving and communications systems, many departments will no longer produce film. This will change how images are produced for publication. DICOM, the file format for radiographic images, has to be converted and then prepared for traditional publication, 35-mm slides, the newest techniques of video projection, and the World Wide Web. Tagged image file format is the common format for traditional print publication, whereas joint photographic expert group is the current file format for the World Wide Web. Each medium has specific requirements that can be met with a common image-editing program such as Adobe Photoshop (Adobe Systems, San Jose, CA). High-resolution images are required for print, a process that requires interpolation. However, the Internet requires images with a small file size for rapid transmission. The resolution of each output differs and the image resolution must be optimized to match the output of the publishing medium.

  5. Optical pumping in a whispering mode optical waveguide

    DOEpatents

    Kurnit, Norman A.

    1984-01-01

    A device and method for optical pumping in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction pathlengths which are achieved in a small volume.

  6. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  7. General structure of fermion two-point function and its spectral representation in a hot magnetized medium

    NASA Astrophysics Data System (ADS)

    Das, Aritra; Bandyopadhyay, Aritra; Roy, Pradip K.; Mustafa, Munshi G.

    2018-02-01

    We have systematically constructed the general structure of the fermion self-energy and the effective quark propagator in the presence of a nontrivial background such as a hot magnetized medium. This is applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath. We have also examined transformation properties of the effective fermion propagator under some of the discrete symmetries of the system. Using the effective fermion propagator we have analyzed the fermion dispersion spectra in a hot magnetized medium along with the spinor for each fermion mode obtained by solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the two-point functions. We note that for a chirally symmetric theory the degenerate left- and right-handed chiral modes in vacuum or in a heat bath get separated and become asymmetric in the presence of a magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point functions is verified by computing the three-point function, which agrees with the existing results in one-loop order. Finally, we have computed explicitly the spectral representation of the two-point functions which would be very important to study the spectral properties of the hot magnetized medium corresponding to QED and QCD with background magnetic field.

  8. “MODAL NOISE” IN SINGLE-MODE FIBERS: A CAUTIONARY NOTE FOR HIGH PRECISION RADIAL VELOCITY INSTRUMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath

    2015-12-01

    Exploring the use of single-mode fibers (SMFs) in high precision Doppler spectrometers has become increasingly attractive since the advent of diffraction-limited adaptive optics systems on large-aperture telescopes. Spectrometers fed with these fibers can be made significantly smaller than typical “seeing-limited” instruments, greatly reducing cost and overall complexity. Importantly, classical mode interference and speckle issues associated with multi-mode fibers, also known as “modal noise,” are mitigated when using SMFs, which also provide perfect radial and azimuthal image scrambling. However, SMFs do support multiple polarization modes, an issue that is generally ignored for larger-core fibers given the large number of propagation modes.more » Since diffraction gratings used in most high resolution astronomical instruments have dispersive properties that are sensitive to incident polarization changes, any birefringence variations in the fiber can cause variations in the efficiency profile, degrading illumination stability. Here we present a cautionary note outlining how the polarization properties of SMFs can affect the radial velocity (RV) measurement precision of high resolution spectrographs. This work is immediately relevant to the rapidly expanding field of diffraction-limited, extreme precision RV spectrographs that are currently being designed and built by a number of groups.« less

  9. Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging.

    PubMed

    Schneider, Falk; Waithe, Dominic; Galiani, Silvia; Bernardino de la Serna, Jorge; Sezgin, Erdinc; Eggeling, Christian

    2018-06-19

    The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED-FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method, line interleaved excitation scanning STED-FCS (LIESS-FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.

  10. What is the spatial sampling of MISR?

    Atmospheric Science Data Center

    2014-12-08

    ... spatial resolution of the sensors without exceeding the data transfer quotas, MISR can be operated in two different data acquisition modes: ... data at the full resolution, but only for limited periods of time and therefore for limited regions, typically about 300 km in length (along ...

  11. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.

    PubMed

    Danilov, Artem; Tselikov, Gleb; Wu, Fan; Kravets, Vasyl G; Ozerov, Igor; Bedu, Frederic; Grigorenko, Alexander N; Kabashin, Andrei V

    2018-05-01

    When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100-200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLR air , PSLR wat for air and water, respectively) and substrate (PSLR sub ) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 10 5 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of nanoscale architectures, including drastic concentration of electric field, possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise the advancement of current state-of-the-art plasmonic biosensing technology toward single molecule label-free detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    PubMed

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  13. A history of scanning electron microscopy developments: towards "wet-STEM" imaging.

    PubMed

    Bogner, A; Jouneau, P-H; Thollet, G; Basset, D; Gauthier, C

    2007-01-01

    A recently developed imaging mode called "wet-STEM" and new developments in environmental scanning electron microscopy (ESEM) allows the observation of nano-objects suspended in a liquid phase, with a few manometers resolution and a good signal to noise ratio. The idea behind this technique is simply to perform STEM-in-SEM, that is SEM in transmission mode, in an environmental SEM. The purpose of the present contribution is to highlight the main advances that contributed to development of the wet-STEM technique. Although simple in principle, the wet-STEM imaging mode would have been limited before high brightness electron sources became available, and needed some progresses and improvements in ESEM. This new technique extends the scope of SEM as a high-resolution microscope, relatively cheap and widely available imaging tool, for a wider variety of samples.

  14. Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction γp →ϕp

    NASA Astrophysics Data System (ADS)

    Dey, B.; Meyer, C. A.; Bellis, M.; Williams, M.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2014-05-01

    High-statistics measurements of differential cross sections and spin density matrix elements for the reaction γp →ϕp have been made using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (√s ) from 1.97 to 2.84 GeV, with an extensive coverage in the ϕ production angle. The high statistics of the data sample made it necessary to carefully account for the interplay between the ϕ natural lineshape and effects of the detector resolution, that are found to be comparable in magnitude. We study both the charged- (ϕ →K+K-) and neutral- (ϕ →KS0KL0) KK ¯ decay modes of the ϕ. Further, for the charged mode, we differentiate between the cases where the final K- track is directly detected or its momentum reconstructed as the total missing momentum in the event. The two charged-mode topologies and the neutral-mode have different resolutions and are calibrated against each other. Extensive usage is made of kinematic fitting to improve the reconstructed ϕ mass resolution. Our final results are reported in 10- and mostly 30-MeV-wide √s bins for the charged- and the neutral-modes, respectively. Possible effects from K+Λ* channels with pKK ¯ final states are discussed. These present results constitute the most precise and extensive ϕ photoproduction measurements to date and in conjunction with the ω photoproduction results recently published by CLAS, will greatly improve our understanding of low energy vector meson photoproduction.

  15. Design considerations for a new, high resolution Micro-Angiographic Fluoroscope based on a CMOS sensor (MAF-CMOS).

    PubMed

    Loughran, Brendan; Swetadri Vasan, S N; Singh, Vivek; Ionita, Ciprian N; Jain, Amit; Bednarek, Daniel R; Titus, Albert; Rudin, Stephen

    2013-03-06

    The detectors that are used for endovascular image-guided interventions (EIGI), particularly for neurovascular interventions, do not provide clinicians with adequate visualization to ensure the best possible treatment outcomes. Developing an improved x-ray imaging detector requires the determination of estimated clinical x-ray entrance exposures to the detector. The range of exposures to the detector in clinical studies was found for the three modes of operation: fluoroscopic mode, high frame-rate digital angiographic mode (HD fluoroscopic mode), and DSA mode. Using these estimated detector exposure ranges and available CMOS detector technical specifications, design requirements were developed to pursue a quantum limited, high resolution, dynamic x-ray detector based on a CMOS sensor with 50 μm pixel size. For the proposed MAF-CMOS, the estimated charge collected within the full exposure range was found to be within the estimated full well capacity of the pixels. Expected instrumentation noise for the proposed detector was estimated to be 50-1,300 electrons. Adding a gain stage such as a light image intensifier would minimize the effect of the estimated instrumentation noise on total image noise but may not be necessary to ensure quantum limited detector operation at low exposure levels. A recursive temporal filter may decrease the effective total noise by 2 to 3 times, allowing for the improved signal to noise ratios at the lowest estimated exposures despite consequent loss in temporal resolution. This work can serve as a guide for further development of dynamic x-ray imaging prototypes or improvements for existing dynamic x-ray imaging systems.

  16. Wide Swath Stereo Mapping from Gaofen-1 Wide-Field-View (WFV) Images Using Calibration

    PubMed Central

    Chen, Shoubin; Liu, Jingbin; Huang, Wenchao

    2018-01-01

    The development of Earth observation systems has changed the nature of survey and mapping products, as well as the methods for updating maps. Among optical satellite mapping methods, the multiline array stereo and agile stereo modes are the most common methods for acquiring stereo images. However, differences in temporal resolution and spatial coverage limit their application. In terms of this issue, our study takes advantage of the wide spatial coverage and high revisit frequencies of wide swath images and aims at verifying the feasibility of stereo mapping with the wide swath stereo mode and reaching a reliable stereo accuracy level using calibration. In contrast with classic stereo modes, the wide swath stereo mode is characterized by both a wide spatial coverage and high-temporal resolution and is capable of obtaining a wide range of stereo images over a short period. In this study, Gaofen-1 (GF-1) wide-field-view (WFV) images, with total imaging widths of 800 km, multispectral resolutions of 16 m and revisit periods of four days, are used for wide swath stereo mapping. To acquire a high-accuracy digital surface model (DSM), the nonlinear system distortion in the GF-1 WFV images is detected and compensated for in advance. The elevation accuracy of the wide swath stereo mode of the GF-1 WFV images can be improved from 103 m to 30 m for a DSM with proper calibration, meeting the demands for 1:250,000 scale mapping and rapid topographic map updates and showing improved efficacy for satellite imaging. PMID:29494540

  17. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in many systems, such as hot galactic haloes, groups and clusters. In this mode, the black hole can quickly react to the state of the entire host galaxy, leading to efficient self-regulated AGN feedback and the symbiotic Magorrian relation. Chaotic accretion can generate high-velocity clouds, likely leading to strong variations in the AGN luminosity, and the deflection or mass-loading of jets. During phases of overheating, the hot mode becomes the single channel of accretion, though strongly suppressed by turbulence. High-resolution data could determine the current mode of accretion: assuming quiescent feedback, the cold mode results in a quasi-flat-temperature core as opposed to the cuspy profile of the hot mode.

  18. Potentials of acousto-optical spectrum analysis on a basis of a novel algorithm of the collinear wave heterodyning in a large-aperture KRS-5 crystalline cell

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Maximov, Jewgenij; Bliznetsov, Alexej M.; Sanchez Perez, Karla J.

    2011-03-01

    The technique under proposal for a precise spectrum analysis within an algorithm of the collinear wave heterodyning implies a two-stage integrated processing, namely, the wave heterodyning of a signal in a square-law nonlinear medium and then the optical processing in the same solid state cell. The technical advantage of this approach lies in providing a direct multichannel parallel processing of ultra-high-frequency radio-wave signals with essentially improved frequency resolution. This technique imposes specific requirements on the cell's material. We focus our attention on the solid solutions of thallium chalcogenides and take the TlBr-TlI (thallium bromine-thallium iodine) solution, which forms KRS-5 cubic-symmetry crystals with the mass-ratio 58% of TlBr to 42% of TlI. Analysis shows that the acousto-optical cell made of a KRS-5 crystal oriented along the [111]-axis and the corresponding longitudinal elastic mode for producing the dynamic diffractive grating can be exploited. With the acoustic velocity of about 1.92 × 105 cm/s and attenuation of ~10 dB/(cm GHz2), a similar cell is capable of providing an optical aperture of ~5.0 cm and one of the highest figures of acousto-optical merit in solid states in the visible range. Such a cell is rather desirable for the application to direct 5000-channel parallel spectrum analysis with an improved up to 10-5 relative frequency resolution.

  19. Imaging Cold Gas to 1 kpc scales in high-redshift galaxies with the ngVLA

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin; Narayanan, Desika; Dave, Romeel; Hung, Chao-Ling; Champagne, Jaclyn; Carilli, Chris Luke; Decarli, Roberto; Murphy, Eric J.; Popping, Gergo; Riechers, Dominik; Somerville, Rachel S.; Walter, Fabian

    2017-01-01

    The next generation Very Large Array (ngVLA) will revolutionize our understanding of the distant Universe via the detection of cold molecular gas in the first galaxies. Its impact on studies of galaxy characterization via detailed gas dynamics will provide crucial insight on dominant physical drivers for star-formation in high redshift galaxies, including the exchange of gas from scales of the circumgalactic medium down to resolved clouds on mass scales of ~10^5 M_sun. In this study, we employ a series of high-resolution, cosmological, hydrodynamic zoom simulations from the MUFASA simulation suite and a CASA simulator to generate mock ngVLA observations. Based on a direct comparison between the inferred results from our mock observations and the cosmological simulations, we investigate the capabilities of ngVLA to constrain the mode of star formation, dynamical mass, and molecular gas kinematics in individual high-redshift galaxies using cold gas tracers like CO(1-0) and CO(2-1). Using the Despotic radiative transfer code that encompasses simultaneous thermal and statistical equilibrium in calculating the molecular and atomic level populations, we generate parallel mock observations of high-J transitions of CO and C+ from ALMA for comparison. The factor of 100 times improvement in mapping speed for the ngVLA beyond the Jansky VLA and the proposed ALMA Band 1 will make these detailed, high-resolution imaging and kinematic studies routine at z=2 and beyond.

  20. Gigahertz-peaked spectra pulsars in Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Basu, R.; RoŻko, K.; Kijak, J.; Lewandowski, W.

    2018-04-01

    We have carried out a detailed study of the spectral nature of six pulsars surrounded by pulsar wind nebulae (PWNe). The pulsar flux density was estimated using the interferometric imaging technique of the Giant Metrewave Radio Telescope at three frequencies 325, 610, and 1280 MHz. The spectra showed a turnover around gigahertz frequency in four out of six pulsars. It has been suggested that the gigahertz-peaked spectrum (GPS) in pulsars arises due to thermal absorption of the pulsar emission in surrounding medium like PWNe, H II regions, supernova remnants, etc. The relatively high incidence of GPS behaviour in pulsars surrounded by PWNe imparts further credence to this view. The pulsar J1747-2958 associated with the well-known Mouse nebula was also observed in our sample and exhibited GPS behaviour. The pulsar was detected as a point source in the high-resolution images. However, the pulsed emission was not seen in the phased-array mode. It is possible that the pulsed emission was affected by extreme scattering causing considerable smearing of the emission at low radio frequencies. The GPS spectra were modelled using the thermal free-free absorption and the estimated absorber properties were largely consistent with PWNe. The spatial resolution of the images made it unlikely that the point source associated with J1747-2958 was the compact head of the PWNe, but the synchrotron self-absorption seen in such sources was a better fit to the estimated spectral shape.

Top