47 CFR 15.611 - General technical requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... § 15.109(b). (2) Low voltage power lines. Access BPL systems that operate over low-voltage power lines, including those that operate over low-voltage lines that are connected to the in-building wiring, shall... limits—(1) Medium voltage power lines. (i) Access BPL systems that operate in the frequency range of 1...
47 CFR 15.611 - General technical requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... § 15.109(b). (2) Low voltage power lines. Access BPL systems that operate over low-voltage power lines, including those that operate over low-voltage lines that are connected to the in-building wiring, shall... limits—(1) Medium voltage power lines. (i) Access BPL systems that operate in the frequency range of 1...
47 CFR 15.611 - General technical requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... § 15.109(b). (2) Low voltage power lines. Access BPL systems that operate over low-voltage power lines, including those that operate over low-voltage lines that are connected to the in-building wiring, shall... limits—(1) Medium voltage power lines. (i) Access BPL systems that operate in the frequency range of 1...
30 CFR 75.907 - Design of trailing cables for medium-voltage circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Design of trailing cables for medium-voltage... Medium-Voltage Alternating Current Circuits § 75.907 Design of trailing cables for medium-voltage circuits. [Statutory Provisions] Trailing cables for medium-voltage circuits shall include grounding...
30 CFR 75.907 - Design of trailing cables for medium-voltage circuits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Design of trailing cables for medium-voltage... Medium-Voltage Alternating Current Circuits § 75.907 Design of trailing cables for medium-voltage circuits. [Statutory Provisions] Trailing cables for medium-voltage circuits shall include grounding...
30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage ground check monitor... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. [Statutory Provisions] On or before September 30, 1970, low- and medium-voltage resistance...
30 CFR 75.907 - Design of trailing cables for medium-voltage circuits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Design of trailing cables for medium-voltage... Medium-Voltage Alternating Current Circuits § 75.907 Design of trailing cables for medium-voltage circuits. [Statutory Provisions] Trailing cables for medium-voltage circuits shall include grounding...
30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Low- and medium-voltage ground check monitor... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. [Statutory Provisions] On or before September 30, 1970, low- and medium-voltage resistance...
30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low- and medium-voltage ground check monitor... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. [Statutory Provisions] On or before September 30, 1970, low- and medium-voltage resistance...
30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low- and medium-voltage ground check monitor... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. [Statutory Provisions] On or before September 30, 1970, low- and medium-voltage resistance...
30 CFR 75.907 - Design of trailing cables for medium-voltage circuits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Design of trailing cables for medium-voltage... Medium-Voltage Alternating Current Circuits § 75.907 Design of trailing cables for medium-voltage circuits. [Statutory Provisions] Trailing cables for medium-voltage circuits shall include grounding...
30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low- and medium-voltage ground check monitor... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. [Statutory Provisions] On or before September 30, 1970, low- and medium-voltage resistance...
30 CFR 75.907 - Design of trailing cables for medium-voltage circuits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Design of trailing cables for medium-voltage... Medium-Voltage Alternating Current Circuits § 75.907 Design of trailing cables for medium-voltage circuits. [Statutory Provisions] Trailing cables for medium-voltage circuits shall include grounding...
30 CFR 77.901 - Protection of low- and medium-voltage three-phase circuits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection of low- and medium-voltage three... WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901 Protection of low- and medium-voltage three-phase circuits. (a) Low- and medium-voltage circuits supplying...
30 CFR 77.901 - Protection of low- and medium-voltage three-phase circuits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection of low- and medium-voltage three... WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901 Protection of low- and medium-voltage three-phase circuits. (a) Low- and medium-voltage circuits supplying...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits...
30 CFR 77.901 - Protection of low- and medium-voltage three-phase circuits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protection of low- and medium-voltage three... WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901 Protection of low- and medium-voltage three-phase circuits. (a) Low- and medium-voltage circuits supplying...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits...
30 CFR 77.901 - Protection of low- and medium-voltage three-phase circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of low- and medium-voltage three... WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901 Protection of low- and medium-voltage three-phase circuits. (a) Low- and medium-voltage circuits supplying...
30 CFR 77.901 - Protection of low- and medium-voltage three-phase circuits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protection of low- and medium-voltage three... WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901 Protection of low- and medium-voltage three-phase circuits. (a) Low- and medium-voltage circuits supplying...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits...
30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low- and medium-voltage circuits serving three... STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900 Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers...
30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...
30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and medium-voltage ground check monitor circuits. On and after September 30, 1971, three-phase low- and...
30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and medium-voltage ground check monitor circuits. On and after September 30, 1971, three-phase low- and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low- and medium-voltage circuits serving three... STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900 Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving three... STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900 Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers...
30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and medium-voltage ground check monitor circuits. On and after September 30, 1971, three-phase low- and...
30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...
30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and medium-voltage ground check monitor circuits. On and after September 30, 1971, three-phase low- and...
30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...
30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and medium-voltage ground check monitor circuits. On and after September 30, 1971, three-phase low- and...
30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...
Frequency pulling in a low-voltage medium-power gyrotron
NASA Astrophysics Data System (ADS)
Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun
2018-04-01
Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.
The Design and Characterization of a Prototype Wideband Voltage Sensor Based on a Resistive Divider
Garnacho, Fernando; Khamlichi, Abderrahim; Rovira, Jorge
2017-01-01
The most important advantage of voltage dividers over traditional voltage transformers is that voltage dividers do not have an iron core with non-linear hysteresis characteristics. The voltage dividers have a linear behavior with respect to over-voltages and a flat frequency response larger frequency range. The weak point of a voltage divider is the influence of external high-voltage (HV) and earth parts in its vicinity. Electrical fields arising from high voltages in neighboring phases and from ground conductors and structures are one of their main sources for systematic measurement errors. This paper describes a shielding voltage divider for a 24 kV medium voltage network insulated in SF6 composed of two resistive-capacitive dividers, one integrated within the other, achieving a flat frequency response up to 10 kHz for ratio error and up to 5 kHz for phase displacement error. The metal shielding improves its immunity against electric and magnetic fields. The characterization performed on the built-in voltage sensor shows an accuracy class of 0.2 for a frequency range from 20 Hz to 5 kHz and a class of 0.5 for 1 Hz up to 20 Hz. A low temperature effect is also achieved for operation conditions of MV power grids. PMID:29149085
The Design and Characterization of a Prototype Wideband Voltage Sensor Based on a Resistive Divider.
Garnacho, Fernando; Khamlichi, Abderrahim; Rovira, Jorge
2017-11-17
The most important advantage of voltage dividers over traditional voltage transformers is that voltage dividers do not have an iron core with non-linear hysteresis characteristics. The voltage dividers have a linear behavior with respect to over-voltages and a flat frequency response larger frequency range. The weak point of a voltage divider is the influence of external high-voltage (HV) and earth parts in its vicinity. Electrical fields arising from high voltages in neighboring phases and from ground conductors and structures are one of their main sources for systematic measurement errors. This paper describes a shielding voltage divider for a 24 kV medium voltage network insulated in SF6 composed of two resistive-capacitive dividers, one integrated within the other, achieving a flat frequency response up to 10 kHz for ratio error and up to 5 kHz for phase displacement error. The metal shielding improves its immunity against electric and magnetic fields. The characterization performed on the built-in voltage sensor shows an accuracy class of 0.2 for a frequency range from 20 Hz to 5 kHz and a class of 0.5 for 1 Hz up to 20 Hz. A low temperature effect is also achieved for operation conditions of MV power grids.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-phase alternating current equipment; circuit breakers. 75.900 Section 75.900 Mineral Resources MINE... Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers. [Statutory Provisions] Low- and medium-voltage power circuits serving three-phase alternating current...
NGIPS Early Design Space Assessment
2014-07-17
medium - voltage dc ( MVDC ) shipboard power system are described below. These studies pursue the questions posed in the white paper. In...usna.edu Abstract—Short-circuit protection is one of the greatest risks associated with a transition towards medium - voltage dc ( MVDC ) shipboard power...protection is one of the greatest risks associated with a transition towards medium - voltage dc ( MVDC ) shipboard power
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-04
... Medium- and Low-Voltage Dry-Type Distribution Transformers AGENCY: Department of Energy, Office of Energy... Dry-Type Distribution Transformers and the second addressing Low-Voltage Dry-Type Distribution Transformers. The Liquid Immersed and Medium-Voltage Dry-Type Group (MV Group) and the Low-Voltage Dry-Type...
Ehlers, Cindy L; Phillips, Evelyn
2007-02-01
Several studies support an association between electroencephalogram (EEG) voltage and alcohol dependence. However, the distribution of EEG variants also appears to differ depending on an individual's ethnic heritage, suggesting significant genetic stratification of this EEG phenotype. The present study's aims were to investigate the incidence of EEG alpha variants and spectral power in the alpha frequency range in Mexican American young adults based on gender, and personal and family history of alcohol dependence. Clinical ratings (high-, medium-, and low alpha voltage variants) and spectral characteristics of the EEG in the alpha frequency range (7.5-12 Hz) were investigated in young adult (age 18-25 years) Mexican American men (n=98) and women (n=138) who were recruited from the community. Nineteen percent (n=45) of the participants had a low-voltage alpha EEG variant, 18% had a high-voltage variant, and 63% had a medium-voltage variant. There were no significant differences in the distribution of the EEG variants based on family history of alcohol dependence. There was a significant relationship between gender and the three alpha variants (chi2=9.7; df=2; P<.008), and there were no male participants with alcohol dependence with high alpha variants (chi2=5.8; df=2; P<.056). Alcohol dependence, but not a family history of alcohol dependence, was associated with lower spectral power in the alpha frequency range in the right (F=4.4; df=1,96; P<.04) and left (F=5.3; df=1.96; P<.02) occipital areas in the men but not in the women. In conclusion, in this select population of Mexican American young adults, male gender and alcohol dependence are associated with an absence of high-voltage alpha variants and lower alpha power in the EEG. These data suggest that EEG low voltage, a highly heritable trait, may represent an important endophenotype in male Mexican Americans that may aid in linking brain function with genetic factors underlying alcohol dependence in this ethnic group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson
This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of onemore » or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.« less
Demonstration and Science Experiment (DSX) Space Weather Experiment (SWx)
2009-01-01
environment encountered by medium-earth orbits (MEO). at an altitude range from 6,000 to 15.000 km "’. The discovery of the earth’s radiation...forecast models that enable future space missions in the medium Earth orbit regime to enable better spacecraft designed to withstand the harsh environment...the size of the sensor and to exploit a compact layout. The inside spherical section has an attraction voltage and the outside section has the
Code of Federal Regulations, 2011 CFR
2011-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Code of Federal Regulations, 2012 CFR
2012-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Code of Federal Regulations, 2014 CFR
2014-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Synchronous Controlled Switching by VCB with Electromagnetic Operation Mechanism
NASA Astrophysics Data System (ADS)
Horinouchi, Katsuhiko; Tsukima, Mitsuru; Tohya, Nobumoto; Inoue, Ryuuichi; Sasao, Hiroyuki
Synchronously controlled switching to suppress transient overvoltage and overcurrent resulting from when the circuit breakers on medium voltage systems are closed is described. Firstly, by simulation it is found that if the closing time is synchronously controlled so that the contacts of the circuit breaker close completely at the instant when the voltage across contacts of the breaker at each of the three individual phases are zero, the resulting overvoltage and overcurrent is significantly suppressed when compared to conventional three phase simultaneous closing. Next, an algorithm for determining the closing timing based on a forecasted voltage zero waveform, obtained from voltage sampling data, is presented. Finally, a synchronous closing experiment of voltage 22kV utilizing a controller to implement the algorithm and a VCB with an electromagnetic operation mechanism is presented. The VCB was successfully closed at the zero point within a tolerance range of 200 microseconds.
Voltage regulation and power losses reduction in a wind farm integrated MV distribution network
NASA Astrophysics Data System (ADS)
Fandi, Ghaeth; Igbinovia, Famous Omar; Tlusty, Josef; Mahmoud, Rateb
2018-01-01
A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.
An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Cheng; Zhang, Kai; Xiong, Jian
Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less
An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch
Wang, Cheng; Zhang, Kai; Xiong, Jian; ...
2017-09-26
Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less
30 CFR 77.900-2 - Testing, examination, and maintenance of circuit breakers; record.
Code of Federal Regulations, 2011 CFR
2011-07-01
... protecting low- and medium-voltage circuits serving three-phase alternating current equipment and such record... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits...
30 CFR 77.900-1 - Testing, examination, and maintenance of circuit breakers; procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... protecting low- and medium-voltage circuits serving portable or mobile three-phase alternating current... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits...
30 CFR 77.900-2 - Testing, examination, and maintenance of circuit breakers; record.
Code of Federal Regulations, 2010 CFR
2010-07-01
... protecting low- and medium-voltage circuits serving three-phase alternating current equipment and such record... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits...
30 CFR 77.900-1 - Testing, examination, and maintenance of circuit breakers; procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... protecting low- and medium-voltage circuits serving portable or mobile three-phase alternating current... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits...
An amorphous alloy core medium frequency magnetic-link for medium voltage photovoltaic inverters
NASA Astrophysics Data System (ADS)
Rabiul Islam, Md.; Guo, Youguang; Wei Lin, Zhi; Zhu, Jianguo
2014-05-01
The advanced magnetic materials with high saturation flux density and low specific core loss have led to the development of an efficient, compact, and lightweight multiple-input multiple-output medium frequency magnetic-link. It offers a new route to eliminate some critical limitations of recently proposed medium voltage photovoltaic inverters. In this paper, a medium frequency magnetic-link is developed with Metglas amorphous alloy 2605S3A. The common magnetic-link generates isolated and balanced multiple DC supplies for all of the H-bridge inverter cells of the medium voltage inverter. The design and implementation of the prototype, test platform, and the experimental test results are analyzed and discussed. The medium frequency non-sinusoidal excitation electromagnetic characteristics of alloy 2605S3A are also compared with that of alloy 2605SA1. It is expected that the proposed new technology will have great potential for future renewable power generation systems and smart grid applications.
Soft switching resonant converter with duty-cycle control in DC micro-grid system
NASA Astrophysics Data System (ADS)
Lin, Bor-Ren
2018-01-01
Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.
Atomically Thin Femtojoule Memristive Device
Zhao, Huan; Dong, Zhipeng; Tian, He; ...
2017-10-25
The morphology and dimension of the conductive filament formed in a memristive device are strongly influenced by the thickness of its switching medium layer. Aggressive scaling of this active layer thickness is critical toward reducing the operating current, voltage, and energy consumption in filamentary-type memristors. Previously, the thickness of this filament layer has been limited to above a few nanometers due to processing constraints, making it challenging to further suppress the on-state current and the switching voltage. In this paper, the formation of conductive filaments in a material medium with sub-nanometer thickness formed through the oxidation of atomically thin two-dimensionalmore » boron nitride is studied. The resulting memristive device exhibits sub-nanometer filamentary switching with sub-pA operation current and femtojoule per bit energy consumption. Furthermore, by confining the filament to the atomic scale, current switching characteristics are observed that are distinct from that in thicker medium due to the profoundly different atomic kinetics. The filament morphology in such an aggressively scaled memristive device is also theoretically explored. Finally, these ultralow energy devices are promising for realizing femtojoule and sub-femtojoule electronic computation, which can be attractive for applications in a wide range of electronics systems that desire ultralow power operation.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... Subcommittee/Working Group for Liquid-Immersed and Medium-Voltage Dry Type Transformers AGENCY: Department of... Medium-Voltage Dry Type Transformers (hereafter ``MV Group''). The MV Group is a working group within the... energy efficiency of distribution transformers, as authorized by the Energy Policy Conservation Act (EPCA...
A 2.5 kW cascaded Schwarz converter for 20 kHz power distribution
NASA Technical Reports Server (NTRS)
Shetler, Russell E.; Stuart, Thomas A.
1989-01-01
Because it avoids the high currents in a parallel loaded capacitor, the cascaded Schwarz converter should offer better component utilization than converters with sinusoidal output voltages. The circuit is relatively easy to protect, and it provides a predictable trapezoidal voltage waveform that should be satisfactory for 20-kHz distribution systems. Analysis of the system is enhanced by plotting curves of normalized variables vs. gamma(1), where gamma(1) is proportional to the variable frequency of the first stage. Light-load operation is greatly improved by the addition of a power recycling rectifier bridge that is back biased at medium to heavy loads. Operation has been verified on a 2.5-kW circuit that uses input and output voltages in the same range as those anticipated for certain future spacecraft power systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... portable or mobile three-phase alternating current equipment; circuit breakers. 77.900 Section 77.900... mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits supplying power to portable or mobile three-phase alternating current equipment shall be protected by...
Application of Microsecond Voltage Pulses for Water Disinfection by Diaphragm Electric Discharge
NASA Astrophysics Data System (ADS)
Kakaurov, S. V.; Suvorov, I. F.; Yudin, A. S.; Solovyova, T. L.; Kuznetsova, N. S.
2015-11-01
The paper presents the dependence of copper and silver ions formation on the duration of voltage pulses of diaphragm electric discharge and on the pH of treated liquid medium. Knowing it allows one to create an automatic control system to control bactericidal agent's parameters obtained in diaphragm electric discharge reactor. The current-voltage characteristic of the reactor with a horizontal to the diaphragm membrane water flow powered from the author's custom pulse voltage source is also presented. The results of studies of the power consumption of diaphragm electric discharge depending on temperature of the treated liquid medium are given.
Study of power management technology for orbital multi-100KWe applications. Volume 2: Study results
NASA Technical Reports Server (NTRS)
Mildice, J. W.
1980-01-01
The preliminary requirements and technology advances required for cost effective space power management systems for multi-100 kilowatt requirements were identified. System requirements were defined by establishing a baseline space platform in the 250 KE KWe range and examining typical user loads and interfaces. The most critical design parameters identified for detailed analysis include: increased distribution voltages and space plasma losses, the choice between ac and dc distribution systems, shuttle servicing effects on reliability, life cycle costs, and frequency impacts to power management system and payload systems for AC transmission. The first choice for a power management system for this kind of application and size range is a hybrid ac/dc combination with the following major features: modular design and construction-sized minimum weight/life cycle cost; high voltage transmission (100 Vac RMS); medium voltage array or = 440 Vdc); resonant inversion; transformer rotary joint; high frequency power transmission line or = 20 KHz); energy storage on array side or rotary joint; fully redundant; and 10 year life with minimal replacement and repair.
Xavier, Pascal; Rauly, Dominique; Chamberod, Eric; Martins, Jean M F
2017-04-01
In this work, the problem of intracellular currents in longilinear bacteria, such as Escherichia coli, suspended in a physiological medium and submitted to a harmonic voltage (AC), is analyzed using the Finite-Element-based software COMSOL Multiphysics. Bacterium was modeled as a cylindrical capsule, ended by semi-spheres and surrounded by a dielectric cell wall. An equivalent single-layer cell wall was defined, starting from the well-recognized three-shell modeling approach. The bacterium was considered immersed in a physiological medium, which was also taken into account in the modeling. A new complex transconductance was thus introduced, relating the complex ratio between current inside the bacterium and voltage applied between two parallel equipotential planes, separated by a realistic distance. When voltage was applied longitudinally relative to the bacterium main axis, numerical results in terms of frequency response in the 1-20 MHz range for E. coli cells revealed that transconductance magnitude exhibited a maximum at a frequency depending on the cell wall capacitance. This occurred in spite of the purely passive character of the model and could be explained by an equivalent electrical network giving very similar results and showing special conditions for lateral paths of the currents through the cell wall. It is shown that the main contribution to this behavior is due to the conductive part of the current. Bioelectromagnetics. 38:213-219, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Dynamic characteristics of organic bulk-heterojunction solar cells
NASA Astrophysics Data System (ADS)
Babenko, S. D.; Balakai, A. A.; Moskvin, Yu. L.; Simbirtseva, G. V.; Troshin, P. A.
2010-12-01
Transient characteristics of organic bulk-heterojunction solar cells have been studied using pulsed laser probing. An analysis of the photoresponse waveforms of a typical solar cell measured by varying load resistance within broad range at different values of the bias voltage provided detailed information on the photocell parameters that characterize electron-transport properties of active layers. It is established that the charge carrier mobility is sufficient to ensure high values of the fill factor (˜0.6) in the obtained photocells. On approaching the no-load voltage, the differential capacitance of the photocell exhibits a sixfold increase as compared to the geometric capacitance. A possible mechanism of recombination losses in the active medium is proposed.
Enhancing fire safety at Hydro plants with dry transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemen, D.M.
Hydroelectric plant owners and engineers can use dry-type transformers to reduce fire hazards in auxiliary power systems. The decision to replace a liquid-immersed transformer with a dry-type product has a price: higher unit cost and a need to be more vigilant in detailing transformer specifications. But, whether the change affects only one failed transformer or is part of a plant rehabilitation project, the benefits in safety can be worth it. Voltages on hydroelectric plant auxiliary power systems can range from a 20 kV medium-voltage system to the normal 480-208/120 V low-voltage system. Dry transformers typically are used in such systemsmore » to reduce the fire hazard present with liquid-filled transformers. For a hydro plant owner or engineer seeking alternatives to liquid-filled transformers, there are two main kinds of dry-type transformers to consider: vacuum pressure impregnated (VPI) and cast coil epoxy resin. VPI transformers normally are manufactured in sizes up to 6,000 kVA with primary voltage ratings up to 20 kV. Cast coil transformers can be made in sizes from 75 to 10,000 kVA, with primary voltage ratings up to 34,500 V. Although the same transformer theory applies to dry transformers as to liquid-filled units, the cooling medium, air, required different temperature rise ratings, dielectric tests, and construction techniques to ensure reliability. Consequently, the factory and field tests for dry units are established by a separate set of American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards. Cast coil transformers have several important advantages over VPI units.« less
Toohey, E S; van de Ven, R; Thompson, J M; Geesink, G H; Hopkins, D L
2013-02-01
This study evaluated the interaction between medium voltage electrical stimulation, SmartStretch™ stretching and ageing treatments on key meat quality traits of hot boned sheep m. semimembranosus. Medium voltage stimulation reduced initial pH (P<0.001), but did not impact on other meat quality traits. There was a significant interaction between stretch treatment and ageing (P<0.001) for shear force such that samples which were both stretched and aged were the most tender. Sarcomere length was significantly (P<0.001) increased by SmartStretch™ treatment. Control (no stretching) resulted in greater (P<0.05) cooking loss, but there was significantly less purge loss (P<0.05). The ratio 630/580 nm and a* colour values at 0 and 5 days decreased at a significantly (P<0.05) slower rate when SmartStretch™ was applied. Overall medium voltage stimulation did not inhibit the effectiveness of the SmartStretch™ treatment. The SmartStretch™ treatment provided significant improvement in tenderness and the potential to increase meat display time. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
System and method for motor speed estimation of an electric motor
Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN
2012-06-19
A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.
Double-gated Si NW FET sensors: Low-frequency noise and photoelectric properties
NASA Astrophysics Data System (ADS)
Gasparyan, F.; Khondkaryan, H.; Arakelyan, A.; Zadorozhnyi, I.; Pud, S.; Vitusevich, S.
2016-08-01
The transport, noise, and photosensitivity properties of an array of silicon nanowire (NW) p+-p-p+ field-effect transistors (FETs) are investigated. The peculiarities of photosensitivity and detectivity are analyzed over a wide spectrum range. The absorbance of p-Si NW shifts to the short wavelength region compared with bulk Si. The photocurrent and photosensitivity reach increased values in the UV range of the spectrum at 300 K. It is shown that sensitivity values can be tuned by the drain-source voltage and may reach record values of up to 2-4 A/W at a wavelength of 300 nm at room temperature. Low-frequency noise studies allow calculating the photodetectivity values, which increase with decreasing wavelength down to 300 nm. We show that the drain current of Si NW biochemical sensors substantially depends on pH value and the signal-to-noise ratio reaches the high value of 105. Increasing pH sensitivity with gate voltage is revealed for certain source-drain currents of pH-sensors based on Si NW FETs. The noise characteristic index decreases from 1.1 to 0.7 with the growth of the liquid gate voltage. Noise behavior is successfully explained in the framework of the correlated number-mobility unified fluctuation model. pH sensitivity increases as a result of the increase in liquid gate voltage, thus giving the opportunity to measure very low proton concentrations in the electrolyte medium at certain values of the liquid gate voltage.
Thin grain oriented electrical steel for PWM voltages fed magnetic cores
NASA Astrophysics Data System (ADS)
Belgrand, Thierry; Lemaître, Régis; Benabou, Abdelkader; Blaszkowski, Jonathan; Wang, Chaoyong
2018-04-01
This paper reports on performances of high permeability grain oriented electrical steel when used in association with power electronic switching devices. Loss measurement results obtained from the Epstein test, using sinusoidal or various PWM voltages in medium frequency range, show that for both studied thicknesses (HGO 0.23mm and HGO 0.18mm), comparing performances at a fixed induction level between the various situations may not be the most convenient method. The effect of magnetic domain refinement has been investigated. After having shown the interest of lowering the thickness, an alternative way of looking at losses is proposed that may help to design the magnetic core when it comes to the matter of reducing size in considering frequency and magnetization levels.
NASA Astrophysics Data System (ADS)
Lam, Simon K. H.
2017-09-01
A promising direction to improve the sensitivity of a SQUID is to increase its junction's normal resistance value, Rn, as the SQUID modulation voltage scales linearly with Rn. As a first step to develop highly sensitive single layer SQUID, submicron scale YBCO grain boundary step edge junctions and SQUIDs with large Rn were fabricated and studied. The step-edge junctions were reduced to submicron scale to increase their Rn values using focus ion beam, FIB and the measurement of transport properties were performed from 4.3 to 77 K. The FIB induced deposition layer proves to be effective to minimize the Ga ion contamination during the FIB milling process. The critical current-normal resistance value of submicron junction at 4.3 K was found to be 1-3 mV, comparable to the value of the same type of junction in micron scale. The submicron junction Rn value is in the range of 35-100 Ω, resulting a large SQUID modulation voltage in a wide temperature range. This performance promotes further investigation of cryogen-free, high field sensitivity SQUID applications at medium low temperature, e.g. at 40-60 K.
Sungailaitė, Sandra; Ruzgys, Paulius; Šatkauskienė, Ingrida; Čepurnienė, Karolina; Šatkauskas, Saulius
2015-01-01
In the present study, we aimed to evaluate the efficiency of drug and gene electrotransfer into cells in vitro depending on medium viscosity. Experiments were performed using Chinese hamster ovary cells. Efficiency of molecular electrotransfer depending of medium viscosity was evaluated using two different electroporation conditions: a high-voltage (HV) pulse and a combination of a high-voltage pulse and a low-voltage pulse (HV + LV). To evaluate the efficiency of molecular electrotransfer, anticancer drug bleomycin and two different plasmids coding for green fluorescent protein and luciferase were used. We found that a slight increase in medium viscosity from 1.3-1.4 mPa·s significantly decreased the transfection efficiency, both in terms of transfected cells and total protein production, which was abolished completely with an increase in medium viscosity to 6.1 mPa·s. Notably, at this medium viscosity, electrotransfer of the small anticancer drug was still efficient. Using HV and HV + LV pulse combinations, we showed that a decrease of DNA electrotransfer, especially at lower medium viscosities, can be compensated for by the LV pulse to some extent. On the other hand, the addition of the LV pulse after the HV pulse did not have any positive effect on the efficiency of bleomycin electrotransfer. These findings demonstrate that transfection is very susceptible to medium viscosity and highlights the importance of the electrophoretic component in experiments when a considerable transfection level is needed. Copyright © 2015 John Wiley & Sons, Ltd.
30 CFR 75.1002 - Installation of electric equipment and conductors; permissibility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... faces must be— (1) Shielded high-voltage cables supplying power to permissible longwall equipment; (2... intrinsically safe circuits; and (4) Cables and conductors supplying power to low- and medium-voltage permissible equipment. (5) Shielded high-voltage cables supplying power to permissible continuous mining...
30 CFR 75.1002 - Installation of electric equipment and conductors; permissibility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... faces must be— (1) Shielded high-voltage cables supplying power to permissible longwall equipment; (2... intrinsically safe circuits; and (4) Cables and conductors supplying power to low- and medium-voltage permissible equipment. (5) Shielded high-voltage cables supplying power to permissible continuous mining...
30 CFR 75.1002 - Installation of electric equipment and conductors; permissibility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... faces must be— (1) Shielded high-voltage cables supplying power to permissible longwall equipment; (2... intrinsically safe circuits; and (4) Cables and conductors supplying power to low- and medium-voltage permissible equipment. (5) Shielded high-voltage cables supplying power to permissible continuous mining...
Unexpected Voltage Fade in LMR-NMC Oxides Cycled below the "Activation" Plateau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Bareno, J.; Bettge, M.
A common feature of lithium-excess layered oxides, nominally of composition xLi(2)MnO(3)center dot(1-x)LiMO2 (M = transition metal) is a high-voltage plateau (similar to 4.5 V vs. Li/Li+) in their capacity-voltage profile during the first delithiation cycle. This plateau is believed to result from activation of the Li2MnO3 component, which makes additional lithium available for electrochemical cycling. However, oxides cycled beyond this activation plateau are known to display voltage fade which is a continuous reduction in their equilibrium potential. In this article we show that these oxides display gradual voltage fade even on electrochemical cycling in voltage ranges well below the activationmore » plateau. The average fade is similar to 0.08 mV-cycle(-1) for Li(1.2)Ni(0.1)5Mn(0.5)5Co(0.1)O(2) vs. Li cells after 20 cycles in the 2-4.1 V range at 55 degrees C; a similar to 54 mV voltage hysteresis, expressed as the difference in average cell voltage between charge and discharge cycles, is also observed. The voltage fade results from a gradual accumulation of local spinel environments in the crystal structure. Some of these spinel sites result from lithium deficiencies during oxide synthesis and are likely to be at the particle surfaces; other sites result from the migration of transition metal atoms in the partially-delithiated LiMO2 component into the lithium planes during electrochemical cycling. The observed rate of voltage fade depends on a combination of factors that includes the phase equilibrium between the layered and spinel components and the kinetics of transition metal migration. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.« less
Double-gated Si NW FET sensors: Low-frequency noise and photoelectric properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasparyan, F.; Forschungszentrum Jülich, Peter Grünberg Institute; Khondkaryan, H.
2016-08-14
The transport, noise, and photosensitivity properties of an array of silicon nanowire (NW) p{sup +}-p-p{sup +} field-effect transistors (FETs) are investigated. The peculiarities of photosensitivity and detectivity are analyzed over a wide spectrum range. The absorbance of p-Si NW shifts to the short wavelength region compared with bulk Si. The photocurrent and photosensitivity reach increased values in the UV range of the spectrum at 300 K. It is shown that sensitivity values can be tuned by the drain-source voltage and may reach record values of up to 2–4 A/W at a wavelength of 300 nm at room temperature. Low-frequency noise studies allow calculatingmore » the photodetectivity values, which increase with decreasing wavelength down to 300 nm. We show that the drain current of Si NW biochemical sensors substantially depends on pH value and the signal-to-noise ratio reaches the high value of 10{sup 5}. Increasing pH sensitivity with gate voltage is revealed for certain source-drain currents of pH-sensors based on Si NW FETs. The noise characteristic index decreases from 1.1 to 0.7 with the growth of the liquid gate voltage. Noise behavior is successfully explained in the framework of the correlated number-mobility unified fluctuation model. pH sensitivity increases as a result of the increase in liquid gate voltage, thus giving the opportunity to measure very low proton concentrations in the electrolyte medium at certain values of the liquid gate voltage.« less
Control of a lithium-ion battery storage system for microgrid applications
NASA Astrophysics Data System (ADS)
Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol
2014-12-01
The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.
NASA Technical Reports Server (NTRS)
Quince, Asia N. (Inventor); Stein, Alexander (Inventor)
2015-01-01
A non-contact pyrometer and method for calibrating the same are provided. The pyrometer includes a radiation sensor configured to measure at least a portion of a radiance signal emitted from a target medium and output a voltage that is a function of an average of the absorbed radiance signal, and an optical window disposed proximate the radiation sensor and configured to control a wavelength range of the radiance signal that reaches the radiation sensor. The pyrometer may further include a reflective enclosure configured to receive the target medium therein, wherein the radiation sensor and the optical window are disposed within the reflective enclosure, an amplifier in communication with an output of the radiation sensor, and a data acquisition system in communication with an output of the amplifier.
30 CFR 77.902-1 - Fail safe ground check circuits; maximum voltage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fail safe ground check circuits; maximum voltage. 77.902-1 Section 77.902-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902-1 Fail safe...
30 CFR 77.902-1 - Fail safe ground check circuits; maximum voltage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fail safe ground check circuits; maximum voltage. 77.902-1 Section 77.902-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902-1 Fail safe...
30 CFR 77.902-1 - Fail safe ground check circuits; maximum voltage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fail safe ground check circuits; maximum voltage. 77.902-1 Section 77.902-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902-1 Fail safe...
Technical Trend of Environment-friendly High Voltage Vacuum Circuit Breaker (VCB)
NASA Astrophysics Data System (ADS)
Okubo, Hitoshi
Vacuum Circuit Breakers (VCBs) have widely been used for low and medium voltage level, because of their high current interruption performance, maintenance free operations and environment-friendly characteristics. The VCB is now going to be applied to higher voltage systems for transmission and substation use. In this paper, the recent technical trend and future perspectives of high voltage VCBs are described, as well as their technical background.
Liquid Nitrogen as Fast High Voltage Switching Medium
NASA Astrophysics Data System (ADS)
Dickens, J.; Neuber, A.; Haustein, M.; Krile, J.; Krompholz, H.
2002-12-01
Compact pulsed power systems require new switching technologies. For high voltages, liquid nitrogen seems to be a suitable switching medium, with high hold-off voltage, low dielectric constant, and no need for pressurized systems as in high pressure gas switches. The discharge behavior in liquid nitrogen, such as breakdown voltages, formative times, current rise as function of voltage, recovery, etc. are virtually unknown, however. The phenomenology of breakdown in liquid nitrogen is investigated with high speed (temporal resolution < 1 ns) electrical and optical diagnostics, in a coaxial system with 50-Ohm impedance. Discharge current and voltage are determined with transmission line type current sensors and capacitive voltage dividers. The discharge luminosity is measured with photomultiplier tubes. Preliminary results of self-breakdown investigations (gap 1 mm, breakdown voltage 44 kV, non-boiling supercooled nitrogen) show a fast (2 ns) transition from an unknown current level to several mA, a long-duration (100 ns) phase with constant current superimposed by ns-spikes, and a final fast transition to the impedance limited current during several nanoseconds. The optical measurements will be expanded toward spectroscopy and high speed photography with the aim of clarifying the overall breakdown mechanisms, including electronic initiation, bubble formation, bubble dynamics, and their role in breakdown, for different electrode geometries (different macroscopic field enhancements).
NASA Astrophysics Data System (ADS)
Flores-Rodriguez, N.; Markx, G. H.
2006-08-01
The dielectrophoretic behaviour of barium titanate (BaTiO3) particles with a mean grain size of 3 µm was studied. Suspensions of the powdered ceramic in the concentration range 0.01-1.60% (w/v) were prepared in dilute aqueous solutions of NaCl and concentrated aqueous solutions of the amphoteric molecules HEPES (N-[2-hydroxyethyl] piperazine-N'4-[2-ethanesulfonic acid] and EACA (ɛ -aminocaproic acid). When suspended in water without ampholytes, the particles showed positive dielectrophoresis (DEP) over the whole frequency range (1 kHz-20 MHz), independent of the medium conductivity or applied voltage. When amphoteric molecules were added at a final concentration of up to 0.57 M, the particles showed positive DEP at all frequencies. When the concentration of ampholytes was increased to 0.71 M, the particles showed positive DEP at frequencies up to 100 kHz and voltages lower than 12 Vpk-pk at all electrode sizes. However, at 100 kHz, when the amplitude was increased to over 12 Vpk-pk, the particles started to display negative DEP at the smallest electrode size (20 µm) and moved away from the microelectrodes, accumulating in the gap between the electrodes. At the highest voltages used (16-20 Vpk-pk), the particles were seen moving upwards and remained stably levitated above the array. For frequencies larger than 100 kHz, the particles showed positive DEP only. It is shown that such behaviour cannot be expected on the basis of the dielectric properties of barium titanate and the suspending medium, and it is suggested that this behaviour may be caused by the fact that at high amphotere concentration and voltages the electric field across the particles surpasses the dielectric strength of the BaTiO3 particles, resulting in a sudden drop in the particle's permittivity. The fact that not all particles showed negative DEP suggests a spread in the dielectric properties of barium titanate particles. Physical separation of barium titanate particles with presumably different dielectric properties was shown to be possible using a flow-through device.
Automated qualification and analysis of protective spark gaps for DC accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Srutarshi; Rajan, Rehim N.; Dewangan, S.
2014-07-01
Protective spark gaps are used in the high voltage multiplier column of a 3 MeV DC Accelerator to prevent excessive voltage build-ups. Precise gap of 5 mm is maintained between the electrodes in these spark gaps for obtaining 120 kV± 5 kV in 6 kg/cm{sup 2} SF{sub 6} environment which is the dielectric medium. There are 74 such spark gaps used in the multiplier. Each spark gap has to be qualified for electrical performance before fitting in the accelerator to ensure reliable operation. As the breakdown voltage stabilizes after a large number of sparks between the electrodes, the qualification processmore » becomes time consuming and cumbersome. For qualifying large number of spark gaps an automatic breakdown analysis setup has been developed. This setup operates in air, a dielectric medium. The setup consists of a flyback topology based high voltage power supply with maximum rating of 25 kV. This setup works in conjunction with spark detection and automated shutdown circuit. The breakdown voltage is sensed using a peak detector circuit. The voltage breakdown data is recorded and statistical distribution of the breakdown voltage has been analyzed. This paper describes details of the diagnostics and the spark gap qualification process based on the experimental data. (author)« less
Pulse circuit apparatus for gas discharge laser
Bradley, Laird P.
1980-01-01
Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.
Miocinovic, Svjetlana; Lempka, Scott F; Russo, Gary S; Maks, Christopher B; Butson, Christopher R; Sakaie, Ken E; Vitek, Jerrold L; McIntyre, Cameron C
2009-03-01
Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system.
Compensated intruder-detection systems
McNeilly, David R.; Miller, William R.
1984-01-01
Intruder-detection systems in which intruder-induced signals are transmitted through a medium also receive spurious signals induced by changes in a climatic condition affecting the medium. To combat this, signals received from the detection medium are converted to a first signal. The system also provides a reference signal proportional to climate-induced changes in the medium. The first signal and the reference signal are combined for generating therefrom an output signal which is insensitive to the climatic changes in the medium. An alarm is energized if the output signal exceeds a preselected value. In one embodiment, an acoustic cable is coupled to a fence to generate a first electrical signal proportional to movements thereof. False alarms resulting from wind-induced movements of the fence (detection medium) are eliminated by providing an anemometer-driven voltage generator to provide a reference voltage proportional to the velocity of wind incident on the fence. An analog divider receives the first electrical signal and the reference signal as its numerator and denominator inputs, respectively, and generates therefrom an output signal which is insensitive to the wind-induced movements in the fence.
NASA Astrophysics Data System (ADS)
Sato, Y.; Sato, T.; Yoshino, D.
2016-12-01
We describe a positive pulse voltage method for generating plasma in culture medium with a composition similar to biological fluids. We also describe the plasma’s characteristics, liquid quality, and the effect of organic compounds in the culture medium on the plasma characteristics through comparisons to a solution containing inorganic salts at the same concentrations as in the culture medium. Light emission with Na and OH spectra was observed within a vapor bubble produced by Joule heating at the tip of the electrode. A downward thermal flow and shock wave were caused by the behavior of the vapor bubble. The culture medium pH gradually increased from 7.9 to 8.3 over the discharge time of 300 s. H2O2 was generated 1.1 mg l-1 in the culture medium after discharge for 300 s, and this value was 0.5 mg l-1 lower than the inorganic salts solution which does not contain organic compounds. This study provides important data that will help facilitate more widespread application of plasma medicine.
NASA Astrophysics Data System (ADS)
Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin
2015-09-01
Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua
Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less
Megawatt Space Power Conditioning, Distribution, and Control Study
1988-03-01
also must be given to the design of an ac transmission line for this relatively high frequency . 2.3.2 Medium High Voltage Systems. Figure 2-4 shows a...systems are designed to exploit the use of 2 MW klystrode tubes (see Section 3.1) which require a dc voltage of about 140 kV. This high voltage can be...the concerns is that to date there have been no three-phase high voltage, high frequency transmission lines designed . Figure 5-6. While the previous
Shore, Joel D.; Thurston, George M.
2018-01-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of 74 lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (pH-pK,W) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions. PMID:26764648
Shore, Joel D; Thurston, George M
2015-12-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √74 lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (pH-pK,W) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions.
NASA Astrophysics Data System (ADS)
Shore, Joel D.; Thurston, George M.
2015-12-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (p H-p K ,W ) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of p H-p K and W , and 1 /W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √{74 } lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (p H-p K ,W ) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions.
Present Status of Power Circuit Breaker and its Future
NASA Astrophysics Data System (ADS)
Yoshioka, Yoshio
Gas circuit breaker and vacuum circuit breaker are the 2 main types of circuit breaker used in extra high voltage and medium voltage networks. After reviewing the history of these circuit breakers, their present status and technologies are described. As for future technology, computation of interrupting phenomena, SF6 gas less apparatus and expectation of the high voltage vacuum circuit breaker are discussed.
Operation of low-noise single-gap RPC modules exposed to ionisation rates up to 1 kHz /cm2
NASA Astrophysics Data System (ADS)
Ćwiok, M.; Dominik, W.; Górski, M.; Królikowski, J.
2004-11-01
Two single gap medium-size RPC modules, made of bakelite plates of very good mechanical quality of the surface and having initial volume resistivity of 1 ×1010 Ω cm, were tested in the Gamma Irradiation Facility at CERN at ionisation rates up to 1 kHz /cm2. The internal surfaces facing the gas volume of one RPC module were cladded with a thin layer of linseed oil varnish for comparison of oiled and non-oiled RPC operation. The results refer to the gas mixture of C2H2F4/isobutane (97:3) with SF6 addition below 1%. The single gap modules exhibited full detection efficiency plateau for the high voltage range of about 1 kV at full intensity of gamma rays. Good timing characteristics allowed to reach 95% efficiency at fully opened irradiation source with time window of 20 ns. The intrinsic noise rate for a non-oiled and an oiled RPC gap was, respectively, below 5 and 1 Hz /cm2 at full efficiency over 1 kV voltage range.
76 FR 70376 - Efficiency and Renewables Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
...-Voltage Dry-Type Distribution Transformers. The Liquid Immersed and Medium-Voltage Dry- Type Group (MV... of distribution transformers, as authorized by the Energy Policy Conservation Act (EPCA) of 1975, as... negotiated rulemaking process to develop proposed energy efficiency standards for distribution transformers...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behnke, M. R.; Bloethe, W.G.; Bradt, M.
Wind power plants use power transformers to step plant output from the medium voltage of the collector system to the HV or EHV transmission system voltage. This paper discusses the application of these transformers with regard to the selection of winding configuration, MVA rating, impedance, loss evaluation, on-load tapchanger requirements, and redundancy.
Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.
Chen, Bingyan; Zhang, Panpan; Ding, Li; Han, Jie; Qiu, Song; Li, Qingwen; Zhang, Zhiyong; Peng, Lian-Mao
2016-08-10
Top-gated p-type field-effect transistors (FETs) have been fabricated in batch based on carbon nanotube (CNT) network thin films prepared from CNT solution and present high yield and highly uniform performance with small threshold voltage distribution with standard deviation of 34 mV. According to the property of FETs, various logical and arithmetical gates, shifters, and d-latch circuits were designed and demonstrated with rail-to-rail output. In particular, a 4-bit adder consisting of 140 p-type CNT FETs was demonstrated with higher packing density and lower supply voltage than other published integrated circuits based on CNT films, which indicates that CNT based integrated circuits can reach to medium scale. In addition, a 2-bit multiplier has been realized for the first time. Benefitted from the high uniformity and suitable threshold voltage of CNT FETs, all of the fabricated circuits based on CNT FETs can be driven by a single voltage as small as 2 V.
Huang, Chuixiu; Eibak, Lars Erik Eng; Gjelstad, Astrid; Shen, Xiantao; Trones, Roger; Jensen, Henrik; Pedersen-Bjergaard, Stig
2014-01-24
In this work, a single-well electromembrane extraction (EME) device was developed based on a thin (100μm) and flat porous membrane of polypropylene supporting a liquid membrane. The new EME device was operated with a relatively large acceptor solution volume to promote a high recovery. Using this EME device, exhaustive extraction of the basic drugs quetiapine, citalopram, amitriptyline, methadone and sertraline was investigated from both acidified water samples and human plasma. The volume of acceptor solution, extraction time, and extraction voltage were found to be important factors for obtaining exhaustive extraction. 2-Nitrophenyl octyl ether was selected as the optimal organic solvent for the supported liquid membrane. From spiked acidified water samples (600μl), EME was carried out with 600μl of 20mM HCOOH as acceptor solution for 15min and with an extraction voltage of 250V. Under these conditions, extraction recoveries were in the range 89-112%. From human plasma samples (600μl), EME was carried out with 600μl of 20mM HCOOH as acceptor solution for 30min and with an extraction voltage of 300V. Under these conditions, extraction recoveries were in the range of 83-105%. When combined with LC-MS, the new EME device provided linearity in the range 10-1000ng/ml for all analytes (R(2)>0.990). The repeatability at low (10ng/ml), medium (100ng/ml), and high (1000ng/ml) concentration level for all five analytes were less than 10% (RSD). The limits of quantification (S/N=10) were found to be in the range 0.7-6.4ng/ml. Copyright © 2013 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ground check continuity conductor shall be broken first and the ground conductors shall be broken last.... [Statutory Provisions] Couplers that are used with medium-voltage or high-voltage power circuits shall be of the three-phase type with a full metallic shell, except that the Secretary may permit, under such...
46 CFR 111.30-5 - Construction.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Construction. 111.30-5 Section 111.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-5 Construction. (a) All low voltage and medium voltage switchboards (as low...
46 CFR 111.30-5 - Construction.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Construction. 111.30-5 Section 111.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-5 Construction. (a) All low voltage and medium voltage switchboards (as low...
46 CFR 111.30-5 - Construction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Construction. 111.30-5 Section 111.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-5 Construction. (a) All low voltage and medium voltage switchboards (as low...
46 CFR 111.30-5 - Construction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Construction. 111.30-5 Section 111.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-5 Construction. (a) All low voltage and medium voltage switchboards (as low...
46 CFR 111.30-5 - Construction.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Construction. 111.30-5 Section 111.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-5 Construction. (a) All low voltage and medium voltage switchboards (as low...
Low-to-Medium Power Single Chip Digital Controlled DC-DC Regulator for Point-of-Load Applications
NASA Technical Reports Server (NTRS)
Adell, Philippe C. (Inventor); Bakkaloglu, Bertan (Inventor); Vermeire, Bert (Inventor); Liu, Tao (Inventor)
2015-01-01
A DC-DC converter for generating a DC output voltage includes: a digitally controlled pulse width modulator (DPWM) for controlling a switching power stage to supply a varying voltage to an inductor; and a digital voltage feedback circuit for controlling the DPWM in accordance with a feedback voltage corresponding to the DC output voltage, the digital voltage feedback circuit including: a first voltage controlled oscillator for converting the feedback voltage into a first frequency signal and to supply the first frequency signal to a first frequency discriminator; a second voltage controlled oscillator for converting a reference voltage into a second frequency signal and to supply the second frequency signal to a second frequency discriminator; a digital comparator for comparing digital outputs of the first and second frequency discriminators and for outputting a digital feedback signal; and a controller for controlling the DPWM in accordance with the digital feedback signal.
NASA Astrophysics Data System (ADS)
Laurita, R.; Alviano, F.; Marchionni, C.; Abruzzo, P. M.; Bolotta, A.; Bonsi, L.; Colombo, V.; Gherardi, M.; Liguori, A.; Ricci, F.; Rossi, M.; Stancampiano, A.; Tazzari, P. L.; Marini, M.
2016-09-01
The effect of an atmospheric pressure non-equilibrium plasma on human mesenchymal stem cells was investigated. A dielectric barrier discharge non-equilibrium plasma source driven by two different high-voltage pulsed generators was used and cell survival, senescence, proliferation, and differentiation were evaluated. Cells deprived of the culture medium and treated with nanosecond pulsed plasma showed a higher mortality rate, while higher survival and retention of proliferation were observed in cells treated with microsecond pulsed plasma in the presence of the culture medium. While a few treated cells showed the hallmarks of senescence, unexpected delayed apoptosis ensued in cells exposed to plasma-treated medium. The plasma treatment did not change the expression of OCT4, a marker of mesenchymal stem cell differentiation.
SU-E-T-623: Polarity Effects for Small Volume Ionization Chambers in Cobalt-60 Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y; Bhatnagar, J; Huq, M Saiful
2015-06-15
Purpose: To investigate the polarity effects for small volume ionization chambers in {sup 60}Co gamma-ray beams using the Leksell Gamma Knife Perfexion. Methods: Measurements were made for 7 small volume ionization chambers (a PTW 31016, an Exradin A14, 2 Capintec PR0-5P, and 3 Exradin A16) using a PTW UNIDOSwebline Universal Dosemeter and an ELEKTA solid water phantom with proper inserts. For each ion chamber, the temperature/pressure corrected electric charge readings were obtained for 16 voltage values (±50V, ±100V, ±200V, ±300V, ±400V, ±500V, ±600V, ±700V). For each voltage, a five-minute leakage charge reading and a series of 2-minute readings were continuouslymore » taken during irradiation until 5 stable signals (less than 0.05% variation) were obtained. The average of the 5 reading was then used for the calculation of the polarity corrections at the voltage and for generating the saturation curves. Results: The polarity effects are more pronounced at high or low voltages than at the medium voltages for all chambers studied. The voltage dependence of the 3 Exradin A16 chambers is similar in shape. The polarity corrections for the Exradin A16 chambers changes rapidly from about 1 at 500V to about 0.98 at 700V. The polarity corrections for the 7 ion chambers at 300V are in the range from 0.9925 (for the PTW31016) to 1.0035 (for an Exradin A16). Conclusion: The polarity corrections for certain micro-chambers are large even at normal operating voltage.« less
NASA Technical Reports Server (NTRS)
Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)
2013-01-01
One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)
2015-01-01
One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.
Outdoor Testing Areas | Energy Systems Integration Facility | NREL
of engineers running tests on plug-in hybrid electric vehicles at the Medium-Voltage Outdoor Test large microgrids hub, located in the outdoor low-voltage test yard, includes underground trench access pits for full enclosure of rotating machinery under test. Key Infrastructure Secured underground pits
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Medium- and Low-Voltage Dry-Type Distribution Transformers AGENCY: Department of Energy, Office of Energy... Dry-Type and the second addressing Low-Voltage Dry-Type Distribution Transformers. The Liquid Immersed... proposed rule for regulating the energy efficiency of distribution transformers, as authorized by the...
NASA Astrophysics Data System (ADS)
Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.
2018-02-01
The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.
Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides
NASA Astrophysics Data System (ADS)
Gopalakrishnan, K.; Moses, Kota; Govindaraj, A.; Rao, C. N. R.
2013-12-01
Nitrogen-doped reduced graphene oxide (RGO) samples with different nitrogen content, prepared by two different methods, as well as nitrogen-doped few-layer graphene have been investigated as supercapacitor electrodes. Two electrode measurements have been carried out both in aqueous (6M KOH) and in ionic liquid media. Nitrogen-doped reduced graphene oxides exhibit satisfactory specific capacitance, the values reaching 126F/g at a scan rate of 10mV/s in aqueous medium. Besides providing supercapacitor characteristics, the study has shown the nitrogen content and surface area to be important factors. High surface-area borocarbonitrides, BxCyNz, prepared by the urea route appear to be excellent supercapacitor electrode materials. Thus, BC4.5N exhibits a specific capacitance of 169F/g at a scan rate of 10mV/s in aqueous medium. In an ionic liquid medium, nitrogen-doped RGO and BC4.5N exhibit specific capacitance values of 258F/g and 240F/g at a scan rate of 5mV/s. The ionic liquid enables a larger operating voltage range of 0.0-2.5V compared to 0.0-1V in aqueous medium.
Carbon fiber composite molecular sieve electrically regenerable air filter media
Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.
1998-01-01
An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.
Calibration of Voltage Transformers and High- Voltage Capacitors at NIST
Anderson, William E.
1989-01-01
The National Institute of Standards and Technology (NIST) calibration service for voltage transformers and high-voltage capacitors is described. The service for voltage transformers provides measurements of ratio correction factors and phase angles at primary voltages up to 170 kV and secondary voltages as low as 10 V at 60 Hz. Calibrations at frequencies from 50–400 Hz are available over a more limited voltage range. The service for high-voltage capacitors provides measurements of capacitance and dissipation factor at applied voltages ranging from 100 V to 170 kV at 60 Hz depending on the nominal capacitance. Calibrations over a reduced voltage range at other frequencies are also available. As in the case with voltage transformers, these voltage constraints are determined by the facilities at NIST. PMID:28053409
30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Cable couplers and connection boxes; minimum... connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power... materials other than metal. (2) Cable couplers shall be adequate for the intended current and voltage. (3...
30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Cable couplers and connection boxes; minimum... connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power... materials other than metal. (2) Cable couplers shall be adequate for the intended current and voltage. (3...
30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Cable couplers and connection boxes; minimum... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.805 Cable couplers and connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power...
30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Cable couplers and connection boxes; minimum... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.805 Cable couplers and connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power...
30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Cable couplers and connection boxes; minimum... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.805 Cable couplers and connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power...
NectarCAM, a camera for the medium sized telescopes of the Cherenkov telescope array
NASA Astrophysics Data System (ADS)
Glicenstein, J.-F.; Shayduk, M.
2017-01-01
NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) which covers the core energy range of 100 GeV to 30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The expected performance of the camera are discussed. Prototypes of NectarCAM components have been built to validate the design. Preliminary results of a 19-module mini-camera are presented, as well as future plans for building and testing a full size camera.
Phase locking of a semiconductor double-quantum-dot single-atom maser
NASA Astrophysics Data System (ADS)
Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.
2017-11-01
We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.
NASA Astrophysics Data System (ADS)
Fan, Haifeng
2011-12-01
The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low switching loss and conduction loss are must-haves for high efficiency, while bidirectional power flow capability is a must for power management requirement. To address the demand, the phase-shift dual-halfbridge (DHB) is proposed as the constituent module of ISOP configuration for MV application. The proposed ISOP DHB converter employs zero-voltage-switching (ZVS) technique combined with LV MOSFETs to achieve low switching and conduction losses under high frequency operation, and therefore high efficiency and high power density, and bidirectional power flow as well. Secondly, a large load range of high efficiency is desired rather than only a specific load point due to the continuous operation and large load variation range of utility application, which is of high importance because of the rising energy cost. This work proposes a novel DHB converter with an adaptive commutation inductor. By utilizing an adaptive inductor as the main energy transfer element, the output power can be controlled by not only the phase shift but also the commutation inductance, which allows the circulating energy to be optimized for different load conditions to maintain ZVS under light load conditions and minimize additional conduction losses under heavy load conditions as well. As a result, the efficiency at both light and heavy load can be significantly improved compared with the conventional DHB converter, and therefore extended high-efficiency range can be achieved. In addition, current stress of switch devices can be reduced. The theoretical analysis is presented and validated by the experimental results on a 50 kHz, 1 kW dc-dc converter module. Thirdly, input-voltage sharing and output-current sharing are critical to assure the advantages of the ISOP modular configuration. To solve this issue, an identically distributed control scheme is proposed in this work. The proposed control scheme, using only one distributed voltage loop to realize both input-voltage and output-current sharing, provides plug-and-play capability, possible high-level fault tolerance, and easy implementation. Another unique advantage of the proposed ISOP DHB converter is the power rating can be easily extended further by directly connecting multiple ISOP DHB converters in input-parallel-outparallel (IPOP) while no additional control is needed. The proposed control scheme is elaborated using the large-signal average model. Further, the stability of the control schemes is analyzed in terms of the constituent modules' topology as well as the configuration, and then an important fact that the stability of control scheme depends on not only the configuration but also the constituent module topology is first revealed in this work. Finally, the simulation and experimental results of an ISOP DHB converter consisting of three modules are presented to verify the proposed control scheme and the high frequency high efficiency operation.
Electrophysiological and optical changes in slices of rat hippocampus during spreading depression.
Snow, R W; Taylor, C P; Dudek, F E
1983-09-01
Spreading depression (SD) was studied with intracellular and extracellular recordings and with photometry in slices of rat hippocampus. Repetitive electrical stimulation could initiate SD in either normal medium or in low-Ca2+ medium containing Mn2+, especially during transient hypoxia. The extracellular voltage near CA1 pyramidal somata and dendrites became negative by approximately 18 mV during SD. This negativity peaked more slowly in low-Ca2+ medium containing Mn2+. The wave of negativity propagated across the slice in both media at approximately 6 mm/min. Input resistance of pyramidal neurons became undetectable during SD, and differential voltage recording between neurons and adjacent extracellular space demonstrated that transmembrane potential approached zero. Slices became more opaque during SD. Photometry revealed approximately 10% increase in reflectance and a similar decrease in transmittance of white light, which occurred with a time course similar to the extracellularly recorded voltage shift. These data support the hypothesis that SD represents a large increase in membrane permeability associated with substantial movements of water. The persistance of SD in a bathing solution that blocked electrically evoked postsynaptic potentials suggests that the contribution of synaptic transmitter release to the propagation of SD should be reappraised.
Operation of a sub-terahertz CW gyrotron with an extremely low voltage
NASA Astrophysics Data System (ADS)
Bratman, V. L.; Fedotov, A. E.; Fokin, A. P.; Glyavin, M. Yu.; Manuilov, V. N.; Osharin, I. V.
2017-11-01
Decreasing the operating voltage for medium-power sub-terahertz gyrotrons aimed at industrial and scientific applications is highly attractive, since it allows size and cost reduction of the tubes and power supply units. In this paper, we examine such an opportunity both numerically and experimentally for the fundamental cyclotron resonance operation of an existing gyrotron initially designed for operation at the second cyclotron harmonic with a relatively high voltage. Simulations predict that output power higher than 10 W can be produced at the fundamental harmonic at voltages less than 2 kV. To form a low-voltage helical electron beam with a sufficiently large pitch-factor, a positive voltage was applied to the first anode of the gyrotron three-electrode magnetron-injection gun with a negative voltage at the cathode. CW gyrotron operation at voltages down to 1.5 kV has been demonstrated at a frequency about of 256 GHz.
A compact 100 kV high voltage glycol capacitor.
Wang, Langning; Liu, Jinliang; Feng, Jiahuai
2015-01-01
A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.
Carbon fiber composite molecular sieve electrically regenerable air filter media
Wilson, K.A.; Burchell, T.D.; Judkins, R.R.
1998-10-27
An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.
Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.
Cao, Qing; Kim, Hoon-sik; Pimparkar, Ninad; Kulkarni, Jaydeep P; Wang, Congjun; Shim, Moonsub; Roy, Kaushik; Alam, Muhammad A; Rogers, John A
2008-07-24
The ability to form integrated circuits on flexible sheets of plastic enables attributes (for example conformal and flexible formats and lightweight and shock resistant construction) in electronic devices that are difficult or impossible to achieve with technologies that use semiconductor wafers or glass plates as substrates. Organic small-molecule and polymer-based materials represent the most widely explored types of semiconductors for such flexible circuitry. Although these materials and those that use films or nanostructures of inorganics have promise for certain applications, existing demonstrations of them in circuits on plastic indicate modest performance characteristics that might restrict the application possibilities. Here we report implementations of a comparatively high-performance carbon-based semiconductor consisting of sub-monolayer, random networks of single-walled carbon nanotubes to yield small- to medium-scale integrated digital circuits, composed of up to nearly 100 transistors on plastic substrates. Transistors in these integrated circuits have excellent properties: mobilities as high as 80 cm(2) V(-1) s(-1), subthreshold slopes as low as 140 m V dec(-1), operating voltages less than 5 V together with deterministic control over the threshold voltages, on/off ratios as high as 10(5), switching speeds in the kilohertz range even for coarse (approximately 100-microm) device geometries, and good mechanical flexibility-all with levels of uniformity and reproducibility that enable high-yield fabrication of integrated circuits. Theoretical calculations, in contexts ranging from heterogeneous percolative transport through the networks to compact models for the transistors to circuit level simulations, provide quantitative and predictive understanding of these systems. Taken together, these results suggest that sub-monolayer films of single-walled carbon nanotubes are attractive materials for flexible integrated circuits, with many potential areas of application in consumer and other areas of electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdman, W.; Behnke, M.
2005-11-01
Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reductionmore » in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.« less
Medium Caliber Lead-Free Electric Primer. Version 2
2012-09-01
Toxic Substance Control Act TGA Thermogravimetric Analysis TNR Trinitroresorcinol V Voltage VDC Voltage Direct Current WSESRB Weapons System...variety of techniques including Thermogravimetric Analysis (TGA), base-hydrolysis, Surface Area Analysis using Brunauer, Emmett, Teller (BET...Distribution From Thermogravimetric Analysis Johnson, C. E.; Fallis, S.; Chafin, A. P.; Groshens, T. J.; Higa, K. T.; Ismail, I. M. K. and Hawkins, T. W
NASA Astrophysics Data System (ADS)
Farajpour, A.; Rastgoo, A.; Mohammadi, M.
2017-03-01
Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.
Ultrasteep Voltage Dependence in a Membrane Channel
NASA Astrophysics Data System (ADS)
Mangan, Patrick S.; Colombini, Marco
1987-07-01
A mechanism for regulating voltage-gated channels is presented. The treatment amplifies the effect of the applied membrane potential resulting in a dramatic increase in the channel's voltage dependence. Addition of a large polyvalent anion to the medium bathing a phospholipid bilayer containing the voltage-dependent channel from the mitochondrial outer membrane, VDAC, induced up to a 12-fold increase in the channel's voltage sensitivity. The highest polyvalent anion concentration tested resulted in an e-fold conductance change for a 0.36-mV change in membrane potential. On the low end, a concentration of 2 μ M resulted in a 50% increase in VDAC voltage dependence. A mechanism based on polyvalent anion accumulation in the access resistance region at the mouth of the pore is consistent with all findings. Perhaps the voltage dependence of voltage-gated channels is amplified in vivo by polyvalent ions. If so, the control of excitable phenomena may be under much finer regulation than that provided by membrane potential alone.
Aspects on HTS applications in confined power grids
NASA Astrophysics Data System (ADS)
Arndt, T.; Grundmann, J.; Kuhnert, A.; Kummeth, P.; Nick, W.; Oomen, M.; Schacherer, C.; Schmidt, W.
2014-12-01
In an increasing number of electric power grids the share of distributed energy generation is also increasing. The grids have to cope with a considerable change of power flow, which has an impact on the optimum topology of the grids and sub-grids (high-voltage, medium-voltage and low-voltage sub-grids) and the size of quasi-autonomous grid sections. Furthermore the stability of grids is influenced by its size. Thus special benefits of HTS applications in the power grid might become most visible in confined power grids.
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Hase, Shin-Ichi; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
Interest has been shown in the concept of an energy storage system aimed at leveling load and improving energy efficiency by charging during vehicle regeneration and discharging during running. Such a system represents an efficient countermeasure against pantograph point voltage drop, power load fluctuation and regenerative power loss. We selected an EDLC model as an energy storage medium and a step-up/step-down chopper as a power converter to exchange power between the storage medium and overhead lines. Basic verification was conducted using a mini-model for DC 400V, demonstrating characteristics suitable for its use as an energy storage system. Based on these results, an energy storage system was built for DC 600V and a verification test conducted in conjunction with the Enoshima Electric Railway Co. Ltd. This paper gives its experimental analysis of voltage drop compensation in a DC electrified railway and some discussions based on the test.
Bongianni, Wayne L.
1992-01-01
A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.
@NWTC Newsletter: Fall 2013 | Wind | NREL
Assessment of the U.S. Wind Industry in 2012 NREL Identifies Investments for Wind Turbine Drivetrain , medium-speed, medium-voltage wind turbine drivetrain design. Tapping into unparalleled expertise, the The drivetrain of a wind turbine converts the power of the wind into electrical energy. Now
Highly-Efficient and Modular Medium-Voltage Converters
2015-09-28
HVDC modular multilevel converter in decoupled double synchronous reference frame for voltage oscillation reduction," IEEE Trans. Ind...Electron., vol. 29, pp. 77-88, Jan 2014. [10] M. Guan and Z. Xu, "Modeling and control of a modular multilevel converter -based HVDC system under...34 Modular multilevel converter design for VSC HVDC applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, pp.
Electric field modulated ferromagnetism in ZnO films deposited at room temperature
NASA Astrophysics Data System (ADS)
Bu, Jianpei; Liu, Xinran; Hao, Yanming; Zhou, Guangjun; Cheng, Bin; Huang, Wei; Xie, Jihao; Zhang, Heng; Qin, Hongwei; Hu, Jifan
2018-04-01
The ZnO film deposited at room temperature, which is composed of the amorphous-phase background plus a few nanograins or nanoclusters (about 1-2 nm), exhibits room temperature ferromagnetism (FM). Such FM is found to be connected with oxygen vacancies. For the Ta/ZnO/Pt device based on the medium layer ZnO deposited at room temperature, the saturation magnetization not only is modulated between high and low resistive states by electric voltage with DC loop electric current but also increases/decreases through adjusting the magnitudes of positive/negative DC sweeping voltage. Meanwhile, the voltage-controlled conductance quantization is observed in Ta/ZnO/Pt, accompanying the voltage-controlled magnetization. However, the saturation magnetization of the Ta/ZnO/Pt device becomes smaller under positive electric voltage and returns in some extent under negative electric voltage, when the DC loop electric current is not applied.
Shen, ShouYu; Hong, YuHao; Zhu, FuChun; Cao, ZhenMing; Li, YuYang; Ke, FuSheng; Fan, JingJing; Zhou, LiLi; Wu, LiNa; Dai, Peng; Cai, MingZhi; Huang, Ling; Zhou, ZhiYou; Li, JunTao; Wu, QiHui; Sun, ShiGang
2018-04-18
Owing to high specific capacity of ∼250 mA h g -1 , lithium-rich layered oxide cathode materials (Li 1+ x Ni y Co z Mn (3- x-2 y-3 z)/4 O 2 ) have been considered as one of the most promising candidates for the next-generation cathode materials of lithium ion batteries. However, the commercialization of this kind of cathode materials seriously restricted by voltage decay upon cycling though Li-rich materials with high cobalt content have been widely studied and show good capacity. This research successfully suppresses voltage decay upon cycling while maintaining high specific capacity with low Co/Ni ratio in Li-rich cathode materials. Online continuous flow differential electrochemical mass spectrometry (OEMS) and in situ X-ray diffraction (XRD) techniques have been applied to investigate the structure transformation of Li-rich layered oxide materials during charge-discharge process. The results of OEMS revealed that low Co/Ni ratio lithium-rich layered oxide cathode materials released no lattice oxygen at the first charge process, which will lead to the suppression of the voltage decay upon cycling. The in situ XRD results displayed the structure transition of lithium-rich layered oxide cathode materials during the charge-discharge process. The Li 1.13 Ni 0.275 Mn 0.580 O 2 cathode material exhibited a high initial medium discharge voltage of 3.710 and a 3.586 V medium discharge voltage with the lower voltage decay of 0.124 V after 100 cycles.
Fenstermacher, Charles A.; Boyer, Keith
1986-01-01
A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.
Lightning Overvoltage on Low-Voltage Distribution System
NASA Astrophysics Data System (ADS)
Michishita, Koji
The portion of the faults of a medium-voltage line, cause by lightning, tends to increase with often reaching beyond 30%. However, due to the recent progress of the lightning protection design, the number of faults has decreased to 1/3 of that at 30 years ago. As for the low-voltage distribution line, the fault rate has been estimated primarily, although the details of the overvoltages have not been studied yet. For the further development of highly information-oriented society, improvement of reliability of electric power supply to the appliance in a low-voltage customer will be socially expected. Therefore, it is important to establish effective lightning protection design of the low-voltage distribution system, defined to be composed of lines having mutual interaction on the customers' electric circuits, such as a low-voltage distribution line, an antenna line and a telecommunication line. In this report, the author interprets the recent research on the lightning overvoltage on a low-voltage distribution system.
Yakymyshyn, Christopher Paul; Hamilton, Pamela Jane; Brubaker, Michael Allen
2007-12-04
A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.
Method and apparatus for I-V data acquisition from solar cells
Cole, Steven W.
1985-01-01
A method and apparatus for logging current-voltage (I-V) characteristic d of a solar cell module (10) in two modes using a portable instrument. One mode controls the load current through a circuit (36) in 256 equal intervals while voltage is measured from open circuit to at least halfway into the knee of the curve and the other mode controls the load voltage through a circuit (34) in 256 equal intervals from the lowest voltage measurement possible (short circuit) to at least halfway into the knee of the curve, under control of a microcomputer (12). All measurements are packed by discarding each measurement that is within 0.5% of the value predicted from two previous measurements, except every ninth (9th) measurement which is retained. The remaining data is further packed into a memory block of a detachable storage medium (14) by recording the data points in sequence following a header containing data common to all points, with each point having the value of the controlled parameter recorded as the number of increments from the previous point recorded followed by the measured value. The detachable storage medium is preferably a solid state device for reliability, and is transferable to a playback terminal which unpacks the data for analysis and display.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdman, W.; Keller, J.; Grider, D.
A high-efficiency, 2.3-MW, medium-voltage, three-level inverter utilizing 4.5-kV Si/SiC (silicon carbide) hybrid modules for wind energy applications is discussed. The inverter addresses recent trends in siting the inverter within the base of multimegawatt turbine towers. A simplified split, three-layer laminated bus structure that maintains low parasitic inductances is introduced along with a low-voltage, high-current test method for determining these inductances. Feed-thru bushings, edge fill methods, and other design features of the laminated bus structure provide voltage isolation that is consistent with the 10.4-kV module isolation levels. Inverter efficiency improvement is a result of the (essential) elimination of the reverse recoverymore » charge present in 4.5-kV Si PIN diodes, which can produce a significant reduction in diode turn-off losses as well as insulated-gate bipolar transistor (IGBT) turn-on losses. The hybrid modules are supplied in industry-standard 140 mm x 130 mm and 190 mm x 130 mm packages to demonstrate direct module substitution into existing inverter designs. A focus on laminated bus/capacitor-bank/module subassembly level switching performance is presented.« less
NASA Astrophysics Data System (ADS)
Kondo, Ryota; Akagi, Hirofumi
This paper presents a transformerless hybrid active filter that is integrated into medium-voltage adjustable-speed motor drives for fans, pumps, and compressors without regenerative braking. The authors have designed and constructed a three-phase experimental system rated at 400V and 15kW, which is a downscaled model from a feasible 6.6-kV 1-MW motor drive system. This system consists of the hybrid filter connecting a passive filter tuned to the 7th harmonic filter in series with an active filter that is based on a three-level diode-clamped PWM converter, as well as an adjustable-speed motor drive in which a diode rectifier is used as the front end. The hybrid filter is installed on the ac side of the diode rectifier with no line-frequency transformer. The downscaled system has been exclusively tested so as to confirm the overall compensating performance of the hybrid filter and the filtering performance of a switching-ripple filter for mitigating switching-ripple voltages produced by the active filter. Experimental results verify that the hybrid filter achieves harmonic compensation of the source current in all the operating regions from no-load to the rated-load conditions, and that the switching-ripple filter reduces the switching-ripple voltages as expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; Koralewicz, Przemyslaw; Wallen, Robb
The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale andmore » medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.« less
pH measurements of FET-based (bio)chemical sensors using portable measurement system.
Voitsekhivska, T; Zorgiebel, F; Suthau, E; Wolter, K-J; Bock, K; Cuniberti, G
2015-01-01
In this study we demonstrate the sensing capabilities of a portable multiplex measurement system for FET-based (bio)chemical sensors with an integrated microfluidic interface. We therefore conducted pH measurements with Silicon Nanoribbon FET-based Sensors using different measurement procedures that are suitable for various applications. We have shown multiplexed measurements in aqueous medium for three different modes that are mutually specialized in fast data acquisition (constant drain current), calibration-less sensing (constant gate voltage) and in providing full information content (sweeping mode). Our system therefore allows surface charge sensing for a wide range of applications and is easily adaptable for multiplexed sensing with novel FET-based (bio)chemical sensors.
High-resolution parallel-detection sensor array using piezo-phototronics effect
Wang, Zhong L.; Pan, Caofeng
2015-07-28
A pressure sensor element includes a substrate, a first type of semiconductor material layer and an array of elongated light-emitting piezoelectric nanostructures extending upwardly from the first type of semiconductor material layer. A p-n junction is formed between each nanostructure and the first type semiconductor layer. An insulative resilient medium layer is infused around each of the elongated light-emitting piezoelectric nanostructures. A transparent planar electrode, disposed on the resilient medium layer, is electrically coupled to the top of each nanostructure. A voltage source is coupled to the first type of semiconductor material layer and the transparent planar electrode and applies a biasing voltage across each of the nanostructures. Each nanostructure emits light in an intensity that is proportional to an amount of compressive strain applied thereto.
Mangold, Stefanie; Wichmann, Julian L; Schoepf, U Joseph; Poole, Zachary B; Canstein, Christian; Varga-Szemes, Akos; Caruso, Damiano; Bamberg, Fabian; Nikolaou, Konstantin; De Cecco, Carlo N
2016-10-01
To investigate the relationship between automated tube voltage selection (ATVS) and body mass index (BMI) and its effect on image quality and radiation dose of coronary CT angiography (CCTA). We evaluated 272 patients who underwent CCTA with 3(rd) generation dual-source CT (DSCT). Prospectively ECG-triggered spiral acquisition was performed with automated tube current selection and advanced iterative reconstruction. Tube voltages were selected by ATVS (70-120 kV). BMI, effective dose (ED), and vascular attenuation in the coronary arteries were recorded. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used for subjective image quality analysis. Image quality was rated good to excellent in 98.9 % of examinations without significant differences for proximal and distal attenuation (all p ≥ .0516), whereas image noise was rated significantly higher at 70 kV compared to ≥100 kV (all p < .0266). However, no significant differences were observed in SNR or CNR at 70-120 kV (all p ≥ .0829). Mean ED at 70-120 kV was 1.5 ± 1.2 mSv, 2.4 ± 1.5 mSv, 3.6 ± 2.7 mSv, 5.9 ± 4.0 mSv, 7.9 ± 4.2 mSv, and 10.7 ± 4.1 mSv, respectively (all p ≤ .0414). Correlation analysis showed a moderate association between tube voltage and BMI (r = .639). ATVS allows individual tube voltage adaptation for CCTA performed with 3(rd) generation DSCT, resulting in significantly decreased radiation exposure while maintaining image quality. • Automated tube voltage selection allows an individual tube voltage adaption in CCTA. • A tube voltage-based reduction of contrast medium volume is feasible. • Image quality was maintained while radiation exposure was significantly decreased. • A moderate association between tube voltage and body mass index was found.
Characterization of a medium-sized washer-gun for an axisymmetric mirror
NASA Astrophysics Data System (ADS)
Yi, Hongshen; Liu, Ming; Shi, Peiyun; Yang, Zhida; Zhu, Guanghui; Lu, Quanming; Sun, Xuan
2018-04-01
A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.
Characterization of a medium-sized washer-gun for an axisymmetric mirror.
Yi, Hongshen; Liu, Ming; Shi, Peiyun; Yang, Zhida; Zhu, Guanghui; Lu, Quanming; Sun, Xuan
2018-04-01
A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.
A general theory of DC electromagnetic launchers
NASA Astrophysics Data System (ADS)
Engel, Thomas G.; Timpson, Erik J.
2015-08-01
The non-linear, transient operation of DC electromagnetic launchers (EMLs) complicates their theoretical understanding and prevents scaling studies and performance comparisons without the aid of detailed numerical models. This paper presents a general theory for DC electromagnetic launchers that has simplified these tasks by identifying critical EML parameters and relationships affecting the EML's voltage, current, and power scaling, as well as its performance and energy conversion efficiency. EML parameters and relationships discussed in this paper include the specific force, the operating mode, the launcher constant, the launcher characteristic velocity, the contact characteristic velocity, the energy conversion efficiency, and the kinetic power and voltage-current scaling relationship. The concepts of the ideal EML, same-scale comparisons, and EML impedance are discussed. This paper defines conditions needed for the EML to operate in the steady-state. A comparison of the general theory with experimental results of several different types of DC (i.e., non-induction) electromagnetic launchers ranging from medium velocity (100's m/s) to high velocity (1000's m/s) is performed. There is good agreement between the general theory and the experimental results.
Violanti, S; Fraschetta, M; Adda, S; Caputo, E
2009-12-01
Within the framework of Environmental Agencies system's activities, coordinated by ISPRA (superior institute for environmental protection and research), a comparison among measurements was designed and accomplished, in order to go into depth on the matter of measurement problems and to evaluate magnetic field at power frequencies. These measurements have been taken near medium voltage /low voltage transformer substation. This project was developed with the contribution of several experts who belong to different Regional Agencies. In three of these regions, substations having specific international standard characteristics were chosen; then a measurement and data analysis protocol was arranged. Data analysis showed a good level of coherence among results obtained by different laboratories. However, a range of problems emerged, either during the protocol predisposition and definition of the data analysis procedure or during the execution of measures and data reprocessing, because of the spatial and temporal variability of magnetic field. These problems represent elements of particular interest in determining a correct measurement methodology, whose purpose is the comparison with limits of exposure, attention values and quality targets.
Novickij, Vitalij; Ruzgys, Paulius; Grainys, Audrius; Šatkauskas, Saulius
2018-02-01
The study presents the proof of concept for a possibility to achieve a better electroporation in the MHz pulse repetition frequency (PRF) region compared to the conventional low frequency protocols. The 200ns×10 pulses bursts of 10-14kV/cm have been used to permeabilize Chinese hamster ovary (CHO) cells in a wide range (1Hz-1MHz) of PRF. The permeabilization efficiency was evaluated using fluorescent dye assay (propidium iodide) and flow cytometry. It was determined that a threshold PRF exists when the relaxation of the cell transmembrane potential is longer than the delay between the consequent pulses, which results in accumulation of the charge on the membrane. For the CHO cells and 0.1S/m electroporation medium, this phenomenon is detectable in the 0.5-1MHz range. It was shown that the PRF is an important parameter that could be used for flexible control of electroporation efficiency in the high frequency range. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Yi; Beck, Edward J; Flores, Christopher M
2011-12-01
Hyperactivity of voltage-gated sodium channels underlies, at least in part, a range of pathological states, including pain and epilepsy. Selective blockers of these channels may offer effective treatment of such disorders. Currently employed methods to screen for sodium channel blockers, however, are inadequate to rationally identify mechanistically diverse blockers, limiting the potential range of indications that may be treated by such agents. Here, we describe an improved patch clamp screening assay that increases the mechanistic diversity of sodium channel blockers being identified. Using QPatch HT, a medium-throughput, automated patch clamp system, we tested three common sodium channel blockers (phenytoin, lidocaine, and tetrodotoxin) with distinct mechanistic profiles at Nav1.2. The single-voltage protocol employed in this assay simultaneously measured the compound activity in multiple states, including the slow inactivated state, of the channel. A long compound incubation period (10 s) was introduced during channel inactivation to increase the probability of identifying "slow binders." As such, phenytoin, which preferentially binds with slow kinetics to the fast inactivated state, exhibited significantly higher potency than that obtained from a brief exposure (100 ms) used in typical assays. This assay also successfully detected the use-dependent block of tetrodotoxin, a well-documented property of this molecule yet unobserved in typical patch clamp protocols. These results indicate that the assay described here can increase the likelihood of identification and mechanistic diversity of sodium channel blockers from a primary screen. It can also be used to efficiently guide the in vitro optimization of leads that retain the desired mechanistic properties. © MARY ANN LIEBERT, INC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’smore » new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.« less
New insights on the voltage dependence of the KCa3.1 channel block by internal TBA.
Banderali, Umberto; Klein, Hélène; Garneau, Line; Simoes, Manuel; Parent, Lucie; Sauvé, Rémy
2004-10-01
We present in this work a structural model of the open IKCa (KCa3.1) channel derived by homology modeling from the MthK channel structure, and used this model to compute the transmembrane potential profile along the channel pore. This analysis showed that the selectivity filter and the region extending from the channel inner cavity to the internal medium should respectively account for 81% and 16% of the transmembrane potential difference. We found however that the voltage dependence of the IKCa block by the quaternary ammonium ion TBA applied internally is compatible with an apparent electrical distance delta of 0.49 +/- 0.02 (n = 6) for negative potentials. To reconcile this observation with the electrostatic potential profile predicted for the channel pore, we modeled the IKCa block by TBA assuming that the voltage dependence of the block is governed by both the difference in potential between the channel cavity and the internal medium, and the potential profile along the selectivity filter region through an effect on the filter ion occupancy states. The resulting model predicts that delta should be voltage dependent, being larger at negative than positive potentials. The model also indicates that raising the internal K+ concentration should decrease the value of delta measured at negative potentials independently of the external K+ concentration, whereas raising the external K+ concentration should minimally affect delta for concentrations >50 mM. All these predictions are born out by our current experimental results. Finally, we found that the substitutions V275C and V275A increased the voltage sensitivity of the TBA block, suggesting that TBA could move further into the pore, thus leading to stronger interactions between TBA and the ions in the selectivity filter. Globally, these results support a model whereby the voltage dependence of the TBA block in IKCa is mainly governed by the voltage dependence of the ion occupancy states of the selectivity filter.
Kramer, Axel; Over, Daniel; Stoller, Patrick; Paul, Thomas A
2017-05-20
Novel dielectric insulation gases used as alternatives to sulfur hexafluoride in gas-insulated switchgear (GIS) include several mixtures containing fluorinated organic compounds. We developed a fiber-optic analyzer enabling concentration measurement of fluoroketones used in medium- and high-voltage switchgear applications by ABB, with concurrent compensation of disturbing effects caused by dust and dirt. The sensor enables measurements in GIS and even in operating high-voltage circuit breakers. The online availability of concentration readings of fluoroketones is important for development tests, but can also be applied for monitoring or diagnostics of field installations.
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2012 CFR
2012-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2014 CFR
2014-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2013 CFR
2013-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...
NASA Astrophysics Data System (ADS)
Daniel, Michael T.
Here in the early 21st century humanity is continuing to seek improved quality of life for citizens throughout the world. This global advancement is providing more people than ever with access to state-of-the-art services in areas such as transportation, entertainment, computing, communication, and so on. Providing these services to an ever-growing population while considering the constraints levied by continuing climate change will require new frontiers of clean energy to be developed. At the time of this writing, offshore wind has been proven as both a politically and economically agreeable source of clean, sustainable energy by northern European nations with many wind farms deployed in the North, Baltic, and Irish Seas. Modern offshore wind farms are equipped with an electrical system within the farm itself to aggregate the energy from all turbines in the farm before it is transmitted to shore. This collection grid is traditionally a 3-phase medium voltage alternating current (MVAC) system. Due to reactive power and other practical constraints, it is preferable to use a medium voltage direct current (MVDC) collection grid when siting farms >150 km from shore. To date, no offshore wind farm features an MVDC collection grid. However, MVDC collection grids are expected to be deployed with future offshore wind farms as they are sited further out to sea. In this work it is assumed that many future offshore wind farms may utilize an MVDC collection grid to aggregate electrical energy generated by individual wind turbines. As such, this work presents both per-phase and per-pole power electronic converter systems suitable for interfacing individual wind turbines to such an MVDC collection grid. Both interfaces are shown to provide high input power factor at the wind turbine while providing DC output current to the MVDC grid. Common mode voltage stress and circulating currents are investigated, and mitigation strategies are provided for both interfaces. A power sharing scheme for connecting multiple wind turbines in series to allow for a higher MVDC grid voltage is also proposed and analyzed. The overall results show that the proposed per-pole approach yields key advantages in areas of common mode voltage stress, circulating current, and DC link capacitance, making it the more appropriate choice of the two proposed interfaces for this application.
Inductance parameter design based seamless transfer strategy for three-phase converter in microgrid
NASA Astrophysics Data System (ADS)
Zhao, Guopeng; Zhou, Xinwei; Jiang, Chao; Lu, Yi; Wang, Yanjie
2018-06-01
During the operation of microgrid, especially when the unplanned islanding occurs, the voltage of the point of common coupling (PCC) needs to be maintained within a certain range, otherwise it would affect the operation of loads in microgrid. This paper proposes a seamless transfer strategy based on the inductance parameter design for three-phase converter in microgrid, which considers both the fundamental component of voltage on the inductance and the ripple current in the inductance. In grid-connected mode, the PCC voltage is supported by the grid. When the unplanned islanding occurs, the PCC voltage is affected by the output voltage of converter and the voltage on the inductance. According to the single phase equivalent circuit, analyzing the phasor diagram of voltage and current vector, considering the prescribed range of PCC voltage and satisfying the requirement of the magnitude of ripple current, the inductance parameter is designed. At last, the simulation result shows that the designed inductance can ensure the PCC voltage does not exceed the prescribed range and restrain the ripple current.
Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto
NASA Technical Reports Server (NTRS)
Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)
1995-01-01
Production of an electric voltage in response to mechanical excitation (piezoelectricity) or thermal excitation (pyroelectricity) requires a material to have a preferred dipole orientation in its structure. This preferred orientation or polarization occurs naturally in some crystals such as quartz and can be induced into some ceramic and polymeric materials by application of strong electric or mechanical fields. For some materials, a combination of mechanical and electrical orientation is necessary to completely polarize the material. The only commercially available piezoelectric polymer is poly(vinylidene fluoride) (PVF2). However, this polymer has material and process limitations which prohibit its use in numerous device applications where thermal stability is a requirement. By the present invention, thermally stable, piezoelectric and pyroelectric polymeric substrates were prepared from polymers having a softening temperature greater than 1000C. A metal electrode material is deposited onto the polymer substrate and several electrical leads are attached to it. The polymer substrate is heated in a low dielectric medium to enhance molecular mobility of the polymer chains. A voltage is then applied to the polymer substrate inducing polarization. The voltage is then maintained while the polymer substrate is cooled 'freezing in' the molecular orientation. The novelty of the invention resides in the process of preparing the piezoelectric and pyroelectric polymeric substrate. The nonobviousness of the invention is found in heating the polymeric substrate in a low dielectric medium while applying a voltage.
[Ion-dependency of the GABA-potentiating effects of benzodiazepine tranquilizers and harmane].
Abramets, I I; Komissarov, I V
1984-06-01
Experiments on an isolated spinal cord of 8-15-day-old rats have shown that one of the possible mechanisms of the GABA-potentiating action of the benzodiazepine tranquilizer, chlorodiazepoxide, may be a decrease in the intraneuronal concentration of Ca2+. This is evidenced by the enhancement of the GABA-potentiating action of chlorodiazepoxide under Ca2+ deficiency in the medium and in the presence of the blockers of the voltage-dependent Ca2+ ionic channels--Mn2+ and Co2+, and by the reduction of the effect in question under Ca2+ excess in the medium and in the presence of the K+ channels blockers--tetraethylammonium and 4-aminopyridine. The GABA-potentiating action of harmane is likely to be related to the blockade of the voltage-dependent K+ channels and elevation of the intracellular concentration of Ca2+.
Theoretical and experimental analysis of AlGaInP micro-LED array with square-circle anode
NASA Astrophysics Data System (ADS)
Tian, Chao; Wang, Weibiao; Liang, Jingqiu; Liang, Zhongzhu; Qin, Yuxin; Lv, Jinguang
2015-04-01
An array of 320 × 240 micro-light-emitting diodes (micro-LEDs) based on an AlGaInP epitaxial wafer and with a unit size of 100 µm×100 µm was designed and fabricated. The optimum width of the isolation groove between adjacent light-emitting units was determined based on a compromise between full isolation of each LED and maximization of the light emitting area, and was found to be 20 µm. The grooves were filled with a mixed Si granule-polyurethane composite medium, because this type of insulating material can reflect part of the emitted light from the sidewall to the window layer in each light-emitting unit, and could thus improve lighting output efficiency. The 10-µm-wide square-circle anode was designed to increase the light emitting area while simultaneously being simple to fabricate. The device current used was in the 0.42-1.06 mA range to guarantee internal quantum efficiency of more than 85%, with a corresponding voltage range of 2-2.3 V. The layered temperature distribution in a single unit was simulated under a drive voltage of 2.2 V, and the maximum device temperature was 341 K. The micro-opto-electro-mechanical systems (MOEMS) technology-based fabrication process, experimental images of the device and device test results are presented here.
Theoretical and experimental analysis of AlGaInP micro-LED array with square-circle anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Chao; University of Chinese Academy of Sciences, Beijing 100049; Wang, Weibiao, E-mail: wangwbcn@163.com
An array of 320 × 240 micro-light-emitting diodes (micro-LEDs) based on an AlGaInP epitaxial wafer and with a unit size of 100 µm×100 µm was designed and fabricated. The optimum width of the isolation groove between adjacent light-emitting units was determined based on a compromise between full isolation of each LED and maximization of the light emitting area, and was found to be 20 µm. The grooves were filled with a mixed Si granule-polyurethane composite medium, because this type of insulating material can reflect part of the emitted light from the sidewall to the window layer in each light-emitting unit,more » and could thus improve lighting output efficiency. The 10-µm-wide square-circle anode was designed to increase the light emitting area while simultaneously being simple to fabricate. The device current used was in the 0.42–1.06 mA range to guarantee internal quantum efficiency of more than 85%, with a corresponding voltage range of 2–2.3 V. The layered temperature distribution in a single unit was simulated under a drive voltage of 2.2 V, and the maximum device temperature was 341 K. The micro-opto-electro-mechanical systems (MOEMS) technology-based fabrication process, experimental images of the device and device test results are presented here.« less
NASA Technical Reports Server (NTRS)
Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.
2001-01-01
The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.
30 CFR 75.900-3 - Testing, examination, and maintenance of circuit breakers; procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... current circuits serving three-phase alternating current equipment and their auxiliary devices shall be... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900-3 Testing, examination, and...
30 CFR 75.900-3 - Testing, examination, and maintenance of circuit breakers; procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... current circuits serving three-phase alternating current equipment and their auxiliary devices shall be... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900-3 Testing, examination, and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... SAFETY STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits... from resistance grounded systems separate connections shall be used when practicable. ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... SAFETY STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits... from resistance grounded systems separate connections shall be used when practicable. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... SAFETY STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits... from resistance grounded systems separate connections shall be used when practicable. ...
NASA Astrophysics Data System (ADS)
Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.
2017-05-01
Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.
Dual-bridge LLC-SRC with extended voltage range for deeply depleted PEV battery charging
NASA Astrophysics Data System (ADS)
Shahzad, M. Imran; Iqbal, Shahid; Taib, Soib
2017-11-01
This paper proposes a dual-bridge LLC series resonant converter with hybrid-rectifier for achieving extended charging voltage range of 50-420 V for on-board battery charger of plug-in electric vehicle for normal and deeply depleted battery charging. Depending upon the configuration of primary switching network and secondary rectifier, the proposed topology has three operating modes as half-bridge with bridge rectifier (HBBR), full-bridge with bridge rectifier (FBBR) and full-bridge with voltage doubler (FBVD). HBBR, FBBR and FBVD operating modes of converter achieve 50-125, 125-250 and 250-420 V voltage ranges, respectively. For voltage above 62 V, the converter operates below resonance frequency zero voltage switching region with narrow switching frequency range for soft commutation of secondary diodes and low turn-off current of MOSFETs to reduce switching losses. The proposed converter is simulated using MATLAB Simulink and a 1.5 kW laboratory prototype is also built to validate the operation of proposed topology. Simulation and experimental results show that the converter meets all the charging requirements for deeply depleted to fully charged battery using constant current-constant voltage charging method with fixed 400 V DC input and achieves 96.22% peak efficiency.
NASA Astrophysics Data System (ADS)
Boisvert, J.-S.; Stafford, L.; Naudé, N.; Margot, J.; Massines, F.
2018-03-01
Diffuse dielectric barrier discharges are generated over a very wide range of frequencies. According to the targeted frequency, the glow, Townsend-like, hybrid, Ω and RF-α modes are sustained. In this paper, the electrical characterization of the discharge cell together with an electrical model are used to estimate the electron density from current and voltage measurements for excitation frequencies ranging from 50 kHz to 15 MHz. The electron density is found to vary from 1014 to 1017 m-3 over this frequency range. In addition, a collisional-radiative model coupled with optical emission spectroscopy is used to evaluate the electron temperature (assuming Maxwellian electron energy distribution function) in the same conditions. The time and space-averaged electron temperature is found to be about 0.3 eV in both the low-frequency and high-frequency ranges. However, in the medium-frequency range, it reaches almost twice this value as the discharge is in the hybrid mode. The hybrid mode is similar to the atmospheric-pressure glow discharge usually observed in helium DBDs at low frequency with the major difference being that the plasma is continuously sustained and is characterized by a higher power density.
Vivas, Oscar; Arenas, Isabel; García, David E
2012-06-01
Neurotransmitters and hormones regulate Ca(V)2.2 channels through a voltage-independent pathway which is not well understood. It has been suggested that this voltage-independent inhibition is constant at all membrane voltages. However, changes in the percent of voltage-independent inhibition of Ca(V)2.2 have not been tested within a physiological voltage range. Here, we used a double-pulse protocol to isolate the voltage-independent inhibition of Ca(V)2.2 channels induced by noradrenaline in rat superior cervical ganglion neurons. To assess changes in the percent of the voltage-independent inhibition, the activation voltage of the channels was tested between -40 and +40 mV. We found that the percent of voltage-independent inhibition induced by noradrenaline changed with the activation voltage used. In addition, voltage-independent inhibition induced by oxo-M, a muscarinic agonist, exhibited the same dependence on activation voltage, which supports that this pattern is not exclusive for adrenergic activation. Our results suggested that voltage-independent inhibition of Ca(V)2.2 channels depends on the activation voltage of the channel in a physiological voltage range. This may have relevant implications in the understanding of the mechanism involved in voltage-independent inhibition.
Absolute Determination of High DC Voltages by Means of Frequency Measurement
NASA Astrophysics Data System (ADS)
Peier, Dirk; Schulz, Bernd
1983-01-01
A novel absolute measuring procedure is presented for the definition of fixed points of the voltage in the 100 kV range. The method is based on transit time measurements with accelerated electrons. By utilizing the selective interaction of a monoenergetic electron beam with the electromagnetic field of a special cavity resonator, the voltage is referred to fundamental constants and the base unit second. Possible balance voltages are indicated by a current detector. Experimental investigations are carried out with resonators in the normal conducting range. With a copper resonator operating at the temperature of boiling nitrogen (77 K), the relative uncertainty of the voltage points is estimated to be +/- 4 × 10-4. The technically realizable uncertainty can be reduced to +/- 1 × 10-5 by the proposed application of a superconducting niobium resonator. Thus this measuring device becomes suitable as a primary standard for the high-voltage range.
30 CFR 75.705-1 - Work on high-voltage lines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wye-connected systems, the neutral wire is the system-grounding medium. In the case of an ungrounded power system, either the steel armor or conduit enclosing the system or a surface grounding field is a...
30 CFR 75.705-1 - Work on high-voltage lines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wye-connected systems, the neutral wire is the system-grounding medium. In the case of an ungrounded power system, either the steel armor or conduit enclosing the system or a surface grounding field is a...
NASA Astrophysics Data System (ADS)
Vaccaro, S. R.
2011-09-01
The voltage dependence of the ionic and gating currents of a K channel is dependent on the activation barriers of a voltage sensor with a potential function which may be derived from the principal electrostatic forces on an S4 segment in an inhomogeneous dielectric medium. By variation of the parameters of a voltage-sensing domain model, consistent with x-ray structures and biophysical data, the lowest frequency of the survival probability of each stationary state derived from a solution of the Smoluchowski equation provides a good fit to the voltage dependence of the slowest time constant of the ionic current in a depolarized membrane, and the gating current exhibits a rising phase that precedes an exponential relaxation. For each depolarizing potential, the calculated time dependence of the survival probabilities of the closed states of an alpha helical S4 sensor are in accord with an empirical model of the ionic and gating currents recorded during the activation process.
Willatzen, M
1999-01-01
A general set of modeling equations for lossless one-dimensional multilayer ultrasound transducers is presented based on first principles. In particular, a direct relationship between ultrasound transducer results and the underlying physical principles of electroacoustics is given. As such, the model may provide better physical understanding for designers not fully versed in electrical circuits theory or in linear system analyses. The model is suitable for time-domain analysis and monofrequency design. Special attention is given to the determination of the time-dependent voltage across the receiver electrodes subject to a general voltage input, but information on any (dynamic) variable of interest is provided. The basic equations governing the dynamics of the multilayer structure acting as transmitter as well as receiver are solved by Fourier analysis and by imposing continuity of velocity and pressure between layers. Sound transmission between the two piezoelectric circuits is assumed to take place in a water bath such that the Rayleigh equation can be used to obtain the incoming pressure at the receiver aperture from the acceleration of the opposing transmitter aperture. Comparison with experimental results is possible by allowing coupling to external electric impedances. A numerical test case using a multilayered 1-MHz transducer for flow meter applications was considered and good agreement with experiments was obtained in terms of voltage signals. The transducer contains a half-wavelength stainless steel layer needed to resist corrosion, the ability to operate at temperatures in a wide range from 20 to 150 degrees Celsius, resistance to impact from flowing particles in the medium, high pressure or vacuum, and pH values up to 10 in some locations. The influence of epoxy glue and grease acoustic coupling layers-between the piezoceramics and the stainless steel layer-in the range from 1 to 70 mum was examined. It was shown that, for the same layer thickness, epoxy glue is preferred as compared with grease, both in terms of signal shapes and amplitudes. Finally, inclusion of appropriate electric impedances in the transmitter and receiver circuits is found to affect signal pulses strongly.
Laboratory Investigations of Bidirectional Reflectance using the Photomultiplier Tube
NASA Astrophysics Data System (ADS)
Vides, C.; Nelson, R. M.; Boryta, M. D.; Manatt, K. S.
2016-12-01
The precise measurement of the intensity of a light source is fundamental data to observational sciences, such as spacecraft imaging and atomic particle detection. Photomultiplier tubes (PMT) have played an integral role in many diverse areas such as spacecraft remote sensing by indicating the physical properties of regolith on a planetary surface and particulate matter in an atmosphere. PMTs are essential in neutrino observatories by detecting Cherenkov radiation, the photons emitted when a neutrino interacts with a dielectric medium at highly relativistic velocities. The PMT utilizes the core principle of Albert Einstein's photoelectric effect, with the aid of secondary emission to multiply the electrons emitted from a primary photon. Traditionally, PMTs are used to measure the intensity of photons reflected from a surface. We designed a photometer such that we could measure the photoelectron current from two Hamamatsu R928 photomultiplier tubes, as amplified by Keithly 610 electrometers. The results provide insight into the behavior of photoelectrons, how temperature affects PMT output current, and the amplification electronics that form a basis for remote sensing measurements. We performed photometry with a maximum error of 1% by measuring the intensity of a coherent light source. The calibration procedure involved incrementing and decrementing the high voltage in steps of 50V on a high voltage power supply to locate the linear range within the Gaussian curve of light intensity as a function of high voltage to maximize the signal to noise. We have measured how the signal to noise ratio changes when transmittance was reduced and compared the performance of the PMTs. We measured the intensity as a function of polarization angle. We then measured the response change of the PMT as the reflectance of the incident surface changed. The data was reduced and analyzed using MATLAB. We corrected aliasing and fit the mathematical function of the photoelectron current in relation to high voltage and polarization. Our results have established the linear range of a photomultiplier tube. We have also shown how the signal to noise ratio increases as light intensity decreases. With these results, we can constrain the limits in which the PMT is a valuable tool for experimentation in the fields of physics and astronomy.
Desomer, Jan; Dhaese, Patrick; Montagu, Marc Van
1990-01-01
The analysis of the virulence determinants of phytopathogenic Rhodococcus fascians has been hampered by the lack of a system for introducing exogenous DNA. We investigated the possibility of genetic transformation of R. fascians by high-voltage electroporation of intact bacterial cells in the presence of plasmid DNA. Electrotransformation in R. fascians D188 resulted in transformation frequencies ranging from 105/μg of DNA to 107/μg of DNA, depending on the DNA concentration. The effects of different electrical parameters and composition of electroporation medium on transformation efficiency are presented. By this transformation method, a cloning vector (pRF28) for R. fascians based on an indigenous 160-kilobase (chloramphenicol and cadmium resistance-encoding) plasmid pRF2 from strain NCPPB 1675 was developed. The origin of replication and the chloramphenicol resistance gene on pRF28 were used to construct cloning vectors that are capable of replication in R. fascians and Escherichia coli. The electroporation method presented was efficient enough to allow detection of the rare integration of replication-deficient pRF28 derivatives in the R. fascians D188 genome via either homologous or illegitimate recombination. Images PMID:16348290
The Cathode Oscillograph for the Study of Low, Medium, and High Frequencies
NASA Technical Reports Server (NTRS)
Dufour, A
1924-01-01
The object of this work has been to construct an apparatus for obtaining oscillogram of voltages and currents which are variable with respect to time and of the frequency which is constantly met in radio.
30 CFR 75.900-4 - Testing, examination, and maintenance of circuit breakers; record.
Code of Federal Regulations, 2011 CFR
2011-07-01
... circuits serving three-phase alternating current equipment used in the mine. Such record shall be kept in a... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900-4 Testing, examination, and...
30 CFR 75.900-4 - Testing, examination, and maintenance of circuit breakers; record.
Code of Federal Regulations, 2010 CFR
2010-07-01
... circuits serving three-phase alternating current equipment used in the mine. Such record shall be kept in a... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900-4 Testing, examination, and...
30 CFR 77.704-1 - Work on high-voltage lines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... grounded or solid wye-connected systems, the neutral wire is the system grounding medium. In the case of an ungrounded power system, either the steel armor or conduit enclosing the system or a surface grounding field...
30 CFR 77.704-1 - Work on high-voltage lines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... grounded or solid wye-connected systems, the neutral wire is the system grounding medium. In the case of an ungrounded power system, either the steel armor or conduit enclosing the system or a surface grounding field...
Flash X-Ray Apparatus With Spectrum Control Functions For Medical Use And Fuji Computed Radiography
NASA Astrophysics Data System (ADS)
Isobe, H.; Sato, E.; Hayasi, Y.; Suzuki, M.; Arima, H.; Hoshino, F.
1985-02-01
Flash radiographic bio-medical studies at sub-microsecond intervals were performed by using both a new type of flash X-ray(FX) apparatus with spectrum control functions and Fuji Computed Radiography(FCR). This single flasher tends to have a comparatively long exposure time and the electric pulse width of the FX wave form is about 0.3,usec. The maximum FX dose is about 50mR at 1m per pulse, and the effective focal spot varies according to condenser charging voltage, A-C distance, etc., ranging from 1.0 to 3.0mm in diameter, but in the low dose rate region it can be reduced to less than 1.0mm in diameter. The FX dose is determined by the condenser charging voltage and the A-C distance, while the FX spectrum is determined by the average voltage of the FX tube and filters. Various clear FX images were obtained by controlling the spectrum and dose. FCR is a new storage medium for medical radiography developed by the Fuji Photo Film Co., Ltd. and this apparatus has various image forming functions: low dose radiography, film density control, image contrast control, subtraction management and others. We have used this new apparatus in conjunction with our FX radiography and have obtained some new and interesting biomedical radiograms: the edge enhancement image, the instantaneous enlarged image, and the single exposure energy subtraction image using the FX spectrum distribution.
Low-Voltage Continuous Electrospinning Patterning.
Li, Xia; Li, Zhaoying; Wang, Liyun; Ma, Guokun; Meng, Fanlong; Pritchard, Robyn H; Gill, Elisabeth L; Liu, Ye; Huang, Yan Yan Shery
2016-11-30
Electrospinning is a versatile technique for the construction of microfibrous and nanofibrous structures with considerable potential in applications ranging from textile manufacturing to tissue engineering scaffolds. In the simplest form, electrospinning uses a high voltage of tens of thousands volts to draw out ultrafine polymer fibers over a large distance. However, the high voltage limits the flexible combination of material selection, deposition substrate, and control of patterns. Prior studies show that by performing electrospinning with a well-defined "near-field" condition, the operation voltage can be decreased to the kilovolt range, and further enable more precise patterning of fibril structures on a planar surface. In this work, by using solution dependent "initiators", we demonstrate a further lowering of voltage with an ultralow voltage continuous electrospinning patterning (LEP) technique, which reduces the applied voltage threshold to as low as 50 V, simultaneously permitting direct fiber patterning. The versatility of LEP is shown using a wide range of combination of polymer and solvent systems for thermoplastics and biopolymers. Novel functionalities are also incorporated when a low voltage mode is used in place of a high voltage mode, such as direct printing of living bacteria; the construction of suspended single fibers and membrane networks. The LEP technique reported here should open up new avenues in the patterning of bioelements and free-form nano- to microscale fibrous structures.
Mitigation of Power Quality Problems in Grid-Interactive Distributed Generation System
NASA Astrophysics Data System (ADS)
Bhende, C. N.; Kalam, A.; Malla, S. G.
2016-04-01
Having an inter-tie between low/medium voltage grid and distributed generation (DG), both exposes to power quality (PQ) problems created by each other. This paper addresses various PQ problems arise due to integration of DG with grid. The major PQ problems are due to unbalanced and non-linear load connected at DG, unbalanced voltage variations on transmission line and unbalanced grid voltages which severely affect the performance of the system. To mitigate the above mentioned PQ problems, a novel integrated control of distribution static shunt compensator (DSTATCOM) is presented in this paper. DSTATCOM control helps in reducing the unbalance factor of PCC voltage. It also eliminates harmonics from line currents and makes them balanced. Moreover, DSTATCOM supplies the reactive power required by the load locally and hence, grid need not to supply the reactive power. To show the efficacy of the proposed controller, several operating conditions are considered and verified through simulation using MATLAB/SIMULINK.
U.S. Army’s Ground Vehicle Energy Storage
2013-04-16
3.7 Voltage range (V) (NCA, NCM) 2.5-4.1 7.5-12.3 10-16.4 15-24.6 17.5-28.7 20-32.8 Nominal Voltage(V) ( LiFePO4 ) 3.3 9.9 13.2 19.8 23.1 26.4 n...x 3.3 Voltage range (V) ( LiFePO4 ) 2.0-3.7 6-11.1 8-14.8 12-22.2 14-25.9 16-29.6 Battery voltage UNCLASSIFIED Ground Systems Power and Energy
Alternator control for battery charging
Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.
2015-07-14
In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.
Energy Systems Integration Facility Named Lab of the Year | News | NREL
series of LEED Platinum high-performance buildings at NREL. Constructed by the design-build team of medium voltage outdoor testing areas. The total cost to build and equip ESIF was $135 million. "To
Logarithmic circuit with wide dynamic range
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Manus, E. A. (Inventor)
1978-01-01
A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.
Fabrication and characterization of dichroic fine crystals by the reprecipitation method
NASA Astrophysics Data System (ADS)
Iino, Tatsuya; Mori, Shunsuke; Shito, Keiji; Kimura, Ayaka; Morishita, Yoshii; Chiba, Takayuki; Katagiri, Hiroshi; Okada, Shuji; Masuhara, Akito
2018-06-01
Suspended particle devices can rapidly switch from a dark blue state to a clear state by applying AC voltage, but their maximum transmittance has to be improved. In this work, we have targeted dichroic dyes and applied the reprecipitation method to KPD-503, a trisazo dye showing little dichroism in bulk crystals despite the dye molecules having large dichroism. As a result, microcrystals showing large dichroism were obtained. These microcrystals were considered to have a kinetically stable structure and oriented by voltage in a dispersing medium.
NASA Technical Reports Server (NTRS)
1982-01-01
Effective screening techniques are evaluated for detecting insulation resistance degradation and failure in hermetically sealed metallized film capacitors used in applications where low capacitor voltage and energy levels are common to the circuitry. A special test and monitoring system capable of rapidly scanning all test capacitors and recording faults and/or failures is examined. Tests include temperature cycling and storage as well as low, medium, and high voltage life tests. Polysulfone film capacitors are more heat stable and reliable than polycarbonate film units.
Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory
2015-08-11
A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.
NASA Astrophysics Data System (ADS)
Borghei, S. M.; Vaziri, N.; Alibabaei, S.
2018-03-01
We used schlieren photography to visualize the influence of gas flow rates of 1, 2.5, 5, 10 L/min and of the applied voltage frequency on a helium atmospheric plasma jet induced at the nozzle of a capillary tube. The expansion of the gas in the surrounding medium (air) was analyzed in the two different modes – plasma on/plasma off. Changes in the above parameters affect the gas flow regime and the hydrodynamics of the jet.
Bowen, Anjanette K.; Weisser, John W.; Bergstedt, Roger A.; Famoye, Felix
2003-01-01
Four electrical factors that are used in pulsed DC electrofishing for larval sea lampreys (Petromyzon marinus) were evaluated in two laboratory studies to determine the optimal values to induce larval emergence over a range of water temperatures and conductivities. Burrowed larvae were exposed to combinations of pulsed DC electrical factors including five pulse frequencies, three pulse patterns, and two levels of duty cycle over a range of seven voltage gradients in two separate studies conducted at water temperatures of 10, 15, and 20°C and water conductivities of 25, 200, and 900 μS/cm. A four-way analysis of variance was used to determine significant (α = 0.05) influences of each electrical factor on larval emergence. Multiple comparison tests with Bonferroni adjustments were used to determine which values of each factor resulted in significantly higher emergence at each temperature and conductivity. Voltage gradient and pulse frequency significantly affected emergence according to the ANOVA model at each temperature and conductivity tested. Duty cycle and pulse pattern generally did not significantly influence the model. Findings suggest that a setting of 2.0 V/cm, 3 pulses/sec, 10% duty, and 2:2 pulse pattern seems the most promising in waters of medium conductivity and across a variety of temperatures. This information provides a basis for understanding larval response to pulsed DC electrofishing gear factors and identifies electrofisher settings that show promise to increase the efficiency of the gear during assessments for burrowed sea lamprey larvae.
Manufacture of conical springs with elastic medium technology improvement
NASA Astrophysics Data System (ADS)
Kurguzov, S. A.; Mikhailova, U. V.; Kalugina, O. B.
2018-01-01
This article considers the manufacturing technology improvement by using an elastic medium in the stamping tool forming space to improve the conical springs performance characteristics and reduce the costs of their production. Estimation technique of disk spring operational properties is developed by mathematical modeling of the compression process during the operation of a spring. A technique for optimizing the design parameters of a conical spring is developed, which ensures a minimum voltage value when operated in the edge of the spring opening.
Low Temperature Performance of High Power Density DC/DC Converter Modules
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric
2001-01-01
In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.
Voltage controlled current source
Casne, Gregory M.
1992-01-01
A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.
Hu, Xiaoqin; You, Huiyan
2009-11-01
In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.
Optical sensors for electrical elements of a medium voltage distribution network
NASA Astrophysics Data System (ADS)
De Maria, Letizia; Bartalesi, Daniele; Serragli, Paolo; Paladino, Domenico
2012-04-01
The aging of most of the components of the National transmission and distribution system can potentially influence the reliability of power supply in a Medium Voltage (MV) network. In order to prevent possible dangerous situations, selected diagnostic indicators on electrical parts exploiting reliable and potentially low-cost sensors are required. This paper presents results concerning two main research activities regarding the development and application of innovative optical sensors for the diagnostic of MV electrical components. The first concerns a multi-sensor prototype for the detection of pre-discharges in MV switchboards: it is the combination of three different types of sensors operating simultaneously to detect incipient failure and to reduce the occurrence of false alarms. The system is real-time controlled by an embedded computer through a LabView interface. The second activity refers to a diagnostic tool to provide significant real-time information about early aging of MV/Low Voltage (LV) transformers by means of its vibration fingerprint. A miniaturized Optical Micro-Electro-Mechanical System (MEMS) based unit has been assembled for vibration measurements, wireless connected to a remote computer and controlled via LabView interface. Preliminary comparative tests were carried out with standard piezoelectric accelerometers on a conventional MV/LV test transformer under open circuit and in short-circuited configuration.
VOLTAGE CLAMP BEHAVIOR OF IRON-NITRIC ACID SYSTEM AS COMPARED WITH THAT OF NERVE MEMBRANE
Tasaki, I.; Bak, A. F.
1959-01-01
The current-voltage relation for the surface layer of an iron wire immersed in nitric acid was investigated by the voltage clamp technique. Comparing the phase of nitric acid to the axoplasm and the metallic phase to the external fluid medium for the nerve fiber, a striking analogy was found between the voltage clamp behavior of the iron-nitric acid system and that of the nerve membrane. The current voltage curve was found to consist of three parts: (a) a straight line representing the behavior of the resting (passive) membrane, (b) a straight line representing the fully excited (active) state, and (c) an intermediate zone connecting (a) and (b). It was shown that in the intermediate zone, the surface of iron consisted of a fully active patch (or patches) surrounded by a remaining resting area. The phenomenon corresponding to "repetitive firing of responses under voltage clamp" in the nerve membrane was demonstrated in the intermediate zone. The behavior of the cobalt electrode system was also investigated by the same technique. An attempt was made to interpret the phenomenon of initiation and abolition of an active potential on the basis of the thermodynamics of irreversible processes. PMID:13654740
Study on the streamer inception characteristics under positive lightning impulse voltage
NASA Astrophysics Data System (ADS)
Wang, Zezhong; Geng, Yinan
2017-11-01
The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.
Subthreshold voltage noise of rat neocortical pyramidal neurones
Jacobson, Gilad A; Diba, Kamran; Yaron-Jakoubovitch, Anat; Oz, Yasmin; Koch, Christof; Segev, Idan; Yarom, Yosef
2005-01-01
Neurones are noisy elements. Noise arises from both intrinsic and extrinsic sources, and manifests itself as fluctuations in the membrane potential. These fluctuations limit the accuracy of a neurone's output but have also been suggested to play a computational role. We present a detailed study of the amplitude and spectrum of voltage noise recorded at the soma of layer IV–V pyramidal neurones in slices taken from rat neocortex. The dependence of the noise on holding potential, synaptic activity and Na+ conductance is systematically analysed. We demonstrate that voltage noise increases non-linearly as the cell depolarizes (from a standard deviation (s.d.) of 0.19 mV at −75 mV to an s.d. of 0.54 mV at −55 mV). The increase in voltage noise is accompanied by an increase in the cell impedance, due to voltage dependence of Na+ conductance. The impedance increase accounts for the majority (70%) of the voltage noise increase. The increase in voltage noise and impedance is restricted to the low-frequency range (0.2–2 Hz). At the high frequency range (5–100 Hz) the voltage noise is dominated by synaptic activity. In our slice preparation, synaptic noise has little effect on the cell impedance. A minimal model reproduces qualitatively these data. Our results imply that ion channel noise contributes significantly to membrane voltage fluctuations at the subthreshold voltage range, and that Na+ conductance plays a key role in determining the amplitude of this noise by acting as a voltage-dependent amplifier of low-frequency transients. PMID:15695244
Next Generation Drivetrain Development and Test Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jonathan; Erdman, Bill; Blodgett, Doug
2015-11-03
This presentation was given at the Wind Energy IQ conference in Bremen, Germany, November 30 through December 2, 2105. It focused on the next-generation drivetrain architecture and drivetrain technology development and testing (including gearbox and inverter software and medium-voltage inverter modules.
Arneson, Michael R [Chippewa Falls, WI; Bowman, Terrance L [Sumner, WA; Cornett, Frank N [Chippewa Falls, WI; DeRyckere, John F [Eau Claire, WI; Hillert, Brian T [Chippewa Falls, WI; Jenkins, Philip N [Eau Claire, WI; Ma, Nan [Chippewa Falls, WI; Placek, Joseph M [Chippewa Falls, WI; Ruesch, Rodney [Eau Claire, WI; Thorson, Gregory M [Altoona, WI
2007-07-24
The present invention is directed toward a communications channel comprising a link level protocol, a driver, a receiver, and a canceller/equalizer. The link level protocol provides logic for DC-free signal encoding and recovery as well as supporting many features including CRC error detection and message resend to accommodate infrequent bit errors across the medium. The canceller/equalizer provides equalization for destabilized data signals and also provides simultaneous bi-directional data transfer. The receiver provides bit deskewing by removing synchronization error, or skewing, between data signals. The driver provides impedance controlling by monitoring the characteristics of the communications medium, like voltage or temperature, and providing a matching output impedance in the signal driver so that fewer distortions occur while the data travels across the communications medium.
Mobile patient monitoring based on impedance-loaded SAW-sensors.
Karilainen, Anna; Finnberg, Thomas; Uelzen, Thorsten; Dembowski, Klaus; Müller, Jörg
2004-11-01
A remotely requestable, passive, short-range sensor network for measuring small voltages is presented. The sensor system is able to simultaneously monitor six small voltages in millivolt-range, and it can be used for Holter-electrocardiogram (ECG) and other biopotential monitoring, or in industrial applications. The sensors are based on a surface acoustic wave (SAW) delay line with voltage-dependent, impedance loading on a reflector interdigital transducer (IDT). The load circuit impedance is varied by the capacitance of the voltage-controlled varactor. High resolution is achieved by developing a MOS-capacitor with a thin oxide, low flat-band voltage, and zero-voltage capacitance in the space-charge region, as well as a high-Q-microcoil by thick metal electroplating. Simultaneous monitoring of multiple potentials is realized by time-division-multiplexing of different sensor signals.
Status of the MBE technology at leti LIR for the manufacturing of HgCdTe focal plane arrays
NASA Astrophysics Data System (ADS)
Ferret, P.; Zanatta, J. P.; Hamelin, R.; Cremer, S.; Million, A.; Wolny, M.; Destefanis, G.
2000-06-01
This paper presents recent developments that have been made in Leti Infrared Laboratory in the field of molecular beam epitaxy (MBE) growth and fabrication of medium wavelength and long wavelength infrared (MWIR and LWIR) HgCdTe devices. The techniques that lead to growth temperature and flux control are presented. Run to run composition reproducibility is investigated on runs of more than 15 consecutively grown layers. Etch pit density in the low 105 cm-2 and void density lower than 103 cm-2 are obtained routinely on CdZnTe substrates. The samples exhibit low n-type carrier concentration in the 1014 to 1015 cm-3 range and mobility in excess of 105 cm2/Vs at 77 K for epilayers with 9.5 µm cut-off wavelength. LWIR diodes, fabricated with an-on-p homojunction process present dynamic resistance area products which reach values of 8 103 Ωcm2 for a biased voltage of -50 mV and a cutoff wavelength of 9.5 µm at 77 K. A 320 × 240 plane array with a 30 µm pitch operating at 77 K in the MWIR range has been developed using HgCdTe and CdTe layers MBE grown on a Germanium substrate. Mean NEDT value of 8.8 mK together with an operability of 99.94% is obtained. We fabricated MWIR two-color detectors by the superposition of layers of HgCdTe with different compositions and a mixed MESA and planar technology. These detectors are spatially coherent and can be independently addressed. Current voltage curves of 60 × 60 µm2 photodiodes have breakdown voltage exceeding 800 mV for each diode. The cutoff wavelength at 77 K is 3.1 µm for the MWIR-1 and 5 µm for the MWIR-2.
Current collection by high voltage anodes in near ionospheric conditions
NASA Technical Reports Server (NTRS)
Antoniades, John A.; Greaves, Rod G.; Boyd, D. A.; Ellis, R.
1990-01-01
The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density.
Design and construction of a home-made and cheaper argon arc lamp
NASA Astrophysics Data System (ADS)
Sabaeian, Mohammad; Nazari-Tarkarani, Zeinab; Ebrahimzadeh, Azadeh
2018-05-01
The authors report on the design and construction of an argon arc lamp which provides noticeably a cheaper instrument for laser and medical applications. Cesium-doped tungsten and pure tungsten rods were used, respectively, for the lamp cathode and anode. To seal the glassy tube, a 50-50 Fe-Ni alloy was successfully used as a medium to attach the tungsten electrodes to the borosilicate glass tube. Starting voltage of the lamp versus the gas pressure, operation voltage-current diagram at various gas pressures, and lamp spectrum in the various pressures were measured. A comparison was made with krypton arc lamp. The lamp operation was satisfactory without any crack or fracture during lightening operation. The results showed that the lamp-lightening threshold voltage depends linearly on the pressure and arc length in such a way that there is an increase in the voltage by raising these two parameters. We have also observed that by increasing the argon pressure, there is a shifting in emission spectrum from the ultraviolet to the visible region. Comparison with krypton arc lamp indicated that argon lamp needs a higher threshold lightening voltage.
Charge Injection Capacity of TiN Electrodes for an Extended Voltage Range
Patan, Mustafa; Shah, Tosha; Sahin, Mesut
2011-01-01
Many applications of neural stimulation demand a high current density from the electrodes used for stimulus delivery. New materials have been searched that can provide such large current and charge densities where the traditional noble metal and capacitor electrodes are inadequate. Titanium nitride, which has been used in cardiac pacemaker leads for many years, is one of these materials recently considered for neural stimulation. In this short report, we investigated the charge injection capacity of TiN electrodes for an extended range of cathodic voltages. The injected charge increased first slowly as a function of the electrode voltage, and then at a faster rate beyond −1.6 V. The maximum charge was 4.45 mC/cm2 (n=6) for a cathodic voltage peak of −3.0 V and a bias voltage of −0.8 V. There was no evidence of bubble generation under microscopic observation. The unrecoverable charges remained under 7% of the total injected charge for the largest cathodic voltage tested. These large values of charge injection capacity and relatively small unrecoverable charges warrant further investigation of the charge injection mechanism in TiN interfaces at this extended range of electrode voltages. PMID:17946870
Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air
NASA Astrophysics Data System (ADS)
Aints, Märt; Jõgi, Indrek; Laan, Matti; Paris, Peeter; Raud, Jüri
2018-04-01
C5 perfluorinated ketone (C5 PFK with UIPAC chemical name 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)-2-butanone and sold by 3M as Novec™ 5110) has a high dielectric strength and a low global warming potential, which makes it interesting as an insulating gas in medium and high-voltage applications. The study was carried out to determine the effective Townsend ionization coefficient α eff as a function of electric field strength and gas density for C5 PFK and for its mixtures with air. The non-self-sustained Townsend discharge between parallel plate electrodes was initiated by illuminating the cathode by UV radiation. The discharge current, I, was measured as a function of inter-electrode distance, d, at different gas densities, N, and electric field strengths, E. The effective ionization coefficient α eff was determined from the semi-logarithmic plots of I/I 0 against d. For each tested gas mixture, the density normalized effective ionization coefficient α eff/N was found to be a unique function of reduced electric field strength E/N. The measurements were carried out in the absolute pressure range of 0.05-1.3 bar and E/N range of 150-1200 Td. The increasing fraction of C5 PFK in air resulted in the decrease of effective ionization coefficient. The limiting electric field strength (E/N)lim where the effective ionization coefficient α eff became zero was 770 Td (190 kV cm-1 at 1 bar) for pure C5 PFK and decreased to 225 Td (78 kV cm-1 at 1.4 bar) for 7.6% C5 PFK/air mixture. The latter value of (E/N)lim is still more than two times higher than the (E/N)lim value of synthetic air and about two-thirds of the value corresponding to pure SF6. The investigated gas mixtures have the potential to become an alternative to SF6 in numerous high- and medium-voltage applications.
Cavallo's multiplier for in situ generation of high voltage
NASA Astrophysics Data System (ADS)
Clayton, S. M.; Ito, T. M.; Ramsey, J. C.; Wei, W.; Blatnik, M. A.; Filippone, B. W.; Seidel, G. M.
2018-05-01
A classic electrostatic induction machine, Cavallo's multiplier, is suggested for in situ production of very high voltage in cryogenic environments. The device is suitable for generating a large electrostatic field under conditions of very small load current. Operation of the Cavallo multiplier is analyzed, with quantitative description in terms of mutual capacitances between electrodes in the system. A demonstration apparatus was constructed, and measured voltages are compared to predictions based on measured capacitances in the system. The simplicity of the Cavallo multiplier makes it amenable to electrostatic analysis using finite element software, and electrode shapes can be optimized to take advantage of a high dielectric strength medium such as liquid helium. A design study is presented for a Cavallo multiplier in a large-scale, cryogenic experiment to measure the neutron electric dipole moment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Camp
Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we willmore » review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.« less
30 CFR 77.903 - Disconnecting devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Disconnecting devices. 77.903 Section 77.903... Medium-Voltage Alternating Current Circuits § 77.903 Disconnecting devices. Disconnecting devices shall be installed in circuits supplying power to portable or mobile equipment and shall provide visual...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Scope. 15.601 Section 15.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Access Broadband Over Power Line (Access... (Access BPL) devices operating in the 1.705-80 MHz band over medium or low voltage lines. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Kelsey; Remo, Timothy; Reese, Samantha
Wide bandgap (WBG) semiconductor devices are increasingly being considered for use in certain power electronics applications, where they can improve efficiency, performance, footprint, and, potentially, total system cost compared to systems using traditional silicon (Si) devices. Silicon carbide (SiC) devices in particular -- which are currently more mature than other WBG devices -- are poised for growth in the coming years. Today, the manufacturing of SiC wafers is concentrated in the United States, and chip production is split roughly equally between the United States, Japan, and Europe. Established contract manufacturers located throughout Asia typically carry out manufacturing of WBG powermore » modules. We seek to understand how global manufacturing of SiC components may evolve over time by illustrating the regional cost drivers along the supply chain and providing an overview of other factors that influence where manufacturing is sited. We conduct this analysis for a particular case study where SiC devices are used in a medium-voltage motor drive.« less
NASA Astrophysics Data System (ADS)
Lungu, M. V.; Lucaci, M.; Tsakiris, V.; Brătulescu, A.; Cîrstea, C. D.; Marin, M.; Pătroi, D.; Mitrea, S.; Marinescu, V.; Grigore, F.; Tălpeanu, D.; Stancu, N.; Godeanu, P.; Melnic, C.
2017-06-01
Abstract Tungsten-copper (W-Cu) sintered parts with 75 wt.% W, 24 wt.% Cu and 1 wt.% Ni for using as arcing contacts in medium and high voltage switching devices were developed successfully by powder metallurgy (PM) techniques. Sintered parts with diameter of 50±0.5 mm and height of 6±0.5 mm were manufactured by pressing-sintering-infiltration (P-S-I) and spark plasma sintering (SPS) at sintering temperature of 1150°C, and 1050°C, respectively. Physical, chemical, electrical, thermal and mechanical properties of the samples were investigated. Microstructure was analyzed by optical microscopy and scanning electron microscopy. Material properties were influenced by the consolidation processes. The best results were achieved by SPS process. The relative density was more than 95 %, Vickers hardness HV1/15 was over 227, elastic modulus was over 143 GPa, and homogeneous microstructure was revealed. These good properties can contribute to higher lifetime of arcing contacts under severe working conditions.
Application of Electric Double-layer Capacitors for Energy Storage on Electric Railway
NASA Astrophysics Data System (ADS)
Hase, Shin-Ichi; Konishi, Takeshi; Okui, Akinobu; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regeneration power lapse and so on, have been important issues in DC feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. In recent years, development of energy storage medium is remarkable for drive-power supplies of electric vehicles. A number of applications of energy storage, for instance, battery and flywheel, have been investigated so far. A large-scale electric double-layer capacitor which is rapidly charged and discharged and offers long life, maintenance-free, low pollution and high efficiency, has been developed in wide range. We have compared the ability to charge batteries and electric double-layer capacitors. Therefore, we carried out fundamental studies about electric double-layer capacitors and its control. And we produced a prototype of energy storage for the DC electric railway system that consists of electric double-layer capacitors, diode bridge rectifiers, chopper system and PWM converters. From the charge and discharge tests of the prototype, useful information was obtained. This paper describes its characteristics and experimental results of energy storage system.
Electrochemically controlled charging circuit for storage batteries
Onstott, E.I.
1980-06-24
An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.
NASA Astrophysics Data System (ADS)
Khan, Motiur Rahman; Rao, K. S. R. Koteswara; Menon, R.
2017-05-01
Temperature dependent current-voltage measurements have been performed on poly(3-methylthiophene) based devices in metal/polymer/metal geometry in temperature range 90-300 K. Space charge limited current (SCLC) controlled by exponentially distributed traps is observed at all the measured temperatures at intermediate voltage range. At higher voltages, trap-free SCLC is observed at 90 K only while slope less than 2 is observed at higher temperatures which is quiet unusual in polymer devices. Impedance measurements were performed at different bias voltages. The unusual behavior observed in current-voltage characteristics is explained by Cole-Cole plot which gives the signature of interface dipole on electrode/polymer interface. Two relaxation mechanisms are obtained from the real part of impedance vs frequency spectra which confirms the interface related phenomena in the device
Experimental characterization of a coaxial plasma accelerator for a colliding plasma experiment
NASA Astrophysics Data System (ADS)
Wiechula, J.; Hock, C.; Iberler, M.; Manegold, T.; Schönlein, A.; Jacoby, J.
2015-04-01
We report experimental results of a single coaxial plasma accelerator in preparation for a colliding plasma experiment. The utilized device consisted of a coaxial pair of electrodes, accelerating the plasma due to J ×B forces. A pulse forming network, composed of three capacitors connected in parallel, with a total capacitance of 27 μF was set up. A thyratron allowed to switch the maximum applied voltage of 9 kV. Under these conditions, the pulsed currents reached peak values of about 103 kA. The measurements were performed in a small vacuum chamber with a neutral-gas prefill at gas pressures between 10 Pa and 14 000 Pa. A gas mixture of ArH2 with 2.8% H2 served as the discharge medium. H2 was chosen in order to observe the broadening of the Hβ emission line and thus estimate the electron density. The electron density for a single plasma accelerator reached peak values on the order of 1016 cm-3 . Electrical parameters, inter alia inductance and resistance, were determined for the LCR circuit during the plasma acceleration as well as in a short circuit case. Depending on the applied voltage, the inductance and resistance reached values ranging from 194 nH to 216 nH and 13 mΩ to 23 mΩ, respectively. Furthermore, the plasma velocity was measured using a fast CCD camera. Plasma velocities of 2 km/s up to 17 km/s were observed, the magnitude being highly correlated with gas pressure and applied voltage.
HF Interference, Procedures and Tools (Interferences HF, procedures et outils)
2007-06-01
Systems 3-2 3.1.2 Medium (MV) and Low Voltage (LV) Systems 3-4 3.1.3 Access Systems 3-5 3.1.4 In-House Systems 3-7 3.1.5 Technical Characteristics...Grounded Monopole Antenna Figure 2.3-3 Low Natural Noise Measured in Germany 2-15 Figure 2.3-4 Minimum Natural Noise Measured in Germany 1985 and in...arrows) Figure 3.1.1-2 Basic BPL System 3-3 Figure 3.1.2-1 Power Line TN-C-S Network 3-5 Figure 3.1.3-1 Usual Low Voltage Electricity Distribution
Apparatus and method for maximizing power delivered by a photovoltaic array
Muljadi, Eduard; Taylor, Roger W.
1998-01-01
A method and apparatus for maximizing the electric power output of a photovoltaic array connected to a battery where the voltage across the photovoltaic array is adjusted through a range of voltages to find the voltage across the photovoltaic array that maximizes the electric power generated by the photovoltaic array and then is held constant for a period of time. After the period of time has elapsed, the electric voltage across the photovoltaic array is again adjusted through a range of voltages and the process is repeated. The electric energy and the electric power generated by the photovoltaic array is delivered to the battery which stores the electric energy and the electric power for later delivery to a load.
Apparatus and method for maximizing power delivered by a photovoltaic array
Muljadi, E.; Taylor, R.W.
1998-05-05
A method and apparatus for maximizing the electric power output of a photovoltaic array connected to a battery where the voltage across the photovoltaic array is adjusted through a range of voltages to find the voltage across the photovoltaic array that maximizes the electric power generated by the photovoltaic array and then is held constant for a period of time. After the period of time has elapsed, the electric voltage across the photovoltaic array is again adjusted through a range of voltages and the process is repeated. The electric energy and the electric power generated by the photovoltaic array is delivered to the battery which stores the electric energy and the electric power for later delivery to a load. 20 figs.
Intelligent Front-end Electronics for Silicon photodetectors (IFES)
NASA Astrophysics Data System (ADS)
Sauerzopf, Clemens; Gruber, Lukas; Suzuki, Ken; Zmeskal, Johann; Widmann, Eberhard
2016-05-01
While high channel density can be easily achieved for big experiments using custom made microchips, providing something similar for small and medium size experiments imposes a challenge. Within this work we describe a novel and cost effective solution to operate silicon photodetectors such as silicon photo multipliers (SiPM). The IFES modules provide the bias voltage for the detectors, a leading edge discriminator featuring time over threshold and a differential amplifier, all on one printed circuit board. We demonstrate under realistic conditions that the module is usable for high resolution timing measurements exploiting both charge and time information. Furthermore we show that the modules can be easily used in larger detector arrays. All in all this confirms that the IFES modules are a viable option for a broad range of experiments if cost-effectiveness and small form factor are required.
APPARATUS FOR REGULATING HIGH VOLTAGE
Morrison, K.G.
1951-03-20
This patent describes a high-voltage regulator of the r-f type wherein the modulation of the r-f voltage is accomplished at a high level, resulting in good stabilization over a large range of load conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuda, H.; Kobayashi, G.; Yamahara, J.
1987-10-12
The authors examined the inhibitory effects of alismol, a sesquiterpenoid isolated from Alismatis Rhizoma, on vascular contractions induced by high concentrations of K/sup +/ and Ca/sup 2 +/, and on /sup 45/Ca/sup 2 +/ retention in normal and in high K/sup +/-containing medium. Alismol affected neither the resting tension nor the /sup 45/Ca/sup 2 +/ retention in normal medium, but it inhibited sustained contraction and increased /sup 45/Ca/sup 2 +/ retention induced by high K/sup +/ concentrations. Alismol did not affect norepinephrine-induced contractions in normal medium, nor phasic contractions in Ca/sup 2 +/-free medium. These results suggested that alismol inhibitedmore » mainly Ca/sup 2 +/ influx through a voltage-dependent Ca/sup 2 +/ channel. 19 references, 6 figures.« less
NASA Astrophysics Data System (ADS)
Kishimoto, Tadashi; Ishihara, Tohru; Onodera, Hidetoshi
2018-04-01
In this paper, we propose a temperature monitor circuit that exhibits a small supply voltage sensitivity adopting a circuit topology of a reconfigurable ring oscillator. The circuit topology of the monitor is crafted such that the oscillation frequency is determined by the amount of subthreshold leakage current, which has an exponential dependence on temperature. Another important characteristic of the monitor is its small supply voltage sensitivity. The measured oscillation frequency of a test chip fabricated in a 65 nm CMOS process varies only 2.6% under a wide range of supply voltages from 0.4 to 1.0 V at room temperature. The temperature estimation error ranges from -0.3 to 0.4 °C over a temperature range of 10 to 100 °C.
A low-voltage fully balanced CMFF transconductor with improved linearity
NASA Astrophysics Data System (ADS)
Calvo, B.; Celma, S.; Alegre, J. P.; Sanz, M. T.
2007-05-01
This paper presents a new low-voltage pseudo-differential continuous-time CMOS transconductor for wideband applications. The proposed cell is based on a feedforward cancellation of the input common-mode signal and keeps the input common mode voltage constant, while the transconductance is easily tunable through a continuous bias voltage. Linearity is preserved during the tuning process for a moderate range of transconductance values. Simulation results for a 0.35 μm CMOS design show a 1:2 G m tuning range with an almost constant bandwidth over 600 MHz. Total harmonic distortion figures are below -60 dB over the whole range at 10 MHz up to a 200 μA p-p differential output. The proposed cell consumes less than 1.2 mW from a single 2.0 V supply.
A low-power wide range transimpedance amplifier for biochemical sensing.
Rodriguez-Villegas, Esther
2007-01-01
This paper presents a novel low voltage and low power transimpedance amplifier for amperometric potentiostats. The power is optimized by having three different gain settings for different current ranges, which can be programmed with a biasing current. The voltage ranges have been optimized by using FGMOS transistors in a second voltage amplification stage that simultaneously allow for offset calibration as well as independent biasing of the gates. The circuit operates with input currents from 1 pA to 1 microA, with a maximum power supply voltage of 1.5 V and consumes 82.5 nW, 9.825 microW, 47.325 microW for currents varying from (1 pA, 0.25 nA), (0.25 nA, 62.5 nA) and (62.5 nA, 1 microA) respectively.
NASA Astrophysics Data System (ADS)
Tang, Xiaoli; Su, Hua; Zhang, Huaiwu; Sun, Nian X.
2016-11-01
Dual-range, nonvolatile magnetization modulation induced by voltage impulses was investigated in the metglas/lead zirconate titanate (PZT) heterostructure at room temperature. The heterostructure was obtained by bonding a square metglas ribbon on the top electrode of the PZT substrate, which contained defect dipoles resulting from acceptor doping. The PZT substrate achieved two strain hysteretic loops with the application of specific voltage impulse excitation modes. Through strain-mediated magnetoelectric coupling between the metglas ribbon and the PZT substrate, two strain hysteretic loops led to a dual-range nonvolatile magnetization modulation in the heterostructure. Reversible and stable voltage-impulse-induced nonvolatile modulation in the ferromagnetic resonance field and magnetic hysteresis characteristics were also realized. This method provides a promising approach in reducing energy consumption in magnetization modulation and other related devices.
High current nonlinear transmission line based electron beam driver
NASA Astrophysics Data System (ADS)
Hoff, B. W.; French, D. M.; Simon, D. S.; Lepell, P. D.; Montoya, T.; Heidger, S. L.
2017-10-01
A gigawatt-class nonlinear transmission line based electron beam driver is experimentally demonstrated. Four experimental series, each with a different Marx bank charge voltage (15, 20, 25, and 30 kV), were completed. Within each experimental series, shots at peak frequencies ranging from 950 MHz to 1.45 GHz were performed. Peak amplitude modulations of the NLTL output voltage signal were found to range between 18% and 35% for the lowest frequency shots and between 5% and 20% for the highest frequency shots (higher modulation at higher Marx charge voltage). Peak amplitude modulations of the electron beam current were found to range between 10% and 20% for the lowest frequency shots and between 2% and 7% for the highest frequency shots (higher modulation at higher Marx charge voltage).
A low-drift, low-noise, multichannel dc voltage source for segmented-electrode Paul traps
NASA Astrophysics Data System (ADS)
Beev, Nikolai; Fenske, Julia-Aileen; Hannig, Stephan; Schmidt, Piet O.
2017-05-01
We present the design, construction, and characterization of a multichannel, low-drift, low-noise dc voltage source specially designed for biasing the electrodes of segmented linear Paul traps. The system produces 20 output voltage pairs having a common-mode range of 0 to +120 V with 3.7 mV/LSB (least significant bit) resolution and differential ranges of ±5 V with 150 μV/LSB or ±16 V with 610 μV/LSB resolution. All common-mode and differential voltages are independently controllable, and all pairs share the same ground reference. The measured drift of the voltages after warm-up is lower than 1 LSB peak-to-peak on the time scale of 2 h. The noise of an output voltage measured with respect to ground is <10 μVRMS within 10 Hz-100 kHz, with spectral density lower than 3 nV Hz-1/2 above 50 kHz. The performance of the system is limited by the external commercial multichannel DAC unit NI 9264, and in principle, it is possible to achieve higher stability and lower noise with the same voltage ranges. The system has a compact, modular, and scalable architecture, having all parts except for the DAC chassis housed within a single 19″ 3HE rack.
A Novel Concept for a Deformable Membrane Mirror for Correction of Large Amplitude Aberrations
NASA Technical Reports Server (NTRS)
Moore, Jim; Patrick, Brian
2006-01-01
Very large, light weight mirrors are being developed for applications in space. Due to launch mass and volume restrictions these mirrors will need to be much more flexible than traditional optics. The use of primary mirrors with these characteristics will lead to requirements for adaptive optics capable of correcting wave front errors with large amplitude relatively low spatial frequency aberrations. The use of low modulus membrane mirrors actuated with electrostatic attraction forces is a potential solution for this application. Several different electrostatic membrane mirrors are now available commercially. However, as the dynamic range requirement of the adaptive mirror is increased the separation distance between the membrane and the electrodes must increase to accommodate the required face sheet deformations. The actuation force applied to the mirror decreases inversely proportional to the square of the separation distance; thus for large dynamic ranges the voltage requirement can rapidly increase into the high voltage regime. Experimentation with mirrors operating in the KV range has shown that at the higher voltages a serious problem with electrostatic field cross coupling between actuators can occur. Voltage changes on individual actuators affect the voltage of other actuators making the system very difficult to control. A novel solution has been proposed that combines high voltage electrodes with mechanical actuation to overcome this problem. In this design an array of electrodes are mounted to a backing structure via light weight large dynamic range flextensional actuators. With this design the control input becomes the separation distance between the electrode and the mirror. The voltage on each of the actuators is set to a uniform relatively high voltage, thus the problem of cross talk between actuators is avoided and the favorable distributed load characteristic of electrostatic actuation is retained. Initial testing and modeling of this concept demonstrates that this is an attractive concept for increasing the dynamic range capability of electrostatic deformable mirrors.
Pulsed voltage electrospray ion source and method for preventing analyte electrolysis
Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN
2011-12-27
An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.
A quick response four decade logarithmic high-voltage stepping supply
NASA Technical Reports Server (NTRS)
Doong, H.
1978-01-01
An improved high-voltage stepping supply, for space instrumentation is described where low power consumption and fast settling time between steps are required. The high-voltage stepping supply, utilizing an average power of 750 milliwatts, delivers a pair of mirror images with 64 level logarithmic outputs. It covers a four decade range of + or - 2500 to + or - 0.29 volts having an output stability of + or - 0.5 percent or + or - 20 millivolts for all line load and temperature variations. The supply provides a typical step setting time of 1 millisecond with 100 microseconds for the lower two decades. The versatile design features of the high-voltage stepping supply provides a quick response staircase generator as described or a fixed voltage with the option to change levels as required over large dynamic ranges without circuit modifications. The concept can be implemented up to + or - 5000 volts. With these design features, the high-voltage stepping supply should find numerous applications where charged particle detection, electro-optical systems, and high voltage scientific instruments are used.
46 CFR 111.05-29 - Dual voltage direct current systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Dual voltage direct current systems. Each dual voltage direct current system must have a suitably sensitive ground detection system which indicates current in the ground connection, has a range of at least... 46 Shipping 4 2010-10-01 2010-10-01 false Dual voltage direct current systems. 111.05-29 Section...
46 CFR 111.05-29 - Dual voltage direct current systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Dual voltage direct current systems. Each dual voltage direct current system must have a suitably sensitive ground detection system which indicates current in the ground connection, has a range of at least... 46 Shipping 4 2011-10-01 2011-10-01 false Dual voltage direct current systems. 111.05-29 Section...
NASA Astrophysics Data System (ADS)
Lobanov, Nikolai R.; Tunningley, Thomas; Linardakis, Peter
2018-04-01
Tandem electrostatic accelerators often require the flexibility to operate at a variety of terminal voltages to accommodate various user requirements. However, the ion beam transmission will only be optimal for a limited range of terminal voltages. This paper describes the operational performance of a novel focusing system that expands the range of terminal voltages for optimal transmission. This is accomplished by controlling the gradient of the entrance of the low-energy tube, providing an additional focusing element. In this specific case it is achieved by applying up to 150 kV to the fifth electrode of the first unit of the accelerator tube. Numerical simulations and beam transmission tests have been performed to confirm the effectiveness of the lens. An analytical expression has been derived describing its focal properties. These tests demonstrate that the entrance lens control eliminates the need to short out sections of the tube for operation at low terminal voltage.
Inversion of time-domain induced polarization data based on time-lapse concept
NASA Astrophysics Data System (ADS)
Kim, Bitnarae; Nam, Myung Jin; Kim, Hee Joon
2018-05-01
Induced polarization (IP) surveys, measuring overvoltage phenomena of the medium, are widely and increasingly performed not only for exploration of mineral resources but also for engineering applications. Among several IP survey methods such as time-domain, frequency-domain and spectral IP surveys, this study introduces a noble inversion method for time-domain IP data to recover the chargeability structure of target medium. The inversion method employs the concept of 4D inversion of time-lapse resistivity data sets, considering the fact that measured voltage in time-domain IP survey is distorted by IP effects to increase from the instantaneous voltage measured at the moment the source current injection starts. Even though the increase is saturated very fast, we can consider the saturated and instantaneous voltages as a time-lapse data set. The 4D inversion method is one of the most powerful method for inverting time-lapse resistivity data sets. Using the developed IP inversion algorithm, we invert not only synthetic but also field IP data to show the effectiveness of the proposed method by comparing the recovered chargeability models with those from linear inversion that was used for the inversion of the field data in a previous study. Numerical results confirm that the proposed inversion method generates reliable chargeability models even though the anomalous bodies have large IP effects.
NASA Astrophysics Data System (ADS)
Zhengang, Lu; Hongyang, Yu; Xi, Yang
2017-05-01
The Modular Multilevel Converter (MMC) is one of the most attractive topologies in recent years for medium or high voltage industrial applications, such as high voltage dc transmission (HVDC) and medium voltage varying speed motor drive. The wide adoption of MMCs in industry is mainly due to its flexible expandability, transformer-less configuration, common dc bus, high reliability from redundancy, and so on. But, when the sub module number of MMC is more, the test of MMC controller will cost more time and effort. Hardware in the loop test based on real time simulator will save a lot of time and money caused by the MMC test. And due to the flexible of HIL, it becomes more and more popular in the industry area. The MMC modelling method remains an important issue for the MMC HIL test. Specifically, the VSC model should realistically reflect the nonlinear device switching characteristics, switching and conduction losses, tailing current, and diode reverse recovery behaviour of a realistic converter. In this paper, an IGBT switching characteristic curve embedded half-bridge MMC modelling method is proposed. This method is based on the switching curve referring and sample circuit calculation, and it is sample for implementation. Based on the proposed method, a FPGA real time simulation is carried out with 200ns sample time. The real time simulation results show the proposed method is correct.
Fuel Cell/Electrochemical Cell Voltage Monitor
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2012-01-01
A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.
Ion detection device and method with compressing ion-beam shutter
Sperline, Roger P [Tucson, AZ
2009-05-26
An ion detection device, method and computer readable medium storing instructions for applying voltages to shutter elements of the detection device to compress ions in a volume defined by the shutter elements and to output the compressed ions to a collector. The ion detection device has a chamber having an inlet and receives ions through the inlet, a shutter provided in the chamber opposite the inlet and configured to allow or prevent the ions to pass the shutter, the shutter having first and second shutter elements, a collector provided in the chamber opposite the shutter and configured to collect ions passed through the shutter, and a processing unit electrically connected to the first and second shutter elements. The processing unit applies, during a first predetermined time interval, a first voltage to the first shutter element and a second voltage to the second shutter element, the second voltage being lower than the first voltage such that ions from the inlet enter a volume defined by the first and second shutter elements, and during a second predetermined time interval, a third voltage to the first shutter element, higher than the first voltage, and a fourth voltage to the second shutter element, the third voltage being higher than the fourth voltage such that ions that entered the volume are compressed as the ions exit the volume and new ions coming from the inlet are prevented from entering the volume. The processing unit is electrically connected to the collector and configured to detect the compressed ions based at least on a current received from the collector and produced by the ions collected by the collector.
30 CFR 77.606 - Energized trailing cables; handling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Energized trailing cables; handling. 77.606... COAL MINES Trailing Cables § 77.606 Energized trailing cables; handling. Energized medium- and high-voltage trailing cables shall be handled only by persons wearing protective rubber gloves (see § 77.606-1...
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2011 CFR
2011-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Connection of single-phase loads. 77.905 Section 77.905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Connection of single-phase loads. 77.905 Section 77.905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...
30 CFR 77.901-1 - Grounding resistor; continuous current rating.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding resistor; continuous current rating. 77.901-1 Section 77.901-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901-1 Grounding...
30 CFR 77.901-1 - Grounding resistor; continuous current rating.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding resistor; continuous current rating. 77.901-1 Section 77.901-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901-1 Grounding...
30 CFR 77.901-1 - Grounding resistor; continuous current rating.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding resistor; continuous current rating. 77.901-1 Section 77.901-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901-1 Grounding...
30 CFR 77.901-1 - Grounding resistor; continuous current rating.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding resistor; continuous current rating. 77.901-1 Section 77.901-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901-1 Grounding...
30 CFR 77.901-1 - Grounding resistor; continuous current rating.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding resistor; continuous current rating. 77.901-1 Section 77.901-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901-1 Grounding...
An optical fiber Bragg grating and piezoelectric ceramic voltage sensor
NASA Astrophysics Data System (ADS)
Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui
2017-10-01
Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.
An optical fiber Bragg grating and piezoelectric ceramic voltage sensor.
Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui
2017-10-01
Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.
Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator
Jung, Arong; Rajakumar, Dhanarajan; Yoon, Bong-June
2017-01-01
Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition. PMID:29093633
Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator.
Jung, Arong; Rajakumar, Dhanarajan; Yoon, Bong-June; Baker, Bradley J
2017-10-01
Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition.
Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing
NASA Astrophysics Data System (ADS)
Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.
2015-08-01
A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.
Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.; Department of Electrical and Computer Engineering, MSC01 1100, University of New Mexico, Albuquerque, New Mexico 87131-0001; Branch, D. W.
2015-08-15
A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO{sub 3}) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5more » μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less
Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing
Patel, N.; Branch, D. W.; Schamiloglu, E.; ...
2015-08-11
A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO 3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses tomore » both crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less
Characterization of Low Noise, Precision Voltage Reference REF5025-HT Under Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2010-01-01
The performance of Texas Instruments precision voltage reference REF5025-HT was assessed under extreme temperatures. This low noise, 2.5 V output chip is suitable for use in high temperature down-hole drilling applications, but no data existed on its performance at cryogenic temperatures. The device was characterized in terms of output voltage and supply current at different input voltage levels as a function of temperature between +210 C and -190 C. Line and load regulation characteristics were also established at six load levels and at different temperatures. Restart capability at extreme temperatures and the effects of thermal cycling, covering the test temperature range, on its operation and stability were also investigated. Under no load condition, the voltage reference chip exhibited good stability in its output over the temperature range of -50 C to +200 C. Outside that temperature range, output voltage did change as temperature was changed. For example, at the extreme temperatures of +210 C and - 190 C, the output level dropped to 2.43 V and 2.32 V, respectively as compared to the nominal value of 2.5 V. At cryogenic test temperatures of -100 C and -150 C the output voltage dropped by about 20%. The quiescent supply current of the voltage reference varied slightly with temperature but remained close to its specified value. In terms of line regulation, the device exhibited excellent stability between -50 C and +150 C over the entire input voltage range and load levels. At the other test temperatures, however, while line regulation became poor at cryogenic temperatures of -100 C and below, it suffered slight degradation at the extreme high temperature but only at the high load level of 10 mA. The voltage reference also exhibited very good load regulation with temperature down to -100 C, but its output dropped sharply at +210 C only at the heavy load of 10 mA. The semiconductor chip was able restart at the extreme temperatures of -190 C and +210 C, and the limited thermal cycling did not influence its characteristics and had no impact on its packaging as no structural or physical damage was observed.
Direct current uninterruptible power supply method and system
Sinha, Gautam
2003-12-02
A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.
Study of charge transport in composite blend of P3HT and PCBM
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Kumar, Sunil; Upadhyaya, Aditi; Yadav, Anjali; Gupta, Saral K.; Singh, Amarjeet
2018-05-01
Poly (3-hexylthiophene-2,5diyl) (P3HT) as donor and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as acceptor are mostly used as active medium in polymeric electronic device. In this paper we have prepare the P3HT - PCBM based bulk hetero junction thin films by spin coating technique. The charge transport properties of P3HT:PCBM blends are investigated by the current-voltage measurements using Ag as an electron injecting electrode and ITO as a hole injecting contact. The current density v/s voltage relationships are analyzed in the backdrop of Schottky and Space charge limited current model.
Djamgoz, Mustafa B A
2015-11-01
Although it is well known that high blood pressure promotes cancer, the underlying cause(s) is not well understood. Here, we advance the hypothesis that the extracellular sodium level could be a contributing factor. The hypothesis is based upon emerging evidence showing (i) that voltage-gated sodium channels are expressed de novo in cancer cells and tissues, and (ii) that the influx of sodium from the extracellular medium into cancer cells, mediated by the channel activity, promotes their metastatic potential. Clinical and lifestyle implications of the hypothesis are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons.
Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung
2017-03-01
The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K + and Ca 2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K + currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K + currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs + (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca 2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.
An earth-isolated optically coupled wideband high voltage probe powered by ambient light.
Zhai, Xiang; Bellan, Paul M
2012-10-01
An earth-isolated optically-coupled wideband high voltage probe has been developed for pulsed power applications. The probe uses a capacitive voltage divider coupled to a fast light-emitting diode that converts high voltage into an amplitude-modulated optical signal, which is then conveyed to a receiver via an optical fiber. A solar cell array, powered by ambient laboratory lighting, charges a capacitor that, when triggered, acts as a short-duration power supply for an on-board amplifier in the probe. The entire system has a noise level ≤0.03 kV, a DC-5 MHz bandwidth, and a measurement range from -6 to 2 kV; this range can be conveniently adjusted.
30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables for mobile equipment, ground... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.906 Trailing cables for mobile equipment, ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...
30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables for mobile equipment, ground... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.906 Trailing cables for mobile equipment, ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...
30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trailing cables for mobile equipment, ground... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.906 Trailing cables for mobile equipment, ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...
NASA Astrophysics Data System (ADS)
Kar, Soumen; Rao, V. V.
2018-07-01
In our first attempt to design a single phase R-SFCL in India, we have chosen the typical rating of a medium voltage level (3.3 kVrms, 200 Arms, 1Φ) R-SFCL. The step-by-step design procedure for the R-SFCL involves conductor selection, time dependent electro-thermal simulations and recovery time optimization after fault removal. In the numerical analysis, effective fault limitation for a fault current of 5 kA for the medium voltage level R-SFCL are simulated. Maximum normal state resistance and maximum temperature rise in the SFCL coil during current limitation are estimated using one-dimensional energy balance equation. Further, a cryogenic system is conceptually designed for aforesaid MV level R-SFCL by considering inner and outer vessel materials, wall-thickness and thermal insulation which can be used for R-SFCL system. Finally, the total thermal load is calculated for the designed R-SFCL cryostat to select a suitable cryo-refrigerator for LN2 re-condensation.
NASA Astrophysics Data System (ADS)
Zuev, V. V.; Grigoriev, S. N.; Fominski, V. Yu.; Volosova, M. A.; Soloviev, A. A.
2017-09-01
The possibility of detecting H2 by registering the thermal electromotive force signal, which arises between the surfaces of 6 H-SiC plates with a thickness of 400 μm, is established. The working surface of the plates is modified by deposition of a WO x film and catalytic Pt. An ohmic contact (Ni/Pt) is created on the rear surface of the plate, and this surface is maintained at a stabilized temperature of 350°C. The temperature gradient through the plate thickness arises due to the cooling of the working surface with the air medium. The delivery of H2 into this medium up to a concentration of 2% gives rise to a 15-fold increase in the electric signal, which considerably exceeds the Pt/WO x /SiC/Ni/Pt system's response registered in the usual way by measuring the current-voltage dependence. In this case, an additional power source for the registration of the thermal electromotive force is not required.
Medium voltage therapy for preventing and treating asystole and PEA in ICDs.
Gilman, Byron L; Brewer, James E; Kroll, Kai; Kroll, Mark W
2009-01-01
Sudden cardiac death (SCD) takes up to 500,000 lives each year before a victim can even be treated. To address this the implantable cardioverter defibrillator (ICD) was developed to treat those identified at high risk of SCD. Unfortunately, there are a significant number of cases in which the ICD does not successfully return a victim to normal rhythm and effective perfusion of the blood. The vast majority of cases that are not responsive to the ICD therapy require cardio-pulmonary resuscitation (CPR) according to current resuscitation guidelines. A novel electrical stimulus called medium voltage therapy (MVT) has shown efficacy in producing coronary and carotid blood flow during ventricular fibrillation. This report presents the case that the same stimulus may be effective and feasible for use in ICD patients that do not respond to their ICD therapy, or do not have a rhythm in which, an ICD shock is indicated. The inclusion of MVT technology in implantable devices may be effective in preparing the heart for successful defibrillation or in improving the metabolic condition of the heart to the extent that a pulsatile rhythm may spontaneously develop.
Sheng, Anqi; Hong, Jiangru; Zhang, Lulu; Zhang, Yan; Zhang, Guangqin
2018-03-29
Voltage-gated K + (K V ) currents play a crucial role in regulating pain by controlling neuronal excitability, and are divided into transient A-type currents (I A ) and delayed rectifier currents (I K ). The dorsal root ganglion (DRG) neurons are heterogeneous and the subtypes of K V currents display different levels in distinct cell sizes. To observe correlations of the subtypes of K V currents with DRG cell sizes, K V currents were recorded by whole-cell patch clamp in freshly isolated mouse DRG neurons. Results showed that I A occupied a high proportion in K V currents in medium- and large-diameter DRG neurons, whereas I K possessed a larger proportion of K V currents in small-diameter DRG neurons. A lower correlation was found between the proportion of I A or I K in K V currents and cell sizes. These data suggest that I A channels are mainly expressed in medium and large cells and I K channels are predominantly expressed in small cells.
NASA Astrophysics Data System (ADS)
Pejović, Milić M.; Milosavljević, Čedomir S.; Pejović, Momčilo M.
2003-06-01
This article describes an electrical system aimed at measuring and data acquisition of breakdown voltages of vacuum and gas-filled tubes. The measurements were performed using a nitrogen-filled tube at 4 mbar pressure. Based on the measured breakdown voltage data as a function of the applied voltage increase rate, a static breakdown voltage is estimated for the applied voltage gradient ranging from 0.1 to 1 V s-1 and from 1 to 10 V s-1. The histograms of breakdown voltages versus applied voltage increase rates from 0.1 and 0.5 V s-1 are approximated by the probability density functions using a fitting procedure.
Metal-oxide thin-film transistor-based pH sensor with a silver nanowire top gate electrode
NASA Astrophysics Data System (ADS)
Yoo, Tae-Hee; Sang, Byoung-In; Wang, Byung-Yong; Lim, Dae-Soon; Kang, Hyun Wook; Choi, Won Kook; Lee, Young Tack; Oh, Young-Jei; Hwang, Do Kyung
2016-04-01
Amorphous InGaZnO (IGZO) metal-oxide-semiconductor thin-film transistors (TFTs) are one of the most promising technologies to replace amorphous and polycrystalline Si TFTs. Recently, TFT-based sensing platforms have been gaining significant interests. Here, we report on IGZO transistor-based pH sensors in aqueous medium. In order to achieve stable operation in aqueous environment and enhance sensitivity, we used Al2O3 grown by using atomic layer deposition (ALD) and a porous Ag nanowire (NW) mesh as the top gate dielectric and electrode layers, respectively. Such devices with a Ag NW mesh at the top gate electrode rapidly respond to the pH of solutions by shifting the turn-on voltage. Furthermore, the output voltage signals induced by the voltage shifts can be directly extracted by implantation of a resistive load inverter.
Acoustooptic pulse-echo transducer system
NASA Technical Reports Server (NTRS)
Claus, R. O.; Wade, J. C.
1983-01-01
A pulse-echo transducer system which uses an ultrasonic generating element and an optical detection technique is described. The transmitting transducer consists of a concentric ring electrode pattern deposited on a circular, X-cut quartz substrate with a circular hole in the center. The rings are independently pulsed with a sequence high voltage signals phased in such a way that the ultrasonic waves generated by the separate rings superimpose to produce a composite field which is focused at a controllable distance below the surface of the specimen. The amplitude of the field reflected from this focus position is determined by the local reflection coefficient of the medium at the effective focal point. By processing the signals received for a range of ultrasonic transducer array focal lengths, the system can be used to locate and size anomalies within solids and liquids. Applications in both nondestructive evaluation and biomedical scanning are suggested.
NASA Technical Reports Server (NTRS)
1973-01-01
Research consisted of computations toward the solution of the problem of the current distribution on a cylindrical antenna in a magnetoplasma. The case of an antenna parallel to the applied magnetic field was investigated. A systematic method of asymptotic expansion was found which simplifies the solution in the general case by giving the field of a dipole even at relatively short range. Some useful properties of the dispersion surfaces in a lossy medium have also been found. A laboratory experiment was directed toward evaluating nonlinear effects, such as those due to power level, bias voltage and electron heating. The problem of reflection and transmission of waves in an electron heated plasma was treated theoretically. The profile inversion problem has been pursued. Some results are very encouraging, however, the general question of stability of the solution remains unsolved.
Dynamically tunable electromagnetically induced transparency analogy in terahertz metamaterial
NASA Astrophysics Data System (ADS)
Liu, Chenxi; Liu, Peiguo; Bian, Lian; Zhou, Qihui; Li, Gaosheng; Liu, Hanqin
2018-03-01
A metamaterial analogy of tunable electromagnetically induced transparency (EIT) is theoretically investigated in terahertz regime. The proposed metamaterial consists of vertical gold strips and horizontal graphene wires, which perform as bright elements and dark elements, respectively. The EIT-like phenomenon can be induced by bright-dark mode coupling on condition of structural lateral displacement. Numerical result reveals that the EIT-like effect remains noticeable with a wide range of incidence polarization angles. Most importantly, by manipulating gate voltages, the EIT window can be dynamically controlled without refabricating the structure. The amplitude modulation depth can reach 81%, 79%, and 68% respectively at three characteristic frequencies as Fermi energy changes in the scope of 0.8-1.0 eV. Furthermore, a sensitivity of 0.95 THz per refractive index unit (RIU) is realized varying the refractive index in the surrounding medium. This structure provides potential applications for detectors, sensors, and modulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuyama, H., E-mail: matsu@phys.sci.hokudai.ac.jp; Nara, D.; Kageyama, R.
We developed a micrometer-sized magnetic tip integrated onto the write head of a hard disk drive for spin-polarized scanning tunneling microscopy (SP-STM) in the modulated tip magnetization mode. Using SP-STM, we measured a well-defined in-plane spin-component of the tunneling current of the rough surface of a polycrystalline NiFe film. The spin asymmetry of the NiFe film was about 1.3% within the bias voltage range of -3 to 1 V. We obtained the local spin component image of the sample surface, switching the magnetic field of the sample to reverse the sample magnetization during scanning. We also obtained a spin imagemore » of the rough surface of a polycrystalline NiFe film evaporated on the recording medium of a hard disk drive.« less
Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.
Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung
2017-07-25
Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T < 5%) with a high diffraction efficiency up to 40%, providing reversible diffractive gratings. The diffraction state was maintained in the voltage-off state (V-off) for 40 min, which demonstrated bistable reversible electrochemical grating (BREG) behavior. By carefully combining the BREGs through period matching, dual-color switching was achieved within the full color region, which exhibited three distinct optical switching states between -2.5, 0, and +2.5 V. The wide range of light tenability using the metallic BREGs developed herein enabled IR modulation, NIR light reflection, and on-demand heat transfer.
Bedore, Christine N; Kajiura, Stephen M
2013-01-01
Behavioral responses of elasmobranch fishes to weak electric fields have been well studied. These studies typically employ a stimulator that produces a dipole electric field intended to simulate the natural electric field of prey items. However, the characteristics of bioelectric fields have not been well described. The magnitude and frequency of the electric field produced by 11 families of marine organisms were quantified in this study. Invertebrate electric potentials ranged from 14 to 28 μV and did not differ from those of elasmobranchs, which ranged from 18 to 30 μV. Invertebrates and elasmobranchs produced electric potentials smaller than those of teleost fishes, which ranged from 39 to 319 μV. All species produced electric fields within the frequency range that is detectable by elasmobranch predators (<16 Hz), with the highest frequencies produced by the penaeids (10.3 Hz) and the gerreids (4.6 Hz). Although voltage differed by family, there was no relationship between voltage and mass or length of prey. Differences in prey voltage may be related to osmoregulatory strategies; invertebrates and elasmobranchs are osmoconformers and have less ion exchange with the surrounding seawater than teleosts species, which are hyposmotic. As predicted, voltage production was greatest at the mucous membrane-lined mouth and gills, which are sites of direct ion exchange with the environment.
NASA Technical Reports Server (NTRS)
Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.
2011-01-01
A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.
A robust low quiescent current power receiver for inductive power transmission in bio implants
NASA Astrophysics Data System (ADS)
Helalian, Hamid; Pasandi, Ghasem; Jafarabadi Ashtiani, Shahin
2017-05-01
In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC-DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC-DC converter has variable conversion ratios and synchronous controller that lets the DC-DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0-10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.
NASA Astrophysics Data System (ADS)
Lin, Zhiting; Wang, Haiyan; Lin, Yunhao; Wang, Wenliang; Li, Guoqiang
2017-11-01
High-performance blue GaN-based light-emitting diodes (LEDs) on Si substrates have been achieved by applying a suitable tensile stress in the underlying n-GaN. It is demonstrated by simulation that tensile stress in the underlying n-GaN alleviates the negative effect from polarization electric fields on multiple quantum wells but an excessively large tensile stress severely bends the band profile of the electron blocking layer, resulting in carrier loss and large electric resistance. A medium level of tensile stress, which ranges from 4 to 5 GPa, can maximally improve the luminous intensity and decrease forward voltage of LEDs on Si substrates. The LED with the optimal tensile stress shows the largest simulated luminous intensity and the smallest simulated voltage at 35 A/cm2. Compared to the LEDs with a compressive stress of -3 GPa and a large tensile stress of 8 GPa, the improvement of luminous intensity can reach 102% and 28.34%, respectively. Subsequent experimental results provide evidence of the superiority of applying tensile stress in n-GaN. The experimental light output power of the LEDs with a tensile stress of 1.03 GPa is 528 mW, achieving a significant improvement of 19.4% at 35 A/cm2 in comparison to the reference LED with a compressive stress of -0.63 GPa. The forward voltage of this LED is 3.08 V, which is smaller than 3.11 V for the reference LED. This methodology of stress management on underlying GaN-based epitaxial films shows a bright feature for achieving high-performance LED devices on Si substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzoughi, Alinaghi; Burgos, Rolando; Boroyevich, Dushan
This paper presents the design procedure and comparison of converters currently used in medium-voltage high-power motor drive applications. For this purpose, the cascaded H-bridge (CHB), modular multilevel converter (MMC), and five-level active neutral point clamped (5-L ANPC) topologies are targeted. The design is performed using 1.7-kV insulated gate bipolar transistors (IGBTs) for CHB and MMC converters, and utilizing 3.3- and 4.5-kV IGBTs for 5-L ANPC topology as normally done in industry. The comparison is done between the designed converter topologies at three different voltage levels (4.16, 6.9, and 13.8 kV, with only the first two voltage levels in case ofmore » the 5-L ANPC) and two different power levels (3 and 5 MVA), in order to elucidate the dependence of different parameters on voltage and power rating. Finally, the comparison is done from several points of view such as efficiency, capacitive energy storage, semiconductor utilization, parts count (for measure of reliability), and power density.« less
AC resistance measuring instrument
Hof, P.J.
1983-10-04
An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.
AC Resistance measuring instrument
Hof, Peter J.
1983-01-01
An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.
Nier, A.O.C.
1959-08-25
A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.
Current transport mechanisms in mercury cadmium telluride diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn; Li, Qing; He, Jiale
This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation,more » flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.« less
Voltage effects on cells cultured on metallic biomedical implants
NASA Astrophysics Data System (ADS)
Haerihosseini, Seyed Morteza
Electrochemical voltage shifts in metallic biomedical implants occur in-vivo due to a number of processes including mechanically assisted corrosion. Surface potential of biomedical implants and excursions from resting open circuit potential (OCP), which is the voltage they attain while in contact with an electrolyte, can significantly change the interfacial properties of the metallic surfaces and alter the behavior of the surrounding cells, compromising the biocompatibility of metallic implants. Voltages can also be controlled to modulate cell function and fate. To date, the details of the physico-chemical phenomena and the role of different biomaterial parameters involved in the interaction between cells and metallic surfaces under cathodic bias have not been fully elucidated. In this work, changes in the interfacial properties of a CoCrMo biomedical alloy (ASTM F-1537) in phosphate-buffered saline (PBS) (pH 7.4) at different voltages was studied. Step polarization impedance spectroscopy technique was used to apply 50 mV voltage steps to samples, and the time-based current transients were recorded. A new equation was derived based on capacitive discharge through a Tafel element and generalized to deal with non-ideal impedance behavior. The new function compared to the KWW-Randles function, better matched the time-transient response. The results also showed a voltage dependent oxide resistance and capacitance behavior. Additionally, the in-vitro effect of static voltages on the behavior of MC3T3-E1 pre-osteoblasts cultured on CoCrMo alloy (ASTM-1537) was studied to determine the range of cell viability and mode of cell death beyond the viable range. Cell viability and morphology, changes in actin cytoskeleton, adhesion complexes and nucleus, and mode of cell death (necrosis, or intrinsic or extrinsic apoptosis) were characterized at different voltages ranging from -1000 to +500 mV (Ag/AgCl). Moreover, electrochemical currents and metal ion concentrations at each voltage were measured and related to the observed responses. Results show that cathodic and anodic voltages outside the voltage viability range (-400 < V < +500) lead to primarily intrinsic apoptotic and necrotic cell death, respectively. Cell death is associated with cathodic current densities of 0.1 uAcm-2 and anodic current densities of 10 uAcm-2. Significant increase in metallic ions (Co, Cr, Ni, Mo) was seen at +500 mV, and -1000 mV (Cr only) compared to open circuit potential. The number and total projected area of adhesion complexes was also lower on the polarized alloy (p < 0.05). These results show that reduction reactions on CoCrMo alloys leads to apoptosis of cells on the surface and may be a relevant mode of cell death for metallic implants in-vivo. . On the other hand, we studied how surface oxide thickness of Ti affects its voltage viability range and cellular response and whether anodic oxidation can serve as a means to extend this range. Cellular behavior (cell viability, cytoskeletal organization, and cellular adhesion) on bare and anodized Ti samples, potentiostatically held at voltages at the cathodic edge of the viability range, were assessed. Surfaces were characterized using contact angle (CA) measurement technique and atomic force microscopy (AFM), and the observed cellular response was related to the changes in the electrochemical properties (electrochemical currents, open circuit potential, and impedance spectra) of the samples. Results show that anodization at a low voltage (9 V) in phosphate buffer saline (PBS) generates a compact surface oxide with comparable surface roughness and energy to the starting native oxide on the bare surface. The anodized surface extends the viability range at 24 hours by about a 100 mV in the cathodic region, and preserved the cytoskeletal integrity and cell adhesion. Broadening of the viability range corresponds to an increase in impedance of the anodized surface at -400 mV(Ag/AgCl) and the resulting low average currents (below 0.1 uAcm-2) at the interface, which diminish the harmful cathodic reactions. Finally, cellular dynamics (size, polarity, movement) and temporal changes in the number and total area of focal adhesions in transiently transfected MC3T3-E1 pre-osteoblasts cultured on a CoCrMo alloy polarized at the cathodic and anodic edges of its voltage viability range (-400 and +500 mV(Ag/AgCl) respectively) were studied. Nucleus dynamics (size, circularity, movement) and the release of reactive oxygen species (ROS) was also studied on the polarized metal at -1000, -400, and +500 mV(Ag/AgCl). The results show that at -400 mV(Ag/AgCl) a gradual loss of adhesion occurs over 24 hours while cells shrink in size during this time. At +500 mV, cells become non-viable after 5 hours without showing any significant changes in adhesion behavior right before cell death. Nucleus size of cells at -1000 mV decreased sharply within 15 minutes after electrochemical polarization, which rendered the cells completely non-viable. No significant amount of ROS was released by cells on the polarized CoCrMo at any of these voltages.
Grain refinement control in TIG arc welding
NASA Technical Reports Server (NTRS)
Iceland, W. F.; Whiffen, E. L. (Inventor)
1975-01-01
A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.
NASA Technical Reports Server (NTRS)
Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.
1982-01-01
Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.
NASA Astrophysics Data System (ADS)
Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.
Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.
NASA Astrophysics Data System (ADS)
Salcedo Ulerio, Reynaldo Odalis
The analysis of overvoltages in electrical distribution networks is of considerable significance since they may damage the power system infrastructure and the associated electrical equipment. Overvoltages in distribution networks arise due to switching transients, resonance, lightning strikes and ground faults, among other causes. The operation of network protectors (NWP), low voltage circuit breakers with directional power relay, in a secondary network prevents the continuous flow of reverse power. There are three modes of operation for the network protectors: sensitive, time delayed, and insensitive. In case of a fault, although all of the network protectors sense the fault at the same time, their operation is not simultaneous. Many of them open very quickly with opening times similar to those of the feeder breaker. However, some operate a few cycles later, others take several seconds to open and a few might even fail to operate. Therefore, depending on the settings of the network protectors, faults can last for significantly long time due to backfeeding of current from the low voltage (LV) network into the medium voltage (MV) network. In this work, low voltages are defined as 208V/460V and medium voltage are defined as 25kV/35kV. This thesis presents overvoltages which arise because of the occurrence of a single-line-to-ground (SLG) fault on the MV side (connected in delta) of the system. The thesis reveals that overvoltage stresses are imposed on insulation, micro-processor controlled equipment, and switching devices by overvoltages during current backfeeding. Also, it establishes a relationship between overvoltage magnitude, its duration, and the network loading conditions. Overvoltages above 3 p.u. may be developed as a result of a simultaneous occurrence of three phenomena: neutral displacement, Ferranti effect, and magnetic current chopping. Furthermore, this thesis exposes the possibility of occurrence of the ferro-resonance phenomena in a distribution network having secondary grid, making the study of extreme importance especially in the case of a misoperating network protector. The test systems for both studies were designed following the conventional distribution network with secondary grid, similar to those in the New York City Area. Simulations were performed using the electro-magnetic transient program revised version (EMTP-RV) considering detailed representation of system components as well as the non-linear magnetization and losses of transformers.
Cao, Xue-Hong; Byun, Hee-Sun; Chen, Shao-Rui; Cai, You-Qing; Pan, Hui-Lin
2010-09-01
Abnormal hyperexcitability of primary sensory neurons plays an important role in neuropathic pain. Voltage-gated potassium (Kv) channels regulate neuronal excitability by affecting the resting membrane potential and influencing the repolarization and frequency of the action potential. In this study, we determined changes in Kv channels in dorsal root ganglion (DRG) neurons in a rat model of diabetic neuropathic pain. The densities of total Kv, A-type (IA) and sustained delayed (IK) currents were markedly reduced in medium- and large-, but not in small-, diameter DRG neurons in diabetic rats. Quantitative RT-PCR analysis revealed that the mRNA levels of IA subunits, including Kv1.4, Kv3.4, Kv4.2, and Kv4.3, in the DRG were reduced approximately 50% in diabetic rats compared with those in control rats. However, there were no significant differences in the mRNA levels of IK subunits (Kv1.1, Kv1.2, Kv2.1, and Kv2.2) in the DRG between the two groups. Incubation with brain-derived neurotrophic factor (BDNF) caused a large reduction in Kv currents, especially IA currents, in medium and large DRG neurons from control rats. Furthermore, the reductions in Kv currents and mRNA levels of IA subunits in diabetic rats were normalized by pre-treatment with anti-BDNF antibody or K252a, a TrkB tyrosine kinase inhibitor. In addition, the number of medium and large DRG neurons with BDNF immunoreactivity was greater in diabetic than control rats. Collectively, our findings suggest that diabetes primarily reduces Kv channel activity in medium and large DRG neurons. Increased BDNF activity in these neurons likely contributes to the reduction in Kv channel function through TrkB receptor stimulation in painful diabetic neuropathy.
Zhou, Wen-Liang; Yan, Ping; Wuskell, Joseph P; Loew, Leslie M; Antic, Srdjan D
2008-02-01
Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of > 15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 microm) and medium (150-200 microm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients.
Grid-Integrated Electric Drive Analysis for The Ohio State University |
thermal management analysis and simulations on a high-performance, high-speed drive-developed by The Ohio as a pilot study for the future generation of energy efficient, high power density, high-speed integrated medium/high-voltage drive systems. If successful, the proposed project will significantly advance
INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Surface effects in laser diodes
NASA Astrophysics Data System (ADS)
Beister, G.; Maege, J.; Richter, G.
1988-11-01
Changes in the current-voltage characteristics below the threshold current were observed in gain-guided stripe laser diodes after preliminary lasing. This effect was not fully understood. Similar changes in the laser characteristics appeared as a result of etching in a gaseous medium. The observed changes were attributed tentatively to surface currents.
30 CFR 75.901 - Protection of low- and medium-voltage three-phase circuits used underground.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the generator frame and between the wye-connected transformer secondary and the transformer frame when an isolation transformer(s) is used and the generator is supplying power to the other equipment; (see... and the generator frame when an auto-transformer is used. (see Figure III in Appendix A to subpart J...
30 CFR 75.901 - Protection of low- and medium-voltage three-phase circuits used underground.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the generator frame and between the wye-connected transformer secondary and the transformer frame when an isolation transformer(s) is used and the generator is supplying power to the other equipment; (see... and the generator frame when an auto-transformer is used. (see Figure III in Appendix A to subpart J...
30 CFR 75.901 - Protection of low- and medium-voltage three-phase circuits used underground.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the generator frame and between the wye-connected transformer secondary and the transformer frame when an isolation transformer(s) is used and the generator is supplying power to the other equipment; (see... and the generator frame when an auto-transformer is used. (see Figure III in Appendix A to subpart J...
30 CFR 75.901 - Protection of low- and medium-voltage three-phase circuits used underground.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the generator frame and between the wye-connected transformer secondary and the transformer frame when an isolation transformer(s) is used and the generator is supplying power to the other equipment; (see... and the generator frame when an auto-transformer is used. (see Figure III in Appendix A to subpart J...
30 CFR 75.901 - Protection of low- and medium-voltage three-phase circuits used underground.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the generator frame and between the wye-connected transformer secondary and the transformer frame when an isolation transformer(s) is used and the generator is supplying power to the other equipment; (see... and the generator frame when an auto-transformer is used. (see Figure III in Appendix A to subpart J...
Code of Federal Regulations, 2012 CFR
2012-07-01
... SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902-3 Attachment of ground conductors and ground check wires to... equipment receiving power from resistance grounded systems, separate connections shall be used. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902-3 Attachment of ground conductors and ground check wires to... equipment receiving power from resistance grounded systems, separate connections shall be used. ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902-3 Attachment of ground conductors and ground check wires to... equipment receiving power from resistance grounded systems, separate connections shall be used. ...
A Gain-Programmable Transit-Time-Stable and Temperature-Stable PMT Voltage Divider
NASA Astrophysics Data System (ADS)
Liu, Yaqiang; Li, Hongdi; Wang, Yu; Xing, Tao; Xie, Shuping; Uribe, J.; Baghaei, H.; Ramirez, R.; Kim, Soonseok; Wong, Wai-Hoi
2004-10-01
A gain-programmable, transit-time-stable, temperature-stable photomultiplier (PMT) voltage divider design is described in this paper. The signal-to-noise ratio can be increased by changing a PMT gain directly instead of adjusting the gain of the preamplifier. PMT gain can be changed only by adjusting the voltages for the dynodes instead of changing the total high voltage between the anode and the photocathode, which can cause a significant signal transit-time variation that cannot be accepted by an application with a critical timing requirement, such as positron emission tomography (PET) or time-of-flight (TOF) detection/PET. The dynode voltage can be controlled by a digital analog converter isolated with a linear optocoupler. The optocoupler consists of an infrared light emission diode (LED) optically coupled with two phototransistors, and one is used in a servo feedback circuit to control the LED drive current for compensating temperature characteristics. The results showed that a six times gain range could be achieved; the gain drift was <0.5% over a 20/spl deg/C temperature range; 250 ps transit-time variation was measured over the entire gain range. A compact print circuit board (PCB) for the voltage divider integrated with a fixed-gain preamplifier has been designed and constructed. It can save about $30 per PMT channel compared with a commercial PMT voltage divider along with a variable gain amplifier. The preamplifier can be totally disabled, therefore in a system with a large amount of PMTs, only one channel can be enabled for calibrating the PMT gain. This new PMT voltage divider design is being applied to our animal PET camera and TOF/PET research.
Consecutive Short-Scan CT for Geological Structure Analog Models with Large Size on In-Situ Stage.
Yang, Min; Zhang, Wen; Wu, Xiaojun; Wei, Dongtao; Zhao, Yixin; Zhao, Gang; Han, Xu; Zhang, Shunli
2016-01-01
For the analysis of interior geometry and property changes of a large-sized analog model during a loading or other medium (water or oil) injection process with a non-destructive way, a consecutive X-ray computed tomography (XCT) short-scan method is developed to realize an in-situ tomography imaging. With this method, the X-ray tube and detector rotate 270° around the center of the guide rail synchronously by switching positive and negative directions alternately on the way of translation until all the needed cross-sectional slices are obtained. Compared with traditional industrial XCTs, this method well solves the winding problems of high voltage cables and oil cooling service pipes during the course of rotation, also promotes the convenience of the installation of high voltage generator and cooling system. Furthermore, hardware costs are also significantly decreased. This kind of scanner has higher spatial resolution and penetrating ability than medical XCTs. To obtain an effective sinogram which matches rotation angles accurately, a structural similarity based method is applied to elimination of invalid projection data which do not contribute to the image reconstruction. Finally, on the basis of geometrical symmetry property of fan-beam CT scanning, a whole sinogram filling a full 360° range is produced and a standard filtered back-projection (FBP) algorithm is performed to reconstruct artifacts-free images.
NASA Astrophysics Data System (ADS)
Leroy, P. G.; Gaboreau, S.; Zimmermann, E.; Hoerdt, A.; Claret, F.; Huisman, J. A.; Tournassat, C.
2017-12-01
Low-pH concretes are foreseen to be used in nuclear waste disposal. Understanding their reactivity upon the considered host-rock is a key point. Evolution of mineralogy, porosity, pore size distribution and connectivity can be monitored in situ using geophysical methods such as induced polarization (IP). This electrical method consists of injecting an alternating current and measuring the resulting voltage in the porous medium. Spectral IP (SIP) measurements in the 10 mHz to 10 kHz frequency range were carried out on low-pH concrete and cement paste first in equilibrium and then in contact with a CO2 enriched and diluted water. We observed a very high resistivity of the materials (> 10 kOhm m) and a strong phase shift between injected current and measured voltage (superior to 40 mrad and above 100 mrad for frequencies > 100 Hz). These observations were modelled by considering membrane polarization with ion exclusion in nanopores whose surface electrical properties were computed using a basic Stern model of the cement/water interface. Pore size distribution was deduced from SIP and was compared to the measured ones. In addition, we observed a decrease of the material resistivity due to the dissolution of cement in contact with external water. Our results show that SIP may be a valuable method to monitor the mineralogy and the petrophysical and transport properties of cements.
NASA Astrophysics Data System (ADS)
Quevedo, H. J.; Valanju, P. M.; Bengtson, Roger D.
2007-06-01
In MBX, a small mirror machine with a radial electric field creates a rotating plasma that is expected to evolve, under certain conditions, into a self-organizing, detached toroidal plasma ring, a magnetofluid state. In the present stage of the experiment a low density plasma generated by microwaves (1 kW at 2.54 GHz) has been successfully rotated at supersonic speeds using a 1 kV-80 mF capacitor bank with currents ˜5 amps. Under these conditions the plasma presents high asymmetry in the current, plasma potential and consequently rotation with the voltage applied. A simple model is presented to account for these features.
Characterization and snubbing of a bidirectional MCT in a resonant ac link converter
NASA Technical Reports Server (NTRS)
Lee, Tony; Elbuluk, Malik E.; Zinger, Donald S.
1993-01-01
The MOS-Controlled Thyristor (MCT) is emerging as a powerful switch that combines the better characteristics of existing power devices. A study of switching stresses on an MCT switch under zero voltage resonant switching is presented. The MCT is used as a bidirectional switch in an ac/ac pulse density modulated inverter for induction motor drive. Current and voltage spikes are observed and analyzed with variations in the timing of the switching. Different snubber circuit configurations are under investigation to minimize the effect of these transients. The results will be extended to study and test the MCT switching in a medium power (5 hp) induction motor drive.
Battery charge control with temperature compensated voltage limit
NASA Technical Reports Server (NTRS)
Thierfelder, H. E.
1983-01-01
Battery charge control for orbiting spacecraft with mission durations from three to ten years, is a critical design feature that is discussed. Starting in 1974, the General Electric Space Systems Division designed, manufactured and tested battery systems for six different space programs. Three of these are geosynchronous missions, two are medium altitude missions and one is a near-earth mission. All six power subsystems contain nickel cadmium batteries which are charged using a temperature compensated voltage limit. This charging method was found to be successful in extending the life of nickel cadmium batteries in all three types of earth orbits. Test data and flight data are presented for each type of orbit.
A Multi-agent Based Cooperative Voltage and Reactive Power Control
NASA Astrophysics Data System (ADS)
Ishida, Masato; Nagata, Takeshi; Saiki, Hiroshi; Shimada, Ikuhiko; Hatano, Ryousuke
In order to maintain system voltage within the optimal range and prevent voltage instability phenomena before they occur, a variety of phase modifying equipment is installed in optimal locations throughout the power system network and a variety of methods of voltage reactive control are employed. The proposed system divided the traditional method to control voltage and reactive power into two sub problems; “voltage control” to adjust the secondary bus voltage of substations, and “reactive power control” to adjust the primary bus voltage. In this system, two types of agents are installed in substations in order to cooperate “voltage control” and “reactive power control”. In order to verify the performance of the proposed method, it has been applied to the model network system. The results confirm that our proposed method is able to control violent fluctuations in load.
A single supply biopotential amplifier.
Spinelli, E M; Martinez, N H; Mayosky, M A
2001-04-01
A biopotential amplifier for single supply operation is presented. It uses a Driven Right Leg Circuit (DRL) to drive the patient's body to a DC common mode voltage, centering biopotential signals with respect to the amplifier's input voltage range. This scheme ensures proper range operation when a single power supply is used. The circuit described is especially suited for low consumption, battery-powered applications, requiring a single battery and avoiding switching voltage inverters to achieve dual supplies. The generic circuit is described and, as an example, a biopotential amplifier with a gain of 60 dB and a DC input range of +/-200 mV was implemented using low power operational amplifiers. A Common Mode Rejection Ratio (CMRR) of 126 dB at 50 Hz was achieved without trimming.
A new low voltage level-shifted FVF current mirror with enhanced bandwidth and output resistance
NASA Astrophysics Data System (ADS)
Aggarwal, Bhawna; Gupta, Maneesha; Gupta, Anil Kumar; Sangal, Ankur
2016-10-01
This paper proposes a new high-performance level-shifted flipped voltage follower (LSFVF) based low-voltage current mirror (CM). The proposed CM utilises the low-supply voltage and low-input resistance characteristics of a flipped voltage follower (FVF) CM. In the proposed CM, level-shifting configuration is used to obtain a wide operating current range and resistive compensation technique is employed to increase the operating bandwidth. The peaking in frequency response is reduced by using an additional large MOSFET. Moreover, a very high output resistance (in GΩ range) along with low-current transfer error is achieved through super-cascode configuration for a wide current range (0-440 µA). Small signal analysis is carried out to show the improvements achieved at each step. The proposed CM is simulated by Mentor Graphics Eldospice in TSMC 0.18 µm CMOS, BSIM3 and Level 53 technology. In the proposed CM, a bandwidth of 6.1799 GHz, 1% settling time of 0.719 ns, input and output resistances of 21.43 Ω and 1.14 GΩ, respectively, are obtained with a single supply voltage of 1 V. The layout of the proposed CM has been designed and post-layout simulation results have been shown. The post-layout simulation results for Monte Carlo and temperature analysis have also been included to show the reliability of the CM against the variations in process parameters and temperature changes.
Series Connected Buck-Boost Regulator
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G. (Inventor)
2006-01-01
A Series Connected Buck-Boost Regulator (SCBBR) that switches only a fraction of the input power, resulting in relatively high efficiencies. The SCBBR has multiple operating modes including a buck, a boost, and a current limiting mode, so that an output voltage of the SCBBR ranges from below the source voltage to above the source voltage.
Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff
2010-01-01
NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.
An 1.4 ppm/°C bandgap voltage reference with automatic curvature-compensation technique
NASA Astrophysics Data System (ADS)
Zhou, Zekun; Yu, Hongming; Shi, Yue; Zhang, Bo
2017-12-01
A high-precision Bandgap voltage reference (BGR) with a novel curvature-compensation scheme is proposed in this paper. The temperature coefficient (TC) can be automatically optimized with a built-in adaptive curvature-compensation technique, which is realized in a digitization control way. Firstly, an exponential curvature compensation method is adopted to reduce the TC in a certain degree, especially in low temperature range. Then, the temperature drift of BGR in higher temperature range can be further minimized by dynamic zero-temperature-coefficient point tracking with temperature changes. With the help of proposed adaptive signal processing, the output voltage of BGR can approximately maintain zero TC in a wider temperature range. Experiment results of the BGR proposed in this paper, which is implemented in 0.35-μm BCD process, illustrate that the TC of 1.4ppm/°C is realized under the power supply voltage of 3.6V and the power supply rejection of the proposed circuit is -67dB.
Skinner, L.V.
1959-09-29
A narrow-band frequency-modulated distance measuring system is described. Reflected wave energy is fed into a mixer circuit together with a direct wave energy portion from the transmitter. These two input signals are out of phase by an amount proportional to the distance. Two band pass filter s select two different frequency components (both multiples of transmitter modulation frequency) from the beat frequency. These component frequencies are rectified and their voltage values, which are representative of those frequencies, are compared. It has been found that these voltages will have equal values producing a null output only when an object attains a preselected distance. The null output may be utilized to operate a normally closed relay, for example. At other ranges the voltage comparison will yield a voltage sufficient to keep the relay energized. Ranges may be changed by varying the degree of modulation of the transmitter carrier frequency. A particular advantage of this system lies in its high degree of accuracy throughout a range of distances approaching zero as a minimum.
Surface interactions and high-voltage current collection
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.
1985-01-01
Spacecraft of the future will be larger and have higher power requirements than any flown to date. For several reasons, it is desirable to operate a high power system at high voltage. While the optimal voltages for many future missions are in the range 500 to 5000 volts, the highest voltage yet flown is approximately 100 volts. The NASCAP/LEO code is being developed to embody the phenomenology needed to model the environmental interactions of high voltage spacecraft. Some plasma environment are discussed. The treatment of the surface conductivity associated with emitted electrons and some simulations by NASCAP/LEO of ground based high voltage interaction experiments are described.
Power conditioning using dynamic voltage restorers under different voltage sag types.
Saeed, Ahmed M; Abdel Aleem, Shady H E; Ibrahim, Ahmed M; Balci, Murat E; El-Zahab, Essam E A
2016-01-01
Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type.
Power conditioning using dynamic voltage restorers under different voltage sag types
Saeed, Ahmed M.; Abdel Aleem, Shady H.E.; Ibrahim, Ahmed M.; Balci, Murat E.; El-Zahab, Essam E.A.
2015-01-01
Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type. PMID:26843975
Structural properties of medium-range order in CuNiZr alloy
NASA Astrophysics Data System (ADS)
Gao, Tinghong; Hu, Xuechen; Xie, Quan; Li, Yidan; Ren, Lei
2017-10-01
The evolution characteristics of icosahedral clusters during the rapid solidification of Cu50Ni10Zr40 alloy at cooling rate of 1011 K s-1 are investigated based on molecular dynamics simulations. The structural properties of the short-range order and medium-range order of Cu50Ni10Zr40 alloy are analyzed by several structural characterization methods. The results reveal that the icosahedral clusters are the dominant short-range order structure, and that they assemble themselves into medium-range order by interpenetrating connections. The different morphologies of medium-range order are found in the system and include chain, triangle, tetrahedral, and their combination structures. The tetrahedral morphologies of medium-range order have excellent structural stability with decreasing temperature. The Zr atoms are favorable to form longer chains, while the Cu atoms are favorable to form shorter chains in the system. Those chains interlocked with each other to improve the structural stability.
NASA Technical Reports Server (NTRS)
Kessler, L. L.
1976-01-01
Constant-current source creates drive current independent of input-voltage variations, 50% reduction in power loss in base drive circuitry, maintains essentially constant charge rate, and improves rise-time consistency over input voltage range.
A 155-dB Dynamic Range Current Measurement Front End for Electrochemical Biosensing.
Dai, Shanshan; Perera, Rukshan T; Yang, Zi; Rosenstein, Jacob K
2016-10-01
An integrated current measurement system with ultra wide dynamic range is presented and fabricated in a 180-nm CMOS technology. Its dual-mode design provides concurrent voltage and frequency outputs, without requiring an external clock source. An integrator-differentiator core provides a voltage output with a noise floor of 11.6 fA/ [Formula: see text] and a -3 dB cutoff frequency of 1.4 MHz. It is merged with an asynchronous current-to-frequency converter, which generates an output frequency linearly proportional to the input current. Together, the voltage and frequency outputs yield a current measurement range of 155 dB, spanning from 204 fA (100 Hz) or 1.25 pA (10 kHz) to 11.6 μA. The proposed architecture's low noise, wide bandwidth, and wide dynamic range make it ideal for measurements of highly nonlinear electrochemical and electrophysiological systems.
Shin, Hee Jeong; Kim, Song Soo; Lee, Jae-Hwan; Park, Jae-Hyeong; Jeong, Jin-Ok; Jin, Seon Ah; Shin, Byung Seok; Shin, Kyung-Sook; Ahn, Moonsang
2016-06-01
To evaluate the feasibility of low-concentration contrast medium (CM) for vascular enhancement, image quality, and radiation dose on computed tomography aortography (CTA) using a combined low-tube-voltage and iterative reconstruction (IR) technique. Ninety subjects underwent dual-source CT (DSCT) operating in dual-source, high-pitch mode. DSCT scans were performed using both high-concentration CM (Group A, n = 50; Iomeprol 400) and low-concentration CM (Group B, n = 40; Iodixanol 270). Group A was scanned using a reference tube potential of 120 kVp and 120 reference mAs under automatic exposure control with IR. Group B was scanned using low-tube-voltage (80 or 100 kVp if body mass index ≥25 kg/m(2)) at a fixed current of 150 mAs, along with IR. Images of the two groups were compared regarding attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), iodine load, and radiation dose in various locations of the CTA. In comparison between Group A and Group B, the average mean attenuation (454.73 ± 86.66 vs. 515.96 ± 101.55 HU), SNR (25.28 ± 4.34 vs. 31.29 ± 4.58), and CNR (21.83 ± 4.20 vs. 27.55 ± 4.81) on CTA in Group B showed significantly greater values and significantly lower image noise values (18.76 ± 2.19 vs. 17.48 ± 3.34) than those in Group A (all Ps < 0.05). Homogeneous contrast enhancement from the ascending thoracic aorta to the infrarenal abdominal aorta was significantly superior in Group B (P < 0.05). Low-concentration CM and a low-tube-voltage combination technique using IR is a feasible method, showing sufficient contrast enhancement and image quality.
A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes
Lee, Inhee; Sylvester, Dennis; Blaauw, David
2016-01-01
This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd − |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21–60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC–DC converter. The converter is 11%–56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO. PMID:27546899
A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes.
Lee, Inhee; Sylvester, Dennis; Blaauw, David
2016-03-01
This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from V thn to [ V dd - | V thp |]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21-60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC-DC converter. The converter is 11%-56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.
Lazarou, Stavros; Vita, Vasiliki; Ekonomou, Lambros
2018-02-01
The data of this article represent a real electricity distribution network on twenty kilovolts (20 kV) at medium voltage level of the Hellenic electricity distribution system [1]. This network has been chosen as suitable for smart grid analysis. It demonstrates moderate penetration of renewable sources and it has capability in part of time for reverse power flows. It is suitable for studies of load aggregation, storage, demand response. It represents a rural line of fifty-five kilometres (55 km) total length, a typical length for this type. It serves forty-five (45) medium to low voltage transformers and twenty-four (24) connections to photovoltaic plants. The total installed load capacity is twelve mega-volt-ampere (12 MVA), however the maximum observed load is lower. The data are ready to perform load flow simulation on Matpower [2] for the maximum observed load power on the half production for renewables. The simulation results and processed data for creating the source code are also provided on the database available at http://dx.doi.org/10.7910/DVN/1I6MKU.
Furuta, Sadayoshi; Watanabe, Lisa; Doi, Seira; Horiuchi, Hiroshi; Matsumoto, Kenjiro; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru
2012-02-01
Subdiaphragmatic vagal dysfunction causes chronic pain. To verify whether this chronic pain is accompanied by enhanced peripheral nociceptive sensitivity, we evaluated primary afferent neuronal excitability in subdiaphragmatic vagotomized (SDV) rats. SDV rats showed a decrease in the electrical stimuli-induced hind limb-flexion threshold at 250 Hz, but showed no similar effect at 5 or 2000 Hz, which indicated that lumbar primary afferent Aδ sensitivity was enhanced in SDV rats. The whole-cell patch-clamp technique also revealed the hyper-excitability of acutely dissociated medium-sized lumbar dorsal root ganglion (DRG) neurons isolated from SDV rats. The contribution of changes in voltage-dependent potassium (Kv) channels was assessed, and transient A-type K(+) (I(A) ) current density was apparently decreased. Moreover, Kv4.3 immunoreactivity in medium-sized DRG neurons was significantly reduced in SDV rats compared to sham. These results indicate that SDV causes hyper-excitability of lumbar primary Aδ afferent neurons, which may be induced along with suppressing I(A) currents via the decreased expression of Kv4.3. Thus, peripheral Aδ neuroplasticity may contribute to the chronic lower limb pain caused by SDV. Copyright © 2011 Wiley Periodicals, Inc.
Single Event Transients in Voltage Regulators for FPGA Power Supply Applications
NASA Technical Reports Server (NTRS)
Poivey, Christian; Sanders, Anthony; Kim, Hak; Phan, Anthony; Forney, Jim; LaBel, Kenneth A.; Karsh, Jeremy; Pursley, Scott; Kleyner, Igor; Katz, Richard
2006-01-01
As with other bipolar analog devices, voltage regulators are known to be sensitive to single event transients (SET). In typical applications, large output capacitors are used to provide noise immunity. Therefore, since SET amplitude and duration are generally small, they are often of secondary importance due to this capacitance filtering. In low voltage applications, however, even small SET are a concern. Over-voltages may cause destructive conditions. Under-voltages may cause functional interrupts and may also trigger electrical latchup conditions. In addition, internal protection circuits which are affected by load as well as internal thermal effects can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. In the case of FPGA power supplies applications, SETS are critical. For example, in the case of Actel FPGA RTAX family, core power supply voltage is 1.5V. Manufacturer specifies an absolute maximum rating of 1.6V and recommended operating conditions between 1.425V and 1.575V. Therefore, according to the manufacturer, any transient of amplitude greater than 75 mV can disrupt normal circuit functions, and overvoltages greater than 100 mV may damage the FPGA. We tested five low dropout voltage regulators for SET sensitivity under a large range of circuit application conditions.
The influence of lightning induced voltage on the distribution power line polymer insulators.
Izadi, Mahdi; Abd Rahman, Muhammad Syahmi; Ab-Kadir, Mohd Zainal Abidin; Gomes, Chandima; Jasni, Jasronita; Hajikhani, Maryam
2017-01-01
Protection of medium voltage (MV) overhead lines against the indirect effects of lightning is an important issue in Malaysia and other tropical countries. Protection of these lines against the indirect effects of lightning is a major concern and can be improved by several ways. The choice of insulator to be used for instance, between the glass, ceramic or polymer, can help to improve the line performance from the perspective of increasing the breakdown strength. In this paper, the electrical performance of a 10 kV polymer insulator under different conditions for impulse, weather and insulator angle with respect to a cross-arm were studied (both experimental and modelling) and the results were discussed accordingly. Results show that the weather and insulator angle (with respect to the cross-arm) are surprisingly influenced the values of breakdown voltage and leakage current for both negative and positive impulses. Therefore, in order to select a proper protection system for MV lines against lightning induced voltage, consideration of the local information concerning the weather and also the insulator angles with respect to the cross-arm are very useful for line stability and performance.
The influence of lightning induced voltage on the distribution power line polymer insulators
Ab-Kadir, Mohd Zainal Abidin; Gomes, Chandima; Jasni, Jasronita; Hajikhani, Maryam
2017-01-01
Protection of medium voltage (MV) overhead lines against the indirect effects of lightning is an important issue in Malaysia and other tropical countries. Protection of these lines against the indirect effects of lightning is a major concern and can be improved by several ways. The choice of insulator to be used for instance, between the glass, ceramic or polymer, can help to improve the line performance from the perspective of increasing the breakdown strength. In this paper, the electrical performance of a 10 kV polymer insulator under different conditions for impulse, weather and insulator angle with respect to a cross-arm were studied (both experimental and modelling) and the results were discussed accordingly. Results show that the weather and insulator angle (with respect to the cross-arm) are surprisingly influenced the values of breakdown voltage and leakage current for both negative and positive impulses. Therefore, in order to select a proper protection system for MV lines against lightning induced voltage, consideration of the local information concerning the weather and also the insulator angles with respect to the cross-arm are very useful for line stability and performance. PMID:28234930
Design of a Miniaturized RAD Hard Point-of-Load Converter
NASA Astrophysics Data System (ADS)
Lofgren, Henrik; Landstrom, Sven; Gunnarsson, Marcus; Hagstrom, Maria
2014-08-01
As an ARTES 5.2 activity, a miniaturized radiation hardened Point-Of-Load converter (uPOL) has been developed. Several different design options have been evaluated before the final system level design was selected. The selected topology is a buck regulator with synchronous rectification utilizing peak current mode control. The PWM logic is designed using discrete electronics. Inside the POL converter package, an independent latching current limiter and clamping over- voltage protection are included as protection devices. The converter has an input voltage range of 4.8-6.2V, output voltage range of 1.2-3.5V and an output current of 0-3.5A. The final converter will be a metal packaged hybrid built on LTCC technology with an operating case temperature range of -40 to +85 °C.
High-frequency high-voltage high-power DC-to-DC converters
NASA Technical Reports Server (NTRS)
Wilson, T. G.; Owen, H. A.; Wilson, P. M.
1982-01-01
A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.
High-frequency high-voltage high-power DC-to-DC converters
NASA Astrophysics Data System (ADS)
Wilson, T. G.; Owen, H. A.; Wilson, P. M.
1982-09-01
A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.
Commercialization of Medium Voltage HTS Triax TM Cable Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoll, David
2012-12-31
The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed themore » market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.« less
Organic transistors making use of room temperature ionic liquids as gating medium
NASA Astrophysics Data System (ADS)
Hoyos, Jonathan Javier Sayago
The ability to couple ionic and electronic transport in organic transistors, based on pi conjugated organic materials for the transistor channel, can be particularly interesting to achieve low voltage transistor operation, i.e. below 1 V. The operation voltage in typical organic transistors based on conventional dielectrics (200 nm thick SiO2) is commonly higher than 10 V. Electrolyte-gated (EG) transistors, i.e. employing an electrolyte as the gating medium, permit current modulations of several orders of magnitude at relatively low gate voltages thanks to the exceptionally high capacitance at the electrolyte/transistor channel interface, in turn due to the low thickness (ca. 3 nm) of the electrical double layers forming at the electrolyte/semiconductor interface. Electrolytes based on room temperature ionic liquids (RTILs) are promising in EG transistor applications for their high electrochemical stability and good ionic conductivity. The main motivation behind this work is to achieve low voltage operation in organic transistors by making use of RTILs as gating medium. First we demonstrate the importance of the gate electrode material in the EG transistor performance. The use of high surface area carbon gate electrodes limits undesirable electrochemical processes and renders unnecessary the presence of a reference electrode to monitor the channel potential. This was demonstrated using activated carbon as gate electrode, the electronic conducting polymer MEH-PPV, poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] channel material, and the ionic liquid [EMIM][TFSI] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), as gating medium. Using high surface area gate electrodes resulted in sub-1 V operation and charge carrier mobilities of (1.0 +/- 0.5) x 10-2 cm2V -1s-1. A challenge in the field of EG transistors is to decrease their response time, a consequence of the slow ion redistribution in the transistor channel upon application of electric biases. We systematically investigated EG transistors employing RTILs belonging to the same family, i.e. based on a common anion and different cations. The transistor characteristics showed a limited cation influence in establishing the p-type doping of the conducting polymer. Interestingly, we observed that the transistor response time depends on at least two processes: the redistribution of ions from the electrolyte into the transistor channel, affecting the gate-source current (I gs); and the redistribution of charges in the transistor channel, affecting the drain-source current (Ids), as a function of time. The two processes have different rates, with the latter being the slowest. Incorporating propylene carbonate in the electrolyte proved to be an effective solution to increase the ionic conductivity, to lower the viscosity and, consequently, to reduce the transistor response time. Finally, we were able to demonstrate a multifunctional device integrating the transistor logic function with that of energy storage in a supercapacitor: the TransCap. The polymer/electrolyte/carbon vertical stacking of the EG transistor features the cell configuration of a hybrid supercapacitor. Supercapacitors are high specific power systems that, for their ability to store/deliver charge within short times may outperform batteries in applications having high power demand. When the TransCap is ON (open transistor channel), the polymer and the carbon gate electrodes store charge (Q) at a given Vgs, hence the stored energy equals Q˙V gs. When the TransCap is switched OFF, the channel and the gate are discharged and the energy can be delivered back to power other electronic components. EG transistors, making use of activated carbon as gate electrode and different RTILs as well as RTIL solvent mixtures as electrolyte gating medium, are interesting towards low voltage printable electronics. The high capacitance at the interface between the electrolyte and the transistor channel enables energy storage within the EG transistor architecture.
Multi-MA reflex triode research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanekamp, Stephen Brian; Commisso, Robert J.; Weber, Bruce V.
The Reflex Triode can efficiently produce and transmit medium energy (10-100 keV) x-rays. Perfect reflexing through thin converter can increase transmission of 10-100 keV x-rays. Gamble II experiment at 1 MV, 1 MA, 60 ns - maximum dose with 25 micron tantalum. Electron orbits depend on the foil thickness. Electron orbits from LSP used to calculate path length inside tantalum. A simple formula predicts the optimum foil thickness for reflexing converters. The I(V) characteristics of the diode can be understood using simple models. Critical current dominates high voltage triodes, bipolar current is more important at low voltage. Higher current (2.5more » MA), lower voltage (250 kV) triodes are being tested on Saturn at Sandia. Small, precise, anode-cathode gaps enable low impedance operation. Sample Saturn results at 2.5 MA, 250 kV. Saturn dose rate could be about two times greater. Cylindrical triode may improve x-ray transmission. Cylindrical triode design will be tested at 1/2 scale on Gamble II. For higher current on Saturn, could use two cylindrical triodes in parallel. 3 triodes in parallel require positive polarity operation. 'Triodes in series' would improve matching low impedance triodes to generator. Conclusions of this presentation are: (1) Physics of reflex triodes from Gamble II experiments (1 MA, 1 MV) - (a) Converter thickness 1/20 of CSDA range optimizes x-ray dose; (b) Simple model based on electron orbits predicts optimum thickness from LSP/ITS calculations and experiment; (c) I(V) analysis: beam dynamics different between 1 MV and 250 kV; (2) Multi-MA triode experiments on Saturn (2.5 MA, 250 kV) - (a) Polarity inversion in vacuum, (b) No-convolute configuration, accurate gap settings, (c) About half of current produces useful x-rays, (d) Cylindrical triode one option to increase x-ray transmission; and (3) Potential to increase Saturn current toward 10 MA, maintaining voltage and outer diameter - (a) 2 (or 3) cylindrical triodes in parallel, (b) Triodes in series to improve matching, (c) These concepts will be tested first on Gamble II.« less
The expectation of applying IR guidance in medium range air-to-air missiles
NASA Astrophysics Data System (ADS)
Li, Lijuan; Liu, Ke
2016-10-01
IR guidance has been widely used in near range dogfight air-to-air missiles while radar guidance is dominant in medium and long range air-to-air missiles. With the development of stealth airplanes and advanced electronic countermeasures, radar missiles have met with great challenges. In this article, the advantages and potential problems of applying IR guidance in medium range air-to-air missiles are analyzed. Approaches are put forward to solve the key technologies including depressing aerodynamic heating, increasing missiles' sensitivity and acquiring target after launch. IR medium range air-to-air missiles are predicted to play important role in modern battle field.
Ball, Don G.
1992-01-01
A charge regulation circuit provides regulation of an unregulated voltage supply in the range of 0.01%. The charge regulation circuit is utilized in a preferred embodiment in providing regulated voltage for controlling the operation of a laser.
The virtual infinite capacitor
NASA Astrophysics Data System (ADS)
Yona, Guy; Weiss, George
2017-01-01
We define the virtual infinite capacitor (VIC) as a nonlinear capacitor that has the property that for an interval of the charge Q (the operating range), the voltage V remains constant. We propose a lossless approximate realisation for the VIC as a simple circuit with two controllers: a voltage controller acts fast to maintain the desired terminal voltage, while a charge controller acts more slowly and maintains the charge Q in the desired operating range by influencing the incoming current. The VIC is useful as a filter capacitor for various applications, for example, power factor compensators (PFC), as we describe. In spite of using small capacitors, the VIC can replace a very large capacitor in applications that do not require substantial energy storage. We give simulation results for a PFC working in critical conduction mode with a VIC for output voltage filtering.
Development of a Piezoelectric Vacuum Sensing Component for a Wide Pressure Range
Wang, Bing-Yu; Hsieh, Fan-Chun; Lin, Che-Yu; Chen, Shao-En; Chen, Fong-Zhi; Wu, Chia-Che
2014-01-01
In this study, we develop a clamped–clamped beam-type piezoelectric vacuum pressure sensing element. The clamped–clamped piezoelectric beam is composed of a PZT layer and a copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range of pressure, from 6.5 × 10−6 to 760 Torr. The experimental results showed that the output voltage is inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from the output voltage. PMID:25421736
AC motor and generator requirements for isolated WECS
NASA Technical Reports Server (NTRS)
Park, G. L.; Mccleer, P. J.; Hanson, B.; Weinberg, B.; Krauss, O.
1985-01-01
After surveying electrically driven loads used on productive farms, the investigators chose three pumps for testing at voltages and frequencies far outside the normal operating range. These loads extract and circulate water and move heat via air, and all are critical to farm productivity. The object was to determine the envelope of supply voltage and frequency over which these loads would operate stably for time intervals under 1 hour. This information is among that needed to determine the feasibility of supplying critical loads, in case of a utility outage, from a wind driven alternator whose output voltage and frequency will vary dramatically in most continental wind regimes. Other related work is surveyed. The salient features and limitations of the test configurations used and the data reduction are described. The development of simulation models suitable for a small computer are outlined. The results are primarily displayed on the voltage frequency plane with the general conclusion that the particular pump models considered will operate over the range of 50 to 90 Hz and a voltage band which starts below rated, decreases as frequency decreases, and is limited on the high side by excessive motor heating. For example, centrifugal pump operating voltage ranges as extensive .4 to 1.4 appear possible. Particular problems with starting, stalling due to lack of motor torque, high speed cavitation, and likely overheating are addressed in a listing of required properties for wind driven alternators and their controllers needed for use in the isolated or stand alone configuration considered.
Spectral optimization for micro-CT.
Hupfer, Martin; Nowak, Tristan; Brauweiler, Robert; Eisa, Fabian; Kalender, Willi A
2012-06-01
To optimize micro-CT protocols with respect to x-ray spectra and thereby reduce radiation dose at unimpaired image quality. Simulations were performed to assess image contrast, noise, and radiation dose for different imaging tasks. The figure of merit used to determine the optimal spectrum was the dose-weighted contrast-to-noise ratio (CNRD). Both optimal photon energy and tube voltage were considered. Three different types of filtration were investigated for polychromatic x-ray spectra: 0.5 mm Al, 3.0 mm Al, and 0.2 mm Cu. Phantoms consisted of water cylinders of 20, 32, and 50 mm in diameter with a central insert of 9 mm which was filled with different contrast materials: an iodine-based contrast medium (CM) to mimic contrast-enhanced (CE) imaging, hydroxyapatite to mimic bone structures, and water with reduced density to mimic soft tissue contrast. Validation measurements were conducted on a commercially available micro-CT scanner using phantoms consisting of water-equivalent plastics. Measurements on a mouse cadaver were performed to assess potential artifacts like beam hardening and to further validate simulation results. The optimal photon energy for CE imaging was found at 34 keV. For bone imaging, optimal energies were 17, 20, and 23 keV for the 20, 32, and 50 mm phantom, respectively. For density differences, optimal energies varied between 18 and 50 keV for the 20 and 50 mm phantom, respectively. For the 32 mm phantom and density differences, CNRD was found to be constant within 2.5% for the energy range of 21-60 keV. For polychromatic spectra and CMs, optimal settings were 50 kV with 0.2 mm Cu filtration, allowing for a dose reduction of 58% compared to the optimal setting for 0.5 mm Al filtration. For bone imaging, optimal tube voltages were below 35 kV. For soft tissue imaging, optimal tube settings strongly depended on phantom size. For 20 mm, low voltages were preferred. For 32 mm, CNRD was found to be almost independent of tube voltage. For 50 mm, voltages larger than 50 kV were preferred. For all three phantom sizes stronger filtration led to notable dose reduction for soft tissue imaging. Validation measurements were found to match simulations well, with deviations being less than 10%. Mouse measurements confirmed simulation results. Optimal photon energies and tube settings strongly depend on both phantom size and imaging task at hand. For in vivo CE imaging and density differences, strong filtration and voltages of 50-65 kV showed good overall results. For soft tissue imaging of animals the size of a rat or larger, voltages higher than 65 kV allow to greatly reduce scan times while maintaining dose efficiency. For imaging of bone structures, usage of only minimum filtration and low tube voltages of 40 kV and below allow exploiting the high contrast of bone at very low energies. Therefore, a combination of two filtrations could prove beneficial for micro-CT: a soft filtration allowing for bone imaging at low voltages, and a variable stronger filtration (e.g., 0.2 mm Cu) for soft tissue and contrast-enhanced imaging. © 2012 American Association of Physicists in Medicine.
Arefin, Md Shamsul; Redouté, Jean-Michel; Yuce, Mehmet Rasit
2016-04-01
This paper presents an interface circuit for capacitive and inductive MEMS biosensors using an oscillator and a charge pump based frequency-to-voltage converter. Frequency modulation using a differential crossed coupled oscillator is adopted to sense capacitive and inductive changes. The frequency-to-voltage converter is designed with a negative feedback system and external controlling parameters to adjust the sensitivity, dynamic range, and nominal point for the measurement. The sensitivity of the frequency-to-voltage converter is from 13.28 to 35.96 mV/MHz depending on external voltage and charging current. The sensitivity ranges of the capacitive and inductive interface circuit are 17.08 to 54.4 mV/pF and 32.11 to 82.88 mV/mH, respectively. A capacitive MEMS based pH sensor is also connected with the interface circuit to measure the high acidic gastric acid throughout the digestive tract. The sensitivity for pH from 1 to 3 is 191.4 mV/pH with 550 μV(pp) noise. The readout circuit is designed and fabricated using the UMC 0.18 μm CMOS technology. It occupies an area of 0.18 mm (2) and consumes 11.8 mW.
Comparative High Voltage Impulse Measurement
FitzPatrick, Gerald J.; Kelley, Edward F.
1996-01-01
A facility has been developed for the determination of the ratio of pulse high voltage dividers over the range from 10 kV to 300 kV using comparative techniques with Kerr electro-optic voltage measurement systems and reference resistive voltage dividers. Pulse voltage ratios of test dividers can be determined with relative expanded uncertainties of 0.4 % (coverage factor k = 2 and thus a two standard deviation estimate) or less using the complementary resistive divider/Kerr cell reference systems. This paper describes the facility and specialized procedures used at NIST for the determination of test voltage divider ratios through comparative techniques. The error sources and special considerations in the construction and use of reference voltage dividers to minimize errors are discussed, and estimates of the measurement uncertainties are presented. PMID:27805083
New Insights into the Operating Voltage of Aqueous Supercapacitors.
Yu, Minghao; Lu, Yongzhuang; Zheng, Haibing; Lu, Xihong
2018-03-12
The main limitation of aqueous supercapacitors (SCs) lies in their narrow operating voltages, especially when compared with organic SCs. Fundamental understanding of factors relevant to the operating voltage helps providing guidance for the assembly of high-voltage aqueous SCs. In this regard, this concept analyzes the deciding factors for the operating voltage of aqueous SCs. Strategies applied to expand the operating voltage are summarized and discussed from the aspects of electrolyte, electrode, and asymmetric structure. Dynamic factors associated with water electrolysis and maximally using the available potential ranges of electrodes are particularly emphasized. Finally, other promising approaches that have not been explored and their challenges are also elaborated, hoping to provide more insights for the design of high-voltage aqueous SCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
50 KW Class Krypton Hall Thruster Performance
NASA Technical Reports Server (NTRS)
Jacobson, David T.; Manzella, David H.
2003-01-01
The performance of a 50-kilowatt-class Hall thruster designed for operation on xenon propellant was measured using kryton propellant. The thruster was operated at discharge power levels ranging from 6.4 to 72.5 kilowatts. The device produced thrust ranging from 0.3 to 2.5 newtons. The thruster was operated at discharge voltages between 250 and 1000 volts. At the highest anode mass flow rate and discharge voltage and assuming a 100 percent singly charged condition, the discharge specific impulse approached the theoretical value. Discharge specific impulse of 4500 seconds was demonstrated at a discharge voltage of 1000 volts. The peak discharge efficiency was 64 percent at 650 volts.
Ion selectivity of the Vibrio alginolyticus flagellar motor.
Liu, J Z; Dapice, M; Khan, S
1990-01-01
The marine bacterium, Vibrio alginolyticus, normally requires sodium for motility. We found that lithium will substitute for sodium. In neutral pH buffers, the membrane potential and swimming speed of glycolyzing bacteria reached maximal values as sodium or lithium concentration was increased. While the maximal potentials obtained in the two cations were comparable, the maximal swimming speed was substantially lower in lithium. Over a wide range of sodium concentration, the bacteria maintained an invariant sodium electrochemical potential as determined by membrane potential and intracellular sodium measurements. Over this range the increase of swimming speed took Michaelis-Menten form. Artificial energization of swimming motility required imposition of a voltage difference in concert with a sodium pulse. The cation selectivity and concentration dependence exhibited by the motile apparatus depended on the viscosity of the medium. In high-viscosity media, swimming speeds were relatively independent of either ion type or concentration. These facts parallel and extend observations of the swimming behavior of bacteria propelled by proton-powered flagella. In particular, they show that ion transfers limit unloaded motor speed in this bacterium and imply that the coupling between ion transfers and force generation must be fairly tight. PMID:2394685
Nickel-Hydrogen Battery Fault Clearing at Low State of Charge
NASA Technical Reports Server (NTRS)
Lurie, C.
1997-01-01
Fault clearing currents were achieved and maintained at discharge rates from C/2 to C/3 at high and low states of charge. The fault clearing plateau voltage is strong function of: discharge current, and voltage-prior-to-the-fault-clearing-event and a weak function of state of charge. Voltage performance, for the range of conditions reported, is summarized.
Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor
Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando
2003-09-02
An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.
Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor
Krauss, Alan R [Naperville, IL; Gruen, Dieter M [Downers Grove, IL; Pellin, Michael J [Naperville, IL; Auciello, Orlando [Bolingbrook, IL
2002-07-23
An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.
Unexpected Voltage Fade in LMR-NMC Oxides Cycled below the “Activation” Plateau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Bareno, Javier; Bettge, Martin
2015-01-01
A common feature of lithium-excess layered oxides, nominally of composition xLi 2MnO 3•(1-x)LiMO 2 (M = transition metal) is a high-voltage plateau (~4.5 V vs. Li/Li +) in their capacity-voltage profile during the first delithiation cycle. This plateau is believed to result from activation of the Li 2MnO 3 component, which makes additional lithium available for electrochemical cycling. However, oxides cycled beyond this activation plateau are known to display voltage fade which is a continuous reduction in their equilibrium potential. In this article we show that these oxides display gradual voltage fade even on electrochemical cycling in voltage ranges wellmore » below the activation plateau. The average fade is ~0.08 mV-cycle-1 for Li 1.2Ni 0.15Mn 0.55Co 0.1O 2 vs. Li cells after 20 cycles in the 2–4.1 V range at 55°C; a ~54 mV voltage hysteresis, expressed as the difference in average cell voltage between charge and discharge cycles, is also observed. The voltage fade results from a gradual accumulation of local spinel environments in the crystal structure. Some of these spinel sites result from lithium deficiencies during oxide synthesis and are likely to be at the particle surfaces; other sites result from the migration of transition metal atoms in the partially-delithiated LiMO 2 component into the lithium planes during electrochemical cycling. The observed rate of voltage fade depends on a combination of factors that includes the phase equilibrium between the layered and spinel components and the kinetics of transition metal migration.« less
Electron transport in Bi2Se3 ultra thin films
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Bernhart, Alexander M.; Bobisch, Christian A.
2018-02-01
We studied the electronic transport properties of a 4 QL thin Bi2Se3 film in the hybridized phase on Si(111) by scanning tunneling potentiometry. When a transverse voltage is applied, the film exhibits a homogeneous electric field on the nm scale. In addition, thermovoltage signals with lateral nm variations are found which result from sample heating by the transverse current. The thermovoltage signals are directly correlated to morphological structures on the surface, i.e. step edges, and indicate a lateral variation of the local density of states at the Bi2Se3 surface. No discernible voltage drops appear at the surface so that the whole film serves as a current carrying medium and scattering at surface defects is less important.
Note: a 3-stage stacked Blumlein using ceramic for energy storage.
Wang, Songsong; Shu, Ting; Yang, Hanwu
2013-02-01
We have developed a novel stacked Blumlein with high compactness by using ceramic for energy storage. The total volume of this stacked Blumlein is only 320 × 100 × 185 mm(3). By triggering 3 spark gaps simultaneously, the developed stacked Blumlein is capable of producing a rectangular pulse with a voltage multiplication. A 32 ns quasi-rectangular pulse of 11.4 kV is measured across a 10 Ω dummy load when the 3-stage stacked Blumlein is DC charged up to 4 kV. The voltage multiplication is about 2.9, and the energy efficiency is about 96%. Simulation results indicate that vacuum or transformer oil is appropriate to be the insulation medium for the stacked Blumlein.
Electrowetting-driven spreading and jumping of drops in oil
NASA Astrophysics Data System (ADS)
Hong, Jiwoo; Lee, Sang Joon
2013-11-01
Electrowetting-based practical applications include digital microfluidics, liquid lenses, and reflective displays. Most of them are performed in water/oil system, because oil medium reduces the contact-angle hysteresis and prevents drop evaporation. In this study, the effects of drop volume, oil viscosity, and applied voltage on the dynamic behaviors of spreading drops, such as transition of spreading pattern and response time, are investigated. Interestingly, jumping phenomena of drops are observed in oil when the applied voltage is turned off after reaching the electrowetted equilibrium radius of drops. A numerical model to predict the transient behavior of jumping drops is formulated based on the phase-field method. The numerical results for the transient deformation of jumping drops show quantitative agreement with the experimental results.
Note: A 3-stage stacked Blumlein using ceramic for energy storage
NASA Astrophysics Data System (ADS)
Wang, Songsong; Shu, Ting; Yang, Hanwu
2013-02-01
We have developed a novel stacked Blumlein with high compactness by using ceramic for energy storage. The total volume of this stacked Blumlein is only 320 × 100 × 185 mm3. By triggering 3 spark gaps simultaneously, the developed stacked Blumlein is capable of producing a rectangular pulse with a voltage multiplication. A 32 ns quasi-rectangular pulse of 11.4 kV is measured across a 10 Ω dummy load when the 3-stage stacked Blumlein is DC charged up to 4 kV. The voltage multiplication is about 2.9, and the energy efficiency is about 96%. Simulation results indicate that vacuum or transformer oil is appropriate to be the insulation medium for the stacked Blumlein.
Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S
2016-02-21
The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.
Increasing the dynamic range of CMOS photodiode imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce R. (Inventor)
2007-01-01
A multiple-step reset process and circuit for resetting a voltage stored on a photodiode of an imaging device. A first stage of the reset occurs while a source and a drain of a pixel source-follower transistor are held at ground potential and the photodiode and a gate of the pixel source-follower transistor are charged to an initial reset voltage having potential less that of a supply voltage. A second stage of the reset occurs after the initial reset voltage is stored on the photodiode and the gate of the pixel source-follower transistor and the source and drain voltages of the pixel source-follower transistor are released from ground potential thereby allowing the source and drain voltages of the pixel source-follower transistor to assume ordinary values above ground potential and resulting in a capacitive feed-through effect that increases the voltage on the photodiode to a value greater than the initial reset voltage.
Sabir, Hemmen; Wood, Thomas; Gill, Hannah; Liu, Xun; Dingley, John; Thoresen, Marianne
2016-04-15
Changes in electroencephalography (EEG) voltage range are used to monitor the depth of anaesthesia, as well as predict outcome after hypoxia-ischaemia in neonates. Xenon is being investigated as a potential neuroprotectant after hypoxic-ischaemic brain injury, but the effect of Xenon on EEG parameters in children or neonates is not known. This study aimed to examine the effect of 50% inhaled Xenon on background amplitude-integrated EEG (aEEG) activity in sedated healthy newborn pigs. Five healthy newborn pigs, receiving intravenous fentanyl sedation, were ventilated for 24 h with 50%Xenon, 30%O2 and 20%N2 at normothermia. The upper and lower voltage-range of the aEEG was continuously monitored together with cardiovascular parameters throughout a 1 h baseline period with fentanyl sedation only, followed by 24 h of Xenon administration. The median (IQR) upper and lower aEEG voltage during 1 h baseline was 48.0 μV (46.0-50.0) and 25.0 μV (23.0-26.0), respectively. The median (IQR) aEEG upper and lower voltage ranges were significantly depressed to 21.5 μV (20.0-26.5) and 12.0 μV (12.0-16.5) from 10 min after the onset of 50% Xenon administration (p=0.002). After the initial Xenon induced depression in background aEEG voltage, no further aEEG changes were seen over the following 24h of ventilation with 50% xenon under fentanyl sedation. Mean arterial blood pressure and heart rate remained stable. Mean arterial blood pressure and heart rate were not significantly influenced by 24h Xenon ventilation. 50% Xenon rapidly depresses background aEEG voltage to a steady ~50% lower level in sedated healthy newborn pigs. Therefore, care must be taken when interpreting the background voltage in neonates also receiving Xenon. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Eun-Jin; Jeong, Moon-Taeg; Jang, Seong-Joo; Choi, Nam-Gil; Han, Jae-Bok; Yang, Nam-Hee; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Yun-Jong; Ryu, Young-Hwan; Choi, Sung-Hyun; Seong, Kyeong-Jeong
2014-01-01
This study examined whether scanning could be performed with minimum dose and minimum exposure to the patient after an attenuation correction. A Hoffman 3D Brain Phantom was used in BIO_40 and D_690 PET/CT scanners, and the CT dose for the equipment was classified as a low dose (minimum dose), medium dose (general dose for scanning) and high dose (dose with use of contrast medium) before obtaining the image at a fixed kilo-voltage-peak (kVp) and milliampere (mA) that were adjusted gradually in 17-20 stages. A PET image was then obtained to perform an attenuation correction based on an attenuation map before analyzing the dose difference. Depending on tube current in the range of 33-190 milliampere-second (mAs) when BIO_40 was used, a significant difference in the effective dose was observed between the minimum and the maximum mAs (p < 0.05). According to a Scheffe post-hoc test, the ratio of the minimum to the maximum of the effective dose was increased by approximately 5.26-fold. Depending on the change in the tube current in the range of 10-200 mA when D_690 was used, a significant difference in the effective dose was observed between the minimum and the maximum of mA (p < 0.05). The Scheffe posthoc test revealed a 20.5-fold difference. In conclusion, because effective exposure dose increases with increasing operating current, it is possible to reduce the exposure limit in a brain scan can be reduced if the CT dose can be minimized for a transmission scan.
NASA Astrophysics Data System (ADS)
Kawashima, Kazuko; Futagawa, Masato; Ban, Yoshihiro; Asano, Yoshiyuki; Sawada, Kazuaki
Our group has studied on-site monitoring sensor for agricultural field. An electrical conductivity (EC) sensor had been fabricated using Si integrated circuit technology. EC information of solutions shows ion concentrations dissolving in water, and can be used as the index of nutrient concentration for plants. So, it is important to measure EC in real time and on site. Because our EC sensor (5mm×5mm in size) is smaller than other commercial ones (several centimeters), it is easy to insert and achieve measurement in rock wool. In this study, our sensor measured long term EC values in tomato cultivation soil and rock wool medium. At first, we calibrated a relationship between output voltages and EC values on the sensor. The sensor was confirmed about enough EC measurement range from 8 to 969mS/m. In long period measurement, the sensor was confirmed about continuous operation for over five months, and intermittent measurement for over a year. In measurement in the cultivation soil, the sensor indicated that water was kept and diffused in the soil. In contrast, it was found that water diffused without keeping in it in rock wool medium. We confirmed our small EC sensor is useful for on-site monitoring and analysis of solution concentration distribution in several kinds of cultivation bed in real time.
High-frequency electric field measurement using a toroidal antenna
Lee, Ki Ha
2002-01-01
A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.
Performance of a 100V Half-Bridge MOSFET Driver, Type MIC4103, Over a Wide Temperature Range
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2011-01-01
The operation of a high frequency, high voltage MOSFET (metal-oxide semiconductor field-effect transistors) driver was investigated over a wide temperature regime that extended beyond its specified range. The Micrel MIC4103 is a 100V, non-inverting, dual driver that is designed to independently drive both high-side and low-side N-channel MOSFETs. It features fast propagation delay times and can drive 1000 pF load with 10ns rise times and 6 ns fall times [1]. The device consumes very little power, has supply under-voltage protection, and is rated for a -40 C to +125 C junction temperature range. The floating high-side driver of the chip can sustain boost voltages up to 100 V. Table I shows some of the device manufacturer s specification.
Reconstruction of pulse noisy images via stochastic resonance
Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan
2015-01-01
We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911
NASA Astrophysics Data System (ADS)
Lan, B.-R.; Chang, C.-A.; Huang, P.-Y.; Kuo, C.-H.; Ye, Z.-J.; Shen, B.-C.; Chen, B.-K.
2017-11-01
Conservation voltage reduction (CVR) includes peak demand reduction, energy conservation, carbon emission reduction, and electricity bill reduction. This paper analyzes the energy-reduction of Siwei Feeders with applying CVR, which are situated in Penghu region and equipped with smart meters. Furthermore, the applicable voltage reduction range for the feeders will be explored. This study will also investigate how the CVR effect and energy conservation are improved with the voltage control devices integrated. The results of this study can serve as a reference for the Taiwan Power Company to promote and implement voltage reduction and energy conservation techniques. This study is expected to enhance the energy-reduction performance of the Penghu Low Carbon Island Project.
Fuel cell stack monitoring and system control
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2004-02-17
A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.
NASA Astrophysics Data System (ADS)
Oh, Kyonghwan; Kwon, Oh-Kyong
2012-03-01
A threshold-voltage-shift compensation and suppression method for active matrix organic light-emitting diode (AMOLED) displays fabricated using a hydrogenated amorphous silicon thin-film transistor (TFT) backplane is proposed. The proposed method compensates for the threshold voltage variation of TFTs due to different threshold voltage shifts during emission time and extends the lifetime of the AMOLED panel. Measurement results show that the error range of emission current is from -1.1 to +1.7% when the threshold voltage of TFTs varies from 1.2 to 3.0 V.
NASA Astrophysics Data System (ADS)
Panov, V. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Vetchinin, S. P.; Son, E. E.
2018-01-01
The transition between thermal and streamer discharges has been observed experimentally in water solution with conductivity 100 μS/cm applying positive voltage pulses to pin-to-rod electrodes. The transition happens at five-fold pulse amplitude. Considering streamer propagation as an ionization wave helped to establish relation between the parameters governing transition from one to another discharge mechanism.
Surface breakdown igniter for mercury arc devices
Bayless, John R.
1977-01-01
Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.
30 CFR Appendix A to Subpart J of... - Appendix A to Subpart J of Part 75
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Appendix A to Subpart J of Part 75 A Appendix A to Subpart J of Part 75 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Medium-Voltage Alternating Current Circuits Pt. 75, Subpt. J, App. A Appendix A to Subpart J of Part 75...
46 CFR 111.60-1 - Construction and testing of cable.
Code of Federal Regulations, 2010 CFR
2010-10-01
... identification of either IEEE 1580, UL 1309, IEC 92-353, or NPFC MIL-C-24640A or NPFC MIL-C-24643A (all five... 110.10-1). (c) Medium-voltage electric cable must meet the requirements of IEEE 1580 and UL 1072... 1309, IEEE 1580, or section 8 of IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). (e...
Enhancing Centrifugal Separation With Electrophoresis
NASA Technical Reports Server (NTRS)
Herrmann, F. T.
1986-01-01
Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.
Cross-flow electrofilter and method
Gidaspow, Dimitri; Lee, Chang H.; Wasan, Darsh T.
1980-01-01
A filter for clarifying carbonaceous liquids containing finely divided solid particles of, for instance, unreacted coal, ash and other solids discharged from a coal liquefaction process is presented. The filter includes two passageways separated by a porous filter medium. In one preferred embodiment the filter medium is of tubular shape to form the first passageway and is enclosed within an outer housing to form the second passageway within the annulus. An electrode disposed in the first passageway, for instance along the tube axis, is connected to a source of high voltage for establishing an electric field between the electrode and the filter medium. Slurry feed flows through the first passageway tangentially to the surfaces of the filter medium and the electrode. Particles from the feed slurry are attracted to the electrode within the first passageway to prevent plugging of the porous filter medium while carbonaceous liquid filters into the second passageway for withdrawal. Concentrated slurry is discharged from the first passageway at an end opposite to the feed slurry inlet. Means are also provided for the addition of diluent and a surfactant into the slurry to control relative permittivity and the electrophoretic mobility of the particles.
Cross flow electrofilter and method
Gidaspow, Dimitri; Lee, Chang H.; Wasan, Darsh T.
1981-01-01
A filter for clarifying carbonaceous liquids containing finely divided solid particles of, for instance, unreacted coal, ash and other solids discharged from a coal liquefaction process is presented. The filter includes two passageways separated by a porous filter medium. In one preferred embodiment the filter medium is of tubular shape to form the first passageway and is enclosed within an outer housing to form the second passageway within the annulus. An electrode disposed in the first passageway, for instance along the tube axis, is connected to a source of high voltage for establishing an electric field between the electrode and the filter medium. Slurry feed flows through the first passageway tangentially to the surfaces of the filter medium and the electrode. Particles from the feed slurry are attracted to the electrode within the first passageway to prevent plugging of the porous filter medium while carbonaceous liquid filters into the second passageway for withdrawal. Concentrated slurry is discharged from the first passageway at an end opposite to the feed slurry inlet. Means are also provided for the addition of diluent and a surfactant into the slurry to control relative permittivity and the electrophoretic mobility of the particles.
NASA Technical Reports Server (NTRS)
Reid, M. A.; Gahn, R. F.
1977-01-01
Performance of the iron-titanium redox flow cell was studied as a function of acid concentration. Anion permeable membranes separated the compartments. Electrodes were graphite cloth. Current densities ranged up to 25 mA/square centimeter. Open-circuit and load voltages decreased as the acidity was increased on the iron side as predicted. On the titanium side, open-circuit voltages decreased as the acidity was increased in agreement with theory, but load voltages increased due to decreased polarization with increasing acidity. High acidity on the titanium side coupled with low acidity on the iron side gives the best load voltage, but such cells show voltage losses as they are repeatedly cycled. Analyses show that the bulk of the voltage losses are due to diffusion of acid through the membrane.
Würfel, Uli; Neher, Dieter; Spies, Annika; Albrecht, Steve
2015-01-01
This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current–voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells. PMID:25907581
NASA Technical Reports Server (NTRS)
Harkness, J. D.
1974-01-01
The capacity of the cells ranged from 6.6 to 7.6 ampere hours during the three capacity tests. No voltage requirements or limits were exceeded during any portion of the test. All cells recovered to a voltage in excess of 1.193 volts during the 24-hour open-circuit portion of the internal short test. All the cells reached a pressure of 20 psia before reaching the voltage limit of 1.550 volts during the pressure versus capacity test. The average ampere/hours in and voltages at this pressure were 9.1 and 1.513, respectively. All cells exhibited pressure decay in the range of 1 to 5 psia during the last 30 minutes of the 1-hour open circuit stand. Average capacity out was 7.2 ampere/hours.
An open circuit voltage decay system for performing injection dependent lifetime spectroscopy
NASA Astrophysics Data System (ADS)
Lacouture, Shelby; Schrock, James; Hirsch, Emily; Bayne, Stephen; O'Brien, Heather; Ogunniyi, Aderinto A.
2017-09-01
Of all of the material parameters associated with a semiconductor, the carrier lifetime is by far the most complex and dynamic, being a function of the dominant recombination mechanism, the equilibrium number of carriers, the perturbations in carriers (e.g., carrier injection), and the temperature, to name the most prominent variables. The carrier lifetime is one of the most important parameters in bipolar devices, greatly affecting conductivity modulation, on-state voltage, and reverse recovery. Carrier lifetime is also a useful metric for device fabrication process control and material quality. As it is such a dynamic quantity, carrier lifetime cannot be quoted in a general range such as mobility; it must be measured. The following describes a stand-alone, wide-injection range open circuit voltage decay system with unique lifetime extraction algorithms. The system is initially used along with various lifetime spectroscopy techniques to extract fundamental recombination parameters from a commercial high-voltage PIN diode.
Scaling properties of ballistic nano-transistors
2011-01-01
Recently, we have suggested a scale-invariant model for a nano-transistor. In agreement with experiments a close-to-linear thresh-old trace was found in the calculated ID - VD-traces separating the regimes of classically allowed transport and tunneling transport. In this conference contribution, the relevant physical quantities in our model and its range of applicability are discussed in more detail. Extending the temperature range of our studies it is shown that a close-to-linear thresh-old trace results at room temperatures as well. In qualitative agreement with the experiments the ID - VG-traces for small drain voltages show thermally activated transport below the threshold gate voltage. In contrast, at large drain voltages the gate-voltage dependence is weaker. As can be expected in our relatively simple model, the theoretical drain current is larger than the experimental one by a little less than a decade. PMID:21711899
NASA Technical Reports Server (NTRS)
1997-01-01
Frank Nola invented the Power Factor Controller (PFC) at Marshall Space Flight Center more than a decade ago. Nola came up with a way to curb power wastage in AC induction motors. The PFC matches voltage with the motor's actual need by continuously sensing shifts between voltage and current. When it senses a light load it cuts the voltage to the minimum needed. Potential energy savings range from 8 to 65 percent.
1997-01-01
Frank Nola invented the Power Factor Controller (PFC) at Marshall Space Flight Center more than a decade ago. Nola came up with a way to curb power wastage in AC induction motors. The PFC matches voltage with the motor's actual need by continuously sensing shifts between voltage and current. When it senses a light load it cuts the voltage to the minimum needed. Potential energy savings range from 8 to 65 percent.
Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression
NASA Technical Reports Server (NTRS)
Laun, Matthew C. (Inventor)
2016-01-01
Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.
NASA Astrophysics Data System (ADS)
Jafari, Hossein; Habibi, Morteza
2018-04-01
Regarding the importance of stability in small-scale plasma focus devices for producing the repeatable and strength pinching, a sensitivity analysis approach has been used for applicability in design parameters optimization of an actually very low energy device (84 nF, 48 nH, 8-9.5 kV, ∼2.7-3.7 J). To optimize the devices functional specification, four different coaxial electrode configurations have been studied, scanning an argon gas pressure range from 0.6 to 1.5 mbar via the charging voltage variation study from 8.3 to 9.3 kV. The strength and efficient pinching was observed for the tapered anode configuration, over an expanded operating pressure range of 0.6 to 1.5 mbar. The analysis results showed that the most sensitive of the pinch voltage was associated with 0.88 ± 0.8mbar argon gas pressure and 8.3-8.5 kV charging voltage, respectively, as the optimum operating parameters. From the viewpoint of stability assessment of the device, it was observed that the least variation in stable operation of the device was for a charging voltage range of 8.3 to 8.7 kV in an operating pressure range from 0.6 to 1.1 mbar.
Brauchi, Sebastian; Orio, Patricio; Latorre, Ramon
2004-01-01
The cold and menthol receptor, TRPM8, also designated CMR1, is a member of the transient receptor potential (TRP) family of excitatory ion channels. TRPM8 is a channel activated by cold temperatures, voltage, and menthol. In this study, we characterize the cold- and voltage-induced activation of TRPM8 channel in an attempt to identify the temperature- and voltage-dependent components involved in channel activation. Under equilibrium conditions, decreasing temperature has two effects. (i) It shifts the normalized conductance vs. voltage curves toward the left, along the voltage axis. This effect indicates that the degree of order is higher when the channel is in the open configuration. (ii) It increases the maximum channel open probability, suggesting that temperature affects both voltage-dependent and -independent pathways. In the temperature range between 18°C and 25°C, large changes in enthalpy (ΔH = -112 kcal/mol) and entropy (ΔS = -384 cal/mol K) accompany the activation process. The Q10 calculated in the same temperature range is 24. This thermodynamic analysis strongly suggests that the process of opening involves large conformational changes of the channel-forming protein. Therefore, the highly temperature-dependent transition between open and closed configurations is possible because enthalpy and entropy are both large and compensate each other. Our data also demonstrate that temperature and voltage interact allosterically to enhance channel opening. PMID:15492228
Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass
Gammer, C.; Escher, B.; Ebner, C.; ...
2017-03-21
Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less
Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammer, C.; Escher, B.; Ebner, C.
Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less
Self-organization of pulsing and bursting in a CO{sub 2} laser with opto-electronic feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freire, Joana G.; Instituto de Altos Estudos da Paraíba, Rua Infante Dom Henrique 100-1801, 58039-150 João Pessoa; CELC, Departamento de Matemática, Universidade de Lisboa, 1649-003 Lisboa
We report a detailed investigation of the stability of a CO{sub 2} laser with feedback as described by a six-dimensional rate-equations model which provides satisfactory agreement between numerical and experimental results. We focus on experimentally accessible parameters, like bias voltage, feedback gain, and the bandwidth of the feedback loop. The impact of decay rates and parameters controlling cavity losses are also investigated as well as control planes which imply changes of the laser physical medium. For several parameter combinations, we report stability diagrams detailing how laser spiking and bursting is organized over extended intervals. Laser pulsations are shown to emergemore » organized in several hitherto unseen regular and irregular phases and to exhibit a much richer and complex range of behaviors than described thus far. A significant observation is that qualitatively similar organization of laser spiking and bursting can be obtained by tuning rather distinct control parameters, suggesting the existence of unexpected symmetries in the laser control space.« less
Vitamin A determination in milk samples based on the luminol-periodate chemiluminescence system.
Rishi, Lubna; Yaqoob, Mohammad; Waseem, Amir; Nabi, Abdul
2014-01-01
A simple and rapid flow injection (FI) method for the determination of retinyl acetate is reported based on its enhancing effect on the luminol-periodate chemiluminescence (CL) system in an alkaline medium. The detection limit (3s×blank) was 8.0×10⁻⁸ mol L⁻¹, with an injection throughput of 90 h⁻¹. The method allows linear increase of CL intensity over the retinyl acetate concentration range of 1.0-100×10⁻⁷ mol L⁻¹ (R²=0.9996) with relative standard deviations of 2.4% (n=10) for 5.0×10⁻⁷ mol L⁻¹. The key chemical and physical variables (reagent concentrations, flow rates, sample volume, and photomultiplier tube (PMT) voltage) were optimized and potential interferences were investigated. The method was successfully applied to human milk, fresh cow's milk and infant milk-based formulas and the results were in good agreement with the previously reported HPLC method. A brief discussion on the possible CL reaction mechanism is also presented.
Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.
Leschkies, Kurtis S; Divakar, Ramachandran; Basu, Joysurya; Enache-Pommer, Emil; Boercker, Janice E; Carter, C Barry; Kortshagen, Uwe R; Norris, David J; Aydil, Eray S
2007-06-01
We combine CdSe semiconductor nanocrystals (or quantum dots) and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell. An array of ZnO nanowires was grown vertically from a fluorine-doped tin oxide conducting substrate. CdSe quantum dots, capped with mercaptopropionic acid, were attached to the surface of the nanowires. When illuminated with visible light, the excited CdSe quantum dots injected electrons across the quantum dot-nanowire interface. The morphology of the nanowires then provided the photoinjected electrons with a direct electrical pathway to the photoanode. With a liquid electrolyte as the hole transport medium, quantum-dot-sensitized nanowire solar cells exhibited short-circuit currents ranging from 1 to 2 mA/cm2 and open-circuit voltages of 0.5-0.6 V when illuminated with 100 mW/cm2 simulated AM1.5 spectrum. Internal quantum efficiencies as high as 50-60% were also obtained.
NASA Technical Reports Server (NTRS)
Williams, G., Jr.
1982-01-01
The continuous flow electrophoresis system makes electrophoresis possible in a free-flowing film of aqueous electrolyte medium. The sample continuously enters the electrolyte at the top of the chamber and is subjected to the action of a lateral dc field. This divides the sample into fractions since each component has a distinctive electrophoretic mobility. Tests were made using monodisperse polystyrene latex microspheres to determine optimum sample conductivity, insertion rates and optimum electric field applications as baseline data for future STS flight experiments. Optimum sample flow rates for the selected samples were determined to be approximately 26 micro-liters/min. Experiments with samples in deionized water yielded best results and voltages in the 20 V/cm to 30 V/cm range were optimum. Deflections of formaldehyde fixed turkey and bovine erythrocytes were determined using the continuous flow electrophoresis system. The effects of particle interactions on sample resolution and migration in the chamber was also evaluated.
dc analysis and design of zero-voltage-switched multi-resonant converters
NASA Astrophysics Data System (ADS)
Tabisz, Wojciech A.; Lee, Fred C.
Recently introduced multiresonant converters (MRCs) provide zero-voltage switching (ZVS) of both active and passive switches and offer a substantial reduction of transistor voltage stress and an increase of load range, compared to their quasi-resonant converter counterparts. Using the resonant switch concept, a simple, generalized analysis of ZVS MRCs is presented. The conversion ratio and voltage stress characteristics are derived for basic ZVS MRCs, including buck, boost, and buck/boost converters. Based on the analysis, a design procedure that optimizes the selection of resonant elements for maximum conversion efficiency is proposed.
Programmable Multiple-Ramped-Voltage Power Supply
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Howell, S. K.
1993-01-01
Ramp waveforms range up to 2,000 V. Laboratory high-voltage power-supply system puts out variety of stable voltages programmed to remain fixed with respect to ground or float with respect to ramp waveform. Measures voltages it produces with high resolution; automatically calibrates, zeroes, and configures itself; and produces variety of input/output signals for use with other instruments. Developed for use with ultraviolet spectrometer. Also applicable to control of electron guns in general and to operation of such diverse equipment used in measuring scattering cross sections of subatomic particles and in industrial electron-beam welders.
Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof
NASA Technical Reports Server (NTRS)
Manohara, Harish (Inventor); Kaul, Anupama B. (Inventor)
2013-01-01
A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.
Does voltage predict return to work and neuropsychiatric sequelae following electrical burn injury?
Chudasama, Shruti; Goverman, Jeremy; Donaldson, Jeffrey H; van Aalst, John; Cairns, Bruce A; Hultman, Charles Scott
2010-05-01
Voltage has historically guided the acute management and long-term prognosis of physical morbidity in electrical injury patients; however, few large studies exist that include neuropsychiatric morbidity in final outcome analysis. This review compares high (>1000 V) to low (<1000 V) voltage injuries, focusing on return to work and neuropsychiatric sequelae following electrical burn injury. Patients with electrical injuries admitted to the University of North Carolina Jaycee Burn Center between 2000 and 2005 were prospectively entered into a trauma database, then retrospectively reviewed. Patients were divided into 4 cohorts: high voltage (>1000 V), low voltage (<1000 V), flash arc, and lightning. Demographics, hospital course, and follow-up were recorded to determine physical and neuropsychiatric morbidity. Differences among cohorts were tested for statistical significance. Over 5 years, 2548 patients were admitted to the burn center, including 115 patients with electrical injuries. There were 110 males and 5 females, with a mean age of 35 years (range, 0.75-65 years). The cause of the electrical injury was high voltage in 60 cases, low voltage in 25 cases, flash arc in 29 cases and lightning in 1 case. The mean total body surface area burn was 8% (range, 0%-52%). The etiology was work-related electrical injury in 85 patients. Mean follow-up period was 352 days with 13 (11%) patients lost to follow-up. Patients with high voltage injuries had significantly larger total body surface area burn, longer ICU stays, longer hospitalizations, and significantly higher rates of fasciotomy, amputation, nerve decompression and outpatient reconstruction, with 4 cases of renal failure and 2 deaths. In spite of these differences, high and low voltage groups experienced similar rates of neuropsychiatric sequelae, limited return to work and delays in return to work. Final impairment ratings for the high and low voltage groups were 17.5% and 5.3%, respectively. Electrical injuries often incur severe morbidity despite relatively small burn size and/or low voltage. When comparing high and low voltage injuries, similarities in endpoints such as neuropsychiatric sequelae, the need for late reconstruction, and failure to return to work challenge previous notions that voltage predicts outcome.
Exponential current pulse generation for efficient very high-impedance multisite stimulation.
Ethier, S; Sawan, M
2011-02-01
We describe in this paper an intracortical current-pulse generator for high-impedance microstimulation. This dual-chip system features a stimuli generator and a high-voltage electrode driver. The stimuli generator produces flexible rising exponential pulses in addition to standard rectangular stimuli. This novel stimulation waveform is expected to provide superior energy efficiency for action potential triggering while releasing less toxic reduced ions in the cortical tissues. The proposed fully integrated electrode driver is used as the output stage where high-voltage supplies are generated on-chip to significantly increase the voltage compliance for stimulation through high-impedance electrode-tissue interfaces. The stimuli generator has been implemented in 0.18-μm CMOS technology while a 0.8-μm CMOS/DMOS process has been used to integrate the high-voltage output stage. Experimental results show that the rectangular pulses cover a range of 1.6 to 167.2 μA with a DNL and an INL of 0.098 and 0.163 least-significant bit, respectively. The maximal dynamic range of the generated exponential reaches 34.36 dB at full scale within an error of ± 0.5 dB while all of its parameters (amplitude, duration, and time constant) are independently programmable over wide ranges. This chip consumes a maximum of 88.3 μ W in the exponential mode. High-voltage supplies of 8.95 and -8.46 V are generated by the output stage, boosting the voltage swing up to 13.6 V for a load as high as 100 kΩ.
Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator.
Koh, Keng Huat; Sreekumar, M; Ponnambalam, S G
2014-06-25
This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F - V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.
Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator
Koh, Keng Huat; Sreekumar, M.; Ponnambalam, S. G.
2014-01-01
This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F-V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications. PMID:28788114
Low-voltage 96 dB snapshot CMOS image sensor with 4.5 nW power dissipation per pixel.
Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander
2012-01-01
Modern "smart" CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage "smart" image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.
Low-Voltage 96 dB Snapshot CMOS Image Sensor with 4.5 nW Power Dissipation per Pixel
Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander
2012-01-01
Modern “smart” CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage “smart” image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel. PMID:23112588
High Fragmentation Steel Production Process
1984-01-01
J/ FTA c« ;« MO G SO KM s s P WS W-U Hi ; T 14 434 CASK G S3 K 11 ma WM MM MM ACTS 1 TC*4 U S7« ill GC 135 V M NTA «M FT...relative feed range 2nd digit -relative force range FMd 1 Very Low Fore* t 2 Low 2 3 Medium Low 3 4 Medium 4 5 Medium 5 6 Medium High 6 7 Medium
Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter
NASA Astrophysics Data System (ADS)
Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun
2018-03-01
The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.
High-Voltage Characterization for the Prototype Induction Cells
NASA Astrophysics Data System (ADS)
Huacen, Wang; Kaizhi, Zhang; Long, Wen; Qinggui, Lai; Linwen, Zhang; Jianjun, Deng
2002-12-01
Two linear induction prototype cells expected to work at 250kV, 3kA,with accelerating voltage flattop (±1%) ⩾ 70ns, have been tested to determine their high-voltage characteristics. Each cell is composed of a ferrite core immersed in oil, a gap with curved stainless steel electrodes, a solenoid magnet, and a insulator. The experiments were carried out with full-scale cells. The high voltage pulses were applied to two cells using a 100ns, 12Ω pulse Blumlein. The tests were performed at various high-voltage levels ranging from -250kV to -350kV. No breakdown was observed during the test at vacuum level (7-10) ṡ10-4 Pa. The cell schematic, the experimental set up, and the measured voltage waveforms are presented in this paper.
NASA Astrophysics Data System (ADS)
Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.; Aizzuddin, A. M.
2017-10-01
Fibre Bragg Grating (FBG) sensors have been widely utilized in the structural health monitoring (SHM) of structures. However, one of the main challenges of FBGs is the existence of inconsistency in output voltage during wavelength intensity demodulation utilizing photodetector (PD) to convert the light signal into digital voltage readings. Thus, the designation of this experimental work is to develop a robust FBG real-time monitoring system with the benefit of MATLAB graphical user interface (GUI) and voltage normalization algorithm to scale down the voltage inconsistency. Low-cost edge filter interrogation system has been practiced in the experimentation and splitter optical component is make use to reduce the intensity of the high power light source that leads to the formation of noise due to unwanted reflected wavelengths. The results revealed that with the advancement of the proposed monitoring system, the sensitivity of the FBG has been increased from 2.4 mV/N to 3.8 mV/N across the range of 50 N. The redundancy in output voltage variation data points has been reduced from 26 data/minute to 17 data/minute. The accuracy of the FBG in detecting the load induced falls in the acceptable range of total average error which is 1.38 %.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Saini, Subhash
2000-01-01
In this paper, we investigate various aspects of the polysilicon gate influence on the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFET's with ultrathin gate oxides. The study is done by using an efficient statistical three-dimensional (3-D) "atomistic" simulation technique described else-where. MOSFET's with uniform channel doping and with low doped epitaxial channels have been investigated. The simulations reveal that even in devices with a single crystal gate the gate depletion and the random dopants in it are responsible for a substantial fraction of the threshold voltage fluctuations when the gate oxide is scaled-in the range of 1-2 nm. Simulation experiments have been used in order to separate the enhancement in the threshold voltage fluctuations due to an effective increase in the oxide thickness associated with the gate depletion from the direct influence of the random dopants in the gate depletion layer. The results of the experiments show that the both factors contribute to the enhancement of the threshold voltage fluctuations, but the effective increase in the oxide-thickness has a dominant effect in the investigated range of devices. Simulations illustrating the effect or the polysilicon grain boundaries on the threshold voltage variation are also presented.
Startup and mode competition in a 420 GHz gyrotron
NASA Astrophysics Data System (ADS)
Qixiang Zhao, A.; Sheng Yu, B.; Tianzhong Zhang, C.
2017-09-01
In the experiments of a 420 GHz second-harmonic gyrotron, it is found that the electron beam voltage and current ranges for single mode operation of TE17.4 are slightly narrower than those in the simulation. To explain this phenomenon, the startup scenario has been investigated with special emphasis on mode competition. The calculations indicate that the decreases of the operating ranges are caused by the voltage overshoot in the startup scenario.
Planar LTCC transformers for high voltage flyback converters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schofield, Daryl; Schare, Joshua M.; Glass, Sarah Jill
This paper discusses the design and use of low-temperature (850 C to 950 C) co-fired ceramic (LTCC) planar magnetic flyback transformers for applications that require conversion of a low voltage to high voltage (> 100V) with significant volumetric constraints. Measured performance and modeling results for multiple designs showed that the LTCC flyback transformer design and construction imposes serious limitations on the achievable coupling and significantly impacts the transformer performance and output voltage. This paper discusses the impact of various design factors that can provide improved performance by increasing transformer coupling and output voltage. The experiments performed on prototype units demonstratedmore » LTCC transformer designs capable of greater than 2 kV output. Finally, the work investigated the effect of the LTCC microstructure on transformer insulation. Although this paper focuses on generating voltages in the kV range, the experimental characterization and discussion presented in this work applies to designs requiring lower voltage.« less
Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.
2013-04-16
A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.
Current-voltage characteristics of C70 solid near Meyer-Neldel temperature
NASA Astrophysics Data System (ADS)
Onishi, Koichi; Sezaimaru, Kouki; Nakashima, Fumihiro; Sun, Yong; Kirimoto, Kenta; Sakaino, Masamichi; Kanemitsu, Shigeru
2017-06-01
The current-voltage characteristics of the C70 solid with hexagonal closed-packed structures were measured in the temperature range of 250-450 K. The current-voltage characteristics can be described as a temporary expedient by a cubic polynomial of the voltage, i = a v 3 + b v 2 + c v + d . Moreover, the Meyer-Neldel temperature of the C70 solid was confirmed to be 310 K, at which a linear relationship between the current and voltage was observed. Also, at temperatures below the Meyer-Neldel temperature, the current increases with increasing voltage. On the other hand, at temperatures above the Meyer-Neldel temperature a negative differential conductivity effect was observed at high voltage side. The negative differential conductivity was related to the electric field and temperature effects on the mobility of charge carrier, which involve two variations in the carrier concentration and the activation energy for carrier hopping transport.
Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.
2000-01-01
A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.
Monitoring of a 1 kWp Solar Photovoltaic System
NASA Astrophysics Data System (ADS)
Malek, M. F.; Zainuddin, H.; Rejab, S. N. M.; Shaari, S. N.; Shaari, S.; Omar, A. M.; Rusop, M.
2009-06-01
A 1 kWp `stand alone' PV system consists of 4 module (2 BP SX75U module and 2 BP 275F module), inverter, 2 thermocouple, 3 voltage sensor, 3 current sensor, 4 battery and data logger (Data Taker DT80) has been set up. This research involve nine parameters which are irradiance (Ia), ambient temperature (Tamb), module temperature (Tmod), module voltage (Vmod), battery voltage (Vbat), load voltage (Vload), module current (Imod), battery current (Ibat) and load current (Iload). All parameters were measured using the equipments and sensors that connected directly to data logger (Data Taker DT80) to interpret and show the data on computer using the Delogger sofware. The data then was transferred into the computer and analyzed using the Deview and Microsoft Excel software to determine the performance indices for the stand alone PV system. From the analysis a few performance indices were determined. The range of daily solar irradiation is between 2.20 kWhm-2 to 4.00 kWhm-2, while the range of total global irradiation is between 5.76 kWh to 10.48 kWh. For daily total energy yield, the range is between 0.23 kWh d-1 to 0.28 kWh d-1. The range for clearness index is between 0.49% to 0.89%. The range for final yield is between 0.77 kWh d-1 kWp-1 to 0.93 kWhd-1 kWp-1 while the range of array efficiency is between 2.53% to 4.65%. Lastly, the range of the performance ratio is between 22.08% to 40.58%.
Generation of a strong core centering force in a submillimeter compound droplet system
NASA Technical Reports Server (NTRS)
Lee, M. C.; Feng, I. A.; Elleman, D. D.; Wang, T. G.; Young, A. T.
1982-01-01
By amplitude-modulating the driving voltage of an acoustic levitating apparatus, a strong core centering force was generated in a submillimeter compound droplet system suspended by the radiation pressure in a gaseous medium. Depending on the acoustic characteristics of the droplet system, it was found that the technique can be utilized advantageously in the multiple-layer coating of an inertial confinement fusion pellet.
Computational Simulation of Explosively Generated Pulsed Power Devices
2013-03-21
to practical applications. These are the magnetic flux compression generators (FCG), ferromagnetic generators (FMG) and ferroelectric generators (FEG...The first device works on the concept of field interaction between a conducting medium and a magnetic field. The last two devices make use of either... magnetic or electric fields stored in a prepared material (4). This research will focus on the ferroelectric generator as a high voltage source for
Simulation and Measurement of Medium-Frequency Signals Coupling From a Line to a Loop Antenna
Damiano, Nicholas W.; Li, Jingcheng; Zhou, Chenming; Brocker, Donovan E.; Qin, Yifeng; Werner, Douglas H.; Werner, Pingjuan L.
2016-01-01
The underground-mining environment can affect radio-signal propagation in various ways. Understanding these effects is especially critical in evaluating communications systems used during normal mining operations and during mine emergencies. One of these types of communications systems relies on medium-frequency (MF) radio frequencies. This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating MF coupling between a transmission line (TL) and a loop antenna in an underground coal mine. Two different types of measurements were completed: 1) line-current distribution and 2) line-to-antenna coupling. Measurements were taken underground in an experimental coal mine and on a specially designed surface test area. The results of these tests are characterized by current along a TL and voltage induced in the loop from a line. This paper concludes with a discussion of issues for MF TLs. These include electromagnetic fields at the ends of the TL, connection of the ends of the TL, the effect of other conductors underground, and the proximity of coal or earth. These results could help operators by providing examples of these challenges that may be experienced underground and a method by which to measure voltage induced by a line. PMID:27784954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feller, D.J.; Talvenheimo, J.A.; Catterall, W.A.
1985-09-25
Purified sodium channels incorporated into phosphatidylcholine (PC) vesicles mediate neurotoxin-activated SSNa influx but do not bind the alpha-scorpion toxin from Leiurus quinquestriatus (LqTx) with high affinity. Addition of phosphatidylethanolamine (PE) or phosphatidylserine to the reconstitution mixture restores high affinity LqTx binding with KD = 1.9 nM for PC/PE vesicles at -90 mV and 36 degrees C in sucrose-substituted medium. Other lipids tested were markedly less effective. The binding of LqTx in vesicles of PC/PE (65:35) is sensitive to both the membrane potential formed by sodium gradients across the reconstituted vesicle membrane and the cation concentration in the extravesicular medium. Bindingmore » of LqTx is reduced 3- to 4-fold upon depolarization to 0 mV from -50 to -60 mV in experiments in which (Na+)out/(Na+)in is varied by changing (Na+)in or (Na+)out at constant extravesicular ionic strength. It is concluded that the purified sodium channel contains the receptor site for LqTx in functional form and that restoration of high affinity, voltage-dependent binding of LqTx by the purified sodium channel requires an appropriate ratio of PC to PE and/or phosphatidylserine in the vesicle membrane.« less
Kang, Bok Eum; Baker, Bradley J
2016-04-04
An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response.
Kang, Bok Eum; Baker, Bradley J.
2016-01-01
An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response. PMID:27040905
Series resonance inverter with triggered vacuum gaps
NASA Astrophysics Data System (ADS)
Damstra, Geert C.; Zhang, X.
1994-05-01
Series resonance inverters based on semi-conductor switching elements are well-known and have a wide range of application, mainly for lower voltages. For high voltage application many switching elements have to be put in series to obtain sufficient blocking voltage. Voltage grinding and multiple gate control elements are needed. There is much experience with the triggered vacuum gaps as high voltage/high current single shot elements, for example in reignition circuits for synthetic circuit breaker tests. These elements have a blocking voltage of 50 - 100 kV and are triggerable by a light fiber control device. A prototype inverter has been developed that generates 0.1 Hz, 30 kV AC voltages with a flat top for tests on cables and capacitors of many micro farads fed from a low voltage supply of about 600 V. Only two TVG elements are needed to switch the resonant circuit alternatively on the positive or negative supply. The resonant circuit itself consists of the capacitance of the testobject and a high quality inductor that determines the frequency and the peak current of the voltage reversing process.
Spectral optimization for micro-CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hupfer, Martin; Nowak, Tristan; Brauweiler, Robert
2012-06-15
Purpose: To optimize micro-CT protocols with respect to x-ray spectra and thereby reduce radiation dose at unimpaired image quality. Methods: Simulations were performed to assess image contrast, noise, and radiation dose for different imaging tasks. The figure of merit used to determine the optimal spectrum was the dose-weighted contrast-to-noise ratio (CNRD). Both optimal photon energy and tube voltage were considered. Three different types of filtration were investigated for polychromatic x-ray spectra: 0.5 mm Al, 3.0 mm Al, and 0.2 mm Cu. Phantoms consisted of water cylinders of 20, 32, and 50 mm in diameter with a central insert of 9more » mm which was filled with different contrast materials: an iodine-based contrast medium (CM) to mimic contrast-enhanced (CE) imaging, hydroxyapatite to mimic bone structures, and water with reduced density to mimic soft tissue contrast. Validation measurements were conducted on a commercially available micro-CT scanner using phantoms consisting of water-equivalent plastics. Measurements on a mouse cadaver were performed to assess potential artifacts like beam hardening and to further validate simulation results. Results: The optimal photon energy for CE imaging was found at 34 keV. For bone imaging, optimal energies were 17, 20, and 23 keV for the 20, 32, and 50 mm phantom, respectively. For density differences, optimal energies varied between 18 and 50 keV for the 20 and 50 mm phantom, respectively. For the 32 mm phantom and density differences, CNRD was found to be constant within 2.5% for the energy range of 21-60 keV. For polychromatic spectra and CMs, optimal settings were 50 kV with 0.2 mm Cu filtration, allowing for a dose reduction of 58% compared to the optimal setting for 0.5 mm Al filtration. For bone imaging, optimal tube voltages were below 35 kV. For soft tissue imaging, optimal tube settings strongly depended on phantom size. For 20 mm, low voltages were preferred. For 32 mm, CNRD was found to be almost independent of tube voltage. For 50 mm, voltages larger than 50 kV were preferred. For all three phantom sizes stronger filtration led to notable dose reduction for soft tissue imaging. Validation measurements were found to match simulations well, with deviations being less than 10%. Mouse measurements confirmed simulation results. Conclusions: Optimal photon energies and tube settings strongly depend on both phantom size and imaging task at hand. For in vivo CE imaging and density differences, strong filtration and voltages of 50-65 kV showed good overall results. For soft tissue imaging of animals the size of a rat or larger, voltages higher than 65 kV allow to greatly reduce scan times while maintaining dose efficiency. For imaging of bone structures, usage of only minimum filtration and low tube voltages of 40 kV and below allow exploiting the high contrast of bone at very low energies. Therefore, a combination of two filtrations could prove beneficial for micro-CT: a soft filtration allowing for bone imaging at low voltages, and a variable stronger filtration (e.g., 0.2 mm Cu) for soft tissue and contrast-enhanced imaging.« less
NASA Astrophysics Data System (ADS)
Liu, Ranran; Li, Qiyao; Smith, Lloyd M.
2014-08-01
In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv3.1 (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.
A low voltage programmable unipolar inverter with a gold nanoparticle monolayer on plastic.
Zhou, Ye; Han, Su-Ting; Huang, Long-Biao; Huang, Jing; Yan, Yan; Zhou, Li; Roy, V A L
2013-05-24
A programmable low voltage unipolar inverter with saturated-load configuration has been demonstrated on a plastic substrate. A self-assembled monolayer of gold (Au) nanoparticles was inserted into the dielectric layer acting as a charge trapping layer. The inverter operated well with supply voltages of < - 5 V and the switching voltage was tuned in a wide range under low program/erase bias. The retention and endurance test at ambient conditions confirmed the reliability of the inverter. Furthermore, the programmable behavior was maintained well at various bending states, demonstrating the adequate flexibility of our devices.
Optically Tuned MM-Wave IMPATT Source.
1987-07-01
phase of the work has been extended and generalised. Accuracy of the theory in predicting tuning at the higher oscillator voltage swings has been greatly...Accuracy of the theory in predicting tuning at the higher oscillator voltage swings has been greatly improved by reformulating the Bessel function...voltage modulation and a peak optically injected locking current of 100 pA the predicted ftl locking range would be 540MHz, a practicaUy useful value. 4
Understanding the output of a Smith-Root GPP electrofisher
Miranda, L.E.; Spencer, A.B.
2005-01-01
There is confusion among biologists about the use of the percent of range control in the GPP series of Smith-Root electrofishers. We evaluated the output of a GPP 7.5 electrofisher to examine how adjustments to the percent of range control affect voltage, pulse width, duty cycle, and waveform. We found that contrary to how most users interpret the labels on the GPP unit, adjustments to the percent of range control are linked only indirectly to changes in peak voltage. Suggestions for dealing with the restrictions of the GPP units are offered. ?? Copyright by the American Fisheries Society 2005.
Palette of fluorinated voltage-sensitive hemicyanine dyes
Yan, Ping; Acker, Corey D.; Zhou, Wen-Liang; Lee, Peter; Bollensdorff, Christian; Negrean, Adrian; Lotti, Jacopo; Sacconi, Leonardo; Antic, Srdjan D.; Kohl, Peter; Mansvelder, Huibert D.; Pavone, Francesco S.; Loew, Leslie M.
2012-01-01
Optical recording of membrane potential permits spatially resolved measurement of electrical activity in subcellular regions of single cells, which would be inaccessible to electrodes, and imaging of spatiotemporal patterns of action potential propagation in excitable tissues, such as the brain or heart. However, the available voltage-sensitive dyes (VSDs) are not always spectrally compatible with newly available optical technologies for sensing or manipulating the physiological state of a system. Here, we describe a series of 19 fluorinated VSDs based on the hemicyanine class of chromophores. Strategic placement of the fluorine atoms on the chromophores can result in either blue or red shifts in the absorbance and emission spectra. The range of one-photon excitation wavelengths afforded by these new VSDs spans 440–670 nm; the two-photon excitation range is 900–1,340 nm. The emission of each VSD is shifted by at least 100 nm to the red of its one-photon excitation spectrum. The set of VSDs, thus, affords an extended toolkit for optical recording to match a broad range of experimental requirements. We show the sensitivity to voltage and the photostability of the new VSDs in a series of experimental preparations ranging in scale from single dendritic spines to whole heart. Among the advances shown in these applications are simultaneous recording of voltage and calcium in single dendritic spines and optical electrophysiology recordings using two-photon excitation above 1,100 nm. PMID:23169660
NASA Astrophysics Data System (ADS)
Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira
2016-07-01
We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.
The Breakdown Characteristics of the Silicone Oil for Electric Power Apparatus
NASA Astrophysics Data System (ADS)
Yoshida, Hisashi; Yanabu, Satoru
The basic breakdown characteristics of the silicone oil as an insulating medium was studied with aim of realization of electric power apparatus which may be considered to be SF6 free and flame-retarding. As the first step, the impulse breakdown characteristics was measured with three kinds of electrodes whose electric field distributions differed. The breakdown characteristics in silicone oil was explained in relation to stressed oil volume (SOV) and the breakdown stress. At the second step the surface breakdown characteristic for impulse voltage was measured with two kinds of insulators which was set to between plane electrodes. The surface breakdown characteristic for impulse voltage was explained in relation to the ratio of the relative permittivity of oil and insulator. And on the third step, the breakdown characteristics of oil gap after interrupting small capacitive current was studied. In this experiment, the disconnecting switch to interrupt capacitive current was simulated by oil gap after interrupting impulse current, and to measure breakdown characteristics the high impulse voltage was subsequently applied. The breakdown stress in silicone oil after application of impulse current was discussed for insulation recovery characteristics.
The twisted ion-permeation pathway of a resting voltage-sensing domain.
Tombola, Francesco; Pathak, Medha M; Gorostiza, Pau; Isacoff, Ehud Y
2007-02-01
Proteins containing voltage-sensing domains (VSDs) translate changes in membrane potential into changes in ion permeability or enzymatic activity. In channels, voltage change triggers a switch in conformation of the VSD, which drives gating in a separate pore domain, or, in channels lacking a pore domain, directly gates an ion pathway within the VSD. Neither mechanism is well understood. In the Shaker potassium channel, mutation of the first arginine residue of the S4 helix to a smaller uncharged residue makes the VSD permeable to ions ('omega current') in the resting conformation ('S4 down'). Here we perform a structure-guided perturbation analysis of the omega conductance to map its VSD permeation pathway. We find that there are four omega pores per channel, which is consistent with one conduction path per VSD. Permeating ions from the extracellular medium enter the VSD at its peripheral junction with the pore domain, and then plunge into the core of the VSD in a curved conduction pathway. Our results provide a model of the resting conformation of the VSD.
MHD (magnetohydrodynamics) channel development: Quarterly report for January 1987-March 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-04-01
During the report period several slag doping tests were performed. Four of these tests are described in this report. The results were generally encouraging. Four dopants were investigated: Fe/sub 2/O/sub 3/, Fe/sub 3/O/sub 4/, MnO, and CrO/sub 2/. All but the CrO/sub 2/ proved effective within some range of dopant flow rate. At flow rates above or below this range none of the dopants were desirable. The proper ranges for each of the dopants was coarsely mapped in these experiments. When the dopants were injected directly on the anode wall a power increase was observed. This indicates a possible reductionmore » in the voltage drop due to the presence of the dopant. No power gain or loss was observed when the dopant was injected on the cathode wall. However, inter-cathode voltages were observed to spread more uniformly along the wall. High voltages decreased and low voltages increased. This result should help to reduce wear on the cathodes and their neighboring wall elements by reducing the local electrical field. Current control circuits were tested on both MK VI and MK VII type generators and components for consolidation circuits ordered. Solutions to waste disposal problems created by the implementation of new environmental regulations are being investigated. The MHD generator data from the CDIF 87-SEED-1, 87-SEED-2, and 87-SEED-3 tests have been analyzed and the results are presented in this report. The results of the SIDA model presented in this quarterly report are obtained by assuming a constant boundary layer voltage drop. Variations in the boundary layer voltage drop as a result of diagonal loading changes, iron oxide addition, or seeding rates changes were not considered. Corrections for the effects of ..delta..V/sub b1/ will be made to the results of SIDA when the voltage drop measurements become available.« less
Performance Test Results of the NASA-457M v2 Hall Thruster
NASA Technical Reports Server (NTRS)
Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit
2012-01-01
Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.
Voltage linear transformation circuit design
NASA Astrophysics Data System (ADS)
Sanchez, Lucas R. W.; Jin, Moon-Seob; Scott, R. Phillip; Luder, Ryan J.; Hart, Michael
2017-09-01
Many engineering projects require automated control of analog voltages over a specified range. We have developed a computer interface comprising custom hardware and MATLAB code to provide real-time control of a Thorlabs adaptive optics (AO) kit. The hardware interface includes an op amp cascade to linearly shift and scale a voltage range. With easy modifications, any linear transformation can be accommodated. In AO applications, the design is suitable to drive a range of different types of deformable and fast steering mirrors (FSM's). Our original motivation and application was to control an Optics in Motion (OIM) FSM which requires the customer to devise a unique interface to supply voltages to the mirror controller to set the mirror's angular deflection. The FSM is in an optical servo loop with a wave front sensor (WFS), which controls the dynamic behavior of the mirror's deflection. The code acquires wavefront data from the WFS and fits a plane, which is subsequently converted into its corresponding angular deflection. The FSM provides +/-3° optical angular deflection for a +/-10 V voltage swing. Voltages are applied to the mirror via a National Instruments digital-to-analog converter (DAC) followed by an op amp cascade circuit. This system has been integrated into our Thorlabs AO testbed which currently runs at 11 Hz, but with planned software upgrades, the system update rate is expected to improve to 500 Hz. To show that the FSM subsystem is ready for this speed, we conducted two different PID tuning runs at different step commands. Once 500 Hz is achieved, we plan to make the code and method for our interface solution freely available to the community.
Combined electrical transport and capacitance spectroscopy of a MoS2-LiNbO3 field effect transistor
NASA Astrophysics Data System (ADS)
Michailow, Wladislaw; Schülein, Florian J. R.; Möller, Benjamin; Preciado, Edwin; Nguyen, Ariana E.; von Son, Gretel; Mann, John; Hörner, Andreas L.; Wixforth, Achim; Bartels, Ludwig; Krenner, Hubert J.
2017-01-01
We have measured both the current-voltage ( ISD - VGS ) and capacitance-voltage (C- VGS ) characteristics of a MoS2-LiNbO3 field effect transistor. From the measured capacitance, we calculate the electron surface density and show that its gate voltage dependence follows the theoretical prediction resulting from the two-dimensional free electron model. This model allows us to fit the measured ISD - VGS characteristics over the entire range of VGS . Combining this experimental result with the measured current-voltage characteristics, we determine the field effect mobility as a function of gate voltage. We show that for our device, this improved combined approach yields significantly smaller values (more than a factor of 4) of the electron mobility than the conventional analysis of the current-voltage characteristics only.
NASA Astrophysics Data System (ADS)
Rathore, Priyanka; Mohan Singh Negi, Chandra; Singh Verma, Ajay; Singh, Amarjeet; Chauhan, Gayatri; Regis Inigo, Anto; Gupta, Saral K.
2017-08-01
Devices comprised of solution-processed poly (3-hexylthiophene) (P3HT)/multiwall carbon nanotubes (MWCNTs), with various concentrations of MWCNTs, were fabricated and characterized. The morphology of the P3HT: MWCNT nanocomposite was characterized by using field emission scanning electron microscopy (FESEM). The optical characteristics of the nanocomposite were studied by UV/VIS/NIR spectroscopy and Raman spectroscopy. The electrical properties of the fabricated devices were characterized by measuring the current density-voltage (J-V) characteristics. While the J-V characteristics of a pristine P3HT device reveal thermal injection limited charge transport, the P3HT: MWCNT nanocomposite-based devices exhibit three distinct voltage-dependent conduction regimes. The fitting curve with measured data reveals Ohmic conduction for a low voltage range, a trap-charge limited conduction (TCLC) process at an intermediate voltage range followed by a trap free space-charge limited conduction (SCLC) process at much higher voltages. A fundamental understanding of this work can assist in creating new charge transport pathways which will provide new avenues for the development of highly efficient polymer-based optoelectronic devices.
NASA Astrophysics Data System (ADS)
Mansour, Shehab A.; Ibrahim, Mervat M.
2017-11-01
Iron oxide (α-Fe2O3) nanocrystals have been synthesized via the sol-gel technique. The structural and morphological features of these nanocrystals were studied using x-ray diffraction, Fourier transform-infrared spectroscopy and transmission electron microscopy. Colloidal solution of synthesized α-Fe2O3 (hematite) was spin-coated onto a single-crystal p-type silicon (p-Si) wafer to fabricate a heterojunction diode with Mansourconfiguration Ag/Fe2O3/p-Si/Al. This diode was electrically characterized at room temperature using current-voltage (I-V) characteristics in the voltage range from -9 V to +9 V. The fabricated diode showed a good rectification behavior with a rectification factor 1.115 × 102 at 6 V. The junction parameters such as ideality factor, barrier height, series resistance and shunt resistance are determined using conventional I-V characteristics. For low forward voltage, the conduction mechanism is dominated by the defect-assisted tunneling process with conventional electron-hole recombination. However, at higher voltage, I-V ohmic and space charge-limited current conduction was became less effective with the contribution of the trapped-charge-limited current at the highest voltage range.
NASA Astrophysics Data System (ADS)
Zhang, Wenxu; Peng, Bin; Han, Fangbin; Wang, Qiuru; Soh, Wee Tee; Ong, Chong Kim; Zhang, Wanli
2016-03-01
We develop a method for universally resolving the important issue of separating the inverse spin Hall effect (ISHE) from the spin rectification effect (SRE) signal. This method is based on the consideration that the two effects depend on the spin injection direction: The ISHE is an odd function of the spin injection direction while the SRE is independent on it. Thus, the inversion of the spin injection direction changes the ISHE voltage signal, while the SRE voltage remains. It applies generally to analyzing the different voltage contributions without fitting them to special line shapes. This fast and simple method can be used in a wide frequency range and has the flexibility of sample preparation.
NASA Technical Reports Server (NTRS)
Zoutendyk, John A. (Inventor); Malone, Carl J. (Inventor)
1987-01-01
Electric-field funneling length is measured while irradiating a semiconductor charge-collecting junction with electron-hole-pair generating charged particles at a first junction bias voltage. The bias voltage is then reduced to a second level in order to reduce the depth of the depletion region such that the total charge can no longer be collected by drift and measured in the energy band previously displayed in the multichannel analyzer. This is representative of the maximum electric field funnelling length which may be calculated by measuring the difference at the second bias voltage level of the depletion width and the ion penetration range. The bias voltage is further lowered to a third level at which the particles are collected over a spread of energy levels while at least some of the particles are still collected at the selected energy level. From this the different depths of penetration of the particles are determined while additional effects due to diffusion are minimized.
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A. (Inventor)
1985-01-01
Electric-field funneling length is measured while irradiating a semiconductor charge-collecting junction with electron-hole-pair generating charged particles at a first junction bias voltage. The bias voltage is then reduced to a second level in order to reduce the depth of the depletion region such that the total charge can no longer be collected by drift and measured in the energy band previously displayed in the multichannel analyzer. This is representative of the maximum electric field funneling length which may be calculated by measuring the difference at the second bias voltage level of the depletion width and the ion penetration range. The bias voltage is further lowered to a third level at which the particles are collected over a spread of energy levels while at least some of the particles are still collected at the selected energy level. From this the different depths of penetration of the particles are determined while additional effects due to diffusion are minimized.
Sakata, Souhei; Hossain, Md. Israil; Okamura, Yasushi
2011-01-01
Abstract The voltage sensing phosphatase Ci-VSP is composed of a voltage sensor domain (VSD) and a cytoplasmic phosphatase domain. Upon membrane depolarization, movement of the VSD triggers the enzyme's phosphatase activity. To gain further insight into its operating mechanism, we studied the PI(4,5)P2 phosphatase activity of Ci-VSP expressed in Xenopus oocytes over the entire range of VSD motion by assessing the activity of coexpressed Kir2.1 channels or the fluorescence signal from a pleckstrin homology domain fused with green fluorescent protein (GFP) (PHPLC-GFP). Both assays showed greater phosphatase activity at 125 mV than at 75 mV, which corresponds to ‘sensing’ charges that were 90% and 75% of maximum, respectively. On the other hand, the activity at 160 mV (corresponding to 98% of the maximum ‘sensing’ charge) was indistinguishable from that at 125 mV. Modelling the kinetics of the PHPLC-GFP fluorescence revealed that its time course was dependent on both the level of Ci-VSP expression and the diffusion of PHPLC-GFP beneath the plasma membrane. Enzyme activity was calculated by fitting the time course of PHPLC-GFP fluorescence into the model. The voltage dependence of the enzyme activity was superimposable on the Q–V curve, which is consistent with the idea that the enzyme activity is tightly coupled to VSD movement over the entire range of membrane potentials that elicit VSD movement. PMID:21486809
Contact Force Compensated Thermal Stimulators for Holistic Haptic Interfaces.
Sim, Jai Kyoung; Cho, Young-Ho
2016-05-01
We present a contact force compensated thermal stimulator that can provide a consistent tempera- ture sensation on the human skin independent of the contact force between the thermal stimulator and the skin. Previous passive thermal stimulators were not capable of providing a consistent tem- perature on the human skin even when using identical heat source voltage due to an inconsistency of the heat conduction, which changes due to the force-dependent thermal contact resistance. We propose a force-based feedback method that monitors the contact force and controls the heat source voltage according to this contact force, thus providing consistent temperature on the skin. We composed a heat circuit model equivalent to the skin heat-transfer rate as it is changed by the contact forces; we obtained the optimal voltage condition for the constant skin heat-transfer rate independent of the contact force using a numerical estimation simulation tool. Then, in the experiment, we heated real human skin at the obtained heat source voltage condition, and investigated the skin heat transfer-rate by measuring the skin temperature at various times at different levels of contact force. In the numerical estimation results, the skin heat-transfer rate for the contact forces showed a linear profile in the contact force range of 1-3 N; from this profile we obtained the voltage equation for heat source control. In the experimental study, we adjusted the heat source voltage according to the contact force based on the obtained equation. As a result, without the heat source voltage control for the contact forces, the coefficients of variation (CV) of the skin heat-transfer rate in the contact force range of 1-3 N was found to be 11.9%. On the other hand, with the heat source voltage control for the contact forces, the CV of the skin heat-transfer rate in the contact force range of 1-3 N was found to be barely 2.0%, which indicate an 83.2% improvement in consistency compared to the skin heat-transfer rate without the heat source voltage control. The present technique provides a consistent temperature sensation on the human skin independent of the body movement environment; therefore, it has high potential for use in holistic haptic interfaces that have thermal displays.
An impedance bridge measuring the capacitance ratio in the high frequency range up to 1 MHz
NASA Astrophysics Data System (ADS)
Bee Kim, Dan; Kew Lee, Hyung; Kim, Wan-Seop
2017-02-01
This paper describes a 2-terminal-pair impedance bridge, measuring the capacitance ratio in the high frequency range up to 1 MHz. The bridge was configured with two voltage sources and a phase control unit which enabled the bridge balance by synchronizing the voltage sources with an enhanced phase resolution. Without employing the transformers such as inductive voltage divider, injection and detection transformers, etc, the bridge system is quite simple to set up, and the balance procedure is quick and easy. Using this dual-source coaxial bridge, the 1:1 and 10:1 capacitance ratios were measured with 1 pF-1 nF capacitors in the frequency range from 1 kHz to 1 MHz. The measurement values obtained by the dual-source bridge were then compared with reference values measured using a commercial precision capacitance bridge of AH2700A, the Z-matrix method developed by ourselves, and the 4-terminal-pair coaxial bridge by the Czech Metrological Institute. All the measurements agreed within the reference uncertainty range of an order of 10-6-10-5, proving the bridge ability as a trustworthy tool for measuring the capacitance ratio in the high frequency range.
NASA Astrophysics Data System (ADS)
Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin
2018-04-01
This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.
A 0.7 V 6.66-9.36 GHz wide tuning range CMOS LC VCO with small chip size
NASA Astrophysics Data System (ADS)
Chen, Jun-Da; Zhang, Jie
2017-10-01
The circuit designs are based on TSMC 0.18 μm CMOS standard technology model. The designed circuit uses transformer coupling technology in order to decrease chip area and increase the Q value. The switched-capacitor topology array enables the voltage-controlled oscillator (VCO) to be tuned between 6.66 and 9.36 GHz with 4.9 mW power consumption at supply voltage of 0.7 V, and the tuning range of the circuit can reach 33.7%. The measured phase noise is -110.5 dBc/Hz at 1 MHz offset from the carrier frequency of 7.113 GHz. The output power level is about -1.22 dBm. The figure-of-merit and figure-of-merit-with-tuning range of the VCO are about -180.7 and -191.25 dBc/Hz, respectively. The chip area is 0.429 mm2 excluding the pads. The presented ultra-wideband VCO leads to a better performance in terms of power consumption, tuning range, chip size and output power level for low supply voltage.
Voltage tunable two-color superlattice infrared photodetectors
NASA Astrophysics Data System (ADS)
Majumdar, Amlan; Choi, Kwong-Kit; Reno, John L.; Tsui, Daniel C.
2004-11-01
We present the design and fabrication of voltage tunable two-color superlattice infrared photodetectors (SLIPs), where the detection wavelength switches from the long-wavelength infrared (LWIR) range to the mid-wavelength infrared (MWIR) range upon reversing the polarity of applied bias. The photoactive region of these detectors contains multiple periods of two distinct short-period SLs that are designed for MWIR and LWIR detection. The voltage tunable operation is achieved by using two types of thick blocking barriers between adjacent SLs - undoped barriers on one side for low energy electrons and heavily-doped layers on the other side for high energy electrons. We grew two SLIP structures by molecular beam epitaxy. The first one consists of two AlGaAs/GaAs SLs with the detection range switching from the 7-11 μm band to the 4-7 μm range on reversing the bias polarity. The background-limited temperature is 55 and 80 K for LWIR and MWIR detection, respectively. The second structure comprises of strained InGaAs/GaAs/AlGaAs SLs and AlGaAs/GaAs SLs. The detection range of this SLIP changes from the 8-12 μm band to the 3-5 μm band on switching the bias polarity. The background-limited temperature is 70 and 110 K for LWIR and MWIR detection, respectively. This SLIP is the first ever voltage tunable MWIR/LWIR detector with performance comparable to those of one-color quantum-well infrared detectors designed for the respective wavelength ranges. We also demonstrate that the corrugated light coupling scheme, which enables normal-incidence absorption, is suitable for the two-color SLIPs. Since these SLIPs are two-terminal devices, they can be used with the corrugated geometry for the production of low-cost large-area two-color focal plane arrays.
Method and system for controlling a synchronous machine over full operating range
Walters, James E.; Gunawan, Fani S.; Xue, Yanhong
2002-01-01
System and method for controlling a synchronous machine are provided. The method allows for calculating a stator voltage index. The method further allows for relating the magnitude of the stator voltage index against a threshold voltage value. An offset signal is generated based on the results of the relating step. A respective state of operation of the machine is determined. The offset signal is processed based on the respective state of the machine.
Tests of a Lightweight 200 kW MHD Channel and Diffuser.
1980-03-01
used for measuring differential electrode voltages. The difference electrode voltage was determined by subtracting voltages that were picked up in...transients, instantaneous accelerations as high as 75 g were recorded. The acceleration peaks during steady-state firing were normally in the 15 g...normally in the range of 0.01 g2/Hz except for narrow peaks at 2-3 kHz which reach 0.05 - 0.1 g /Hz. The highest spectrum measured was accelerometer
NASA Astrophysics Data System (ADS)
Brylevskiy, Viktor; Smirnova, Irina; Gutkin, Andrej; Brunkov, Pavel; Rodin, Pavel; Grekhov, Igor
2017-11-01
We present a comparative study of silicon high-voltage diodes exhibiting the effect of delayed superfast impact-ionization breakdown. The effect manifests itself in a sustainable picosecond-range transient from the blocking to the conducting state and occurs when a steep voltage ramp is applied to the p+-n-n+ diode in the reverse direction. Nine groups of diodes with graded and abrupt pn-junctions have been specially fabricated for this study by different techniques from different Si substrates. Additionally, in two groups of these structures, the lifetime of nonequilibrium carriers was intentionally reduced by electron irradiation. All diodes have identical geometrical parameters and similar stationary breakdown voltages. Our experimental setup allows measuring both device voltage and current during the kilovolt switching with time resolution better than 50 ps. Although all devices are capable of forming a front with kilovolt amplitude and 100 ps risetime in the in-series load, the structures with graded pn-junctions have anomalously large residual voltage. The Deep Level Transient Spectroscopy study of all diode structures has been performed in order to evaluate the effect of deep centers on device performance. It was found that the presence of deep-level electron traps negatively correlates with parameters of superfast switching, whereas a large concentration of recombination centers created by electron irradiation has virtually no influence on switching characteristics.
Method and apparatus for nondestructive testing. [using high frequency arc discharges
NASA Technical Reports Server (NTRS)
Hoop, J. M. (Inventor)
1974-01-01
High voltage is applied to an arc gap adjacent to a test specimen to develop a succession of high frequency arc discharges. Those high frequency arc discharges generate pulses of ultrasonic energy within the test specimen without requiring the arc discharges to contact that test specimen and without requiring a coupling medium. Those pulses can be used for detection of flaws and measurements of certain properties and stresses within the test specimen.
Development and Analysis of Closed Cycle Circulator Elements.
1980-05-01
circuits are mounted on cards accessible through a hinged rear panel for service or adjustments. Cards may be removed in groups of 3 for servicing without...voltage signal is processed in such a way that it became linearly related to velocity of the gas flow. The use of these modules ensures the frequency...most important idiagnostic to be measured optically. This test is broken down into two categories: a medium homogeneity category *1 in which
Latest Trends of Vacuum Circuit Breaker and Related Technologies
NASA Astrophysics Data System (ADS)
Kozono, Hideaki; Tanimizu, Toru
Vacuum Circuit Breakers (VCBs) have been widely used for medium voltage level, because of their performance: compact size, light weight, maintenance free operations and environment-friendly characteristics. They become most comfortable breakers for our needs from other breakers: oil, air, magnetic blast and gas. In this paper the history of vacuum, and latest trends of circuit breakers and related technologies are described, as well as merits or demerits of using vacuum technologies.
High-frequency high-voltage high-power DC-to-DC converters
NASA Astrophysics Data System (ADS)
Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.
1981-07-01
The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.
High-frequency high-voltage high-power DC-to-DC converters
NASA Technical Reports Server (NTRS)
Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.
1981-01-01
The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.
Chang, Hochan; Kim, Sungwoong; Jin, Sumin; Lee, Seung-Woo; Yang, Gil-Tae; Lee, Ki-Young; Yi, Hyunjung
2018-01-10
Flexible piezoresistive sensors have huge potential for health monitoring, human-machine interfaces, prosthetic limbs, and intelligent robotics. A variety of nanomaterials and structural schemes have been proposed for realizing ultrasensitive flexible piezoresistive sensors. However, despite the success of recent efforts, high sensitivity within narrower pressure ranges and/or the challenging adhesion and stability issues still potentially limit their broad applications. Herein, we introduce a biomaterial-based scheme for the development of flexible pressure sensors that are ultrasensitive (resistance change by 5 orders) over a broad pressure range of 0.1-100 kPa, promptly responsive (20 ms), and yet highly stable. We show that employing biomaterial-incorporated conductive networks of single-walled carbon nanotubes as interfacial layers of contact-based resistive pressure sensors significantly enhances piezoresistive response via effective modulation of the interlayer resistance and provides stable interfaces for the pressure sensors. The developed flexible sensor is capable of real-time monitoring of wrist pulse waves under external medium pressure levels and providing pressure profiles applied by a thumb and a forefinger during object manipulation at a low voltage (1 V) and power consumption (<12 μW). This work provides a new insight into the material candidates and approaches for the development of wearable health-monitoring and human-machine interfaces.
Tsutsui, Hidekazu; Jinno, Yuka; Tomita, Akiko; Niino, Yusuke; Yamada, Yoshiyuki; Mikoshiba, Katsuhiko; Miyawaki, Atsushi; Okamura, Yasushi
2013-09-15
One of the most awaited techniques in modern physiology is the sensitive detection of spatiotemporal electrical activity in a complex network of excitable cells. The use of genetically encoded voltage probes has been expected to enable such analysis. However, in spite of recent progress, existing probes still suffer from low signal amplitude and/or kinetics too slow to detect fast electrical activity. Here, we have developed an improved voltage probe named Mermaid2, which is based on the voltage-sensor domain of the voltage-sensing phosphatase from Ciona intestinalis and Förster energy transfer between a pair of fluorescent proteins. In mammalian cells, Mermaid2 permits ratiometric readouts of fractional changes of more than 50% over a physiologically relevant voltage range with fast kinetics, and it was used to follow a train of action potentials at frequencies of up to 150 Hz. Mermaid2 was also able to detect single action potentials and subthreshold voltage responses in hippocampal neurons in vitro, in addition to cortical electrical activity evoked by sound stimuli in single trials in living mice.
Two-electrode low supply voltage electrocardiogram signal amplifier.
Dobrev, D
2004-03-01
Portable biomedical instrumentation has become an important part of diagnostic and treatment instrumentation, including telemedicine applications. Low-voltage and low-power design tendencies prevail. Modern battery cell voltages in the range of 3-3.6 V require appropriate circuit solutions. A two-electrode biopotential amplifier design is presented, with a high common-mode rejection ratio (CMRR), high input voltage tolerance and standard first-order high-pass characteristic. Most of these features are due to a high-gain first stage design. The circuit makes use of passive components of popular values and tolerances. Powered by a single 3 V source, the amplifier tolerates +/- 1 V common mode voltage, +/- 50 microA common mode current and 2 V input DC voltage, and its worst-case CMRR is 60 dB. The amplifier is intended for use in various applications, such as Holter-type monitors, defibrillators, ECG monitors, biotelemetry devices etc.
Design considerations for large space electric power systems
NASA Technical Reports Server (NTRS)
Renz, D. D.; Finke, R. C.; Stevens, N. J.; Triner, J. E.; Hansen, I. G.
1983-01-01
As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed.
Crebanine inhibits voltage-dependent Na+ current in guinea-pig ventricular myocytes.
Xiao-Shan, He; Qing, Lin; Yun-Shu, Ma; Ze-Pu, Yu
2014-01-01
To study the effects of crebanine on voltage-gated Na(+) channels in cardiac tissues. Single ventricular myocytes were enzymatically dissociated from adult guinea-pig heart. Voltage-dependent Na(+) current was recorded using the whole cell voltage-clamp technique. Crebanine reversibly inhibited Na(+) current with an IC50 value of 0.283 mmol·L(-1) (95% confidence range: 0.248-0.318 mmol·L(-1)). Crebanine at 0.262 mmol·L(-1) caused a negative shift (about 12 mV) in the voltage-dependence of steady-state inactivation of Na(+) current, and retarded its recovery from inactivation, but did not affect its activation curve. In addition to blocking other voltage-gated ion channels, crebanine blocked Na(+) channels in guinea-pig ventricular myocytes. Crebanine acted as an inactivation stabilizer of Na(+) channels in cardiac tissues. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Moore, Andrew J.; Schubert, Matthew; Nicholas Rymer
2017-01-01
The report details test and measurement flights to demonstrate autonomous UAV inspection of high voltage electrical transmission structures. A UAV built with commercial, off-the-shelf hardware and software, supplemented with custom sensor logging software, measured ultraviolet emissions from a test generator placed on a low-altitude substation and a medium-altitude switching tower. Since corona discharge precedes catastrophic electrical faults on high-voltage structures, detection and geolocation of ultraviolet emissions is needed to develop a UAV-based self-diagnosing power grid. Signal readings from an onboard ultraviolet sensor were validated during flight with a commercial corona camera. Geolocation was accomplished with onboard GPS; the UAV position was logged to a local ground station and transmitted in real time to a NASA server for tracking in the national airspace.
Device for use in a furnace exhaust stream for thermoelectric generation
Polcyn, Adam D.
2013-06-11
A device for generating voltage or electrical current includes an inner elongated member mounted in an outer elongated member, and a plurality of thermoelectric modules mounted in the space between the inner and the outer members. The outer and/or inner elongated members each include a plurality of passages to move a temperature altering medium through the members so that the device can be used in high temperature environments, e.g. the exhaust system of an oxygen fired glass melting furnace. The modules are designed to include a biasing member and/or other arrangements to compensate for differences in thermal expansion between the first and the second members. In this manner, the modules remain in contact with the first and second members. The voltage generated by the modules can be used to power electrical loads.
Efficiency estimation method of three-wired AC to DC line transfer
NASA Astrophysics Data System (ADS)
Solovev, S. V.; Bardanov, A. I.
2018-05-01
The development of power semiconductor converters technology expands the scope of their application to medium voltage distribution networks (6-35 kV). Particularly rectifiers and inverters of appropriate power capacity complement the topology of such voltage level networks with the DC links and lines. The article presents a coefficient that allows taking into account the increase of transmission line capacity depending on the parameters of it. The application of the coefficient is presented by the example of transfer three-wired AC line to DC in various methods. Dependences of the change in the capacity from the load power factor of the line and the reactive component of the resistance of the transmission line are obtained. Conclusions are drawn about the most efficient ways of converting a three-wired AC line to direct current.
A PIPO Boost Converter with Low Ripple and Medium Current Application
NASA Astrophysics Data System (ADS)
Bandri, S.; Sofian, A.; Ismail, F.
2018-04-01
This paper presents a Parallel Input Parallel Output (PIPO) boost converter is proposed to gain power ability of converter, and reduce current inductors. The proposed technique will distribute current for n-parallel inductor and switching component. Four parallel boost converters implement on input voltage 20.5Vdc to generate output voltage 28.8Vdc. The PIPO boost converter applied phase shift pulse width modulation which will compare with conventional PIPO boost converters by using a similar pulse for every switching component. The current ripple reduction shows an advantage PIPO boost converter then conventional boost converter. Varies loads and duty cycle will be simulated and analyzed to verify the performance of PIPO boost converter. Finally, the unbalance of current inductor is able to be verified on four area of duty cycle in less than 0.6.
The effect of different oxygen exchange layers on TaO x based RRAM devices
NASA Astrophysics Data System (ADS)
Alamgir, Zahiruddin; Holt, Joshua; Beckmann, Karsten; Cady, Nathaniel C.
2018-01-01
In this work, we investigated the effect of the oxygen exchange layer (OEL) on the resistive switching properties of TaO x based memory cells. It was found that the forming voltage, SET-RESET voltage, R off, R on and retention properties are strongly correlated with the oxygen scavenging ability of the OEL, and the resulting oxygen vacancy formation ability of this layer. Higher forming voltage was observed for OELs having lower electronegativity/lower Gibbs free energy for oxide formation, and devices fabricated with these OELs exhibited an increased memory window, when using similar SET-RESET voltage range.
Electrothermal actuation based on carbon nanotube network in silicone elastomer
NASA Astrophysics Data System (ADS)
Chen, L. Z.; Liu, C. H.; Hu, C. H.; Fan, S. S.
2008-06-01
The authors report an electrothermal actuator, which is fabricated by involving carbon nanotube network into the silicone elastomer. The actuators exhibit excellent performances as good as normal dielectric elastomer actuators while working under much lower voltages (e.g., 1.5Vmm-1). They are longitudinal actuators and there is no need for stacking or rolling sheets of materials. In addition, they can satisfy the demand of different voltage applications ranging from dozens of voltages to thousands of voltages by using different carbon nanotube loading composites. Visible maximal strain of 4.4% occurs at an electric power intensity around 0.03Wmm-3.
New developments in the field of high voltage and extra-high voltage cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jocteur, R.
1990-04-01
In this paper, the author presents the developments in progress at the present time in France concerning the high voltage (HV) and extra-high voltage (EHV) cables with synthetic insulation and their accessories up to the 500 kV range. The authors have adopted a maximum operating field strength approaching 16 kV/mm (405 V/mil) for low density polyethylene (LDPE) insulated cables. The on-going studies should allow to bring the maximum operating field strength for crosslinked polyethylene (XLPE) insulation from 7 to 10 kV/mm (180 to 255 V/mil) and cables could be manufactured more economically with this material.
Real-Tme Boron Nitride Erosion Measurements of the HiVHAc Thruster via Cavity Ring-Down Spectroscopy
NASA Technical Reports Server (NTRS)
Lee, Brian C.; Yalin, Azer P.; Gallimore, Alec; Huang, Wensheng; Kamhawi, Hani
2013-01-01
Cavity ring-down spectroscopy was used to make real-time erosion measurements from the NASA High Voltage Hall Accelerator thruster. The optical sensor uses 250 nm light to measure absorption of atomic boron in the plume of an operating Hall thruster. Theerosion rate of the High Voltage Hall Accelerator thruster was measured for discharge voltages ranging from 330 to 600 V and discharge powers ranging from 1 to 3 kW. Boron densities as high as 6.5 x 10(exp 15) per cubic meter were found within the channel. Using a very simple boronvelocity model, approximate volumetric erosion rates between 5.0 x 10(exp -12) and 8.2 x 10(exp -12) cubic meter per second were found.
NASA Astrophysics Data System (ADS)
Thakre, Atul; Kumar, Ashok
2017-12-01
An enhanced, repeatable and robust resistive switching phenomenon was observed in Cr substituted BaTiO3 polar ferroelectric thin films; fabricated and deposited by the sol-gel approach and spin coating technique, respectively. An enhanced bistable bipolar resistive switching (BRS) phenomenon without electro-forming process, low switching voltage (˜ 2 V) and moderate retention characteristics of 104 s along with a high Roff/Ron resistance ratio ˜103 was achieved. The current conduction analysis showed that the space charge limited conduction (SCLC) and Schottky emission conduction dominate in the high voltage range, while thermally active charge carriers (ohmic) in the lower voltage range. The impedance spectroscopy study indicates the formation of current conducting path and rupturing of oxygen vacancies during SET and RESET process.
Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.
Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François
2013-08-01
A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanism of voltage-gated channel formation in lipid membranes.
Guidelli, Rolando; Becucci, Lucia
2016-04-01
Although several molecular models for voltage-gated ion channels in lipid membranes have been proposed, a detailed mechanism accounting for the salient features of experimental data is lacking. A general treatment accounting for peptide dipole orientation in the electric field and their nucleation and growth kinetics with ion channel formation is provided. This is the first treatment that explains all the main features of the experimental current-voltage curves of peptides forming voltage-gated channels available in the literature. It predicts a regime of weakly voltage-dependent conductance, followed by one of strong voltage-dependent conductance at higher voltages. It also predicts values of the parameters expressing the exponential dependence of conductance upon voltage and peptide bulk concentration for both regimes, in good agreement with those reported in the literature. Most importantly, the only two adjustable parameters involved in the kinetics of nucleation and growth of ion channels can be varied over broad ranges without affecting the above predictions to a significant extent. Thus, the fitting of experimental current-voltage curves stems naturally from the treatment and depends only slightly upon the choice of the kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.
Measuring Multi-Megavolt Diode Voltages
NASA Astrophysics Data System (ADS)
Pereira, N. R.; Swanekamp, S. B.; Weber, B. V.; Commisso, R. J.; Hinshelwood, D. D.; Stephanakis, S. J.
2002-12-01
The voltage in high-power diodes can be determined by measuring the Compton electrons generated by the diode's bremsstrahlung radiation. This technique is implemented with a Compton-Hall (C-H) voltmeter that collimates the bremsstrahlung onto a Compton target and bends the emitted Compton electron orbits off to the side with an applied magnetic field off to Si pin diode detectors. Voltage is determined from the ratio of the Compton electron dose to the forward x-ray dose. The instrument's calibration and response are determined from coupled electron/photon transport calculations. The applicable voltage range is tuned by adjusting the position of the electron detector relative to the Compton target or by varying the magnetic field strength. The instrument was used to obtain time-dependent voltage measurements for a pinched-beam diode whose voltage is enhanced by an upstream opening switch. In this case, plasmas and vacuum electron flow from the opening switch make it difficult to determine the voltage accurately from electrical measurements. The C-H voltmeter gives voltages that are significantly higher than those obtained from electrical measurements but are consistent with measurements of peak voltage based on nuclear activation of boron-nitride targets.
Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons
Patel, Ameera X.; Burdakov, Denis
2015-01-01
Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems. PMID:25816008
M-currents and other potassium currents in bullfrog sympathetic neurones
Adams, P. R.; Brown, D. A.; Constanti, A.
1982-01-01
1. Bullfrog lumbar sympathetic neurones were voltage-clamped in vitro through twin micro-electrodes. Four different outward (K+) currents could be identified: (i) a large sustained voltage-sensitive delayed rectifier current (IK) activated at membrane potentials more positive than -25 mV; (ii) a calcium-dependent sustained outward current (IC) activated at similar positive potentials and peaking at +20 to +60 mV; (iii) a transient current (IA) activated at membrane potentials more positive than -60 mV after a hyperpolarizing pre-pulse, but which was rapidly and totally inactivated at all potentials within its activation range; and (iv) a new K+ current, the M-current (IM). 2. IM was detected as a non-inactivating current with a threshold at -60 mV. The underlying conductance GM showed a sigmoidal activation curve between -60 and -10 mV, with half-activation at -35 mV and a maximal value (ḠM) of 84±14 (S.E.M.) nS per neurone. The voltage sensitivity of GM could be expressed in terms of a simple Boltzmann distribution for a single multivalent gating particle. 3. IM activated and de-activated along an exponential time course with a time constant uniquely dependent upon voltage, maximizing at ≃ 150 ms at -35 mV at 22 °C. 4. Instantaneous current—voltage (I/V) curves were approximately linear in the presence of IM, suggesting that the M-channels do not show appreciable rectification. However, the time- and voltage-dependent opening of the M-channels induced considerable rectification in the steady-state I/V curves recorded under both voltage-clamp and current-clamp modes between -60 and -25 mV. Both time- and voltage-dependent rectification in the voltage responses to current injection over this range could be predicted from the kinetic properties of IM. 5. It is suggested that IM exerts a strong potential-clamping effect on the behaviour of these neurones at membrane potentials subthreshold to excitation. PMID:6294290
Voltage-controlled IPMC actuators for accommodating intra-ocular lens systems
NASA Astrophysics Data System (ADS)
Horiuchi, Tetsuya; Mihashi, Toshifumi; Fujikado, Takashi; Oshika, Tetsuro; Asaka, Kinji
2017-04-01
An ion polymer-metal composite (IPMC) actuator has unique performance characteristics that were applied in this study for use within the eye. Cataracts are a common eye disease causing clouding of the lens. To treat cataracts, surgeons replace clouded lenses with intraocular lenses (IOLs). However, patients who receive this treatment must still wear reading glasses for tasks requiring close-up vision. We suggest a new voltage-controlled accommodating IOL consisting of an IPMC actuator to change the lens’ focus. We examined the relationship between the displacement performance of an IPMC actuator and the accommodating range of the IOL using in vitro experiments. We show that this system has an accommodating range of approximately 1.15 D under an applied voltage of ±1.2 V. By Lagrange interpolation, we estimate that with an IPMC actuator displacement of 0.14 mm, we can achieve a refractive power of 4 D, which is equivalent to the accommodating range of a 40 year old person.
Optimum Design of LLC Resonant Converter using Inductance Ratio (Lm/Lr)
NASA Astrophysics Data System (ADS)
Palle, Kowstubha; Krishnaveni, K.; Ramesh Reddy, Kolli
2017-06-01
The main benefits of LLC resonant dc/dc converter over conventional series and parallel resonant converters are its light load regulation, less circulating currents, larger bandwidth for zero voltage switching, and less tuning of switching frequency for controlled output. An unique analytical tool, called fundamental harmonic approximation with peak gain adjustment is used for designing the converter. In this paper, an optimum design of the converter is proposed by considering three different design criterions with different values of inductance ratio (Lm/Lr) to achieve good efficiency at high input voltage. The optimum design includes the analysis in operating range, switching frequency range, primary side losses of a switch and stability. The analysis is carried out with simulation using the software tools like MATLAB and PSIM. The performance of the optimized design is demonstrated for a design specification of 12 V, 5 A output operating with an input voltage range of 300-400 V using FSFR 2100 IC of Texas instruments.
High energy sodium based room temperature flow batteries
NASA Astrophysics Data System (ADS)
Shamie, Jack
As novel energy sources such as solar, wind and tidal energies are explored it becomes necessary to build energy storage facilities to load level the intermittent nature of these energy sources. Energy storage is achieved by converting electrical energy into another form of energy. Batteries have many properties that are attractive for energy storage including high energy and power. Among many different types of batteries, redox flow batteries (RFBs) offer many advantages. Unlike conventional batteries, RFBs store energy in a liquid medium rather than solid active materials. This method of storage allows for the separation of energy and power unlike conventional batteries. Additionally flow batteries may have long lifetimes because there is no expansion or contraction of electrodes. A major disadvantage of RFB's is its lower energy density when compared to traditional batteries. In this Thesis, a novel hybrid Na-based redox flow battery (HNFB) is explored, which utilizes a room temperature molten sodium based anode, a sodium ion conducting solid electrolyte and liquid catholytes. The sodium electrode leads to high voltages and energy and allows for the possibility of multi-electron transfer per molecule. Vanadium acetylacetonate (acac) and TEMPO have been investigated for their use as catholytes. In the vanadium system, 2 electrons transfers per vanadium atom were found leading to a doubling of capacity. In addition, degradation of the charged state was found to be reversible within the voltage range of the cell. Contamination by water leads to the formation of vanadyl acetylacetonate. Although it is believed that vanadyl complex need to be taken to low voltages to be reduced back to vanadium acac, a new mechanism is shown that begins at higher voltages (2.1V). Vanadyl complexes react with excess ligand and protons to reform the vanadium complex. During this reaction, water is reformed leading to the continuous cycle in which vanadyl is formed and then reduced back to the original state. In the discharged state, it was found that precipitation occurs, but is due to solubility limits and not chemical reactions. The TEMPO system showed the potential of higher concentration catholytes although large capacity losses were found. Although no explanation is found, the behavior of the fade is related to time and concentration.
Lithium-tellurium bimetallic cell has increased voltage
NASA Technical Reports Server (NTRS)
Cairns, E. J.; Rogers, G. L.; Shimotake, H.
1968-01-01
Lithium-tellurium secondary cell with a fused lithium halide electrolyte, tested in the temperature range 467 degrees to 500 degrees C, showed improvement over the sodium bismuth cell. The voltage of this bimetallic cell was increased by using the more electropositive anode material, lithium, and the more electronegative cathode material, tellurium.
A 1.8 GHz Voltage-Controlled Oscillator using CMOS Technology
NASA Astrophysics Data System (ADS)
Maisurah, M. H. Siti; Emran, F. Nazif; Norman Fadhil, Idham M.; Rahim, A. I. Abdul; Razman, Y. Mohamed
2011-05-01
A Voltage-Controlled Oscillator (VCO) for 1.8 GHz application has been designed using a combination of both 0.13 μm and 0.35 μm CMOS technology. The VCO has a large tuning range, which is from 1.39 GHz to 1.91 GHz, using a control voltage from 0 to 3V. The VCO exhibits a low phase-noise at 1.8 GHz which is around -119.8dBc/Hz at a frequency offset of 1 MHz.
NASA Technical Reports Server (NTRS)
Mitchell, J.; Jones, K.
1986-01-01
High current and voltage controlled remotely. Remote Power Conroller includes two series-connected banks of parallel-connected MOSFET's to withstand high current and voltage. Voltage sharing between switch banks, low-impedance, gate-drive circuits used. Provided controlled range for turn on. Individually trimmable to insure simultaneous switching within few nanoseconds during both turn on and turn off. Control circuit for each switch bank and over-current trip circuit float independently and supplied power via transformer T1 from inverter. Control of floating stages by optocouplers.
Closed-loop analysis and control of a non-inverting buck-boost converter
NASA Astrophysics Data System (ADS)
Chen, Zengshi; Hu, Jiangang; Gao, Wenzhong
2010-11-01
In this article, a cascade controller is designed and analysed for a non-inverting buck-boost converter. The fast inner current loop uses sliding mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics incorporating both the inner and outer loop controllers. The closed-loop system is proven to have a nonminimum phase structure. The voltage transient due to step changes of input voltage or resistance is predictable. The operating range of the reference voltage is discussed. The controller is validated by a simulation circuit. The simulation results show that the reference output voltage is well-tracked under system uncertainties or disturbances, confirming the validity of the proposed controller.
Capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode
NASA Astrophysics Data System (ADS)
Gawri, Isha; Sharma, Mamta; Jindal, Silky; Singh, Harpreet; Tripathi, S. K.
2018-05-01
The present paper reports the capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode using chemical bath deposition method. Here anodic alumina layer prepared using electrolytic deposition method on Al substrate is used as insulating material. Using the capacitance-voltage variation at a fixed frequency, the different parameters such as Depletion layer width, Barrier height, Built-in voltage and Carrier concentration has been calculated at room temperature as well as at temperature range from 123 K to 323 K. With the increase in temperature the barrier height and depletion layer width follow a decreasing trend. Therefore, the capacitance-voltage characterization at different temperatures characterization provides strong evidence that the properties of MIS diode are primarily affected by diode parameters.
Fuel cell stack monitoring and system control
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2005-01-25
A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell. Other polarization curves may be generated and used for fuel cell stack monitoring based on different operating pressures, temperatures, hydrogen quantities.
Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems
NASA Technical Reports Server (NTRS)
Smart, Marshall C. (Inventor); Prakash, Surya G. (Inventor); Bugga, Ratnakumar V. (Inventor); Krause, Frederick C. (Inventor)
2015-01-01
The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).
NASA Astrophysics Data System (ADS)
Wang, Qian; Li, Yu-Tao; Zhang, Tian-Yu; Wang, Dan-Yang; Tian, Ye; Yan, Jun-Chao; Tian, He; Yang, Yi; Yang, Fan; Ren, Tian-Ling
2018-03-01
In this paper, low-voltage, large-strain flexible electrothermal actuators (ETAs) based on laser-reduced graphene oxide (LRGO)/Ag particle composites were fabricated in a simple and cost-efficient process. By adding Ag particles to the LRGO, the sheet resistance decreased effectively. Under a driving voltage of 28 V, the actuator obtained a bending angle of 192° within 6 s. Besides, the bending deformation could be precisely controlled by the driving voltage ranging from 10° to 192°. Finally, a gripper composed of two actuators was demonstrated to manipulate a piece of polydimethylsiloxane block. With the advantages of low-voltage, fast-response, and easy-to-manufacture, the graphene based ETAs have a promising application in soft robotics and soft machines.
Current-voltage characteristics in organic field-effect transistors. Effect of interface dipoles
NASA Astrophysics Data System (ADS)
Sworakowski, Juliusz
2015-07-01
The role of polar molecules present at dielectric/semiconductor interfaces of organic field-effect transistors (OFETs) has been assessed employing the electrostatic model put forward in a recently published paper (Sworakowski et al., 2014). The interface dipoles create dipolar traps in the surface region of the semiconductor, their depths decreasing with the distance from the interface. This feature results in appearance of mobility gradients in the direction perpendicular to the dielectric/semiconductor interface, manifesting themselves in modification of the shapes of current-voltage characteristics. The effect may account for differences in carrier mobilities determined from the same experimental data using methods scanning different ranges of channel thicknesses (e.g., transconductances vs. transfer characteristics), differences between turn-on voltages and threshold voltages, and gate voltage dependence of mobility.
Impact analysis of tap switch out of step for converter transformer
NASA Astrophysics Data System (ADS)
Hong-yue, ZHANG; Zhen-hua, ZHANG; Zhang-xue, XIONG; Gao-wang, YU
2017-06-01
AC transformer load regulation is mainly used to adjust the load side voltage level, improve the quality of power supply, the voltage range is relatively narrow. In DC system, converter transformer is the core equipment of AC and DC power converter and inverter. converter transformer tap adjustment can maintain the normal operation of the converter in small angle range control, the absorption of reactive power, economic operation, valve less stress, valve damping circuit loss, AC / DC harmonic component is also smaller. In this way, the tap switch action is more frequent, and a large range of the tap switch adjustment is required. Converter transformer with a more load voltage regulation switch, the voltage regulation range of the switch is generally 20~30%, the adjustment of each file is 1%~2%. Recently it is often found that the tap switch of Converter Transformers is out of step in Converter station. In this paper, it is analyzed in detail the impact of tap switch out of step for differential protection, overexcitation protection and zero sequence over current protection. Analysis results show that: the tap switch out of step has no effect on the differential protection and the overexcitation protection including the tap switch. But the tap switch out of step has effect on zero sequence overcurrent protection of out of step star-angle converter transformer. The zero sequence overcurrent protection will trip when the tap switch out of step is greater than 3 for out of step star-angle converter transformer.
NASA Astrophysics Data System (ADS)
Berestennikov, A. S.; Aleshin, A. N.
2017-11-01
We have investigated the effect of the resistive switching in the composite films based on polyfunctional polymers - PVK, PFD and PVC mixed with particles of Gr and GO with the concentration of ˜ 1 - 3 wt.%. We have developed the solution processed hybrid memory structures based on PVK and GO particles composite films. The effect of the resistive switching in Al/PVK(PFD; PVC):Gr(GO)/ITO/PET structures manifests itself as a sharp change of the electrical resistance from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ˜ 0.2-0.4 V. It has been established that a sharp conductivity jump characterized by S-shaped current-voltage curves and the presence of their hysteresis occurs upon applying a voltage pulse to the Au/PVK(PFD; PVC):Gr(GO)/ITO/PET structures, with the switching time in the range from 1 to 30 μs. The mechanism of resistive switching associated with the processes of capture and accumulation of charge carriers by Gr(GO) particles introduced into the matrixes of the PVK polymer due to the reduction/oxidation processes. The possible mechanisms of energy transfer between organic and inorganic components in PVK(PFD; PVC):GO(Gr) films causes increase mobility are discussed. Incorporating of Gr (GO) particles into the polymer matrix is a promising route to enhance the performance of hybrid memory structures, as well as it is an effective medium for memory cells.
Public magnetic field exposure based on internal current density for electric low voltage systems.
Keikko, Tommi; Seesvuori, Reino; Hyvönen, Martti; Valkealahti, Seppo
2009-04-01
A measurement concept utilizing a new magnetic field exposure metering system has been developed for indoor substations where voltage is transformed from a medium voltage of 10 or 20 kV to a low voltage of 400 V. The new metering system follows the guidelines published by the International Commission on Non-Ionizing Radiation Protection. It can be used to measure magnetic field values, total harmonic distortion of the magnetic field, magnetic field exposure ratios for public and workers, load current values, and total harmonic distortion of the load current. This paper demonstrates how exposure to non-sinusoidal magnetic fields and magnetic flux density exposure values can be compared directly with limit values for internal current densities in a human body. Further, we present how the magnetic field and magnetic field exposure behaves in the vicinity of magnetic field sources within the indoor substation and in the neighborhood. Measured magnetic fields around the substation components have been used to develop a measurement concept by which long-term measurements in the substations were performed. Long-term measurements revealed interesting and partly unexpected dependencies between the measured quantities, which have been further analyzed. The principle of this paper is to substitute a demanding exposure measurement with measurements of the basic quantities like the 50 Hz fundamental magnetic field component, which can be estimated based on the load currents for certain classes of substation lay-out.
Tian, Kun; He, Cong-Cong; Xu, Hui-Nan; Wang, Yu-Xiang; Wang, Hong-Gang; An, Di; Heng, Bin; Pang, Wei; Jiang, Yu-Gang; Liu, Yan-Qiang
2017-05-01
In the present study, cultured rat primary neurons were exposed to a medium containing N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a specific cell membrane-permeant Zn 2+ chelator, to establish a model of free Zn 2+ deficiency in neurons. The effects of TPEN-mediated free Zn 2+ ion reduction on neuronal viability and on the performance of voltage-gated sodium channels (VGSCs) and potassium channels (Kvs) were assessed. Free Zn 2+ deficiency 1) markedly reduced the neuronal survival rate, 2) reduced the peak amplitude of I Na , 3) shifted the I Na activation curve towards depolarization, 4) modulated the sensitivity of sodium channel voltage-dependent inactivation to a depolarization voltage, and 5) increased the time course of recovery from sodium channel inactivation. In addition, free Zn 2+ deficiency by TPEN notably enhanced the peak amplitude of transient outward K + currents (I A ) and delayed rectifier K + currents (I K ), as well as caused hyperpolarization and depolarization directional shifts in their steady-state activation curves, respectively. Zn 2+ supplementation reversed the effects induced by TPEN. Our results indicate that free Zn 2+ deficiency causes neuronal damage and alters the dynamic characteristics of VGSC and Kv currents. Thus, neuronal injury caused by free Zn 2+ deficiency may correlate with its modulation of the electrophysiological properties of VGSCs and Kvs. Copyright © 2017 Elsevier GmbH. All rights reserved.
New Modulation Method and Control Strategies for Power Electronics Inverters
NASA Astrophysics Data System (ADS)
Aleenejad, Mohsen
The DC to AC power Converters (so-called Inverters) are widely used in industrial applications. The MLIs are becoming increasingly popular in industrial apparatus aimed at medium to high power conversion applications. In comparison to the conventional inverters, they feature superior characteristics such as lower total harmonic distortion (THD), higher efficiency, and lower switching voltage stress. Nevertheless, the superior characteristics come at the price of a more complex topology with an increased number of power electronic switches. The increased number of power electronics switches results in more complicated control strategies for the inverter. Moreover, as the number of power electronic switches increases, the chances of fault occurrence of the switches increases, and thus the inverter's reliability decreases. Due to the extreme monetary ramifications of the interruption of operation in commercial and industrial applications, high reliability for power inverters utilized in these sectors is critical. As a result, developing simple control strategies for normal and fault-tolerant operation of MLIs has always been an interesting topic for researchers in related areas. The purpose of this dissertation is to develop new control and fault-tolerant strategies for the multilevel power inverter. For the normal operation of the inverter, a new high switching frequency technique is developed. The proposed method extends the utilization of the dc link voltage while minimizing the dv/dt of the switches. In the event of a fault, the line voltages of the faulty inverters are unbalanced and cannot be applied to the 3-phase loads. For the faulty condition of the inverter, three novel fault-tolerant techniques are developed. The proposed fault-tolerant strategies generate balanced line voltages without bypassing any healthy and operative inverter element, makes better use of the inverter capacity and generates higher output voltage. These strategies exploit the advantages of the Selective Harmonic Elimination (SHE) and Space Vector Modulation (SVM) methods in conjunction with a slightly modified Fundamental Phase Shift Compensation (FPSC) technique to generate balanced voltages and manipulate voltage harmonics at the same time. The proposed strategies are applicable to several classes of MLIs with three or more voltage levels.
Foundations of DC plasma sources
NASA Astrophysics Data System (ADS)
Tomas Gudmundsson, Jon; Hecimovic, Ante
2017-12-01
A typical dc discharge is configured with the negative cathode at one end and a positive anode at the other end, separated by a gas filled gap, placed inside a long glass cylinder. A few hundred volts between the cathode and anode is required to maintain the discharge. The type of discharge that is formed between the two electrodes depends upon the pressure of the working gas, the nature of the working gas, the applied voltage and the geometry of the discharge. We discuss the current-voltage characteristics of the discharge as well as the distinct structure that develops in the glow discharge region. The dc glow discharge appears in the discharge current range from μA to mA at 0.5-300 Pa pressure. We discuss the various phenomena observed in the dc glow discharge, including the cathode region, the positive column, and striations. The dc glow discharge is maintained by the emission of secondary electrons from the cathode target due to the bombardment of ions. For decades, the dc glow discharge has been used as a sputter source. Then it is often operated as an obstructed abnormal glow discharge and the required applied voltage is in the range 2-5 kV. Typically, the cathode target (the material to be deposited) is connected to a negative voltage supply (dc or rf) and the substrate holder faces the target. The relatively high operating pressure, in the range from 2 to 4 Pa, high applied voltages, and the necessity to have a conductive target limit the application of dc glow discharge as a sputter source. In order to lower the discharge voltage and expand the operation pressure range, the lifetime of the electrons in target vicinity is increased through applying magnetic field, by adding permanent magnets behind the cathode target. This arrangement is coined the magnetron sputtering discharge. The various configurations of the magnetron sputtering discharge and its applications are described. Furthermore, the use of dc discharges for chemical analysis, the Penning discharge and the hollow cathode discharges and some of its applications are briefly discussed.
NASA Technical Reports Server (NTRS)
Johnson, Steven D.; Byers, Jerry W.; Martin, James A.
2012-01-01
A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.
Ion-induced particle desorption in time-of-flight medium energy ion scattering
NASA Astrophysics Data System (ADS)
Lohmann, S.; Primetzhofer, D.
2018-05-01
Secondary ions emitted from solids upon ion impact are studied in a time-of-flight medium energy ion scattering (ToF-MEIS) set-up. In order to investigate characteristics of the emission processes and to evaluate the potential for surface and thin film analysis, experiments employing TiN and Al samples were conducted. The ejected ions exhibit a low initial kinetic energy of a few eV, thus, requiring a sufficiently high acceleration voltage for detection. Molecular and atomic ions of different charge states originating both from surface contaminations and the sample material are found, and relative yields of several species were determined. Experimental evidence that points towards a predominantly electronic sputtering process is presented. For emitted Ti target atoms an additional nuclear sputtering component is suggested.
Application of digital control techniques for satellite medium power DC-DC converters
NASA Astrophysics Data System (ADS)
Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman
2010-09-01
The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.