NASA Astrophysics Data System (ADS)
Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.
2010-06-01
In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.
Pyrolysis of cassava rhizome in a counter-rotating twin screw reactor unit.
Sirijanusorn, Somsak; Sriprateep, Keartisak; Pattiya, Adisak
2013-07-01
A counter-rotating twin screw reactor unit was investigated for its behaviour in the pyrolysis of cassava rhizome biomass. Several parameters such as pyrolysis temperature in the range of 500-700°C, biomass particle size of <0.6mm, the use of sand as heat transfer medium, nitrogen flow rate of 4-10 L/min and nitrogen pressure of 1-3 bar were thoroughly examined. It was found that the pyrolysis temperature of 550°C could maximise the bio-oil yield (50 wt.%). The other optimum parameters for maximising the bio-oil yield were the biomass particle size of 0.250-0.425 mm, the nitrogen flow rate of 4 L/min and the nitrogen pressure of 2 bar. The use of the heat transfer medium could increase the bio-oil yield to a certain extent. Moreover, the water content of bio-oil produced with the counter-rotating twin screw reactor was relatively low, whereas the solids content was relatively high, compared to some other reactor configurations. Copyright © 2013 Elsevier Ltd. All rights reserved.
View of Pakistan Atomic Energy Commission towards SMPR's in the light of KANUPP performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huseini, S.D.
1985-01-01
The developing countries in general do not have grid capacities adequate enough to incorporate standard size, economic but rather large nuclear power plants for maximum advantage. Therefore, small and medium size reactors (SMPR) have been and still are, of particular interest to the developing countries in spite of certain known problems with these reactors. Pakistan Atomic Energy Commission (PAEC) has been operating a CANDU type of a small PHWR plant since 1971 when it was connected to the local Karachi grid. This paper describes PAEC's view in the light of KANUPP performance with respect to such factors associated with SMPR'smore » as selection of suitable reactor size and type, its operation in a grid of small capacity, flexibility of operation and its role as a reliable source of electrical power.« less
Anaerobic treatment of winery wastewater in fixed bed reactors.
Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel
2010-06-01
The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.
Camper, Anne K.; Hayes, Jason T.; Sturman, Paul J.; Jones, Warren L.; Cunningham, Alfred B.
1993-01-01
Three strains of Pseudomonas fluorescens with different motility rates and adsorption rate coefficients were injected into porous-medium reactors packed with l-mm-diameter glass spheres. Cell breakthrough, time to peak concentration, tailing, and cell recovery were measured at three interstitial pore velocities (higher than, lower than, and much lower than the maximal bacterial motility rate). All experiments were done with distilled water to reduce the effects of growth and chemotaxis. Contrary to expectations, motility did not result in either early breakthrough or early time to peak concentration at flow velocities below the motility rate. Bacterial size exclusion effects were shown to affect breakthrough curve shape at the very low flow velocity, but no such effect was seen at the higher flow velocity. The tendency of bacteria to adsorb to porous-medium surfaces, as measured by adsorption rate coefficients, profoundly influenced transport characteristics. Cell recoveries were shown to be correlated with the ratio of advective to adsorptive transport in the reactors. Adsorption rate coefficients were found to be better predictors of microbial transport phenomena than individual characteristics, such as size, motility, or porous-medium hydrodynamics. PMID:16349075
Ishizaka, Takayuki; Ishigaki, Atsushi; Kawanami, Hajime; Suzuki, Akira; Suzuki, Toshishige M
2012-02-01
Continuous flow synthesis of gold nanoparticles was demonstrated using a microchannel reactor with glucose reduction in aqueous alkaline medium. Particle size, morphology, and visual/optical properties of the dispersion liquid were controlled dynamically by tuning of the rate of NaOH addition. Characteristic star-like nanoparticles formed spontaneously as a quasi-stable state, but they changed the morphology to round shape and showed spectral change over time. Copyright © 2011 Elsevier Inc. All rights reserved.
This presentation will focus on validation testing performed on a three-lamp low-pressure high-output (LPHO) TrojanUVSwiftTM UV reactor using MS2, Bacillus Pumilus, and live adenovirus as the test microbes. An adjustable sensor was used to help determine the optimal sensor locati...
Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors
Fermoso, Fernando G.; Collins, Gavin; Bartacek, Jan; O’Flaherty, Vincent
2008-01-01
The effect of nickel deprivation from the influent of a mesophilic (30°C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5–15 g COD l−1 day−1 for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (±0.167) g CH4-COD g VSS−1 day−1 compared to 2.027 (±0.111) g CH4-COD g VSS−1 day−1 in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 μM Ni (dosed as NiCl2) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation. PMID:18247139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.
Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters aremore » identified.« less
Small and medium power reactors 1987
NASA Astrophysics Data System (ADS)
1987-12-01
This TECDOC follows the publication of TECDOC-347: Small and Medium Power Reactors (SMPR) Project Initiation Study, Phase 1, published in 1985 and TECDOC-376: Small and Medium Power Reactors 1985 published in 1986. It is mainly intended for decision makers in Developing Member States interested in embarking on a nuclear power program. It consists of two parts: (1) guidelines for the introduction of small and medium power reactors in developing countries. These Guidelines were established during the Advisory Group Meeting held in Vienna from 11 to 15 May 1987. Their purpose is to review key aspects relating to the introduction of small and medium power reactors in developing countries; (2) up-dated information on SMPR Concepts Contributed by Supplier Industries. According to the recommendations of the Second Technical Committee Meeting on SMPRs held in Vienna in March 1985, this part contains the up-dated information formerly published in Annex 1 of the above mentioned TECDOC-347.
Scale-up synthesis of zinc borate from the reaction of zinc oxide and boric acid in aqueous medium
NASA Astrophysics Data System (ADS)
Kılınç, Mert; Çakal, Gaye Ö.; Yeşil, Sertan; Bayram, Göknur; Eroğlu, İnci; Özkar, Saim
2010-11-01
Synthesis of zinc borate was conducted in a laboratory and a pilot scale batch reactor to see the influence of process variables on the reaction parameters and the final product, 2ZnO·3B 2O 3·3.5H 2O. Effects of stirring speed, presence of baffles, amount of seed, particle size and purity of zinc oxide, and mole ratio of H 3BO 3:ZnO on the zinc borate formation reaction were examined at a constant temperature of 85 °C in a laboratory (4 L) and a pilot scale (85 L) reactor. Products obtained from the reaction in both reactors were characterized by chemical analysis, X-ray diffraction, particle size distribution analysis, thermal gravimetric analysis and scanning electron microscopy. The kinetic data for the zinc borate production reaction was fit by using the logistic model. The results revealed that the specific reaction rate, a model parameter, decreases with increase in particle size of zinc oxide and the presence of baffles, but increases with increase in stirring speed and purity of zinc oxide; however, it is unaffected with the changes in the amount of seed and reactants ratio. The reaction completion time is unaffected by scaling-up.
Moon, Ji-Won; Phelps, Tommy J.; Fitzgerald Jr, Curtis L.; ...
2016-04-27
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale ( ≤24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of meso-scale experiments were performed using 100-l and 900-l reactors. Pasteurization and N 2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot-plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2 nm average crystallite size (ACS) and yields of ~0.5g L -1, similar to small-scale batches.more » The 900-L pilot plant reactor produced ~ 320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98% of the buffer chemical costs. In conclusion, the final NP products were characterized using XRD, ICP-OES, FTIR, DLS, and C/N analyses, which confirmed the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.« less
Moon, Ji-Won; Phelps, Tommy J; Fitzgerald, Curtis L; Lind, Randall F; Elkins, James G; Jang, Gyoung Gug; Joshi, Pooran C; Kidder, Michelle; Armstrong, Beth L; Watkins, Thomas R; Ivanov, Ilia N; Graham, David E
2016-09-01
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.
Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.
Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo
2010-01-01
The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.
Controlled-Turbulence Bioreactors
NASA Technical Reports Server (NTRS)
Wolf, David A.; Schwartz, Ray; Trinh, Tinh
1989-01-01
Two versions of bioreactor vessel provide steady supplies of oxygen and nutrients with little turbulence. Suspends cells in environment needed for sustenance and growth, while inflicting less damage from agitation and bubbling than do propeller-stirred reactors. Gentle environments in new reactors well suited to delicate mammalian cells. One reactor kept human kidney cells alive for as long as 11 days. Cells grow on carrier beads suspended in liquid culture medium that fills cylindrical housing. Rotating vanes - inside vessel but outside filter - gently circulates nutrient medium. Vessel stationary; magnetic clutch drives filter cylinder and vanes. Another reactor creates even less turbulence. Oxygen-permeable tubing wrapped around rod extending along central axis. Small external pump feeds oxygen to tubing through rotary coupling, and oxygen diffuses into liquid medium.
Auxiliary reactor for a hydrocarbon reforming system
Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.
2006-01-17
An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.
Continuous flow synthesis of ZSM-5 zeolite on the order of seconds
Liu, Zhendong; Okabe, Kotatsu; Anand, Chokkalingam; Yonezawa, Yasuo; Zhu, Jie; Yamada, Hiroki; Endo, Akira; Yanaba, Yutaka; Yoshikawa, Takeshi; Ohara, Koji; Okubo, Tatsuya; Wakihara, Toru
2016-01-01
The hydrothermal synthesis of zeolites carried out in batch reactors takes a time so long (typically, on the order of days) that the crystallization of zeolites has long been believed to be very slow in nature. We herein present a synthetic process for ZSM-5, an industrially important zeolite, on the order of seconds in a continuous flow reactor using pressurized hot water as a heating medium. Direct mixing of a well-tuned precursor (90 °C) with the pressurized water preheated to extremely high temperature (370 °C) in the millimeter-sized continuous flow reactor resulted in immediate heating to high temperatures (240–300 °C); consequently, the crystallization of ZSM-5 in a seed-free system proceeded to completion within tens of or even several seconds. These results indicate that the crystallization of zeolites can complete in a period on the order of seconds. The subtle design combining a continuous flow reactor with pressurized hot water can greatly facilitate the mass production of zeolites in the future. PMID:27911823
Small modular reactor: First-of-a-Kind (FOAK) and Nth-of-a-Kind (NOAK) Economic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boldon, Lauren M.; Sabharwall, Piyush
2014-08-01
Small modular reactors (SMRs) refer to any reactor design in which the electricity generated is less than 300 MWe. Often medium sized reactors with power less than 700 MWe are also grouped into this category. Internationally, the development of a variety of designs for SMRs is booming with many designs approaching maturity and even in or nearing the licensing stage. It is for this reason that a generalized yet comprehensive economic model for first of a kind (FOAK) through nth of a kind (NOAK) SMRs based upon rated power, plant configuration, and the fiscal environment was developed. In the model,more » a particular project’s feasibility is assessed with regards to market conditions and by commonly utilized capital budgeting techniques, such as the net present value (NPV), internal rate of return (IRR), Payback, and more importantly, the levelized cost of energy (LCOE) for comparison to other energy production technologies. Finally, a sensitivity analysis was performed to determine the effects of changing debt, equity, interest rate, and conditions on the LCOE.« less
Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian; Samala, Aditya
2012-05-01
Bio-oil produced from biomass by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. In a recent work on pinewood, we found that pretreatment alters the structure and chemical composition of biomass, which influence fast pyrolysis. In this study, we evaluated dilute acid, steam explosion, and size reduction pretreatments on sweetgum, switchgrass, and corn stover feedstocks. Bio-oils were produced from untreated and pretreated feedstocks in an auger reactor at 450 °C. The bio-oil's physical properties of pH, water content, acid value, density, and viscosity were measured. The chemical characteristics of the bio-oils were determined by gas chromatography-mass spectrometry. The results showed that bio-oil yield and composition were influenced by the pretreatment method and feedstock type. Bio-oil yields of 52, 33, and 35 wt% were obtained from medium-sized (0.68-1.532 mm) untreated sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from other sizes. Bio-oil yields of 56, 46, and 51 wt% were obtained from 1% H(2)SO(4)-treated medium-sized sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from untreated and steam explosion treatments.
Fontana, Roselei Claudete; da Silveira, Maurício Moura
2012-11-01
The production of endo- and exo-polygalacturonase (PG) by Aspergillus oryzae was assessed in stirred tank reactors (STRs), internal-loop airlift reactors (ILARs) and external-loop airlift reactors (ELARs). For STR production, we compared culture media formulated with either pectin (WBE) or partially hydrolyzed pectin. The highest enzyme activities were obtained in medium that contained 50% pectin in hydrolyzed form (WBE5). PG production in the three reactor types was compared for WBE5 and low salt WBE medium, with additional salts added at 48, 60 and 72h (WBES). The ELARs performed better than the ILARs in WBES medium where the exo-PG was the same concentration as for STRs and the endo-PG was 20% lower. These results indicate that PG production is higher under experimental conditions that result in higher cell growth with minimum pH values less than 3.0. Copyright © 2012 Elsevier Ltd. All rights reserved.
Process for the production of liquid hydrocarbons
Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus
2006-06-27
The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.
Assessment and Application of the ROSE Code for Reactor Outage Thermal-Hydraulic and Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Thomas K.S.; Ko, F.-K.; Dai, L.-C
The currently available tools, such as RELAP5, RETRAN, and others, cannot easily and correctly perform the task of analyzing the system behavior during plant outages. Therefore, a medium-sized program aiming at reactor outage simulation and evaluation, such as midloop operation (MLO) with loss of residual heat removal (RHR), has been developed. Important thermal-hydraulic processes involved during MLO with loss of RHR can be properly simulated by the newly developed reactor outage simulation and evaluation (ROSE) code. The two-region approach with a modified two-fluid model has been adopted to be the theoretical basis of the ROSE code.To verify the analytical modelmore » in the first step, posttest calculations against the integral midloop experiments with loss of RHR have been performed. The excellent simulation capacity of the ROSE code against the Institute of Nuclear Energy Research Integral System Test Facility test data is demonstrated. To further mature the ROSE code in simulating a full-sized pressurized water reactor, assessment against the WGOTHIC code and the Maanshan momentary-loss-of-RHR event has been undertaken. The successfully assessed ROSE code is then applied to evaluate the abnormal operation procedure (AOP) with loss of RHR during MLO (AOP 537.4) for the Maanshan plant. The ROSE code also has been successfully transplanted into the Maanshan training simulator to support operator training. How the simulator was upgraded by the ROSE code for MLO will be presented in the future.« less
Quenching of a highly superheated porous medium by injection of water
NASA Astrophysics Data System (ADS)
Fichot, F.; Bachrata, A.; Repetto, G.; Fleurot, J.; Quintard, M.
2012-11-01
Understanding of two-phase flow through porous medium with intense phase change is of interest in many situations, including nuclear, chemical or geophysical applications. Intense boiling occurs when the liquid is injected into a highly superheated medium. Under such conditions, the heat flux extracted by the fluid from the porous medium is mainly governed by the nucleation of bubbles and by the evaporation of thin liquid films. Both configurations are possible, depending on local flow conditions and on the ratio of bubble size to pore size. The present study is motivated by the safety evaluation of light water nuclear reactors in case of a severe accident scenario, such as the one that happened in Fukushima Dai-ichi plant in March, 2011. If water sources are not available for a long period of time, the reactor core heats up due to the residual power and eventually becomes significantly damaged due to intense oxidation of metals and fragmentation of fuel rods resulting in the formation of a porous medium where the particles have a characteristic length-scale of 1 to 5 mm. The coolability of the porous medium will depend on the water flow rate which can enter the medium under the available driving head and on the geometrical features of the porous matrix (average pore size, porosity). Therefore, it is of high interest to evaluate the conditions for which the injection of water in such porous medium is likely to stop the progression of the accident. The present paper addresses the issue of modelling two-phase flow and heat transfers in a porous medium initially dry, where water is injected. The medium is initially at a temperature well above the saturation temperature of water. In a first part, a summary of existing knowledge is provided, showing the scarcity of models and experimental data. In a second part, new experimental results obtained in an IRSN facility are analysed. The experiment consists in a bed of steel particles that are heated up to 700°Cbefore injecting water. The facility is briefly described. The velocity of the "quench front" (location where particles are quickly cooled down) and the total pressure drop across the medium are estimated. The dependencies of those quantities with respect to the inlet water flow rate, the initial temperature of the medium and the diameter of particles are obtained. In a third part, a model is proposed, based on a previously developed model which is improved in order to take into account intense boiling regimes (in particular nucleate boiling). The model includes a function that takes into account the contact area between water and the particles which depends on the temperature of particles and on the void fraction. That function affects the local intensity of phase change. The model involves a few parameters which cannot be evaluated analytically. Those parameters are bounded, following the analysis of experimental data. Finally, the model is assessed by comparison of calculations with those new experimental data. The satisfactory agreement shows that the model is almost predictive in the range of parameters studied. The experimental results also show that the quench front becomes unstable under certain conditions. This is also analysed and compared with the predictions of the model.
Biological production of ethanol from coal. Task 4 report, Continuous reactor studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle wasmore » particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.« less
Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.
Park, C H; Okos, M R; Wankat, P C
1989-06-05
Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated, they could not be recovered.
Thermally integrated staged methanol reformer and method
Skala, Glenn William; Hart-Predmore, David James; Pettit, William Henry; Borup, Rodney Lynn
2001-01-01
A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.
Heat exchanger for reactor core and the like
Kaufman, Jay S.; Kissinger, John A.
1986-01-01
A compact bayonet tube type heat exchanger which finds particular application as an auxiliary heat exchanger for transfer of heat from a reactor gas coolant to a secondary fluid medium. The heat exchanger is supported within a vertical cavity in a reactor vessel intersected by a reactor coolant passage at its upper end and having a reactor coolant return duct spaced below the inlet passage. The heat exchanger includes a plurality of relatively short length bayonet type heat exchange tube assemblies adapted to pass a secondary fluid medium therethrough and supported by primary and secondary tube sheets which are releasibly supported in a manner to facilitate removal and inspection of the bayonet tube assemblies from an access area below the heat exchanger. Inner and outer shrouds extend circumferentially of the tube assemblies and cause the reactor coolant to flow downwardly internally of the shrouds over the tube bundle and exit through the lower end of the inner shroud for passage to the return duct in the reactor vessel.
Cultivation of E. coli in single- and ten-stage tower-loop reactors.
Adler, I; Schügerl, K
1983-02-01
E. Coli was cultivated in batch and continuous operations in the presence of an antifoam agent in stirred-tank and in single- and ten-stage airlift tower reactors with an outer loop. The maximum specific growth rate, mu(m), the substrate yield coefficient, Y(x/s), the respiratory quotient, RQ, substrate conversion, U(s), the volumetric mass transfer coefficient, K(L)a, the specific interfacial area, a, and the specific power input, P/V(L), were measured and compared. If a medium is used with a concentration of complex substrates (extracts) 2.5 times higher than that of glucose, a spectrum of C sources is available and cell regulation influences reactor performance. Both mu(m) and Y(X/S), which were evaluated in batch reactors, cannot be used for continuous reactors or, when measured in stirred-tank reactors, cannot be employed for tower-loop reactors: mu(m) is higher in the stirred-tank batch than in the tower-loop batch reactor, mu(m) and Y(x/s) are higher in the continuous reactor than in the batch single-stage tower-loop reactor. The performance of the single-stage is better than that of the ten-stage reactor due to the inefficient trays employed. A reduction of the medium recirculation rate reduces OTR, U(s), Pr, and Y(X/S) and causes cell sedimentation and flocculation. The volumetric mass transfer coefficient is reduced with increasing cultivation time; the Sauter bubble diameter, d(s), remains constant and does not depend on operational conditions. An increase in the medium recirculation rate reduces k(L)a. The specific power input, P/V(L), for the single-stage tower loop is much lower with the same k(L)a value than for a stirred tank. The relationship k(L)a vs. P/V(L) evaluated for model media in stirred tanks, can also be used for cultivations in these reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, M.R., E-mail: mrislam1985@yahoo.com; Joardder, M.U.H.; Hasan, S.M.
2011-09-15
In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants formore » the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.« less
Mukhopadhyay, Biswarup; Johnson, Eric F.; Wolfe, Ralph S.
1999-01-01
For the hyperthermophilic and barophilic methanarchaeon Methanococcus jannaschii, we have developed a medium and protocols for reactor-scale cultivation that improved the final cell yield per liter from ∼0.5 to ∼7.5 g of packed wet cells (∼1.8 g dry cell mass) under autotrophic growth conditions and to ∼8.5 g of packed wet cells (∼2 g dry cell mass) with yeast extract (2 g liter−1) and tryptone (2 g liter−1) as medium supplements. For growth in a sealed bottle it was necessary to add Se to the medium, and a level of 2 μM for added Se gave the highest final cell yield. In a reactor M. jannaschii grew without added Se in the medium; it is plausible that the cells received Se as a contaminant from the reactor vessel and the H2S supply. But, for the optimal performance of a reactor culture, an addition of Se to a final concentration of 50 to 100 μM was needed. Also, cell growth in a reactor culture was inhibited at much higher Se concentrations. These observations and the data from previous work with methanogen cell extracts (B. C. McBride and R. S. Wolfe, Biochemistry 10:4312–4317, 1971) suggested that from a continuously sparged reactor culture Se was lost in the exhaust gas as volatile selenides, and this loss raised the apparent required level of and tolerance for Se. In spite of having a proteinaceous cell wall, M. jannaschii withstood an impeller tip speed of 235.5 cms−1, which was optimal for achieving high cell density and also was the higher limit for the tolerated shear rate. The organism secreted one or more acidic compounds, which lowered pH in cultures without pH control; this secretion continued even after cessation of growth. PMID:10543823
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, P.R.; McLennan, G.A.
1984-08-30
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, Paul R.; McLennan, George A.
1985-01-01
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
Jassby, D.L.
1987-09-04
A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.
Jassby, Daniel L.
1988-01-01
A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.
The role of inertial fusion energy in the energy marketplace of the 21st century and beyond
NASA Astrophysics Data System (ADS)
John Perkins, L.
The viability of inertial fusion in the 21st century and beyond will be determined by its ultimate cost, complexity, and development path relative to other competing, long term, primary energy sources. We examine this potential marketplace in terms of projections for population growth, energy demands, competing fuel sources and environmental constraints (CO 2), and show that the two competitors for inertial fusion energy (IFE) in the medium and long term are methane gas hydrates and advanced, breeder fission; both have potential fuel reserves that will last for thousands of years. Relative to other classes of fusion concepts, we argue that the single largest advantage of the inertial route is the perception by future customers that the IFE fusion power core could achieve credible capacity factors, a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. In particular, we show that the size, cost and complexity of the IFE reactor chamber is little different to a fission reactor vessel of the same thermal power. Therefore, relative to fission, because of IFE's tangible advantages in safety, environment, waste disposal, fuel supply and proliferation, our research in advanced targets and innovative drivers can lead to a certain, reduced-size driver at which future utility executives will be indifferent to the choice of an advanced fission plant or an advanced IFE power plant; from this point on, we have a competitive commercial product. Finally, given that the major potential customer for energy in the next century is the present developing world, we put the case for future IFE "reservations" which could be viable propositions providing sufficient reliability and redundancy can be realized for each modular reactor unit.
NASA Technical Reports Server (NTRS)
Chandler, Joseph A. (Inventor)
1989-01-01
A bioreactor for cell culture is disclosed which provides for the introduction of fresh medium without excessive turbulent action. The fresh medium enters the bioreactor through a filter with a backwash action which prevents the cells from settling on the filter. The bioreactor is sealed and depleted medium is forced out of the container as fresh medium is added.
Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins
NASA Astrophysics Data System (ADS)
Kolesnichenko, N. V.; Yashina, O. V.; Ezhova, N. N.; Bondarenko, G. N.; Khadzhiev, S. N.
2018-01-01
Nanodispersed suspensions that are effective in DME conversion and stable in the reaction zone in a three-phase system (slurry reactor) are obtained from MFI zeolite commercial samples (TsVM, IK-17-1, and CBV) in liquid media via ultrasonic treatment (UST). It is found that the dispersion medium, in which ultrasound affects zeolite commercial sample, has a large influence on particle size in the suspension. UST in the aqueous medium produces zeolite nanoparticles smaller than 50 nm, while larger particles of MFI zeolite samples form in silicone or hydrocarbon oils. Spectral and adsorption data show that when zeolites undergo UST in an aqueous medium, the acid sites are redistributed on the zeolite surface and the specific surface area of the mesopores increases. Preliminary UST in aqueous media of zeolite commercial samples (TsVM, IK-17-1, and CBV) affects the catalytic properties of MFI zeolite nanodispersed suspensions. The selectivity of samples when paraffins and olefins form is largely due to superacid sites consisting of OH groups of hydroxonium ion H3O+.
Liu, Jiawei; Zhou, Xingqiu; Wu, Jiangdong; Gao, Wen; Qian, Xu
2017-10-01
The temperature is the essential factor that influences the efficiency of anaerobic reactors. During the operation of the anaerobic reactor, the fluctuations of ambient temperature can cause a change in the internal temperature of the reactor. Therefore, insulation and heating measures are often used to maintain anaerobic reactor's internal temperature. In this paper, a simplified heat transfer model was developed to study heat transfer between cylindrical anaerobic reactors and their surroundings. Three cylindrical reactors of different sizes were studied, and the internal relations between ambient temperature, thickness of insulation, and temperature fluctuations of the reactors were obtained at different reactor sizes. The model was calibrated by a sensitivity analysis, and the calibrated model was well able to predict reactor temperature. The Nash-Sutcliffe model efficiency coefficient was used to assess the predictive power of heat transfer models. The Nash coefficients of the three reactors were 0.76, 0.60, and 0.45, respectively. The model can provide reference for the thermal insulation design of cylindrical anaerobic reactors.
Evaluation of an Innovative Approach to Validation of ...
UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental Protection Agency (USEPA) provided guidance on the validation of UV reactors nearly a decade ago. The focus of the guidance was primarily for inactivation of Cryptosporidium and Giardia. Over the last ten years many lessons have been learned, validation practices have been modified, new science issues discovered, and changes in operation & monitoring of UV systems need to be addressed. Also, there remains no standard approach for validating UV reactors to meet a 4-log (99.99%) inactivation of viruses. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & surface water pathogen inactivation including viruses for low-pressure and medium-pressure UV systems. A particular challenge for medium-pressure UV is the monitoring of low-wavelength germicidal contributions for appropriate crediting of disinfection under varying reactor conditions of quartz sleeve fouling, lamp aging, and changes in UV absorbance of the water over time. In the current effort, bench and full-scale studies are being conducted on a low pressure (LP) UV reactor and a medium pressure (MP) UV re
Liquid metal cooled nuclear reactors with passive cooling system
Hunsbedt, Anstein; Fanning, Alan W.
1991-01-01
A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.
Wang, Zhengjian; Banks, Charles
2006-10-01
The research examines the potential for bio-clogging in filter packs containing fine sand of the type typically used in extraction wells for pumping leachates containing fine particulate matter, such as cement kiln dust (CKD). Three filter media with different particle sizes were used: 1.7-4.75, 0.35-1.0, and 0.235-0.45 mm. Each sand filter was tested using a leachate recirculating column reactor with a free drainage layer, on top of which was placed the filtration medium which was kept saturated and at a positive hydrostatic head by a 2-l reservoir of leachate. The leachate was collected from a landfill site that had been used for the co-disposal of municipal solid waste (MSW) and CKD. The leachate used was filtered by passing through a Whatman GFA filter paper before being added to the reactors in order to eliminate as far as possible the non-biological clogging which might have resulted from the introduction of particulate matter in the form of CKD. The filters and a control experiment were run under anaerobic conditions at 35 degrees C. The bio-clogging potential was observed by taking differential manometer readings from manometers located in the drainage and reservoir sections of the reactor. No clogging was detected using the coarser of the filter media, but there was some clogging when a finer filter medium was used. Head space gas analysis indicated that methanogenic activity was inhibited and analysis of the liquid phase indicated that the microbial process responsible for removal of chemical oxygen demand (COD) was principally one of sulphate reduction.
Component and System Sensitivity Considerations for Design of a Lunar ISRU Oxygen Production Plant
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Gokoglu, Suleyman; Hegde, Uday G.; Balasubramaniam, Ramaswamy; Santiago-Maldonado, Edgardo
2009-01-01
Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant's regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.
Sivakumar, Ganapathy; Liu, Chunzhao; Towler, Melissa J.
2014-01-01
Hairy roots have the potential to produce a variety of valuable small and large molecules. The mist reactor is a gas phase bioreactor that has shown promise for low-cost culture of hairy roots. Using a newer, disposable culture bag, mist reactor performance was studied with two species, Artemisia annua L. and Arachis hypogaea (peanut), at scales from 1 to 20 L. Both species of hairy roots when grown at 1 L in the mist reactor showed growth rates that surpassed that in shake flasks. From the information gleaned at 1 L, Arachis was scaled further to 4 and then 20 L. Misting duty cycle, culture medium flow rate, and timing of when flow rate was increased were varied. In a mist reactor increasing the misting cycle or increasing the medium flow rate are the two alternatives for increased delivery of liquid nutrients to the root bed. Longer misting cycles beyond 2–3 min were generally deemed detrimental to growth. On the other hand, increasing the medium flow rate to the sonic nozzle especially during the exponential phase of root growth (weeks 2–3) was the most important factor for increasing growth rates and biomass yields in the 20 L reactors. A. hypogaea growth in 1 L reactors was μ = 0.173 day−1 with biomass yield of 12.75 g DWL−1. This exceeded that in shake flasks at μ = 0.166 day−1 and 11.10 g DWL−1. Best growth rate and biomass yield at 20 L was μ = 0.147 and 7.77 g DWL−1, which was mainly achieved when medium flow rate delivery was increased. The mist deposition model was further evaluated using this newer reactor design and when the apparent thickness of roots (+hairs) was taken into account, the empirical data correlated with model predictions. Together these results establish the most important conditions to explore for future optimization of the mist bioreactor for culture of hairy roots. PMID:20687140
Production of Biodiesel Using a Membrane Reactor to Minimize Separation Cost
NASA Astrophysics Data System (ADS)
Olagunju, O. A.; Musonge, P.
2017-07-01
This study investigates the performance of a packed bed membrane reactor in the transesterification process of triglycerides to methyl ester using soyabean oil as feedstock. A TiO2/Al2O3 ceramic microporous membrane was selected due to its chemical inert nature and thermal stability to selectively remove the product from the reaction medium. CaO impregnated on the surface of activated carbon was packed into the membrane and acted as catalyst. The synthesized catalyst had a total loading of 40.50 % and was characterized by XRD and temperature-programmed desorption of CO2 (CO2-TPD). The crude biodiesel produced was micro-filtered by the ceramic membrane with a pore size of 0.02 μm to retain the unreacted oil and free glycerol, at the transmembrane pressure of 100 KPa. The best condition was achieved with a temperature of 65 °C, methanol/oil molar ratio of 6:1 for 150 minutes, which resulted in the highest FAME yield of 94 %. Methyl ester produced met the ASTM D6751 and SANS 1935 specifications. The product obtained was mainly composed of methyl esters. Glycerol was not detected in the product stream due to the ability of the membrane to retain the glycerol and the unreacted oil in the medium, which solved the issue of glycerol separation from biodiesel.
NASA Astrophysics Data System (ADS)
Yanqoritha, Nyimas; Turmuzi, Muhammad; Derlini
2017-05-01
The appropriate process to resolve sewage contamination which have a high organic using anaerobic technology. Hybrid Upflow Anaerobic Sludge Blanket reactor is one of the anaerobic process which consists of a suspended growth media and attached growth media. The reactor has the ability to work at high load rate, sludge produced easily settles, high biomass and the separation of gas, solid and liquid excelent. The purpose of research is to study the acclimatization process in the reactor of Hybrid Upflow Anaerobic Sludge Blanket using a polyvinl chloride ring as the attached growth medium. Reactor of Hybrid Upflow Anaerobic Sludge Blanket use a working volume of 8.6 L. The operation consisting of 3 L suspended reactor and 5.6 L attached reactor. Acclimatization is conducted by providing the substrate from the smallest concentration of COD up to a concentration that will be processed. During the 50th day, acclimatization process assumed the bacteria begin to work, indicated by the dissolved COD and VSS decrease and biogas production. Due to the wastewater containing the high of protein in consequence operational parameters should be controlled and some precautions should be taken to prevent process partially or totally inhibited.
Understanding the growth of micro and nano-crystalline AlN by thermal plasma process
NASA Astrophysics Data System (ADS)
Kanhe, Nilesh S.; Nawale, Ashok B.; Gawade, Rupesh L.; Puranik, Vedavati G.; Bhoraskar, Sudha V.; Das, Asoka K.; Mathe, Vikas L.
2012-01-01
We report the studies related to the growth of crystalline AlN in a DC thermal plasma reactor, operated by a transferred arc plasma torch. The reactor is capable of producing the nanoparticles of Al and AlN depending on the composition of the reacting gas. Al and AlN micro crystals are formed at the anode placed on the graphite and nano crystalline Al and AlN gets deposited on the inner surface of the plasma reactor. X-ray diffraction, Raman spectroscopy analysis, single crystal X-ray diffraction and TGA-DTA techniques are used to infer the purity of post process crystals as a hexagonal AlN. The average particle size using SEM was found to be around 30 μm. The morphology of nanoparticles of Al and AlN, nucleated by gas phase condensation in a homogeneous medium were studied by transmission electron microscopy analysis. The particle ranged in size between 15 and 80 nm in diameter. The possible growth mechanism of crystalline AlN at the anode has been explained on the basis of non-equilibrium processes in the core of the plasma and steep temperature gradient near its periphery. The gas phase species of AlN and various constituent were computed using Murphy code based on minimization of free energy. The process provides 50% yield of microcrystalline AlN and remaining of Al at anode and that of nanocrystalline h-AlN and c-Al collected from the walls of the chamber is about 33% and 67%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hang, E-mail: xhinbj@126.com; Li, Mei; Jun, Zhang
Graphical abstract: The micro morphological structure of the nano-TiO{sub 2} particles was also observed with TEM, as shown in figure. The TEM images clearly exhibited the homogeneous microstructure of particles with a size of around 10–15 nm. - Highlights: • Nano-TiO{sub 2} was prepared by complex techniques of sol–gel, micro-emulsion and solvent thermal. • The size of TiO{sub 2} was nano level and uniformity. • Nano-TiO{sub 2} exhibited high photo-catalytic activity at internal air lift circulating reactor. • The best nano-TiO{sub 2} dosage was obtained. - Abstract: Anatase nano-titania (TiO{sub 2}) powder was prepared by using a sol–gel process mediatedmore » in reverse microemulsion combined with a solvent thermal technique. The structures of the obtained TiO{sub 2} were characterized by TG-DSC, XRD, TEM. The photocatalytic decomposition of methylene blue (MB) on nano-TiO{sub 2} was studied by using an internal air lift circulating photocatalytic reactor. The results show that the anatase structure appears in the calcination temperature range of 400–510 °C, while the transformation of anatase into rutile takes place above 510 °C. The homogeneous microstructure of nano-TiO{sub 2} particles was obtained with a size of around 10–15 nm. In the photocatalytic performance, degradation process follows pseudo first order kinetics with different dosages of photocatalyst and initial MB concentrations and optimal TiO{sub 2} dosage is 0.1 g/L with neutral medium.« less
Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P
2009-02-01
The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.
NASA Astrophysics Data System (ADS)
Capozzi, F.; Lisi, E.; Marrone, A.
2015-11-01
Nuclear reactors provide intense sources of electron antineutrinos, characterized by few-MeV energy E and unoscillated spectral shape Φ (E ). High-statistics observations of reactor neutrino oscillations over medium-baseline distances L ˜O (50 ) km would provide unprecedented opportunities to probe both the long-wavelength mass-mixing parameters (δ m2 and θ12) and the short-wavelength ones (Δ mee 2 and θ13), together with the subtle interference effects associated with the neutrino mass hierarchy (either normal or inverted). In a given experimental setting—here taken as in the JUNO project for definiteness—the achievable hierarchy sensitivity and parameter accuracy depend not only on the accumulated statistics but also on systematic uncertainties, which include (but are not limited to) the mass-mixing priors and the normalizations of signals and backgrounds. We examine, in addition, the effect of introducing smooth deformations of the detector energy scale, E →E'(E ), and of the reactor flux shape, Φ (E )→Φ'(E ), within reasonable error bands inspired by state-of-the-art estimates. It turns out that energy-scale and flux-shape systematics can noticeably affect the performance of a JUNO-like experiment, both on the hierarchy discrimination and on precision oscillation physics. It is shown that a significant reduction of the assumed energy-scale and flux-shape uncertainties (by, say, a factor of 2) would be highly beneficial to the physics program of medium-baseline reactor projects. Our results also shed some light on the role of the inverse-beta decay threshold, of geoneutrino backgrounds, and of matter effects in the analysis of future reactor oscillation data.
Method for producing size selected particles
Krumdick, Gregory K.; Shin, Young Ho; Takeya, Kaname
2016-09-20
The invention provides a system for preparing specific sized particles, the system comprising a continuous stir tank reactor adapted to receive reactants; a centrifugal dispenser positioned downstream from the reactor and in fluid communication with the reactor; a particle separator positioned downstream of the dispenser; and a solution stream return conduit positioned between the separator and the reactor. Also provided is a method for preparing specific sized particles, the method comprising introducing reagent into a continuous stir reaction tank and allowing the reagents to react to produce product liquor containing particles; contacting the liquor particles with a centrifugal force for a time sufficient to generate particles of a predetermined size and morphology; and returning unused reagents and particles of a non-predetermined size to the tank.
Jiang, Hao; Nie, Hong; Ding, Jiangtao; Stinner, Walter; Sun, Kaixuan; Zhou, Hongjun
2018-01-02
In this study, an anaerobic baffled reactor (ABR) with seven chambers was applied to treat medium-strength synthetic industrial wastewater (MSIW). The performance of startup and shock test on treating MSIW was investigated. During the acclimation process, the chemical oxygen demand (COD) of MSIW gradually increased from 0 to 2,000 mg L -1 , and the COD removal finally reached 90%. At shock test, the feeding COD concentration increased by one-fifth and the reactor adapted very well with a COD removal of 82%. In a stable state, Comamonas, Smithella, Syntrophomonas and Pseudomonas were the main populations of bacteria, while the predominant methanogen was Methanobacterium. The results of chemical and microbiological analysis indicated the significant advantages of ABR, including buffering shocks, separating stages with matching microorganisms and promoting syntrophism. Meanwhile, the strategies for acclimation and operation were of great importance. Further work can test reactor performance in the treatment of actual industrial wastewater.
Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor
NASA Technical Reports Server (NTRS)
Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.
1995-01-01
Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.
A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...
ANALYSIS OF AN AEROBIC FLUIDIZED BED REACTOR DEGRADING MTBE AND BTEX AT REDUCED EBCTS
The purpose of this study was to investigate the biodegradation of MTBE and BTEX using a fluidized bed reactor (FBR) with granular activated carbon (GAC) as a biological attachment medium. Batch experiments were run to analyze the MTBE and TBA degradation kinetics of the culture ...
Reactor component automatic grapple
Greenaway, Paul R.
1982-01-01
A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.
Experimental study of Siphon breaker about size effect in real scale reactor design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S. H.; Ahn, H. S.; Kim, J. M.
2012-07-01
Rupture accident within the pipe of a nuclear reactor is one of the main causes of a loss of coolant accident (LOCA). Siphon-breaking is a passive method that can prevent a LOCA. In this study, either a line or a hole is used as a siphon-breaker, and the effect of various parameters, such as the siphon-breaker size, pipe rupture point, pipe rupture size, and the presence of an orifice, are investigated using an experimental facility similar in size to a full-scale reactor. (authors)
Ochiai, Asumi; Imoto, Junpei; Suetake, Mizuki; Komiya, Tatsuki; Furuki, Genki; Ikehara, Ryohei; Yamasaki, Shinya; Law, Gareth T W; Ohnuki, Toshihiko; Grambow, Bernd; Ewing, Rodney C; Utsunomiya, Satoshi
2018-03-06
Trace U was released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) during the meltdowns, but the speciation of the released components of the nuclear fuel remains unknown. We report, for the first time, the atomic-scale characteristics of nanofragments of the nuclear fuels that were released from the FDNPP into the environment. Nanofragments of an intrinsic U-phase were discovered to be closely associated with radioactive cesium-rich microparticles (CsMPs) in paddy soils collected ∼4 km from the FDNPP. The nanoscale fuel fragments were either encapsulated by or attached to CsMPs and occurred in two different forms: (i) UO 2+X nanocrystals of ∼70 nm size, which are embedded into magnetite associated with Tc and Mo on the surface and (ii) Isometric (U,Zr)O 2+X nanocrystals of ∼200 nm size, with the U/(U+Zr) molar ratio ranging from 0.14 to 0.91, with intrinsic pores (∼6 nm), indicating the entrapment of vapors or fission-product gases during crystallization. These results document the heterogeneous physical and chemical properties of debris at the nanoscale, which is a mixture of melted fuel and reactor materials, reflecting the complex thermal processes within the FDNPP reactor during meltdown. Still CsMPs are an important medium for the transport of debris fragments into the environment in a respirable form.
The advantages and disadvantages of using the TREAT reactor for nuclear laser experiments
NASA Astrophysics Data System (ADS)
Dickson, P. W.; Snyder, A. M.; Imel, G. R.; McConnell, R. J.
The Transient Reactor Test Facility (TREAT) is a large air-cooled test facility located at the Idaho National Engineering Laboratory. Two of the major design features of TREAT, its large size and its being an air-cooled reactor, provide clues to both its advantages and disadvantages for supporting nuclear laser experiments. Its large size, which is dictated by the dilute uranium/graphite fuel, permits accommodation of geometrically large experiments. However, TREAT's large size also results in relatively long transients so that the energy deposited in an experiment is large relative to the peak power available from the reactor. TREAT's air-cooling mode of operation allows its configuration to be changed fairly readily. Due to air cooling, the reactor cools down slowly, permitting only one full power transient a day, which can be a disadvantage in some experimental programs. The reactor is capable of both steady-state or transient operation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded, extruded, and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded...
Code of Federal Regulations, 2013 CFR
2013-07-01
... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded...
Application of Microsecond Voltage Pulses for Water Disinfection by Diaphragm Electric Discharge
NASA Astrophysics Data System (ADS)
Kakaurov, S. V.; Suvorov, I. F.; Yudin, A. S.; Solovyova, T. L.; Kuznetsova, N. S.
2015-11-01
The paper presents the dependence of copper and silver ions formation on the duration of voltage pulses of diaphragm electric discharge and on the pH of treated liquid medium. Knowing it allows one to create an automatic control system to control bactericidal agent's parameters obtained in diaphragm electric discharge reactor. The current-voltage characteristic of the reactor with a horizontal to the diaphragm membrane water flow powered from the author's custom pulse voltage source is also presented. The results of studies of the power consumption of diaphragm electric discharge depending on temperature of the treated liquid medium are given.
Spherical torus fusion reactor
Martin Peng, Y.K.M.
1985-10-03
The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.
Design and performance of a trickle-bed bioreactor with immobilized hybridoma cells.
Phillips, H A; Scharer, J M; Bols, N C; Moo-Young, M
1992-01-01
A trickle-bed system employing inert matrices of vermiculite or polyurethane foam packed in the downcomer section of a split-flow air-lift reactor has been developed for hybridoma culture to enhance antibody productivity. This quiescent condition favoured occlusion and allowed the cells to achieve densities twelve fold greater (12.8 x 10(6) cells/ml reactor for polyurethane foam) than in free cell suspension. The reactor was operated in a cyclic batch mode whereby defined volumes of medium were periodically withdrawn and replaced with equal volumes of fresh medium. The pH of the medium was used as the indicator of the feeding schedule. Glucose, lactate and ammonia concentrations reached a stationary value after 5 days. With vermiculite packing, a monoclonal antibody (MAb) concentration of 2.4 mg/l was achieved after 12 days. The MAb concentration declined then increased to a value of 1.8 mg/l. In the polyurethane foam average monoclonal antibody (MAb) concentrations reached a stationary value of 1.1 mg/l in the first 20 days and increased to a new stationary state value of 2.1 mg/l for the remainder of the production. MAb productivity in the trickle-bed reactor was 0.3 mg/l.d (polyurethane foam) and 0.18 mg/l.d (vermiculite) in comparison to 0.12 mg/l.d for free cell suspension. This trickle-bed system seems to be an attractive way of increasing MAb productivity in culture.
Growth of plant root cultures in liquid- and gas-dispersed reactor environments.
McKelvey, S A; Gehrig, J A; Hollar, K A; Curtis, W R
1993-01-01
The growth of Agrobacterium transformed "hairy root" cultures of Hyoscyamus muticus was examined in various liquid- and gas-dispersed bioreactor configurations. Reactor runs were replicated to provide statistical comparisons of nutrient availability on culture performance. Accumulated tissue mass in submerged air-sparged reactors was 31% of gyratory shake-flask controls. Experiments demonstrate that poor performance of sparged reactors is not due to bubble shear damage, carbon dioxide stripping, settling, or flotation of roots. Impaired oxygen transfer due to channeling and stagnation of the liquid phase are the apparent causes of poor growth. Roots grown on a medium-perfused inclined plane grew at 48% of gyratory controls. This demonstrates the ability of cultures to partially compensate for poor liquid distribution through vascular transport of nutrients. A reactor configuration in which the medium is sprayed over the roots and permitted to drain down through the root tissue was able to provide growth rates which are statistically indistinguishable (95% T-test) from gyratory shake-flask controls. In this type of spray/trickle-bed configuration, it is shown that distribution of the roots becomes a key factor in controlling the rate of growth. Implications of these results regarding design and scale-up of bioreactors to produce fine chemicals from root cultures are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weigl, M.
2008-07-01
Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich andmore » Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Thomas K.S.; Ko, F.-K
Although only a few percent of residual power remains during plant outages, the associated risk of core uncovery and corresponding fuel overheating has been identified to be relatively high, particularly under midloop operation (MLO) in pressurized water reactors. However, to analyze the system behavior during outages, the tools currently available, such as RELAP5, RETRAN, etc., cannot easily perform the task. Therefore, a medium-sized program aiming at reactor outage simulation and evaluation, such as MLO with the loss of residual heat removal (RHR), was developed. All important thermal-hydraulic processes involved during MLO with the loss of RHR will be properly simulatedmore » by the newly developed reactor outage simulation and evaluation (ROSE) code. Important processes during MLO with loss of RHR involve a pressurizer insurge caused by the hot-leg flooding, reflux condensation, liquid holdup inside the steam generator, loop-seal clearance, core-level depression, etc. Since the accuracy of the pressure distribution from the classical nodal momentum approach will be degraded when the system is stratified and under atmospheric pressure, the two-region approach with a modified two-fluid model will be the theoretical basis of the new program to analyze the nuclear steam supply system during plant outages. To verify the analytical model in the first step, posttest calculations against the closed integral midloop experiments with loss of RHR were performed. The excellent simulation capacity of the ROSE code against the Institute of Nuclear Energy Research Integral System Test Facility (IIST) test data is demonstrated.« less
KERENA safety concept in the context of the Fukushima accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharias, T.; Novotny, C.; Bielor, E.
Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basicmore » physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...
Code of Federal Regulations, 2013 CFR
2013-07-01
... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...
Code of Federal Regulations, 2012 CFR
2012-07-01
... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...
Code of Federal Regulations, 2010 CFR
2010-07-01
... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...
Continuous production of butanol from starch-based packing peanuts.
Ezeji, Thaddeus C; Groberg, Marisa; Qureshi, Nasib; Blaschek, Hans P
2003-01-01
Acetone, butanol, ethanol (ABE, or solvents) were produced from starch-based packing peanuts in batch and continuous reactors. In a batch reactor, 18.9 g/L of total ABE was produced from 80 g/L packing peanuts in 110 h of fermentation. The initial and final starch concentrations were 69.6 and 11.1 g/L, respectively. In this fermentation, ABE yield and productivity of 0.32 and 0.17 g/(L h) were obtained, respectively. Compared to the batch fermentation, continuous fermentation of 40 g/L of starchbased packing peanuts in P2 medium resulted in a maximum solvent production of 8.4 g/L at a dilution rate of 0.033 h-1. This resulted in a productivity of 0.27 g/(L h). However, the reactor was not stable and fermentation deteriorated with time. Continuous fermentation of 35 g/L of starch solution resulted in a similar performance. These studies were performed in a vertical column reactor using Clostridium beijerinckii BA101 and P2 medium. It is anticipated that prolonged exposure of culture to acrylamide, which is formed during boiling/autoclaving of starch, affects the fermentation negatively.
Zune, Q; Delepierre, A; Gofflot, S; Bauwens, J; Twizere, J C; Punt, P J; Francis, F; Toye, D; Bawin, T; Delvigne, F
2015-08-01
Fungal biofilm is known to promote the excretion of secondary metabolites in accordance with solid-state-related physiological mechanisms. This work is based on the comparative analysis of classical submerged fermentation with a fungal biofilm reactor for the production of a Gla::green fluorescent protein (GFP) fusion protein by Aspergillus oryzae. The biofilm reactor comprises a metal structured packing allowing the attachment of the fungal biomass. Since the production of the target protein is under the control of the promoter glaB, specifically induced in solid-state fermentation, the biofilm mode of culture is expected to enhance the global productivity. Although production of the target protein was enhanced by using the biofilm mode of culture, we also found that fusion protein production is also significant when the submerged mode of culture is used. This result is related to high shear stress leading to biomass autolysis and leakage of intracellular fusion protein into the extracellular medium. Moreover, 2-D gel electrophoresis highlights the preservation of fusion protein integrity produced in biofilm conditions. Two fungal biofilm reactor designs were then investigated further, i.e. with full immersion of the packing or with medium recirculation on the packing, and the scale-up potentialities were evaluated. In this context, it has been shown that full immersion of the metal packing in the liquid medium during cultivation allows for a uniform colonization of the packing by the fungal biomass and leads to a better quality of the fusion protein.
Pressure polymerization of polyester
Maurer, Charles J.; Shaw, Gordon; Smith, Vicky S.; Buelow, Steven J.; Tumas, William; Contreras, Veronica; Martinez, Ronald J.
2000-08-29
A process is disclosed for the preparation of a polyester polymer or polyester copolymer under superatmospheric pressure conditions in a pipe or tubular reaction under turbannular flow conditions. Reaction material having a glycol equivalents to carboxylic acid equivalents mole ratio of from 1.0:1 to 1.2:1, together with a superatmospheric dense gaseous medium are fed co-currently to the reactor. Dicarboxylic acid and/or diol raw materials may be injected into any of the reaction zones in the process during operation to achieve the overall desired mole ratio balance. The process operates at temperatures of from about 220.degree. C. to about 320.degree. C., with turbannular flow achieved before the polymer product and gas exit the reactor process. The pressure in the reaction zones can be in the range from 15 psia to 2500 psia. A polymer product having a DP of a greater than 40, more preferably at least about 70, is achieved by the transfer of water from the reacting material polymer melt to the gaseous medium in the reactor.
Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M
2015-12-01
Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.
Young, G.J.; Ohlinger, L.A.
1958-06-24
A nuclear reactor of the type which uses a liquid fuel and a method of controlling such a reactor are described. The reactor is comprised essentially of a tank for containing the liquid fuel such as a slurry of discrete particles of fissionnble material suspended in a heavy water moderator, and a control means in the form of a disc of neutron absorbirg material disposed below the top surface of the slurry and parallel thereto. The diameter of the disc is slightly smaller than the diameter of the tank and the disc is perforated to permit a flow of the slurry therethrough. The function of the disc is to divide the body of slurry into two separate portions, the lower portion being of a critical size to sustain a nuclear chain reaction and the upper portion between the top surface of the slurry and the top surface of the disc being of a non-critical size. The method of operation is to raise the disc in the reactor until the lower portion of the slurry has reached a critical size when it is desired to initiate the reaction, and to lower the disc in the reactor to reduce the size of the lower active portion the slurry to below criticality when it is desired to stop the reaction.
FALCON reactor-pumped laser description and program overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1989-12-01
The FALCON (Fission Activated Laser CONcept) reactor-pumped laser program at Sandia National Laboratories is examining the feasibility of high-power systems pumped directly by the energy from a nuclear reactor. In this concept we use the highly energetic fission fragments from neutron induced fission to excite a large volume laser medium. This technology has the potential to scale to extremely large optical power outputs in a primarily self-powered device. A laser system of this type could also be relatively compact and capable of long run times without refueling.
NASA Astrophysics Data System (ADS)
Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming
2015-01-01
In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.
Analysis of radiation safety for Small Modular Reactor (SMR) on PWR-100 MWe type
NASA Astrophysics Data System (ADS)
Udiyani, P. M.; Husnayani, I.; Deswandri; Sunaryo, G. R.
2018-02-01
Indonesia as an archipelago country, including big, medium and small islands is suitable to construction of Small Medium/Modular reactors. Preliminary technology assessment on various SMR has been started, indeed the SMR is grouped into Light Water Reactor, Gas Cooled Reactor, and Solid Cooled Reactor and from its site it is group into Land Based reactor and Water Based Reactor. Fukushima accident made people doubt about the safety of Nuclear Power Plant (NPP), which impact on the public perception of the safety of nuclear power plants. The paper will describe the assessment of safety and radiation consequences on site for normal operation and Design Basis Accident postulation of SMR based on PWR-100 MWe in Bangka Island. Consequences of radiation for normal operation simulated for 3 units SMR. The source term was generated from an inventory by using ORIGEN-2 software and the consequence of routine calculated by PC-Cream and accident by PC Cosyma. The adopted methodology used was based on site-specific meteorological and spatial data. According to calculation by PC-CREAM 08 computer code, the highest individual dose in site area for adults is 5.34E-02 mSv/y in ESE direction within 1 km distance from stack. The result of calculation is that doses on public for normal operation below 1mSv/y. The calculation result from PC Cosyma, the highest individual dose is 1.92.E+00 mSv in ESE direction within 1km distance from stack. The total collective dose (all pathway) is 3.39E-01 manSv, with dominant supporting from cloud pathway. Results show that there are no evacuation countermeasure will be taken based on the regulation of emergency.
Update on reactors and reactor instruments in Asia
NASA Astrophysics Data System (ADS)
Rao, K. R.
1991-10-01
The 1980s have seen the commissioning of several medium flux (∼10 14 neutrons/cm 2s) research reactors in Asia. The reactors are based on indigenous design and development in India and China. At Dhruva reactor (India), a variety of neutron spectrometers have been established that have provided useful data related to the structure of high- Tc materials, phonon density of states, magnetic moment distributions and micellar aggregation during the last couple of years. Polarised neutron analysis, neutron interferometry and neutron spin echo methods are some of the new techniques under development. The spectrometers and associated automaton, detectors and neutron guides have all been indigenously developed. This paper summarises the developments and on-going activities in Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines and Thailand.
Pappas, D.S.
1987-07-31
The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.
NASA Astrophysics Data System (ADS)
Grinberg, Eduard I.; Nikolaev, Vadim S.; Sokolov, Nikolai A.; Doschatov, Vitaly V.; Usov, Veniamin A.; Gulidov, Aleksander I.
1995-01-01
The paper presents results of more accurate computational analysis of the TOPAZ-2 system reactor core aerodynamic disruption at an inadvertent reentry. Given are preliminary results on the pattern of disruption of the core partially burnt during its descent in the atmosphere at its impact on the surface of water and sandstone (medium density concrete).
NASA Astrophysics Data System (ADS)
Jiang, Jingkun; Chen, Da-Ren; Biswas, Pratim
2007-07-01
A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.
NASA Astrophysics Data System (ADS)
Nagaso, Masaru; Komatitsch, Dimitri; Moysan, Joseph; Lhuillier, Christian
2018-01-01
ASTRID project, French sodium cooled nuclear reactor of 4th generation, is under development at the moment by Alternative Energies and Atomic Energy Commission (CEA). In this project, development of monitoring techniques for a nuclear reactor during operation are identified as a measure issue for enlarging the plant safety. Use of ultrasonic measurement techniques (e.g. thermometry, visualization of internal objects) are regarded as powerful inspection tools of sodium cooled fast reactors (SFR) including ASTRID due to opacity of liquid sodium. In side of a sodium cooling circuit, heterogeneity of medium occurs because of complex flow state especially in its operation and then the effects of this heterogeneity on an acoustic propagation is not negligible. Thus, it is necessary to carry out verification experiments for developments of component technologies, while such kind of experiments using liquid sodium may be relatively large-scale experiments. This is why numerical simulation methods are essential for preceding real experiments or filling up the limited number of experimental results. Though various numerical methods have been applied for a wave propagation in liquid sodium, we still do not have a method for verifying on three-dimensional heterogeneity. Moreover, in side of a reactor core being a complex acousto-elastic coupled region, it has also been difficult to simulate such problems with conventional methods. The objective of this study is to solve these 2 points by applying three-dimensional spectral element method. In this paper, our initial results on three-dimensional simulation study on heterogeneous medium (the first point) are shown. For heterogeneity of liquid sodium to be considered, four-dimensional temperature field (three spatial and one temporal dimension) calculated by computational fluid dynamics (CFD) with Large-Eddy Simulation was applied instead of using conventional method (i.e. Gaussian Random field). This three-dimensional numerical experiment yields that we could verify the effects of heterogeneity of propagation medium on waves in Liquid sodium.
Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types
NASA Astrophysics Data System (ADS)
Permana, Sidik
2017-07-01
A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.
NASA Astrophysics Data System (ADS)
Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick
2010-08-01
This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, K.; Paramonov, D.
2002-07-01
IRIS (International Reactor Innovative and Secure) is a small to medium advanced light water cooled modular reactor being developed by an international consortium led by Westinghouse/BNFL. This reactor design is specifically aimed at utilities looking to install new (or replacement) nuclear capacity to match market demands, or at developing countries for their distributed power needs. To determine the optimal configuration for IRIS, analysis was undertaken to establish Generation Costs ($/MWh) and Internal Rate of Return (IRR %) to the Utility at alternative power ratings. This was then combined with global market projections for electricity demand out to 2030, segmented intomore » key geographical regions. Finally this information is brought together to form insights, conclusions and recommendations regarding the optimal design. The resultant analysis reveals a single module sized at 335 MWe, with a construction period of 3 years and a 60-year plant life. Individual modules can be installed in a staggered fashion (3 equivalent to 1005 MWe) or built in pairs (2 sets of twin units' equivalent to 1340 MWe). Uncertainty in Market Clearing Price for electricity, Annual Operating Costs and Construction Costs primarily influence lifetime Net Present Values (NPV) and hence IRR % for Utilities. Generation Costs in addition are also influenced by Fuel Costs, Plant Output, Plant Availability and Plant Capacity Factor. Therefore for a site based on 3 single modules, located in North America, Generations Costs of 28.5 $/MWh are required to achieve an IRR of 20%, a level which enables IRIS to compete with all other forms of electricity production. Plant size is critical to commercial success. Sustained (lifetime) high factors for Plant Output, Availability and Capacity Factor are required to achieve a competitive advantage. Modularity offers Utilities the option to match their investments with market conditions, adding additional capacity as and when the circumstances are right. Construction schedule needs to be controlled. There is a clear trade-off between reducing financing charges and optimising revenue streams. (authors)« less
Preliminary CFD study of Pebble Size and its Effect on Heat Transfer in a Pebble Bed Reactor
NASA Astrophysics Data System (ADS)
Jones, Andrew; Enriquez, Christian; Spangler, Julian; Yee, Tein; Park, Jungkyu; Farfan, Eduardo
2017-11-01
In pebble bed reactors, the typical pebble diameter used is 6cm, and within each pebble is are thousands of nuclear fuel kernels. However, efficiency of the reactor does not solely depend on the number of kernels of fuel within each graphite sphere, but also depends on the type and motion of the coolant within the voids between the spheres and the reactor itself. In this work a physical analysis of the pebble bed nuclear reactor's fluid dynamics is undertaken using Computational Fluid Dynamics software. The primary goal of this work is to observe the relationship between the different pebble diameters in an idealized alignment and the thermal transport efficiency of the reactor. The model constructed of our idealized argument will consist on stacked 8 pebble columns that fixed at the inlet on the reactor. Two different pebble sizes 4 cm and 6 cm will be studied and helium will be supplied as coolant with a fixed flow rate of 96 kg/s, also a fixed pebble surface temperatures will be used. Comparison will then be made to evaluate the efficiency of coolant to transport heat due to the varying sizes of the pebbles. Assistant Professor for the Department of Civil and Construction Engineering PhD.
Minimum-sized ideal reactor for continuous alcohol fermentation using immobilized microorganism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamane, T.; Shimizu, S.
Recently, alcohol fermentation has gained considerable attention with the aim of lowering its production cost in the production processes of both fuel ethanol and alcoholic beverages. The over-all cost is a summation of costs of various subsystems such as raw material (sugar, starch, and cellulosic substances) treatment, fermentation process, and alcohol separation from water solutions; lowering the cost of the fermentation processes is very important in lowering the total cost. Several new techniques have been developed for economic continuous ethanol production, use of a continuous wine fermentor with no mechanical stirring, cell recycle combined with continuous removal of ethanol undermore » vaccum, a technique involving a bed of yeast admixed with an inert carrier, and use of immobilized yeast reactors in packed-bed column and in a three-stage double conical fluidized-bed bioreactor. All these techniques lead to increases more or less, in reactor productivity, which in turn result in the reduction of the reactor size for a given production rate and a particular conversion. Since an improvement in the fermentation process often leads to a reduction of fermentor size and hence, a lowering of the initial construction cost, it is important to theoretically arrive at a solution to what is the minimum-size setup of ideal reactors from the viewpoint of liquid backmixing. In this short communication, the minimum-sized ideal reactor for continuous alcohol fermentation using immobilized cells will be specifically discussed on the basis of a mathematical model. The solution will serve for designing an optimal bioreactor. (Refs. 26).« less
Morphological Variations in Conidia of Arthrobotrys oligospora on Different Media.
Singh, R K; Kumar, Niranjan; Singh, K P
2005-06-01
Most commonly occurring predacious fungus Arthrobotrys oligospora showed great variation in size and shape of conidia on some media. The formation of larger conidia was recorded on beef extract and nutrient agar media. The length of conidia in Richard's YPSS, Sabouraud's, PDA and corn meal agar media was of medium size while smaller conidia were produced on Czapek's, Jensen's, Martin's medium. Maximum width of conidia was recorded on YPSS medium followed by Sabouraud's medium. The average size of spores on nematode infested corn meal agar medium was slightly increased than those on corn meal agar medium.
Annular gel reactor for chemical pattern formation
Nosticzius, Zoltan; Horsthemke, Werner; McCormick, William D.; Swinney, Harry L.; Tam, Wing Y.
1990-01-01
The present invention is directed to an annular gel reactor suitable for the production and observation of spatiotemporal patterns created during a chemical reaction. The apparatus comprises a vessel having at least a first and second chamber separated one from the other by an annular polymer gel layer (or other fine porous medium) which is inert to the materials to be reacted but capable of allowing diffusion of the chemicals into it.
Salinas-Juárez, María Guadalupe; Roquero, Pedro; Durán-Domínguez-de-Bazúa, María Del Carmen
2016-12-01
Plant support media may impact power output in a biological fuel cell with living plants, due to the physical and biochemical processes that take place in it. A material for support medium should provide the suitable conditions for the robust microbial growth and its metabolic activity, degrading organic matter and other substances; and, transferring electrons to the anode. To consider the implementation of this type of bio-electrochemical systems in constructed wetlands, this study analyzes the electrochemical behavior of biological fuel cells with the vegetal species Phragmites australis, by using two different support media: graphite granules and a volcanic slag, commonly known as tezontle (stone as light as hair, from the Aztec or Nahuatl language). Derived from the results, both, graphite and tezontle have the potential to be used as support medium for plants and microorganisms supporting a maximum power of 26.78mW/m(2) in graphite reactors. These reactors worked under mixed control: with ohmic and kinetic resistances of the same order of magnitude. Tezontle reactors operated under kinetic control with a high activation resistance supplying 9.73mW/m(2). These performances could be improved with stronger bacterial populations in the reactor, to ensure the rapid depletion of substrate. Copyright © 2016 Elsevier B.V. All rights reserved.
User's manual for COAST 4: a code for costing and sizing tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sink, D. A.; Iwinski, E. M.
1979-09-01
The purpose of this report is to document the computer program COAST 4 for the user/analyst. COAST, COst And Size Tokamak reactors, provides complete and self-consistent size models for the engineering features of D-T burning tokamak reactors and associated facilities involving a continuum of performance including highly beam driven through ignited plasma devices. TNS (The Next Step) devices with no tritium breeding or electrical power production are handled as well as power producing and fissile producing fusion-fission hybrid reactors. The code has been normalized with a TFTR calculation which is consistent with cost, size, and performance data published in themore » conceptual design report for that device. Information on code development, computer implementation and detailed user instructions are included in the text.« less
Method of controlling crystallite size in nuclear-reactor fuels
Lloyd, Milton H.; Collins, Jack L.; Shell, Sam E.
1985-01-01
Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.
Method of controlling crystallite size in nuclear-reactor fuels
Lloyd, M.H.; Collins, J.L.; Shell, S.E.
Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. DATES: The meeting will...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-31
... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...
ERIC Educational Resources Information Center
Moore, Ann; Parahoo, Kader; Fleming, Paul
2011-01-01
Objective: This study aimed at exploring managers' understanding of workplace health promotion and experiences of workplace health promotion activity within small and medium-sized enterprises. Design: A Heideggerian interpretive phenomenological methodology was adopted. Setting: This study was undertaken with small and medium-sized enterprise…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size DATES: The meeting...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...
Some Physical Parameters to Effect the Production of Heamatococcus pluvialis
NASA Astrophysics Data System (ADS)
Akpolat, O.; Eristurk, S.
The aim of this study is to optimize the physical parameters affecting the production of Haematococcus pluvialis in photobioreactors and to simulate the process. Heamatococcus pluvialis is a green microalgea to have a great interest for production of natural astaxanthin and it can be cultivated in a closed photobiorector system under controlled conditions. Biomass composition, growth rate and high value product spectra like polyunsaturated fatty acids, pigments, poly saccariydes or vitamins depend on strongly the parameters of cultivation process. These are composition of cultivation medium, mixing model and aeration rate, hydrodynamic stress of medium which can be changed by adding some chemicals, cultivation temperature, pH, carbon dioxide and oxygen supply and most important of all: illumination. One of the most important problems during the cultivation is that cells have sensitivity to shear stress very much and the shear stress created by aeration and mixing effects the growth rate of the cell negatively and decreases yield. In this study, physical parameters such as; the rate of the air fed into the reactor, the mixing type, the reduction of the hydrodynamic stress by CMC addition, the effect of the cell size on the cell production and the flocculation speed of the culture, were investigated.
Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress
2010-09-29
to design a smaller scale version of a naval pressurized water reactor , or to design a new reactor type potentially using a thorium liquid salt...integrated nuclear power system capable of use on destroyer- sized vessels either using a pressurized water reactor or a thorium liquid salt reactor ...nuclear reactors for Navy surface ships. The text of Section 246 is as follows: SEC. 246. STUDY ON THORIUM -LIQUID FUELED REACTORS FOR NAVAL FORCES
Formation of aerobic granular sludge during the treatment of petrochemical wastewater.
Caluwé, Michel; Dobbeleers, Thomas; D'aes, Jolien; Miele, Solange; Akkermans, Veerle; Daens, Dominique; Geuens, Luc; Kiekens, Filip; Blust, Ronny; Dries, Jan
2017-08-01
In this study, petrochemical wastewater from the port of Antwerp was used for the development of aerobic granular sludge. Two different reactor setups were used, (1) a completely aerated sequencing batch reactor (SBR ae ) with a feast/famine regime and (2) a sequencing batch reactor operated with an anaerobic feast/aerobic famine strategy (SBR an ). The seed sludge showed poor settling characteristics with a sludge volume index (SVI) of 285mL.gMLSS -1 and a median particle size by volume of 86.0µm±1.9µm. In both reactors, granulation was reached after 30days with a SVI of 71mL.gMLSS -1 and median granule size of 264.7µm in SBR an and a SVI of 56mL.gMLSS -1 and median granule size of 307.4µm in SBR ae . The chemical oxygen demand (COD) and dissolved organic carbon (DOC) removal was similar in both reactors and above 95%. The anaerobic DOC uptake increased from 0.13% to 43.2% in 60days in SBR an . Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting will be held...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-01
... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting will be held...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held May...
Aerosol processing of materials: Aerosol dynamics and microstructure evolution
NASA Astrophysics Data System (ADS)
Gurav, Abhijit Shankar
Spray pyrolysis is an aerosol process commonly used to synthesize a wide variety of materials in powder or film forms including metals, metal oxides and non-oxide ceramics. It is capable of producing high purity, unagglomerated, and micrometer to submicron-size powders, and scale-up has been demonstrated. This dissertation deals with the study of aerosol dynamics during spray pyrolysis of multicomponent systems involving volatile phases/components, and aspects involved with using fuel additives during spray processes to break apart droplets and particles in order to produce powders with smaller sizes. The gas-phase aerosol dynamics and composition size distributions were measured during spray pyrolysis of (Bi, Pb)-Sr-Ca-Cu-O, and Sr-Ru-O and Bi-Ru-O at different temperatures. A differential mobility analyzer (DMA) was used in conjunction with a condensation particle counter (CPC) to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. (Bi, Pb)-Sr-Ca-Cu-O powders made at temperatures up to 700sp°C maintained their initial stoichiometry over the whole range of particle sizes monitored, however, those made at 800sp°C and above were heavily depleted in lead in the size range 0.5-5.0 mum. When the reactor temperature was raised from 700 and 800sp°C to 900sp°C, a large number ({˜}10sp7\\ #/cmsp3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls at the beginning of high temperature runs (at 900sp°C). The metal ruthenate systems showed generation of ultrafine particles (<40-50 nm) at the beginning of runs at 800-900sp°C and also as a steady state process at a reactor temperature of 1000sp°C. The methods of aerosol dynamics measurements were also used to monitor the gas-phase particle size distributions during the generation of fullerene (Csb{60}) nano-particles (30 to 50 nm size) via vapor condensation at 400-650sp°C using Nsb2 carrier gas. In general, during laboratory-scale aerosol processing of materials containing a volatile component, significant evaporative losses and formation of new ultrafine particles were observed at synthesis temperatures at which the saturation vapor pressure of the volatile species exceeded about 0.1-0.5 mTorr. Spray calcination synthesis of pigment-size titania from titanium hydrolysate (TiOsb{x}(SOsb4)sb{y}(OH)sb{z}) using fuel additives such as ethyl alcohol, sugar and urea was also investigated. When pure water was used as a medium of suspension, agglomerates of 0.5 to 1.5 mum were produced by spray calcination. Use of pure ethanol as a solvent as well as small amounts (5-10 wt.%) urea additions to the suspension of Ti-hydrolysate in water were successful in producing predominantly unagglomerated, single crystalline titania particles of 0.1 to 0.3 mum size. Such additions of fuels such as alcohols, sugar and urea to suspensions and solutions used in spray processes are promising for making powders having smaller sizes and unagglomerated, denser morphologies.
Application of Reactor Antineutrinos: Neutrinos for Peace
NASA Astrophysics Data System (ADS)
Suekane, F.
2013-02-01
In nuclear reactors, 239Pu are produced along with burn-up of nuclear fuel. 239Pu is subject of safeguard controls since it is an explosive component of nuclear weapon. International Atomic Energy Agency (IAEA) is watching undeclared operation of reactors to prevent illegal production and removal of 239Pu. In operating reactors, a huge numbers of anti electron neutrinos (ν) are produced. Neutrino flux is approximately proportional to the operating power of reactor in short term and long term decrease of the neutrino flux per thermal power is proportional to the amount of 239Pu produced. Thus rector ν's carry direct and real time information useful for the safeguard purposes. Since ν can not be hidden, it could be an ideal medium to monitor the reactor operation. IAEA seeks for novel technologies which enhance their ability and reactor neutrino monitoring is listed as one of such candidates. Currently neutrino physicists are performing R&D of small reactor neutrino detectors to use specifically for the safeguard use in response to the IAEA interest. In this proceedings of the neutrino2012 conference, possibilities of such reactor neutrinos application and current world-wide R&D status are described.
Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress
2010-06-10
scale pressurized water reactors suitable for destroyer-sized vessels or for alternative nuclear power systems using thorium liquid salt technology...or to design a new reactor type potentially using a thorium liquid salt reactor developed for maritime use. The committee recommends an increase of...either using a pressurized water reactor or a thorium liquid salt reactor . (Page 158) Senate The Senate Armed Services Committee, in its report
2009-12-10
Small Modular Reactors Rising cost estimates for large conventional nuclear power plants—widely projected to be $6 billion or more—have contributed to growing interest in proposals for smaller, modular reactors. Ranging from about 40 to 350 megawatts of electrical capacity, such reactors would be only a fraction of the size of current commercial reactors. Several modular reactors would be installed together to make up a power block with a single control room, under most concepts. Modular reactor concepts would use a variety of technologies,
Direct Synthesis of Medium-Bridged Twisted Amides via a Transannular Cyclization Strategy
Szostak, Michal; Aubé, Jeffrey
2009-01-01
The sequential RCM to construct a challenging medium-sized ring followed by a transannular cyclization across a medium-sized ring delivers previously unattainable twisted amides from simple acyclic precursors. PMID:19708701
NASA Astrophysics Data System (ADS)
Hnatiuc, B.; Brisset, J. L.; Astanei, D.; Ursache, M.; Mares, M.; Hnatiuc, E.; Felea, C.
2016-12-01
This paper aims to present the evolution of the construction and performances of non-thermal plasma reactors, identifying specific requirements for various known applications, setting out quality indicators that would allow on the one hand comparing devices that use different kinds of electrical discharges but also their rigorous classification by identification of criteria in order to choose the correct cold plasma reactors for a specific application. It briefly comments the post-discharge effect but also the current dilemma on non-thermal plasma direct treatments versus indirect treatments, using plasma activated water (PAW) or plasma activated medium (PAM), promising in cancer treatment.
How much does the MSW effect contribute to the reactor antineutrino anomaly?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdiviesso, G. A.
2015-05-15
It has been pointed out that there is a 5.7 ± 2.3 discrepancy between the predicted and the observed reactor antineutrino flux in very short baseline experiments. Several causes for this anomaly have been discussed, including a possible non-standard forth sterile neutrino. In order to quantify how much non-standard this anomaly really is, the standard MSW effect is reviewed. Knowing that reactor antineutrinos are produced in a dense medium (the nuclear fuel) and is usually detected in a less dense one (water, or scintillator), non-adiabatic effects are expected to happen, creating a difference between the creation and detection mixing angles.
Management Education for Small and Medium-Sized Enterprises in the European Communities.
ERIC Educational Resources Information Center
Holzer, Rainer
This report summarizes the activities of various bodies providing training impetus for small and medium-sized enterprises (SMEs) in Europe on the three levels of (1) basic management education for potential small and medium-sized business owners and/or managers; (2) programs for small firm start-ups; and (3) activities to improve the management of…
Experimental studies of irradiated and hydrogen implantation damaged reactor steels
NASA Astrophysics Data System (ADS)
Slugeň, Vladimír; Pecko, Stanislav; Sojak, Stanislav
2016-01-01
Radiation degradation of nuclear materials can be experimentally simulated via ion implantation. In our case, German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40 %) were observed in "as-received" steels. A significant increase in the size of the induced defects due to neutron damage was observed in the irradiated specimens resulting in 2-3 vacancies. The size and intensity of defects reached a similar level as in the specimens irradiated in the nuclear reactor due to the implantation of hydrogen ions with energies of 100 keV (up to the depth <500 nm).
Method for culturing mammalian cells in a horizontally rotated bioreactor
NASA Technical Reports Server (NTRS)
Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor); Trinh, Tinh T. (Inventor)
1992-01-01
A bio-reactor system where cell growth microcarrier beads are suspended in a zero head space fluid medium by rotation about a horizontal axis and where the fluid is continuously oxygenated from a tubular membrane which rotates on a shaft together with rotation of the culture vessel. The oxygen is continuously throughput through the membrane and disbursed into the fluid medium along the length of the membrane.
Calero, R; Iglesias-Iglesias, R; Kennes, C; Veiga, M C
2017-09-16
Volatile fatty acids (VFA) production and degree of acidification (DA) were investigated in the anaerobic treatment of cheese whey by comparison of two processes: a continuous process using a laboratory upflow anaerobic sludge blanket (UASB) reactor and a discontinuous process using a sequencing batch reactor (SBR). The main purpose of this work was to study the organic loading rate (OLR) effect on the yield of VFA in two kinds of reactors. The predominant products in the acidogenic process in both reactors were: acetate, propionate, butyrate and valerate. The maximum DA obtained was 98% in an SBR at OLR of 2.7 g COD L -1 d -1 , and 97% in the UASB at OLR at 15.1 g COD L -1 d -1 . The results revealed that the UASB reactor was more efficient at a medium OLR with a higher VFA yield, while with the SBR reactor, the maximum acidification was obtained at a lower OLR with changes in the VFA profile at different OLRs applied.
Efficiency improvement of an antibody production process by increasing the inoculum density.
Hecht, Volker; Duvar, Sevim; Ziehr, Holger; Burg, Josef; Jockwer, Alexander
2014-01-01
Increasing economic pressure is the main driving force to enhance the efficiency of existing processes. We developed a perfusion strategy for a seed train reactor to generate a higher inoculum density for a subsequent fed batch production culture. A higher inoculum density can reduce culture duration without compromising product titers. Hence, a better capacity utilization can be achieved. The perfusion strategy was planned to be implemented in an existing large scale antibody production process. Therefore, facility and process constraints had to be considered. This article describes the initial development steps. Using a proprietary medium and a Chinese hamster ovary cell line expressing an IgG antibody, four different cell retention devices were compared in regard to retention efficiency and reliability. Two devices were selected for further process refinement, a centrifuge and an inclined gravitational settler. A concentrated feed medium was developed to meet facility constraints regarding maximum accumulated perfundate volume. A 2-day batch phase followed by 5 days of perfusion resulted in cell densities of 1.6 × 10(10) cells L(-1) , a 3.5 fold increase compared to batch cultivations. Two reactor volumes of concentrated feed medium were needed to achieve this goal. Eleven cultivations were carried out in bench and 50 L reactors showing acceptable reproducibility and ease of scale up. In addition, it was shown that at least three perfusion phases can be combined within a repeated perfusion strategy. © 2014 American Institute of Chemical Engineers.
NASA Technical Reports Server (NTRS)
Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.
2015-01-01
We present a parametric sizing model for a Molten Electrolysis Reactor that produces oxygen and molten metals from lunar regolith. The model has a foundation of regolith material properties validated using data from Apollo samples and simulants. A multiphysics simulation of an MRE reactor is developed and leveraged to generate a vast database of reactor performance and design trends. A novel design methodology is created which utilizes this database to parametrically design an MRE reactor that 1) can sustain the required mass of molten regolith, current, and operating temperature to meet the desired oxygen production level, 2) can operate for long durations via joule heated, cold wall operation in which molten regolith does not touch the reactor side walls, 3) can support a range of electrode separations to enable operational flexibility. Mass, power, and performance estimates for an MRE reactor are presented for a range of oxygen production levels. The effects of several design variables are explored, including operating temperature, regolith type/composition, batch time, and the degree of operational flexibility.
Neutron Capture and the Antineutrino Yield from Nuclear Reactors.
Huber, Patrick; Jaffke, Patrick
2016-03-25
We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.
Desulfurizing Coal With an Alkali Treatment
NASA Technical Reports Server (NTRS)
Ravindram, M.; Kalvinskas, J. J.
1987-01-01
Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.
Treating domestic effluent wastewater treatment by aerobic biofilter with bioballs medium
NASA Astrophysics Data System (ADS)
Permatasari, R.; Rinanti, A.; Ratnaningsih, R.
2018-01-01
This laboratory scale research aimed to treat wastewater effluent with advanced treatment utilizing aerobic biofilter with bio-balls medium to obtain effluent quality in accordance with DKI Jakarta Governor Regulation No. 122 of 2005. The seeding and acclimatization were conducted in 4 weeks. The effluent were accommodated in a 150 L water barrel supported by a submersible pump. The effluent were treated in two boxes shaped reactors made of glasses with 36 L of each capacity. These reactors were equipped with aquarium aerators, sampling tap is 10 cm from the base of reactors, and bio-balls with 3 cm diameter are made of PVC. Reactors operated continuously with variations of retention time of 4 hours, 8 hours, 12 hours, 18 hours, and 24 hours and also variations of Carbon: Nitrogen: Phosphor = C: N: P ratio were, 100:5:1, 100:8:1, 100:10:1, 100:12:1, 100:15:1. The results showed that the optimum variance of retention time was 24 hours and the ratio of C:N:P was 100:10:1 yielded the largest removal efficiency for 83,33% of COD, 87,33% of BOD, 82,5% of Ammonia, 79,1% of Nitrate, 92% of Nitrite, 84,82% of Oil and Grease. The concentration parameter resulted from outlet biofilter has met the domestic wastewater quality standard of DKI Jakarta.
Method for culturing mammalian cells in a perfused bioreactor
NASA Technical Reports Server (NTRS)
Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)
1992-01-01
A bio-reactor system wherein a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.
Rotating bio-reactor cell culture apparatus
NASA Technical Reports Server (NTRS)
Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)
1991-01-01
A bioreactor system is described in which a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.
Evaluation research of small and medium-sized enterprise informatization on big data
NASA Astrophysics Data System (ADS)
Yang, Na
2017-09-01
Under the background of big data, key construction of small and medium-sized enterprise informationization level was needed, but information construction cost was large, while information cost of inputs can bring benefit to small and medium-sized enterprises. This paper established small and medium-sized enterprise informatization evaluation system from hardware and software security level, information organization level, information technology application and the profit level, and information ability level. The rough set theory was used to brief indexes, and then carry out evaluation by support vector machine (SVM) model. At last, examples were used to verify the theory in order to prove the effectiveness of the method.
Moghanloo, G M Mojarrad; Fatehifar, E; Saedy, S; Aghaeifar, Z; Abbasnezhad, H
2010-11-01
Hydrogen sulfide (H(2)S) removal in mineral media using Thiobacillus thioparus TK-1 in a biofilm airlift suspension reactor (BAS) was investigated to evaluate the relationship between biofilm formation and changes in inlet loading rates. Aqueous sodium sulfide was fed as the substrate into the continuous BAS-reactor. The reactor was operated at a constant temperature of 30 degrees C and a pH of 7, the optimal temperature and pH for biomass growth. The startup of the reactor was performed with basalt carrier material. Optimal treatment performance was obtained at a loading rate of 4.8 mol S(2-) m(-3) h(-1) at a conversion efficiency as high as 100%. The main product of H(2)S oxidation in the BAS-reactor was sulfate because of high oxygen concentrations in the airlift reactor. The maximum sulfide oxidation rate was 6.7 mol S(2-) m(-3) h(-1) at a hydraulic residence time of 3.3 h in the mineral medium. The data showed that the BAS-reactor with this microorganism can be used for sulfide removal from industrial effluent. Copyright 2010 Elsevier Ltd. All rights reserved.
Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...
2017-05-06
Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon
Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less
Dixson, Barnaby J; Duncan, Melanie; Dixson, Alan F
2015-08-01
Women's breast morphology is thought to have evolved via sexual selection as a signal of maturity, health, and fecundity. While research demonstrates that breast morphology is important in men's judgments of women's attractiveness, it remains to be determined how perceptions might differ when considering a larger suite of mate relevant attributes. Here, we tested how variation in breast size and areolar pigmentation affected perceptions of women's sexual attractiveness, reproductive health, sexual maturity, maternal nurturing abilities, and age. Participants (100 men; 100 women) rated images of female torsos modeled to vary in breast size (very small, small, medium, and large) and areolar pigmentation (light, medium, and dark) for each of the five attributes listed above. Sexual attractiveness ratings increased linearly with breast size, but large breasts were not judged to be significantly more attractive than medium-sized breasts. Small and medium-sized breasts were rated as most attractive if they included light or medium colored areolae, whereas large breasts were more attractive if they had medium or dark areolae. Ratings for perceived age, sexual maturity, and nurturing ability also increased with breast size. Darkening the areolae reduced ratings of the reproductive health of medium and small breasts, whereas it increased ratings for large breasts. There were no significant sex differences in ratings of any of the perceptual measures. These results demonstrate that breast size and areolar pigmentation interact to determine ratings for a suite of sociosexual attributes, each of which may be relevant to mate choice in men and intra-sexual competition in women.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saillard, R.; Poux, M.; Audhuy-Peaudecerf, M.
1996-12-31
The influence of the microwave heating on chemical reactions were investigated. The kinetic of the Diels Alder reaction were studied under microwave irradiation at a frequency of 2.45 GHz in a single mode cavity and were compared to the kinetic obtained by a conventional heating. Experiments were carried out in a liquid solvent in order to have a better control of the medium temperature measurement. In a second part, the presence of a catalytic solid phase was introduced. Some thermal fluctuations which are due to an heterogeneity of the electric field were detected in the medium. They reduce the precisionmore » of the results and cause problems of experimental reproducibility. A thermoluminescent material allow a good visualization of these phenomena. In addition, the profiles of the electric field intensity were modelled by a 2D finite elements method in the reactor in the presence of a solvent. Despite the small size of the sample and the use of a monomode cavity which both limited the heterogeneities of the medium temperature, the authors showed a great heterogeneity of the electric field intensity and as a result the heterogeneity of the temperature in their sample. In order to avoid these phenomena which induce a lack of reproducibility, a stirring device was developed. The values of the kinetics obtained under the 2 heating modes with the introduction of the stirring device. So, it induces a good control of the medium temperature. All those investigations prompted the authors to the conclusion that there is no difference between microwave heating and a classical heating in the studied reaction.« less
Mineral resource potential map of the Fossil Ridge Wilderness Study Area, Gunnison County, Colorado
DeWitt, Ed; Stoneman, R.J.; Clark, J.R.; Kluender, S.E.
1985-01-01
Areas that immediately adjoin the Fossil Ridge Wilderness Study Area have a high potential for molybdenum in large deposits, lead in medium-size deposits, and zinc -in small- to medium-size deposits. Depending on the extraction of base metals, parts of the adjoining areas could have a low resource potential for bismuth and cadmium as byproducts in medium-size deposits.
40 CFR 60.705 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor... used or where the reactor process vent stream is introduced as the primary fuel to any size boiler or... equipment or reactors; (2) Any recalculation of the TRE index value performed pursuant to § 60.704(f); and...
40 CFR 60.705 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor... used or where the reactor process vent stream is introduced as the primary fuel to any size boiler or... equipment or reactors; (2) Any recalculation of the TRE index value performed pursuant to § 60.704(f); and...
RELAP5 posttest calculation of IAEA-SPE-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petelin, S.; Mavko, B.; Parzer, I.
The International Atomic Energy Agency`s Fourth Standard Problem Exercise (IAEA-SPE-4) was performed at the PMK-2 facility. The PMK-2 facility is designed to study processes following small- and medium-size breaks in the primary system and natural circulation in VVER-440 plants. The IAEA-SPE-4 experiment represents a cold-leg side small break, similar to the IAEA-SPE-2, with the exception of the high-pressure safety injection being unavailable, and the secondary side bleed and feed initiation. The break valve was located at the dead end of a vertical downcomer, which in fact simulates a break in the reactor vessel itself, and should be unlikely to happenmore » in a real nuclear power plant (NPP). Three different RELAP5 code versions were used for the transient simulation in order to assess the calculations with test results.« less
Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw.
García-Cubero, M A Teresa; González-Benito, Gerardo; Indacoechea, Irune; Coca, Mónica; Bolado, Silvia
2009-02-01
Wheat and rye straws were pretreated with ozone to increase the enzymatic hydrolysis extent of potentially fermentable sugars. Through a 2(5-1) factorial design, this work studies the influence of five operating parameters (moisture content, particle size, ozone concentration, type of biomass and air/ozone flow rate) on ozonization pretreatment of straw in a fixed bed reactor under room conditions. The acid insoluble lignin content of the biomass was reduced in all experiments involving hemicellulose degradation. Near negligible losses of cellulose were observed. Enzymatic hydrolysis yields of up to 88.6% and 57% were obtained compared to 29% and 16% in non-ozonated wheat and rye straw respectively. Moisture content and type of biomass showed the most significant effects on ozonolysis. Additionally, ozonolysis experiments in basic medium with sodium hydroxide evidenced a reduction in solubilization and/or degradation of lignin and reliable cellulose and hemicellulose degradation.
75 FR 31768 - Procurement List Proposed Additions and Deletions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-04
.... Service Type/Location: Custodial Services, Woodlawn Child Care Center, Social Security Administration... Regular NSN: 8415-01-546-0166--Undershirt Size Small Long NSN: 8415-01-538-8614--Undershirt Size Medium Regular NSN: 8415-01-546-0305--Undershirt Size Medium Long NSN: 8415-01-538-8621--Undershirt Size Large...
Fraas, A.P.; Mills, C.B.
1961-11-21
A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)
NASA Astrophysics Data System (ADS)
Cole, Jonathan; Zhang, Yao; Liu, Tianqi; Liu, Chang-jun; Mohan Sankaran, R.
2017-08-01
Scale-up of non-thermal atmospheric-pressure plasma reactors for the synthesis of nanoparticles by homogeneous nucleation is challenging because the active volume is typically reduced to facilitate gas breakdown, enhance discharge stability, and limit particle size and agglomeration, but thus limits throughput. Here, we introduce a dielectric barrier discharge reactor consisting of a coaxial electrode geometry for nanoparticle production that enables a simple scale-up strategy whereby increasing the outer and inner electrode diameters, the plasma volume is increased approximately linearly, while maintaining a sufficiently small electrode gap to maintain the electric field strength. We show with two test reactors that for a given residence time, the nanoparticle production rate increases linearly with volume over a range of precursor concentrations, while having minimal effect on the shape of the particle size distribution. However, our study also reveals that increasing the total gas flow rate in a smaller volume reactor leads to an enhancement of precursor conversion and a comparable production rate to a larger volume reactor. These results suggest that scale-up requires better understanding of the influence of reactor geometry on particle growth dynamics and may not always be a simple function of reactor volume.
Erythorbic acid promoted formation of CdS QDs in a tube-in-tube micro-channel reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Yan; Tan, Jiawei; Wang, Jiexin
2014-12-15
Erythorbic acid assistant synthesis of CdS quantum dots (QDs) was conducted by homogeneous mixing of two continuous liquids in a high-throughput microporous tube-in-tube micro-channel reactor (MTMCR) at room temperature. The effects of the micropore size of the MTMCR, liquid flow rate, mixing time and reactant concentration on the size and size distribution of CdS QDs were investigated. It was found that the size and size distribution of CdS QDs could be tuned in the MTMCR. A combination of erythorbic acid promoted formation technique with the MTMCR may be a promising pathway for controllable mass production of QDs.
Cheng, Kuan-Chen; Catchmark, Jeff M; Demirci, Ali
2009-01-01
Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS) were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC) production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L) that was 2.5-fold greater than the control (2.82 g/L). The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93%) and similar crystal size (5.2 nm) to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to the control BC. The results clearly demonstrated that implementation of PCS within agitated fermentation enhanced BC production and improved its mechanical properties and thermal stability. PMID:19630969
NASA Astrophysics Data System (ADS)
Nur Krisna, Dwita; Su'ud, Zaki
2017-01-01
Nuclear reactor technology is growing rapidly, especially in developing Nuclear Power Plant (NPP). The utilization of nuclear energy in power generation systems has been progressing phase of the first generation to the fourth generation. This final project paper discusses the analysis neutronic one-cooled fast reactor type Pb-Bi, which is capable of operating up to 20 years without refueling. This reactor uses Thorium Uranium Nitride as fuel and operating on power range 100-500MWtNPPs. The method of calculation used a computer simulation program utilizing the SRAC. SPINNOR reactor is designed with the geometry of hexagonal shaped terrace that radially divided into three regions, namely the outermost regions with highest percentage of fuel, the middle regions with medium percentage of fuel, and most in the area with the lowest percentage. SPINNOR fast reactor operated for 20 years with variations in the percentage of Uranium-233 by 7%, 7.75%, and 8.5%. The neutronic calculation and analysis show that the design can be optimized in a fast reactor for thermal power output SPINNOR 300MWt with a fuel fraction 60% and variations of Uranium-233 enrichment of 7%-8.5%.
Creep Strength of Nb-1Zr for SP-100 Applications
NASA Astrophysics Data System (ADS)
Horak, James A.; Egner, Larry K.
1994-07-01
Power systems that are used to provide electrical power in space are designed to optimize conversion of thermal energy to electrical energy and to minimize the mass and volume that must be launched. Only refractory metals and their alloys have sufficient long-term strength for several years of uninterrupted operation at the required temperatures of 1200 K and above. The high power densities and temperatures at which these reactors must operate require the use of liquid-metal coolants. The alloy Nb-1 wt % Zr (Nb-lZr), which exhibits excellent corrosion resistance to alkali liquid-metals at high temperatures, is being considered for the fuel cladding, reactor structural, and heat-transport systems for the SP-100 reactor system. Useful lifetime of this system is limited by creep deformation in the reactor core. Nb-lZr sheet procured to American Society for Testing and Materials (ASTM) specifications for reactor grade and commercial grade has been processed by several different cold work and annealing treatments to attempt to produce the grain structure (size, shape, and distribution of sizes) that provides the maximum creep strength of this alloy at temperatures from 1250 to 1450 K. The effects of grain size, differences in oxygen concentrations, tungsten concentrations, and electron beam and gas tungsten arc weldments on creep strength were studied. Grain size has a large effect on creep strength at 1450 K but only material with a very large grain size (150 μm) exhibits significantly higher creep strength at 1350 K. Differences in oxygen or tungsten concentrations did not affect creep strength, and the creep strengths of weldments were equal to, or greater than, those for base metal.
Design and testing of a unique randomized gravity, continuous flow bioreactor
NASA Technical Reports Server (NTRS)
Lassiter, Carroll B.
1993-01-01
A rotating, null gravity simulator, or Couette bioreactor was successfully used for the culture of mammalian cells in a simulated microgravity environment. Two limited studies using Lipomyces starkeyi and Streptomyces clavuligerus were also conducted under conditions of simulated weightlessness. Although these studies with microorganisms showed promising preliminary results, oxygen limitations presented significant limitations in studying the biochemical and cultural characteristics of these cell types. Microbial cell systems such as bacteria and yeast promise significant potential as investigative models to study the effects of microgravity on membrane transport, as well as substrate induction of inactive enzyme systems. Additionally, the smaller size of the microorganisms should further reduce the gravity induced oscillatory particle motion and thereby improve the microgravity simulation on earth. Focus is on the unique conceptual design, and subsequent development of a rotating bioreactor that is compatible with the culture and investigation of microgravity effects on microbial systems. The new reactor design will allow testing of highly aerobic cell types under simulated microgravity conditions. The described reactor affords a mechanism for investigating the long term effects of reduced gravity on cellular respiration, membrane transfer, ion exchange, and substrate conversions. It offers the capability of dynamically altering nutrients, oxygenation, pH, carbon dioxide, and substrate concentration without disturbing the microgravity simulation, or Couette flow, of the reactor. All progeny of the original cell inoculum may be acclimated to the simulated microgravity in the absence of a substrate or nutrient. The reactor has the promise of allowing scientists to probe the long term effects of weightlessness on cell interactions in plants, bacteria, yeast, and fungi. The reactor is designed to have a flow field growth chamber with uniform shear stress, yet transfer high concentrations of oxygen into the culture medium. The system described allows for continuous, on line sampling for production of product without disturbing fluid and particle dynamics in the reaction chamber. It provides for the introduction of substrate, or control substances after cell adaptation to simulated microgravity has been accomplished. The reactor system provides for the nondisruptive, continuous flow replacement of nutrient and removal of product. On line monitoring and control of growth conditions such as pH and nutrient status are provided. A rotating distribution valve allows cessation of growth chamber rotation, thereby preserving the simulated microgravity conditions over longer periods of time.
Fuel development for gas-cooled fast reactors
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Fielding, R.; Gan, J.
2007-09-01
The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.
Real-time monitoring of enzyme activity in a mesoporous silicon double layer
Orosco, Manuel M.; Pacholski, Claudia; Sailor, Michael J.
2009-01-01
A double layer mesoporous silicon with different pore sizes functions as a nano-reactor that can isolate, filter and quantify the kinetics of enzyme reactions in real-time by optical reflectivity. This tiny reactor may be used to rapidly characterize a variety of isolated enzymes in a label-free manner. Activity of certain protease enzymes is often an indicator of disease states such as cancer1,2, stroke2, and neurodegeneracy3, and thus, there is a need for rapid assays that can characterize the kinetics and substrate specificity of enzymatic reactions. Nanostructured membranes can efficiently separate biomolecules4 but coupling a sensitive detection method remains difficult. Here we report a single mesoporous nano-reactor that can isolate and quantify in real-time the reaction products of proteases. The reactor consists of two layers of porous films electrochemically prepared from crystalline silicon. The upper layer with large pore sizes traps the protease enzymes and acts as the reactor while the lower layer with smaller pore sizes excludes the large proteins and captures the reaction products. Infiltration of the digested fragments into the lower layer produces a measurable change in optical reflectivity and this allows label-free quantification of enzyme kinetics in real-time within a volume of approximately 5 nanoliters. PMID:19350037
NASA Astrophysics Data System (ADS)
Pecko, Stanislav; Sojak, Stanislav; Slugeň, Vladimír
2014-09-01
Commercial German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was also in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40%) were observed in "as-received" steels. A significant increase in the size of the induced defects due to neutron damage was observed at a level of 2-3 vacancies in the irradiated specimens. The size and intensity of defects reached a similar level as in the specimens irradiated in nuclear reactor due to hydrogen ions implantation with energy of 100 keV (up to the depth <500 nm). This could confirm the ability to simulate neutron damage by ion implantation.
Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL
2009-11-17
A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.
Characteristics and Dose Levels for Spent Reactor Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Cameron W
2007-01-01
Current guidance considers highly radioactive special nuclear materials to be those materials that, unshielded, emit a radiation dose [rate] measured at 1 m which exceeds 100 rem/h. Smaller, less massive fuel assemblies from research reactors can present a challenge from the point of view of self protection because of their size (lower dose, easier to handle) and the desirability of higher enrichments; however, a follow-on study to cross-compare dose trends of research reactors and power reactors was deemed useful to confirm/verify these trends. This paper summarizes the characteristics and dose levels of spent reactor fuels for both research reactors andmore » power reactors and extends previous studies aimed at quantifying expected dose rates from research reactor fuels worldwide.« less
[Management of cerebrospinal fluid leaks according to size. Our experience].
Alobid, Isam; Enseñat, Joaquim; Rioja, Elena; Enriquez, Karla; Viscovich, Liza; de Notaris, Matteo; Bernal-Sprekelsen, Manuel
2014-01-01
We present our experience in the reconstruction of cerebrospinal fluid (CSF) leaks according to their size and location. Fifty-four patients who underwent advanced skull base surgery (large defects) and 62 patients with CSF leaks of different origin (small and medium-sized defects) were included. Large defects were reconstructed with a nasoseptal pedicled flap positioned on fat and fascia lata and lumbar drainage was used. In small and medium-sized leaks of other origin, intrathecal fluorescein 5% was applied previously to identify the defect. Fascia lata in an underlay position was used for reconstruction, which was then covered with mucoperiosteum from the turbinate. Perioperative antibiotics were administered for 5-7 days. Nasal packing was removed after 24-48 hours. The most frequent aetiology for small and medium-sized defects was spontaneous (48.4%), followed by trauma (24.2%), iatrogenic (5%) and others. The success rate was of 91% after the first surgery and 98% in large skull base defects and small/medium-sized respectively. After rescue surgery, the rate of closure achieved was 100%. The follow-up was 15.6 ± 12.4 months for large defects and 75.3 ± 51.3 months for small/medium-sized defects without recurrence. Endoscopic surgery for closure of any type of skull base defect is the gold standard approach. Defect size does not play a significant role in the success rate. Fascia lata and mucoperiosteum allow a reconstruction of small/medium-sized defects. For larger skull base defects, a combination of fat, fascia lata and nasoseptal pedicled flaps provide a successful reconstruction. Copyright © 2013 Elsevier España, S.L. All rights reserved.
Li, Jinfeng; Ye, Fayin; Lei, Lin; Zhou, Yun; Zhao, Guohua
2018-05-02
The granules of sweet potato starch were size fractionated into three portions with significantly different median diameters ( D 50 ) of 6.67 (small-sized), 11.54 (medium-sized), and 16.96 μm (large-sized), respectively. Each portion was hydrophobized at the mass-based degrees of substitution (DS m ) of approximately 0.0095 (low), 0.0160 (medium), and 0.0230 (high). The Pickering emulsion-stabilizing capacities of modified granules were tested, and the resultant emulsions were characterized. The joint effects of granule size and DS m on emulsifying capacity (EC) were investigated by response surface methodology. For small-, medium-, and large-sized fractions, their highest emulsifying capacities are comparable but, respectively, encountered at high (0.0225), medium (0.0158), and low (0.0095) DS m levels. The emulsion droplet size increased with granule size, and the number of freely scattered granules in emulsions decreased with DS m . In addition, the term of surface density of the octenyl succinic group (SD -OSG ) was first proposed for modified starch granules, and it was proved better than DS m in interpreting the emulsifying capacities of starch granules with varying sizes. The present results implied that, as the particulate stabilizers, the optimal DS m of modified starch granules is size specific.
Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.
Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E
2006-02-01
A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.
Energy Distribution of Electrons in Radiation Induced-Helium Plasmas. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lo, R. H.
1972-01-01
Energy distribution of high energy electrons as they slow down and thermalize in a gaseous medium is studied. The energy distribution in the entire energy range from source energies down is studied analytically. A helium medium in which primary electrons are created by the passage of heavy-charged particles from nuclear reactions is emphasized. A radiation-induced plasma is of interest in a variety of applications, such as radiation pumped lasers and gaseous core nuclear reactors.
Bank Size and Small- and Medium-sized Enterprise (SME) Lending: Evidence from China.
Shen, Yan; Shen, Minggao; Xu, Zhong; Bai, Ying
2009-04-01
Using panel data collected in 2005, we evaluate how bank size, discretion over credit, incentive schemes, competition, and the institutional environment affect lending to small- and medium-sized enterprises in China. We deal with the endogeneity problem using instrumental variables, and a reduced-form approach is also applied to allow for weak instruments in estimation. We find that total bank asset is an insignificant factor for banks' decision on small- and medium-enterprise (SME) lending, but more local lending authority, more competition, carefully designed incentive schemes, and stronger law enforcement encourage commercial banks to lend to SMEs.
Not Available
1980-03-07
A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.
McGuire, Joseph C.
1982-01-01
A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.
Vlaeminck, Siegfried E.; Terada, Akihiko; Smets, Barth F.; De Clippeleir, Haydée; Schaubroeck, Thomas; Bolca, Selin; Demeestere, Lien; Mast, Jan; Boon, Nico; Carballa, Marta; Verstraete, Willy
2010-01-01
Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far. In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, >1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific extracellular polymeric substances. Large reactor B aggregates were thin film-like nitrite sinks (NARR, <0.5) in which AnAOB were not shielded by an AerAOB layer. Voids and channels occupied 13 to 17% of the anoxic zone of AnAOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing. PMID:19948857
NASA Astrophysics Data System (ADS)
Bijańska, Jolanta; Wodarski, Krzysztof; Wójcik, Janusz
2016-06-01
Efficient and effective preparation the production of new products is important requirement for a functioning and development of small and medium-sized enterprises. One of the methods, which support the fulfilment of this condition is project management. This publication presents the results of considerations, which are aimed at developing a project management model of preparation the production of a new product, adopted to specificity of small and medium-sized enterprises.
The development of internet based ship design support system for small and medium sized shipyards
NASA Astrophysics Data System (ADS)
Shin, Sung-Chul; Lee, Soon-Sup; Kang, Dong-Hoon; Lee, Kyung-Ho
2012-03-01
In this paper, a prototype of ship basic planning system is implemented for the small and medium sized shipyards based on the internet technology and concurrent engineering concept. The system is designed from the user requirements. Consequently, standardized development environment and tools are selected. These tools are used for the system development to define and evaluate core application technologies. The system will contribute to increasing competitiveness of small and medium sized shipyards in the 21st century industrial en-vironment.
Combinatorial chemistry on solid support in the search for central nervous system agents.
Zajdel, Paweł; Pawłowski, Maciej; Martinez, Jean; Subra, Gilles
2009-08-01
The advent of combinatorial chemistry was one of the most important developments, that has significantly contributed to the drug discovery process. Within just a few years, its initial concept aimed at production of libraries containing huge number of compounds (thousands to millions), so called screening libraries, has shifted towards preparation of small and medium-sized rationally designed libraries. When applicable, the use of solid supports for the generation of libraries has been a real breakthrough in enhancing productivity. With a limited amount of resin and simple manual workups, the split/mix procedure may generate thousands of bead-tethered compounds. Beads can be chemically or physically encoded to facilitate the identification of a hit after the biological assay. Compartmentalization of solid supports using small reactors like teabags, kans or pellicular discrete supports like Lanterns resulted in powerful sort and combine technologies, relying on codes 'written' on the reactor, and thus reducing the need for automation and improving the number of compounds synthesized. These methods of solid-phase combinatorial chemistry have been recently supported by introduction of solid-supported reagents and scavenger resins. The first part of this review discusses the general premises of combinatorial chemistry and some methods used in the design of primary and focused combinatorial libraries. The aim of the second part is to present combinatorial chemistry methodologies aimed at discovering bioactive compounds acting on diverse GPCR involved in central nervous system disorders.
Testing of an advanced thermochemical conversion reactor system
NASA Astrophysics Data System (ADS)
1990-01-01
This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions.
Anderson, Oscar A.
1978-01-01
An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.
Design of conduction cooling system for a high current HTS DC reactor
NASA Astrophysics Data System (ADS)
Dao, Van Quan; Kim, Taekue; Le Tat, Thang; Sung, Haejin; Choi, Jongho; Kim, Kwangmin; Hwang, Chul-Sang; Park, Minwon; Yu, In-Keun
2017-07-01
A DC reactor using a high temperature superconducting (HTS) magnet reduces the reactor’s size, weight, flux leakage, and electrical losses. An HTS magnet needs cryogenic cooling to achieve and maintain its superconducting state. There are two methods for doing this: one is pool boiling and the other is conduction cooling. The conduction cooling method is more effective than the pool boiling method in terms of smaller size and lighter weight. This paper discusses a design of conduction cooling system for a high current, high temperature superconducting DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.
Huang, Yueng-Hsiang; Leamon, Tom B; Courtney, Theodore K; Chen, Peter Y; DeArmond, Sarah
2011-01-01
This study, through a random national survey in the U.S., explored how corporate financial decision-makers perceive important workplace safety issues as a function of the size of the company for which they worked (medium- vs. large-size companies). Telephone surveys were conducted with 404 U.S. corporate financial decision-makers: 203 from medium-size companies and 201 from large companies. Results showed that the patterns of responding for participants from medium- and large-size companies were somewhat similar. The top-rated safety priorities in resource allocation reported by participants from both groups were overexertion, repetitive motion, and bodily reaction. They believed that there were direct and indirect costs associated with workplace injuries and for every dollar spent improving workplace safety, more than four dollars would be returned. They perceived the top benefits of an effective safety program to be predominately financial in nature - increased productivity and reduced costs - and the safety modification participants mentioned most often was to have more/better safety-focused training. However, more participants from large- than medium-size companies reported that "falling on the same level" was the major cause of workers' compensation loss, which is in line with industry loss data. Participants from large companies were more likely to see their safety programs as better than those of other companies in their industries, and those of medium-size companies were more likely to mention that there were no improvements needed for their companies. Copyright © 2009 Elsevier Ltd. All rights reserved.
Removal of hydrogen bubbles from nuclear reactors
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1980-01-01
Method proposed for removing large hydrogen bubbles from nuclear environment uses, in its simplest form, hollow spheres of palladium or platinum. Methods would result in hydrogen bubble being reduced in size without letting more radioactivity outside reactor.
An evaluation of alloys and coatings for use in automobile thermal reactors
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Oldrieve, R. E.
1974-01-01
Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were analyzed in cyclic engine dynamometer tests with peak temperature of 1900 F (1040 C). Two developmental ferritic iron alloys GE1541 and NASA-18T - exhibited the best overall performance lasting at least 60% of the life of the test engine. Four of the alloys evaluated warrant consideration for reactor use. They include GE1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.-
Evaluation of alloys and coatings for use in automobile thermal reactors
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Oldrieve, R. E.
1974-01-01
Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were evaluated in cyclic engine dynamometer tests with a peak temperature of 1040 C (1900 F). Two developmental ferritic-iron alloys, GE-1541 and NASA-18T, exhibited the best overall performance by lasting at least 60 percent of the life of test engine. Four of the alloys evaluated warrant consideration for reactor use. They are GE-1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.
Computational Modeling in Plasma Processing for 300 mm Wafers
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
Migration toward 300 mm wafer size has been initiated recently due to process economics and to meet future demands for integrated circuits. A major issue facing the semiconductor community at this juncture is development of suitable processing equipment, for example, plasma processing reactors that can accomodate 300 mm wafers. In this Invited Talk, scaling of reactors will be discussed with the aid of computational fluid dynamics results. We have undertaken reactor simulations using CFD with reactor geometry, pressure, and precursor flow rates as parameters in a systematic investigation. These simulations provide guidelines for scaling up in reactor design.
Penetration of spherical projectiles into wet granular media.
Birch, S P D; Manga, M; Delbridge, B; Chamberlain, M
2014-09-01
We measure experimentally the penetration depth d of spherical particles into a water-saturated granular medium made of much smaller sand-sized grains. We vary the density, size R, and velocity U of the impacting spheres, and the size δ of the grains in the granular medium. We consider velocities between 7 and 107 m/s, a range not previously addressed, but relevant for impacts produced by volcanic eruptions. We find that d∝R(1/3)δ(1/3)U(2/3). The scaling with velocity is similar to that identified in previous, low-velocity collisions, but it also depends on the size of the grains in the granular medium. We develop a model, consistent with the observed scaling, in which the energy dissipation is dominated by the work required to rearrange grains along a network of force chains in the granular medium.
NASA Astrophysics Data System (ADS)
Çakal, G. Ö.; Eroğlu, İ.; Özkar, S.
2006-04-01
Colemanite, one of the important boron minerals, is dissolved in aqueous sulfuric acid to produce boric acid. In this reaction, gypsum is obtained as a by-product. Gypsum crystals are in the shape of thin needles. These crystals should be grown to an easily filterable size in order to increase the production yield and purity of boric acid. In this paper, the particle size distributions and the volume-weighted mean diameters of the gypsum crystals obtained in batch and continuous flow systems were compared. Experiments in both batch and continuous reactors were performed at a temperature of 85 °C, a stirring rate of 400 rpm, and the inlet CaO to SO42- molar ratio of 1.0 using colemanite mineral in particle size smaller than 150 μm. The average diameter of the gypsum crystals obtained at 3.5 h from the batch reactor was found to be 37-41 μm. This value for the continuous system at steady state was observed to change between 44-163 μm. The particle size of the gypsum crystals was found to increase with the residence time of the solid in the continuous system.
Bank Size and Small- and Medium-sized Enterprise (SME) Lending: Evidence from China
SHEN, YAN; SHEN, MINGGAO; XU, ZHONG; BAI, YING
2014-01-01
Summary Using panel data collected in 2005, we evaluate how bank size, discretion over credit, incentive schemes, competition, and the institutional environment affect lending to small- and medium-sized enterprises in China. We deal with the endogeneity problem using instrumental variables, and a reduced-form approach is also applied to allow for weak instruments in estimation. We find that total bank asset is an insignificant factor for banks’ decision on small- and medium-enterprise (SME) lending, but more local lending authority, more competition, carefully designed incentive schemes, and stronger law enforcement encourage commercial banks to lend to SMEs. PMID:26052179
Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U
1998-02-20
A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.
Sustainability and Small to Medium Sized Enterprises--How to Engage Them
ERIC Educational Resources Information Center
Condon, Linda
2004-01-01
Small and medium sized enterprises (SMEs) have a major advantage over larger organisations in regard to addressing sustainability issues--their size means they are able to react very quickly to changes in the business environment. They are disadvantaged, however, by lack of information on marketplace changes that make sustainability an opportunity…
Human cell culture in a space bioreactor
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.
1988-01-01
Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.
NASA Astrophysics Data System (ADS)
Roeb, Martin; Steinfeld, Aldo; Borchardt, Günter; Feldmann, Claus; Schmücker, Martin; Sattler, Christian; Pitz-Paal, Robert
2016-05-01
The Helmholtz Virtual Institute (VI) SolarSynGas brings together expertise from solar energy research and materials science to develop metal oxide based redox materials and to integrate them in a suitable way into related process technologies for two-step thermochemical production of hydrogen and carbon monoxide from water and CO2. One of the foci of experimental investigation was exploring the impact of doping on the feasibility of ceria-based materials - mainly by Zr-doping. The results indicate that a certain Zr-content enhances the reducibility and therefore the splitting performance. Increasing the Zr-content to x = 0.15 improved the specific CO2-splitting performance by 50% compared to pure ceria. This finding agrees with theoretical studies attributing the improvements to lattice modification caused by the introduction of Zr4+. Thermogravimetric relaxation experiments and equilibrium oxygen isotope exchange experiments with subsequent depth profiling analysis were carried out on ceria. As a result the reduction reaction of even dense samples of pure ceria with a grain size of about 20 µm is surface reaction controlled. The structure of the derived expression for the apparent activation energy suggests that the chemical surface exchange coefficient should show only a very weak dependence on temperature for ceria doped with lower valence cations. A solar receiver reactor exhibiting a foam-type reticulated porous ceramics made of ceria was tested. It could be shown that applying dual-scale porosity to those foams with mm-size pores for effective radiative heat transfer during reduction and μm-size pores within its struts for enhanced kinetics during oxidation allows enhancing the performance of the reactor significantly. Also a particle process concept applying solid-solid heat recovery from redox particles in a high temperature solar thermochemical process was analysed that uses ceramic spheres as solid heat transfer medium. This concept can be implemented into any particle reactor and offers sufficiently high heat recovery rates and thus high overall system efficiencies. A detailed model to calculate the performance of the concept in consideration of temperature dependent material data and several other influencing factors was developed. It was found that the molar flow ratio needs to be optimized regarding the contact time and the heat recovery rate only increases slightly over a contact time of τ=10s. The system reaches a heat recovery rate over 70% in case of six stages, connected in a quasi-counter-current principle.
Assessment of Radiation Embrittlement in Nuclear Reactor Pressure Vessel Surrogate Materials
NASA Astrophysics Data System (ADS)
Balzar, Davor
2010-10-01
The radiation-enhanced formation of small (1-2 nm) copper-rich precipitates (CRPs) is critical for the occurrence of embrittlement in nuclear-reactor pressure vessels. Small CRPs are coherent with the bcc matrix, which causes local matrix strain and interaction with the dislocation strain fields, thus impeding dislocation mobility. As CRPs grow, there is a critical size at which a phase transformation occurs, whereby the CRPs are no longer coherent with the matrix, and the strain is relieved. Diffraction-line-broadening analysis (DLBA) and small-angle neutron scattering (SANS) were used to characterize the precipitate formation in surrogate ferritic reactor-pressure vessel steels. The materials were aged for different times at elevated temperature to produce a series of specimens with different degrees of copper precipitation. SANS measurements showed that the precipitate size distribution broadens and shifts toward larger sizes as a function of ageing time. Mechanical hardness showed an increase with ageing time, followed by a decrease, which can be associated with the reduction in the number density as well as the loss of coherency at larger sizes. Inhomogeneous strain correlated with mechanical hardness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsatsulnikov, A. F., E-mail: andrew@beam.ioffe.ru; Lundin, W. V.; Sakharov, A. V.
2016-09-15
The epitaxial growth of InAlN layers and GaN/AlN/InAlN heterostructures for HEMTs in growth systems with horizontal reactors of the sizes 1 × 2', 3 × 2', and 6 × 2' is investigated. Studies of the structural properties of the grown InAlN layers and electrophysical parameters of the GaN/AlN/InAlN heterostructures show that the optimal quality of epitaxial growth is attained upon a compromise between the growth conditions for InGaN and AlGaN. A comparison of the epitaxial growth in different reactors shows that optimal conditions are realized in small-scale reactors which make possible the suppression of parasitic reactions in the gas phase.more » In addition, the size of the reactor should be sufficient to provide highly homogeneous heterostructure parameters over area for the subsequent fabrication of devices. The optimal compositions and thicknesses of the InAlN layer for attaining the highest conductance in GaN/AlN/InAlN transistor heterostructures.« less
Ebeling, Jr., Robert W.; Weaver, Robert B.
1979-01-01
The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.
[Management practices in medium-sized private hospitals in São Paulo, Brazil].
Brito, Luiz Artur Ledur; Malik, Ana Maria; Brito, Eliane; Bulgacov, Sergio; Andreassi, Tales
2017-04-03
Traditional management practices are sometimes considered merely a necessary condition for superior performance. Other resources and competencies with higher barriers to imitation are assumed to be potential sources of competitive advantage. This study describes and analyzes the effect of traditional management practices on the performance of medium-sized hospitals. Medium-sized companies frequently display the greatest differences in management practices, and only recently did the hospital sector seek ways to develop its competitiveness in the administrative arena. The results generally indicate that basic management practices can make differences in performance, offering support for the new practice-based view (PBV). Hospitals with the highest rate of adoption of practices had the highest occupancy rate, hospital-bed admissions, and accreditation. Lack of adoption of management practices by medium-sized hospitals limits their competitive capacity and can be viewed as a component of the so-called Brazil cost, but in this case an internal component.
NASA Astrophysics Data System (ADS)
Eckhardt, Yannick
2017-06-01
Shopping-centers have been subject to intense analysis from various angles. Due to by the growing number of shopping-centers located in medium-sized cities, a change of money flows within the municipal boundaries is expected. On a multi-level basis this article shows key retail figures of medium-sized cities with shopping-centers in comparison to ones without. The final result reveals that the retail turnover of medium-sized cities with a shopping-center reaches a significantly higher level than cities without a shopping-center. Furthermore, the evaluation of data shows a rise of the retail centrality in medium sized towns as a consequence of the opening of a shopping-center. This means the construction of shopping-centers doesn't only cause a shift of money flows within the city boundaries but also leads to an additional influx of money from outside the municipalities.
Building Energy Management Open Source Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Saifur
Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they aremore » not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.« less
Low and medium heating value coal gas catalytic combustor characterization
NASA Technical Reports Server (NTRS)
Schwab, J. A.
1982-01-01
Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.
Boiling water neutronic reactor incorporating a process inherent safety design
Forsberg, C.W.
1985-02-19
A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.
Boiling water neutronic reactor incorporating a process inherent safety design
Forsberg, Charles W.
1987-01-01
A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.
Measuring non-recurrent congestion in small to medium sized urban areas.
DOT National Transportation Integrated Search
2013-05-01
Understanding the relative magnitudes of recurrent vs. non-recurrent congestion in an urban area is critical to the selection of proper countermeasures and the appropriate allocation of resources to address congestion problems. Small to medium sized ...
Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity.
Williams, G R; Doran, P M
2000-01-01
A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3-4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved reactor operating strategies and selection or development of root lines offering minimal resistance to liquid flow and low liquid retention characteristics are possible solutions to these problems.
Neutron transport analysis for nuclear reactor design
Vujic, Jasmina L.
1993-01-01
Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values.
Neutron transport analysis for nuclear reactor design
Vujic, J.L.
1993-11-30
Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values. 28 figures.
Mitigating energy loss on distribution lines through the allocation of reactors
NASA Astrophysics Data System (ADS)
Miranda, T. M.; Romero, F.; Meffe, A.; Castilho Neto, J.; Abe, L. F. T.; Corradi, F. E.
2018-03-01
This paper presents a methodology for automatic reactors allocation on medium voltage distribution lines to reduce energy loss. In Brazil, some feeders are distinguished by their long lengths and very low load, which results in a high influence of the capacitance of the line on the circuit’s performance, requiring compensation through the installation of reactors. The automatic allocation is accomplished using an optimization meta-heuristic called Global Neighbourhood Algorithm. Given a set of reactor models and a circuit, it outputs an optimal solution in terms of reduction of energy loss. The algorithm is also able to verify if the voltage limits determined by the user are not being violated, besides checking for energy quality. The methodology was implemented in a software tool, which can also show the allocation graphically. A simulation with four real feeders is presented in the paper. The obtained results were able to reduce the energy loss significantly, from 50.56%, in the worst case, to 93.10%, in the best case.
METHOD AND APPARATUS FOR CONTROLLING NEUTRON DENSITY
Wigner, E.P.; Young, G.J.; Weinberg, A.M.
1961-06-27
A neutronic reactor comprising a moderator containing uniformly sized and spaced channels and uniformly dimensioned fuel elements is patented. The fuel elements have a fissionable core and an aluminum jacket. The cores and the jackets of the fuel elements in the central channels of the reactor are respectively thinner and thicker than the cores and jackets of the fuel elements in the remainder of the reactor, producing a flattened flux.
Christy, R.F.
1961-07-25
A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.
NASA Astrophysics Data System (ADS)
Escourbiac, F.; Richou, M.; Guigon, R.; Constans, S.; Durocher, A.; Merola, M.; Schlosser, J.; Riccardi, B.; Grosman, A.
2009-12-01
Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.
Flow dynamics in bioreactors containing tissue engineering scaffolds.
Lawrence, Benjamin J; Devarapalli, Mamatha; Madihally, Sundararajan V
2009-02-15
Bioreactors are widely used in tissue engineering as a way to distribute nutrients within porous materials and provide physical stimulus required by many tissues. However, the fluid dynamics within the large porous structure are not well understood. In this study, we explored the effect of reactor geometry by using rectangular and circular reactors with three different inlet and outlet patterns. Geometries were simulated with and without the porous structure using the computational fluid dynamics software Comsol Multiphysics 3.4 and/or ANSYS CFX 11 respectively. Residence time distribution analysis using a step change of a tracer within the reactor revealed non-ideal fluid distribution characteristics within the reactors. The Brinkman equation was used to model the permeability characteristics with in the chitosan porous structure. Pore size was varied from 10 to 200 microm and the number of pores per unit area was varied from 15 to 1,500 pores/mm(2). Effect of cellular growth and tissue remodeling on flow distribution was also assessed by changing the pore size (85-10 microm) while keeping the number of pores per unit area constant. These results showed significant increase in pressure with reduction in pore size, which could limit the fluid flow and nutrient transport. However, measured pressure drop was marginally higher than the simulation results. Maximum shear stress was similar in both reactors and ranged approximately 0.2-0.3 dynes/cm(2). The simulations were validated experimentally using both a rectangular and circular bioreactor, constructed in-house. Porous structures for the experiments were formed using 0.5% chitosan solution freeze-dried at -80 degrees C, and the pressure drop across the reactor was monitored.
SlimCS—compact low aspect ratio DEMO reactor with reduced-size central solenoid
NASA Astrophysics Data System (ADS)
Tobita, K.; Nishio, S.; Sato, M.; Sakurai, S.; Hayashi, T.; Shibama, Y. K.; Isono, T.; Enoeda, M.; Nakamura, H.; Sato, S.; Ezato, K.; Hayashi, T.; Hirose, T.; Ide, S.; Inoue, T.; Kamada, Y.; Kawamura, Y.; Kawashima, H.; Koizumi, N.; Kurita, G.; Nakamura, Y.; Mouri, K.; Nishitani, T.; Ohmori, J.; Oyama, N.; Sakamoto, K.; Suzuki, S.; Suzuki, T.; Tanigawa, H.; Tsuchiya, K.; Tsuru, D.
2007-08-01
The concept for a compact DEMO reactor named 'SlimCS' is presented. Distinctive features of the concept are low aspect ratio (A = 2.6) and use of a reduced-size centre solenoid (CS) which has the function of plasma shaping rather than poloidal flux supply. The reduced-size CS enables us to introduce a thin toroidal field coil system which contributes to reducing the weight and perhaps lessening the construction cost. Low-A has merits of vertical stability for high elongation (κ) and high normalized beta (βN), which leads to a high power density with reasonable physics requirements. This is because high κ facilitates high nGW (because of an increase in Ip), which allows efficient use of the capacity of high βN. From an engineering aspect, low-A may ensure ease in designing blanket modules robust to electromagnetic forces acting on disruptions. Thus, a superconducting low-A tokamak reactor such as SlimCS can be a promising DEMO concept with physics and engineering advantages.
Planning for the Impacts of Highway Relief Routes on Small- and Medium-Size Communities
DOT National Transportation Integrated Search
2001-03-01
This report explores possible strategies for minimizing the negative impacts and maximizing the positive impacts of highway relief routes on small- and medium-size communities in Texas. Planning strategies are identified through a : literature search...
How AACR2 Will Affect a Medium Sized Library.
ERIC Educational Resources Information Center
Pang, Isabel S.
1980-01-01
Measures the impact of AACR2 on the catalog of a medium sized college library, using data collected from the Library of Congress announced changes. How to deal with these changes and estimate their costs is discussed. (Author/RAA)
Enantioselective Synthesis of Medium-Sized Lactams via Chiral α,β-Unsaturated Acylammonium Salts.
Kang, Guowei; Yamagami, Masaki; Vellalath, Sreekumar; Romo, Daniel
2018-04-06
Medium-sized lactams are important structural motifs found in a variety of bioactive compounds and natural products but are challenging to prepare, especially in optically active form. A Michael addition/proton transfer/lactamization organocascade process is described that delivers medium-sized lactams, including azepanones, benzazepinones, azocanones, and benzazocinones, in high enantiopurity through the intermediacy of chiral α,β-unsaturated acylammonium salts. An unexpected indoline synthesis was also uncovered, and the benzazocinone skeleton was transformed into other complex heterocyclic derivatives, including spiroglutarimides, isoquinolinones, and δ-lactones. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kloss, S; Müller, U; Oelschläger, H
2005-09-01
Facilities for the manufacturing of pharmaceutical drug substances on the pilot-plant and the industrial scale as well as chemical reactors and vessels used for chemical work-up mainly consist of alloyed stainless steel. The influence of the alloy composition and the surface condition, i.e. of the roughness of the stainless-steel materials, on the adsorption of structurally diverse steroidal substances and, hence, on the quality of the products was studied. In general, stainless-steel alloys with smooth, not so rough surfaces are to be favored as reactor material. However, it was demonstrated in this study that, on account of the weak interaction between active substances and steel materials, mechanically polished materials of a medium roughness up to approx. 0.4 microm can be employed instead of the considerably more cost-intensive electrochemically polished stainless-steel surfaces. The type of surface finishing up to a defined roughness, then, has no influence on the quality of these pharmaceutical products. Substances that, because of their molecular structure, can function as "anions" in the presence of polar solvents, are adsorbed on very smooth surfaces prepared by electrochemical methods, forming an amorphous surface film. For substances with this structural characteristics, the lower-cost mechanically polished reactor materials of a medium roughness up to approx. 0.5 microm should be used exclusively.
Pappas, Daniel S.
1989-01-01
Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.
75 FR 36698 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... information based on the likelihood of pipe breaks of different sizes. The rule would divide all coolant... to and including a ``transition break size,'' and breaks larger than the transition size up to the largest pipe in the reactor coolant system. Selection of the transition size was based upon pipe break...
NASA Astrophysics Data System (ADS)
Desai, Shraddha S.; Devan, Shylaja; Das, Amrita; Patkar, S. M.; Rao, Mala N.
2018-04-01
Neutron scattering instruments at Dhruva reactor are equipped with in house developed neutron beam flux monitors. Measurements of variations in intensity are essential to normalize the scattered neutron spectra against the reactor power fluctuations, energy of monochromatic beam, and various other factors. Two different beam monitor geometries are considered as per the beam size and optics. These detectors are fabricated with tailor-made designs to suit individual beam size and neutron flux. Pencil size beam monitors for integral intensity measurement are fabricated with coaxial geometry and BF3 fill gas for high n-gamma discrimination and count rate capability. Brass cathode design is modified to SS based rugged design, considering beam transmission. Coaxial beam monitor partially intercepts the collimated beam and gives relative magnitude of the flux with time. For certain experiments, size of beam varies due to use of focusing monochromator. Thus a beam monitor with square sensitive region covering entire beam is essential. Multiwire based planar detector for use in transmission mode is designed. Negligible absorption of neutron beam intensity within the detector hardware is ensured. Design of detectors is tailor made for beam geometry. Both these types of beam monitors are fabricated and characterized at G2 beam line and Triple Axis Spectrometer at Dhruva reactor. Performance of detector is suitable for the beam monitoring up to neutron flux ˜ 106 n/cm2/sec. Design aspects and performance details of these beam monitors are mentioned in the paper.
Xu, Suyun; He, Chuanqiu; Luo, Liwen; Lü, Fan; He, Pinjing; Cui, Lifeng
2015-11-01
Two sizes of conductive particles, i.e. 10-20 mesh granulated activated carbon (GAC) and 80-100 mesh powdered activated carbon (PAC) were added into lab-scale upflow anaerobic sludge blanket reactors, respectively, to testify their enhancement on the syntrophic metabolism of alcohols and volatile fatty acids (VFAs) in 95days operation. When OLR increased to more than 5.8gCOD/L/d, the differences between GAC/PAC supplemented reactors and the control reactor became more significant. The introduction of activated carbon could facilitate the enrichment of methanogens and accelerate the startup of methanogenesis, as indicated by enhanced methane yield and substrate degradation. High-throughput pyrosequencing analysis showed that syntrophic bacteria and Methanosarcina sp. with versatile metabolic capability increased in the tightly absorbed fraction on the PAC surface, leading to the promoted syntrophic associations. Thus PAC prevails over than GAC for methanogenic reactor with heavy load. Copyright © 2015 Elsevier Ltd. All rights reserved.
Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W
2013-11-01
The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (<1 kDa) and lower percentage of large molecular size (>100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Ping; Li, Xiuting; Xiang, Mufei; Zhai, Qian
2007-06-01
By adopting two sequencing batch reactors (SBRs) A and B, nitrate as the substrate, and the intermittent aeration mode, activated sludge was domesticated to enrich aerobic denitrifiers. The pHs of reactor A were approximately 6.3 at DOs 2.2-6.1 mg/l for a carbon source of 720 mg/l COD; the pHs of reactor B were 6.8-7.8 at DOs 2.2-3.0 mg/l for a carbon source of 1500 mg/l COD. Both reactors maintained an influent nitrate concentration of 80 mg/l NO3- -N. When the total inorganic nitrogen (TIN) removal efficiency of both reactors reached 60%, aerobic denitrifier accumulation was regarded completed. By bromthymol blue (BTB) medium, 20 bacteria were isolated from the two SBRs and DNA samples of 8 of these 20 strains were amplified by PCR and processed for 16SrRNA sequencing. The obtained results were analysed by a Blast similarity search of the GenBank database, and constructing a phylogenetic tree for identification by comparison. The 8 bacteria were found to belong to the genera Pseudomonas, Delftia, Herbaspirillum and Comamonas. At present, no Delftia has been reported to be an aerobic denitrifier.
NASA Astrophysics Data System (ADS)
Dudek, M.; Podsadna, J.; Jaszczur, M.
2016-09-01
In the present work, the feasibility of using a high temperature gas cooled nuclear reactor (HTR) for electricity generation and hydrogen production are analysed. The HTR is combined with a steam and a gas turbine, as well as with the system for heat delivery for medium temperature hydrogen production. Industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high temperature electrolysis. Presented cycle shows a very promising route for continuous, efficient, large-scale and environmentally benign hydrogen production without CO2 emissions. The results show that the integration of a high temperature helium reactor, with a combined cycle for electric power generation and hydrogen production, may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.
Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor
NASA Astrophysics Data System (ADS)
Rinaldi, Nino; Simanungkalit, Sabar P.; Kiky Corneliasari, S.
2017-01-01
Fast pyrolysis process of palm fronds has been conducted in the fluidized bed reactor to yield bio-oil product (pyrolysis oil). The process employed sea sand as the heat transfer medium. The objective of this study is to design of the fluidized bed rector, to conduct fast pyrolysis process to product bio-oil from palm fronds, and to characterize the feed and bio-oil product. The fast pyrolysis process was conducted continuously with the feeding rate around 500 g/hr. It was found that the biomass conversion is about 35.5% to yield bio-oil, however this conversion is still minor. It is suggested due to the heating system inside the reactor was not enough to decompose the palm fronds as a feedstock. Moreover, the acids compounds ware mostly observed on the bio-oil product.
POWER GENERATING NEUTRONIC REACTOR SYSTEM
Vernon, H.C.
1958-03-01
This patent relates to reactor systems of the type wherein the cooiing medium is a liquid which is converted by the heat of the reaction to steam which is conveyed directly to a pnime mover such as a steam turbine driving a generatore after which it is condensed and returred to the coolant circuit. In this design, the reactor core is disposed within a tank for containing either a slurry type fuel or an aggregation of solid fuel elements such as elongated rods submerged in a liquid moderator such as heavy water. The top of the tank is provided with a nozzle which extends into an expansion chamber connected with the upper end of the tank, the coolant being maintained in the expansion chamber at a level above the nozzle and the steam being formed in the expansion chamber.
Delivery of workshops on mobility monitoring in small to medium-sized communities.
DOT National Transportation Integrated Search
2009-11-01
This report summarizes the delivery and outcome of a series of workshops conducted in 13 cities across the : state on performing mobility monitoring in small to medium-sized communities. The workshops served as : implementation for research project 0...
Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J; Piletska, Elena V; Turner, Anthony P F; Piletsky, Sergey A
2013-06-13
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, K d = 6.3 × 10 -8 m), vancomycin (d = 250 nm, K d = 3.4 × 10 -9 m), a peptide (d = 350 nm, K d = 4.8 × 10 -8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium.
Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J.; Piletska, Elena V.; Turner, Anthony P.F.; Piletsky, Sergey A.
2016-01-01
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, Kd = 6.3 × 10−8 m), vancomycin (d = 250 nm, Kd = 3.4 × 10−9 m), a peptide (d = 350 nm, Kd = 4.8 × 10−8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium. PMID:26869870
Dissolution of steel slags in aqueous media.
Yadav, Shashikant; Mehra, Anurag
2017-07-01
Steel slag is a major industrial waste in steel industries, and its dissolution behavior in water needs to be characterized in the larger context of its potential use as an agent for sequestering CO 2 . For this purpose, a small closed system batch reactor was used to conduct the dissolution of steel slags in an aqueous medium under various dissolution conditions. In this study, two different types of steel slags were procured from steel plants in India, having diverse structural features, mineralogical compositions, and particle sizes. The experiment was performed at different temperatures for 240 h of dissolution at atmospheric pressure. The dissolution rates of major and minor slag elements were quantified through liquid-phase elemental analysis using an inductively coupled plasma atomic emission spectroscopy at different time intervals. Advanced analytical techniques such as field emission gun-scanning electron microscope, energy-dispersive X-ray, BET, and XRD were also used to analyze mineralogical and structural changes in the slag particles. High dissolution of slags was observed irrespective of the particle size distribution, which suggests high carbonation potential. Concentrations of toxic heavy metals in the leachate were far below maximum acceptable limits. Thus, the present study investigates the dissolution behavior of different mineral ions of steel slag in aqueous media in light of its potential application in CO 2 sequestration.
NASA Astrophysics Data System (ADS)
Dianursanti, Taurina, Zarahmaida; Indraputri, Claudia Maya
2018-02-01
Spirulina platensis has the potential to be developed because of essential chemical compounds in the form of phycocyanin that can be used as an antioxidant. The growth of microalgae and phycocyanin depends on the availability of nutrition contained in culture medium. The cultivation will be carried out at 1 L reactor with continuous aeration, light intensity is 3000-4000 lux, and temperature is 27-30°C. Phycocyanin is obtained by liquid-liquid extraction method using phosphate buffer pH 7. Phycocyanin test performed by using UV-Vis spectrophotometry. The result show that the highest dry biomass is obtained on bean sprouts extract medium 8% (v/v) with the addition of urea fertilizer 120 ppm. The highest content of phycocyanin is obtained on bean sprouts extract medium 8% (v/v) with the addition of urea fertilizer 100 ppm with phycocyanin concentration of 257.12 mg/L.
Positron Annihilation Spectroscopy Characterization of Nanostructural Features in Reactor Steels
NASA Astrophysics Data System (ADS)
Glade, Stephen; Wirth, Brian; Asoka-Kumar, Palakkal; Sterne, Philip; Alinger, Matthew; Odette, George
2004-03-01
Irradiation embrittlement in nuclear reactor pressure vessel steels results from the formation of a high number density of nanometer sized copper rich precipitates and sub-nanometer defect-solute clusters. We present results of study to characterize the size and compositions of simple binary and ternary Fe-Cu-Mn model alloys and more representative Fe-Cu-Mn-Ni-Si-Mo-C reactor pressure vessel steels using positron annihilation spectroscopy (PAS). Using a recently developed spin-polarized PAS technique, we have also measured the magnetic properties of the nanometer-sized copper rich precipitates. Mn retards the precipitation kinetics and inhibits large vacancy cluster formation, suggesting a strong Mn-vacancy interaction which reduces radiation enhanced diffusion. The spin-polarized PAS measurements reveal the non-magnetic nature of the copper precipitates, discounting the notion that the precipitates contain significant quantities of Fe and providing an upper limit of at most a few percent Fe in the precipitates. PAS results on oxide dispersion-strengthened steel for use in fusion reactors will also be presented. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract No. W-7405-ENG-48 with partial support provided from Basic Energy Sciences, Division of Materials Science.
NASA Astrophysics Data System (ADS)
Feldmann, Daniel P.; Xie, Yuran; Jones, Steven K.; Yu, Dongyue; Moszczynska, Anna; Merkel, Olivia M.
2017-06-01
The triblock copolymer polyethylenimine-polycaprolactone-polyethylene glycol (PEI-PCL-PEG) has been shown to spontaneously assemble into nano-sized particulate carriers capable of complexing with nucleic acids for gene delivery. The objective of this study was to investigate micelleplex characteristics, their in vitro and in vivo fate following microfluidic preparation of siRNA nanoparticles compared to the routinely used batch reactor mixing technique. Herein, PEI-PCL-PEG nanoparticles were prepared with batch reactor or microfluidic mixing techniques and characterized by various biochemical assays and in cell culture. Microfluidic nanoparticles showed a reduction of overall particle size as well as a more uniform size distribution when compared to batch reactor pipette mixing. Confocal microscopy, flow cytometry and qRT-PCR displayed the subcellular delivery of the microfluidic formulation and confirmed the ability to achieve mRNA knockdown. Intratracheal instillation of microfluidic formulation resulted in a significantly more efficient (p < 0.05) knockdown of GAPDH compared to treatment with the batch reactor formulation. The use of microfluidic mixing techniques yields an overall smaller and more uniform PEG-PCL-PEI nanoparticle that is able to more efficiently deliver siRNA in vivo. This preparation method may prove to be useful when a scaled up production of well-defined polyplexes is required.
NASA Astrophysics Data System (ADS)
Dhamale, G. D.; Tak, A. K.; Mathe, V. L.; Ghorui, S.
2018-06-01
Synthesis of yttria (Y2O3) nanoparticles in an atmospheric pressure radiofrequency inductively coupled thermal plasma (RF-ICTP) reactor has been investigated using the discrete-sectional (DS) model of particle nucleation and growth with argon as the plasma gas. Thermal and fluid dynamic information necessary for the investigation have been extracted through rigorous computational fluid dynamic (CFD) study of the system with coupled electromagnetic equations under the extended field approach. The theoretical framework has been benchmarked against published data first, and then applied to investigate the nucleation and growth process of yttrium oxide nanoparticles in the plasma reactor using the discrete-sectional (DS) model. While a variety of nucleation and growth mechanisms are suggested in literature, the study finds that the theory of homogeneous nucleation fits well with the features observed experimentally. Significant influences of the feed rate and quench rate on the distribution of particles sizes are observed. Theoretically obtained size distribution of the particles agrees well with that observed in the experiment. Different thermo-fluid dynamic environments with varied quench rates, encountered by the propagating vapor front inside the reactor under different operating conditions are found to be primarily responsible for variations in the width of the size distribution.
Cao, Lin; Wang, Zhenyu; Yan, Chuan; Chen, Jin; Guo, Cong; Zhang, Zhibin
2016-11-01
Rodent preference for scatter-hoarding large seeds has been widely considered to favor the evolution of large seeds. Previous studies supporting this conclusion were primarily based on observations at earlier stages of seed dispersal, or on a limited sample of successfully established seedlings. Because seed dispersal comprises multiple dispersal stages, we hypothesized that differential foraging preference on seed size by animal dispersers at different dispersal stages would ultimately result in medium-sized seeds having the highest dispersal success rates. In this study, by tracking a large number of seeds for 5 yr, we investigated the effects of seed size on seed fates from seed removal to seedling establishment of a dominant plant Pittosporopsis kerrii (Icacinaceae) dispersed by scatter-hoarding rodents in tropical forest in southwest China. We found that small seeds had a lower survival rate at the early dispersal stage where more small seeds were predated at seed stations and after removal; large seeds had a lower survival rate at the late dispersal stage, more large seeds were recovered, predated after being cached, or larder-hoarded. Medium-sized seeds experienced the highest dispersal success. Our study suggests that differential foraging preferences by scatter-hoarding rodents at different stages of seed dispersal could result in conflicting selective pressures on seed size and higher dispersal success of medium-sized seeds. © 2016 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yeon Soo; Jeong, G. Y.; Sohn, D. -S.
U-Mo/Al dispersion fuel is currently under development in the DOE’s Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data setmore » of full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model.« less
Nuclear reactor flow control method and apparatus
Church, J.P.
1993-03-30
Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.
Nuclear reactor flow control method and apparatus
Church, John P.
1993-01-01
Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.
Muposhi, Victor K.; Gandiwa, Edson; Chemura, Abel; Bartels, Paul; Makuza, Stanley M.; Madiri, Tinaapi H.
2016-01-01
An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i) surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii) habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii) spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana) for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats. PMID:27680673
Pérez-San-Gregorio, M Á; Martín-Rodríguez, A; Borda-Mas, M; Avargues-Navarro, M L; Pérez-Bernal, J; Gómez-Bravo, M Á
2018-03-01
Analyze the influence of 2 variables (post-traumatic growth and time since liver transplantation) on coping strategies used by the transplant recipient's family members. In all, 218 family members who were their main caregivers of liver transplant recipients were selected. They were evaluated using the Posttraumatic Growth Inventory and the Brief COPE. A 3 × 3 factorial analysis of variance was used to analyze the influence that post-traumatic growth level (low, medium, and high) and time since transplantation (≤3.5 years, >3.5 to ≤9 years, and >9 years) exerted on caregiver coping strategies. No interactive effects between the two factors in the study were found. The only significant main effect was the influence of the post-traumatic growth factor on the following variables: instrumental support (P = .007), emotional support (P = .005), self-distraction (P = .006), positive reframing (P = .000), acceptance (P = .013), and religion (P = <.001). According to the most relevant effect sizes, low post-traumatic growth compared with medium growth was associated with less use of self-distraction (P = .006, d = -0.52, medium effect size), positive reframing (P = .001, d = -0.62, medium effect size), and religion (P = .000, d = -0.66, medium effect size), and in comparison with high growth, it was associated with less use of positive reframing (P = .002, d = -0.56, medium effect size) and religion (P = .000, d = 0.87, large effect size). Regardless of the time elapsed since the stressful life event (liver transplantation), family members with low post-traumatic growth usually use fewer coping strategies involving a positive, transcendent vision to deal with transplantation. Copyright © 2017 Elsevier Inc. All rights reserved.
Registration of reactor neutrinos with the highly segmented plastic scintillator detector DANSSino
NASA Astrophysics Data System (ADS)
Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Fomina, M.; Kobyakin, A.; Rusinov, V.; Shirchenko, M.; Shitov, Yu; Starostin, A.; Zhitnikov, I.
2013-05-01
DANSSino is a simplified pilot version of a solid-state detector of reactor antineutrino (it is being created within the DANSS project and will be installed close to an industrial nuclear power reactor). Numerous tests performed under a 3 GWth reactor of the Kalinin NPP at a distance of 11 m from the core demonstrate operability of the chosen design and reveal the main sources of the background. In spite of its small size (20 × 20 × 100 cm3), the pilot detector turned out to be quite sensitive to reactor neutrinos, detecting about 70 IBD events per day with the signal-to-background ratio about unity.
Lunardon, N T; Silva-Santos, K C; Justino, R C; Dessunti, G T; Seneda, M M; Martins, M I M
2015-04-01
Oocytes from preantral follicles could be an alternative for in vitro maturation because most follicles are at the preantral stage. There are few studies that have sought to estimate the number of preantral follicles in bitches. Therefore, the aims of this study were to estimate the population of preantral follicles in the ovaries of small- and medium-sized prepubertal and adult bitches and compare the population of preantral follicles between the right and left ovaries and evaluate the frequency of multioocyte follicles (MOF). Eighty ovaries were collected by elective ovariohysterectomy from 40 healthy bitches. The bitches were divided into four groups: small-size prepubertal bitches (<10 kg, n = 20), medium-size prepubertal bitches (10-20 kg, n = 20), small-size adult bitches (<10 kg, n = 20), and medium-size adult bitches (10-20 kg, n = 20). Immediately after surgery, the ovaries were fixed in Bouin's solution and processed for histology. For each specimen, 70 histologic sections were cut and mounted on slides; then, the number of preantral follicles was estimated using a correction factor. The preantral follicles were classified according to the developmental stage. The data were analyzed using the Kruskal-Wallis test followed by Dunn's test for comparison between groups, and Fisher's exact test was used to evaluate the frequency of MOF (P ≤ 0.05). Considering the population of preantral follicles from the pair of ovaries, medium-size prepubertal bitches had the highest (P < 0.05) population of preantral follicles compared with the small and medium-size adult groups. There was a large variation in the numbers of preantral follicles among individuals of the same weight and within each group. There were differences between medium-size prepubertal and adult bitches regarding the population of preantral follicles in the right ovaries (145,482 ± 110,712 vs. 49,500 ± 44,821; P = 0.02); however, no differences were observed between the groups on the basis of comparisons of the number of preantral follicles in the left ovaries (P > 0.05). The prevalence of primordial MOF was higher in prepubertal bitches (47% vs. 28%), whereas adult bitches had a higher frequency of secondary MOF (49% vs. 25%; P < 0.05). We conclude that medium-size prepubertal bitches had the highest population of preantral follicles compared with small and medium-size adult bitches, and the use of only one ovary per bitch implied contrasting result. The presence of primordial MOF was higher in prepubertal bitches and at the secondary stage in adult bitches. Copyright © 2015 Elsevier Inc. All rights reserved.
Reactor for making uniform capsules
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Anikumar, Amrutur V. (Inventor); Lacik, Igor (Inventor)
1999-01-01
The present invention provides a novel reactor for making capsules with uniform membrane. The reactor includes a source for providing a continuous flow of a first liquid through the reactor; a source for delivering a steady stream of drops of a second liquid to the entrance of the reactor; a main tube portion having at least one loop, and an exit opening, where the exit opening is at a height substantially equal to the entrance. In addition, a method for using the novel reactor is provided. This method involves providing a continuous stream of a first liquid; introducing uniformly-sized drops of the second liquid into the stream of the first liquid; allowing the drops to react in the stream for a pre-determined period of time; and collecting the capsules.
75 FR 62761 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
... of the survey: one for large domestic corporations and small and medium-sized businesses and one for..., small and medium-sized businesses, universities, non-profit research organizations, and independent... they plan to submit, in addition to providing general feedback concerning industry trends and the...
NASA Astrophysics Data System (ADS)
Sedlak, Kamil; Bruzzone, Pierluigi
2015-12-01
In the design of future DEMO fusion reactor a long time constant (∼23 s) is required for an emergency current dump in the toroidal field (TF) coils, e.g. in case of a quench detection. This requirement is driven mainly by imposing a limit on forces on mechanical structures, namely on the vacuum vessel. As a consequence, the superconducting cable-in-conduit conductors (CICC) of the TF coil have to withstand heat dissipation lasting tens of seconds at the section where the quench started. During that time, the heat will be partially absorbed by the (massive) steel conduit and electrical insulation, thus reducing the hot-spot temperature estimated strictly from the enthalpy of the strand bundle. A dedicated experiment has been set up at CRPP to investigate the radial heat propagation and the hot-spot temperature in a CICC with a 10 mm thick steel conduit and a 2 mm thick glass epoxy outer electrical insulation. The medium size, ∅ = 18 mm, NbTi CICC was powered by the operating current of up to 10 kA. The temperature profile was monitored by 10 temperature sensors. The current dump conditions, namely the decay time constant and the quench detection delay, were varied. The experimental results show that the thick conduit significantly contributes to the overall enthalpy balance, and consequently reduces the amount of copper required for the quench protection in superconducting cables for fusion reactors.
Method for preventing plugging in the pyrolysis of agglomerative coals
Green, Norman W.
1979-01-23
To prevent plugging in a pyrolysis operation where an agglomerative coal in a nondeleteriously reactive carrier gas is injected as a turbulent jet from an opening into an elongate pyrolysis reactor, the coal is comminuted to a size where the particles under operating conditions will detackify prior to contact with internal reactor surfaces while a secondary flow of fluid is introduced along the peripheral inner surface of the reactor to prevent backflow of the coal particles. The pyrolysis operation is depicted by two equations which enable preselection of conditions which insure prevention of reactor plugging.
Di Legge, A; Testa, A C; Ameye, L; Van Calster, B; Lissoni, A A; Leone, F P G; Savelli, L; Franchi, D; Czekierdowski, A; Trio, D; Van Holsbeke, C; Ferrazzi, E; Scambia, G; Timmerman, D; Valentin, L
2012-09-01
To estimate the ability to discriminate between benign and malignant adnexal masses of different size using: subjective assessment, two International Ovarian Tumor Analysis (IOTA) logistic regression models (LR1 and LR2), the IOTA simple rules and the risk of malignancy index (RMI). We used a multicenter IOTA database of 2445 patients with at least one adnexal mass, i.e. the database previously used to prospectively validate the diagnostic performance of LR1 and LR2. The masses were categorized into three subgroups according to their largest diameter: small tumors (diameter < 4 cm; n = 396), medium-sized tumors (diameter, 4-9.9 cm; n = 1457) and large tumors (diameter ≥ 10 cm, n = 592). Subjective assessment, LR1 and LR2, IOTA simple rules and the RMI were applied to each of the three groups. Sensitivity, specificity, positive and negative likelihood ratio (LR+, LR-), diagnostic odds ratio (DOR) and area under the receiver-operating characteristics curve (AUC) were used to describe diagnostic performance. A moving window technique was applied to estimate the effect of tumor size as a continuous variable on the AUC. The reference standard was the histological diagnosis of the surgically removed adnexal mass. The frequency of invasive malignancy was 10% in small tumors, 19% in medium-sized tumors and 40% in large tumors; 11% of the large tumors were borderline tumors vs 3% and 4%, respectively, of the small and medium-sized tumors. The type of benign histology also differed among the three subgroups. For all methods, sensitivity with regard to malignancy was lowest in small tumors (56-84% vs 67-93% in medium-sized tumors and 74-95% in large tumors) while specificity was lowest in large tumors (60-87%vs 83-95% in medium-sized tumors and 83-96% in small tumors ). The DOR and the AUC value were highest in medium-sized tumors and the AUC was largest in tumors with a largest diameter of 7-11 cm. Tumor size affects the performance of subjective assessment, LR1 and LR2, the IOTA simple rules and the RMI in discriminating correctly between benign and malignant adnexal masses. The likely explanation, at least in part, is the difference in histology among tumors of different size. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
The program aims at developing mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon. The major interest is in collecting silicon as a liquid on the reactor walls and other collection surfaces. Two reactor systems are of major interest, a SiCl4/Na reactor in which Si(l) is collected on the flow tube reactor walls and a reactor in which Si(l) droplets formed by the SiCl4/Na reaction are collected by a jet impingement method. During this quarter the following tasks were accomplished: (1) particle deposition routines were added to the boundary layer code; and (2) Si droplet sizes in SiCl4/Na reactors at temperatures below the dew point of Si are being calculated.
Small low mass advanced PBR's for propulsion
NASA Astrophysics Data System (ADS)
Powell, J. R.; Todosow, M.; Ludewig, H.
1993-10-01
The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.
Sato, Masaki; Ogura, Kazuhiro; Kimura, Maki; Nishi, Koichi; Ando, Masayuki; Tazaki, Masakazu; Shibukawa, Yoshiyuki
2018-06-01
Various stimuli to the dentin surface elicit dentinal pain by inducing dentinal fluid movement causing cellular deformation in odontoblasts. Although odontoblasts detect deformation by the activation of mechanosensitive ionic channels, it is still unclear whether odontoblasts are capable of establishing neurotransmission with myelinated A delta (Aδ) neurons. Additionally, it is still unclear whether these neurons evoke action potentials by neurotransmitters from odontoblasts to mediate sensory transduction in dentin. Thus, we investigated evoked inward currents and evoked action potentials form trigeminal ganglion (TG) neurons after odontoblast mechanical stimulation. We used patch clamp recordings to identify electrophysiological properties and record evoked responses in TG neurons. We classified TG cells into small-sized and medium-sized neurons. In both types of neurons, we observed voltage-dependent inward currents. The currents from medium-sized neurons showed fast inactivation kinetics. When mechanical stimuli were applied to odontoblasts, evoked inward currents were recorded from medium-sized neurons. Antagonists for the ionotropic adenosine triphosphate receptor (P2X 3 ), transient receptor potential channel subfamilies, and Piezo1 channel significantly inhibited these inward currents. Mechanical stimulation to odontoblasts also generated action potentials in the isolectin B 4 -negative medium-sized neurons. Action potentials in these isolectin B 4 -negative medium-sized neurons showed a short duration. Overall, electrophysiological properties of neurons indicate that the TG neurons with recorded evoked responses after odontoblast mechanical stimulation were myelinated Aδ neurons. Odontoblasts established neurotransmission with myelinated Aδ neurons via P2X 3 receptor activation. The results also indicated that mechanosensitive TRP/Piezo1 channels were functionally expressed in odontoblasts. The activation of P2X 3 receptors induced an action potential in the Aδ neurons, underlying a sensory generation mechanism of dentinal pain. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Zhao, Liping; Qiao, Juan; Moon, Meyong Hee; Qi, Li
2018-06-16
Fabrication of polymer membranes with nanopores and a confinement effect toward enzyme immobilization has been an enabling endeavor. In the work reported here, an enzyme reactor based on a thermoresponsive magnetic porous block copolymer membrane was designed and constructed. Reversible addition-fragmentation chain transfer polymerization was used to synthesize the block copolymer, poly(maleic anhydride-styrene-N-isopropylacrylamide), with poly(N-isopropylacrylamide) as the thermoresponsive moiety. The self-assembly property of the block copolymer was used for preparation of magnetic porous thin film matrices with iron oxide nanoparticles. By covalent bonding of glutaminase onto the surface of the membrane matrices and changing the temperature to tune the nanopore size, we observed enhanced enzymolysis efficiency due to the confinement effect. The apparent Michaelis-Menten constant and the maximum rate of the enzyme reactor were determined (K m = 32.3 mM, V max = 33.3 mM min -1 ) by a chiral ligand exchange capillary electrochromatography protocol with L-glutamine as the substrate. Compared with free glutaminase in solution, the proposed enzyme reactor exhibits higher enzymolysis efficiency, greater stability, and greater reusability. Furthermore, the enzyme reactor was applied for a glutaminase kinetics study. The tailored pore sizes and the thermoresponsive property of the block copolymer result in the designed porous membrane based enzyme reactor having great potential for high enzymolysis performance. Graphical abstract ᅟ.
Conceptual design study of the moderate size superconducting spherical tokamak power plant
NASA Astrophysics Data System (ADS)
Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki
2015-06-01
A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.
Economic Impacts of Highway Relief Routes on Small- and Medium-Size Communities: Case Studies
DOT National Transportation Integrated Search
2001-09-01
Original Report Date: March 2000. Highway relief routes may have a variety of impacts on small- and medium-size communities, both positive and negative. On the positive side, communities benefit from a reduction in traffic through the heart of the co...
Lai, Yanqing; Saridakis, George; Blackburn, Robert
2015-08-01
This paper examines the relationships between firm size and employees' experience of work stress. We used a matched employer-employee dataset (Workplace Employment Relations Survey 2011) that comprises of 7182 employees from 1210 private organizations in the United Kingdom. Initially, we find that employees in small and medium-sized enterprises experience lower level of overall job stress than those in large enterprises, although the effect disappears when we control for individual and organizational characteristics in the model. We also find that quantitative work overload, job insecurity and poor promotion opportunities, good work relationships and poor communication are strongly associated with job stress in the small and medium-sized enterprises, whereas qualitative work overload, poor job autonomy and employee engagements are more related with larger enterprises. Hence, our estimates show that the association and magnitude of estimated effects differ significantly by enterprise size. Copyright © 2013 John Wiley & Sons, Ltd.
Method of pyrolyzing brown coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, W.; Heberlein, I.; Ossowski, M.
A two-step method and apparatus are disclosed based on the fluidized bed principle, for the production of coke, rich gas and pyrolysis tar, with the object of executing the method in a compact apparatus arrangement, with high energy efficiency and high throughput capacity. This is accomplished by a sequence in which the fine grains removed from the drying vapor mixture are removed from the actual pyrolysis process, and a hot gas, alien to the carbonization, is used as fluidization medium in the pyrolysis reactor, and with a hot gas-high performance separator being used for the dust separation from the pyrolysismore » gas, with the combustion exhaust gas produced in the combustion chamber being used for the indirect heating of the fluidization medium, for the pre-heating of the gas, which is alien to the carbonization, and for the direct heating in the dryer. The dryer has a double casing in the area of the fluidized bed, and a mixing chamber is arranged directly underneath its initial flow bottom, while the pyrolysis reactor is directly connected to the combustion chamber and the pre-heater.« less
Wu, Lingtian; Xu, Cen; Li, Sha; Liang, Jinfeng; Xu, Hong; Xu, Zheng
2017-06-01
In this study, the gene encoding cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) was successfully expressed in Bacillus subtilis WB800. After the fermentation medium optimization, the activity of recombinant strain was 4.5-fold higher than the original medium in a 7.5L fermentor. The optimal catalytic pH and temperature of crude CsCE were 7.0 and 80°C, respectively. An enzymatic synthesis of lactulose was developed using cheese-whey lactose as its substrate. The maximum conversion rate of whey powder obtained was 58.5% using 7.5 U/mL CsCE. The enzymatic membrane reactor system exhibited a great operational stability, confirmed with the higher lactose conversion (42.4%) after 10 batches. To our best knowledge, this is the first report of lactulose synthesis in food grade strain, which improve the food safety, and we not only realize the biological production of lactulose, but also make good use of industrial waste, which have positive impact on environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Production of medium chain fatty acid rich mustard oil using packed bed bioreactor.
Sengupta, Avery; Roy, Susmita; Mukherjee, Sohini; Ghosh, Mahua
2015-01-01
A comparative study was done on the production of different medium chain fatty acid (MCFA) rich mustard oil using a stirred tank batchreactor (STBR) and packed bed bio reactor (PBBR) using three commercially available immobilised lipases viz. Thermomyces lanuginosus, Candida antarctica and Rhizomucor meihe. Three different MCFAs capric, caprylic and lauric acids were incorporated in the mustard oil. Reaction parameters, such as substrate molar ratio, reaction temperature and enzyme concentration were standardized in the STBR and maintained in the PBBR. To provide equal time of residence between the substrate and enzyme in both the reactors for the same amount of substrates, the substrate flow rate in the PBBR was maintainedat 0.27 ml/min. Gas liquid chromatography was used to monitor the incorporation of MCFA in mustard oil. The study showed that the PBBR was more efficient than the STBR in the synthesis of structured lipids with less migration of acyl groups. The physico-chemical parameters of the product along with fatty acid composition in all positions and sn-2 positions were also determined.
Rahaman, Md Saifur; Mavinic, Donald S; Meikleham, Alexandra; Ellis, Naoko
2014-03-15
The cost associated with the disposal of phosphate-rich sludge, the stringent regulations to limit phosphate discharge into aquatic environments, and resource shortages resulting from limited phosphorus rock reserves, have diverted attention to phosphorus recovery in the form of struvite (MAP: MgNH4PO4·6H2O) crystals, which can essentially be used as a slow release fertilizer. Fluidized-bed crystallization is one of the most efficient unit processes used in struvite crystallization from wastewater. In this study, a comprehensive mathematical model, incorporating solution thermodynamics, struvite precipitation kinetics and reactor hydrodynamics, was developed to illustrate phosphorus depletion through struvite crystal growth in a continuous, fluidized-bed crystallizer. A thermodynamic equilibrium model for struvite precipitation was linked to the fluidized-bed reactor model. While the equilibrium model provided information on supersaturation generation, the reactor model captured the dynamic behavior of the crystal growth processes, as well as the effect of the reactor hydrodynamics on the overall process performance. The model was then used for performance evaluation of the reactor, in terms of removal efficiencies of struvite constituent species (Mg, NH4 and PO4), and the average product crystal sizes. The model also determined the variation of species concentration of struvite within the crystal bed height. The species concentrations at two extreme ends (inlet and outlet) were used to evaluate the reactor performance. The model predictions provided a reasonably good fit with the experimental results for PO4-P, NH4-N and Mg removals. Predicated average crystal sizes also matched fairly well with the experimental observations. Therefore, this model can be used as a tool for performance evaluation and process optimization of struvite crystallization in a fluidized-bed reactor. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Pappas, Daniel S.
1989-01-01
Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.
Cultivation of animal cells in a reticulated vitreous carbon foam.
Kent, B L; Mutharasan, R
1992-02-01
A reticulated vitreous carbon foam (RVCF) was used as a surface to cultivate a model anchorage-dependent animal cell line, 3T6 (mouse embryo fibroblast). This fixed-surface bioreactor provided a low-shear, chemically-inert, and reusable environment for cell growth. An external medium recirculation loop allowed aeration, nutrient monitoring, and medium replacement without disturbing the cells. Optimal flow rates for the attachment and growth phases were determined. Growth rates comparable to static (T-flask and petri dish) cultures and agitated microcarrier cultures were achieved with appropriately high medium recirculation rates. Metabolic parameters were shown to be useful indicators of cell mass, although specific glucose consumption rates were considerably higher for cultures in the RVCF reactor. Oxygen supply was shown to be the most likely limiting factor for scaleup.
DOT National Transportation Integrated Search
2000-04-01
Highway relief routes around small- or medium-size communities are an important element of the Texas Trunk System. These routes provide for the safe and efficient movement of through traffic and contribute to the growth of the Texas economy. For smal...
Current information technology needs of small to medium sized apparel manufacturers and contractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wipple, C.; Vosti, E.
1997-11-01
This report documents recent efforts of the American Textile Partnership (AMTEX) Demand Activated Manufacturing Architecture (DAMA) Project to address needs that are characterized of small to medium sized apparel manufactures and contractors. Background on the AMTEX/DAMA project and objectives for this specific efforts are discussed.
Library Webmasters in Medium-Sized Academic Libraries
ERIC Educational Resources Information Center
Kneip, Jason
2007-01-01
Library webmasters in medium-sized academic libraries were surveyed about their educational backgrounds, job responsibilities, and training and experience levels in Web development. The article summarizes the findings of the survey with recommendations for libraries and library and information science programs. (Contains 7 tables, 5 figures,and 5…
Continuing Education for Managers from Small and Medium Sized German Companies.
ERIC Educational Resources Information Center
Fub, Jorg
1995-01-01
An international trade school in southern Germany, which is a highly export-oriented environment, has established a vocational and professional continuing education program for personnel of small- and medium-size companies. Offerings include a graduate course in international marketing, seminars for export companies, distance education in…
Management Consulting and International Business Support for SMEs: Need and Obstacles
ERIC Educational Resources Information Center
Mughan, Terry; Lloyd-Reason, Lester; Zimmerman, Carsten
2004-01-01
This paper explores the challenges involved in the development of coordinated management consulting services for small and medium-sized international companies in the East of England. This paper synthesises the findings of recently published quantitative and qualitative research to identify the characteristics of small to medium-sized enterprises…
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.
2017-08-01
Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.
Marijić, Vlatka Filipović; Perić, Mirela Sertić; Kepčija, Renata Matoničkin; Dragun, Zrinka; Kovarik, Ivana; Gulin, Vesna; Erk, Marijana
2016-01-01
The present study was undertaken to obtain a better understanding of the seasonal variability of total dissolved metal/metalloid levels and physicochemical parameters within small- to medium-size freshwater ecosystems in temperate climate region. The research was conducted in four seasons in the Sutla River, medium-size polluted, and the Črnomerec Stream, small-size unpolluted watercourse in Croatia. In the Sutla River, characterized by the rural/industrial catchment, physicochemical parameters and total dissolved metal concentrations of 21 trace and 4 macro elements were analysed downstream of the point source of pollution, the glass production facility, indicating for the first time their variability across four seasons. Based on dissolved oxygen, total dissolved solids, nutrient concentrations, conductivity and total chemical oxygen demand, quality status of the Sutla River was good, but moderate to poor during summer, what was additionally confirmed by the highest levels of the most of 25 measured metals/metalloids in summer. Comparison with the reference small-size watercourse, the Črnomerec Stream, indicated significant anthropogenic impact on the Sutla River, most evident for Fe, Mn, Mo, Ni, Pb, Rb and Tl levels (3-70-fold higher in the Sutla River across all seasons). Generally, presented results indicated significant decrease of the water quality in the anthropogenically impacted small- to medium-size watercourses in summer, regarding physicochemical water parameters and total dissolved metal/metalloid concentrations, and pointed to significant seasonality of these parameters. Confirmed seasonality of river ecological status indicates that seasonal assessment represents a prerequisite for proper classification of the water quality in small- to medium-size temperate rivers.
Bioreactor design studies for a hydrogen-producing bacterium.
Wolfrum, Edward J; Watt, Andrew S
2002-01-01
Carbon monoxide (CO) can be metabolized by a number of microorganisms along with water to produce hydrogen (H2) and carbon dioxide. National Renewable Energy Laboratory researchers have isolated a number of bacteria that perform this so-called water-gas shift reaction at ambient temperatures. We performed experiments to measure the rate of CO conversion and H2 production in a trickle-bed reactor (TBR). The liquid recirculation rate and the reactor support material both affected the mass transfer coefficient, which controls the overall performance of the reactor. A simple reactor model taken from the literature was used to quantitatively compare the performance of the TBR geometry at two different size scales. Good agreement between the two reactor scales was obtained.
Use of LEU in the aqueous homogeneous medical isotope production reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, R.M.
1997-08-01
The Medical Isotope Production Reactor (MIPR) is an aqueous solution of uranyl nitrate in water, contained in an aluminum cylinder immersed in a large pool of water which can provide both shielding and a medium for heat exchange. The control rods are inserted at the top through re-entrant thimbles. Provision is made to remove radiolytic gases and recombine emitted hydrogen and oxygen. Small quantities of the solution can be continuously extracted and replaced after passing through selective ion exchange columns, which are used to extract the desired products (fission products), e.g. molybdenum-99. This reactor type is known for its largemore » negative temperature coefficient, the small amount of fuel required for criticality, and the ease of control. Calculation using TWODANT show that a 20% U-235 enriched system, water reflected can be critical with 73 liters of solution.« less
Method and device for predicting wavelength dependent radiation influences in thermal systems
Kee, Robert J.; Ting, Aili
1996-01-01
A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.
Computed tomography of radioactive objects and materials
NASA Astrophysics Data System (ADS)
Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.
1990-12-01
Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.
Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katipamula, Srinivas; Underhill, Ronald M.; Goddard, James K.
2012-10-31
Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the energy consumed in buildings is wasted because of the lack of controls or the inability to use existing building automation systems (BASs) properly. Much of the waste occurs because of our inability to manage and controls buildings efficiently. Over 90% of the buildings are either small-size (<5,000 sf) or medium-size (between 5,000 sf and 50,000 sf); these buildings currently do not use BASs to monitor and control their building systems from a central location. According to Commercial Building Energy Consumption Survey (CBECS), aboutmore » 10% of the buildings in the U.S. use BASs or central controls to manage their building system operations. Buildings that use BASs are typically large (>100,000 sf). Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) were asked by the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP) to identify monitoring and control needs for small- and medium-sized commercial buildings and recommend possible solutions. This study documents the needs and solutions for small- and medium-sized buildings.« less
MicroChannel Reactors for ISRU Applications Using Nanofabricated Catalysts
NASA Astrophysics Data System (ADS)
Carranza, Susana; Makel, Darby B.; Vander Wal, Randall L.; Berger, Gordon M.; Pushkarev, Vladimir V.
2006-01-01
With the new direction of NASA to emphasize the exploration of the Moon, Mars and beyond, quick development and demonstration of efficient systems for In-Situ Resources Utilization (ISRU) is more critical and timely than ever before. Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. This paper presents current development of miniaturized chemical processing systems that combine microchannel reactor design with nanofabricated catalysts. Carbon nanotubes (CNT) are used to produce a nanostructure within microchannel reactors, as support for catalysts. By virtue of their nanoscale dimensions, nanotubes geometrically restrict the catalyst particle size that can be supported upon the tube walls. By confining catalyst particles to sizes smaller than the CNT diameter, a more uniform catalyst particle size distribution may be maintained. The high dispersion permitted by the vast surface area of the nanoscale material serves to retain the integrity of the catalyst by reducing sintering or coalescence. Additionally, catalytic efficiency increases with decreasing catalyst particle size (reflecting higher surface area per unit mass) while chemical reactivity frequently is enhanced at the nanoscale. Particularly significant is the catalyst exposure. Rather than being confined within a porous material or deposited upon a 2-d surface, the catalyst is fully exposed to the reactant gases by virtue of the nanofabricated support structure. The combination of microchannel technology with nanofabricated catalysts provides a synergistic effect, enhancing both technologies with the potential to produce much more efficient systems than either technology alone. The development of highly efficient microchannel reactors will be applicable to multiple ISRU programs. By selection of proper nanofabricated catalysts, the microchannel reactors can be designed for the processes that generate the most benefit for each mission, from early demonstration missions to long term settlements.
Garment sizes in perception of body size.
Fan, Jintu; Newton, Edward; Lau, Lilian; Liu, Fu
2003-06-01
This paper reports an experimental investigation of the effect of garment size on perceived body size. The perceived body sizes of three Chinese men (thin, medium, and obese build) wearing different sizes of white T-shirts were assessed using Thompson and Gray's 1995 Nine-figural Scale in 1 (thinnest) to 9 (obese) grade and a newly-proposed method. Within the limit of commercially available T-shirt sizes, for thin and medium persons, perceived body sizes are bigger when wearing T-shirts of larger sizes. For an obese person, however, wearing a large size T-shirt tends to make him look thinner. The study also showed that the newly proposed comparative method is more reliable in comparing body size perception but without measuring the magnitude of the change in body-size grade. The figural scale and the comparative method can be complementary.
WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA603. SUMMARY OF ...
WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA-603. SUMMARY OF COOLANT FLOW FROM WORKING RESERVOIR TO INTERIOR OF REACTOR'S THERMAL SHIELD. NAMES TANK SECTIONS. PIPE AND DRAIN-LINE SIZES. SHOWS DIRECTION OF AIR FLOW THROUGH PEBBLE AND GRAPHITE BLOCK ZONE. NEUTRON CURTAIN AND THERMAL COLUMN DOOR. BLAW-KNOX 3150-92-7, 3/1950. INL INDEX NO. 531-0603-51-098-100036, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.
1973-01-01
A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.
Engine System Model Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Nelson, Karl W.; Simpson, Steven P.
2006-01-01
In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.
Simplified pulse reactor for real-time long-term in vitro testing of biological heart valves.
Schleicher, Martina; Sammler, Günther; Schmauder, Michael; Fritze, Olaf; Huber, Agnes J; Schenke-Layland, Katja; Ditze, Günter; Stock, Ulrich A
2010-05-01
Long-term function of biological heart valve prostheses (BHV) is limited by structural deterioration leading to failure with associated arterial hypertension. The objective of this work was development of an easy to handle real-time pulse reactor for evaluation of biological and tissue engineered heart valves under different pressures and long-term conditions. The pulse reactor was made of medical grade materials for placement in a 37 degrees C incubator. Heart valves were mounted in a housing disc moving horizontally in culture medium within a cylindrical culture reservoir. The microprocessor-controlled system was driven by pressure resulting in a cardiac-like cycle enabling competent opening and closing of the leaflets with adjustable pulse rates and pressures between 0.25 to 2 Hz and up to 180/80 mmHg, respectively. A custom-made imaging system with an integrated high-speed camera and image processing software allow calculation of effective orifice areas during cardiac cycle. This simple pulse reactor design allows reproducible generation of patient-like pressure conditions and data collection during long-term experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingersoll, Daniel T
2007-01-01
Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership Robert Price U.S. Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585, Daniel T. Ingersoll Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6162, INTRODUCTION The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scalemore » Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are "right sized" for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. REQUIREMENTS Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral arrangements are expected as GNEP progresses. These Working Groups will be instrumental in establishing an international consensus on reactor system requirements. GNEP CERTIFICATION After establishing an accepted set of requirements for new reactors that are deployed internationally, a mechanism is needed that allows capable countries to continue to market their reactor technologies and services while assuring that they are compatible with GNEP goals and technologies. This will help to preserve the current system of open, commercial competition while steering the international community to meet common policy goals. The proposed vehicle to achieve this is the concept of GNEP Certification. Using objective criteria derived from the technical requirements in several key areas such as safety, security, non-proliferation, and safeguards, reactor designs could be evaluated and then certified if they meet the criteria. This certification would ensure that reactor designs meet internationally approved standards and that the designs are compatible with GNEP assured fuel services. SUMMARY New "right sized" power reactor systems will need to be developed and deployed internationally to fully achieve the GNEP vision of an expanded use of nuclear energy world-wide. The technical requirements for these systems are being developed through national and international Working Groups. The process is expected to culminate in a new GNEP Certification process that enables commercial competition while ensuring that the policy goals of GNEP are adequately met.« less
Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang
2016-08-01
Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.
Fine coal cleaning via the micro-mag process
Klima, Mark S.; Maronde, Carl P.; Killmeyer, Richard P.
1991-01-01
A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.
DANSSino: a pilot version of the DANSS neutrino detector
NASA Astrophysics Data System (ADS)
Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kobyakin, A.; Medvedev, D.; Mizuk, R.; Novikov, E.; Olshevsky, A.; Rozov, S.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Shevchik, Ye.; Shirchenko, M.; Shitov, Yu.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Yakushev, E.; Zhitnikov, I.; Zinatulina, D.
2014-07-01
DANSSino is a reduced pilot version of a solid-state detector of reactor antineutrinos (to be created within the DANSS project and installed under the industrial 3 GWth reactor of the Kalinin Nuclear Power Plant—KNPP). Numerous tests performed at a distance of 11 m from the reactor core demonstrate operability of the chosen design and reveal the main sources of the background. In spite of its small size (20 × 20 × 100 cm3), the pilot detector turned out to be quite sensitive to reactor antineutrinos, detecting about 70 IBD events per day with the signal-to-background ratio about unity.
Shield Design for Lunar Surface Applications
NASA Astrophysics Data System (ADS)
Johnson, Gregory A.
2006-01-01
A shielding concept for lunar surface applications of nuclear power is presented herein. The reactor, primary shield, reactor equipment and power generation module are placed in a cavity in the lunar surface. Support structure and heat rejection radiator panels are on the surface, outside the cavity. The reactor power of 1,320 kWt was sized to deliver 50 kWe from a thermoelectric power conversion subsystem. The dose rate on the surface is less than 0.6 mRem/hr at 100 meters from the reactor. Unoptimized shield mass is 1,020 kg which is much lighter than a comparable 4π shield weighing in at 17,000 kg.
NASA Astrophysics Data System (ADS)
Enayati, Hooman; Braun, Minel J.; Chandy, Abhilash J.
2018-02-01
This paper presents an investigation of flow and heat transfer in a large diameter (6.25 in) cylindrical enclosure heated laterally and containing a porous block that simulates the basket of nutrients used in a crystal growth reactor. The numerical model entails the use of a commercially available computational engine provided by ANSYS FLUENT, and based on a two-dimensional (2D) axisymmetric Reynolds-averaged Navier Stokes (RANS) equations. The porous medium is simulated using the Brinkman-extended model accounting for the Darcy and Forchheimer induced pressure drops. The porous 'plug' effects are analyzed as both its permeability/inertial resistance and locations in the reactor are changed on a parametric basis, while the Rayleigh number (Ra = gβΔTL3/να) is kept constant at 1.98 × 109. Additionally, the effect of different ratios of the hot to the cold zone lengths are investigated as a part of the current effort. For all cases, the velocity and temperature distributions in the reactor are analyzed together with the flow patterns in, and around the porous block. A comprehensive discussion is provided with regard to the effects of the position of the porous block and its permeability on both the immediately adjacent, and far flows. The consequences on the temperature distribution in the enclosure, when the ratio of the length of the hot-to-cold zones is changed, are also analyzed.
Teaching Medium-Sized ERP Systems - A Problem-Based Learning Approach
NASA Astrophysics Data System (ADS)
Winkelmann, Axel; Matzner, Martin
In order to increase the diversity in IS education, we discuss an approach for teaching medium-sized ERP systems in master courses. Many of today's IS curricula are biased toward large ERP packages. Nevertheless, these ERP systems are only a part of the ERP market. Hence, this chapter describes a course outline for a course on medium-sized ERP systems. Students had to study, analyze, and compare five different ERP systems during a semester. The chapter introduces a procedure model and scenario for setting up similar courses at other universities. Furthermore, it describes some of the students' outcomes and evaluates the contribution of the course with regard to a practical but also academic IS education.
Ohashi, R; Yamamoto, T; Suzuki, T
1999-01-01
A perfusion culture system was used for continuous production of lactic acid by retaining cells at a high density of Lactococcus lactis in a stirred ceramic membrane reactor (SCMR). After the cell concentration increased to 248 g/l, half of the culture broth volume was replaced with the fermentation medium. Subsequently, a substrate solution containing glucose (run 1) or molasses (run 2) was continuously supplied to the cells retained in the SCMR. Simultaneously, the culture supernatant was extracted using a ceramic filter with a pore size of 0.2 mum. The dilution rate was initially set at 0.4 h(-1) and gradually decreased to 0.2 h(-1) due to reduction in the permeability of the filter. The concentration of glucose in the substrate solution was adjusted to 60 g/l for the transition and the first period until 240 h, 90 g/l for the second period from 240 h to 440 h, and 70 g/l for the third period from 440 h to 643 h. The average concentration of lactic acid in the filtrate reached 46 g/l in the first period, 43 g/l in the second period, and 33 g/l for the third period. The productivity obtained for the first period reached 15.8 g.l(-1).h(-1), twice as much as that achieved in repeated batch fermentations. Based on the results obtained in run 1, the substrate solution containing 120 g/l of molasses was continuously supplied for 240 h in run 2. The concentration and productivity of lactic acid reached 40 g/l and 10.6 g.l(-1).h(-1), respectively, by continuously replenishing the culture medium at a dilution rate of 0.26 h(-1). These results demonstrated that the filtration capacity of the SCMR was sufficient for a continuous and rapid replenishment of molasses solution from the dense cell culture and, therefore, the perfusion culture system is considered to provide a low-cost process for continuous production of lactic acid from cheap resources.
2006-12-15
ineffective or missing incentive systems (Ruggles, 1998). A study of small and medium sized enterprises found that culture was the second highest rated...communicated by management and shared by the employees throughout the organization. In a study of small and medium sized companies, senior leadership was...operationalized as industry performance , diversification, firm size , structure and risk level (Tanriverdi, 2005). 14 Two recent studies examine KM
Effects of Irradiation on the Microstructure of U-7Mo Dispersion Fuel with Al-2Si Matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis D. Keiser, Jr.; Jan-Fong Jue; Adam B. Robinson
2012-06-01
The Reduced Enrichment for Research and Test Reactor program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt% Si added to the matrix, fuel plates were tested to medium burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fissionmore » rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, high fission rate) was performed in the RERTR-9A, RERTR-9B and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth of the fuel/matrix interaction layer (FMI), which was present in the samples to some degree after fabrication, during irradiation; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation more Si diffuses from the matrix to the FMI layer/matrix interface, and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.« less
Baseline Concept Description of a Small Modular High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans Gougar
2014-05-01
The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less
Baseline Concept Description of a Small Modular High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans D.
2014-10-01
The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less
Rodrigues, Michael L M; Leão, Versiane A; Gomes, Otavio; Lambert, Fanny; Bastin, David; Gaydardzhiev, Stoyan
2015-07-01
The current work reports on a new approach for copper bioleaching from Printed Circuit Board (PCB) by moderate thermophiles in a rotating-drum reactor. Initially leaching of PCB was carried out in shake flasks to assess the effects of particle size (-208μm+147μm), ferrous iron concentration (1.25-10.0g/L) and pH (1.5-2.5) on copper leaching using mesophile and moderate thermophile microorganisms. Only at a relatively low solid content (10.0g/L) complete copper extraction was achieved from the particle size investigated. Conversely, high copper extractions were possible from coarse-ground PCB (20mm-long) working with increased solids concentration (up to 25.0g/L). Because there was as the faster leaching kinetics at 50°C Sulfobacillus thermosulfidooxidans was selected for experiments in a rotating-drum reactor with the coarser-sized PCB sheets. Under optimal conditions, copper extraction reached 85%, in 8days and microscopic observations by SEM-EDS of the on non-leached and leached material suggested that metal dissolution from the internal layers was restricted by the fact that metal surface was not entirely available and accessible for the solution in the case of the 20mm-size sheets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Impact of Annular Size on Outcomes After Surgical or Transcatheter Aortic Valve Replacement.
Deeb, G Michael; Chetcuti, Stanley J; Yakubov, Steven J; Patel, Himanshu J; Grossman, P Michael; Kleiman, Neal S; Heiser, John; Merhi, William; Zorn, George L; Tadros, Peter N; Petrossian, George; Robinson, Newell; Mumtaz, Mubashir; Gleason, Thomas G; Huang, Jian; Conte, John V; Popma, Jeffrey J; Reardon, Michael J
2018-04-01
This analysis evaluates the relationship of annular size to hemodynamics and the incidence of prosthesis-patient mismatch (PPM) in surgical aortic valve replacement (SAVR) and transcatheter aortic valve replacement (TAVR) patients. The CoreValve US Pivotal High Risk Trial, described previously, compared TAVR using a self-expanding valve with SAVR. Multislice computed tomography was used to categorize TAVR and SAVR subjects according to annular perimeter-derived diameter: large (≥26 mm), medium (23 to <26 mm), and small (<23 mm). Hemodynamics, PPM, and clinical outcomes were assessed. At all postprocedure visits, mean gradients were significantly lower for TAVR compared with SAVR in small and medium size annuli (p < 0.001). Annular size was significantly associated with mean gradient after SAVR, with small annuli having the highest gradients (p < 0.05 at all timepoints); gradients were similar across all annular sizes after TAVR. In subjects receiving SAVR, the frequency of PPM was significantly associated with annular size, with small annuli having the greatest incidence. No difference in PPM incidence by annular sizing was observed with TAVR. In addition, TAVR subjects had significantly less PPM than SAVR subjects in small and medium annuli (p < 0.001), with no difference in the incidence of PPM between TAVR and SAVR in large annuli (p = 0.10). Annular size has a significant effect on hemodynamics and the incidence of PPM in SAVR subjects, not observed in TAVR subjects. With respect to annular size, TAVR results in better hemodynamics and less PPM for annuli less than 26 mm and should be strongly considered when choosing a tissue valve for small and medium size annuli. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
77 FR 2697 - Proposed Information Collection; Comment Request; Annual Services Report
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... and from a sample of small- and medium-sized businesses selected using a stratified sampling procedure... be canvassed when the sample is re-drawn, while nearly all of the small- and medium-sized firms from...); Educational Services (NAICS 61); Health Care and Social Assistance (NAICS 62); Arts, Entertainment, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225, Rechargeable Lithium Battery and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-03
... 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-01
... Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
... 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...
Promoting Learning in Small and Medium-Sized Enterprises.
ERIC Educational Resources Information Center
Hughes, Maria; Gray, Sue
1998-01-01
In 1996, small and medium-sized enterprises constituted 99% of all businesses in the United Kingdom in all but the electricity, gas, and water supply sector, providing 46% of nongovernment employment. SMEs' concern with day-to-day demands leaves them with limited time and resources to consider their training needs. Although providing support and…
Workplace Health Promotion within Small and Medium-Sized Enterprises
ERIC Educational Resources Information Center
Moore, Ann; Parahoo, Kader; Fleming, Paul
2010-01-01
Purpose: The purpose of this study is to explore managers' understanding of workplace health promotion (WHP) and experiences of WHP activity within small and medium-sized enterprises (SMEs) in a Health and Social Care Trust area of Northern Ireland. The paper aims to focus on engagement with activities within the context of prevention of…
ERIC Educational Resources Information Center
Padachi, Kesseven; Bhiwajee, Soolakshna Lukea
2016-01-01
Purpose: Training is an important component of successful business concerns. However, although there is growing acceptance amongst scholars that small- and medium-sized enterprises (SMEs) are engines that drive economies across nations, through their contribution in terms of job creation and poverty reduction; extant research portray that these…
Understanding Informal Learning in Small- and Medium-Sized Enterprises in South Korea
ERIC Educational Resources Information Center
Jeong, Shinhee; McLean, Gary N.; Park, Soyoun
2018-01-01
Purpose: This paper aims to explore informal learning experiences among employees working in South Korean small- and medium-sized enterprises (SMEs) with fewer than 100 employees. This study specifically seeks to understand the characteristics of informal learning in Korean SMEs and culturally sensitive contextual factors that shape informal…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bearinger, J P
This months issue has the following articles: (1) Science Translated for the Greater Good--Commentary by Steven D. Liedle; (2) The New Face of Industrial Partnerships--An entrepreneurial spirit is blossoming at Lawrence Livermore; (3) Monitoring a Nuclear Weapon from the Inside--Livermore researchers are developing tiny sensors to warn of detrimental chemical and physical changes inside nuclear warheads; (4) Simulating the Biomolecular Structure of Nanometer-Size Particles--Grand Challenge simulations reveal the size and structure of nanolipoprotein particles used to study membrane proteins; and (5) Antineutrino Detectors Improve Reactor Safeguards--Antineutrino detectors track the consumption and production of fissile materials inside nuclear reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan
If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economiesmore » of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.« less
Effect of particle size distribution on permeability in the randomly packed porous media
NASA Astrophysics Data System (ADS)
Markicevic, Bojan
2017-11-01
An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.
Surface modification of lignocellulosic fibers using high-frequency ultrasound
Jayant B. Gadhe; Ram B. Gupta; Thomas Elder
2005-01-01
Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...
METHOD OF OPPOSING IRRADIATION-INDUCED VISCOSITY INCREASE IN EMPLOYMENT OF ORGANIC FLUIDS
Balt, R.O.
1961-10-24
A method is described for conducting mechanical operations necessitating the use of a lubricant in a medium operaject to reactor irradiation of 0.5 x 10/ sup 12/ to 1 x 10/sup 12/ neut rons/ cm/sup 2//sec. A thiopolyether lubricant such as 16, 19-dioxa-13, 22-dithiatetratriacontane is used. (AEC)
A Compact Nuclear Fusion Reactor for Space Flights
NASA Astrophysics Data System (ADS)
Nastoyashchiy, Anatoly F.
2006-05-01
A small-scale nuclear fusion reactor is suggested based on the concepts of plasma confinement (with a high pressure gas) which have been patented by the author. The reactor considered can be used as a power setup in space flights. Among the advantages of this reactor is the use of a D3He fuel mixture which at burning gives main reactor products — charged particles. The energy balance considerably improves, as synchrotron radiation turn out "captured" in the plasma volume, and dangerous, in the case of classical magnetic confinement, instabilities in the direct current magnetic field configuration proposed do not exist. As a result, the reactor sizes are quite suitable (of the order of several meters). A possibility of making reactive thrust due to employment of ejection of multiply charged ions formed at injection of pellets from some adequate substance into the hot plasma center is considered.
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors.
Lamuka, Peter O; Njeruh, Francis M; Gitao, George C; Matofari, Joseph; Bowen, Richard; Abey, Khalif A
2018-06-01
A cross-sectional study was conducted among 308 lactating camels selected from 15 herds from three different camel milk clusters in Isiolo County, Kenya, to determine prevalence of bovine and avian tuberculosis using Single Comparative Intradermal Tuberculin Skin test. Seventy-five (75) questionnaires were administered to pastoralists/herders, and focus group discussions were conducted among 3-5 pastoralists/herders selected from each camel herd to collect information on camel husbandry and health management practices and knowledge on tuberculosis in livestock and wildlife. An overall prevalence of bovine and avian reactors was 3.57 and 18.18%, respectively, with bovine and avian reactors for different clusters being 2.38, 3.82, and 4.48% and 25, 17.2, and 11.94%, respectively. There was significant difference (p < 0.05) in prevalence of bovine and avian reactors between different clusters. There was a negative correction (r = -0.1399) between herd size and bovine reactors, while there was a positive correlation (r = 0.0445) between herd size and avian reactors. The respondents indicated that camel herds are exposed to several risk factors like close contact with other herds or livestock or wildlife during grazing and at watering points. Pastoralists have poor knowledge on mode of infection and transmission of bovine or avian tuberculosis. The high prevalence of bovine and avian reactors and pastoralists' poor knowledge on mode of transmission signify potential risk to public health.
Analysis of the effect of waste's particle size variations on biodrying method
NASA Astrophysics Data System (ADS)
Kristanto, Gabriel Andari; Zikrina, Masayu Nadiya
2017-11-01
The use of municipal solid waste as energy source can be a solution for Indonesia's increasing energy demand. However, its high moisture content limits the use of solid waste as energy. Biodrying is a method of lowering wastes' moisture content using biological process. This study investigated the effect of wastes' particle size variations on biodrying method. The experiment was performed on 3 lab-scale reactors with the same specifications. Organic wastes with the composition of 50% vegetable wastes and 50% garden wastes were used as substrates. The feedstock was manually shredded into 3 size variations, which were 10 - 40 mm, 50 - 80 mm, and 100 - 300 mm. The experiment lasted for 21 days. After 21 days, it was shown that the waste with the size of 100 - 300 mm has the lowest moisture content, which is 50.99%, and the volatile solids content is still 74.3% TS. This may be caused by the higher free air space of the reactor with the bigger sized substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavinich, W.A.; Yoon, K.K.; Hour, K.Y.
1999-10-01
The present reference toughness method for predicting the change in fracture toughness can provide over estimates of these values because of uncertainties in initial RT{sub NDT} and shift correlations. It would be preferable to directly measure fracture toughness. However, until recently, no standard method was available to characterize fracture toughness in the transition range. ASTM E08 has developed a draft standard that shows promise for providing lower bound transition range fracture toughness using the master curve approach. This method has been successfully implemented using 1T compact fracture specimens. Combustion Engineering reactor vessel surveillance programs do not have compact fracture specimens.more » Therefore, the CE Owners Group developed a program to validate the master curve method for Charpy-sized and reconstituted Charpy-sized specimens for future application on irradiated specimens. This method was validated for Linde 1092 welds using unirradiated Charpy-sized and reconstituted Charpy-sized specimens by comparison of results with those from compact fracture specimens.« less
Goals of thermionic program for space power
NASA Technical Reports Server (NTRS)
English, R. E.
1981-01-01
The thermionic and Brayton reactor concepts were compared for application to space power. For a turbine inlet temperature of 15000 K the Brayton powerplant weighted 5 to 40% less than the thermionic concept. The out of core concept separates the thermionic converters from their reactor. Technical risks are diminished by: (1) moving the insolator out of the reactor; (2) allowing a higher thermal flux for the thermionic converters than is required of the reactor fuel; and (3) eliminating fuel swelling's threat against lifetime of the thermionic converters. Overall performance can be improved by including power processing in system optimization for design and technology on more efficient, higher temperature power processors. The thermionic reactors will be larger than those for competitive systems with higher conversion efficiency and lower reactor operating temperatures. It is concluded that although the effect of reactor size on shield weight will be modest for unmanned spacecraft, the penalty in shield weight will be large for manned or man-tended spacecraft.
Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis
Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.
1996-01-01
This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401
Ikeda, Ryo; Gu, Jianguo
2016-01-01
Whisker hair follicles are sensory organs that sense touch and perform tactile discrimination in animals, and they are sites where sensory impulses are initiated when whisker hairs touch an object. The sensory signals are then conveyed by whisker afferent fibers to the brain for sensory perception. Electrophysiological property and chemical sensitivity of whisker afferent fibers, important factors affecting whisker sensory processing, are largely not known. In the present study, we performed patch-clamp recordings from pre-identified whisker afferent neurons in whole-mount trigeminal ganglion preparations and characterized their electrophysiological property and sensitivity to ATP, serotonin and glutamate. Of 97 whisker afferent neurons examined, 67% of them are found to be large-sized (diameter ≥45 µm) cells and 33% of them are medium- to small-sized (diameter <45 µm) cells. Almost every large-sized whisker afferent neuron fires a single action potential but many (40%) small/medium-sized whisker afferent neurons fire multiple action potentials in response to prolonged stepwise depolarization. Other electrophysiological properties including resting membrane potential, action potential threshold, and membrane input resistance are also significantly different between large-sized and small/medium-sized whisker afferent neurons. Most large-sized and many small/medium-sized whisker afferent neurons are sensitive to ATP and/or serotonin, and ATP and/or serotonin could evoke strong inward currents in these cells. In contrast, few whisker afferent neurons are sensitive to glutamate. Our results raise a possibility that ATP and/or serotonin may be chemical messengers involving sensory signaling for different types of rat whisker afferent fibers.
Dias, Carla; Silva, Corália; Freitas, Claudia; Reis, Alberto; da Silva, Teresa Lopes
2016-07-01
The effect of the culture medium pH (3.5-6.0) on the carotenoid and lipid (as fatty acids) production by the yeast Rhodosporidium toruloides NCYC 921 was studied. Flow cytometry was used to evaluate the yeast's physiological response to different culture medium pH values. The yeast biomass concentration and lipid content were maxima at pH 4.0 (5.90 g/L and 21.85 % w/w, respectively), while the maximum carotenoid content (63.37 μg/g) was obtained at pH 5.0. At the exponential phase, the yeast cell size and internal complexity were similar, at different medium pH. At the stationary phase, the yeast cell size and internal complexity decreased as the medium pH increased. At the exponential phase, the proportion of cells with polarized membranes was always high (>80 %) but at the stationary phase, the proportion of yeast cells with depolarized membranes was dominant (>65 %) and increased with the medium pH increase. The results here reported may contribute for yeast bioprocesses optimization. For the first time, multiparameter flow cytometry was used to evaluate the impact of medium pH changes on the yeast cell physiological status, specifically on the yeast membrane potential, membrane integrity, cell size and internal complexity.
NASA Technical Reports Server (NTRS)
Fang, A.; Pierson, D. L.; Koenig, D. W.; Mishra, S. K.; Demain, A. L.
1997-01-01
Production of the antibacterial polypeptide microcin B17 (MccB17) by Escherichia coli ZK650 was inhibited by simulated microgravity. The site of MccB17 accumulation was found to be different, depending on whether the organism was grown in shaking flasks or in rotating bioreactors designed to establish a simulated microgravity environment. In flasks, the accumulation was cellular, but in the reactors, virtually all the microcin was found in the medium. The change from a cellular site to an extracellular one was apparently not a function of gravity, since extracellular production occurred in these bioreactors, irrespective of whether they were operated in the simulated microgravity or normal gravity mode. More probably, excretion is due to the much lower degree of shear stress in the bioreactors. Addition of even a single glass bead to the 50-ml medium volume in the bioreactor created enough shear to change the site of MccB17 accumulation from the medium to the cells.
Taniguchi, Masaaki; Nakai, Tomoaki; Kohta, Masaaki; Kimura, Hidehito; Kohmura, Eiji
2016-10-01
The etiology of hydrocephalus associated with the small- to medium-sized vestibular schwannomas is still controversial. We investigated tumor-specific factors related to the association of hydrocephalus with small- to medium-sized vestibular schwannomas. Among the 77 patients with vestibular schwannoma smaller than 30 mm, 9 patients demonstrated associated communicating hydrocephalus. Patient medical records, radiologic data, and histopathologic specimens were reviewed retrospectively. The age of the patients, and size, mean apparent diffusion coefficient (ADC) value, and histologic features of the tumors were compared with those of patients without hydrocephalus. The symptoms related to hydrocephalus improved in all patients after tumor removal. Both the mean size and ADC values exhibited a statistically significant difference between the tumors with and without hydrocephalus (P < 0.01). The size and ADC value of the tumor were significantly related to the association with hydrocephalus. The increased tumor ADC value was considered to be the result of degenerative change and suggested the involvement of protein sloughing in the etiology of the associated hydrocephalus. Copyright © 2016 Elsevier Inc. All rights reserved.
Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle
NASA Astrophysics Data System (ADS)
Fic, Adam; Składzień, Jan; Gabriel, Michał
2015-03-01
Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.
Combined synthesis and in situ coating of nanoparticles in the gas phase
NASA Astrophysics Data System (ADS)
Lähde, Anna; Raula, Janne; Kauppinen, Esko I.
2008-12-01
Combined gas phase synthesis and coating of sodium chloride (NaCl) and lactose nanoparticles has been developed using an aerosol flow reactor. Nano-sized core particles were produced by the droplet-to-particle method and coated in situ by the physical vapour deposition of L-leucine vapour. The saturation of L-leucine in the reactor determined the resulting particle size and size distribution. In general, particle size increased with the addition of L-leucine and notable narrowing of the core particle size distribution was observed. In addition, homogeneous nucleation of the vapour, i.e. formation of pure L-leucine particles, was observed depending on the saturation conditions of L-leucine as well as the core particle characteristics. The effects of core particle properties, i.e. size and solid-state characteristics, on the coating process were studied by comparing the results for coated NaCl and lactose particles. During deposition, L-leucine formed a uniform coating on the surface of the core particles. The coating stabilised the nanoparticles and prevented the sintering of particles during storage.
Becker, Jacob; Hald, Peter; Bremholm, Martin; Pedersen, Jan S; Chevallier, Jacques; Iversen, Steen B; Iversen, Bo B
2008-05-01
Nanocrystalline ZrO(2) samples with narrow size distributions and mean particle sizes below 10 nm have been synthesized in a continuous flow reactor in near and supercritical water as well as supercritical isopropyl alcohol using a wide range of temperatures, pressures, concentrations and precursors. The samples were comprehensively characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS), and the influence of the synthesis parameters on the particle size, particle size distribution, shape, aggregation and crystallinity was studied. On the basis of the choice of synthesis parameters either monoclinic or tetragonal zirconia phases can be obtained. The results suggest a critical particle size of 5-6 nm for nanocrystalline monoclinic ZrO(2) under the present conditions, which is smaller than estimates reported in the literature. Thus, very small monoclinic ZrO(2) particles can be obtained using a continuous flow reactor. This is an important result with respect to improvement of the catalytic properties of nanocrystalline ZrO(2).
ERIC Educational Resources Information Center
Chou, Yueh-Ching; Lin, Li-Chan; Pu, Cheng-Yun; Lee, Wan-Ping; Chang, Shu-Chuan
2008-01-01
Background: The disability policy in Taiwan has traditionally emphasized residential care in large institutions and, more recently, medium-sized group homes. This paper compares the relative costs, services provided and outcomes between the traditional institutions, medium-sized group homes and new small-scale community living units that were…
ERIC Educational Resources Information Center
Rodriguez, Blanca; Perez, Maria Angeles; Verdu, Maria Jesus; Navazo, Maria Agustina; Lopez, Ricardo; Mompo, Rafael; Garcia, Joaquin
Lifelong learning is becoming a necessity in the new Information Society where everyone, particularly small and medium sized enterprises (SMEs), must keep up with new technologies. Education and training are of the most importance in this updating. An interdisciplinary and inter-university work group called "Canalejas" (Spain) has…
Successful E-Learning in Small and Medium-Sized Enterprises
ERIC Educational Resources Information Center
Paulsen, Morten Flate
2009-01-01
So far, e-learning has primarily been used when there are many learners involved. The up-front investments related to e-learning are relatively high, and may be perceived as prohibitive for small and medium-sized enterprises (SMEs). Some e-learning is, however, getting less expensive, and some e-learning models are more suited for small-scale…
ERIC Educational Resources Information Center
Findikoglu, Melike Nur
2012-01-01
A two-phased qualitative study was conducted to explore the facilitators of non-local (i.e. domestic or international) partnerships formed by small- and medium-sized firms (SME). Rooted in trust, proximity and dynamic capabilities lenses, the study focused on behaviors of SMEs performing in dynamic, competitive and highly interlinked industry, the…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
... and Medium-Sized Enterprises: Characteristics and Performance AGENCY: United States International... for February 9-10, 2010. The February 9-10 hearing was cancelled when Federal Government activity was... procedures relating to hearings in these investigations in St. Louis, MO, on March 10, 2010, and Portland, OR...
Toward a Singleton Undergraduate Computer Graphics Course in Small and Medium-Sized Colleges
ERIC Educational Resources Information Center
Shesh, Amit
2013-01-01
This article discusses the evolution of a single undergraduate computer graphics course over five semesters, driven by a primary question: if one could offer only one undergraduate course in graphics, what would it include? This constraint is relevant to many small and medium-sized colleges that lack resources, adequate expertise, and enrollment…
An Examination of Library World Wide Web Sites at Medium-Sized Universities.
ERIC Educational Resources Information Center
Tolppanen, Bradley P.; Miller, Joan; Wooden, Martha H.
2000-01-01
Presents the results of a study of Web sites for 133 academic libraries serving medium-sized universities. Suggests that navigational and design aspects need improvement; information should not be included unless it will be accessed and used; and greater use should be made of online tutorials and virtual tours to supplement regular bibliographic…
ERIC Educational Resources Information Center
Allesch, Jurgen; Preiss-Allesch, Dagmar
This report describes a study that identified major databases in operation in the 12 European Community countries that provide small- and medium-sized enterprises with information on opportunities for obtaining training and continuing education. Thirty-five databases were identified through information obtained from telephone interviews or…
The Pauson-Khand reaction of medium sized trans-cycloalkenes.
Lledó, Agustí; Fuster, Aida; Revés, Marc; Verdaguer, Xavier; Riera, Antoni
2013-04-14
Medium sized trans-cycloalkenes are unusually reactive in the intermolecular Pauson-Khand reaction (PKR) with regard to typical monocyclic alkenes. This is due to the ring strain imparted by the E stereochemistry. The PKR of these alkenes offers a modular, regioselective and straightforward entry to trans fused [n.3.0] bicyclic scaffolds (n = 6-8).
ERIC Educational Resources Information Center
Lui, Joseph P.
2013-01-01
Identifying appropriate international distributors for small and medium-sized enterprises (SMEs) in the software industry for overseas markets can determine a firm's future endeavors in international expansion. SMEs lack the complex skills in market research and decision analysis to identify suitable partners to engage in global market entry.…
He, Zhanfei; Geng, Sha; Pan, Yawei; Cai, Chaoyang; Wang, Jiaqi; Wang, Liqiao; Liu, Shuai; Zheng, Ping; Xu, Xinhua; Hu, Baolan
2015-11-15
Nitrite-dependent anaerobic methane oxidation (n-damo) is a potential bioprocess for treating nitrogen-containing wastewater. This process uses methane, an inexpensive and nontoxic end-product of anaerobic digestion, as an external electron donor. However, the low turnover rate and slow growth rate of n-damo functional bacteria limit the practical application of this process. In the present study, the short- and long-term effects of variations in trace metal concentrations on n-damo bacteria were investigated, and the concentrations of trace metal elements of medium were improved. The results were subsequently verified by a group of long-term inoculations (90 days) and were applied in a sequencing batch reactor (SBR) (84 days). The results indicated that iron (Fe(II)) and copper (Cu(II)) (20 and 10 μmol L(-1), respectively) significantly stimulated the activity and the growth of n-damo bacteria, whereas other trace metal elements, including zinc (Zn), molybdenum (Mo), cobalt (Co), manganese (Mn), and nickel (Ni), had no significant effect on n-damo bacteria in the tested concentration ranges. Interestingly, fluorescence in situ hybridization (FISH) showed that a large number of dense, large aggregates (10-50 μm) of n-damo bacteria were formed by cell adhesion in the SBR reactor after using the improved medium, and to our knowledge this is the first discovery of large aggregates of n-damo bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, J.; Kucukboyaci, V. N.; Nguyen, L.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using themore » WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)« less
NASA Astrophysics Data System (ADS)
Kang, Eunha; Lee, Meehye; Brune, William H.; Lee, Taehyoung; Park, Taehyun; Ahn, Joonyoung; Shang, Xiaona
2018-05-01
Atmospheric aerosol particles are a serious health risk, especially in regions like East Asia. We investigated the photochemical aging of ambient aerosols using a potential aerosol mass (PAM) reactor at Baengnyeong Island in the Yellow Sea during 4-12 August 2011. The size distributions and chemical compositions of aerosol particles were measured alternately every 6 min from the ambient air or through the highly oxidizing environment of a potential aerosol mass (PAM) reactor. Particle size and chemical composition were measured by using the combination of a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Inside the PAM reactor, O3 and OH levels were equivalent to 4.6 days of integrated OH exposure at typical atmospheric conditions. Two types of air masses were distinguished on the basis of the chemical composition and the degree of aging: air transported from China, which was more aged with a higher sulfate concentration and O : C ratio, and the air transported across the Korean Peninsula, which was less aged with more organics than sulfate and a lower O : C ratio. For both episodes, the particulate sulfate mass concentration increased in the 200-400 nm size range when sampled through the PAM reactor. A decrease in organics was responsible for the loss of mass concentration in 100-200 nm particles when sampled through the PAM reactor for the organics-dominated episode. This loss was especially evident for the m/z 43 component, which represents less oxidized organics. The m/z 44 component, which represents further oxidized organics, increased with a shift toward larger sizes for both episodes. It is not possible to quantify the maximum possible organic mass concentration for either episode because only one OH exposure of 4.6 days was used, but it is clear that SO2 was a primary precursor of secondary aerosol in northeast Asia, especially during long-range transport from China. In addition, inorganic nitrate evaporated in the PAM reactor as sulfate was added to the particles. These results suggest that the chemical composition of aerosols and their degree of photochemical aging, particularly for organics, are also crucial in determining aerosol mass concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konzek, G.J.
1983-07-01
Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, T.W.
1965-06-04
Process and development activities reported include: depleted uranium irradiations, thoria irradiation, and hot die sizing. Reactor engineering activities include: brittle fracture of 190-C tanks, increased graphite temperature limits for the F reactor, VSR channel caulking, K reactor downcomer flow, zircaloy hydriding, and ribbed zircaloy process tubes. Reactor physics activities include: thoria irradiations, E-D irradiations, boiling protection with the high speed scanner, and in-core flux monitoring. Radiological engineering activities include: radiation control, classification, radiation occurrences, effluent activity data, and well car shielding. Process standards are listed, along with audits, and fuel failure experience. Operational physics and process physics studies are presented.more » Lastly, testing activities are detailed.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Medium, and Large HMIWI 1 Table 1 to Subpart HHH of Part 62 Protection of Environment ENVIRONMENTAL... 62—Emission Limits for Small Rural, Small, Medium, and Large HMIWI Pollutant Units (7 percent oxygen, dry basis at standard conditions) Emission limits HMIWI size Small rural Small Medium Large...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Medium, and Large HMIWI 1 Table 1 to Subpart HHH of Part 62 Protection of Environment ENVIRONMENTAL... 62—Emission Limits for Small Rural, Small, Medium, and Large HMIWI Pollutant Units (7 percent oxygen, dry basis at standard conditions) Emission limits HMIWI size Small rural Small Medium Large...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Medium, and Large HMIWI 1 Table 1 to Subpart HHH of Part 62 Protection of Environment ENVIRONMENTAL... 62—Emission Limits for Small Rural, Small, Medium, and Large HMIWI Pollutant Units (7 percent oxygen, dry basis at standard conditions) Emission limits HMIWI size Small rural Small Medium Large...
[Properties of synthesized CdS nanoparticles by reverse micelle method].
Li, Heng-Da; Wang, Qing-Wei; Zhai, Hong-Ju; Li, Wen-Lian
2008-07-01
Micelle system with reverse phase (water/CTAB/n-hexyl alcohol/n-heptane) is a weenie liquid-globelet of surface active agent molecule which can be stably and uniformly dispersed in continuous oil medium. The micelle system with reverse phase can work as a "micro-reactor" to synthesize CdS nano-particle with excellent performance. In the present article considering the effects of W value (W= [water]/[surface agent]) of the micelle system with reverse phase, we observed that the ratio of [Cd2+] and [S2-] ions to the original concentrations of the Cd2+ and S2- ions can affect the luminescent properties of CdS nano-particle. Using regurgitant treatment process the surface of CdS nano-particle can be modified, and as a result the defect emission was reduced and even disappeared, but exciton emissions markedly increased. On the other hand, a red-shift of the exciton emission peak with the increase in the particle size was observed, indicating considerable quantum confinement effect. A maximum quantum efficiency of 11% for the synthesized CdS nano-material was achieved.
The High Field Ultra Low Aspect Ratio Tokamak (HF-ULART)
NASA Astrophysics Data System (ADS)
Ribeiro, Celso
2017-10-01
Recently, a medium-size HF-ULART has been proposed. The major objective is to explore the high beta and pressure under the high toroidal field, using present day technology. This might be one of pathway scenarios for a potential ultra-compact pulsed neutron source (UCP-NS) based on the spherical tokamak (ST) concept, which may lead to more steady-state NS or even to a fusion reactor, via realistic design scaling. The HF-ULART pulsed mode operation is created by quasi-simultaneous adiabatic compression (AC) in both minor and major radius of a very high beta plasma, possibly with further help of passive-wall stabilization, as envisaged in the RULART concept. This may help the revival of the studies of the AC technique in tokamaks, alongside the less compact and more complex ST-40 device, currently under construction. In addition, by similarities, studies in HF-ULART as a UCP-NS may also help to test the feasibility of the compact NS via the spheromak concept, which also uses the AC technique. Simulations of AC in HF-ULART plasmas will be presented.
Developments and Tendencies in Fission Reactor Concepts
NASA Astrophysics Data System (ADS)
Adamov, E. O.; Fuji-Ie, Y.
This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC) - as an advanced and promising reactor system that offers solutions to the above problems. The difference (not confrontation) between the approaches to nuclear power development based on the principles of “inherent safety” and “natural safety” is demonstrated.
Park, Ji Soon; Park, Hyung Jun; Kim, Sae Hoon; Oh, Joo Han
2015-10-01
Small and medium-sized rotator cuff tears usually have good clinical and anatomic outcomes. However, healing failure still occurs in some cases. To evaluate prognostic factors for rotator cuff healing in patients with only small to medium-sized rotator cuff tears. Case-control study; Level of evidence, 3. Data were prospectively collected from 339 patients with small to medium-sized rotator cuff tears who underwent arthroscopic repair by a single surgeon between March 2004 and August 2012 and who underwent magnetic resonance imaging or computed tomographic arthrography at least 1 year after surgery. The mean age of the patients was 59.8 years (range, 39-80 years), and the mean follow-up time was 20.8 months (range, 12-66 months). The functional evaluation included the visual analog scale (VAS) for pain, American Shoulder and Elbow Surgeons score, Constant-Murley score, and Simple Shoulder Test. Postoperative VAS for pain and functional scores improved significantly compared with preoperative values (P < .001). Forty-five healing failures occurred (13.3%), and fatty degeneration of the infraspinatus muscle, tear size (anteroposterior dimension), and age were significant factors affecting rotator cuff healing (P < .001, = .018, and = .011, respectively) in multivariate logistic regression analysis. Grade II and higher infraspinatus fatty degeneration correlated with a higher failure rate. The failure rate was also significantly higher in patients with a tear >2 cm in size (34.2%) compared with patients with a tear ≤2 cm (10.6%) (P < .001). A receiver operating characteristic curve was used to determine the predictive cut-off value for the oldest age and the largest tear size for successful healing, which were calculated as 69 years and 2 cm, respectively, with a specificity of 90%. In small to medium-sized rotator cuff tears, grade II fatty degeneration of the infraspinatus muscle according to the Goutallier classification could be a reference point for successful healing, and anatomic outcomes might be better if repair is performed before the patient is 69 years old and the tear size exceeds 2 cm. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Li, Qifan; Chen, Yajie; Harris, Vincent G.
2018-05-01
This letter reports an extended effective medium theory (EMT) including particle-size distribution functions to maximize the magnetic properties of magneto-dielectric composites. It is experimentally verified by Co-Ti substituted barium ferrite (BaCoxTixFe12-2xO19)/wax composites with specifically designed particle-size distributions. In the form of an integral equation, the extended EMT formula essentially takes the size-dependent parameters of magnetic particle fillers into account. It predicts the effective permeability of magneto-dielectric composites with various particle-size distributions, indicating an optimal distribution for a population of magnetic particles. The improvement of the optimized effective permeability is significant concerning magnetic particles whose properties are strongly size dependent.
Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors.
Ali, Hany S M; Blagden, Nicholas; York, Peter; Amani, Amir; Brook, Toni
2009-06-28
This study employs artificial neural networks (ANNs) to create a model to identify relationships between variables affecting drug nanoprecipitation using microfluidic reactors. The input variables examined were saturation levels of prednisolone, solvent and antisolvent flow rates, microreactor inlet angles and internal diameters, while particle size was the single output. ANNs software was used to analyse a set of data obtained by random selection of the variables. The developed model was then assessed using a separate set of validation data and provided good agreement with the observed results. The antisolvent flow rate was found to have the dominant role on determining final particle size.
Forced-flow bioreactor for sucrose inversion using ceramic membrane activated by silanization.
Nakajima, M; Watanabe, A; Jimbo, N; Nishizawa, K; Nakao, S
1989-02-20
A forced-flow enzyme membrane reactor system for sucrose inversion was investigated using three ceramic membranes having different pore sizes. Invertase was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-glutaraldehyde technique. With the cross-flow filtration of sucrose solution, the reaction rate was a function of the permeate flux, easily controlled by pressure. Using 0.5 microm support pore size of membrane, the volumetric productivity obtained was 10 times higher than that in a reported immobilized enzyme column reactor, with a short residence time of 5 s and 100% conversion of the sucrose inversion.
Tanner, Sabine A.; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe
2014-01-01
In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation. PMID:24709947
Dynamic modeling of temperature change in outdoor operated tubular photobioreactors.
Androga, Dominic Deo; Uyar, Basar; Koku, Harun; Eroglu, Inci
2017-07-01
In this study, a one-dimensional transient model was developed to analyze the temperature variation of tubular photobioreactors operated outdoors and the validity of the model was tested by comparing the predictions of the model with the experimental data. The model included the effects of convection and radiative heat exchange on the reactor temperature throughout the day. The temperatures in the reactors increased with increasing solar radiation and air temperatures, and the predicted reactor temperatures corresponded well to the measured experimental values. The heat transferred to the reactor was mainly through radiation: the radiative heat absorbed by the reactor medium, ground radiation, air radiation, and solar (direct and diffuse) radiation, while heat loss was mainly through the heat transfer to the cooling water and forced convection. The amount of heat transferred by reflected radiation and metabolic activities of the bacteria and pump work was negligible. Counter-current cooling was more effective in controlling reactor temperature than co-current cooling. The model developed identifies major heat transfer mechanisms in outdoor operated tubular photobioreactors, and accurately predicts temperature changes in these systems. This is useful in determining cooling duty under transient conditions and scaling up photobioreactors. The photobioreactor design and the thermal modeling were carried out and experimental results obtained for the case study of photofermentative hydrogen production by Rhodobacter capsulatus, but the approach is applicable to photobiological systems that are to be operated under outdoor conditions with significant cooling demands.
Tanner, Sabine A; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe
2014-01-01
In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation.
A microprocessor tester for the treat upgrade reactor trip system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenkszus, F.R.; Bucher, R.G.
1985-02-01
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. To improve the analytical extrapolation of test results to full-size assembly bundles, the facility upgrade will increase the maximum size of the test bundle from 7 to 37 fuel pins. By creating a core convertor zone around the test location, the neutron spectrum incident on the test assembly will be hardened and the maximum energy deposited in the sample will be increased. In addition, a programmable Automated Reactor Control System (ARCS) willmore » permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations. A quantitative reliability analysis of the RTS shows that the unreliability, that is, the probability of failure, is acceptable for a 10 hour mission time or risk interval.« less
Ghosh, Jyoti P; Langford, Cooper H; Achari, Gopal
2008-10-16
A detailed performance evaluation of a simple high intensity LED based photoreactor exploiting a narrow wavelength range of the LED to match the spectrum of a dye in a photocatalysis system is reported. A dye sensitized (coumarin-343, lambda max = 446 nm) TiO 2 photocatalyst was used for the degradation of 4-chlorophenol (4-CP) in an aqueous medium using the 436 nm LED based photoreactor. The LED reactor performed competitively with a conventional multilamp reactor and sunlight in the degradation of 4-CP. Light intensities entering the reaction vessel were measured by conventional ferrioxalate actinometry. The results can be fitted by approximate first order kinetic behavior in this system. Hydroxyl radicals were detected by spin trapping EPR, and effects of OH radical quenchers on kinetics suggest that the reaction is initiated by these radicals or their equivalents. LEDs operating at competitive intensities offer a number of advantages to the photochemist or the environmental engineer via long life, efficient current to light conversion, narrow bandwidth, forward directed output, and direct current power for remote operation. Matching light source spectrum to chromophore is a key.
Kujawa-Roeleveld, K; Elmitwalli, T; Zeeman, G
2006-01-01
Anaerobic digestion of concentrated domestic wastewater streams--black or brown water, and solid fraction of kitchen waste is considered as a core technology in a source separation based sanitation concept (DESAR--decentralised sanitation and reuse). A simple anaerobic digester can be implemented for an enhanced primary treatment or, in some situations, as a main treatment. Two reactor configurations were extensively studied; accumulation system (AC) and UASB septic tank at 15, 20 and 25 degrees C. Due to long retention times in an AC reactor, far stabilisation of treated medium can be accomplished with methanisation up to 60%. The AC systems are the most suitable to apply when the volume of waste to be treated is minimal and when a direct reuse of a treated medium in agriculture is possible. Digested effluent contains both liquid and solids. In a UASB septic tank, efficient separation of solids and liquid is accomplished. The total COD removal was above 80% at 25 degrees C. The effluent contains COD and nutrients, mainly in a soluble form. The frequency of excess sludge removal is low and sludge is well stabilised due to a long accumulation time.
Online measurement of viscosity for biological systems in stirred tank bioreactors.
Schelden, Maximilian; Lima, William; Doerr, Eric Will; Wunderlich, Martin; Rehmann, Lars; Büchs, Jochen; Regestein, Lars
2017-05-01
One of the most critical parameters in chemical and biochemical processes is the viscosity of the medium. Its impact on mixing, as well as on mass and energy transfer is substantial. An increase of viscosity with reaction time can be caused by the formation of biopolymers like xanthan or by filamentous growth of microorganisms. In either case the properties of fermentation broth are changing and frequently non-Newtonian behavior are observed, resulting in major challenges for the measurement and control of mixing and mass transfer. This study demonstrates a method for the online determination of the viscosity inside a stirred tank reactor. The presented method is based on online measurement of heat transfer capacity from the bulk medium to the jacket of the reactor. To prove the feasibility of the method, fermentations with the xanthan producing bacterium Xanthomonas campestris pv. campestris B100 as model system were performed. Excellent correlation between offline measured apparent viscosity and online determined heat transfer capacity were found. The developed tool should be applicable to any other process with formation of biopolymers and filamentous growth. Biotechnol. Bioeng. 2017;114: 990-997. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Coetzer, Alan; Redmond, Janice; Sharafizad, Jalleh
2012-01-01
Employees in small and medium-sized enterprises (SMEs) form part of a "disadvantaged" group within the workforce that receives less access to training and development (T&D) than employees in large firms. Prior research into reasons for the relatively low levels of employee participation in training and development has typically…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... Trade Agreement on U.S. small and medium-sized enterprises (SMEs) since entry into force of the... effects of the agreement on the production, distribution, and export strategy of U.S. SMEs, as identified by those SMEs, and describing how U.S. SMEs have benefited from specific provisions of the agreement...
Worldwide Report, Arms Control.
1985-10-11
active, innovative organizations—an indispensable force during the conception and start-up phase of new technologies—with heavyweight structures...This triangular coopera- tion— innovative PME [Small- and Medium-Sized Business]-big enterprises- government—is at work on the American continent, in...CSEE [Signals and Electrical Enterprises Company], and some innovative PME’s [Small- and Medium-Sized Business(es)] such as AID [expansion unknown] at
ERIC Educational Resources Information Center
Dejonckheere, J.; Ramioul, M.; Van Hootegem, G.
This report addresses small and medium-sized enterprises' (SMEs') role in the changing international division of labor and trade in information service activities. Chapter 2 describes the EMERGENCE project to map and measure eWork. Chapter 3 reviews literature that shows SMEs account for the overwhelming majority of companies and make a crucial…
ERIC Educational Resources Information Center
Walker, David; Livadas, Lelia; Miles, Gail
2011-01-01
This research investigated Irish Small to Medium Sized Educational Institutions (SMSEs) involved in Higher Education (HE) that adopted Moodle, the OSS (Open Source Software) course management system (CMS). As Moodle has only been adopted in the Irish HE sector in the last 5-7 years, this research crucially studied the attitudes of the SMSEs that…
NASA Astrophysics Data System (ADS)
Möller, Thomas; Bellin, Knut; Creutzburg, Reiner
2015-03-01
The aim of this paper is to show the recent progress in the design and prototypical development of a software suite Copra Breeder* for semi-automatic generation of test methodologies and security checklists for IT vulnerability assessment in small and medium-sized enterprises.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Applicability of corrosion control treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper...
ERIC Educational Resources Information Center
Goldfinch, Judy
1996-01-01
A study compared the effectiveness of two methods (medium-size class instruction and large lectures with tutorial sessions) for teaching mathematics and statistics to first-year business students. Students and teachers overwhelmingly preferred the medium-size class method, which produced higher exam scores but had no significant effect on…
78 FR 69047 - Travel and Tourism Trade Mission to Taiwan, Japan and Korea
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... notify applicants that the fee for each additional participant (SME or larger) is $700 per participant... fee will be $1,400 for a small or medium-sized enterprise (SME) and $1,625 for large firms. For... participation fee will be $1,725 for a small or medium-sized enterprise (SME) and $1,925 for large firms. For...
ERIC Educational Resources Information Center
Sooraksa, Nanta
2012-01-01
This paper describes a career development program for staff involved in providing training for small- and medium-sized enterprises (SMEs) in Thailand. Most of these staff were professional vocational teachers in schools. The program uses information communication technology (ICT), and its main objective is to teach Moodle software as a tool for…
ERIC Educational Resources Information Center
Stamas, Paul J.
2013-01-01
This case study research followed the two-year transition of a medium-sized manufacturing firm towards a service-oriented enterprise. A service-oriented enterprise is an emerging architecture of the firm that leverages the paradigm of services computing to integrate the capabilities of the firm with the complementary competencies of business…
ERIC Educational Resources Information Center
Laidlaw, Gregory
2013-01-01
The purpose of this study is to evaluate the use of Lean/Agile principles, using action research to develop and deploy new technology for Small and Medium sized enterprises. The research case was conducted at the Lapeer County Sheriff's Department and involves the initial deployment of a Service Oriented Architecture to alleviate the data…
ERIC Educational Resources Information Center
European Training Foundation, Turin (Italy).
This report brings together a number of principles as to best practice in supporting, through training, growth of small and medium-sized enterprises (SMEs) in Central and Eastern Europe. Chapter 2 identifies key principles to be drawn from the West through a literature review. Chapter 3 reviews the "practice" of entrepreneurial training…
Workplace Education Programs in Small and Medium-Sized Michigan Firms. Staff Working Paper 92-13.
ERIC Educational Resources Information Center
Hollenbeck, Kevin; Anderson, William
A project collected data from small and medium-sized firms (employing fewer than 500) in Michigan concerning workplace education programs. It addressed why firms were or were not offering programs, program characteristics, and program impacts on firms and employees. Case studies of 28 businesses were undertaken from May 1991-July 1992 and a…
Martinez, Luis F; Ferreira, Aristides I; Can, Amina B
2016-04-01
Based on Szulanski's knowledge transfer model, this study examined how the communicational, motivational, and sharing of understanding variables influenced knowledge transfer and change processes in small- and medium-sized enterprises, particularly under projects developed by funded programs. The sample comprised 144 entrepreneurs, mostly male (65.3%) and mostly ages 35 to 45 years (40.3%), who filled an online questionnaire measuring the variables of "sharing of understanding," "motivation," "communication encoding competencies," "source credibility," "knowledge transfer," and "organizational change." Data were collected between 2011 and 2012 and measured the relationship between clients and consultants working in a Portuguese small- and medium-sized enterprise-oriented action learning program. To test the hypotheses, structural equation modeling was conducted to identify the antecedents of sharing of understanding, motivational, and communicational variables, which were positively correlated with the knowledge transfer between consultants and clients. This transfer was also positively correlated with organizational change. Overall, the study provides important considerations for practitioners and academicians and establishes new avenues for future studies concerning the issues of consultant-client relationship and the efficacy of Government-funded programs designed to improve performance of small- and medium-sized enterprises. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
1981-01-01
The results of the free space reactor experimental work are summarized. Overall, the objectives were achieved and the unit can be confidently scaled to the EPSDU size based on the experimental work and supporting theoretical analyses. The piping and instrumentation of the fluidized bed reactor was completed.
Biofuel from jute stick by pyrolysis technology
NASA Astrophysics Data System (ADS)
Ferdous, J.; Parveen, M.; Islam, M. R.; Haniu, H.; Takai, K.
2017-06-01
In this study the conversion of jute stick into biofuels and chemicals by externally heated fixed-bed pyrolysis reactor have been taken into consideration. The solid jute stick was characterized through proximate and ultimate analysis, gross calorific values and thermo-gravimetric analysis to investigate their suitability as feedstock for this consideration. The solid biomass particles were fed into the reactor by gravity feed type reactor feeder. The products were oil, char and gases. The liquid and char products were collected separately while the gas was flared into the atmosphere. The process conditions were varied by fixed-bed temperature; feed stock particle size, N2 gas flow rate and running time. All parameters were found to influence the product yields significantly. The maximum liquid yields were 50 wt% of solid jute stick at reactor temperature 425°C for N2 gas flow rate 6 l/min, feed particle size 1180-1700 µm and running time 30 min. Liquid products obtained at these conditions were characterized by physical properties, chemical analysis and GC-MS techniques. The results show that it is possible to obtained liquid products that are comparable to petroleum fuels and valuable chemical feedstock from the selected biomass if the pyrolysis conditions are chosen accordingly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachs, Marius; Schmidt, Jochen; Peukert, Wolfgang
2016-03-09
The recent development of rapid prototyping technologies towards additive manufacturing reveals some major drawbacks of processes such as laser beam melting (LBM). This contribution focuses on the lack of suitable polymer material with a fine particle size and good flowability. Polymer particles obtained by a wet grinding process 1 are treated in a heated downer reactor. This treatment changes the particles’ morphology from a chiselled state towards a spherical form by surface tension forces in a molten state 2 and leads to an improved flowability. To reach the required amount of rounded polymer powder, a downer reactor in semi-industrial scalemore » has been established and will be characterized in this article. For the purpose of particle rounding it is necessary to avoid contact of molten particles with each other and with the hot reactor walls. Furthermore, the heat distribution has been investigated as one of the key parameters of the process. Finally, a proof of concept by rounding wet grinded PBT material was successfully conducted. The product was examined to obtain data about a change in particle size and flowability.« less
Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading.
Bassani, Ilaria; Kougias, Panagiotis G; Treu, Laura; Porté, Hugo; Campanaro, Stefano; Angelidaki, Irini
2017-06-01
This study evaluates the efficiency of four novel up-flow reactors for ex situ biogas upgrading converting externally provided CO 2 and H 2 to CH 4 , via hydrogenotrophic methanogenesis. The gases were injected through stainless steel diffusers combined with alumina ceramic sponge or through alumina ceramic membranes. Pore size, input gas loading and gas recirculation flow rate were modulated to optimize gas-liquid mass transfer, and thus methanation efficiency. Results showed that larger pore size diffusion devices achieved the best kinetics and output-gas quality converting all the injected H 2 and CO 2 , up to 3.6L/L REACTOR ·d H 2 loading rate. Specifically, reactors' CH 4 content increased from 23 to 96% and the CH 4 yield reached 0.25L CH4/ L H2 . High throughput 16S rRNA gene sequencing revealed predominance of bacteria belonging to Anaerobaculum genus and to uncultured order MBA08. Additionally, the massive increase of hydrogenotrophic methanogens, such as Methanothermobacter thermautotrophicus, and syntrophic bacteria demonstrates the selection-effect of H 2 on community composition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distribution of radionuclides in Dardanelle Reservoir sediments.
Forgy, J R; Epperson, C E; Swindle, D L
1984-02-01
Natural and reactor-discharged gamma-ray emitting radionuclides were measured in Dardanelle Reservoir surface sediments taken near the Arkansas Nuclear One Power Plant site. Samples represented several water depths and particle sizes, at 33 locations, in a field survey conducted in early September 1980. Radionuclide contents of dry sediments ranged as follows: natural radioactivity (40K as well as uranium and thorium decay products) 661-1210 Bq/kg; and reactor discharged radioactivity (137Cs, 134Cs, 60Co,, 58Co, 54Mn), no detectable activity to 237 Bq/kg. In general, radionuclide contents were positively correlated with decreasing sediment particle size. The average external whole-body and skin doses from all measurable reactor-discharged radionuclides were calculated according to the mathematical formula for determining external dose from sediment given by the U.S. Nuclear Regulatory Commission (NRC). Inside the discharge embayment near the reactor discharge canal, the doses were 1.7 X 10(-3) mSv/yr to the whole body and 2.0 X 10(-3) mSv/yr to the skin. Outside this area, the doses were 0.15 X 10(-3) and 0.18 X 10(-3) mSv/yr to the whole body and skin, respectively.
How Thinking About the Donor Influences Post-traumatic Growth in Liver Transplant Recipients.
Martín-Rodríguez, A; Pérez-San-Gregorio, M Á; Avargues-Navarro, M L; Borda-Mas, M; Pérez-Bernal, J; Gómez-Bravo, M Á
2018-03-01
The aim of this work was to find out whether thinking frequently about the donor influences post-traumatic growth of liver transplant recipients. The sample of 240 patients selected was made up of 185 men and 55 women with an overall mean age of 60.21 (SD 9.3) years. All of them had received liver transplants from cadaver donors. Transplant recipients were asked whether they thought frequently about the donor (yes or no) and filled out the Post-traumatic Growth Inventory. The t test for unpaired samples was applied to analyze how thinking frequently about the donor or not influenced post-traumatic growth. We also calculated the effect sizes by means of Cohen d or Cohen w depending on the nature of the variables analyzed (quantitative or qualitative). The liver transplant recipients who thought frequently about the donor, compared with those who did not, had higher total scores on post-traumatic growth (P = .000; d = 0.57; medium effect size). Furthermore, considering the effect sizes, the differences between the subgroups were more relevant on the following subscales: new possibilities (P = .000; d = 0.53; medium effect size), appreciation of life (P = .000; d = 0.60; medium effect size), and spiritual change (P = .000; d = 0.54; medium effect size). Patients who think frequently about the donor have more post-traumatic growth than those who do not. Copyright © 2017 Elsevier Inc. All rights reserved.
Srivastava, Smita; Srivastava, A K
2012-11-01
Present investigation involves hairy root cultivation of Azadirachta indica in a modified stirred tank reactor under optimized culture conditions for maximum volumetric productivity of azadirachtin. The selected hairy root line (Az-35) was induced via Agrobacterium rhizogenes LBA 920-mediated transformation of A. indica leaf explants (Coimbatore variety, India). Liquid culture of the hairy roots was developed in a modified Murashige and Skoog medium (MM2). To further enhance the productivity of azadirachtin, selected growth regulators (1.0 mg/l IAA and 0.025 mg/l GA(3)), permeabilizing agent (0.5 % v/v DNBP), a biotic elicitor (1 % v/v Curvularia (culture filtrate)) and an indirectly linked biosynthetic precursor (50 mg/l cholesterol) were added in the growth medium on 15th day of the hairy root cultivation period in shake flask. Highest azadirachtin production (113 mg/l) was obtained on 25th day of the growth cycle with a biomass of 21 g/l DW. Further, batch cultivation of hairy roots was carried out in a novel liquid-phase bioreactor configuration (modified stirred tank reactor with polyurethane foam as root support) to investigate the possible scale-up of the established A. indica hairy root culture. A biomass production of 15.2 g/l with azadirachtin accumulation in the hairy roots of 6.4 mg/g (97.28 mg/l) could be achieved after 25 days of the batch cultivation period, which was ~27 and ~14 % less biomass and azadirachtin concentration obtained respectively, in shake flasks. An overall volumetric productivity of 3.89 mg/(l day) of azadirachtin was obtained in the bioreactor.
NASA Astrophysics Data System (ADS)
Yang, Guang; Weigand, Bernhard
2018-04-01
The pressure-driven gas transport characteristics through a porous medium consisting of arrays of discrete elements is investigated by using the direct simulation Monte Carlo (DSMC) method. Different porous structures are considered, accounting for both two- and three-dimensional arrangements of basic microscale and nanoscale elements. The pore scale flow patterns in the porous medium are obtained, and the Knudsen diffusion in the pores is studied in detail for slip and transition flow regimes. A new effective pore size of the porous medium is defined, which is a function of the porosity, the tortuosity, the contraction factor, and the intrinsic permeability of the porous medium. It is found that the Klinkenberg effect in different porous structures can be fully described by the Knudsen number characterized by the effective pore size. The accuracies of some widely used Klinkenberg correlations are evaluated by the present DSMC results. It is also found that the available correlations for apparent permeability, most of which are derived from simple pipe or channel flows, can still be applicative for more complex porous media flows, by using the effective pore size defined in this study.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Medium, and Large HMIWI 1 Table 1 to Subpart HHH of Part 62 Protection of Environment ENVIRONMENTAL... Part 62—Emission Limits for Small Rural, Small, Medium, and Large HMIWI For the air pollutant You must meet this emissions limit HMIWI size Small rural Small Medium Large With these units(7 percent oxygen...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Medium and Large HMIWI 1 Table 1 to Subpart HHH of Part 62 Protection of Environment ENVIRONMENTAL... Part 62—Emissions Limits for Small Rural, Small, Medium and Large HMIWI For the air pollutant You must meet this emissions limit HMIWI size Small rural Small Medium Large With these units(7 percent oxygen...
Abrecht, David G; Schwantes, Jon M
2015-03-03
This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.
A brief history of design studies on innovative nuclear reactors
NASA Astrophysics Data System (ADS)
Sekimoto, Hiroshi
2014-09-01
In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970's the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980's the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.
Nucleon QCD sum rules in the instanton medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryskin, M. G.; Drukarev, E. G., E-mail: drukarev@pnpi.spb.ru; Sadovnikova, V. A.
2015-09-15
We try to find grounds for the standard nucleon QCD sum rules, based on a more detailed description of the QCD vacuum. We calculate the polarization operator of the nucleon current in the instanton medium. The medium (QCD vacuum) is assumed to be a composition of the small-size instantons and some long-wave gluon fluctuations. We solve the corresponding QCD sum rule equations and demonstrate that there is a solution with the value of the nucleon mass close to the physical one if the fraction of the small-size instantons contribution is w{sub s} ≈ 2/3.
Laser-induced incandescence of titania nanoparticles synthesized in a flame
NASA Astrophysics Data System (ADS)
Cignoli, F.; Bellomunno, C.; Maffi, S.; Zizak, G.
2009-09-01
Laser induced incandescence experiments were carried out in a flame reactor during titania nanoparticle synthesis. The structure of the reactor employed allowed for a rather smooth particle growth along the flame axis, with limited mixing of different size particles. Particle incandescence was excited by the 4th harmonic of a Nd:YAG laser. The radiation emitted from the particles was recorded in time and checked by spectral analysis. Results were compared with measurements from transmission electron microscopy of samples taken at the same locations probed by incandescence. This was done covering a portion of the flame length within which a particle size growth of a factor of about four was detected . The incandescence decay time was found to increase monotonically with particle size. The attainment of a process control tool in nanoparticle flame synthesis appears to be realistic.
High Throughput Plasma Water Treatment
NASA Astrophysics Data System (ADS)
Mujovic, Selman; Foster, John
2016-10-01
The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).
Study of dynamics of glucose-glucose oxidase-ferricyanide reaction
NASA Astrophysics Data System (ADS)
Nováková, A.; Schreiberová, L.; Schreiber, I.
2011-12-01
This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.
Demeter, Marc A; Lemire, Joseph A; Mercer, Sean M; Turner, Raymond J
2017-03-01
Bacteria are often found tolerating polluted environments. Such bacteria may be exploited to bioremediate contaminants in controlled ex situ reactor systems. One potential strategic goal of such systems is to harness microbes directly from the environment such that they exhibit the capacity to markedly degrade organic pollutants of interest. Here, the use of biofilm cultivation techniques to inoculate and activate moving bed biofilm reactor (MBBR) systems for the degradation of polycyclic aromatic hydrocarbons (PAHs) was explored. Biofilms were cultivated from 4 different hydrocarbon contaminated sites using a minimal medium spiked with the 16 EPA identified PAHs. Overall, all 4 inoculant sources resulted in biofilm communities capable of tolerating the presence of PAHs, but only 2 of these exhibited enhanced PAH catabolic gene prevalence coupled with significant degradation of select PAH compounds. Comparisons between inoculant sources highlighted the dependence of this method on appropriate inoculant screening and biostimulation efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of UWCC MOX fuel measurements to MCNP-REN calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhold, M.; Baker, M.; Jie, R.
1998-12-31
The development of neutron coincidence counting has greatly improved the accuracy and versatility of neutron-based techniques to assay fissile materials. Today, the shift register analyzer connected to either a passive or active neutron detector is widely used by both domestic and international safeguards organizations. The continued development of these techniques and detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model, as it is currently used, fails to accurately predict detector response in highly multiplying mediums such as mixed-oxide (MOX) lightmore » water reactor fuel assemblies. For this reason, efforts have been made to modify the currently used Monte Carlo codes and to develop new analytical methods so that this model is not required to predict detector response. The authors describe their efforts to modify a widely used Monte Carlo code for this purpose and also compare calculational results with experimental measurements.« less
Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Bourdais, Florian, E-mail: florian.lebourdais@cea.fr; Marchand, Benoit, E-mail: florian.lebourdais@cea.fr
2015-03-31
Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of amore » newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.« less
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.
2018-01-01
Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of neutron flux in the reactor core.
Characterization of elemental release during microbe-basalt interactions
NASA Astrophysics Data System (ADS)
Wu, L.; Jacobson, A. D.; Hausner, M.
2006-12-01
This study used batch reactors to characterize the rates, mechanisms, and stoichiometry of elemental release during the interaction of Burkholderia fungorum, a common soil microbe, with Columbia River Flood Basalt at 28°C for 36 d. We especially focused on the release of Ca, Mg, P, Si, and Sr under a variety of biotic and abiotic conditions with the ultimate aim of evaluating how actively metabolizing bacteria might influence basalt weathering on the continents. Four days after inoculating P-limited reactors (those lacking P in the growth medium), pH decreased from ~7 to 4, and glucose was depleted. Theoretical calculations suggest that the lowered pH resulted from the release of organic acids and/or CO2. Purely abiotic control reactors as well as control reactors containing nonviable cells showed constant glucose concentrations and near-neutral pH. Over the entire 36 day period, the P-limited reactors yielded Ca, Mg, Si, and Sr release rates several times higher than those observed in the P-bearing biotic reactors and the abiotic controls. Release rates directly correlate with pH, indicating that proton-promoted dissolution was the dominant reaction mechanism. Ligand- promoted dissolution was probably less important because the P-limited and P-bearing reactors experienced nearly identical rates of microbial growth, but the P-bearing reactors displayed overall lower dissolution rates at near-neutral pH, where presumably, the effect of ligand-promoted dissolution would be most evident. Chemical analyses of bacteria collected at the end of the experiments, combined with mass-balances between the biological and fluid phases, demonstrate that the low P concentration in the biotic reactors was an artifact of P uptake during microbial growth. These findings suggest that when bacteria utilize basalt as a nutrient source, they can potentially elevate the rate of long-term atmospheric CO2 consumption by Ca-Mg silicate weathering by a factor of 5 over the corresponding inorganic rate.
Demonstration of catalytic combustion with residual fuel
NASA Technical Reports Server (NTRS)
Dodds, W. J.; Ekstedt, E. E.
1981-01-01
An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.
Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki; Miura, Ryosuke
2015-09-30
Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design.more » The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.« less
Manoj, Valsa Remony; Vasudevan, Namasivayam
2012-03-01
Ideal bacterial support medium for fixed film denitrification processes/bioreactors must be inexpensive, durable and possess large surface area with sufficient porosity. The present study has been focussed on removing nitrate nitrogen at two different nitrate nitrogen loading rates (60 (NLR I) and 120 (NLR II) mg l(-1)) from simulated aquaculture wastewater. Coconut coir fibre and a commercially available synthetic reticulated plastic media (Fujino Spirals) were used as packing medium in two independent upflow anaerobic packed bed column reactors. Removal of nitrate nitrogen was studied in correlation with other nutrients (COD, TKN, dissolved orthophosphate). Maximum removal of 97% at NLR-I and 99% at NLR - II of nitrate nitrogen was observed in with either media. Greater consistency in the case of COD removal of upto 81% was observed at NLR II where coconut coir was used as support medium compared to 72% COD removal by Fujino Spirals. The results observed indicate that the organic support medium is just as efficient in nitrate nitrogen removal as conventionally used synthetic support medium. The study is important as it specifically focuses on denitrification of aquaculture wastewater using cheaper organic support medium in anoxic bioreactors for the removal of nitrate nitrogen; which is seldom addressed as a significant problem.
Applicability of the Effective-Medium Approximation to Heterogeneous Aerosol Particles.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li
2016-01-01
The effective-medium approximation (EMA) is based on the assumption that a heterogeneous particle can have a homogeneous counterpart possessing similar scattering and absorption properties. We analyze the numerical accuracy of the EMA by comparing superposition T-matrix computations for spherical aerosol particles filled with numerous randomly distributed small inclusions and Lorenz-Mie computations based on the Maxwell-Garnett mixing rule. We verify numerically that the EMA can indeed be realized for inclusion size parameters smaller than a threshold value. The threshold size parameter depends on the refractive-index contrast between the host and inclusion materials and quite often does not exceed several tenths, especially in calculations of the scattering matrix and the absorption cross section. As the inclusion size parameter approaches the threshold value, the scattering-matrix errors of the EMA start to grow with increasing the host size parameter and or the number of inclusions. We confirm, in particular, the existence of the effective-medium regime in the important case of dust aerosols with hematite or air-bubble inclusions, but then the large refractive-index contrast necessitates inclusion size parameters of the order of a few tenths. Irrespective of the highly restricted conditions of applicability of the EMA, our results provide further evidence that the effective-medium regime must be a direct corollary of the macroscopic Maxwell equations under specific assumptions.
Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel M. Wachs; Richard G. Ambrosek; Gray Chang
2006-10-01
Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progressmore » toward element testing will be reviewed.« less
NASA Astrophysics Data System (ADS)
Among the topics discussed are the nuclear fuel cycle, advanced nuclear reactor designs, developments in central status power reactors, space nuclear reactors, magnetohydrodynamic devices, thermionic devices, thermoelectric devices, geothermal systems, solar thermal energy conversion systems, ocean thermal energy conversion (OTEC) developments, and advanced energy conversion concepts. Among the specific questions covered under these topic headings are a design concept for an advanced light water breeder reactor, energy conversion in MW-sized space power systems, directionally solidified cermet electrodes for thermionic energy converters, boron-based high temperature thermoelectric materials, geothermal energy commercialization, solar Stirling cycle power conversion, and OTEC production of methanol. For individual items see A84-30027 to A84-30055
Foam Flow Through a 2D Porous Medium: Evolution of the Bubble Size Distribution
NASA Astrophysics Data System (ADS)
Meheust, Y.; Géraud, B.; Cantat, I.; Dollet, B.
2017-12-01
Foams have been used for decades as displacing fluids for EOR and aquifer remediation, and more recently as carriers of chemical amendments for remediation of the vadose zone. Bulk foams are shear-thinning fluids; but for foams with bubbles of order at least the typical pore size of the porous medium, the rheology cannot be described at the continuum scale, as viscous dissipation occurs mostly at the contact between soap films and solid walls. We have investigated the flow of an initially monodisperse foam through a transparent 2D porous medium[1]. The resulting complex flow phenomenology has been characterized quantitatively from optical measurements of the bubble dynamics. In addition to preferential flow path and local flow intermittency, we observe an irreversible evolution of the probability density function (PDF) for bubbles size as bubbles travel along the porous medium. This evolution is due to bubble fragmentation by lamella division, which is by far the dominant mechanism of film creation/destruction. We measure and characterize this evolution of the PDF as a function of the experimental parameters, and model it numerically based on a fragmentation equation, with excellent agreement. The model uses two ingredients obtained from the experimental data, namely the statistics of the bubble fragmentation rate and of the fragment size distributions[2]. It predicts a nearly-universal scaling of all PDFs as a function of the bubble area normalized by the initial mean bubble area. All the PDFs measured in various experiments, with different mean flow velocities, initial bubble sizes and foam qualities, collapse on a master distribution which is only dependent on the geometry of the medium.References:[1] B. Géraud, S. A. Jones, I. Cantat, B. Dollet & Y. Méheust (2016), WRR 52(2), 773-790. [2] B. Géraud, Y. Méheust, I. Cantat & B. Dollet (2017), Lamella division in a foam flowing through a two-dimensional porous medium: A model fragmentation process, PRL 118, 098003.
FUEL ELEMENT FOR NUCLEAR REACTORS
Dickson, J.J.
1963-09-24
A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)
The benefits of a fast reactor closed fuel cycle in the UK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregg, R.; Hesketh, K.
2013-07-01
The work has shown that starting a fast reactor closed fuel cycle in the UK, requires virtually all of Britain's existing and future PWR spent fuel to be reprocessed, in order to obtain the plutonium needed. The existing UK Pu stockpile is sufficient to initially support only a modest SFR 'closed' fleet assuming spent fuel can be reprocessed shortly after discharge (i.e. after two years cooling). For a substantial fast reactor fleet, most Pu will have to originate from reprocessing future spent PWR fuel. Therefore, the maximum fast reactor fleet size will be limited by the preceding PWR fleet size,more » so scenarios involving fast reactors still require significant quantities of uranium ore indirectly. However, once a fast reactor fuel cycle has been established, the very substantial quantities of uranium tails in the UK would ensure there is sufficient material for several centuries. Both the short and long term impacts on a repository have been considered in this work. Over the short term, the decay heat emanating from the HLW and spent fuel will limit the density of waste within a repository. For scenarios involving fast reactors, the only significant heat bearing actinide content will be present in the final cores, resulting in a 50% overall reduction in decay energy deposited within the repository when compared with an equivalent open fuel cycle. Over the longer term, radiological dose becomes more important. Total radiotoxicity (normalised by electricity generated) is lower for scenarios with Pu recycle after 2000 years. Scenarios involving fast reactors have the lowest radiotoxicity since the quantities of certain actinides (Np, Pu and Am) eventually stabilise. However, total radiotoxicity as a measure of radiological risk does not account for differences in radionuclide mobility once in repository. Radiological dose is dominated by a small number of fission products so is therefore not affected significantly by reactor type or recycling strategy (since the fission product will primarily be a function of nuclear energy generated). However, by reprocessing spent fuel, it is possible to immobilise the fission product in a more suitable waste form that has far more superior in-repository performance. (authors)« less
A Hair & a Fungus: Showing Kids the Size of a Microbe
ERIC Educational Resources Information Center
Richter, Dana L.
2013-01-01
A simple method is presented to show kids the size of a microbe--a fungus hypha--compared to a human hair. Common household items are used to make sterile medium on a stove or hotplate, which is dispensed in the cells of a weekly plastic pill box. Mold fungi can be easily and safely grown on the medium from the classroom environment. A microscope…
ERIC Educational Resources Information Center
Bills, Linda G.; Wilford, Valerie
A project was conducted from 1980 to 1982 to determine the costs and benefits of OCLC use in 29 small and medium-sized member libraries of the Illinois Valley Library System (IVLS). Academic, school, public, and special libraries participated in the project. Based on written attitude surveys of and interviews with library directors, staff,…
ERIC Educational Resources Information Center
Pukkinen, Tommi; Romijn, Clemens; Elson-Rogers, Sarah
There are three main parts to this report of a study that used case studies to showcase the different approaches used to encourage more continuing training within small and medium-sized enterprises (SMEs) across the European Union (EU). Section 1 discusses the importance of funding training in SMEs and highlights the various types of funding…
ERIC Educational Resources Information Center
Boudet, Rene
An examination of the ways in which vocational training can be extended to small and medium-sized enterprises in the European Economic Community, this document consists of: an introduction; four parts containing multiple chapters; 10 case studies; and a bibliography. Following the introduction, which is an update of a report made in 1985, part one…
ERIC Educational Resources Information Center
Horak, Stephan M.
Intended to aid librarians in small- and medium-sized libraries and media centers, this annotated bibliography lists 1,555 books focusing on the Soviet Union and Eastern Europe. The book is divided into four parts: (1) "General and Interrelated Themes--Union of the Soviet Socialist Republics and Eastern European Countries"; (2)…
ERIC Educational Resources Information Center
Cereola, Sandra J.; Wier, Benson; Norman, Carolyn Strand
2012-01-01
Based on the large number of small and medium-sized enterprises (SMEs) in the United States, their increasing interest in enterprise-wide software systems and their impact on the US economy, it is important to understand the determinants that can facilitate the successful implementation and assimilation of such technology into these firms' daily…
Zhou, Jia-Heng; Zhao, Hang; Hu, Miao; Yu, Hai-Tian; Xu, Xiang-Yang; Vidonish, Julia; Alvarez, Pedro J J; Zhu, Liang
2015-12-01
Initial cell aggregation plays an important role in the formation of aerobic granules. In this study, three parallel aerobic granular sludge reactors treating low-strength wastewater were established using granular activated carbon (GAC) of different sizes as the nucleating agent. A novel visual quantitative evaluation method was used to discern how GAC size affects velocity field differences (GAC versus flocs) and aggregation behavior during sludge granulation. Results showed that sludge granulation was significantly enhanced by addition of 0.2mm GAC. However, there was no obvious improvement in granulation in reactor amended with 0.6mm GAC. Hydraulic analysis revealed that increase of GAC size enhanced the velocity field difference between flocs and GAC, which decreased the lifecycle and fraction of flocs-GAC aggregates. Overall, based on analysis of aggregation behavior, GAC of suitable sizes (0.2mm) can serve as the nucleating agent to accelerate flocs-GAC coaggregation and formation of aerobic granules. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lowest-energy cage structures of medium-sized ( ZnO )n clusters with n = 15 - 24
NASA Astrophysics Data System (ADS)
Tang, Lingli; Sai, Linwei; Zhao, Jijun; Qiu, Ruifeng
2015-01-01
Fullerene-like cage structures of medium-sized ( ZnO )n clusters with n = 15 - 24 were generated by spiral algorithm and optimized using density functional theory calculations. Most of these lowest-energy cage structures contain only four-membered and six-membered rings, whereas eight-membered rings were found in the lowest-energy cages of ( ZnO )n (n = 19, 20, 23, 24). Our best cage configurations either reproduce or prevail the previously reported ones. The size-dependent electronic properties were also discussed.
Lowest-energy cage structures of medium-sized (ZnO){sub n} clusters with n = 15 − 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Lingli; Sai, Linwei; Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn
2015-01-22
Fullerene-like cage structures of medium-sized (ZnO){sub n} clusters with n = 15 − 24 were generated by spiral algorithm and optimized using density functional theory calculations. Most of these lowest-energy cage structures contain only four-membered and six-membered rings, whereas eight-membered rings were found in the lowest-energy cages of (ZnO){sub n} (n = 19, 20, 23, 24). Our best cage configurations either reproduce or prevail the previously reported ones. The size-dependent electronic properties were also discussed.
Fermentative process for making inorganic nanoparticles
Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won; Roh, Yul
2006-06-13
A method for producing mixed metal oxide compounds includes the steps of: providing a supply of a metal reducing bacteria; providing a culture medium suitable for growth of the bacteria; providing a first mixed metal oxide phase comprising at least a first and a second metal, at least one of the first and second metal being reducible from a higher to a lower oxidation state by the bacteria; and, combining the bacteria, the culture medium, the first mixed metal oxide, and at least one electron donor in a reactor, wherein the bacteria reduces at least one of the first metal and the second metal from the higher to the lower oxidation state to form a second mixed metal oxide phase.
NUCLEAR FLASH TYPE STEAM GENERATOR
Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.
1962-09-01
A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)
Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems.
Jonczyk, Patrick; Takenberg, Meike; Hartwig, Steffen; Beutel, Sascha; Berger, Ralf G; Scheper, Thomas
2013-09-20
Technical scale (≥5l) cultivations of shear stress sensitive microorganisms are often difficult to perform, as common bioreactors are usually designed to maximize the oxygen input into the culture medium. This is achieved by mechanical stirrers, causing high shear stress. Examples for shear stress sensitive microorganisms, for which no specific cultivation systems exist, are many anaerobic bacteria and fungi, such as basidiomycetes. In this work a disposable bag bioreactor developed for cultivation of mammalian cells was investigated to evaluate its potential to cultivate shear stress sensitive anaerobic Eubacterium ramulus and shear stress sensitive basidiomycetes Flammulina velutipes and Pleurotus sapidus. All cultivations were compared with conventional stainless steel stirred tank reactors (STR) cultivations. Good growth of all investigated microorganisms cultivated in the bag reactor was found. E. ramulus showed growth rates of μ=0.56 h⁻¹ (bag) and μ=0.53 h⁻¹ (STR). Differences concerning morphology, enzymatic activities and growth in fungal cultivations were observed. In the bag reactor growth in form of small, independent pellets was observed while STR cultivations showed intense aggregation. F. velutipes reached higher biomass concentrations (21.2 g l⁻¹ DCW vs. 16.8 g l⁻¹ DCW) and up to 2-fold higher peptidolytic activities in comparison to cell cultivation in stirred tank reactors. Copyright © 2013 Elsevier B.V. All rights reserved.
Alcantara, Sergio; Velasco, Antonio; Muñoz, Ana; Cid, Juan; Revah, Sergio; Razo-Flores, Elías
2004-02-01
Wastewater from petroleum refining may contain a number of undesirable contaminants including sulfides, phenolic compounds, and ammonia. The concentrations of these compounds must be reduced to acceptable levels before discharge. Sulfur formation and the effect of selected phenolic compounds on the sulfide oxidation were studied in autotrophic aerobic cultures. A recirculation reactor system was implemented to improve the elemental sulfur recovery. The relation between oxygen and sulfide was determined calculating the O2/S2- loading rates (Q(O2)/Q(S)2- = Rmt), which adequately defined the operation conditions to control the sulfide oxidation. Sulfur-producing steady states were achieved at Rmt ranging from 0.5 to 1.5. The maximum sulfur formation occurred at Rmt of 0.5 where 85% of the total sulfur added to the reactor as sulfide was transformed to elemental sulfur and 90% of it was recovered from the bottom of the reactor. Sulfide was completely oxidized to sulfate (Rmt of 2) in a stirred tank reactor, even when a mixture of phenolic compounds was present in the medium. Microcosm experiments showed that carbon dioxide production increased in the presence of the phenols, suggesting that these compounds were oxidized and that they may have been used as carbon and energy source by heterotrophic microorganisms present in the consortium.
Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems. M.S. Thesis
NASA Technical Reports Server (NTRS)
Chow, S.
1976-01-01
A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. Neutronic feasibility of dual mode operation and smaller reactor sizes than those previously investigated are shown to be possible. A heat transfer analysis of one such reactor shows that the dual-mode concept is applicable when power generation mode thermal power levels are within the same order of magnitude as direct thrust mode thermal power levels.
Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation.
Passalía, Claudio; Alfano, Orlando M; Brandi, Rodolfo J
2017-06-07
An integral reactor design methodology was developed to address the optimal design of photocatalytic wall reactors to be used in air pollution control. For a target pollutant to be eliminated from an air stream, the proposed methodology is initiated with a mechanistic derived reaction rate. The determination of intrinsic kinetic parameters is associated with the use of a simple geometry laboratory scale reactor, operation under kinetic control and a uniform incident radiation flux, which allows computing the local superficial rate of photon absorption. Thus, a simple model can describe the mass balance and a solution may be obtained. The kinetic parameters may be estimated by the combination of the mathematical model and the experimental results. The validated intrinsic kinetics obtained may be directly used in the scaling-up of any reactor configuration and size. The bench scale reactor may require the use of complex computational software to obtain the fields of velocity, radiation absorption and species concentration. The complete methodology was successfully applied to the elimination of airborne formaldehyde. The kinetic parameters were determined in a flat plate reactor, whilst a bench scale corrugated wall reactor was used to illustrate the scaling-up methodology. In addition, an optimal folding angle of the corrugated reactor was found using computational fluid dynamics tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurogi, T.; Linh, N. T. T.; Kuroki, T.
2014-02-20
Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whethermore » TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.« less
Aeration costs in stirred-tank and bubble column bioreactors
Humbird, D.; Davis, R.; McMillan, J. D.
2017-08-10
To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furuta, H.; Imura, A.; Furuta, Y.
Recently, technique of Gadolinium loaded liquid scintillator (Gd-LS) for reactor neutrino oscillation experiments has attracted attention as a monitor of reactor operation and 'nuclear Gain (GA)' for IAEA safeguards. For the practical use, R and D of the 1 ton class compact detector, which is measurable above ground, is necessary. Especially, it is important to reduce much amount of fast neutron background induced by cosmic muons with data analysis for the measurement above ground. We developed a prototype of the Gd-LS detector with 200 L of the target volume, which has Pulse Shape Discrimination (PSD) ability for the fast neutronmore » reduction with data analysis. Usually, it is well known that it is difficult to keep high fast neutron reduction power of PSD with the large volume size such as the neutrino reactor monitor. We evaluated the PSD ability of our prototype with real fast neutrons induced by the muons in our laboratory above ground, and we could confirm to keep the high fast neutron reduction power with even our large detector size. (authors)« less
Aeration costs in stirred-tank and bubble column bioreactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbird, D.; Davis, R.; McMillan, J. D.
To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less
Martin, Katie S; Ghosh, Debarchana; Page, Martha; Wolff, Michele; McMinimee, Kate; Zhang, Mengyao
2014-01-01
Research on urban food environments emphasizes limited access to healthy food, with fewer large supermarkets and higher food prices. Many residents of Hartford, Connecticut, which is often considered a food desert, buy most of their food from small and medium-sized grocery stores. We examined the food environment in greater Hartford, comparing stores in Hartford to those in the surrounding suburbs, and by store size (small, medium, and large). We surveyed all small (over 1,000 ft2), medium, and large-sized supermarkets within a 2-mile radius of Hartford (36 total stores). We measured the distance to stores, availability, price and quality of a market basket of 25 items, and rated each store on internal and external appearance. Geographic Information System (GIS) was used for mapping distance to the stores and variation of food availability, quality, and appearance. Contrary to common literature, no significant differences were found in food availability and price between Hartford and suburban stores. However, produce quality, internal, and external store appearance were significantly lower in Hartford compared to suburban stores (all p<0.05). Medium-sized stores had significantly lower prices than small or large supermarkets (p<0.05). Large stores had better scores for internal (p<0.05), external, and produce quality (p<0.01). Most Hartford residents live within 0.5 to 1 mile distance to a grocery store. Classifying urban areas with few large supermarkets as 'food deserts' may overlook the availability of healthy foods and low prices that exist within small and medium-sized groceries common in inner cities. Improving produce quality and store appearance can potentially impact the food purchasing decisions of low-income residents in Hartford.
Martin, Katie S.; Ghosh, Debarchana; Page, Martha; Wolff, Michele; McMinimee, Kate; Zhang, Mengyao
2014-01-01
Introduction Research on urban food environments emphasizes limited access to healthy food, with fewer large supermarkets and higher food prices. Many residents of Hartford, Connecticut, which is often considered a food desert, buy most of their food from small and medium-sized grocery stores. We examined the food environment in greater Hartford, comparing stores in Hartford to those in the surrounding suburbs, and by store size (small, medium, and large). Methods We surveyed all small (over 1,000 ft2), medium, and large-sized supermarkets within a 2-mile radius of Hartford (36 total stores). We measured the distance to stores, availability, price and quality of a market basket of 25 items, and rated each store on internal and external appearance. Geographic Information System (GIS) was used for mapping distance to the stores and variation of food availability, quality, and appearance. Results Contrary to common literature, no significant differences were found in food availability and price between Hartford and suburban stores. However, produce quality, internal, and external store appearance were significantly lower in Hartford compared to suburban stores (all p<0.05). Medium-sized stores had significantly lower prices than small or large supermarkets (p<0.05). Large stores had better scores for internal (p<0.05), external, and produce quality (p<0.01). Most Hartford residents live within 0.5 to 1 mile distance to a grocery store. Discussion Classifying urban areas with few large supermarkets as ‘food deserts’ may overlook the availability of healthy foods and low prices that exist within small and medium-sized groceries common in inner cities. Improving produce quality and store appearance can potentially impact the food purchasing decisions of low-income residents in Hartford. PMID:24718579
VOLTTRON™: Tech-to-Market Best-Practices Guide for Small- and Medium-Sized Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cort, Katherine A.; Haack, Jereme N.; Katipamula, Srinivas
VOLTTRON™ is an open-source distributed control and sensing platform developed by Pacific Northwest National Laboratory for the U.S. Department of Energy. It was developed to be used by the Office of Energy Efficiency and Renewable Energy to support transactive controls research and deployment activities. VOLTTRON is designed to be an overarching integration platform that could be used to bring together vendors, users, and developers and enable rapid application development and testing. The platform is designed to support modern control strategies, including the use of agent- and transaction-based controls. It also is designed to support the management of a wide rangemore » of applications, including heating, ventilation, and air-conditioning systems; electric vehicles; and distributed-energy and whole-building loads. This report was completed as part of the Building Technologies Office’s Technology-to-Market Initiative for VOLTTRON’s Market Validation and Business Case Development efforts. The report provides technology-to-market guidance and best practices related to VOLTTRON platform deployments and commercialization activities for use by entities serving small- and medium-sized commercial buildings. The report characterizes the platform ecosystem within the small- and medium-sized commercial building market and articulates the value proposition of VOLTTRON for three core participants in this ecosystem: 1) platform owners/adopters, 2) app developers, and 3) end-users. The report also identifies key market drivers and opportunities for open platform deployments in the small- and medium-sized commercial building market. Possible pathways to the market are described—laboratory testing to market adoption to commercialization. We also identify and address various technical and market barriers that could hinder deployment of VOLTTRON. Finally, we provide “best practice” tech-to-market guidance for building energy-related deployment efforts serving small- and medium-sized commercial buildings.« less
Biocatalysis engineering: the big picture.
Sheldon, Roger A; Pereira, Pedro C
2017-05-22
In this tutorial review we describe a holistic approach to the invention, development and optimisation of biotransformations utilising isolated enzymes. Increasing attention to applied biocatalysis is motivated by its numerous economic and environmental benefits. Biocatalysis engineering concerns the development of enzymatic systems as a whole, which entails engineering its different components: substrate engineering, medium engineering, protein (enzyme) engineering, biocatalyst (formulation) engineering, biocatalytic cascade engineering and reactor engineering.
USDA-ARS?s Scientific Manuscript database
Transportation biofuel ethanol was produced from xylose and corn fiber hydrolyzate (CFH) in a batch reactor employing Escherichia coli FBR5. This strain was previously developed in our laboratory to use cellulosic sugars. The culture can produce up to 49.32 gL-1 ethanol from approximately 125 gL-1 x...
Applications of the Aqueous Self-Cooled Blanket concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, D.; Embrechts, M.J.; Varsamis, G.
1986-11-01
In this paper a novel water-cooled blanket concept is examined. This concept, designated the Aqueous Self-Cooled Blanket (ASCB), employs water with small amounts of dissolved fertile compounds as both the coolant and the breeding medium. The ASCB concept is reviewed and its application in three different contexts is examined: (1) power reactors; (2) near-term devices such as NET; and (3) fusion-fission hybrids.
Brené, S; Lindefors, N; Herrera-Marschitz, M; Persson, H
1990-01-01
In situ hybridization was used to study dopamine D2 receptor (D2R) and choline acetyltransferase (ChAT) mRNA expression in neurons of the rat forebrain, both on control animals and after a unilateral 6-hydroxydopamine (6-OHDA) lesion of midbrain dopamine neurons. D2R mRNA expressing neurons were seen in regions which are known to be heavily innervated by midbrain dopamine fibers such as caudate-putamen, nucleus accumbens and olfactory tubercle. ChAT mRNA expressing neurons were seen in caudate-putamen, nucleus accumbens and septal regions including vertical limb of the diagonal band. In caudate-putamen, approximately 55% of the medium sized neurons, which is the predominating neuronal cell-size in this region, were specifically labeled with the D2R probe. In addition, approximately 95% of the large size neurons in caudate-putamen were specifically labeled with both the D2R and ChAT probes, suggesting that most cholinergic neurons in the caudate-putamen express D2R mRNA. After a unilateral lesion of midbrain dopamine neurons, no change in the level of either D2R or ChAT mRNA were seen in the large size intrinsic cholinergic neurons in caudate-putamen. Similarly, no evidence was obtained for altered levels of D2R mRNA in medium size neurons in medial caudate-putamen, or nucleus accumbens. However, an increase in the number of medium size neurons expressing D2R mRNA was observed in the lateral part of the dopamine deafferented caudate-putamen. Thus, it appears that midbrain dopamine deafferentation causes an increase in D2R mRNA expression in a subpopulation of medium size neurons in the lateral caudate-putamen.
Mei, Ran; Narihiro, Takashi; Bocher, Benjamin T. W.; Yamaguchi, Takashi; Liu, Wen-Tso
2016-01-01
Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach. PMID:27936088
NASA Astrophysics Data System (ADS)
Boravelli, Sai Chandra Teja
This thesis mainly focuses on design and process development of a downdraft biomass gasification processes. The objective is to develop a gasifier and process of gasification for a continuous steady state process. A lab scale downdraft gasifier was designed to develop the process and obtain optimum operating procedure. Sustainable and dependable sources such as biomass are potential sources of renewable energy and have a reasonable motivation to be used in developing a small scale energy production plant for countries such as Canada where wood stocks are more reliable sources than fossil fuels. This thesis addresses the process of thermal conversion of biomass gasification process in a downdraft reactor. Downdraft biomass gasifiers are relatively cheap and easy to operate because of their design. We constructed a simple biomass gasifier to study the steady state process for different sizes of the reactor. The experimental part of this investigation look at how operating conditions such as feed rate, air flow, the length of the bed, the vibration of the reactor, height and density of syngas flame in combustion flare changes for different sizes of the reactor. These experimental results also compare the trends of tar, char and syngas production for wood pellets in a steady state process. This study also includes biomass gasification process for different wood feedstocks. It compares how shape, size and moisture content of different feedstocks makes a difference in operating conditions for the gasification process. For this, Six Sigma DMAIC techniques were used to analyze and understand how each feedstock makes a significant impact on the process.
Assessing the effectiveness of safeguards at a medium-sized spent-fuel reprocessing facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higinbotham, W.; Fishbone, L.G.; Suda, S.
1983-01-01
In order to evaluate carefully and systematically the effectiveness of safeguards at nuclear-fuel-cycle facilities, the International Atomic Energy Agency has adopted a safeguards effectiveness assessment methodology. The methodology has been applied to a well-characterized, medium-sized, spent-fuel reprocessing plant to understand how explicit safeguards inspection procedures would serve to expose conceivable nuclear materials diversion schemes, should such diversion occur.
ERIC Educational Resources Information Center
Parrish, Richard M.; Pascale, Marie
After reviewing types of college calendars (traditional semester, early semester, trimester, and quarter) and previous research on the use of various school calendars, this paper describes a survey conducted by Ocean County College, a medium-sized college currently using a traditional semester calendar, to determine the views of students, faculty,…
ERIC Educational Resources Information Center
Gallagher, Pádraig
2015-01-01
This research looks at the role of graduate placement programmes in bridging the gap between higher education and the small- and medium-sized enterprise (SME) sector. The research design and methodology used in this study was exploratory, in-depth and qualitative in nature. The research took the form of a multiple case study and focused on seven…
Alexander, Jeffrey A; Maeng, Daniel; Casalino, Lawrence P; Rittenhouse, Diane
2013-04-01
To examine the effect of public reporting (PR) and financial incentives tied to quality performance on the use of care management practices (CMPs) among small- and medium-sized physician groups. Survey data from The National Study of Small and Medium-sized Physician Practices were used. Primary data collection was also conducted to assess community-level PR activities. The final sample included 643 practices engaged in quality reporting; about half of these practices were subject to PR. We used a treatment effects model. The instrumental variables were the community-level variables that capture the level of PR activity in each community in which the practices operate. (1) PR is associated with increased use of CMPs, but the estimate is not statistically significant; (2) financial incentives are associated with greater use of CMPs; (3) practices' awareness/sensitivity to quality reports is positively related to their use of CMPs; and (4) combined PR and financial incentives jointly affect CMP use to a greater degree than either of these factors alone. Small- to medium-sized practices appear to respond to PR and financial incentives by greater use of CMPs. Future research needs to investigate the appropriate mix and type of incentive arrangements and quality reporting. © Health Research and Educational Trust.
NASA Astrophysics Data System (ADS)
Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.
2018-02-01
Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.
A brief history of design studies on innovative nuclear reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekimoto, Hiroshi, E-mail: hsekimot@gmail.com
2014-09-30
In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USAmore » and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.« less
Sensitivity of the DANSS detector to short range neutrino oscillations
NASA Astrophysics Data System (ADS)
Danilov, Mikhail; DANSS Collaboration
2016-04-01
DANSS is a highly segmented 1 m3 plastic scintillator detector. Its 2500 scintillator strips have a Gd loaded reflective cover. Light is collected with 3 wave length shifting fibers per strip and read out with 50 PMTs and 2500 SiPMs. The DANSS will be installed under the industrial 3 GWth reactor of the Kalinin Nuclear Power Plant at distances varying from 9.7 m to 12.2 m from the reactor core. PMTs and SiPMs collect about 30 photo electrons per MeV distributed approximately equally between two types of the readout. Light collection non-uniformity across and along the strip is about ±13% from maximum to minimum. The resulting energy resolution is modest, σ / E = 15% at 5 MeV. This leads to a smearing of the oscillation pattern comparable with the smearing due to the large size of the reactor core. Nevertheless because of the large counting rate (˜10000/day), small background (< 1%) and good control of systematic uncertainties due to frequent changes of positions, the DANSS is quite sensitive to reactor antineutrino oscillations to hypothetical sterile neutrinos with a mass in eV ballpark suggested recently to explain a so-called reactor anomaly. DANSS will have an elaborated calibration system. The high granularity of the detector allows calibration of every strip with about 40 thousand cosmic muons every day. The expected systematic effects do not reduce much the sensitivity region. Tests of the detector prototype DANSSino demonstrated that in spite of a small size (4% of DANSS), it is quite sensitive to reactor antineutrinos, detecting about 70 Inverse Beta Decay events per day with the signal-to-background ratio of about unity. The prototype tests have demonstrated feasibility to reach the design performance of the DANSS detector.
3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems
NASA Astrophysics Data System (ADS)
Hançerliogulları, Aybaba; Cini, Mesut
2013-10-01
In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).
Piña-Salazar, E Z; Cervantes, F J; Meraz, M; Celis, L B
2011-01-01
In sulfate-reducing reactors, it has been reported that the sulfate removal efficiency increases when the COD/SO4(2-) ratio is increased. The start-up of a down-flow fluidized bed reactor constitutes an important step to establish a microbial community in the biofilm able to survive under the operational bioreactor conditions in order to achieve effective removal of both sulfate and organic matter. In this work the influence of COD/SO4(2-) ratio and HRT in the development of a biofilm during reactor start-up (35 days) was studied. The reactor was inoculated with 1.6 g VSS/L of granular sludge, ground low density polyethylene was used as support material; the feed consisted of mineral medium at pH 5.5 containing 1 g COD/L (acetate:lactate, 70:30) and sodium sulfate. Four experiments were conducted at HRT of 1 or 2 days and COD/SO4(2-) ratio of 0.67 or 2.5. The results obtained indicated that a COD/SO4(2-) ratio of 2.5 and HRT 2 days allowed high sulfate and COD removal (66.1 and 69.8%, respectively), whereas maximum amount of attached biomass (1.9 g SVI/L support) and highest sulfate reducing biofilm activity (10.1 g COD-H2S/g VSS-d) was achieved at HRT of 1 day and at COD/sulfate ratios of 0.67 and 2.5, respectively, which suggests that suspended biomass also played a key role in the performance of the reactors.
NASA Astrophysics Data System (ADS)
Palakurthi, Nikhil Kumar; Ghia, Urmila; Comer, Ken
2013-11-01
Capillary penetration of liquid through fibrous porous media is important in many applications such as printing, drug delivery patches, sanitary wipes, and performance fabrics. Historically, capillary transport (with a distinct liquid propagating front) in porous media is modeled using capillary-bundle theory. However, it is not clear if the capillary model (Washburn equation) describes the fluid transport in porous media accurately, as it assumes uniformity of pore sizes in the porous medium. The present work investigates the limitations of the applicability of the capillary model by studying liquid penetration through virtual fibrous media with uniform and non-uniform pore-sizes. For the non-uniform-pore fibrous medium, the effective capillary radius of the fibrous medium was estimated from the pore-size distribution curve. Liquid penetration into the 3D virtual fibrous medium at micro-scale was simulated using OpenFOAM, and the numerical results were compared with the Washburn-equation capillary-model predictions. Preliminary results show that the Washburn equation over-predicts the height rise in the early stages (purely inertial and visco-inertial stages) of capillary transport.
Feeding strategy and cannibalism of the Argentine hake Merluccius hubbsi.
Ocampo Reinaldo, M; González, R; Romero, M A
2011-12-01
The diet composition and feeding strategy of the Argentine hake Merluccius hubbsi in the San Matías Gulf were analysed in order to use this information for the sustainable management of the fishery. Merluccius hubbsi behaved as an opportunistic predator. Small M. hubbsi consumed planktonic crustaceans, whereas medium and large fish ate numerous prey taxa with low frequency of occurrence and variable specific abundance. Intra- and intercohort cannibalism were detected in all size groups and were particularly significant in large M. hubbsi. Medium-sized M. hubbsi consumed small conspecifics and large-sized M. hubbsi consumed both small and medium M. hubbsi. These results indicate that the removal of large M. hubbsi by fishing may increase the risk of overfishing by two combined effects: a direct effect of recruitment-overfishing and an indirect effect of growth-overfishing through an enhanced cannibalism of medium M. hubbsi on small M. hubbsi. Intra- and intercohort cannibalism and other trophic relationships in the M. hubbsi should therefore be considered explicitly in stock assessment models. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
ERIC Educational Resources Information Center
Riquelme, Hernan
2002-01-01
Describes a study of small, medium, and large enterprises in Shanghai, China that investigated which size companies benefit the most from the Internet. Highlights include leveling the ground for small and medium enterprises (SMEs); increased sales and cost savings for large companies; and competitive advantages. (LRW)
Shear and mixing effects on cells in agitated microcarrier tissue culture reactors
NASA Technical Reports Server (NTRS)
Cherry, Robert S.; Papoutsakis, E. Terry
1987-01-01
Tissue cells are known to be sensitive to mechanical stresses imposed on them by agitation in bioreactors. The amount of agitation provided in a microcarrier or suspension bioreactor should be only enough to provide effective homogeneity. Three distinct flow regions can be identified in the reactor: bulk turbulent flow, bulk laminar flow and boundary-layer flows. Possible mechanisms of cell damage are examined by analyzing the motion of microcarriers or free cells relative to the surrounding fluid, to each other and to moving or stationary solid surfaces. The primary mechanisms of cell damage appear to result from: (1) direct interaction between microcarriers and turbulent eddies; (2) collisions between microcarriers in turbulent flow; and (3) collisions against the impeller or other stationary surfaces. If the smallest eddies of turbulent flow are of the same size as the microcarrier beads, they may cause high shear stresses on the cells. Eddies the size of the average interbead spacing may cause bead-bead collisions which damage cells. The severity of the collisions increases when the eddies are also of the same size as the beads. Impeller collisions occur when beads cannot avoid the impeller leading edge as it advances through the liquid. The implications of the results of this analysis on the design and operation of tissue culture reactors are discussed.
NASA Astrophysics Data System (ADS)
Vorontsov, S. V.; Kuvshinov, M. I.; Narozhnyi, A. T.; Popov, V. A.; Solov'ev, V. P.; Yuferev, V. I.
2017-12-01
A reactor with a destructible core (RIR reactor) generating a pulse with an output of 1.5 × 1019 fissions and a full width at half maximum of 2.5 μs was developed and tested at VNIIEF. In the course of investigation, a computational-experimental method for laboratory calibration of the reactor was created and worked out. This method ensures a high accuracy of predicting the energy release in a real experiment with excess reactivity of 3βeff above prompt criticality. A transportable explosion-proof chamber was also developed, which ensures the safe localization of explosion products of the core of small-sized nuclear devices and charges of high explosives with equivalent mass of up to 100 kg of TNT.
Conceptual design of laser fusion reactor KOYO-fast Concepts of reactor system and laser driver
NASA Astrophysics Data System (ADS)
Kozaki, Y.; Miyanaga, N.; Norimatsu, T.; Soman, Y.; Hayashi, T.; Furukawa, H.; Nakatsuka, M.; Yoshida, K.; Nakano, H.; Kubomura, H.; Kawashima, T.; Nishimae, J.; Suzuki, Y.; Tsuchiya, N.; Kanabe, T.; Jitsuno, T.; Fujita, H.; Kawanaka, J.; Tsubakimoto, K.; Fujimoto, Y.; Lu, J.; Matsuoka, S.; Ikegawa, T.; Owadano, Y.; Ueda, K.; Tomabechi, K.; Reactor Design Committee in Ife Forum, Members Of
2006-06-01
We have carried out the design studies of KOYO-Fast laser fusion power plant, using fast ignition cone targets, DPSSL lasers, and LiPb liquid wall chambers. Using fast ignition targets, we could design a middle sized 300 MWe reactor module, with 200 MJ fusion pulse energy and 4 Hz rep-rates, and 1200MWe modular power plants with 4 reactor modules and a 16 Hz laser driver. The liquid wall chambers with free surface cascade flows are proposed for cooling surface quickly enough to a 4 Hz pulse operation. We examined the potential of Yb-YAG ceramic lasers operated at 150˜ 225 K for both implosion and heating laser systems required for a 16-Hz repetition and 8 % total efficiency.
Standard-less analysis of Zircaloy clad samples by an instrumental neutron activation method
NASA Astrophysics Data System (ADS)
Acharya, R.; Nair, A. G. C.; Reddy, A. V. R.; Goswami, A.
2004-03-01
A non-destructive method for analysis of irregular shape and size samples of Zircaloy has been developed using the recently standardized k0-based internal mono standard instrumental neutron activation analysis (INAA). The samples of Zircaloy-2 and -4 tubes, used as fuel cladding in Indian boiling water reactors (BWR) and pressurized heavy water reactors (PHWR), respectively, have been analyzed. Samples weighing in the range of a few tens of grams were irradiated in the thermal column of Apsara reactor to minimize neutron flux perturbations and high radiation dose. The method utilizes in situ relative detection efficiency using the γ-rays of selected activation products in the sample for overcoming γ-ray self-attenuation. Since the major and minor constituents (Zr, Sn, Fe, Cr and/or Ni) in these samples were amenable to NAA, the absolute concentrations of all the elements were determined using mass balance instead of using the concentration of the internal mono standard. Concentrations were also determined in a smaller size Zircaloy-4 sample by irradiating in the core position of the reactor to validate the present methodology. The results were compared with literature specifications and were found to be satisfactory. Values of sensitivities and detection limits have been evaluated for the elements analyzed.
[Effect of gas-lift device on the morphology and performance of ANAMMOX sludge].
Li, Xiang; Huang, Yong; Yuan, Yi; Zhou, Cheng; Chen, Zong-Heng; Zhang, Da-Lin
2014-12-01
The upflow reactor with gas-lift device was started up by inoculating ANAMMOX sludge granules of less than 0.9 mm. The effects of gas lift device system on the morphology and performance of ANAMMOX sludge were studied by using the nitrogen gas produced in ANAMMOX to drive the effluent circulation in the reactor. The results showed that, the airlift circulation function was not clear in the startup stage of the reactor, because the nitrogen gas production was very low. At the same time, the ANAMMOX granular sludge was easy to condensate. When the load rate of nitrogen removal reached 3.4 kg x (m3 x d)(-1), the function of gas lift was significant, resulting in gradually increased effluent self-circulation, and the granules were dispersed and grew gradually. After 183d of operation, the granular sludge was dominated by the granules with sizes of 1.6-2.5 mm, which accounted for 53.2% of the total sludge volume. The MLVSS content increased with the increase of sludge particle size. The gas lift device had the same function as the external reflux pump, and was helpful for sludge granulation in the ANAMMOX reactor, while reducing power consumption and the cost of the equipment.
Spallina, Vincenzo; Melchiori, Tommaso; Gallucci, Fausto; van Sint Annaland, Martin
2015-03-18
The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%). Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%-70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR) is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%-78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.
1980-06-01
ratio CF700 engine, do not qualify, but in each case the producer has plans for, or is delivering a model using the TFE731 engine that does qualify. CF700...the size range, namely, the Learjets using the CJ610 engine and the Gulfstream 3 using the Spey. All medium-sized jets using the TFE731 are quieter...very few engines available for aircraft in each size range: the JT15 and CJ610 for small aircraft, the CF700, ATF3, and TFE731 for medium aircraft and
Dong, Haodi; Tang, Ya-Jie; Ohashi, Ryo; Hamel, Jean-François P
2005-01-01
A novel perfusion culture system for efficient production of IgG2a monoclonal antibody (mAb) by hybridoma cells was developed. A ceramic membrane module was constructed and used as a cell retention device installed in a conventional stirred-tank reactor during the perfusion culture. Furthermore, the significance of the control strategy of perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was investigated. With the highest increasing rate (deltaD, vvd per day, vvdd) of perfusion rate, the maximal viable cell density of 3.5 x 10(7) cells/mL was obtained within 6 days without any limitation and the cell viability was maintained above 95%. At lower deltaD's, the cell growth became limited. Under nutrient-limited condition, the specific cell growth rate (mu) was regulated by deltaD. During the nonlimited growth phase, the specific mAb production rate (qmAb) remained constant at 0.26 +/- 0.02 pg/cell x h in all runs. During the cell growth-limited phase, qmAb was regulated by deltaD within the range of 0.25-0.65 vvdd. Under optimal conditions, qmAb of 0.80 and 2.15 pg/cell x h was obtained during the growth-limited phase and stationary phase, respectively. The overall productivity and yield were 690 mg/L x day and 340 mg/L x medium, respectively. This study demonstrated that this novel perfusion culture system for suspension mammalian cells can support high cell density and efficient mAb production and that deltaD is an important control parameter to regulate and achieve high mAb production.
Enhancement of the thermal transport in a culture medium with Au nanoparticles
NASA Astrophysics Data System (ADS)
Jiménez-Pérez, J. L.; Fuentes, R. Gutierrez; Alvarado, E. Maldonado; Ramón-Gallegos, E.; Cruz-Orea, A.; Tánori-Cordova, J.; Mendoza-Alvarez, J. G.
2008-11-01
In this work, it is reported the gold nanoparticles synthesis, their characterization, and their application to the enhancement of the thermal transport in a cellular culture medium. The Au nanoparticles (NPs), with average size of 10 nm, contained into a culture medium (DMEM (1)/F12(1)) (CM) increased considerably the heat transfer in the medium. Thermal lens spectrometry (TLS) was used to measure the thermal diffusivity of the nanofluids. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression, for transient thermal lens, to the experimental data. Our results show that the thermal diffusivity of the culture medium is highly sensitive to the Au nanoparticle concentration and size. The ability to modify the thermal properties to nanometer scale becomes very important in medical applications as in the case of cancer treatment by using photodynamic therapy (PDT). A complementary study with UV-vis and TEM techniques was performed to characterize the Au nanoparticles.
Park, Chul Woo; Hwang, Jungho
2013-01-15
Dielectric barrier discharge (DBD) is a promising method to remove contaminant bioaerosols. The collection efficiency of a DBD reactor is an important factor for determining a reactor's removal efficiency. Without considering collection, simply defining the inactivation efficiency based on colony counting numbers for DBD as on and off may lead to overestimation of the inactivation efficiency of the DBD reactor. One-pass removal tests of bioaerosols were carried out to deduce the inactivation efficiency of the DBD reactor using both aerosol- and colony-counting methods. Our DBD reactor showed good performance for removing test bioaerosols for an applied voltage of 7.5 kV and a residence time of 0.24s, with η(CFU), η(Number), and η(Inactivation) values of 94%, 64%, and 83%, respectively. Additionally, we introduce the susceptibility constant of bioaerosols to DBD as a quantitative parameter for the performance evaluation of a DBD reactor. The modified susceptibility constant, which is the ratio of the susceptibility constant to the volume of the plasma reactor, has been successfully demonstrated for the performance evaluation of different sized DBD reactors under different DBD operating conditions. Our methodology will be used for design optimization, performance evaluation, and prediction of power consumption of DBD for industrial applications. Copyright © 2012 Elsevier B.V. All rights reserved.
[Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].
Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang
2014-11-01
In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.
Emulation of reactor irradiation damage using ion beams
Was, G. S.; Jiao, Z.; Getto, E.; ...
2014-06-14
The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less
Grebe, J.J.
1959-07-14
High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.
Li, Jingyang; Wen, Zhenhua; Cai, Anlie; Tian, Feng; Zhang, Liang; Luo, Xiaowen; Deng, Li; He, Jingyun; Yang, Yicheng; Chen, Wendong
2017-05-01
To assess the cost-effectiveness of infliximab-containing therapy (ICT) for moderate-to-severe rheumatoid arthritis (RA) in a medium-sized Chinese city. A Chinese prospective cohort study comparing ICT (25 patients) versus conventional disease-modified antirheumatic drugs (24 patients) for RA was used to assess the cost-effectiveness of ICT. The cohort study observed significantly reduced disease activity score of 28 joints (coefficient -2.718, p < 0.001), improved EQ-5D (coefficient 0.453, p < 0.001) and increased medical costs (coefficient 1.289, p < 0.001) associated with ICT. The incremental cost-effectiveness ratio per gained quality-adjusted life year for ICT versus disease-modified antirheumatic drugs was 1.897-times of the local gross domestic product per capita. Infliximab was a favorable cost-effective alternative option for moderate-to-severe RA in a medium-sized city of China.
Ramm, D; Mahnke, C; Tauscher, A; Welti, F; Seider, H; Shafaei, R
2012-01-01
The article is based on the results of the project “Company integration management in small and medium-sized companies. Legal requirements and prerequisites for a successful implementation” (01 January 2009-31 August 2010). Since 2004 all employers have been legally bound to offer company integration management (BEM, Betriebliches Eingliederungsmanagement) for all employees who have been incapacitated for work for more than 6 weeks within a year (Section 84 SGB IX, Book 9 of the German Social Code). Objective of this law is to ensure ongoing employment. The aim of the study was to investigate the requirements companies, rehabilitation centres and services as well as social insurance institutions are faced with according to Section 84 SGB IX. Prerequisites for an effective implementation of BEM in small and medium-sized enterprises were analyzed. Protocol-based interviews with experts were adopted. A total of 38 interviews with experts were carried out. The experts interviewed were either willing to give information by interest (concernment) or were named by law as an initiator or co-operator in the process of integration. A substantial literature research was performed in advance of the interviews. The awareness level of BEM is still very low even 7 years after its introduction. Small and medium-sized enterprises do not have any significant experiential knowledge of long-term incapacity for work and, hence, about BEM. Due to a lack of workers representation in many small and medium companies, management does not receive initiatives or support in implementation of BEM from employees' side. Employers prefer a central contact point providing them with the information and help needed, the common service units, however, being widely unknown in this context. Cost comparisons suggest that a company integration management might be more cost-effective than dismissing employees who are incapacitated for some fields of work. These findings might even hold true for small and medium-sized companies. Social insurance institutions are aware of company integration management; however there is a substantial lack of experience. There is some evidence that incentives and bonuses according to Section 84, 3 SGB IX would not have any significant impact on the implementation of company integration management in small and medium-sized enterprises. POLICY RECOMMENDATION: All relevant actors in the field of company integration management should reassess their possibilities to advocate integration management. Not only employees but also employers and social security institutions will benefit from comprehensive implementation of company integration management. © Georg Thieme Verlag KG Stuttgart · New York.
Burton, Deron C; Confield, Evan; Gasner, Mary Rose; Weisfuse, Isaac
2011-10-01
Small businesses need to engage in continuity planning to assure delivery of goods and services and to sustain the economy during an influenza pandemic. This is especially true in New York City, where 98 per cent of businesses have fewer than 100 employees. It was an objective therefore, to determine pandemic influenza business continuity practices and strategies suitable for small and medium-sized NYC businesses. The study design used focus groups, and the participants were owners and managers of businesses with fewer than 500 employees in New York City. The main outcome measures looked for were the degree of pandemic preparedness, and the feasibility of currently proposed business continuity strategies. Most participants reported that their businesses had no pandemic influenza plan. Agreement with feasibility of specific business continuity strategies was influenced by the type of business represented, cost of the strategy, and business size. It was concluded that recommendations for pandemic-related business continuity plans for small and medium-sized businesses should be tailored to the type and size of business and should highlight the broad utility of the proposed strategies to address a range of business stressors.
A study on size effect of carboxymethyl starch nanogel crosslinked by electron beam radiation
NASA Astrophysics Data System (ADS)
Binh, Doan; Pham Thi Thu Hong; Nguyen Ngoc Duy; Nguyen Thanh Duoc; Nguyen Nguyet Dieu
2012-07-01
The formation of carboxymethyl starch (CMS) nanogel with 50 nm less particle size was carried out through a radiation crosslinked process on the electron beam (EB) linear accelerator. Changes of intrinsic viscosities and weight averaged molecular weight in the CMS concentration, which ranged from 3 to 10 mg ml-1 in absorbed doses were investigated. There were some new peaks in the 1H NMR spectra of CMS nanogel compared with those of CMS polymer. These results were anticipated that the predominant intramolecular crosslinking of dilute CMS aqueous solution occurred while being exposed to a short intense pulse of ionizing radiation. Hydrodynamic radius (often called particle size, Rh) and distribution of particle size were measured by a dynamic light scattering technique. The radiation yield of intermolecular crosslinking of CMS solution was calculated from the expression of Gx (Charlesby, 1960; Jung-Chul, 2010). The influence of the "size effect" was demonstrated by testing culture of Lactobacillus bacteria on MRS agar culture medium containing CMS nanogel and polymer. Results showed that the number of Lactobacillus bacteria growing on nanogel containing culture medium is about 170 cfu/ml and on polymer containing culture medium is only 6 cfu/ml.
NASA Astrophysics Data System (ADS)
Zaman, Badrus; Wardhana, Irawan Wisnu
2018-02-01
Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.
Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhammad Abir; Fahima Islam; Hyoung Koo Lee
2014-11-01
The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the Highmore » Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.« less
Current status of SPINNORs designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki
2010-06-22
This study discuss about the SPINNOR (Small Power Reactor, Indonesia, No On-site Refuelling) and the VSPINNOR (Very Small Power Reactor, Indonesia, No On-site Refuelling) which are small lead-bismuth cooled nuclear power reactors with fast neutron spectrum that could be operated for more than 10 or 15 years without on-site refuelling. They are based on the concept of a long-life core reactor developed in Indonesia since early 1990 in collaboration with the Research Laboratory for Nuclear Reactors of the Tokyo Institute of Technology (RLNR TITech). The reactor cores are designed to have near zero (less then one effective delayed neutron fraction)more » burn-up reactivity swing during the whole course of their operation to avoid a possibility of prompt criticality accident. The basic concept is that central region of the reactor core is filled with fertile (blanket) material. During the reactor operation fissile material accumulates in this central region, which helps to compensate fissile material loss in the peripheral core region and also contributes to negative coolant loss reactivity effect. A concept of high fuel volume fraction in the core is applied to achieve smaller size of a critical reactor. In this paper we consider to add Np-237 to the fuel to enhance non proliferation characteristics of the systems. The effect of Np-237 amount variation is discussed.« less
Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter
1985-01-01
A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.
Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter
1983-01-01
A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.
NASA Astrophysics Data System (ADS)
Shin, Hyeon Ung
The nanoscale of the supporting fibers may provide enhancements such as restricting the migration of metal catalyst particles. In this work, palladium nanoparticle doped alumina fibers were electrospun into template submicron fibers. These fibers were calcined at temperatures between 650°C and 1150°C to vary the crystal structures of the calcined fibers with the Pd particle size. Higher calcination temperatures led to higher reaction temperatures from 250 to about 450°C for total conversion, indicating the effective reactivity of the fiber-supported catalysts decreased with increase in calcination temperature. Pd-Au alloy nanoparticle doped titania fibers were also fabricated using an electrospinning method and assembled into a fibrous porous medium structure by a vacuum molding process. In reactor tests, the fiber media with Pd-Au alloy nanoparticle catalyst had greater reactivity in conversion of NO and CO gases than that of fiber media with Pd monometallic catalyst alone, attributed to a lower activation energy of the Pd-Au catalyst particles. In carbon monoxide oxidation reaction tests, the results showed that the performance was optimal for a catalyst of composition Pd2Au1 molar ratio that was active at 125°C, which had higher dispersion of active components and better catalytic performance compared to monometallic particle Au/TiO 2 and Pd/TiO2 fiber media. Moreover, the improved reaction activity of Pd2Au1/TiO2 fiber medium was attributed to a decreased in the activation energy. Further experiments were conducted using the electrospun ceramic fibers biodurability study. The properties of nano-sized fiber structures have attracted the attention of recent research on ceramic nanostructures as nonwoven media for applications in hazardous chemical and high temperature environments. However, health and safety concerns of micro and nano scale ceramic materials have not been fully investigated. Little is known about the physicochemical effects of the properties of small alumina fibers, including fiber sizes, surface morphologies, crystalline, phases, and surface areas with respect to submicron sized alumina fibers formed by calcination of electrospun polymeric fibers. Therefore, in this work, sub-micron sized alumina fibers were fabricated by electrospinning and calcination of a polymer template fiber. In the calcination step, different controlled temperature heating cycles were conducted to obtain fibers of different crystalline structures. Their biodurabilities were evaluated in two types of artificial lung fluids (i.e., mimicking the airway and alveolar macrophages). Though the variation in the soak temperature, their dissolution half times were not significantly affected. The solubility half-times of the alumina fibers were shortest for fibers calcined at the fastest temperature ramp rate (though soak temperature did not have an effect).
Cantarella, M; Cantarella, L; Gallifuoco, A; Spera, A
2006-03-01
The biohydration of acrylonitrile, propionitrile and benzonitrile catalysed by the NHase activity contained in resting cells of Microbacterium imperiale CBS 498-74 was operated at 5, 10 and 20 degrees C in laboratory-scale batch and membrane bioreactors. The bioreactions were conducted in buffered medium (50 mM Na(2)HPO(4)/NaH(2)PO(4), pH 7.0) in the presence of distilled water or tap-water, to simulate a possible end-pipe biotreatment process. The integral bioreactor performances were studied with a cell loading (dry cell weight; DCW) varying from 0.1 mg(DCW) per reactor to 16 mg(DCW) per reactor, in order to realize near 100% bioconversion of acrylonitrile, propionitrile and benzonitrile without consistent loss of NHase activity.
A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures.
Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim
2015-01-01
Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.
Lee, Mong-Chuan; Lin, Yen-Hui; Yu, Huang-Wei
2014-11-01
A mathematical model system was derived to describe the kinetics of ammonium nitrification in a fixed biofilm reactor using dewatered sludge-fly ash composite ceramic particle as a supporting medium. The model incorporates diffusive mass transport and Monod kinetics. The model was solved using a combination of the orthogonal collocation method and Gear's method. A batch test was conducted to observe the nitrification of ammonium-nitrogen ([Formula: see text]-N) and the growth of nitrifying biomass. The compositions of nitrifying bacterial community in the batch kinetic test were analyzed using PCR-DGGE method. The experimental results show that the most staining intensity abundance of bands occurred on day 2.75 with the highest biomass concentration of 46.5 mg/L. Chemostat kinetic tests were performed independently to evaluate the biokinetic parameters used in the model prediction. In the column test, the removal efficiency of [Formula: see text]-N was approximately 96 % while the concentration of suspended nitrifying biomass was approximately 16 mg VSS/L and model-predicted biofilm thickness reached up to 0.21 cm in the steady state. The profiles of denaturing gradient gel electrophoresis (DGGE) of different microbial communities demonstrated that indigenous nitrifying bacteria (Nitrospira and Nitrobacter) existed and were the dominant species in the fixed biofilm process.
Vimalnath, K V; Chakraborty, Sudipta; Rajeswari, A; Sarma, H D; Nuwad, Jitendra; Pandey, Usha; Kamaleshwaran, K; Shinto, Ajit; Dash, Ashutosh
2015-05-01
The scope of using no carrier added (NCA) (90)Y [T(1/2) = 64.1 h, Eβ(max) = 2.28 MeV] obtained from (90)Sr/(90)Y generator in radiation synovectomy (RSV) is widely accepted. In the present study, the prospect of using (90)Y produced by (n,γ) route in a medium flux research reactor for use in RSV was explored. Yttrium-90 was produced by thermal neutron irradiation of Y(2)O(3) target at a neutron flux of ~1×10(14) n/cm(2).s for 14 d. The influence of various experimental parameters were systematically investigated and optimized to arrive at the most favorable conditions for the formulation of (90)Y labeled hydroxyapatite (HA) using HA particles of 1-10 μm size range. An optimized kit formulation strategy was developed for convenient one-step compounding of (90)Y-HA, which is easily adaptable at hospital radiopharmacy. The pre-clinical biological evaluation of (90)Y-HA particles was studied by carrying out biodistribution and bioluminiscence imaging studies in Wistar rats. The first clinical investigation using the radiolabeled preparation was performed on a patient suffering from chronic arthritis in knee joint by administering 185 MBq (90)Y-HA formulated at the hospital radiopharmacy deploying the proposed strategy. Yttrium-90 was produced with a specific activity of 851 ± 111 MBq/mg and radionuclidic purity of 99.95 ± 0.02%. (90)Y-labeled HA particles (185 ± 10 MBq doses) were formulated in high radiochemical purity (>99%) and excellent in vitro stability. The preparation showed promising results in pre-clinical studies carried out in Wistar rats. The preliminary results of the first clinical investigation of (90)Y-HA preparation in a patient with rheumatoid arthritis in knee joints demonstrated the effectiveness of the formulation prepared using (90)Y produced via (n,γ) route in the management of the disease. The studies revealed that effective utilization of (90)Y produced via (n,γ) route in a medium flux research reactor coupled with the developed strategy of using HA kits for convenient formulation of (90)Y-HA at the hospital radiopharmacy can contribute to sustainable growth in the clinical utilization of (90)Y in RSV in the foreseeable future. Copyright © 2015 Elsevier Inc. All rights reserved.
Optimization of the Synthesis of Structured Phosphatidylcholine with Medium Chain Fatty Acid.
Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Vernon-Carter, Eduardo J; García, Hugo S
2017-11-01
Structured phosphatidylcholine was successfully produced by acidolysis between phosphatidylcholine and free medium chain fatty acid, using phospholipase A 1 immobilized on Duolite A568. Response surface methodology was applied to optimize the reaction system using three process parameters: molar ratio of substrates (phosphatidylcholine to free medium chain fatty acid), enzyme loading, and reaction temperature. All parameters evaluated showed linear and quadratic significant effects on the production of modified phosphatidylcholine; molar ratio of substrates contributed positively, but temperature influenced negatively. Increased enzyme loading also led to increased production of modified phosphatidylcholine but only during the first 9 hours of the acidolysis reaction. Optimal conditions obtained from the model were a ratio of phosphatidylcholine to free medium chain fatty acid of 1:15, an enzyme loading of 12%, and a temperature of 45°C. Under these conditions a production of modified phosphatidylcholine of 52.98 % were obtained after 24 h of reaction. The prediction was confirmed from the verification experiments; the production of modified phosphatidylcholine was 53.02%, the total yield of phosphatidylcholine 64.28% and the molar incorporation of medium chain fatty acid was 42.31%. The acidolysis reaction was scaled-up in a batch reactor with a similar production of modified phosphatidylcholine, total yield of phosphatidylcholine and molar incorporation of medium chain fatty acid. Purification by column chromatography of the structured phosphatidylcholine yielded 62.53% of phosphatidylcholine enriched with 42.52% of medium chain fatty acid.
Long Distance Reactor Antineutrino Flux Monitoring
NASA Astrophysics Data System (ADS)
Dazeley, Steven; Bergevin, Marc; Bernstein, Adam
2015-10-01
The feasibility of antineutrino detection as an unambiguous and unshieldable way to detect the presence of distant nuclear reactors has been studied. While KamLAND provided a proof of concept for long distance antineutrino detection, the feasibility of detecting single reactors at distances greater than 100 km has not yet been established. Even larger detectors than KamLAND would be required for such a project. Considerations such as light attenuation, environmental impact and cost, which favor water as a detection medium, become more important as detectors get larger. We have studied both the sensitivity of water based detection media as a monitoring tool, and the scientific impact such detectors might provide. A next generation water based detector may be able to contribute to important questions in neutrino physics, such as supernova neutrinos, sterile neutrino oscillations, and non standard electroweak interactions (using a nearby compact accelerator source), while also providing a highly sensitive, and inherently unshieldable reactor monitoring tool to the non proliferation community. In this talk I will present the predicted performance of an experimental non proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674192.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrecht, David G.; Schwantes, Jon M.
This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes, et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the source of the radionuclides to be from active reactors rather than the spent fuel pool. Linear correlations of the form ln χ = -α (ΔG rxn°(T C))/(RT C)+β were obtained between the deposited concentration and the reduction potential of the fission product oxide species using multiple reduction schemes to calculate ΔG° rxn(T C). These models allowedmore » an estimate of the upper bound for the reactor temperatures of T C between 2130 K and 2220 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, 151Sm through atmospheric venting and releases during the first month following the accident were performed, and indicate large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.« less
van Groenestijn, J W; Geelhoed, J S; Goorissen, H P; Meesters, K P M; Stams, A J M; Claassen, P A M
2009-04-01
Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73 degrees C. The volumetric productivity was 22 mmol H2/(L filterbed h). Acetic acid and lactic acid were the main by-products in the liquid phase. Production of lactic acid occurred when hydrogen partial pressure was elevated above 2% and during suboptimal fermentation conditions that also resulted in the presence of mono- and disaccharides in the effluent. Methane production was negligible. The microbial community was analyzed at two different time points during operation. Initially, other species related to members of the genera Thermoanaerobacterium and Caldicellulosiruptor were present in the reactor. However, these were out-competed by C. saccharolyticus during a period when sucrose was completely used and no saccharides were discharged with the effluent. In general, the use of pure cultures in non-sterile industrial applications is known to be less useful because of contamination. However, our results show that the applied fermentation conditions resulted in a culture of a single dominant organism with excellent hydrogen production characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
>Fundamental Alloying. Studies of crystal structures, reactions at metal surfaces, spectroscopy of molten salts, mechanical deformation, and alloy theory are reported. Long-Range Applied Metallurgy. A thermal comparator is described and the characteristic temperature of U0/sub 2/ determined. Sintering studies were carried out on ThO/sub 2/. The diffusion of fission products in fuel and of Al/sup 26/ and Mn/sup 54/ in Al and the reaction of Be with UC were studied. Transformation and oxidation data were obtained for a number of Zr alloys. Reactor Metallurgy. A large number of ceramic technology projects are described. Some corrosion data are given for metalsmore » exposed to impure He and molten fluorides. Studies were made of the fission-gas-retention Properties of ceramic fuel bodies. A large number of materials compatibility studies are described. The mechanical properties of some reactor materials were studied. Fabrication work was conducted to develop materials for application in low-, medium-, and high-temperature reactors or systems. A large number of new metallographic and nondestructive testing techniques are reported. Studies were carried out on the oxidation, carburization, and stability of alloys. Equipment for postirradiation examination is described. Preparation of some alloys and dispersion fuels by powder metallurgy methods was studied. The development of welding and brazing techniques for reactor materials is described. (D.L.C.)« less
Characterization of Microbial Communities in Gas Industry Pipelines
Zhu, Xiang Y.; Lubeck, John; Kilbane, John J.
2003-01-01
Culture-independent techniques, denaturing gradient gel electrophoresis (DGGE) analysis, and random cloning of 16S rRNA gene sequences amplified from community DNA were used to determine the diversity of microbial communities in gas industry pipelines. Samples obtained from natural gas pipelines were used directly for DNA extraction, inoculated into sulfate-reducing bacterium medium, or used to inoculate a reactor that simulated a natural gas pipeline environment. The variable V2-V3 (average size, 384 bp) and V3-V6 (average size, 648 bp) regions of bacterial and archaeal 16S rRNA genes, respectively, were amplified from genomic DNA isolated from nine natural gas pipeline samples and analyzed. A total of 106 bacterial 16S rDNA sequences were derived from DGGE bands, and these formed three major clusters: beta and gamma subdivisions of Proteobacteria and gram-positive bacteria. The most frequently encountered bacterial species was Comamonas denitrificans, which was not previously reported to be associated with microbial communities found in gas pipelines or with microbially influenced corrosion. The 31 archaeal 16S rDNA sequences obtained in this study were all related to those of methanogens and phylogenetically fall into three clusters: order I, Methanobacteriales; order III, Methanomicrobiales; and order IV, Methanosarcinales. Further microbial ecology studies are needed to better understand the relationship among bacterial and archaeal groups and the involvement of these groups in the process of microbially influenced corrosion in order to develop improved ways of monitoring and controlling microbially influenced corrosion. PMID:12957923
ERIC Educational Resources Information Center
Vermeer, Willemijn M.; Steenhuis, Ingrid H. M.; Leeuwis, Franca H.; Bos, Arjan E. R.; de Boer, Michiel; Seidell, Jacob C.
2010-01-01
Objective: To assess what portion size labeling "format" is most promising in helping consumers selecting appropriate soft drink sizes, and whether labeling impact depends on the size portfolio. Methods: An experimental study was conducted in fast-food restaurants in which 2 labeling formats (ie, reference portion size and small/medium/large…
Effect of bed characters on the direct synthesis of dimethyldichlorosilane in fluidized bed reactor.
Zhang, Pan; Duan, Ji H; Chen, Guang H; Wang, Wei W
2015-03-06
This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity.
Effect of Bed Characters on the Direct Synthesis of Dimethyldichlorosilane in Fluidized Bed Reactor
Zhang, Pan; Duan, Ji H.; Chen, Guang H.; Wang, Wei W.
2015-01-01
This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity. PMID:25742729
Drijfhout van Hooff, Cornelis Christiaan; Verhage, Samuel Marinus; Hoogendoorn, Jochem Maarten
2015-06-01
One of the factors contributing to long-term outcome of posterior malleolar fractures is the development of osteoarthritis. Based on biomechanical, cadaveric, and small population studies, fixation of posterior malleolar fracture fragments (PMFFs) is usually performed when fragment size exceeds 25-33%. However, the influence of fragment size on long-term clinical and radiological outcome size remains unclear. A retrospective cohort study of 131 patients treated for an isolated ankle fracture with involvement of the posterior malleolus was performed. Mean follow-up was 6.9 (range, 2.5-15.9) years. Patients were divided into groups depending on size of the fragment, small (<5%, n = 20), medium (5-25%, n = 86), or large (>25%, n = 25), and presence of step-off after operative treatment. We have compared functional outcome measures (AOFAS, AAOS), pain (VAS), and dorsiflexion restriction compared to the contralateral ankle and the incidence of osteoarthritis on X-ray. There were no nonunions, 56% of patients had no radiographic osteoarthritis, VAS was 10 of 100, and median clinical score was 90 of 100. More osteoarthritis occurred in ankle fractures with medium and large PMFFs compared to small fragments (small 16%, medium 48%, large 54%; P = .006). Also when comparing small with medium-sized fragments (P = .02), larger fragment size did not lead to a significantly decreased function (median AOFAS 95 vs 88, P = .16). If the PMFF size was >5%, osteoarthritis occurred more frequently when there was a postoperative step-off ≥1 mm in the tibiotalar joint surface (41% vs 61%, P = .02) (whether the posterior fragment had been fixed or not). In this group, fixing the PMFF did not influence development of osteoarthritis. However, in 42% of the cases with fixation of the fragment a postoperative step-off remained (vs 45% in the group without fixation). Osteoarthritis is 1 component of long-term outcome of malleolar fractures, and the results of this study demonstrate that there was more radiographic osteoarthritis in patients with medium and large posterior fragments than in those with small fragments. Radiographic osteoarthritis also occurred more frequently when postoperative step-off was 1 mm or more, whether the posterior fragment was fixed or not. However, clinical scores were not different for these groups. Level IV, retrospective case series. © The Author(s) 2015.
Kulkarni, Amol A; Sebastian Cabeza, Victor
2017-12-19
Continuous segmented flow interfacial synthesis of Au nanostructures is demonstrated in a microchannel reactor. This study brings new insights into the growth of nanostructures at continuous interfaces. The size as well as the shape of the nanostructures showed significant dependence on the reactant concentrations, reaction time, temperature, and surface tension, which actually controlled the interfacial mass transfer. The microchannel reactor assisted in achieving a high interfacial area, as well as uniformity in mass transfer effects. Hexagonal nanostructures were seen to be formed in synthesis times as short as 10 min. The wettability of the channel showed significant effect on the particle size as well as the actual shape. The hydrophobic channel yielded hexagonal structures of relatively smaller size than the hydrophilic microchannel, which yielded sharp hexagonal bipyramidal particles (diagonal distance of 30 nm). The evolution of particle size and shape for the case of hydrophilic microchannel is also shown as a function of the residence time. The interfacial synthesis approach based on a stable segmented flow promoted an excellent control on the reaction extent, reduction in axial dispersion as well as the particle size distribution.
Reactor performance and microbial community of an EGSB reactor operated at 20 and 15 degrees C.
Xing, W; Zuo, J-E; Dai, N; Cheng, J; Li, J
2009-09-01
To investigate the effects of low temperatures on the performance and microbial community of anaerobic wastewater treatment. An expanded granular sludge bed (EGSB) reactor was employed to treat synthetic brewery wastewater at 20 and 15 degrees C. Reactor performance was represented by chemical oxygen demand (COD) removal efficiency, while the microbial community was analysed using denaturing gradient gel electrophoresis (DGGE) and clone technology. When the hydraulic retention time (HRT) was maintained at 18 h, COD removal efficiencies above 85% were obtained at both 20 and 15 degrees C, with influent COD concentrations up to 7300 and 4100 mg l(-1), respectively. At 15 degrees C, the COD removal efficiency was more easily manipulated by increasing the influent COD concentration. DGGE and clone results for both temperatures revealed that Methanosaeta and Methanobacterium were two dominant methanogens, and that the majority of the eubacterial clones were represented by Firmicutes. When the temperature decreased from 20 to 15 degrees C, both archaeal and eubacterial communities had higher diversity, and the proportion of Methanosaeta (acetate-utilizing methanogens) decreased markedly from 60.0% to 49.3%, together with an increase in proportions of hydrogen-utilizing methanogens (especially Methanospirillum). The feasibility of psychrophilic anaerobic treatment of low and medium strength organic wastewaters was demonstrated, although lower temperature could significantly affect both reactor performance and the anaerobic microbial community. The findings enrich the theory involving the microbial community and the application of anaerobic treatment in a psychrophilic environment.
Anaerobic biodegradation of aircraft deicing fluid in UASB reactors.
Tham, P T Pham thi; Kennedy, K J Kevin J
2004-05-01
A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions (0.8% 1.6% ADF (6000-12,000mg/L COD), 12-56h HRT, and 18-36gVSS/L) were conducted in continuous mode. The development of four empirical models describing process responses (i.e. COD removal efficiency, biomass-specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time, and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass-specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass-specific acetoclastic activity was improved two-fold from 0.23gCOD/gVSS/d for inoculum to a maximum of 0.55gCOD/gVSS/d during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. The predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate is increased. ADF toxicity effects were evident for 1.6% ADF at medium organic loadings (SOLR above 0.5gCOD/gVSS/d). In contrast, good reactor stability and excellent COD removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73gCOD/gVSS/d).
Assessment of management and basic beef quality assurance practices on Idaho dairies.
Glaze, J B; Chahine, M
2009-03-01
In 2004 a mail-in survey was conducted to establish a baseline level of awareness and knowledge related to dairy beef quality assurance (BQA) issues in Idaho. A 30-question survey was mailed to every (n = 736) registered Idaho dairy. Two-hundred seventy-three (37%) dairies participated and were categorized as small (n <201 cows; 53.5%), medium-sized (n = 201 to 1,000 cows; 27.1%) or large (n >1,000 cows; 19.4%). The majority of respondents were dairy owners (83%). Eighty-nine percent of respondents indicated they followed BQA recommendations for animal care. The neck region in cows was used by 68% of respondents for i.m. injections and by 80% for s.c. injections. In calves, the values were 61 and 78%, respectively. Seventy-four percent of respondents indicated they had been trained for injections. Training methods cited included veterinarians (19.8%), dairy owners (16.8%), experience (9.9%), and BQA events or schools (4.5%). The importance of BQA in the dairy industry was rated 2.6 on a 5-point scale (0 = low; 4 = high). Participants rated the effect of dairy animals on the beef industry at 2.5. Plastic ear tags were the preferred method of animal identification, with 100% of large dairies, 97.3% of medium-sized dairies, and 84% of small dairies citing their use. Less than 10% used electronic identification for their animals. Almost half (48%) of large and medium-sized (49%) dairies and 32% of small dairies supported a national animal identification program. A mandatory identification program was supported by 41, 69, and 59% for small, medium-sized, and large dairies, respectively. The percentage of dairies keeping records was similar between small (93%), medium-sized (99%), and large (100%) dairies. Most small dairies (58%) used some form of paper records, whereas most medium-sized (85%) and large (100%) dairies used computers for record keeping. The preferred method to market cull cows by Idaho dairies was the auction market (64%), followed by order buyers (17%), direct to the packer (17%), private treaty sales (16%), and forward contracts (1%). To market calves, dairies used private treaty sales (52%), auction markets (42%), order buyers (14%), and forward contracts (1%). The results of this study will be used by University of Idaho Extension faculty in the design, development, and delivery of dairy BQA program information and materials.
The Potential of the LFR and the ELSY Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinotti, L; Smith, C F; Sienicki, J J
2007-03-12
This paper presents the current status of the development of the Lead-cooled Fast Reactor (LFR) in support of Generation IV (GEN IV) Nuclear Energy Systems. The approach being taken by the GIF plan is to address the research priorities of each member state in developing an integrated and coordinated research program to achieve common objectives, while avoiding duplication of effort. The integrated plan being prepared by the LFR Provisional System Steering Committee of the GIF, known as the LFR System research Plan (SRP) recognizes two principal technology tracks for pursuit of LFR technology: (1) a small, transportable system of 10-100more » MWe size that features a very long refueling interval, (2) a larger-sized system rated at about 600 MWe, intended for central station power generation and waste transmutation. This paper, in particular, describes the ongoing activities to develop the Small Secure Transportable Autonomous Reactor (SSTAR) and the European Lead-cooled SYstem (ELSY), the two research initiatives closely aligned with the overall tracks of the SRP and outlines the Proliferation-resistant Environment-friendly Accident-tolerant Continual & Economical Reactors (PEACER) conceived with particular focus on burning/transmuting of long-living TRU waste and fission fragments of concern, such as Tc and I. The current reference design for the SSTAR is a 20 MWe natural circulation pool-type reactor concept with a small shippable reactor vessel. Specific features of the lead coolant, the nitride fuel containing transuranics, the fast spectrum core, and the small size combine to promote a unique approach to achieve proliferation resistance, while also enabling fissile self-sufficiency, autonomous load following, simplicity of operation, reliability, transportability, as well as a high degree of passive safety. Conversion of the core thermal power into electricity at a high plant efficiency of 44% is accomplished utilizing a supercritical carbon dioxide Brayton cycle power converter. The ELSY reference design is a 600 MWe pool-type reactor cooled by pure lead. This concept has been under development since September 2006, and is sponsored by the Sixth Framework Programme of EURATOM. The ELSY project is being performed by a consortium consisting of twenty organizations including seventeen from Europe, two from Korea and one from the USA. ELSY aims to demonstrate the possibility of designing a competitive and safe fast critical reactor using simple engineered technical features while fully complying with the Generation IV goal of minor actinide (MA) burning capability. The use of a compact and simple primary circuit with the additional objective that all internal components be removable, are among the reactor features intended to assure competitive electric energy generation and long-term investment protection. Simplicity is expected to reduce both the capital cost and the construction time; these are also supported by the compactness of the reactor building (reduced footprint and height). The reduced footprint would be possible due to the elimination of the Intermediate Cooling System, the reduced elevation the result of the design approach of reduced-height components.« less
Finance salaries. Account the cost.
Robling, Andy
2003-02-06
Post-qualification salaries have increased by 4-7 per cent, a slowdown on last year's figures when increases were often more than 10 per cent. The highest increases this year tended to be in medium-sized trusts where newly qualified accountants' salaries rose 8.2 per cent. Directors of finance in large trusts earn about 20 per cent more than in medium trusts and about 40 per cent more than in small ones. Newly qualified accountants in large trusts earn 5 per cent more than in medium-sized trusts and 13 per cent more than in small ones. The survey is based on an analysis of salaries from Hays' jobs database, and salaries of registered candidates.
Fem Formulation for Heat and Mass Transfer in Porous Medium
NASA Astrophysics Data System (ADS)
Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan
2017-08-01
Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.
DETACHMENT OF BACTERIOPHAGE FROM ITS CARRIER PARTICLES.
Hetler, D M; Bronfenbrenner, J
1931-05-20
The active substance (phage) present in the lytic broth filtrate is distributed through the medium in the form of particles. These particles vary in size within broad limits. The average size of these particles as calculated on the basis of the rate of diffusion approximates 4.4 mmicro in radius. Fractionation by means of ultrafiltration permits partial separation of particles of different sizes. Under conditions of experiments here reported the particles varied in the radius size from 0.6 mmicro to 11.4 mmicro. The active agent apparently is not intimately identified with these particles. It is merely carried by them by adsorption, and under suitable experimental conditions it can be detached from the larger particles and redistributed on smaller particles of the medium.
HIGH TEMPERATURE SULFATION STUDIES IN AN ISOTHERMAL REACTOR: A COMPARISON OF THEORY AND EXPERIMENT
The paper gives high-temperature isothermal data on sulfur dioxide (SO2) capture, obtained as a function of temperature, SO2 partial pressure, and Ca/S molar ratio for a pulverized dolomite (34 micrometer mean size) and a high-purity calcite (11 micrometer mean size). The experim...
Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor
2016-01-01
We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H2O and CO2. The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kWth lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 μm mean size initially formed large agglomerates of 1000 μm mean size, then sintered into stable particles of 150 μm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 μm) and by the gas phase advection of product O2 for smaller particles. PMID:27853339
Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor.
Welte, Michael; Barhoumi, Rafik; Zbinden, Adrian; Scheffe, Jonathan R; Steinfeld, Aldo
2016-10-12
We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H 2 O and CO 2 . The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kW th lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 μm mean size initially formed large agglomerates of 1000 μm mean size, then sintered into stable particles of 150 μm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 μm) and by the gas phase advection of product O 2 for smaller particles.
The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor
Palanisamy, Barath; Paul, Brian; Chang, Chih -hung
2015-01-21
A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. Asmore » a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.« less
Self locking drive system for rotating plug of a nuclear reactor
Brubaker, James E.
1979-01-01
This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.
Numerical analysis of hydrodynamics in a rotor-stator reactor for biodiesel synthesis
NASA Astrophysics Data System (ADS)
Wen, Zhuqing; Petera, Jerzy
2016-06-01
A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the center line of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction species transport model by the CFD software ANSYS©Fluent v. 13.0. The effects of upper disk's spinning speed, gap size and flow rates at inlets are evaluated.
Apollo - An advanced fuel fusion power reactor for the 21st century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulcinski, G.L.; Emmert, G.A.; Blanchard, J.P.
1989-03-01
A preconceptual design of a tokamak reactor fueled by a D-He-3 plasma is presented. A low aspect ratio (A=2-4) device is studied here but high aspect ratio devices (A > 6) may also be quite attractive. The Apollo D-He-3 tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The overall efficiency ranges from 37 to 52% depending on whether the bremsstrahlung energy is utilized. The low neutron wall loading (0.1 MW/m/sup 2/) allows a permanent first wall to be designed and the low nuclear decay heat enablesmore » the reactor to be classed as inherently safe. The cost of electricity from Apollo is > 40% lower than electricity from a similar sized DT reactor.« less
Chakraborty, Sudip; Rusli, Handajaya; Nath, Arijit; Sikder, Jaya; Bhattacharjee, Chiranjib; Curcio, Stefano; Drioli, Enrico
2016-01-01
Biocatalytic membrane reactors have been widely used in different industries including food, fine chemicals, biological, biomedical, pharmaceuticals, environmental treatment and so on. This article gives an overview of the different immobilized enzymatic processes and their advantages over the conventional chemical catalysts. The application of a membrane bioreactor (MBR) reduces the energy consumption, and system size, in line with process intensification. The performances of MBR are considerably influenced by substrate concentration, immobilized matrix material, types of immobilization and the type of reactor. Advantages of a membrane associated bioreactor over a free-enzyme biochemical reaction, and a packed bed reactor are, large surface area of immobilization matrix, reuse of enzymes, better product recovery along with heterogeneous reactions, and continuous operation of the reactor. The present research work highlights immobilization techniques, reactor setup, enzyme stability under immobilized conditions, the hydrodynamics of MBR, and its application, particularly, in the field of sugar, starch, drinks, milk, pharmaceutical industries and energy generation.
Reactor power system deployment and startup
NASA Technical Reports Server (NTRS)
Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.
1985-01-01
This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.
Novel Solar Photocatalytic Reactor for Wastewater Treatment
NASA Astrophysics Data System (ADS)
Sutisna; Rokhmat, M.; Wibowo, E.; Murniati, R.; Khairurrijal; Abdullah, M.
2017-07-01
A new solar photocatalytic reactor (photoreactor) using TiO2 nanoparticles coated onto plastic granules has been designed. Catalyst granules are placed into the cavity of a reactor panel made of glass. A pump is used to circulate wastewater in the photoreactor. Methylene blue (MB) dissolved in water was chosen as the wastewater model. The performance of the photoreactor was evaluated based on changes in MB concentration with respect to time. The photoreactor showed a good performance by degrading 10 L of MB solution up to 96.54% after 48 h of solar irradiation. The photoreactor was scaled up by enlarging the panel area to twice its original size. The increase in the surface area of the reactor panel and therefore of the mass of catalyst granules and reactor volume led to a three-fold increase of the photodegradation rate. In addition, the MB degradation kinetics were also studied. Data analysis confirmed the applicability of the pseudo-first-order Langmuir-Hinshelwood model. The proposed photoreactor has great potential for use in large-scale wastewater treatment.
Kang, Xue-Jing; Chi, Ye-Nan; Chen, Wen; Liu, Feng-Yu; Cui, Shuang; Liao, Fei-Fei; Cai, Jie; Wan, You
2018-01-01
Ion channels are very important in the peripheral sensitization in neuropathic pain. Our present study aims to investigate the possible contribution of Ca V 3.2 T-type calcium channels in damaged dorsal root ganglion neurons in neuropathic pain. We established a neuropathic pain model of rats with spared nerve injury. In these model rats, it was easy to distinguish damaged dorsal root ganglion neurons (of tibial nerve and common peroneal nerve) from intact dorsal root ganglion neurons (of sural nerves). Our results showed that Ca V 3.2 protein expression increased in medium-sized neurons from the damaged dorsal root ganglions but not in the intact ones. With whole cell patch clamp recording technique, it was found that after-depolarizing amplitudes of the damaged medium-sized dorsal root ganglion neurons increased significantly at membrane potentials of -85 mV and -95 mV. These results indicate a functional up-regulation of Ca V 3.2 T-type calcium channels in the damaged medium-sized neurons after spared nerve injury. Behaviorally, blockade of Ca V 3.2 with antisense oligodeoxynucleotides could significantly reverse mechanical allodynia. These results suggest that Ca V 3.2 T-type calcium channels in damaged medium-sized dorsal root ganglion neurons might contribute to neuropathic pain after peripheral nerve injury.
Chi, Cuong Tran; Nguyen, Dang; Duc, Vo Tan; Chau, Huynh Hong; Son, Vo Tan
2014-01-01
We report our experience in treatment of traumatic direct carotid cavernous fistula (CCF) via endovascular intervention. We hereof recommend an additional classification system for type A CCF and suggest respective treatment strategies. Only type A CCF patients (Barrow's classification) would be recruited for the study. Based on the angiographic characteristics of the CCF, we classified type A CCF into three subtypes including small size, medium size and large size fistula depending on whether there was presence of the anterior carotid artery (ACA) and/or middle carotid artery (MCA). Angiograms with opacification of both ACA and MCA were categorized as small size fistula. Angiograms with opacification of either ACA or MCA were categorized as medium size fistula and those without opacification of neither ACA nor MCA were classified as large size fiatula. After the confirm angiogram, endovascular embolization would be performed impromptu using detachable balloon, coils or both. All cases were followed up for complication and effect after the embolization. A total of 172 direct traumatic CCF patients were enrolled. The small size fistula was accountant for 12.8% (22 cases), medium size 35.5% (61 cases) and large size fistula accountant for 51.7% (89 cases). The successful rate of fistula occlusion under endovascular embolization was 94% with preservation of the carotid artery in 70%. For the treatment of each subtype, a total of 21/22 cases of the small size fistulas were successfully treated using coils alone. The other single case of small fistula was defaulted. Most of the medium and large size fistulas were cured using detachable balloons. When the fistula sealing could not be obtained using detachable balloon, coils were added to affirm the embolization of the cavernous sinus via venous access. There were about 2.9% of patient experienced direct carotid artery puncture and 0.6% puncture after carotid artery cut-down exposure. About 30% of cases experienced sacrifice of the parent vessels and it was associated with sizes of the fistula. Total severe complication was about 2.4% which included 1 death (0.6%) due to vagal shock; 1 transient hemiparesis post-sacrifice occlusion of the carotid artery but the patient had recovered after 3 months; 1 acute thrombus embolism and the patient was completely saved with recombinant tissue plaminogen activator (rTPA); 1 balloon dislodgement then got stuck at the anterior communicating artery but the patient was asymptomatic. Endovascular intervention as the treatment of direct traumatic CCF had high cure rate and low complication with its ability to preserve the carotid artery. It also can supply flexible accesses to the fistulous site with various alternative embolic materials. The new classification of type A CCF based on angiographic features was helpful for planning for the embolization. Coil should be considered as the first embolic material for small size fistula meanwhile detachable balloons was suggested as the first-choice embolic agent for the medium and large size fistula.
Production of acids and alcohols from syngas in a two-stage continuous fermentation process.
Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian
2018-04-01
A two-stage continuous system with two stirred tank reactors in series was utilized to perform syngas fermentation using Clostridium carboxidivorans. The first bioreactor (bioreactor 1) was maintained at pH 6 to promote acidogenesis and the second one (bioreactor 2) at pH 5 to stimulate solventogenesis. Both reactors were operated in continuous mode by feeding syngas (CO:CO 2 :H 2 :N 2 ; 30:10:20:40; vol%) at a constant flow rate while supplying a nutrient medium at different flow rates of 8.1, 15, 22 and 30 ml/h. A cell recycling unit was added to bioreactor 2 in order to recycle the cells back to the reactor, maintaining the OD 600 around 1 in bioreactor 2 throughout the experimental run. When comparing the flow rates, the best results in terms of solvent production were obtained with a flow rate of 22 ml/h, reaching the highest average outlet concentration for alcohols (1.51 g/L) and the most favorable alcohol/acid ratio of 0.32. Copyright © 2018 Elsevier Ltd. All rights reserved.
2D simulation of active species and ozone production in a multi-tip DC air corona discharge
NASA Astrophysics Data System (ADS)
Meziane, M.; Eichwald, O.; Sarrette, J. P.; Ducasse, O.; Yousfi, M.
2011-11-01
The present paper shows for the first time in the literature a complete 2D simulation of the ozone production in a DC positive multi-tip to plane corona discharge reactor crossed by a dry air flow at atmospheric pressure. The simulation is undertaken until 1 ms and involves tens of successive discharge and post-discharge phases. The air flow is stressed by several monofilament corona discharges generated by a maximum of four anodic tips distributed along the reactor. The nonstationary hydrodynamics model for reactive gas mixture is solved using the commercial FLUENT software. During each discharge phase, thermal and vibrational energies as well as densities of radical and metastable excited species are locally injected as source terms in the gas medium surrounding each tip. The chosen chemical model involves 10 neutral species reacting following 24 reactions. The obtained results allow us to follow the cartography of the temperature and the ozone production inside the corona reactor as a function of the number of high voltage anodic tips.
Energy-technological complex with reactor for torrefaction
NASA Astrophysics Data System (ADS)
Kuzmina, J. S.; Director, L. B.; Zaichenko, V. M.
2016-11-01
To eliminate shortcomings of raw plant materials pelletizing process with thermal treatment (low-temperature pyrolysis or torrefaction) can be applied. This paper presents a mathematical model of energy-technological complex (ETC) for combined production of heat, electricity and solid biofuels torrefied pellets. According to the structure the mathematical model consists of mathematical models of main units of ETC and the relationships between them and equations of energy and material balances. The equations describe exhaust gas straining action through a porous medium formed by pellets. Decomposition rate of biomass was calculated by using the gross-reaction diagram, which is responsible for the disintegration of raw material. A mathematical model has been tested according to bench experiments on one reactor module. From nomographs, designed for a particular configuration of ETC it is possible to determine the basic characteristics of torrefied pellets (rate of weight loss, heating value and heat content) specifying only two parameters (temperature and torrefaction time). It is shown that the addition of reactor for torrefaction to gas piston engine can improve the energy efficiency of power plant.
Influence of liquid medium on the activity of a low-alpha Fischer-Tropsch catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gormley, R.J.; Zarochak, M.F.; Deffenbaugh, P.W.
1995-12-31
The purpose of this research was to measure activity, selectivity, and the maintenance of these properties in slurry autoclave experiments with a Fischer-Tropsch (FT) catalyst that was used in the {open_quotes}FT II{close_quotes} bubble-column test, conducted at the Alternative Fuels Development Unit (AFDU) at LaPorte, Texas during May 1994. The catalyst contained iron, copper, and potassium and was formulated to produce mainly hydrocarbons in the gasoline range with lesser production of diesel-range products and wax. The probability of chain growth was thus deliberately kept low. Principal goals of the autoclave work have been to find the true activity of this catalystmore » in a stirred tank reactor, unhindered by heat or mass transfer effects, and to obtain a steady conversion and selectivity over the approximately 15 days of each test. Slurry autoclave testing of the catalyst in heavier waxes also allows insight into operation of larger slurry bubble column reactors. The stability of reactor operation in these experiments, particularly at loadings exceeding 20 weight %, suggests the likely stability of operations on a larger scale.« less
Nava, José L; Sirés, Ignasi; Brillas, Enric
2014-01-01
This paper compares the performance of 2D (plate) and 3D (mesh) boron-doped diamond (BDD) electrodes, fitted into a filter-press reactor, during the electrochemical incineration of indigo textile dye as a model organic compound in chloride medium. The electrolyses were carried out in the FM01-LC reactor at mean fluid velocities between 0.9 ≤ u ≤ 10.4 and 1.2 ≤ u ≤ 13.9 cm s(-1) for the 2D BDD and the 3D BDD electrodes, respectively, at current densities of 5.63 and 15 mA cm(-2). The oxidation of the organic matter was promoted, on the one hand, via the physisorbed hydroxyl radicals (BDD(·OH)) formed from water oxidation at the BDD surface and, on the other hand, via active chlorine formed from the oxidation of chloride ions on BDD. The performance of 2D BDD and 3D BDD electrodes in terms of current efficiency, energy consumption, and charge passage during the treatments is discussed.
A dense cell retention culture system using stirred ceramic membrane reactor.
Suzuki, T; Sato, T; Kominami, M
1994-11-20
A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Sunardi, O.
2017-12-01
Medium-sized food manufacturing enterprises in Indonesia are significant in a number of contexts, in terms of their part to the national production (GDP) and their establishment to the employment. In term of their role to national production, manufacturing sector contributes the highest GDP by 85%. In this sector, food manufacturing subsector contributes the highest GDP. Nevertheless, they faced the same common problems: quality of human capital and sustainability issues. Previous government supplementary programs have been established to expand the human capital capability amongst medium enterprises. Adequate amount of fund has been apportioned to develop human capital, though, the medium enterprises sustainability is still in question. This study proposes and examines the human capital role from informal knowledge sharing perspective. By conducting qualitative approach through interviews to four informants in Indonesian medium-sized food manufacturing enterprises, a set of hypotheses is derived from this study for future quantitative study. This study indicates that human capital traits (diverse education background, employee skills, and employee experience) could leverage the practice of informal knowledge sharing. Constructs such as mutual trust and reciprocal intention could play as mediating variables, and cultural interpretation perspective could act as moderating factor to informal knowledge sharing effectiveness. In final, informal knowledge sharing is indicated to play as moderating variable for human capital policy and practice to support enterprise sustainability.
Ongoing Development of a Series Bosch Reactor System
NASA Technical Reports Server (NTRS)
Abney, Morgan; Mansell, Matt; DuMez, Sam; Thomas, John; Cooper, Charlie; Long, David
2013-01-01
Future manned missions to deep space or planetary surfaces will undoubtedly require highly robust, efficient, and regenerable life support systems that require minimal consumables. To meet this requirement, NASA continues to explore a Bosch-based carbon dioxide reduction system to recover oxygen from CO2. In order to improve the equivalent system mass of Bosch systems, we seek to design and test a "Series Bosch" system in which two reactors in series are optimized for the two steps of the reaction, as well as to explore the use of in situ materials as carbon deposition catalysts. Here we report recent developments in this effort including assembly and initial testing of a Reverse Water-Gas Shift reactor (RWGSr) and initial testing of two gas separation membranes. The RWGSr was sized to reduce CO2 produced by a crew of four to carbon monoxide as the first stage in a Series Bosch system. The gas separation membranes, necessary to recycle unreacted hydrogen and CO2, were similarly sized. Additionally, we report results of preliminary experiments designed to determine the catalytic properties of Martian and Lunar regolith simulant for the carbon deposition step.
Evaluation of selected chemical processes for production of low-cost silicon, phase 2
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.; Wilson, W. J.; Carmichael, D. C.
1977-01-01
Potential designs for an integrated fluidized-bed reactor/zinc vaporizer/SiCl4 preheater unit are being considered and heat-transfer calculations have been initiated on versions of the zinc vaporizer section. Estimates of the cost of the silicon prepared in the experimental facility have been made for projected capacities of 25, 50, 75, and 100 metric ton of silicon. A 35 percent saving is obtained in going from 25 metric ton/year to the 50 metric ton/year level. This analysis, coupled with the recognition that use of two reactors in the 50 metric ton/year version allows for continued operation (at reduced capacity) with one reactor shut down, has resulted in a recommendation for adoption of an experimental facility capacity of 50 metric ton/year or greater. At this stage, the change to a larger size facility would not increase the design costs appreciably. In the experimental support program, the effects of seed bed particle size and depth were studied, and operation of the miniplant with a new zinc vaporizer was initiated, revealing the need for modification of the latter.
Ongoing Development of a Series Bosch Reactor System
NASA Technical Reports Server (NTRS)
Abney, Morgan B; Mansell, J. Matthew; Stanley, Christine; Edmunson, Jennifer; DuMez, Samuel J.; Chen, Kevin
2013-01-01
Future manned missions to deep space or planetary surfaces will undoubtedly incorporate highly robust, efficient, and regenerable life support systems that require minimal consumables. To meet this requirement, NASA continues to explore a Bosch-based carbon dioxide reduction system to recover oxygen from CO2. In order to improve the equivalent system mass of Bosch systems, we seek to design and test a "Series Bosch" system in which two reactors in series are optimized for the two steps of the reaction, as well as to explore the use of in situ materials as carbon deposition catalysts. Here we report recent developments in this effort including assembly and initial testing of a Reverse Water-Gas Shift reactor (RWGSr) and initial testing of two gas separation membranes. The RWGSr was sized to reduce CO2 produced by a crew of four to carbon monoxide as the first stage in a Series Bosch system. The gas separation membranes, necessary to recycle unreacted hydrogen and CO2, were similarly sized. Additionally, we report results of preliminary experiments designed to determine the catalytic properties of Martian regolith simulant for the carbon formation step.
Splechtna, Barbara; Petzelbauer, Inge; Kuhn, Bernhard; Kulbe, Klaus D; Nidetzky, Bernd
2002-01-01
Recombinant beta-glycosidase CelB from the hyperthermophilic archaeon Pyrococcusfuriosus was produced through expression of the plasmid-encoded gene in Escherichia coli. Bioreactor cultivations of E. coli in the presence of the inductor isopropyl-1-thio-beta-D-galactoside (0.1 mM) gave approx 100,000 U of enzyme activity/L of culture medium after 8 h of growth. A technical-grade enzyme for the hydrolysis of lactose was prepared by precipitating the mesophilic protein at 80 degrees C. A hollow-fiber membrane reactor was developed, and its performance during continuous processing of ultrahigh temperature-treated (UHT) skim milk at 70 degrees C was analyzed regarding long-term stability, productivity, and diffusional limitation thereof. CelB was covalently attached onto Eupergit C in yields of 80%, and a packed-bed immobilized enzyme reactor was used for the continuous hydrolysis of lactose in UHT skim milk at 70 degrees C. The packed-bed reactor was approximately 10-fold more stable and gave about the same productivity at 80% substrate conversion as the hollow-fiber reactor at 60% substrate conversion. The marked difference in the stability of free and immobilized CelB seems to reflect mainly binding of the soluble enzyme to the membrane surface of the hollow-fiber module. Under these bound conditions, CelB is essentially inactive. CelB is essentially inactive. Microbial contamination of the reactors did not occur during reaction times of up to 39 d, given that UHT skim milk and not pasteurized skim milk was used as the substrate.
Copper (II) Removal In Anaerobic Continuous Column Reactor System By Using Sulfate Reducing Bacteria
NASA Astrophysics Data System (ADS)
Bilgin, A.; Jaffe, P. R.
2017-12-01
Copper is an essential element for the synthesis of the number of electrons carrying proteins and the enzymes. However, it has a high level of toxicity. In this study; it is aimed to treat copper heavy metal in anaerobic environment by using anaerobic continuous column reactor. Sulfate reducing bacteria culture was obtained in anaerobic medium using enrichment culture method. The column reactor experiments were carried out with bacterial culture obtained from soil by culture enrichment method. The system is operated with continuous feeding and as parallel. In the first rector, only sand was used as packing material. The first column reactor was only fed with the bacteria nutrient media. The same solution was passed through the second reactor, and copper solution removal was investigated by continuously feeding 15-600 mg/L of copper solution at the feeding inlet in the second reactor. When the experiment was carried out by adding the 10 mg/L of initial copper concentration, copper removal in the rate of 45-75% was obtained. In order to determine the use of carbon source during copper removal of mixed bacterial cultures in anaerobic conditions, total organic carbon TOC analysis was used to calculate the change in carbon content, and it was calculated to be between 28% and 75%. When the amount of sulphate is examined, it was observed that it changed between 28-46%. During the copper removal, the amounts of sulphate and carbon moles were equalized and more sulfate was added by changing the nutrient media in order to determine the consumption of sulphate or carbon. Accordingly, when the concentration of added sulphate is increased, it is calculated that between 35-57% of sulphate is spent. In this system, copper concentration of up to 15-600 mg / L were studied.
NASA Astrophysics Data System (ADS)
Andrianova, E. A.; Tsibul'skiy, V. F.
2017-12-01
At present, 240 000 t of spent nuclear fuel (SF) has been accumulated in the world. Its long-term storage should meet safety conditions and requires noticeable finances, which grow every year. Obviously, this situation cannot exist for a long time; in the end, it will require a final decision. At present, several variants of solution of the problem of SF management are considered. Since most of the operating reactors and those under construction are thermal reactors, it is reasonable to assume that the structure of the nuclear power industry in the near and medium-term future will be unchanged, and it will be necessary to utilize plutonium in thermal reactors. In this study, different strategies of SF management are compared: open fuel cycle with long-term SF storage, closed fuel cycle with MOX fuel usage in thermal reactors and subsequent long-term storage of SF from MOX fuel, and closed fuel cycle in thermal reactors with heterogeneous fuel arrangement. The concept of heterogeneous fuel arrangement is considered in detail. While in the case of traditional fuel it is necessary to reprocess the whole amount of spent fuel, in the case of heterogeneous arrangement, it is possible to separate plutonium and 238U in different fuel rods. In this case, it is possible to achieve nearly complete burning of fissile isotopes of plutonium in fuel rods loaded with plutonium. These fuel rods with burned plutonium can be buried after cooling without reprocessing. They would contain just several percent of initially loaded plutonium, mainly even isotopes. Fuel rods with 238U alone should be reprocessed in the usual way.
He, Qiang; Li, Jiang; Liu, Hongxia; Tang, Chuandong; de Koning, Jaap; Spanjers, Henri
2012-06-01
The sludge production from medium- and small-scale wastewater treatment plants in the Three Gorges Reservoir Region is low and non-stable; especially, the organic content in this sludge is low (near 40% of VS/TS). An integrated thickening and digestion (ISTD) reactor was developed to treat this low-organic excess sludge. After a flow test and start-up experiment of the reactor, a running experiment was used to investigate the excess sludge treatment efficiency under five different excess sludge inflows: 200, 300, 400, 500 and 400 L/d (a mixture of excess sludge and primary sludge in a volume ratio of 9:1). This trial was carried out in the wastewater treatment plant in Chongqing, which covers 80% of the Three Gorges Reservoir Region, under the following conditions: (1) sludge was heated to 38-40 degrees C using an electrical heater to maintain anaerobic mesophilic digestion; (2) the biogas produced was recirculated to mix raw sludge with anaerobic sludge in the reactor under the flow rate of 12.5 L/min. There were three main results. Firstly, the flow pattern of the inner reactor was almost completely mixed under the air flow of 12.0 L/min using clear water. Secondly, under all the different sludge inflows, the water content in the outlet sludge was below 93%. Thirdly, the organic content in the outlet sludge was decreased from 37% to 30% and from 24% to 20%, whose removal ratio was in relation to the organic content of the inlet sludge. The excess sludge treatment capacity of the ISTD reactor was according to the organic content in the excess sludge.
Flow of foams in two-dimensional disordered porous media
NASA Astrophysics Data System (ADS)
Dollet, Benjamin; Geraud, Baudouin; Jones, Sian A.; Meheust, Yves; Cantat, Isabelle; Institut de Physique de Rennes Team; Geosciences Rennes Team
2015-11-01
Liquid foams are a yield stress fluid with elastic properties. When a foam flow is confined by solid walls, viscous dissipation arises from the contact zones between soap films and walls, giving very peculiar friction laws. In particular, foams potentially invade narrow pores much more efficiently than Newtonian fluids, which is of great importance for enhanced oil recovery. To quantify this effect, we study experimentally flows of foam in a model two-dimensional porous medium, consisting of an assembly of circular obstacles placed randomly in a Hele-Shaw cell, and use image analysis to quantify foam flow at the local scale. We show that bubbles split as they flow through the porous medium, by a mechanism of film pinching during contact with an obstacle, yielding two daughter bubbles per split bubble. We quantify the evolution of the bubble size distribution as a function of the distance along the porous medium, the splitting probability as a function of bubble size, and the probability distribution function of the daughter bubbles. We propose an evolution equation to model this splitting phenomenon and compare it successfully to the experiments, showing how at long distance, the porous medium itself dictates the size distribution of the foam.
NASA Astrophysics Data System (ADS)
Liu, Hu; Liu, Hua; Yang, Jialing
2017-09-01
In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.
Properties of coarse particles in suspended particulate matter of the North Yellow Sea during summer
NASA Astrophysics Data System (ADS)
Zhang, Kainan; Wang, Zhenyan; Li, Wenjian; Yan, Jun
2018-01-01
Fine particles in seawater commonly form large porous aggregates. Aggregate density and settling velocity determine the behavior of this suspended particulate matter (SPM) within the water column. However, few studies of aggregate particles over a continental shelf have been undertaken. In our case study, properties of aggregate particles, including size and composition, over the continental shelf of the North Yellow Sea were investigated. During a scientific cruise in July 2016, in situ effective particle size distributions of SPM at 10 stations were measured, while temperature and turbidity measurements and samples of water were obtained from surface, middle, and bottom layers. Dispersed and inorganic particle size distributions were determined in the laboratory. The in situ SPM was divided into (1) small particles (<32 μm), (2) medium particles (32-256 μm) and (3) large particles (>256 μm). Large particles and medium particles dominated the total volume concentrations (VCs) of in situ SPM. After dispersion, the VCs of medium particles decreased to low values (<0.1 μL/L). The VCs of large particles in the surface and middle layers also decreased markedly, although they had higher peak values (0.1-1 μL/L). This suggests that almost all in situ medium particles and some large particles were aggregated, while other large particles were single particles. Correlation analysis showed that primary particles <32 μm influenced the formation of these aggregates. Microscopic examination revealed that these aggregates consisted of both organic and inorganic fine particles, while large particles were mucus-bound organic aggregates or individual plankton. The vertical distribution of coarser particles was clearly related to water stratification. Generally, medium aggregate particles were dominant in SPM of the bottom layer. A thermocline blocked resuspension of fine material into upper layers, yielding low VCs of medium-sized aggregate particles in the surface layer. Abundant large biogenic particles were present in both surface and middle layers.
A deployable mechanism concept for the collection of small-to-medium-size space debris
NASA Astrophysics Data System (ADS)
St-Onge, David; Sharf, Inna; Sagnières, Luc; Gosselin, Clément
2018-03-01
Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small-to-medium size debris removal mission, albeit finding it to not be economically viable at the present time.
Nath, Suman C; Horie, Masanobu; Nagamori, Eiji; Kino-Oka, Masahiro
2017-10-01
Aggregate culture of human induced pluripotent stem cells (hiPSCs) is a promising method to obtain high number of cells for cell therapy applications. This study quantitatively evaluated the effects of initial cell number and culture time on the growth of hiPSCs in the culture of single aggregate. Small size aggregates ((1.1 ± 0.4) × 10 1 -(2.8 ± 0.5) × 10 1 cells/aggregate) showed a lower growth rate in comparison to medium size aggregates ((8.8 ± 0.8) × 10 1 -(6.8 ± 1.1) × 10 2 cells/aggregate) during early-stage of culture (24-72 h). However, when small size aggregates were cultured in conditioned medium, their growth rate increased significantly. On the other hand, large size aggregates ((1.1 ± 0.2) × 10 3 -(3.5 ± 1.1) × 10 3 cells/aggregate) showed a lower growth rate and lower expression level of proliferation marker (ki-67) in the center region of aggregate in comparison to medium size aggregate during early-stage of culture. Medium size aggregates showed the highest growth rate during early-stage of culture. Furthermore, hiPSCs proliferation was dependent on culture time because the growth rate decreased significantly during late-stage of culture (72-120 h) at which point collagen type I accumulated on the periphery of aggregate, suggesting blockage of diffusive transport of nutrients, oxygen and metabolites into and out of the aggregates. Consideration of initial cell number and culture time are important to maintain balance between autocrine factors secretion and extracellular matrix accumulation on the aggregate periphery to achieve optimal growth of hiPSCs in the culture of single aggregate. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khandhar, Amit P.; Ferguson, R. Matthew; Krishnan, Kannan M.
2011-04-01
Magnetite (Fe3O4) nanoparticles (MNPs) are suitable materials for Magnetic Fluid Hyperthermia (MFH), provided their size is carefully tailored to the applied alternating magnetic field (AMF) frequency. Since aqueous synthesis routes produce polydisperse MNPs that are not tailored for any specific AMF frequency, we have developed a comprehensive protocol for synthesizing highly monodispersed MNPs in organic solvents, specifically tailored for our field conditions (f = 376 kHz, H0 = 13.4 kA/m) and subsequently transferred them to water using a biocompatible amphiphilic polymer. These MNPs (σavg. = 0.175) show truly size-dependent heating rates, indicated by a sharp peak in the specific loss power (SLP, W/g Fe3O4) for 16 nm (diameter) particles. For broader size distributions (σavg. = 0.266), we observe a 30% drop in overall SLP. Furthermore, heating measurements in biological medium [Dulbecco's modified Eagle medium (DMEM) + 10% fetal bovine serum] show a significant drop for SLP (˜30% reduction in 16 nm MNPs). Dynamic Light Scattering (DLS) measurements show particle hydrodynamic size increases over time once dispersed in DMEM, indicating particle agglomeration. Since the effective magnetic relaxation time of MNPs is determined by fractional contribution of the Neel (independent of hydrodynamic size) and Brownian (dependent on hydrodynamic size) components, we conclude that agglomeration in biological medium modifies the Brownian contribution and thus the net heating capacity of MNPs.
Assemblies and methods for mitigating effects of reactor pressure vessel expansion
Challberg, Roy C.; Gou, Perng-Fei; Chu, Cherk Lam; Oliver, Robert P.
1999-01-01
Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block.
Assemblies and methods for mitigating effects of reactor pressure vessel expansion
Challberg, R.C.; Gou, P.F.; Chu, C.L.; Oliver, R.P.
1999-07-27
Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block. 6 figs.