Energy supply and demand in California
NASA Technical Reports Server (NTRS)
Griffith, E. D.
1978-01-01
The author expresses his views on future energy demand on the west coast of the United States and how that energy demand translates into demand for major fuels. He identifies the major uncertainties in determining what future demands may be. The major supply options that are available to meet projected demands and the policy implications that flow from these options are discussed.
General practitioner workforce planning: assessment of four policy directions.
Teljeur, Conor; Thomas, Stephen; O'Kelly, Fergus D; O'Dowd, Tom
2010-06-02
Estimating the supply of GPs into the future is important in forecasting shortages. The lengthy training process for medicine means that adjusting supply to meet demand in a timely fashion is problematic. This study uses Ireland as a case study to determine the future demand and supply of GPs and to assess the potential impact of several possible interventions to address future shortages. Demand was estimated by applying GP visit rates by age and sex to national population projections. Supply was modelled using a range of parameters derived from two national surveys of GPs. A stochastic modelling approach was adopted to determine the probable future supply of GPs. Four policy interventions were tested: increasing vocational training places; recruiting GPs from abroad; incentivising later retirement; increasing nurse substitution to enable practice nurses to deliver more services. Relative to most other European countries, Ireland has few GPs per capita. Ireland has an ageing population and demand is estimated to increase by 19% by 2021. Without intervention, the supply of GPs will be 5.7% less than required in 2021. Increasing training places will enable supply to meet demand but only after 2019. Recruiting GPs from overseas will enable supply to meet demand continuously if the number recruited is approximately 0.8 per cent of the current workforce per annum. Later retirement has only a short-term impact. Nurse substitution can enable supply to meet demand but only if large numbers of practice nurses are recruited and allowed to deliver a wide range of GP services. A significant shortfall in GP supply is predicted for Ireland unless recruitment is increased. The shortfall will have numerous knock-on effects including price increases, longer waiting lists and an increased burden on hospitals. Increasing training places will not provide an adequate response to future shortages. Foreign recruitment has ethical considerations but may provide a rapid and effective response. Increased nurse substitution appears to offer the best long-term prospects of addressing GP shortages and presents the opportunity to reshape general practice to meet the demands of the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waliyo
Indonesia, the largest archipelagic country with a population the fourth biggest in the world, is now in the process of development. It needs a large quantity of energy electricity to meet the industrial and household demands. The currently available generating capacity is not sufficient to meet the electricity demand for the rapidly growing industries and the increasing population. In order to meet the future demand for electricity, new generating capacity is required to be added to the current capacity. Nuclear electricity generation is one possible alternative to supplement Indonesia`s future demand of electricity. This thesis investigates the possibility of developingmore » nuclear electricity generation in Indonesia, considering the political, social, and economic cost and benefit to Indonesia.« less
10 CFR 905.15 - What are the requirements for the small customer plan alternative?
Code of Federal Regulations, 2011 CFR
2011-01-01
... all reasonable opportunities to meet future energy service requirements using demand-side management... applicable, and contact person; (ii) Type of customer; (iii) Current energy and demand profiles and data on... and demand use for end-use customers; (iv) Future energy services projections; (v) How items in...
A novel approach for examining future US domestic water demand
Costs of repairing and expanding aging infrastructure and competing demands for water from other sectors such as industry and agriculture are stretching policy makers’ abilities to meet essential domestic drinking water needs for future generations. Using Bayesian statistic...
Planning for community resilience to future United States domestic water demand
Costs of repairing and expanding aging infrastructure and competing demands for water from other sectors such as industry and agriculture are stretching water managers’ abilities to meet essential domestic drinking water needs for future generations. Using Bayesian statistical mo...
Resource Demand Scenarios for the Major Metals.
Elshkaki, Ayman; Graedel, T E; Ciacci, Luca; Reck, Barbara K
2018-03-06
The growth in metal use in the past few decades raises concern that supplies may be insufficient to meet demands in the future. From the perspective of historical and current use data for seven major metals-iron, manganese, aluminum, copper, nickel, zinc, and lead-we have generated several scenarios of potential metal demand from 2010 to 2050 under alternative patterns of global development. We have also compared those demands with various assessments of potential supply to midcentury. Five conclusions emerge: (1) The calculated demand for each of the seven metals doubles or triples relative to 2010 levels by midcentury; (2) The largest demand increases relate to a scenario in which increasingly equitable values and institutions prevail throughout the world; (3) The metal recycling flows in the scenarios meet only a modest fraction of future metals demand for the next few decades; (4) In the case of copper, zinc, and perhaps lead, supply may be unlikely to meet demand by about midcentury under the current use patterns of the respective metals; (5) Increased rates of demand for metals imply substantial new energy provisioning, leading to increases in overall global energy demand of 21-37%. These results imply that extensive technological transformations and governmental initiatives could be needed over the next several decades in order that regional and global development and associated metal demand are not to be constrained by limited metal supply.
Methane Hydrates: More Than a Viable Aviation Fuel Feedstock Option
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.
2007-01-01
Demand for hydrocarbon fuels is steadily increasing, and greenhouse gas emissions continue to rise unabated with the energy demand. Alternate fuels will be coming on line to meet that demand. This report examines the recovering of methane from methane hydrates for fuel to meet this demand rather than permitting its natural release into the environment, which will be detrimental to the planet. Some background on the nature, vast sizes, and stability of sedimentary and permafrost formations of hydrates are discussed. A few examples of the severe problems associated with methane recovery from these hydrates are presented along with the potential impact on the environment and coastal waters. Future availability of methane from hydrates may become an attractive option for aviation fueling, and so future aircraft design associated with methane fueling is considered.
Attanasi, E.D.; Freeman, P.A.
2013-01-01
This analysis shows the important contribution that stranded gas from central Asia, Russia, Southeast Asia, and Australia can make in meeting the projected demand for gas imports of China, India, Japan, and South Korea from 2020 to 2040. The estimated delivered costs of pipeline gas from stranded fields in Russia and central Asia at Shanghai, China, are generally less than delivered costs of liquefied natural gas (LNG). Australia and Malaysia are initially the lowest-cost LNG suppliers. In the concluding section, it is argued that Asian LNG demand is price sensitive, and that current Asian LNG pricing procedures are unlikely to be sustainable for gas import demand to attain maximum potential growth. Resource volumes in stranded fields evaluated can nearly meet projected import demands.
Cut fossil fuel links and curb burden on the NHS.
Munro, Alice
2017-06-21
At a time when the NHS is struggling to meet demand, it is easy to regard the health impact of climate change as less urgent than the immediate needs of patients. However, action now to limit the effects of climate change would also reduce demands on the health service and help us to meet the healthcare needs of future generations.
Identifying water price and population criteria for meeting future urban water demand targets
NASA Astrophysics Data System (ADS)
Ashoori, Negin; Dzombak, David A.; Small, Mitchell J.
2017-12-01
Predictive models for urban water demand can help identify the set of factors that must be satisfied in order to meet future targets for water demand. Some of the explanatory variables used in such models, such as service area population and changing temperature and rainfall rates, are outside the immediate control of water planners and managers. Others, such as water pricing and the intensity of voluntary water conservation efforts, are subject to decisions and programs implemented by the water utility. In order to understand this relationship, a multiple regression model fit to 44 years of monthly demand data (1970-2014) for Los Angeles, California was applied to predict possible future demand through 2050 under alternative scenarios for the explanatory variables: population, price, voluntary conservation efforts, and temperature and precipitation outcomes predicted by four global climate models with two CO2 emission scenarios. Future residential water demand in Los Angeles is projected to be largely driven by price and population rather than climate change and conservation. A median projection for the year 2050 indicates that residential water demand in Los Angeles will increase by approximately 36 percent, to a level of 620 million m3 per year. The Monte Carlo simulations of the fitted model for water demand were then used to find the set of conditions in the future for which water demand is predicted to be above or below the Los Angeles Department of Water and Power 2035 goal to reduce residential water demand by 25%. Results indicate that increases in price can not ensure that the 2035 water demand target can be met when population increases. Los Angeles must rely on furthering their conservation initiatives and increasing their use of stormwater capture, recycled water, and expanding their groundwater storage. The forecasting approach developed in this study can be utilized by other cities to understand the future of water demand in water-stressed areas. Improving water demand forecasts will help planners understand and optimize future investments in water supply infrastructure and related programs.
Ronald S. Zalesny Jr.; John A. Stanturf; Steven R. Evett; Nabil F. Kandil; Christopher Soriano
2011-01-01
The Nile River provides nearly 97% of Egypt's freshwater supply. Egypt's share of Nile waters is fixed at 55.5 billion cubic meters annually. As a result, Egypt will not be able to meet increasing water demand using freshwater from the Nile and has been developing non-conventional wastewater reuse strategies to meet future demands. The USAID Mission in Cairo...
Opportunities for woody crop production using treated wastewater in Egypt
R.S. Zalesny; S.R. Evett; N.F. Kandil; C. Soriano; John Stanturf
2011-01-01
The Nile River provides nearly 97% of Egyptâs freshwater supply. Egyptâs share of Nile waters is fixed at 55.5 billion cubic meters annually. As a result, Egypt will not be able to meet increasing water demand using freshwater from the Nile and has been developing non-conventional wastewater reuse strategies to meet future demands. The USAID Mission in Cairo began...
Cyclone: A close air support aircraft for tomorrow
NASA Technical Reports Server (NTRS)
Cox, George; Croulet, Donald; Dunn, James; Graham, Michael; Ip, Phillip; Low, Scott; Vance, Gregg; Volckaert, Eric
1991-01-01
To meet the threat of the battlefield of the future, the U.S. ground forces will require reliable air support. To provide this support, future aircrews demand a versatile close air support aircraft capable of delivering ordinance during the day, night, or in adverse weather with pin-point accuracy. The Cyclone aircraft meets these requirements, packing the 'punch' necessary to clear the way for effective ground operations. Possessing anti-armor, missile, and precision bombing capability, the Cyclone will counter the threat into the 21st Century. Here, it is shown that the Cyclone is a realistic, economical answer to the demand for a capable close air support aircraft.
Visualizing Alternative Phosphorus Scenarios for Future Food Security
Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart
2016-01-01
The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in crop and livestock systems. PMID:27840814
Visualizing Alternative Phosphorus Scenarios for Future Food Security.
Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart
2016-01-01
The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in crop and livestock systems.
Algae Oil: A Sustainable Renewable Fuel of Future
Paul Abishek, Monford; Prem Rajan, Anand
2014-01-01
A nonrenewable fuel like petroleum has been used from centuries and its usage has kept on increasing day by day. This also contributes to increased production of greenhouse gases contributing towards global issues like global warming. In order to meet environmental and economic sustainability, renewable, carbon neutral transport fuels are necessary. To meet these demands microalgae are the key source for production of biodiesel. These microalgae do produce oil from sunlight like plants but in a much more efficient manner. Biodiesel provides more environmental benefits, and being a renewable resource it has gained lot of attraction. However, the main obstacle to commercialization of biodiesel is its cost and feasibility. Biodiesel is usually used by blending with petro diesel, but it can also be used in pure form. Biodiesel is a sustainable fuel, as it is available throughout the year and can run any engine. It will satisfy the needs of the future generation to come. It will meet the demands of the future generation to come. PMID:24883211
[The Hessian care monitor. Transparency on regional labor markets].
Lauxen, O; Bieräugel, R
2013-08-01
The Hessian Care Monitor is a Web-based monitoring system of the regional care labor market. It contains information on the current labor market and on future developments. Official statistics are analyzed, primary data are collected, and forecasts are calculated. Since 2008, the demand for nurses in Hesse has been higher than the supply. In 2010, there was a lack of more than 4,400 nurses. Moreover, in 2025, around 5,500 additional nurses will be needed to meet the increasing demand arising from demographic changes. However, there are three different regional patterns: regions with high current shortages but little additional demand in the future; regions with low current shortages but large future needs; and regions with high current shortages and large future demand. Appropriate strategies for handling labor shortages have to be selected according to the different regional patterns.
Enterprise Education: A New Social Ethic for Higher Education?
ERIC Educational Resources Information Center
Foreman-Peck, L.
1993-01-01
Review of a British initiative to develop entrepreneurship courses in higher education concludes that meeting industry demands can lead to conservative credentialism instead of enterprising qualities. Enterprise education should be concerned with present and future needs of employers, rather than their demands. (SK)
Lee, Adam F; Bennett, James A; Manayil, Jinesh C; Wilson, Karen
2014-11-21
Concern over the economics of accessing fossil fuel reserves, and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting such carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Here we discuss catalytic esterification and transesterification solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands.
Deep carbon reductions in California require electrification and integration across economic sectors
NASA Astrophysics Data System (ADS)
Wei, Max; Nelson, James H.; Greenblatt, Jeffery B.; Mileva, Ana; Johnston, Josiah; Ting, Michael; Yang, Christopher; Jones, Chris; McMahon, James E.; Kammen, Daniel M.
2013-03-01
Meeting a greenhouse gas (GHG) reduction target of 80% below 1990 levels in the year 2050 requires detailed long-term planning due to complexity, inertia, and path dependency in the energy system. A detailed investigation of supply and demand alternatives is conducted to assess requirements for future California energy systems that can meet the 2050 GHG target. Two components are developed here that build novel analytic capacity and extend previous studies: (1) detailed bottom-up projections of energy demand across the building, industry and transportation sectors; and (2) a high-resolution variable renewable resource capacity planning model (SWITCH) that minimizes the cost of electricity while meeting GHG policy goals in the 2050 timeframe. Multiple pathways exist to a low-GHG future, all involving increased efficiency, electrification, and a dramatic shift from fossil fuels to low-GHG energy. The electricity system is found to have a diverse, cost-effective set of options that meet aggressive GHG reduction targets. This conclusion holds even with increased demand from transportation and heating, but the optimal levels of wind and solar deployment depend on the temporal characteristics of the resulting load profile. Long-term policy support is found to be a key missing element for the successful attainment of the 2050 GHG target in California.
ERIC Educational Resources Information Center
Vergara, Claudia E.; Urban-Lurain, Mark; Campa, Henry, III; Cheruvelil, Kendra S.; Ebert-May, Diane; Fata-Hartley, Cori; Johnston, Kevin
2014-01-01
Doctoral granting institutions prepare future faculty members for academic positions at institutions of higher education across the nation. Growing concerns about whether these institutions are adequately preparing students to meet the demands of a changing academic environment have prompted several reform efforts. We describe a professional…
NASA Astrophysics Data System (ADS)
Ibarrola-Rivas, M. J.; Granados-Ramírez, R.; Nonhebel, S.
2017-12-01
Land and water are essential local resources for food production but are limited. The main drivers of increasing food demand are population growth and dietary changes, which depend on the socioeconomic situation of the population. These two factors affect the availability of local resources: population growth reduces the land and water per person; and adoption of affluent diets increases the demand for land and water per person. This study shows potentials of global food supply by linking food demand drivers with national land and water availability. Whether the available land and water is enough to meet national food demand was calculated for 187 countries. The calculations were performed for the past situation (1960 and 2010) and to assess four future scenarios (2050) to discuss different paths of diets, population numbers and agricultural expansion. Inclusion of the demand perspective in the analysis has shown stronger challenges for future global food supply than have other studies. The results show that with the "business as usual" scenario, 40% of the global population in 2050 will live in countries with not enough land nor water to meet the demands of their population. Restriction to basic diets will be the most effective in lowering both land and water constraints. Our results identify both food production and food demand factors, and the regions that may experience the strongest challenges in 2050.
Bioethanol production from tuber crops using fermentation technology: a review
NASA Astrophysics Data System (ADS)
Thatoi, Hrudayanath; Dash, Preeti Krishna; Mohapatra, Sonali; Swain, Manas Ranjan
2016-05-01
Bioethanol, an alcohol produced by fermentation of plant biomass containing starch and sugars by micro-organisms, considered as a dominant form of fuel for future. Production of this renewable fuel, especially from starchy materials such as tuber crops, holds a remarkable potential to meet the future energy demand because of its high production and comparitively less demand for use as food and fodder. This review focuses on the world bioethanol production scenario from various tuber crops, namely cassava, sweet potato, potato, yam, aroids, sugar beet, etc., fermentation techniques and micro-organisms used in fermentation process along with its future prospects. The advances in metabolic pathway engineering and genetic engineering techniques have led to the development of micro-organisms capable of efficiently converting biomass sugars into ethanol. Several biotechnological tools that are also available for the improvement of microorganisms to meet the harsh environments typically met with certain industrial fermentation process are also discussed.
USDA-ARS?s Scientific Manuscript database
Fish is now the largest source of animal protein in the world, with aquaculture contributing more than half the world’s seafood supply. The world needs to produce significantly more fish in the future to meet the demands of a growing and increasingly affluent global population. Capture fisheries ar...
Energy Workforce Trends and Training Needs in Appalachia
ERIC Educational Resources Information Center
Appalachian Regional Commission, 2011
2011-01-01
This study uses the best available national data to project future supply and demand for occupations associated with the energy industry for each Appalachian state, and the number of people enrolled in and graduating from programs in the Region's institutions of higher education that will be available to meet or exceed the demand. The report…
The 1993 RPA timber assessment update
Richard W. Haynes; Darius M. Adams; John R. Mills
1995-01-01
This update reports changes in the Nation's timber resource since the 1989 RPA timber assessment. The timber resource situation is analyzed to provide projections for future cost and availability of timber products to meet demands. Prospective trends in demands for and supplies of timber, and the factors that affect these trends are examined. These include changes...
Collet, Lila; Ruelland, Denis; Borrell-Estupina, Valérie; Dezetter, Alain; Servat, Eric
2013-09-01
Assessing water supply capacity is crucial to meet stakeholders' needs, notably in the Mediterranean region. This region has been identified as a climate change hot spot, and as a region where water demand is continuously increasing due to population growth and the expansion of irrigated areas. The Hérault River catchment (2500 km(2), France) is a typical example and a negative trend in discharge has been observed since the 1960s. In this context, local stakeholders need first to understand the processes controlling the evolution of water resources and demands in the past to latter evaluate future water supply capacity and anticipate the tensions users could be confronted to in the future. A modelling framework is proposed at a 10-day time step to assess whether water resources have been able to meet water demands over the last 50 years. Water supply was evaluated using hydrological modelling and a dam management model. Water demand dynamics were estimated for the domestic and agricultural sectors. A water supply capacity index is computed to assess the extent and the frequency to which water demand has been satisfied at the sub-basin scale. Simulated runoff dynamics were in good agreement with observations over the calibration and validation periods. Domestic water demand has increased considerably since the 1980s and is characterized by a seasonal peak in summer. Agricultural demand has increased in the downstream sub-basins and decreased upstream where irrigated areas have decreased. As a result, although most water demands were satisfied between 1961 and 1980, irrigation requirements in summer have sometimes not been satisfied since the 1980s. This work is the first step toward evaluating possible future changes in water allocation capacity in the catchment, using future climate change, dam management and water use scenarios. Copyright © 2013 Elsevier B.V. All rights reserved.
The Benefits to Taxpayers from Increases in Students' Educational Attainment. Monograph
ERIC Educational Resources Information Center
Carroll, Stephen J.; Erkut, Emre
2009-01-01
Meeting the educational demands of the future will be expensive; however, in most states, public schools from kindergarten through the university level already experience budgetary challenges. Policymakers face the challenge of motivating taxpayers to provide the funds needed to meet mounting education needs. In this volume, Carroll and Erkut…
NASA Astrophysics Data System (ADS)
Reid, J.; Polasky, S.; Hawthorne, P.
2014-12-01
Sustainable development requires providing for human well-being by meeting basic demands for food, energy and consumer goods and services, all while maintaining an environment capable of sustaining the provisioning of those demands for future generations. Failure to meet the basic needs of human well-being is not an ethically viable option and strategies for doubling agricultural production and providing energy and goods for a growing population exist. However, the question is, at what cost to environmental quality? We developed an integrated modeling approach to test strategies for meeting multiple objectives within the limits of the earth system. We use scenarios to explore a range of assumptions on socio-economic factors like population growth, per capita income and technological change; food systems factors like food waste, production intensification and expansion, and meat demand; and technological developments in energy efficiency and wastewater treatment. We use these scenario to test the conditions in which we can fit the simultaneous goals of sustainable development.
Utilizing Traveler Demand Modeling to Predict Future Commercial Flight Schedules in the NAS
NASA Technical Reports Server (NTRS)
Viken, Jeff; Dollyhigh, Samuel; Smith, Jeremy; Trani, Antonio; Baik, Hojong; Hinze, Nicholas; Ashiabor, Senanu
2006-01-01
The current work incorporates the Transportation Systems Analysis Model (TSAM) to predict the future demand for airline travel. TSAM is a multi-mode, national model that predicts the demand for all long distance travel at a county level based upon population and demographics. The model conducts a mode choice analysis to compute the demand for commercial airline travel based upon the traveler s purpose of the trip, value of time, cost and time of the trip,. The county demand for airline travel is then aggregated (or distributed) to the airport level, and the enplanement demand at commercial airports is modeled. With the growth in flight demand, and utilizing current airline flight schedules, the Fratar algorithm is used to develop future flight schedules in the NAS. The projected flights can then be flown through air transportation simulators to quantify the ability of the NAS to meet future demand. A major strength of the TSAM analysis is that scenario planning can be conducted to quantify capacity requirements at individual airports, based upon different future scenarios. Different demographic scenarios can be analyzed to model the demand sensitivity to them. Also, it is fairly well know, but not well modeled at the airport level, that the demand for travel is highly dependent on the cost of travel, or the fare yield of the airline industry. The FAA projects the fare yield (in constant year dollars) to keep decreasing into the future. The magnitude and/or direction of these projections can be suspect in light of the general lack of airline profits and the large rises in airline fuel cost. Also, changes in travel time and convenience have an influence on the demand for air travel, especially for business travel. Future planners cannot easily conduct sensitivity studies of future demand with the FAA TAF data, nor with the Boeing or Airbus projections. In TSAM many factors can be parameterized and various demand sensitivities can be predicted for future travel. These resulting demand scenarios can be incorporated into future flight schedules, therefore providing a quantifiable demand for flights in the NAS for a range of futures. In addition, new future airline business scenarios are investigated that illustrate when direct flights can replace connecting flights and larger aircraft can be substituted, only when justified by demand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alstone, Peter; Potter, Jennifer; Piette, Mary Ann
Demand response (DR) is an important resource for keeping the electricity grid stable and efficient; deferring upgrades to generation, transmission, and distribution systems; and providing other customer economic benefits. This study estimates the potential size and cost of the available DR resource for California’s three investor-owned utilities (IOUs), as the California Public Utilities Commission (CPUC) evaluates how to enhance the role of DR in meeting California’s resource planning needs and operational requirements. As the state forges a clean energy future, the contributions of wind and solar electricity from centralized and distributed generation will fundamentally change the power grid’s operational dynamics.more » This transition requires careful planning to ensure sufficient capacity is available with the right characteristics – flexibility and fast response – to meet reliability needs. Illustrated is a snapshot of how net load (the difference between demand and intermittent renewables) is expected to shift. Increasing contributions from renewable generation introduces steeper ramps and a shift, into the evening, of the hours that drive capacity needs. These hours of peak capacity need are indicated by the black dots on the plots. Ultimately this study quantifies the ability and the cost of using DR resources to help meet the capacity need at these forecasted critical hours in the state.« less
USDA-ARS?s Scientific Manuscript database
Global transportation demands have led to concerns about the sustainability, costs, and environmental consequences of relying on petroleum to meet future energy needs. Future low-carbon fuel standards (LCFS) are being implemented worldwide to evaluate alternative fuel potential in reducing greenho...
The SEA of the Future: Prioritizing Productivity. Volume 2
ERIC Educational Resources Information Center
Gross, Betheny, Ed.; Jochim, Ashley, Ed.
2013-01-01
"The SEA of the Future" is an education publication series examining how state education agencies can shift from a compliance to a performance-oriented organization through strategic planning and performance management tools to meet growing demands to support education reform while improving productivity. This volume, the second in the…
NAS Demand Predictions, Transportation Systems Analysis Model (TSAM) Compared with Other Forecasts
NASA Technical Reports Server (NTRS)
Viken, Jeff; Dollyhigh, Samuel; Smith, Jeremy; Trani, Antonio; Baik, Hojong; Hinze, Nicholas; Ashiabor, Senanu
2006-01-01
The current work incorporates the Transportation Systems Analysis Model (TSAM) to predict the future demand for airline travel. TSAM is a multi-mode, national model that predicts the demand for all long distance travel at a county level based upon population and demographics. The model conducts a mode choice analysis to compute the demand for commercial airline travel based upon the traveler s purpose of the trip, value of time, cost and time of the trip,. The county demand for airline travel is then aggregated (or distributed) to the airport level, and the enplanement demand at commercial airports is modeled. With the growth in flight demand, and utilizing current airline flight schedules, the Fratar algorithm is used to develop future flight schedules in the NAS. The projected flights can then be flown through air transportation simulators to quantify the ability of the NAS to meet future demand. A major strength of the TSAM analysis is that scenario planning can be conducted to quantify capacity requirements at individual airports, based upon different future scenarios. Different demographic scenarios can be analyzed to model the demand sensitivity to them. Also, it is fairly well know, but not well modeled at the airport level, that the demand for travel is highly dependent on the cost of travel, or the fare yield of the airline industry. The FAA projects the fare yield (in constant year dollars) to keep decreasing into the future. The magnitude and/or direction of these projections can be suspect in light of the general lack of airline profits and the large rises in airline fuel cost. Also, changes in travel time and convenience have an influence on the demand for air travel, especially for business travel. Future planners cannot easily conduct sensitivity studies of future demand with the FAA TAF data, nor with the Boeing or Airbus projections. In TSAM many factors can be parameterized and various demand sensitivities can be predicted for future travel. These resulting demand scenarios can be incorporated into future flight schedules, therefore providing a quantifiable demand for flights in the NAS for a range of futures. In addition, new future airline business scenarios are investigated that illustrate when direct flights can replace connecting flights and larger aircraft can be substituted, only when justified by demand.
Mineral resource models and the Alaskan Mineral Resource Assessment Program
Singer, Donald A.; Vogely, W. A.
1975-01-01
The least exacting demand that can be made of any model is that it serves as a device whereby we can predict actual physical happenings. Another demand which could be made is that the physical happenings predicted be in some way relevant to man, either by allowing him to anticipate future uncontrollable events or by demonstrating the possible consequences of various decisions. To date, many mineral resource models have been deficient in meeting these demands.
ERIC Educational Resources Information Center
Cornius-Randall, Rachael
2004-01-01
Teacher shortages have encouraged initiatives to tailor training programs to meet the demand in both past, current and future contexts. Such programs have been streamlined to ensure a rapid response to shortages, in addition to also drawing participants from non-traditional groups as a source of potential educators. Within teacher education,…
New Functions for New Demands.
ERIC Educational Resources Information Center
Wrobleski, Diane
1995-01-01
Explores areas to consider when planning and designing libraries/media centers. Examines wiring capabilities to meet future needs, ergonomics and furniture durability for workstations, and color and lighting schemes to enhance the indoor environment. (GR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alstone, Peter; Potter, Jennifer; Piette, Mary Ann
California’s legislative and regulatory goals for renewable energy are changing the power grid’s dynamics. Increased variable generation resource penetration connected to the bulk power system, as well as, distributed energy resources (DERs) connected to the distribution system affect the grid’s reliable operation over many different time scales (e.g., days to hours to minutes to seconds). As the state continues this transition, it will require careful planning to ensure resources with the right characteristics are available to meet changing grid management needs. Demand response (DR) has the potential to provide important resources for keeping the electricity grid stable and efficient, tomore » defer upgrades to generation, transmission and distribution systems, and to deliver customer economic benefits. This study estimates the potential size and cost of future DR resources for California’s three investor-owned utilities (IOUs): Pacific Gas and Electric Company (PG&E), Southern California Edison Company (SCE), and San Diego Gas & Electric Company (SDG&E). Our goal is to provide data-driven insights as the California Public Utilities Commission (CPUC) evaluates how to enhance DR’s role in meeting California’s resource planning needs and operational requirements. We address two fundamental questions: 1. What cost-competitive DR service types will meet California’s future grid needs as it moves towards clean energy and advanced infrastructure? 2. What is the size and cost of the expected resource base for the DR service types?« less
The SEA of the Future: Building Agency Capacity for Evidence-Based Policymaking. Volume 5
ERIC Educational Resources Information Center
Gross, Betheny, Ed.; Jochim, Ashley, Ed.
2015-01-01
"The SEA of the Future" is an education publication series examining how state education agencies can shift from a compliance to a performance-oriented organization through strategic planning and performance management tools to meet growing demands to support education reform while improving productivity. This volume, the fifth in the…
The SEA of the Future: Maximizing Opportunities under ESSA. Volume 6
ERIC Educational Resources Information Center
Jochim, Ashley, Ed.; Gross, Betheny, Ed.
2016-01-01
"The SEA of the Future" is an education publication series examining how state education agencies can shift from a compliance to a performance-oriented organization through strategic planning and performance management tools to meet growing demands to support education reform while improving productivity. This volume, the sixth in the…
The SEA of the Future: Leveraging Performance Management to Support School Improvement. Volume 1
ERIC Educational Resources Information Center
Gross, Betheny, Ed.; Jochim, Ashley, Ed.
2013-01-01
"The SEA of the Future" is an education publication series examining how state education agencies can shift from a compliance to a performance-oriented organization through strategic planning and performance management tools to meet growing demands to support education reform while improving productivity. This inaugural edition of…
The SEA of the Future: Building the Productivity Infrastructure. Volume 3
ERIC Educational Resources Information Center
Gross, Betheny, Ed.; Jochim, Ashley, Ed.
2014-01-01
"The SEA of the Future" is an education publication series examining how state education agencies can shift from a compliance to a performance-oriented organization through strategic planning and performance management tools to meet growing demands to support education reform while improving productivity. This volume, the third in the…
ERIC Educational Resources Information Center
Ontario Ministry of Education and Training, Toronto.
This advisory report presents 18 recommendations for cost sharing, cooperation among institutions, and meeting future demands for higher education in Ontario. A framework for public policy is offered which stresses the themes of excellence, accessibility, and responsibility and urges differentiation in strengths among colleges and universities, a…
The Future of Nursing: Leading Change, Advancing Health
ERIC Educational Resources Information Center
National Academies Press, 2011
2011-01-01
"The Future of Nursing" explores how nurses' roles, responsibilities, and education should change significantly to meet the increased demand for care that will be created by health care reform and to advance improvements in America's increasingly complex health system. At more than 3 million in number, nurses make up the single…
NASA Technical Reports Server (NTRS)
Doxley, Charles A.
2016-01-01
In the current world of applications that use reconfigurable technology implemented on field programmable gate arrays (FPGAs), there is a need for flexible architectures that can grow as the systems evolve. A project has limited resources and a fixed set of requirements that development efforts are tasked to meet. Designers must develop robust solutions that practically meet the current customer demands and also have the ability to grow for future performance. This paper describes the development of a high speed serial data streaming algorithm that allows for transmission of multiple data channels over a single serial link. The technique has the ability to change to meet new applications developed for future design considerations. This approach uses the Xilinx Serial RapidIO LOGICORE Solution to implement a flexible infrastructure to meet the current project requirements with the ability to adapt future system designs.
Demand forecasting for automotive sector in Malaysia by system dynamics approach
NASA Astrophysics Data System (ADS)
Zulkepli, Jafri; Fong, Chan Hwa; Abidin, Norhaslinda Zainal
2015-12-01
In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand from the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars.
Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hostick, D.; Belzer, D.B.; Hadley, S.W.
2012-06-01
The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less
ERIC Educational Resources Information Center
Molitor, Jessica; Ryall, Mickey; Kelter, Paul
2013-01-01
"Sustainable" development refers to development that meets our needs, while making it possible for future generations to meet their needs. Societal and personal choices will dictate if sustainable development will be possible, or, rather, if the environmental, economic and social impact of our continual lifestyle demands will lead to…
2017-04-06
future demands for intra-theater AE for all services and coalition partners in accordance with DoD Directive 5100.01 and the SECDEF’s Memorandum for... demand signal for AE assets approximately doubled. In 2009, the Medical Evacuation Proponency Directorate at Fort Rucker, AL conducted an...Analysis (TAA), but the Army only possessed 38 Air Ambulance Companies in its force structure to meet all of DoD’s AE demands .9 These results included nine
Rare Earth Elements | Alaska Division of Geological & Geophysical Surveys
- Mineral Resources main content Rare Earth Elements Rare earth elements and the supply and demand of these deposits containing rare earth elements to meet the perceived future demand. High prices for rare earth earth element occurrences in the DGGS publications catalog. Department of Natural Resources, Division of
The SEA of the Future: Uncovering the Productivity Promise of Rural Education. Volume 4
ERIC Educational Resources Information Center
Gross, Betheny, Ed.; Jochim, Ashley, Ed.
2015-01-01
"The SEA of the Future" is an education publication series examining how state education agencies can shift from a compliance to a performance-oriented organization through strategic planning and performance management tools to meet growing demands to support education reform while improving productivity. This is the fourth volume in the…
Goodkind, Daniel; Lollock, Lisa; Choi, Yoonjoung; McDevitt, Thomas; West, Loraine
2018-01-01
Meeting demand for family planning can facilitate progress towards all major themes of the United Nations Sustainable Development Goals (SDGs): people, planet, prosperity, peace, and partnership. Many policymakers have embraced a benchmark goal that at least 75% of the demand for family planning in all countries be satisfied with modern contraceptive methods by the year 2030. This study examines the demographic impact (and development implications) of achieving the 75% benchmark in 13 developing countries that are expected to be the furthest from achieving that benchmark. Estimation of the demographic impact of achieving the 75% benchmark requires three steps in each country: 1) translate contraceptive prevalence assumptions (with and without intervention) into future fertility levels based on biometric models, 2) incorporate each pair of fertility assumptions into separate population projections, and 3) compare the demographic differences between the two population projections. Data are drawn from the United Nations, the US Census Bureau, and Demographic and Health Surveys. The demographic impact of meeting the 75% benchmark is examined via projected differences in fertility rates (average expected births per woman's reproductive lifetime), total population, growth rates, age structure, and youth dependency. On average, meeting the benchmark would imply a 16 percentage point increase in modern contraceptive prevalence by 2030 and a 20% decline in youth dependency, which portends a potential demographic dividend to spur economic growth. Improvements in meeting the demand for family planning with modern contraceptive methods can bring substantial benefits to developing countries. To our knowledge, this is the first study to show formally how such improvements can alter population size and age structure. Declines in youth dependency portend a demographic dividend, an added bonus to the already well-known benefits of meeting existing demands for family planning.
A multimodal approach to meeting older adult transportation needs.
DOT National Transportation Integrated Search
2013-08-01
America is graying and, therefore, the aging of the population will require rethinking : everything. Transportation infrastructure, vehicles and future demand must respond to : the aging of the nations largest generation. This study conducted an as...
Technological challenges for boosting coal production with environmental sustainability.
Ghose, Mrinal K
2009-07-01
The global energy requirement has grown at a phenomenon rate and the consumption of primary energy sources has been a very high positive growth. This paper focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy source in foreseeable future. It examines the energy requirement perspective for India and demand of coal as the prime energy source. Economic development and poverty alleviation depend on securing affordable energy sources and Indian coal mining industry offers a bright future for the country's energy security, provided the industry is allowed to develop by supportive government policies and adopts latest technologies for mining. It is an irony that in-spite of having a plentiful reserves, India is not able to jack up coal production to meet its current and future demand. It discusses the strategies to be adopted for growth and meeting the coal demand. But such energy are very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively The paper highlights the emissions of greenhouse gases due to burning of fossil fuels and environmental consequences of global warming and sea-level rise. Technological solutions for environment friendly coal mining and environmental laws for the abatement of environmental degradation are discussed in this paper.
Space Station Freedom extravehicular activity systems evolution study
NASA Technical Reports Server (NTRS)
Rouen, Michael
1990-01-01
Evaluation of Space Station Freedom (SSF) support of manned exploration is in progress to identify SSF extravehicular activity (EVA) system evolution requirements and capabilities. The output from these studies will provide data to support the preliminary design process to ensure that Space Station EVA system requirements for future missions (including the transportation node) are adequately considered and reflected in the baseline design. The study considers SSF support of future missions and the EVA system baseline to determine adequacy of EVA requirements and capabilities and to identify additional requirements, capabilities, and necessary technology upgrades. The EVA demands levied by formal requirements and indicated by evolutionary mission scenarios are high for the out-years of Space Station Freedom. An EVA system designed to meet the baseline requirements can easily evolve to meet evolution demands with few exceptions. Results to date indicate that upgrades or modifications to the EVA system may be necessary to meet the full range of EVA thermal environments associated with the transportation node. Work continues to quantify the EVA capability in this regard. Evolution mission scenarios with EVA and ground unshielded nuclear propulsion engines are inconsistent with anthropomorphic EVA capabilities.
Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hostick, Donna; Belzer, David B.; Hadley, Stanton W.
2012-06-15
The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less
3 CFR 8456 - Proclamation 8456 of November 20, 2009. National Family Week, 2009
Code of Federal Regulations, 2010 CFR
2010-01-01
... families meet the demands of modern life, increase their self-sufficiency, and achieve their full potential..., standing united to make our Nation a place of hope and opportunity for future generations. NOW, THEREFORE...
2015-07-01
OFFICE OF THE AIR FORCE SURGEON GENERAL FELLOWSHIP PAPER COMBAT MEDICAL MODERNIZATION: POSTURING LOW SUPPLY AND HIGH DEMAND ASSETS TO...Maj, USAF, MSC Scott A. Baker, Capt, USAF, MSC A Research Report Submitted to HQ AF/SG35X In Partial Fulfillment of Medical Plans Fellowship...i TABLE OF FIGURES 3 I. INTRODUCTION 5 II. CURRENT MEDICAL EN-ROUTE CARE CAPABILITY
Demand forecasting for automotive sector in Malaysia by system dynamics approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zulkepli, Jafri, E-mail: zhjafri@uum.edu.my; Abidin, Norhaslinda Zainal, E-mail: nhaslinda@uum.edu.my; Fong, Chan Hwa, E-mail: hfchan7623@yahoo.com
In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand frommore » the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars.« less
Vibrational Properties of Zr(Hf)B2-SiC UHTC Composites by Micro-Raman Spectroscopy
NASA Astrophysics Data System (ADS)
Donohue, M.; Carpenter, C.; Orlovskaya, N.
Development and characterization of novel materials that are lightweight, possess high mechanical properties, can withstand high temperatures, and provide superior thermal properties are crucial to meet the future demands of Air Force, Army, Navy, Missile Defense Agency (MDA), and other military and space agencies. Materials for such applications (hypersonic air-breathing vehicles, including Single-To-Orbit vehicles and Two-Stage-To-Orbit aerospace planes, fully reusable space transport vehicles, hypersonic cruise missiles) experience severe aero-thermal loads with nose-cone and nozzle temperatures in excess of 2,000°F and 4,000°F, respectively. High G acceleration is also a problem. Even the most advanced materials, such as Ti, Inconel X, carbon-carbon, and silicon carbide based composites cannot withstand the excessive heat generated, especially during re-entry, and they cannot meet the guidelines for future high performance aircrafts, kinetic energy interceptors and reusable space planes. Thus, the demand for low-cost, light weight high temperature materials for thermal protection systems (TPS) is expected to be on the significant rise in the near future.
The development of Nb-based advanced intermetallic alloys for structural applications
NASA Astrophysics Data System (ADS)
Subramanian, P. R.; Mendiratta, M. G.; Dimiduk, D. M.
1996-01-01
A new generation of refractory material systems with significant increases in temperature capability is required to meet the demands of future aerospace applications. Such materials require a balance of properties such as low-temperature damage tolerance, high-temperature strength, creep resistance, and superior environmental stability for implementation in advanced aerospace systems. Systems incorporating niobium-based beta alloys and intermetallic compounds have the potential for meeting these requirements.
Curriculum Design Issues in Developing a Doctor of Philosophy Program in Aeronology
DOT National Transportation Integrated Search
1997-01-01
A Ph.D. degree program in the non-engineering aeronautical/aerospace sciences (aeronology) will likely be required in the near future to meet the increasing demands for qualified faculty, administrators, and industry representatives within the aviati...
Pediatric Orthopaedic Workforce in 2014: Current Workforce and Projections for the Future.
Sawyer, Jeffrey R; Jones, Kerwyn C; Copley, Lawson A; Chambers, Stephanie
2017-01-01
The changing nature of the United States (US) health care system has prompted debate concerning the physician supply. The basic questions are: do we have an adequate number of surgeons to meet current demands and are we training the correct number of surgeons to meet future demands? The purpose of this analysis was to characterize the current pediatric orthopaedic workforce in terms of supply and demand, both present and future. Databases were searched (POSNA, SF Match, KID, MGMA) to determine the current pediatric orthopaedic workforce and workforce distribution, as well as pediatric orthopaedic demand. The number of active Pediatric Orthopaedic Society of North America (POSNA) members increased over the past 20 years, from 410 in 1993 to 653 in 2014 (155% increase); however, the density of POSNA members is not equally distributed, but correlates to population density. The number of estimated pediatric discharges, orthopaedic and nonorthopaedic, has remained relatively stable from 6,348,537 in 1997 to 5,850,184 in 2012. Between 2003 and 2013, the number of pediatric orthopaedic fellows graduating from Accreditation Council for Graduate Medical Education and non-Accreditation Council for Graduate Medical Education programs increased from 39 to 50 (29%), with a peak of 67 fellows (71%) in 2009. Although predicting the exact need for pediatric orthopaedic surgeons (POS) is impossible because of the complex interplay among macroeconomic, governmental, insurance, and local factors, some trends were identified: the supply of POS has increased, which may offset the expected numbers of experienced surgeons who will be leaving the workforce in the next 10 to 15 years; macroeconomic factors influencing demand for physician services, driven by gross domestic product and population growth, are expected to be stable in the near future; expansion of the scope of practice for POS is expected to continue; and further similar assessments are warranted. Level II-economic and decision analysis.
Water for the cities - The outlook
Schneider, William Joseph; Spieker, Andrew Maute
1969-01-01
Rapid expansion of urban areas, particularly in the large metropolitan complexes of the United States, is placing urban political entities in ever closer juxtaposition to each other. The large demand for water for each entity is resulting in competition for available sources and is rapidly reaching critical proportions. Increasing awareness of the role of water in our society further complicates this competition. Pollution abatement, recreation, wildlife conservation, and aesthetics are demands now recognized by both rural and urban areas. Future development of water resources must consider regional demands and resources. Only in this way can our reasonably abundant water resources meet the severe demands imposed by our rapidly expanding urban areas.
Dall, Timothy M; Gallo, Paul D; Chakrabarti, Ritasree; West, Terry; Semilla, April P; Storm, Michael V
2013-11-01
As the US population ages, the increasing prevalence of chronic disease and complex medical conditions will have profound implications for the future health care system. We projected future prevalence of selected diseases and health risk factors to model future demand for health care services for each person in a representative sample of the current and projected future population. Based on changing demographic characteristics and expanded medical coverage under the Affordable Care Act, we project that the demand for adult primary care services will grow by approximately 14 percent between 2013 and 2025. Vascular surgery has the highest projected demand growth (31 percent), followed by cardiology (20 percent) and neurological surgery, radiology, and general surgery (each 18 percent). Market indicators such as long wait times to obtain appointments suggest that the current supply of many specialists throughout the United States is inadequate to meet the current demand. Failure to train sufficient numbers and the correct mix of specialists could exacerbate already long wait times for appointments, reduce access to care for some of the nation's most vulnerable patients, and reduce patients' quality of life.
DOT National Transportation Integrated Search
2015-12-01
Growth in and around many urban areas in Louisiana is not consistently managed or planned. This can negatively impact state : and local governments ability to meet current and future demand for transportation infrastructure, particularly with resp...
Climate mitigation and the future of tropical landscapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise Parsons
2010-11-16
Land use change to meet 21st Century demands for food, fuel, and fiber will occur in the context of both a changing climate as well as societal efforts to mitigate climate change. This changing natural and human environment will have large consequences for forest resources, terrestrial carbon storage and emissions, and food and energy crop production over the next century. Any climate change mitigation policies enacted will change the environment under which land-use decisions are made and alter global land use change patterns. Here we use the GCAM integrated assessment model to explore how climate mitigation policies that achieve amore » climate stabilization at 4.5 W m-2 radiative forcing in 2100 and value carbon in terrestrial ecosystems interact with future agricultural productivity and food and energy demands to influence land use in the tropics. The regional land use results are downscaled from GCAM regions to produce gridded maps of tropical land use change. We find that tropical forests are preserved only in cases where a climate mitigation policy that values terrestrial carbon is in place, and crop productivity growth continues throughout the century. Crop productivity growth is also necessary to avoid large scale deforestation globally and enable the production of bioenergy crops. The terrestrial carbon pricing assumptions in GCAM are effective at avoiding deforestation even when cropland must expand to meet future food demand.« less
Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.
1994-01-01
Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.
Commercial Uses of Broadband Communications.
ERIC Educational Resources Information Center
Kahn, Ephraim
The need for commercial communications is expected to grow substantially in the future. Whether telephone companies meet most of this demand seems to depend on three major factors: regulatory actions, the development of alternative technology, and the telephone companies themselves. The Federal Communications Commission is considering requiring…
So You Want to Train Solar Technicians.
ERIC Educational Resources Information Center
Ensign, M. Dale; Richins, Michael Paul
1978-01-01
Considers the role of solar energy in meeting the nation's energy requirements and the future needs for solar technicians and mechanics. Discusses the precautions community colleges must take in training these workers, to ensure that the demand be met without flooding the job market. (MB)
Appalachia's Colleges and the Region's Future.
ERIC Educational Resources Information Center
Russell, Jack
1999-01-01
Discusses how Appalachian institutions of higher education can assist the Appalachian Regional Commission in developing local community leaders, assisting entrepreneurs, and training people affected by welfare reform. Calls for institutions of higher education to collaborate with community, government, and business to meet the rising demand for…
Managing to enhance soil health
USDA-ARS?s Scientific Manuscript database
Healthy soils are critical for meeting current and future societal demands. Management strategies that protect the soil against erosion, build soil organic matter and promote nutrient cycling are ways to enhance soil health. Keeping soils covered and judicious use of agrochemicals are akin to us “hu...
Promoting harmonization of BME education in Europe: the CRH-BME Tempus project.
Pallikarakis, Nicolas; Bliznakov, Zhivko; Miklavcic, Damijan; Jarm, Tomaz; Magjarevic, Ratko; Lackovic, Igor; Pecchia, Leandro; Stagni, Rita; Jobaggy, Akos; Barbenel, Joseph
2011-01-01
Biomedical Engineers should be prepared to adapt to existing or forecasted needs. There is a strong pressure on education, training and life long learning programs to continuously adapt their objectives in order to face new requirements and challenges. The main objective of the TEMPUS IV, CRH-BME project is to update existing curricula in the field of Biomedical Engineering (BME) in order to meet recent and future developments in the area, address new emerging inter-disciplinary domains that appear as a result of the R&D progress and respond to the BME job market demands. The first step is to extensively review the curricula in the BME education field. In this paper, a proposal for a generic curriculum in the BME education is presented, in order to meet recent and future developments and respond to the demands of the BME job market. Adoption of the core program structure will facilitate harmonization of studies as well as student and staff exchange across Europe, thus promoting the European Higher Education Area.
Current and Future Opportunities for Wind Power in the Southeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinnesand, Heidi; Roberts, Owen; Lantz, Eric
This presentation discusses future wind opportunities in the Southeast including factors such as changes in wind turbine technology, historical innovation trends, and forecast demand growth among regions. The presentation covers the current status of wind in the United States at 80-m hub height and the near-future outlook with a hub height at 110 to 140 meters. Future cost reductions in 2030 and beyond are also explored. Heidi Tinnesand presented this information to a utility advisory group meeting in Charlotte, North Carolina, on October 5, 2016.
The Workforce Task Force report: clinical implications for neurology.
Freeman, William D; Vatz, Kenneth A; Griggs, Robert C; Pedley, Timothy
2013-07-30
The American Academy of Neurology Workforce Task Force (WFTF) report predicts a future shortfall of neurologists in the United States. The WFTF data also suggest that for most states, the current demand for neurologist services already exceeds the supply, and by 2025 the demand for neurologists will be even higher. This future demand is fueled by the aging of the US population, the higher health care utilization rates of neurologic services, and by a greater number of patients gaining access to the health care system due to the Patient Protection and Affordable Care Act. Uncertainties in health care delivery and patient access exist due to looming concerns about further Medicare reimbursement cuts. This uncertainty is set against a backdrop of Congressional volatility on a variety of issues, including the repeal of the sustainable growth rate for physician reimbursement. The impact of these US health care changes on the neurology workforce, future increasing demands, reimbursement, and alternative health care delivery models including accountable care organizations, nonphysician providers such as nurse practitioners and physician assistants, and teleneurology for both stroke and general neurology are discussed. The data lead to the conclusion that neurologists will need to play an even larger role in caring for the aging US population by 2025. We propose solutions to increase the availability of neurologic services in the future and provide other ways of meeting the anticipated increased demand for neurologic care.
The Workforce Task Force Report
Vatz, Kenneth A.; Griggs, Robert C.; Pedley, Timothy
2013-01-01
The American Academy of Neurology Workforce Task Force (WFTF) report predicts a future shortfall of neurologists in the United States. The WFTF data also suggest that for most states, the current demand for neurologist services already exceeds the supply, and by 2025 the demand for neurologists will be even higher. This future demand is fueled by the aging of the US population, the higher health care utilization rates of neurologic services, and by a greater number of patients gaining access to the health care system due to the Patient Protection and Affordable Care Act. Uncertainties in health care delivery and patient access exist due to looming concerns about further Medicare reimbursement cuts. This uncertainty is set against a backdrop of Congressional volatility on a variety of issues, including the repeal of the sustainable growth rate for physician reimbursement. The impact of these US health care changes on the neurology workforce, future increasing demands, reimbursement, and alternative health care delivery models including accountable care organizations, nonphysician providers such as nurse practitioners and physician assistants, and teleneurology for both stroke and general neurology are discussed. The data lead to the conclusion that neurologists will need to play an even larger role in caring for the aging US population by 2025. We propose solutions to increase the availability of neurologic services in the future and provide other ways of meeting the anticipated increased demand for neurologic care. PMID:23783750
Assessment of existing railroad bridges to accommodate a higher speed considering Chinese practices.
DOT National Transportation Integrated Search
2016-01-01
As the country continues to grow, the USDOT understands that the transportation system will : continue to evolve to meet the demands of the future. A balanced use of all modes of public : transportation, for both individuals and freight, will be requ...
Data sharing in the ag community - what are current challenges, benefits, and opportunities
USDA-ARS?s Scientific Manuscript database
The model for building agronomic science today and into the future to meet global food demands with limited resources will be through public-private data acquisition, sharing, and collaborative analysis. The public perspective focuses on preserving natural resources. The private perspective focuses ...
Meeting the information system demands of the future through outsourcing.
Goldman, S J
1994-05-01
As managed care organizations work to meet the rigorous data and information requirements of a rapidly evolving health care system, many are recognizing the need to out-source their computer operations. Developing a cost-effective, efficient approach to outsourcing is a challenge to many organizations. This article offers an in-depth view of outsourcing as it relates to the managed health care industry as well as criteria for selecting an outsourcing consultant or vendor.
Spatiotemporal Assessment of Groundwater Resources in the South Platte Basin, Colorado
NASA Astrophysics Data System (ADS)
Ruybal, C. J.; McCray, J. E.; Hogue, T. S.
2015-12-01
The South Platte Basin is one of the most economically diverse and fastest growing basins in Colorado. Strong competition for water resources in an over-appropriated system brings challenges to meeting future water demands. Balancing the conjunctive use of surface water and groundwater from the South Platte alluvial aquifer and the Denver Basin aquifer system is critical for meeting future demands. Over the past decade, energy development in the basin has added to the competition for water resources, highlighting the need to advance our understanding of the availability and sustainability of groundwater resources. Current work includes evaluating groundwater storage changes and recharge regimes throughout the South Platte Basin under competing uses, e.g. agriculture, oil and gas, urban, recreational, and environmental. The Gravity Recovery and Climate Experiment satellites in conjunction with existing groundwater data is used to evaluate spatiotemporal variability in groundwater storage and identify areas of high water stress. Spatiotemporal data will also be utilized to develop a high resolution groundwater model of the region. Results will ultimately help stakeholders in the South Platte Basin better understand groundwater resource challenges and contribute to Colorado's strategic future water planning.
NASA Astrophysics Data System (ADS)
Rimo, Tan Hauw Sen; Chai Tin, Ong
2017-12-01
Capacity utilization (CU) measurement is an important task in a manufacturing system, especially in make-to-order (MTO) type manufacturing system with product customization, in predicting capacity to meet future demand. A stochastic discrete-event simulation is developed using ARENA software to determine CU and capacity gap (CG) in short run production function. This study focused on machinery breakdown and product defective rate as random variables in the simulation. The study found that the manufacturing system run in 68.01% CU and 31.99% CG. It is revealed that machinery breakdown and product defective rate have a direct relationship with CU. By improving product defective rate into zero defect, manufacturing system can improve CU up to 73.56% and CG decrease to 26.44%. While improving machinery breakdown into zero breakdowns will improve CU up to 93.99% and the CG decrease to 6.01%. This study helps operation level to study CU using “what-if” analysis in order to meet future demand in more practical and easier method by using simulation approach. Further study is recommended by including other random variables that affect CU to make the simulation closer with the real-life situation for a better decision.
Increasing sugar transport to improve soybean response to elevated [CO2
USDA-ARS?s Scientific Manuscript database
Elevated atmospheric [CO2] causes a direct increase in instantaneous photosynthesis and sugar production in C3 plants, leading to a yield increase which is promising to meet future food demand. However, previous studies have shown that soybean yield does not increase as much as predicted under eleva...
USDA-ARS?s Scientific Manuscript database
Predictions suggest that current crop production needs to double by 2050 to meet global food and energy demands. Based on theory and experimental studies, overexpression of the photosynthetic enzyme sedoheptulose-1,7-bisphosphatase (SBPase) is expected to enhance C3 crop photosynthesis and yields. H...
Hanahau'oli School: Theory Meets Practice
ERIC Educational Resources Information Center
Peters, Robert
2015-01-01
Progressive schools, by their very nature, need to respond to changing societal conditions. Within that context, learning guided by the teachings of John Dewey will not only make the progressive tradition sustainable but also make it increasingly relevant in a future that will increasingly make demands on students to possess the knowledge to…
Strategic Rebalance of the Three Component Air Force
2013-03-01
protect its ability to regenerate capabilities that might be needed to meet future, unforeseen demands, maintaining intellectual capital and rank structure...93 Air Reserve Personnel Center, “Continuum of Service,” myPers, https:// gum - crm.csd.disa.mil/app/answers/detail/a_id/19204/kw/continuum/p/16
Industry into Teaching: An Alternative Model
ERIC Educational Resources Information Center
Green, Annette; Randall, Rachael; Francis, Rod
2004-01-01
Teacher shortages have encouraged initiatives to tailor training programs to meet the demand in both past, current and future contexts. Such programs have been streamlined to ensure a rapid response to shortages, in addition to also drawing participants from non-traditional groups as a source of potential educators. More broadly in teacher…
ERIC Educational Resources Information Center
Fulwood, Sam, III
2012-01-01
In an age of increasing pressures on the future workforce, the Presidents' Round Table, a network of African-American community college presidents and chief executives, seeks to meet the demand for supplying and training the next generation of educated employees for the evolving job picture. Among its varied goals, the Round Table works to empower…
Global Migration: The Need for Culturally Competent School Psychologists
ERIC Educational Resources Information Center
Vega, Desireé; Lasser, Jon; Plotts, Cynthia
2015-01-01
Never before have more children lived away from their home countries. Given the unique social, emotional, and academic needs of children who have migrated, school psychologists must be well prepared to meet these growing demands. Consequently, school psychology training programs must invest in the preparation of culturally competent future school…
Yield gaps and yield relationships in US soybean production systems
USDA-ARS?s Scientific Manuscript database
The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield to meet the food demands of future populations. Quantile regression analysis was applied to county soybean [Glycine max (L.) Merrill] yields (1971 – 2011) from Kentuc...
ERIC Educational Resources Information Center
Wolfe, Benjamin A.; Riggs, Eric M.
2017-01-01
Meeting the future demand for a qualified geoscience workforce will require efforts to increase recruitment, retention, and graduation of an increasingly diverse student body. Doing this successfully requires renewed attention to the needs and characteristics of underrepresented students, which include ethnic and cultural minorities, women, and…
Master Planning School District Facility Needs
ERIC Educational Resources Information Center
Prager, Gary; Matschulat, Robert
2010-01-01
Most educational entities confront any number of facility issues. Upgrading the physical infrastructure to meet current and future demands can be intimidating. The quantity and magnitude of capital issues in a changing environment can be overwhelming. How can all this complexity be made coherent to assure that decisions are sound and limited…
Predicting quantitative and qualitative values of recreation participation
Elwood L., Jr. Shafer; George Moeller
1971-01-01
If future recreation consumption and associated intangible values can be predicted, the problem of rapid decision making in recreation-resource management can be reduced, and the problems of implementing those decisions can be anticipated. Management and research responsibilities for meeting recreation demand are discussed, and proved methods for forecasting recreation...
E-hancing the Master of Business Administration (MBA) Managerial Accounting Course
ERIC Educational Resources Information Center
Zabriskie, Fern H.; McNabb, David E.
2007-01-01
Professional education, including managerial accounting education, at independent colleges and universities faces two challenges: (a) meeting shifting demand with static or declining resources and (b) ensuring that graduates gain the technological knowledge and skills that they need to succeed in their future careers. For many schools, the…
Trees for reclamation in the Eastern United States
C. W. Moody; Daniel T. Kimbrell
1980-01-01
The Alabama Forestry Commission promotes reclamation through forest resource education providing seedlings for reclamation and assistance to industry and landowners. Approximately 85% of the lands mined in 1979 will go into forest production. Good forest management on reclaimed lands will enable Alabama to meet its future demands for forest products.
Planning for community resilience to future United States ...
Costs of repairing and expanding aging infrastructure and competing demands for water from other sectors such as industry and agriculture are stretching water managers’ abilities to meet essential domestic drinking water needs for future generations. Using Bayesian statistical modeling on past and present water use, we project domestic water demand in the context of four climate scenarios developed by the Intergovernmental Panel on Climate Change as part of the their Special Report on Emission Scenarios (SRES). We compare 2010 demand to projections of domestic water demand for the years 2030, 2060 and 2090 for the four SRES scenarios. Results indicate that the number of counties exceeding fifty percent or greater demand over 2010 levels increases through 2090 for two of the scenarios and plateaus around 2050 for the other two. Counties experiencing the largest increases in water demand are concentrated in the states of California, Texas, and isolated portions of the Mid-West, Southeast, and Mid-Atlantic. Closer examination of the spatial distribution of high demand counties reveals that they are typically found near or adjacent to metropolitan centers, potentially placing greater stress on already taxed systems. Identifying these counties allows for targeted adaptive management and policies, economic incentives, and legislation to be focused towards locations that are potentially the most vulnerable. We describe a new approach for projecting water demand into
NASA Astrophysics Data System (ADS)
Sathaye, J.; Ruderman, H.
1981-09-01
Solar and renewable technologies account for most of the increase in material requirements for energy technologies. The analysis identified 20 minerals where domestic reserves are inadequate to meet the demand. Domestic mine capacity is inadequate for 23 minerals. However, the world wide mine production capacity is adequate to meet the US demand for all the minerals. Energy related demand can therefore provide a potential market for some of these 23 minerals provided the US has deposits that can be exploited at worldwide competitive prices. For some critical and strategic minerals such as chromium the US demand peaks during a time period different than the period during which world demand peaks. The time period differences will help smooth market fluctuations and reduce the US vulnerability. Alternative technology designs can help mitigate diverse supply disruptions or sharp price increases. Alternatives may not always be available for a specific strategic and critical mineral. Each mineral may have to be analyzed and evaluated on its own merits before comparative options can be completely analyzed.
NASA Astrophysics Data System (ADS)
Grubler, Arnulf; Wilson, Charlie; Bento, Nuno; Boza-Kiss, Benigna; Krey, Volker; McCollum, David L.; Rao, Narasimha D.; Riahi, Keywan; Rogelj, Joeri; De Stercke, Simon; Cullen, Jonathan; Frank, Stefan; Fricko, Oliver; Guo, Fei; Gidden, Matt; Havlík, Petr; Huppmann, Daniel; Kiesewetter, Gregor; Rafaj, Peter; Schoepp, Wolfgang; Valin, Hugo
2018-06-01
Scenarios that limit global warming to 1.5 °C describe major transformations in energy supply and ever-rising energy demand. Here, we provide a contrasting perspective by developing a narrative of future change based on observable trends that results in low energy demand. We describe and quantify changes in activity levels and energy intensity in the global North and global South for all major energy services. We project that global final energy demand by 2050 reduces to 245 EJ, around 40% lower than today, despite rises in population, income and activity. Using an integrated assessment modelling framework, we show how changes in the quantity and type of energy services drive structural change in intermediate and upstream supply sectors (energy and land use). Down-sizing the global energy system dramatically improves the feasibility of a low-carbon supply-side transformation. Our scenario meets the 1.5 °C climate target as well as many sustainable development goals, without relying on negative emission technologies.
Project plan hydrogen energy systems technology. Phase 1: Hydrogen energy systems technology study
NASA Technical Reports Server (NTRS)
1974-01-01
An overview of the potential need for hydrogen as a source of energy in the future was presented in order to identify and define the technology requirements for the most promising approaches to meet that need. The following study objectives were discussed: (1) determination of the future demand for hydrogen, based on current trends and anticipated new uses, (2) identification of the critical research and technology advances required to meet this need considering, to the extent possible, raw material limitations, economics, and environmental effects, and (3) definition and recommendation of the scope and space of a National Hydrogen Energy Systems Technology Program and outline of a Program Development Plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, T.; Wiser, R.; Sandor, D.
2012-06-01
The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less
ERIC Educational Resources Information Center
Bizzo, Nelio, Ed.; Kawasaki, Clarice Sumi, Ed.; Ferracioli, Laercio, Ed.; Leyser da Rosa, Vivian, Ed.
This document is the proceedings of the 10th annual meeting of the International Organization for Science and Technology Education (IOSTE). Papers include: (1) "Liberal Education, Information Assessment and Argumentation in Science-LIA" (Andreas Quale, Anders Isnes, Terje Kristensen, and Ketil Mathiassen); (2) "Placing the History…
2017-01-01
Arising from a discussion meeting in September 2016, this editorial introduces a special issue on the transition to a future industrial system with greatly reduced demand for material production and attempts to synthesize the main findings. The motivation for such a transition is to reduce industrial greenhouse gas emissions, but unlike previous industrial transformations, there are no major stakeholders who will pursue the change for their own immediate benefit. The special issue, therefore, explores the means by which such a transition could be brought about. The editorial presents an overview of the opportunities identified in the papers of the volume, presents examples of actions that can be taken today to begin the process of change and concludes with an agenda for research that might support a rapid acceleration in the rate of change. This article is part of the themed issue ‘Material demand reduction’. PMID:28461426
Allwood, Julian M; Gutowski, Timothy G; Serrenho, André C; Skelton, Alexandra C H; Worrell, Ernst
2017-06-13
Arising from a discussion meeting in September 2016, this editorial introduces a special issue on the transition to a future industrial system with greatly reduced demand for material production and attempts to synthesize the main findings. The motivation for such a transition is to reduce industrial greenhouse gas emissions, but unlike previous industrial transformations, there are no major stakeholders who will pursue the change for their own immediate benefit. The special issue, therefore, explores the means by which such a transition could be brought about. The editorial presents an overview of the opportunities identified in the papers of the volume, presents examples of actions that can be taken today to begin the process of change and concludes with an agenda for research that might support a rapid acceleration in the rate of change.This article is part of the themed issue 'Material demand reduction'. © 2017 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, M.; Ela, E.; Hein, J.
2012-06-01
The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, C.; Bain, R.; Chapman, J.
2012-06-01
The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less
Renewable Electricity Futures Study. Executive Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, T.; Sandor, D.; Wiser, R.
2012-12-01
The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less
Implications of demographics on future blood supply: a population-based cross-sectional study.
Greinacher, Andreas; Fendrich, Konstanze; Brzenska, Ralf; Kiefel, Volker; Hoffmann, Wolfgang
2011-04-01
Data on blood recipients are sparse and unconnected to data on blood donors. The objective was to analyze the impact of the demographic change on future blood demand and supply in a German federal state. A population-based cross-sectional study was conducted. For all in-hospital transfused red blood cells (RBCs; n = 95,477), in the German federal state Mecklenburg-Pomerania in 2005, characteristics of the patient and the blood donor (118,406 blood donations) were obtained. Population data were used to predict blood demand and supply until 2020. By 2020 the population increase of those aged 65 years or more (+26.4%) in Mecklenburg-Pomerania will be paralleled by a decrease of the potential donor population (18-68 years; -16.1%). Assuming stable rates per age group until 2020, the demand for in-hospital blood transfusions will increase by approximately 25% (24,000 RBC units) while blood donations will decrease by approximately 27% (32,000 RBC units). The resulting, predicted shortfall is 47% of demand for in-hospital patients (56,000 RBC units). Validation using historical data (1997-2007) showed that the model predicted the RBC demand with a deviation of only 1.2%. Demographic changes are particularly pronounced in former East Germany, but by 2030 most European countries will face a similar situation. The decrease of younger age groups requires an increase of blood donation rates and interdisciplinary approaches to reduce the need for transfusion to maintain sufficient blood supply. Demography is a major determinant of future transfusion demand. All efforts should be made by Western societies to systematically obtain data on blood donors and recipients to develop strategies to meet future blood demand. © 2010 American Association of Blood Banks.
NASA Astrophysics Data System (ADS)
Takagi, Hirotaka; Sugiyama, Tomonari; Zashibo, Toshihito
Since its foundation, the power system of Chubu Electric Power Company (hereinafter CEPCO) has developed through power source and transmission facility formation to meet electricity demand increases. This development has been accompanied by progress in transmission technologies including capacity scale-up, compactification and power system stabilization to operate complex power systems. Now, changes in business situation due to electricity market liberalizatin may bring new challenges to future facility formation. This paper reviews CEPCO's history of power system formation and progress in transmission technologies, and describes future challenges.
NASA Astrophysics Data System (ADS)
Davendralingam, Navindran
Conceptual design of aircraft and the airline network (routes) on which aircraft fly on are inextricably linked to passenger driven demand. Many factors influence passenger demand for various Origin-Destination (O-D) city pairs including demographics, geographic location, seasonality, socio-economic factors and naturally, the operations of directly competing airlines. The expansion of airline operations involves the identificaion of appropriate aircraft to meet projected future demand. The decisions made in incorporating and subsequently allocating these new aircraft to serve air travel demand affects the inherent risk and profit potential as predicted through the airline revenue management systems. Competition between airlines then translates to latent passenger observations of the routes served between OD pairs and ticket pricing---this in effect reflexively drives future states of demand. This thesis addresses the integrated nature of aircraft design, airline operations and passenger demand, in order to maximize future expected profits as new aircraft are brought into service. The goal of this research is to develop an approach that utilizes aircraft design, airline network design and passenger demand as a unified framework to provide better integrated design solutions in order to maximize expexted profits of an airline. This is investigated through two approaches. The first is a static model that poses the concurrent engineering paradigm above as an investment portfolio problem. Modern financial portfolio optimization techniques are used to leverage risk of serving future projected demand using a 'yet to be introduced' aircraft against potentially generated future profits. Robust optimization methodologies are incorporated to mitigate model sensitivity and address estimation risks associated with such optimization techniques. The second extends the portfolio approach to include dynamic effects of an airline's operations. A dynamic programming approach is employed to simulate the reflexive nature of airline supply-demand interactions by modeling the aggregate changes in demand that would result from tactical allocations of aircraft to maximize profit. The best yet-to-be-introduced aircraft maximizes profit by minimizing the long term fleetwide direct operating costs.
Development of a Prototype Water Pump for Future Space Suit Applications
NASA Technical Reports Server (NTRS)
Hartman, David; Hodgson, Edward; Dionne, Steven; Gervais, Edward, III; Trevino, Luis
2009-01-01
NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.
Development of a Prototype Water Pump for Future Space Suit Applications
NASA Technical Reports Server (NTRS)
Hartman, David; Hodgson, Edward; Gervais, Edward, III; Trevino, Luis
2008-01-01
NASA s next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew s liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.
Water management: Current and future challenges and research directions
NASA Astrophysics Data System (ADS)
Cosgrove, William J.; Loucks, Daniel P.
2015-06-01
Water distinguishes our planet compared to all the others we know about. While the global supply of available freshwater is more than adequate to meet all current and foreseeable water demands, its spatial and temporal distributions are not. There are many regions where our freshwater resources are inadequate to meet domestic, economic development and environmental needs. In such regions, the lack of adequate clean water to meet human drinking water and sanitation needs is indeed a constraint on human health and productivity and hence on economic development as well as on the maintenance of a clean environment and healthy ecosystems. All of us involved in research must find ways to remove these constraints. We face multiple challenges in doing that, especially given a changing and uncertain future climate, and a rapidly growing population that is driving increased social and economic development, globalization, and urbanization. How best to meet these challenges requires research in all aspects of water management. Since 1965, the journal Water Resources Research has played an important role in reporting and disseminating current research related to managing the quantity and quality and cost of this resource. This paper identifies the issues facing water managers today and future research needed to better inform those who strive to create a more sustainable and desirable future.
The Future of Management Education in Australia: Challenges and Innovations
ERIC Educational Resources Information Center
Hall, Richard; Agarwal, Renu; Green, Roy
2013-01-01
Purpose -- The purpose of this paper is to undertake a survey of the external and internal forces changing the nature of business schools and business education. It aims to investigate how management education responds to increasing productivity, innovation and capability challenges, examine how MBA programs currently meet these demands, and how…
Challenges Encountered by a Distance Learning Organisation
ERIC Educational Resources Information Center
Malik, Sangeeta
2012-01-01
Distance learning as the name indicates is a learning, learner gets from distant places. In this learning system, learner and educators are separated by space & time. Lots of distance learning organizations are spreading to meet the increased demand of current & future needs of adult education. The rapid spread of these organizations doesn't mean…
Current Juvenile Corrections Professional Development Practices and Future Directions
ERIC Educational Resources Information Center
Gagnon, Joseph C.; Houchins, David E.; Murphy, Kristin M.
2012-01-01
Personnel in juvenile corrections (JC) work with students who have challenging academic, behavioral, and mental health needs. The complexity of the JC setting requires personnel to be highly skilled in effective practices to meet the demands of their job. Unfortunately, juvenile correctional personnel are neglected as an important link in the…
Combined use of neutron thermalization and electromagnetic sensing in assessing soil water dynamics
USDA-ARS?s Scientific Manuscript database
Agriculture is by far the largest consumer of available fresh water, accounting for 70% of withdrawals worldwide. By meeting increased future demands for food and fiber, our needs will need to be met by improving the efficient use of both irrigation and precipitation for crop production. Field crop ...
Soil disturbance assessment of a cable logging operation performing five silvicultural prescriptions
John Klepac; Steve Reutebuch
2003-01-01
Evaluating alternative methods for regenerating second-growth Douglas-fir (Pseudotsuga menziesii) forests in the Pacific Northwest is an area of interest for resource managers. To meet future demands for timber supply as well as provide stands that are visually acceptable by the public and ecologically viable, a thorough understanding of these...
ERIC Educational Resources Information Center
Spetz, Sally H.; And Others
An Illinois project identified new and emerging occupations within the state and determined the types, levels, and distribution of new vocational education curricula needed to meet employment demands for skilled workers in those occupations. Project staff reviewed similar national research efforts, recently enacted Illinois legislation, and…
Understanding Community College Student Persistence through Photovoice: An Emergent Model
ERIC Educational Resources Information Center
Latz, Amanda O.
2015-01-01
Because it has been noted that a more educated workforce is necessary to meet the demands of the future workplace, community colleges have experienced significant pressures to generate more graduates. High instances of attrition and low rates of credential obtainment among students, however, have historically been tenuous issues for community…
A Projection of Maryland's Health Manpower Needs Through the 1980's.
ERIC Educational Resources Information Center
Coggeshall, Lowell T.; And Others
Recommendations for meeting health manpower and training facility needs in Maryland are made, based on the included Coggeshall report. Demand for health personnel is contrasted with estimated future supplies. A third medical school should be planned and dependence on foreign physicians reduced. Rural areas should improve their own health services.…
USDA-ARS?s Scientific Manuscript database
Future farming systems need to simultaneously 1) meet the demand for feeding a growing world population, 2) adjust to the developing scarcity of energy, nutrients, and water resources, and 3) mitigate environmental hazards. Development of cropping systems that maximize ecological processes for prov...
Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity
NASA Astrophysics Data System (ADS)
Mai, Trieu
2013-04-01
Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.
Looking for America's energy solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiBona, C.J.
The United States has had to rely on imported oil in recent years. Neither increased coal production in the future nor increased use of nuclear energy will change this situation. Actually, all the projections regarding energy use over the next 25 years assume both increased production of these two sources of fuel as well as continued reliance on imported oil. Imported oil then will be a major factor in meeting the future demands of the industrial sector, which consumed 38.3 percent of U.S. total energy in 1975. Oil imports will also be necessary to meet the demands of the household/commercialmore » sector, which in 1975 accounted for 35.4 percent of the energy consumed in this country, and of the transportation sector, which used 26.1 percent of the energy. Conservation measures have been practiced, but this will not resolve the problem of increased reliance on imported oil over the next two decades. This country will need to continue its efforts in the research and development of alternate energy sources. It will also have to increase its production of all domestic energy supplies. (MCW)« less
Zhang, Jingshu; Everson, Mark P; Wallington, Timothy J; Field, Frank R; Roth, Richard; Kirchain, Randolph E
2016-07-19
Platinum-group metals (PGMs) are technological and economic enablers of many industrial processes. This important role, coupled with their limited geographic availability, has led to PGMs being labeled as "critical materials". Studies of future PGM flows have focused on trends within material flows or macroeconomic indicators. We complement the previous work by introducing a novel technoeconomic model of substitution among PGMs within the automotive sector (the largest user of PGMs) reflecting the rational response of firms to changing prices. The results from the model support previous conclusions that PGM use is likely to grow, in some cases strongly, by 2030 (approximately 45% for Pd and 5% for Pt), driven by the increasing sales of automobiles. The model also indicates that PGM-demand growth will be significantly influenced by the future Pt-to-Pd price ratio, with swings of Pt and Pd demand of as much as 25% if the future price ratio shifts higher or lower even if it stays within the historic range. Fortunately, automotive catalysts are one of the more effectively recycled metals. As such, with proper policy support, recycling can serve to meet some of this growing demand.
N+3 Small Commercial Efficient and Quiet Transportation for Year 2030-2035
NASA Technical Reports Server (NTRS)
DAngelo, Martin M.; Gallman, John; Johnson, Vicki; Garcia, Elena; Tai, Jimmy; Young, Russell
2010-01-01
This study develops a future scenario that enables convenient point-to-point commercial air travel via a large network of community airports and a new class of small airliners. A network demand and capacity study identifies current and future air travel demands and the capacity of this new network to satisfy these demands. A current technology small commercial airliner is defined to meet the needs of the new network, as a baseline for evaluating the improvement brought about by advanced technologies. Impact of this new mode of travel on the infrastructure and surrounding communities of the small airports in this new N+3 network are also evaluated. Year 2030-2035 small commercial airliner technologies are identified and a trade study conducted to evaluate and select those with the greatest potential for enhancing future air travel and the study metrics. The selected advanced air vehicle concept is assessed against the baseline aircraft, and an advanced, but conventional aircraft, and the study metrics. The key technologies of the selected advanced air vehicle are identified, their impact quantified, and risk assessments and roadmaps defined.
Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; McCormick, John; Paul, Heather L.; Jennings, Mallory A.
2012-01-01
Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. The blower includes a custom-designed motor that has significantly improved its efficiency. We have measured the blower s head/flow performance and power consumption under conditions that simulate both the normal and buddy mode operating points. We have operated the blower for TBD hours and demonstrated safe operation in an oxygen test loop at prototypical pressures. We also demonstrated operation with simulated lunar dust.
Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Mike; Chen, Weibo; Paul, Heather L.; Jennings, Mallory A.
2011-01-01
Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in a future space suit Portable Life Support Systems (PLSS). The blower assembly includes a custom-designed motor that has significantly improved in efficiency during this development effort. The blower was tested at both nominal and buddy mode operating points and head/flow performance and power consumption were measured. The blower was operated for over 1000 hours to demonstrate safe operation in an oxygen test loop at prototypical pressures. In addition, the blower demonstrated operation with the introduction of simulated lunar dust.
NASA Astrophysics Data System (ADS)
Xiang, Yu; Tao, Cheng
2018-05-01
During the operation of the personal rapid transit system(PRT), the empty vehicle resources is distributed unevenly because of different passenger demand. In order to maintain the balance between supply and demand, and to meet the passenger needs of the ride, PRT empty vehicle resource allocation model is constructed based on the future demand forecasted by historical demand in this paper. The improved genetic algorithm is implied in distribution of the empty vehicle which can reduce the customers waiting time and improve the operation efficiency of the PRT system so that all passengers can take the PRT vehicles in the shortest time. The experimental result shows that the improved genetic algorithm can allocate the empty vehicle from the system level optimally, and realize the distribution of the empty vehicle resources reasonably in the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hand, M. M.; Baldwin, S.; DeMeo, E.
2012-06-15
The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad; Bain, Richard; Chapman, Jamie
2012-06-15
The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, Michael; Ela, Erik; Hein, Jeff
2012-06-15
The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less
The transport forecast - an important stage of transport management
NASA Astrophysics Data System (ADS)
Dragu, Vasile; Dinu, Oana; Oprea, Cristina; Alina Roman, Eugenia
2017-10-01
The transport system is a powerful system with varying loads in operation coming from changes in freight and passenger traffic in different time periods. The variations are due to the specific conditions of organization and development of socio-economic activities. The causes of varying loads can be included in three groups: economic, technical and organizational. The assessing of transport demand variability leads to proper forecast and development of the transport system, knowing that the market price is determined on equilibrium between supply and demand. The reduction of transport demand variability through different technical solutions, organizational, administrative, legislative leads to an increase in the efficiency and effectiveness of transport. The paper presents a new way of assessing the future needs of transport through dynamic series. Both researchers and practitioners in transport planning can benefit from the research results. This paper aims to analyze in an original approach how a good transport forecast can lead to a better management in transport, with significant effects on transport demand full meeting in quality terms. The case study shows how dynamic series of statistics can be used to identify the size of future demand addressed to the transport system.
Demand and supply of hydrogen as chemical feedstock in USA
NASA Technical Reports Server (NTRS)
Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.
1979-01-01
Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.
Beyond NextGen: AutoMax Overview and Update
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal; Alexandrov, Natalia
2013-01-01
Main Message: National and Global Needs - Develop scalable airspace operations management system to accommodate increased mobility needs, emerging airspace uses, mix, future demand. Be affordable and economically viable. Sense of Urgency. Saturation (delays), emerging airspace uses, proactive development. Autonomy is Needed for Airspace Operations to Meet Future Needs. Costs, time critical decisions, mobility, scalability, limits of cognitive workload. AutoMax to Accommodate National and Global Needs. Auto: Automation, autonomy, autonomicity for airspace operations. Max: Maximizing performance of the National Airspace System. Interesting Challenges and Path Forward.
Intelligent aircraft/airspace systems
NASA Technical Reports Server (NTRS)
Wangermann, John P.
1995-01-01
Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.
Hospital board structure: changing form and changing issues.
Tregoning, S
2000-01-01
Economic and social pressures are compelling many hospitals to consider their current board structure in an effort to position their hospital to meet changing demands. A national profile of the structures of hospital boards has been compiled from a questionnaire completed by hospital board representatives from both government and non-government sectors. Results show that hospital board structures are a hybrid of both philanthropic and corporate models. New structures may be required to meet future challenges. In developing new structures, consideration should be given to identifying the skills and processes required to undertake board business.
Bolk, M H; Kroezen, N M; van Dam, B A
2003-07-01
The project 'From care-demand for care to a social dental occupational and educational structure' was carried out to reach an agreement about the organization of the future social occupational and educational structure and the future performance of one's profession. A descriptive analysis of data, obtained by literature search and consensus-meetings was used. All relevant professional associations participated in this project. The project resulted in profiles for the future dental professionals and for the future dental team. In this project the dental professionals come to an agreement about the future professional performance. However, the discussion has not yet been finished. Further collaboration between the professional associations is recommended.
The latest developments and outlook for hydrogen liquefaction technology
NASA Astrophysics Data System (ADS)
Ohlig, K.; Decker, L.
2014-01-01
Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence higher operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future.
Researching Researchers: Meeting Changing Researcher Needs in a Special Collections Environment
ERIC Educational Resources Information Center
Baseby, Francesca
2017-01-01
In the competitive Higher Education environment, it is no longer sufficient for special collections to rely on the "uniqueness" of a collection as its unique selling point--it must be supported by a service and strategic plan that is both proactive in anticipating the demands of future researchers and responsive to current researchers'…
Criteria for the Establishment of New Public Colleges and Universities. Report 6.
ERIC Educational Resources Information Center
Florida State Postsecondary Education Commission, Tallahassee.
This report outlines the criteria for establishment of new public colleges and universities in Florida between May 1991 and the early part of the 21st Century; the plan emanated from legislative concern about Florida's ability to meet projected future demands for highly educated workers. Issues addressed include goals for degrees granted and…
A University without Intellectuals: Western Governors University and the Academy's Future
ERIC Educational Resources Information Center
Neem, Johann N.
2012-01-01
Western Governors University was conceptualized in 1995 at a meeting of the Western Governors Association, and founded soon after in an effort to increase degree production in higher education at a lower cost. It has expanded significantly over the past few years, driven both by increased demand for online education and by drastic state budget…
ERIC Educational Resources Information Center
Berghella, Tina; Molenaar, John; Wyse, Linda
2006-01-01
This report examines the extent and nature of professional development required to meet the current and future needs of Workplace English Language and Literacy Programme practitioners. While the working environment for such practitioners is becoming more complex, with greater demands on them to have industry knowledge and project management…
ERIC Educational Resources Information Center
Rensselaer Research Corp., Troy, NY.
The purpose of this study was to develop the schema and methodology for the construction of a computerized mathematical model designed to project college and university enrollments in New York State and to meet the future increased demands of higher education planners. This preliminary report describes the main structure of the proposed computer…
Comparative Analysis, Hypercard, and the Future of Social Studies Education.
ERIC Educational Resources Information Center
Jennings, James M.
This research paper seeks to address new theories of learning and instructional practices that will be needed to meet the demands of 21st century education. A brief review of the literature on the topics of constructivism, reflective inquiry, and multicultural education, which form the major elements of a computer-based system called HyperCAP, are…
ERIC Educational Resources Information Center
Dailey, Debbie; Cotabish, Alicia; Jackson, Nykela
2018-01-01
Present and future challenges in our society demand a solid science, technology, engineering, and mathematics (STEM) knowledge base, innovative thinking, and the ability to ask the right questions to generate multiple solutions. To prepare innovators to meet these challenges, we must recognize and develop their talents. This advancement and growth…
Embracing the Ambiguity: Twelve Considerations for Holistic Time Management
ERIC Educational Resources Information Center
Bresciani, Marilee J.; Duncan, Allison J.; Cao, Liu Hui
2010-01-01
Many people feel overwhelmed by the seemingly never-ending demands of their professional and personal lives. Thinking of one's life as an ongoing journey promotes flexibility and allows one to focus on a current task, while knowing there will be time in the future to complete other tasks or meet other goals later. Research has also shown that…
Beyond Counseling and Psychotherapy, There Is a Field. I'll Meet You There
ERIC Educational Resources Information Center
Timm-Bottos, Janis
2016-01-01
Beyond a counseling or psychotherapy practice, the future of art therapy demands a new type of creativity, solidarity, and social inclusion. This viewpoint explores the art therapy profession and the role of educational practices to envision change in uncertain times. Art therapists have the ability to offer expertise in the serious dilemmas…
ERIC Educational Resources Information Center
McLaughlin, Michael P.; Starobin, Soko S.; Laanan, Frankie Santos
2010-01-01
As the nation's healthcare education system struggles to keep pace with the demand for its services, educators are seeking creative and innovative solutions to meet the needs of a growing number of students. The integration of medical simulation technology into the community college health science curriculum is a creative solution that can meet…
ERIC Educational Resources Information Center
Kuo, Ming-Mu
2008-01-01
To meet the challenges of fast-paced globalization and a more demanding high-tech environment of the future, it is imperative to train students for equipping with relevant abilities and competencies, especially in online literacy and communication skills, and assist them to build correct technology attitude and belief. Student teachers'…
ERIC Educational Resources Information Center
Chandler, Mary; Chan, Tak Cheung; Jiang, Binbin
2013-01-01
This study examined how effective an embedded practicum experience in an educational leadership program in a Southeastern University is in serving the purpose of preparing educational leaders to meet future challenges. Findings of this study confirm practicum areas that met the educational demands and highlight areas that need improvement to…
Hollowing Out: Job Loss, Job Growth and Skills for the Future. Education and Training
ERIC Educational Resources Information Center
Halbert, Hannah C.; Krueger, Tim
2011-01-01
This report examines Ohio's changing economy and whether Ohio is well positioned to meet the shifting skill demand. After examining job losses and job growth projections by sector and education attainment, findings revealed that Ohio has a projected education attainment gap for workers with some post-secondary education but less than a college…
ERIC Educational Resources Information Center
Smith, Myron P.; Sosey, Phillip
The Satellite Technology Demonstration employs the latest telecommunications technology to deliver community oriented programing to rural areas. To meet the demand for contemporary broadcasts responsive to community needs, a studio was constructed in the Denver area to produce and coordinate future programs for the Rocky Mountains area. Problems…
NASA Astrophysics Data System (ADS)
Matrosov, E.; Padula, S.; Huskova, I.; Harou, J. J.
2012-12-01
Population growth and the threat of drier or changed climates are likely to increase water scarcity world-wide. A combination of demand management (water conservation) and new supply infrastructure is often needed to meet future projected demands. In this case system planners must decide what to implement, when and at what capacity. Choices can range from infrastructure to policies or a mix of the two, culminating in a complex planning problem. Decision making under uncertainty frameworks can be used to help planners with this planning problem. This presentation introduces, applies and compares four decision making under uncertainty frameworks. The application is to the Thames basin water resource system which includes the city of London. The approaches covered here include least-economic cost capacity expansion optimization (EO), Robust Decision Making (RDM), Info-Gap Decision Theory (Info-gap) and many-objective evolutionary optimization (MOEO). EO searches for the least-economic cost program, i.e. the timing, sizing, and choice of supply-demand management actions/upgrades which meet projected water demands. Instead of striving for optimality, the RDM and Info-gap approaches help build plans that are robust to 'deep' uncertainty in future conditions. The MOEO framework considers multiple performance criteria and uses water systems simulators as a function evaluator for the evolutionary algorithm. Visualizations show Pareto approximate tradeoffs between multiple objectives. In this presentation we detail the application of each framework to the Thames basin (including London) water resource planning problem. Supply and demand options are proposed by the major water companies in the basin. We apply the EO method using a 29 year time horizon and an annual time step considering capital, operating (fixed and variable), social and environmental costs. The method considers all plausible combinations of supply and conservation schemes and capacities proposed by water companies and generates the least-economic cost annual plan. The RDM application uses stochastic simulation under a weekly time-step and regret analysis to choose a candidate strategy. We then use a statistical cluster algorithm to identify future states of the world under which the strategy is vulnerable. The method explicitly considers the effects of uncertainty in supply, demands and energy price on multiple performance criteria. The Info-gap approach produces robustness and opportuneness plots that show the performance of different plans under the most dire and favorable sets of future conditions. The same simulator, supply and demand options and uncertainties are considered as in the RDM application. The MOEO application considers many more combinations of supply and demand options while still employing a simulator that enables a more realistic representation of the physical system and operating rules. A computer cluster is employed to ease the computational burden. Visualization software allows decision makers to interactively view tradeoffs in many dimensions. Benefits and limitations of each framework are discussed and recommendations for future planning in the basin are provided.
Technology advancements for future astronomical missions
NASA Astrophysics Data System (ADS)
Barnes, Arnold A.; Knight, J. Scott; Lightsey, Paul A.; Harwit, Alex; Coyle, Laura
2017-09-01
Future astronomical telescopes in space will have architectures with complex and demanding requirements in order to meet their science goals. The missions currently being studied by NASA for consideration in the next Decadal Survey range in wavelength from the X-ray to Far infrared; examining phenomenon from imaging exoplanets and characterizing their atmospheres to detecting gravitational waves. These missions have technical challenges that are near or beyond the state of the art from the telescope to the detectors. This paper describes some of these challenges and possible solutions. Promising measurements and future demonstrations are discussed that can enhance or enable these missions.
2013 Snapshot of NGSI Human Capital Development and Future Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholz, Melissa A; Poe, Sarah M; Dewji, Shaheen A
2013-01-01
Since its creation in 2008, the Human Capital Development (HCD) subprogram of NNSA s Next Generation Safeguards Initiative (NGSI) has been striving to develop sustainable academic and technical programs that support the recruitment, education, training, and retention of the next generation of international safeguards professionals. This effort endeavors to develop additional human resources to equip a new cadre of safeguards and nonproliferation experts to meet the needs of both the United States and the International Atomic Energy Agency (IAEA) for decades to come, specifically in response to data that indicates that 82% of the 2009 safeguards experts at U.S. Laboratoriesmore » will have left the workforce within 15 years. This paper provides an update on the status of the program since its last presentation at the INMM Annual Meeting in 2010, including strengthened and integrated efforts in the areas of graduate and post-doctoral fellowships, young and mid-career professional support, additional short safeguards coursework, and expanded university engagement. In particular, the paper will cover the NGSI Human Capital Roadmap currently being developed in safeguards and nonproliferation education, training, and knowledge retention. The NGSI Human Capital Roadmap aims to provide additional data points and metrics on where the human capital demand lies, which disciplines and skill sets are needed in the field, and how NGSI HCD can best address these issues to meet future demand.« less
[Long-term care in Europe. Challenges and strategies in nursing staff management].
Kuhlmann, E; Larsen, C
2013-08-01
Across Europe, long-term care (LTC) is one of the most challenging areas of social policy. Despite a growing awareness of the problems and improved data, current institutional reforms are an ineffective response to demographic change. This article aims to provide an overview of the challenges of future nursing and care staff in LTC in Europe, and to discuss the German case in a wider European context. We focus on the nursing workforce and on the link between current and prospective analyses on the demand and offer of LTC services and LTC professionals/nursing staff. We draw on a secondary analysis of the literature and public statistics, especially OECD data. The European comparison shows a high variation in the future demand for LTC. In Germany, a number of problematic trends create a negative scenario: the growing demand for LTC meets with a decrease in nursing staff on the supply side. We conclude by suggesting intervention strategies that may reduce this negative scenario.
How to meet the increasing demands of water, food and energy in the future?
NASA Astrophysics Data System (ADS)
Shi, Haiyun; Chen, Ji; Sivakumar, Bellie; Peart, Mervyn
2017-04-01
Regarded as a driving force in water, food and energy demands, the world's population has been increasing rapidly since the beginning of the 20th century. According to the medium-growth projection scenario of the United Nations, the world's population will reach 9.5 billion by 2050. In response to the continuously growing population during this century, water, food and energy demands have also been increasing rapidly, and social problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if no proper management strategies are adopted. Then, how to meet the increasing demands of water, food and energy in the future? This study focuses on the sustainable developments of population, water, food, energy and dams, and the significances of this study can be concluded as follows: First, we reveal the close association between dams and social development through analysing the related data for the period 1960-2010, and argue that construction of additional large dams will have to be considered as one of the best available options to meet the increasing water, food and energy demands in the future. We conduct the projections of global water, food and energy consumptions and dam development for the period 2010-2050, and the results show that, compared to 2010, the total water, food and energy consumptions in 2050 will increase by 20%, 34% and 37%, respectively. Moreover, it is projected that additional 4,340 dams will be constructed by 2050 all over the world. Second, we analyse the current situation of global water scarcity based on the related data representing water resources availability (per capita available water resources), dam development (the number of dams), and the level of economic development (per capita gross domestic product). At the global scale, water scarcity exists in more than 70% of the countries around the world, including 43 countries suffering from economic water scarcity and 129 countries suffering from physical water scarcity. At the continental scale, most countries of Africa, the south and west Asia, and the central Europe are suffering from water scarcity. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, we address the question of future dam development and predict the locations of future large dams around the world. The results show that there will be 1,433 large dams built in the future, mainly in the Tibet Plateau and the Yunnan-Guizhou Plateau in Asia, the East African Plateau and the western part of Africa, the Andes Mountains and the Brazilian Plateau region in South America, the Rocky Mountains in North America, the Alps in Europe, and the Murray-Darling Basin in Oceania. Taking into account of the current situation of global water scarcity, these large dams are most likely to be constructed in countries that have abundant total available water resources or per capita available water resources, no matter whether they are experiencing "economic water scarcity" or have sufficient financial support.
MSFC ALL HANDS MEETING WITH TODD MAY
2016-09-27
TODD MAY, DIRECTOR OF NASA’S MARSHALL SPACE FLIGHT CENTER, ADDRESSES THE WORKFORCE DURING AN ALL-HANDS MEETING SEPT. 27 IN MORRIS AUDITORIUM. HE PRAISED TEAM MEMBERS FOR THEIR MANY SUCCESSES THROUGHOUT 2016 BY TURNING MILESTONES INTO MOMENTUM, AND DELIVERING ON COMMITMENTS -- ON BUDGET AND ON TIME. MAY ALSO LOOKED AHEAD, AFFIRMING THE CENTER’S PLEDGE TO MEET THE DEMANDS OF THE 21ST CENTURY BY BEST ALIGNING THE STRUCTURE OF MARSHALL’S INTERNAL ORGANIZATIONS AND DIRECTORATES. DOING SO, HE SAID, WILL CONTINUE A RICH TRADITION OF PROVIDING THE INNOVATIVE, GAME-CHANGING WORK ESSENTIAL FOR SCIENTIFIC DISCOVERY, THE FUTURE OF HUMAN SPACEFLIGHT AND EVENTUALLY, THE FIRST HUMAN MISSION TO MARS ON NASA’S SPACE LAUNCH SYSTEM
"Not another meeting!" Are meeting time demands related to employee well-being?
Rogelberg, Steven G; Leach, Desmond J; Warr, Peter B; Burnfield, Jennifer L
2006-01-01
Using an interruptions framework, this article proposes and tests a set of hypotheses concerning the relationship of meeting time demands with job attitudes and well-being (JAWB). Two Internet surveys were administered to employees who worked 35 hr or more per week. Study 1 examined prescheduled meetings attended in a typical week (N=676), whereas Study 2 investigated prescheduled meetings attended during the current day (N=304). As proposed, the relationship between meeting time demands and JAWB was moderated by task interdependence, meeting experience quality, and accomplishment striving. However, results were somewhat dependent on the time frame of a study and the operational definition used for meeting time demands. Furthermore, perceived meeting effectiveness was found to have a strong, direct relationship with JAWB. (c) 2006 APA, all rights reserved.
Feeding the Corn Belt: Opportunities for phosphorus recycling in U.S. agriculture.
Metson, Geneviève S; MacDonald, Graham K; Haberman, Daniel; Nesme, Thomas; Bennett, Elena M
2016-01-15
The supply of phosphorus (P) is a critical concern for food security. Concentrated mineral P deposits have been the source of almost all new P entering the biosphere. However, this resource is often used inefficiently, raising concerns about both nutrient pollution and future access to fertilizers. One solution to both of these problems is to enhance our ability to capture and recycle P from waste streams. However, the efficacy of doing this has not been rigorously explored. Here, we examine the potential for recycling major P sources in the United States to supply the necessary P for domestic corn (maize) production. Using 2002 population and agricultural census data, we examine the distribution of three key recyclable P sources (human food waste, human excreta, and animal manure) and P demand from grain and silage corn across the country to determine the distance P would need to be transported from sources to replenish P removed from soils in harvested corn plants. We find that domestic recyclable P sources, predominantly from animal manures, could meet national corn production P demands with no additional fertilizer inputs. In fact, only 37% of U.S. sources of recyclable P would be required to meet all P demand from U.S. corn harvested annually. Seventy-four percent of corn P demand could be met by recyclable P sources in the same county. Surplus recyclable P sources within-counties would then need to travel on average 302 km to meet the largest demand in and around the center of the 'Corn Belt' region where ~50% of national corn P demand is located. We find that distances between recyclable sources and crop demands are surprisingly short for most of the country, and that this recycling potential is mostly related to manure. This information can help direct where recycling efforts should be most-effectively directed. Copyright © 2015 Elsevier B.V. All rights reserved.
Material challenges for transducer designers in the 21st century
NASA Astrophysics Data System (ADS)
Lindberg, Jan F.
2002-07-01
The modern U.S. Navy is rapidly evolving to meet the challenges of operating in the littorals. This focus changes the rules, especially to the designers of sonar systems that now need to aggressively engage quiet diesel electric submarine threats and neutralize sophisticated underwater mines. These new responsibilities dictate that new concepts be developed. To meet these new demands on the sonar system, transducer designers are being tasked to design transducers and to utilize new materials to address performance requirements that were never even imagined a decade ago. Sensor needs are no longer limited to pressure types but now have to sense velocity or acceleration. Sources are challenged to both frequency extent and power levels. The need to physically move sources off of submarines and surface combatants and onto vehicles with limited energy capabilities prompt the challenge of efficient bandwidth and high coupling. These are the needs of the 'next Navy'; the needs of the 'Navy after next' will present an even more demanding scenario. The future will demand revolutionary technology at the micro level with devices utilizing new power sources and new materials.
Preliminary Human-in-the-Loop Assessment of Procedures for Very-Closely-Spaced Parallel Runways
NASA Technical Reports Server (NTRS)
Verma, Savita; Lozito, Sandra C.; Ballinger, Deborah S.; Trot, Greg; Hardy, Gordon H.; Panda, Ramesh C.; Lehmer, Ronald D.; Kozon, Thomas E.
2010-01-01
Demand in the future air transportation system concept is expected to double or triple by 2025 [1]. Increasing airport arrival rates will help meet the growing demand that could be met with additional runways but the expansion airports is met with environmental challenges for the surrounding communities when using current standards and procedures. Therefore, changes to airport operations can improve airport capacity without adding runways. Building additional runways between current ones, or moving them closer, is a potential solution to meeting the increasing demand, as addressed by the Terminal Area Capacity Enhancing Concept (TACEC). TACEC requires robust technologies and procedures that need to be tested such that operations are not compromised under instrument meteorological conditions. The reduction of runway spacing for independent simultaneous operations dramatically exacerbates the criticality of wake vortex incursion and the calculation of a safe and proper breakout maneuver. The study presented here developed guidelines for such operations by performing a real-time, human-in-the-loop simulation using precision navigation, autopilot-flown approaches, with the pilot monitoring aircraft spacing and the wake vortex safe zone during the approach.
High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations
NASA Technical Reports Server (NTRS)
Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.
2003-01-01
Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.
Exploring the biophysical option space for feeding the world without deforestation.
Erb, Karl-Heinz; Lauk, Christian; Kastner, Thomas; Mayer, Andreas; Theurl, Michaela C; Haberl, Helmut
2016-04-19
Safeguarding the world's remaining forests is a high-priority goal. We assess the biophysical option space for feeding the world in 2050 in a hypothetical zero-deforestation world. We systematically combine realistic assumptions on future yields, agricultural areas, livestock feed and human diets. For each scenario, we determine whether the supply of crop products meets the demand and whether the grazing intensity stays within plausible limits. We find that many options exist to meet the global food supply in 2050 without deforestation, even at low crop-yield levels. Within the option space, individual scenarios differ greatly in terms of biomass harvest, cropland demand and grazing intensity, depending primarily on the quantitative and qualitative aspects of human diets. Grazing constraints strongly limit the option space. Without the option to encroach into natural or semi-natural land, trade volumes will rise in scenarios with globally converging diets, thereby decreasing the food self-sufficiency of many developing regions.
Shapiro, Robyn S
2008-07-01
With little prospect of developing a sufficient supply of human transplantable organs to meet the large and growing demand, attention has turned to xenotransplantation, as well as stem cell and cloning research, as possible approaches for alleviating this allograft shortage. This article explores ethical and legal issues that surround developments in these fields.
Common Core in California Schools: Preparing Kids for Their Future. Fact Sheet
ERIC Educational Resources Information Center
Children Now, 2015
2015-01-01
Today's students are preparing to enter a world in which higher education and the workforce are demanding higher-level skills than ever before. To ensure all students are ready for success after high school, the Common Core State Standards establish a set of learning goals that work grade-by-grade, step-by-step, to prepare them to meet challenges…
Silicon diatom frustules as nanostructured photoelectrodes.
Chandrasekaran, Soundarrajan; Sweetman, Martin J; Kant, Krishna; Skinner, William; Losic, Dusan; Nann, Thomas; Voelcker, Nicolas H
2014-09-18
In the quest for solutions to meeting future energy demands, solar fuels play an important role. A particularly promising example is photocatalysis since even incremental improvements in performance in this process are bound to translate into significant cost benefits. Here, we report that semiconducting and high surface area 3D silicon replicas prepared from abundantly available diatom fossils sustain photocurrents and enable solar energy conversion.
ERIC Educational Resources Information Center
Velde, Christine
2009-01-01
The Chinese economy is now a major driver of growth in the world economy. As a consequence, significant reforms were introduced which impacted on its educational systems. China is facing unprecedented pressure to produce skilled individuals to meet the demands of this rapid growth. China is in the unique position of operating in a dual system,…
ERIC Educational Resources Information Center
Alliance for Excellent Education, 2011
2011-01-01
The future of the American economy increasingly depends on more students graduating from high school ready for college and a career. Long-standing trends in the nation's dropout rate and achievement gap demonstrate that the American education system needs to better prepare students to meet postsecondary and career demands. While momentum is…
Water and watershed management in India: Policy issues and priority areas for future research
Satish Chandra; K. K. S. Bhatia
2000-01-01
India's present food requirements of 220 million tonnes will likely increase to 340 million tonnes in 20 years. Expansion in the agriculture sector to meet these demands can be achieved only by devoting greater attention to restoring watershed lands previously degraded by excessive soil erosion to higher productivity and more efficiently utilizing the country...
Afterschool: A Natural Platform for Career Development. Afterschool Alert. Issue Brief No. 19
ERIC Educational Resources Information Center
Afterschool Alliance, 2004
2004-01-01
As technology evolves and the economy changes, greater demands will be placed on the workforce of the future. Myriad opportunities are and will be available to those who have the knowledge and the skills to meet those challenges. Afterschool programs offer a key opportunity to expose students to ideas and teach them skills that can unlock doors to…
ERIC Educational Resources Information Center
Gonzalez, Andrew
1996-01-01
Explores the implications of the divergence in the language of law, predominantly English, and the language of court proceedings, English and Filipino, for meeting the current social demands of Philippine society and for the future of the communication situation there. An interim solution to the dangers of the miscarriage of justice would be to…
ERIC Educational Resources Information Center
Liu, Yucheng
2017-01-01
In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became…
ERIC Educational Resources Information Center
Saunders, Alicia F.; Bethune, Keri S.; Spooner, Fred; Browder, Diane
2013-01-01
The Common Core State Standards (CCSS) in mathematics were created to help all students become prepared for the demands of future careers and life in an age of technology. Similarly, students with moderate and severe disability will need these skills to meet these changing expectations. Although mathematics instruction could focus on a few of the…
ERIC Educational Resources Information Center
Griffith, Richard L.; Wolfeld, Leah; Armon, Brigitte K.; Rios, Joseph; Liu, Ou Lydia
2016-01-01
The modern wave of globalization has created a demand for increased intercultural competence (ICC) in college graduates who will soon enter the 21st-century workforce. Despite the wide attention to the concepts and assessment of ICC, few assessments meet the standards for a next-generation assessment in areas of construct clarity, innovative item…
NASA Astrophysics Data System (ADS)
Hirpa, F. A.; Dyer, E.; Hope, R.; Dadson, S. J.
2017-12-01
Sustainable water management and allocation are essential for maintaining human well-being, sustaining healthy ecosystems, and supporting steady economic growth. The Turkwel river basin, located in north-western Kenya, experiences a high level of water scarcity due to its arid climate, high rainfall variability, and rapidly growing water demand. However, due to sparse hydro-climatic data and limited literature, the water resources system of the basin has been poorly understood. Here we apply a bottom-up climate risk assessment method to estimate the resilience of the basin's water resources system to growing demand and climate stressors. First, using a water resource system model and historical climate data, we construct a climate risk map that depicts the way in which the system responds to climate change and variability. Then we develop a set of water demand scenarios to identify the conditions that potentially lead to the risk of unmet water demand and groundwater depletion. Finally, we investigate the impact of climate change and variability by stress testing these development scenarios against historically strong El Niño/Southern Oscillation (ENSO) years and future climate projections from multiple Global Circulation Models (GCMs). The results reveal that climate variability and increased water demand are the main drivers of water scarcity in the basin. Our findings show that increases in water demand due to expanded irrigation and population growth exert the strongest influence on the ability of the system to meet water resource supply requirements, and in all cases considered increase the impacts of droughts caused by future climate variability. Our analysis illustrates the importance of combining analysis of future climate risks with other development decisions that affect water resources planning. Policy and investment decisions which maximise water use efficiency in the present day are likely to impart resilience to climate change and variability under a wide range of future scenarios and therefore constitute low regret measures for climate adaptation.
Analyzing Uncertainty and Risk in the Management of Water Resources in the State Of Texas
NASA Astrophysics Data System (ADS)
Singh, A.; Hauffpauir, R.; Mishra, S.; Lavenue, M.
2010-12-01
The State of Texas updates its state water plan every five years to determine the water demand required to meet its growing population. The plan compiles forecasts of water deficits from state-wide regional water planning groups as well as the water supply strategies to address these deficits. To date, the plan has adopted a deterministic framework, where reference values (e.g., best estimates, worst-case scenario) are used for key factors such as population growth, demand for water, severity of drought, water availability, etc. These key factors can, however, be affected by multiple sources of uncertainties such as - the impact of climate on surface water and groundwater availability, uncertainty in population projections, changes in sectoral composition of the economy, variability in water usage, feasibility of the permitting process, cost of implementation, etc. The objective of this study was to develop a generalized and scalable methodology for addressing uncertainty and risk in water resources management both at the regional and the local water planning level. The study proposes a framework defining the elements of an end-to-end system model that captures the key components of demand, supply and planning modules along with their associated uncertainties. The framework preserves the fundamental elements of the well-established planning process in the State of Texas, promoting an incremental and stakeholder-driven approach to adding different levels of uncertainty (and risk) into the decision-making environment. The uncertainty in the water planning process is broken down into two primary categories: demand uncertainty and supply uncertainty. Uncertainty in Demand is related to the uncertainty in population projections and the per-capita usage rates. Uncertainty in Supply, in turn, is dominated by the uncertainty in future climate conditions. Climate is represented in terms of time series of precipitation, temperature and/or surface evaporation flux for some future time period of interest, which can be obtained as outputs of global climate models (GCMs). These are then linked with hydrologic and water-availability models (WAMs) to estimate water availability for the worst drought conditions under each future climate scenario. Combining the demand scenarios with the water availability scenarios yields multiple scenarios for water shortage (or surplus). Given multiple shortage/surplus scenarios, various water management strategies can be assessed to evaluate the reliability of meeting projected deficits. These reliabilities are then used within a multi-criteria decision-framework to assess trade-offs between various water management objectives, thus helping to make more robust decisions while planning for the water needs of the future.
Can sub-Saharan Africa feed itself?
van Ittersum, Martin K.; van Bussel, Lenny G. J.; Wolf, Joost; Grassini, Patricio; van Wart, Justin; Guilpart, Nicolas; Claessens, Lieven; de Groot, Hugo; Wiebe, Keith; Yang, Haishun; Boogaard, Hendrik; van Oort, Pepijn A. J.; van Loon, Marloes P.; Saito, Kazuki; Adimo, Ochieng; Adjei-Nsiah, Samuel; Agali, Alhassane; Bala, Abdullahi; Chikowo, Regis; Kaizzi, Kayuki; Kouressy, Mamoutou; Makoi, Joachim H. J. R.; Ouattara, Korodjouma; Tesfaye, Kindie; Cassman, Kenneth G.
2016-01-01
Although global food demand is expected to increase 60% by 2050 compared with 2005/2007, the rise will be much greater in sub-Saharan Africa (SSA). Indeed, SSA is the region at greatest food security risk because by 2050 its population will increase 2.5-fold and demand for cereals approximately triple, whereas current levels of cereal consumption already depend on substantial imports. At issue is whether SSA can meet this vast increase in cereal demand without greater reliance on cereal imports or major expansion of agricultural area and associated biodiversity loss and greenhouse gas emissions. Recent studies indicate that the global increase in food demand by 2050 can be met through closing the gap between current farm yield and yield potential on existing cropland. Here, however, we estimate it will not be feasible to meet future SSA cereal demand on existing production area by yield gap closure alone. Our agronomically robust yield gap analysis for 10 countries in SSA using location-specific data and a spatial upscaling approach reveals that, in addition to yield gap closure, other more complex and uncertain components of intensification are also needed, i.e., increasing cropping intensity (the number of crops grown per 12 mo on the same field) and sustainable expansion of irrigated production area. If intensification is not successful and massive cropland land expansion is to be avoided, SSA will depend much more on imports of cereals than it does today. PMID:27956604
Can sub-Saharan Africa feed itself?
van Ittersum, Martin K; van Bussel, Lenny G J; Wolf, Joost; Grassini, Patricio; van Wart, Justin; Guilpart, Nicolas; Claessens, Lieven; de Groot, Hugo; Wiebe, Keith; Mason-D'Croz, Daniel; Yang, Haishun; Boogaard, Hendrik; van Oort, Pepijn A J; van Loon, Marloes P; Saito, Kazuki; Adimo, Ochieng; Adjei-Nsiah, Samuel; Agali, Alhassane; Bala, Abdullahi; Chikowo, Regis; Kaizzi, Kayuki; Kouressy, Mamoutou; Makoi, Joachim H J R; Ouattara, Korodjouma; Tesfaye, Kindie; Cassman, Kenneth G
2016-12-27
Although global food demand is expected to increase 60% by 2050 compared with 2005/2007, the rise will be much greater in sub-Saharan Africa (SSA). Indeed, SSA is the region at greatest food security risk because by 2050 its population will increase 2.5-fold and demand for cereals approximately triple, whereas current levels of cereal consumption already depend on substantial imports. At issue is whether SSA can meet this vast increase in cereal demand without greater reliance on cereal imports or major expansion of agricultural area and associated biodiversity loss and greenhouse gas emissions. Recent studies indicate that the global increase in food demand by 2050 can be met through closing the gap between current farm yield and yield potential on existing cropland. Here, however, we estimate it will not be feasible to meet future SSA cereal demand on existing production area by yield gap closure alone. Our agronomically robust yield gap analysis for 10 countries in SSA using location-specific data and a spatial upscaling approach reveals that, in addition to yield gap closure, other more complex and uncertain components of intensification are also needed, i.e., increasing cropping intensity (the number of crops grown per 12 mo on the same field) and sustainable expansion of irrigated production area. If intensification is not successful and massive cropland land expansion is to be avoided, SSA will depend much more on imports of cereals than it does today.
The Energy Problem: What the Helios Project Can Do About it (LBNL Science at the Theater)
Chu, Steven
2018-06-15
The energy problem is one of the most important issues that science and technology has to solve. Nobel laureate and Berkeley Lab Director Steven Chu proposes an aggressive research program to transform the existing and future energy systems of the world away from technologies that emit greenhouse gases. Berkeley Lab's Helios Project concentrates on renewable fuels, such as biofuels, and solar technologies, including a new generation of solar photovoltaic cells and the conversion of electricity into chemical storage to meet future demand.
NASA Astrophysics Data System (ADS)
Ribeiro Neto, A.; Scott, C. A.; Lima, E. A.; Montenegro, S. M. G. L.; Cirilo, J. A.
2014-09-01
Water availability for a range of human uses will increasingly be affected by climate change, especially in the arid and semiarid tropics. The main objective of this study is to evaluate the infrastructure sufficiency in meeting water demand under climate-induced socio-hydrological transition in the Capibaribe River basin (CRB). The basin has experienced spatial and sectoral (agriculture-to-urban) reconfiguration of water demands. Human settlements that were once dispersed, relying on intermittent sources of surface water, are now larger and more spatially concentrated, which increases water-scarcity effects. Based on the application of linked hydrologic and water-resources models using precipitation and temperature projections of the IPCC SRES (Special Report: Emissions Scenarios) A1B scenario, a reduction in rainfall of 26.0% translated to streamflow reduction of 60.0%. We used simulations from four members of the HadCM3 (UK Met Office Hadley Centre) perturbed physics ensemble, in which a single model structure is used and perturbations are introduced to the physical parameterization schemes in the model (Chou et al., 2012). We considered that the change of the water availability in the basin in the future scenarios must drive the water management and the development of adaptation strategies that will manage the water demand. Several adaptive responses are considered, including water-loss reductions, wastewater collection and reuse, and rainwater collection cisterns, which together have potential to reduce future water demand by 23.0%. This study demonstrates the vulnerabilities of the infrastructure system during socio-hydrological transition in response to hydroclimatic and demand variabilities in the CRB and also indicates the differential spatial impacts and vulnerability of multiple uses of water to changes over time. The simulations showed that the measures proposed and the water from interbasin transfer project of the São Francisco River had a positive impact over the water supply in the basin, mainly for human use. Industry and irrigation will suffer impact unless other measures are implemented for demand control.
Indonesia palm oil production without deforestation and peat conversion by 2050.
Afriyanti, Dian; Kroeze, Carolien; Saad, Asmadi
2016-07-01
Palm oil is a promising source of cooking oil and biodiesel. The demand for palm oil has been increasing worldwide. However, concerns exist surrounding the environmental and socio-economic sustainability of palm oil production. Indonesia is a major palm oil producing country. We explored scenarios for palm oil production in Indonesia until 2050, focusing on Sumatra, Kalimantan and Papua. Our scenarios describe possible trends in crude palm oil production in Indonesia, while considering the demand for cooking oil and biodiesel, the available land for plantations, production capacity (for crude palm oil and fresh fruit bunches) and environmentally restricting conditions. We first assessed past developments in palm oil production. Next, we analysed scenarios for the future. In the past 20years, 95% of the Indonesian oil palm production area was in Sumatra and Kalimantan and was increasingly cultivated in peatlands. Our scenarios for the future indicate that Indonesia can meet a considerable part of the global and Asian demand for palm oil, while avoiding further cultivation of peatlands and forest. By 2050, 264-447Mt crude palm oil may be needed for cooking oil and biodiesel worldwide. In Indonesia, the area that is potentially suitable for oil palm is 17 to 26Mha with a potential production rate of 27-38t fresh fruit bunches/ha, yielding 130-176Mt crude palm oil. Thus Indonesia can meet 39-60% of the international demand. In our scenarios this would be produced in Sumatra (21-26%), Kalimantan (12-16%), and Papua (2%). The potential areas include the current oil palm plantation in mineral lands, but exclude the current oil palm plantations in peatlands. Copyright © 2016 Elsevier B.V. All rights reserved.
The latest developments and outlook for hydrogen liquefaction technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohlig, K.; Decker, L.
2014-01-29
Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence highermore » operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future.« less
Moderating diets to feed the future
NASA Astrophysics Data System (ADS)
Davis, Kyle F.; D'Odorico, Paolo; Rulli, Maria Cristina
2014-10-01
Population growth, dietary changes, and increasing biofuel use are placing unprecedented pressure on the global food system. While this demand likely cannot be met by expanding agricultural lands, much of the world's cropland can attain higher crop yields. Therefore, it is important to examine whether increasing crop productivity to the maximum attainable yield (i.e., yield gap closure) alone can substantially improve food security at global and national scales. Here we show that closing yield gaps through conventional technological development (i.e., fertilizers and irrigation) can potentially meet future global demand if diets are moderated and crop-based biofuel production is limited. In particular, we find that increases in dietary demand will be largely to blame should crop production fall short of demand. In converting projected diets to a globally adequate diet (3000 kcal/cap/d; 20% animal kcal) under current agrofuel use, we find that 1.8-2.6 billion additional people can be fed in 2030 and 2.1-3.1 billion additional people in 2050, depending on the extent to which yields can improve in those periods. Therefore, the simple combination of yield gap closure and moderating diets offers promise for feeding the world's population but only if long-term sustainability is the focus.
Grant, L; Appleby, J; Griffin, N; Adam, A; Gishen, P
2012-01-01
The recent turmoil within the banking sector has led to the development of the most significant recession since the “great depression” of the 1930s. Although the coalition government has promised to “guarantee that health spending increases in real terms in each year of Parliament”, this may still not be enough to meet future needs over the coming years due to increasing demand and cost pressures. The expected mismatch between actual National Health Service (NHS) funding post-2011 and that required to satisfy increasing demand has been estimated by the Department of Health to require efficiency savings representing up to one-fifth of the overall NHS budget. This paper explains the reasons behind the anticipated slowdown in the growth of real NHS funding, and how, as a discipline, radiology can increase the efficiency of the services it provides in anticipation of future financial austerity within the NHS. PMID:22167516
ERIC Educational Resources Information Center
Moon, Bob; Villet, Charmaine
2016-01-01
The purpose of this report is to provide an overview of the present and future impact of digital learning on teacher education in Sub-Saharan Africa. The focus of the report is student-teachers and teachers, and its central argument is that existing institutional structures will be insufficient to meet the scale of demand for well-prepared,…
The future of rare earth elements—will these high-tech industry elements continue in short supply?
Long, Keith R.
2011-01-01
* REE will continue to find increasing use due to their unique properties. * There is a realistic possibility around 2015-2016 of sufficient REE capacity to meet demand under conditions of healthy price competition. * REE supplies will be tight and prices high for a few years. * There is significant downside risk that newly developed mines will not perform as planned.
Acquisition Research for Design and Service Enterprises
2014-02-02
better than refurbishment. Replacement: Replacing a component means to swap in a new component. Consequently, the efficiency after replacement is...objectives are fueled by anticipation of future gains; and transaction encapsulates the reluctance to change currencies /investments because of the fixed...those for holding currency . It can be argued that the exception is when goods are held in reserve to meet uncertain demands, with the objective of
A summary view of water supply and demand in the San Francisco Bay Region, California
Rantz, Saul E.
1972-01-01
This report presents a summary view of the water-supply situation in the nine counties that comprise the San Francisco Bay region, California, and thereby provides water data, based on 1970 conditions, that are needed for regional planning. For the purpose of this study the nine-county region has been divided into 15 subregions on the basis of hydrologic and economic considerations. Firm water supply is tabulated for each subregion by source--ground water, surface water, and imported water. Water demand in 1970 is tabulated for each subregion by type of use or demand--public supply, rural self-supply, irrigation, self-supplied industrial water and thermoelectric power generation. The San Francisco Bay region is dependent to a large degree on imported water. Under 1970 conditions of development, the firm water supply is 2.2 million acre-feet per year; of that quantity, almost 1 million acre-feet per year is imported water. The water demand in 1970 was 1.9 million acre-feet, about half of which was consumed. Under 1970 conditions of water development and use, a series of dry years would probably necessitate some curtailment of irrigation activities in four of the subregions, where the bulk of the demands i for irrigation water. Under those same conditions there is generally ample water for municipal and industrial use throughout the region, except in eastern Marin County where the firm municipal supple does not exceed the 1970 demand for municipal and industrial water. Although the firm water supply of the San Francisco Bay region, including imported water, is generally adequate to meet present needs, supplemental supply will be required to meet increased demand in the future. The expansion of existing surface-water facilities and the construction of new surface-water projects, now considered feasible, could provide a combined firm supplemental yield of slightly more than 1 million acre-feet per year, almost three-fourths of which would be available for import by those subregions that might experience a water deficient in the future. However, any supplemental water that might be developed by such alternative methods as desalination of brackish or salt water, weather modification, and various conservation measure, will correspondingly reduce requirement for supplemental water from the more conventional sources. The aspect of water quality is not discussed in this paper. Because of the present availability of imported water of good or acceptable quality, water quality, as it affects the supply, is not a serious problem at this time, except perhaps in local areas adjacent to San Francisco Bay and in the Sacramento-San Joaquin Delta. In those areas ground water has been degraded by salinity intrusion. Although the prediction of future trends in population, land use, and water demand is beyond the scope of this report, there is not doubt that vigilance and careful planning will be required to prevent serious future deterioration of the quality of the water supply.
Performance of a system of reservoirs on futuristic front
NASA Astrophysics Data System (ADS)
Saha, Satabdi; Roy, Debasri; Mazumdar, Asis
2017-10-01
Application of simulation model HEC-5 to analyze the performance of the DVC Reservoir System (a multipurpose system with a network of five reservoirs and one barrage) on the river Damodar in Eastern India in meeting projected future demand as well as controlling flood for synthetically generated future scenario is addressed here with a view to develop an appropriate strategy for its operation. Thomas-Fiering model (based on Markov autoregressive model) has been adopted for generation of synthetic scenario (monthly streamflow series) and subsequently downscaling of modeled monthly streamflow to daily values was carried out. The performance of the system (analysed on seasonal basis) in terms of `Performance Indices' (viz., both quantity based reliability and time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability indices) for the projected scenario with enhanced demand turned out to be poor compared to that for historical scenario. However, judicious adoption of resource enhancement (marginal reallocation of reservoir storage capacity) and demand management strategy (curtailment of projected high water requirements and trading off between demands) was found to be a viable option for improvement of the performance of the reservoir system appreciably [improvement being (1-51 %), (2-35 %), (16-96 %), (25-50 %), (8-36 %) and (12-30 %) for the indices viz., quantity based reliability, time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability, respectively] compared to that with normal storage and projected demand. Again, 100 % reliability for flood control for current as well as future synthetically generated scenarios was noted. The results from the study would assist concerned authority in successful operation of reservoirs in the context of growing demand and dwindling resource.
Powell, Tom; Watkins, Dianne; Kelly, Daniel
2015-01-01
Objectives To explore perceptions of the current practice and future potential of advanced practitioners (APs) from the perspectives of different professional groups in Wales UK. Design A qualitative study consisting of nine focus group interviews. Methods Initially verbatim transcriptions of each focus group interviews were analysed thematically before themes were merged to represent perceptions for the whole data set. Participants Data were gathered from a total of 67 stakeholders—including APs from a variety of professional groups (eg, nursing, physiotherapy, paramedics) as well as managers, workforce developers, educators and medical staff who have a role developing and supporting APs in practice. Results The results are presented in four themes: (1) demand, policy context and future priorities, (2) role clarity and standardisation, (3) agreement and understanding of the role and (4) interprofessional working. The context within which current and future AP roles were considered was influenced by inexorable demands for healthcare and the requirements to meet health policy priorities. Developing AP roles were hampered currently by a lack of shared understanding and ‘joined-up’ working between different groups such as medical practitioners, managers, commissioners and educators. Conclusions For the AP role to flourish more ‘joined-up’ thinking, support and development opportunities are required between APs, managers, senior clinicians, commissioners and educators. Working together to plan and deliver education, innovation and service delivery is of prime importance to meeting ever increasing complex health needs. This will ensure that future APs are adequately prepared and supported to reach their full potential and help deliver necessary innovations in current models of care delivery. PMID:26656024
Climate mitigation and the future of tropical landscapes.
Thomson, Allison M; Calvin, Katherine V; Chini, Louise P; Hurtt, George; Edmonds, James A; Bond-Lamberty, Ben; Frolking, Steve; Wise, Marshall A; Janetos, Anthony C
2010-11-16
Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 W m(-2) (approximately 526 ppm CO(2)) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies.
Is There a Shortage of Obstetrician-Gynecologists?
Stonehocker, Jody; Muruthi, Joyce; Rayburn, William F
2017-03-01
Projections of supply and demand for obstetricians-gynecologists suggest a current minimal or modest shortage that will worsen in the future. The US adult female population is expected to increase by more than 20% by 2045 and represents a key driver for increased demand for health care services. The annual number of obstetrician-gynecologists (ob-gyn) residency graduates has increased negligibly, whereas the proportion accepted into fellowships increased steadily, reducing those in general practice. The gradual increase in proportion of ob-gyns who are women coincides with desires for more work-life balance and earlier retirement from clinical practice. As the supply of advanced practice providers of women's health services grows, the need for more ob-gyns could be less to meet the projected demand. Copyright © 2016 Elsevier Inc. All rights reserved.
Groundwater Depletion During Drought Threatens Future Water Security of the Colorado River Basin
NASA Technical Reports Server (NTRS)
Castle, Stephanie L.; Thomas, Brian F.; Reager, John T.; Rodell, Matthew; Swenson, Sean C.; Famiglietti, James S.
2014-01-01
Streamflow of the Colorado River Basin is the most overallocated in the world. Recent assessment indicates that demand for this renewable resource will soon outstrip supply, suggesting that limited groundwater reserves will play an increasingly important role in meeting future water needs. Here we analyze 9 years (December 2004 to November 2013) of observations from the NASA Gravity Recovery and Climate Experiment mission and find that during this period of sustained drought, groundwater accounted for 50.1 cu km of the total 64.8 cu km of freshwater loss. The rapid rate of depletion of groundwater storage (5.6 +/- 0.4 cu km/yr) far exceeded the rate of depletion of Lake Powell and Lake Mead. Results indicate that groundwater may comprise a far greater fraction of Basin water use than previously recognized, in particular during drought, and that its disappearance may threaten the long-term ability to meet future allocations to the seven Basin states.
Groundwater depletion during drought threatens future water security of the Colorado River Basin
NASA Astrophysics Data System (ADS)
Castle, Stephanie L.; Thomas, Brian F.; Reager, John T.; Rodell, Matthew; Swenson, Sean C.; Famiglietti, James S.
2014-08-01
Streamflow of the Colorado River Basin is the most overallocated in the world. Recent assessment indicates that demand for this renewable resource will soon outstrip supply, suggesting that limited groundwater reserves will play an increasingly important role in meeting future water needs. Here we analyze 9 years (December 2004 to November 2013) of observations from the NASA Gravity Recovery and Climate Experiment mission and find that during this period of sustained drought, groundwater accounted for 50.1 km3 of the total 64.8 km3 of freshwater loss. The rapid rate of depletion of groundwater storage (-5.6 ± 0.4 km3 yr-1) far exceeded the rate of depletion of Lake Powell and Lake Mead. Results indicate that groundwater may comprise a far greater fraction of Basin water use than previously recognized, in particular during drought, and that its disappearance may threaten the long-term ability to meet future allocations to the seven Basin states.
PDS4: Developing the Next Generation Planetary Data System
NASA Technical Reports Server (NTRS)
Crichton, D.; Beebe, R.; Hughes, S.; Stein, T.; Grayzeck, E.
2011-01-01
The Planetary Data System (PDS) is in the midst of a major upgrade to its system. This upgrade is a critical modernization of the PDS as it prepares to support the future needs of both the mission and scientific community. It entails improvements to the software system and the data standards, capitalizing on newer, data system approaches. The upgrade is important not only for the purpose of capturing results from NASA planetary science missions, but also for improving standards and interoperability among international planetary science data archives. As the demands of the missions and science community increase, PDS is positioning itself to evolve and meet those demands.
Landry, Michel D; Hack, Laurita M; Coulson, Elizabeth; Freburger, Janet; Johnson, Michael P; Katz, Richard; Kerwin, Joanne; Smith, Megan H; Wessman, Henry C Bud; Venskus, Diana G; Sinnott, Patricia L; Goldstein, Marc
2016-01-01
Health human resources continue to emerge as a critical health policy issue across the United States. The purpose of this study was to develop a strategy for modeling future workforce projections to serve as a basis for analyzing annual supply of and demand for physical therapists across the United States into 2020. A traditional stock-and-flow methodology or model was developed and populated with publicly available data to produce estimates of supply and demand for physical therapists by 2020. Supply was determined by adding the estimated number of physical therapists and the approximation of new graduates to the number of physical therapists who immigrated, minus US graduates who never passed the licensure examination, and an estimated attrition rate in any given year. Demand was determined by using projected US population with health care insurance multiplied by a demand ratio in any given year. The difference between projected supply and demand represented a shortage or surplus of physical therapists. Three separate projection models were developed based on best available data in the years 2011, 2012, and 2013, respectively. Based on these projections, demand for physical therapists in the United States outstrips supply under most assumptions. Workforce projection methodology research is based on assumptions using imperfect data; therefore, the results must be interpreted in terms of overall trends rather than as precise actuarial data-generated absolute numbers from specified forecasting. Outcomes of this projection study provide a foundation for discussion and debate regarding the most effective and efficient ways to influence supply-side variables so as to position physical therapists to meet current and future population demand. Attrition rates or permanent exits out of the profession can have important supply-side effects and appear to have an effect on predicting future shortage or surplus of physical therapists. © 2016 American Physical Therapy Association.
NASA Astrophysics Data System (ADS)
Henriquez Dole, L. E.; Vicuna, S.; Gironas, J. A.; Meza, F. J.
2016-12-01
Future climate change scenarios threaten current practices in agriculture and therefore adaptation measures have been proposed to overcome this possible situation. Regional to local ideas apply for all kind of adaptation measures and can be found among literature for Central Chile, but their quantitative efficiency is rarely evaluated. Furthermore, land uses changes are commonly neglected in such evaluations. This research use the Water Evaluation and Planning (WEAP) model and the Plant Growth Model (PGM) to simulate weekly water distribution and consumption in Chile's rural areas up to 2050. Using information directly provided by the Water User Organizations (WUO), the developed model assesses possible future impacts on 2 crops (corn and plum) under 15 climate scenarios and land use trends. Results show that WEAP-PGM tool can represent satisfactorily crop sensitiveness to historic and future circumstances. Nine scenarios satisfy average crop water demands, but all of them present a diminished yield (1%-14%) and production (8%-20%). Just six scenarios cannot meet crop water demands (40-70% of reliability) if adaptation measures are not applied. Given this need, two adaptation measures were evaluated: a) using all water rights and b) irrigation improvements. The second option showed to be the most effective measure leading to the satisfaction of crop water demands under all the scenarios, but still a diminished yield and production remained.
Sustainable water use and management options in a water-stressed river basin in Kenya
NASA Astrophysics Data System (ADS)
Hirpa, Feyera; Dadson, Simon; Dyer, Ellen; Barbour, Emily; Charles, Katrina; Hope, Robert
2017-04-01
Sustainable water resource is critical for maintaining healthy ecosystems and supporting socio-economic sectors. Hydro-climatic change and variability, population growth as well as new infrastructure developments create water security risks. Therefore, evidence-based management decisions are necessary to improve water security and meet the future water demands of multiple competing sectors. In this work we perform water resource modelling in order to investigate the impact of increasing water demand (expanding agriculture, booming industry, growing population) on the sustainable water use in Turkwel river basin, located in arid north-western Kenya. We test different management options to determine those that meet the water demands of the concerned sectors whilst minimising environmental impact. We perform scenario analysis using Water Evaluation And Planning (WEAP) model to explore different ranges of climate conditions, population growth rates, irrigation scale, reservoir operations, and economic development. The results can be used as a scientific guideline for the policy makers who decide the alternative management options that ensure the sustainable water use in the basin. The work is part of the REACH - improving water security for the poor program (http://reachwater.org.uk/), aiming to support a pathway to sustainable growth and poverty reduction
What stresses remote area nurses? Current knowledge and future action.
Lenthall, Sue; Wakerman, John; Opie, Tess; Dollard, Maureen; Dunn, Sandra; Knight, Sabina; Macleod, Martha; Watson, Colin
2009-08-01
Review and synthesise the literature identifying the stresses experienced by remote area nurses (RANs). Identify interventions implemented to address identified stresses. Explore the use of the job demands-resources (JD-R) model. A comprehensive literature review was conducted using the meta-databases Ovid and Informit. Remote Australian primary health care centres. The reported demands experienced by RANs can be grouped into four themes: (i) the remote context; (ii) workload and extended scope of practice; (iii) poor management; and (iv) violence in the workplace and community. In this high-demand, low-resource context, the JD-R model of occupational stress is particularly pertinent to examining occupational stress among RANs. The demands on RANs, such as the isolated geographical context, are immutable. However, there are key areas where resources can be enhanced to better meet the high level of need. These are: (i) adequate and appropriate education, training and orientation; (ii) appropriate funding of remote health services; and (iii) improved management practices and systems. There is a lack of empirical evidence relating to stresses experienced by RANs. The literature identifies some of the stresses experienced by RANs as unique to the remote context, while some are related to high demands coupled with a deficit of appropriate resources. Use of models, such as the JD-R model of occupational stress, might assist in identifying key areas where resources can be enhanced to better meet the high level of need and reduce RANs' levels of stress.
Karim, Abdool Z
2009-01-01
The regional processing centre at Sunnybrook Health Sciences Centre recently faced the substantial challenge of increasing cleaning capacity to meet the current workload and anticipated future demand without increasing its operating budget. The solution, upgrading its cleaning and decontamination system to a highly automated system, met both objectives. An analysis of the impact of the change found that the new system provided additional benefits, including improved productivity and cleaning quality; decreased costs; reduced water, electricity and chemical use; improved worker safety and morale; and decreased overtime. Investing in innovative technology improved key departmental outcomes while meeting institutional environmental and cost savings objectives.
NASA Astrophysics Data System (ADS)
Green, K. N.; van Alstine, R. L.
This paper presents the current performance levels of the SDG-5 gyro, a high performance two-axis dynamically tuned gyro, and the DRIRU II redundant inertial reference unit relating to stabilization and pointing applications. Also presented is a discussion of a product improvement program aimed at further noise reductions to meet the demanding requirements of future space defense applications.
ERIC Educational Resources Information Center
National Academies Press, 2010
2010-01-01
The Air Force requires technical skills and expertise across the entire range of activities and processes associated with the development, fielding, and employment of air, space, and cyber operational capabilities. The growing complexity of both traditional and emerging missions is placing new demands on education, training, career development,…
ERIC Educational Resources Information Center
Matthews, Dewayne
2009-01-01
College attainment is increasingly important to the U.S. economy as the workforce demands education and training that properly prepare citizens for success in the global, knowledge economy. Lumina Foundation for Education has embraced a single, specific goal that will help address the economic and social trends that cloud this nation's future. Its…
SunShot Vision Study: February 2012 (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-02-01
The objective of the SunShot Vision Study is to provide an in-depth assessment of the potential for solar technologies to meet a significant share of electricity demand in the United States during the next several decades. Specifically, it explores a future in which the price of solar technologies declines by about 75% between 2010 and 2020 - in line with the U.S. Department of Energy (DOE) SunShot Initiative's targets.
NASA Technical Reports Server (NTRS)
Smith, W. W.; Clark, J. P.
1981-01-01
The objective was to determine the direction auxiliary propulsion research and development should take to best meet upcoming needs. The approach used was to define the important electrical and chemical propulsion characteristics in terms of the demands that will be imposed by future spacecraft. Comparison of these desired characteristics and capabilities with those presently available was then used to identify deficiencies.
Jenna H. Tilt; Lee Cerveny
2013-01-01
Smart growth strategies of infill and compact growth in existing suburban cities will most likely not be sufficient to absorb a new US household growth in the future. To meet housing demands and preferences, master-planned communities will continue to be built in outlying exurban areas. However, little is known about the impacts these communities may have on the...
ERIC Educational Resources Information Center
Grajek, Susan
2014-01-01
For three days in January 2014, more than a hundred thought leaders met in Tempe, Arizona, to discuss the present and future challenges and opportunities for IT's support of research. Recommendations to improve institutions' support of scientific and humanities research included shaping central IT's role as an aggregator; ensuring that central IT…
Shortage in the face of plenty: improving the allocation of corneas for transplantation.
de By, T M M H
2003-01-01
As there are plenty of potential corneal donors, theoretically there should be no shortage of corneal grafts. Practically, however, shortages have been a problem, especially with HLA-matched corneas, which are increasingly requested. This increase requires evaluation and proper adaptation to meet all requests in the future. BIS' allocation data for corneal transplants were analyzed for the years 1998 through 2001. Allocation of matched corneas almost doubled in 2000. The waiting list for matched grafts could be reduced by one third. A steep increase in demand for matched grafts could be noted by the year 2000. This signifies that the results of positive matching studies have ultimately been taken notice of by the ophthalmic surgeons with consequent adaptation of their graft orders. BIS has mostly been able to cope with these rapidly changing and increasing demands, but more efforts are continuously needed to supply those typed and matched corneas within short time. Our next step will be to offer HLA-DR matching routinely in addition to the current HLA-A/-B matching. We are looking forward with great interest to the introduction of even more specified matching algorithms in the not too far distant future, and are prepared to meet all the requirements which might be associated with such challenges.
Flachsbarth, Insa; Willaarts, Bárbara; Xie, Hua; Pitois, Gauthier; Mueller, Nathaniel D.; Ringler, Claudia; Garrido, Alberto
2015-01-01
One of humanity’s major challenges of the 21st century will be meeting future food demands on an increasingly resource constrained-planet. Global food production will have to rise by 70 percent between 2000 and 2050 to meet effective demand which poses major challenges to food production systems. Doing so without compromising environmental integrity is an even greater challenge. This study looks at the interdependencies between land and water resources, agricultural production and environmental outcomes in Latin America and the Caribbean (LAC), an area of growing importance in international agricultural markets. Special emphasis is given to the role of LAC’s agriculture for (a) global food security and (b) environmental sustainability. We use the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT)—a global dynamic partial equilibrium model of the agricultural sector—to run different future production scenarios, and agricultural trade regimes out to 2050, and assess changes in related environmental indicators. Results indicate that further trade liberalization is crucial for improving food security globally, but that it would also lead to more environmental pressures in some regions across Latin America. Contrasting land expansion versus more intensified agriculture shows that productivity improvements are generally superior to agricultural land expansion, from an economic and environmental point of view. Finally, our analysis shows that there are trade-offs between environmental and food security goals for all agricultural development paths. PMID:25617621
Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage.
Chaplin-Kramer, Rebecca; Sharp, Richard P; Mandle, Lisa; Sim, Sarah; Johnson, Justin; Butnar, Isabela; Milà I Canals, Llorenç; Eichelberger, Bradley A; Ramler, Ivan; Mueller, Carina; McLachlan, Nikolaus; Yousefi, Anahita; King, Henry; Kareiva, Peter M
2015-06-16
The agricultural expansion and intensification required to meet growing food and agri-based product demand present important challenges to future levels and management of biodiversity and ecosystem services. Influential actors such as corporations, governments, and multilateral organizations have made commitments to meeting future agricultural demand sustainably and preserving critical ecosystems. Current approaches to predicting the impacts of agricultural expansion involve calculation of total land conversion and assessment of the impacts on biodiversity or ecosystem services on a per-area basis, generally assuming a linear relationship between impact and land area. However, the impacts of continuing land development are often not linear and can vary considerably with spatial configuration. We demonstrate what could be gained by spatially explicit analysis of agricultural expansion at a large scale compared with the simple measure of total area converted, with a focus on the impacts on biodiversity and carbon storage. Using simple modeling approaches for two regions of Brazil, we find that for the same amount of land conversion, the declines in biodiversity and carbon storage can vary two- to fourfold depending on the spatial pattern of conversion. Impacts increase most rapidly in the earliest stages of agricultural expansion and are more pronounced in scenarios where conversion occurs in forest interiors compared with expansion into forests from their edges. This study reveals the importance of spatially explicit information in the assessment of land-use change impacts and for future land management and conservation.
Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage
Chaplin-Kramer, Rebecca; Sharp, Richard P.; Mandle, Lisa; Sim, Sarah; Johnson, Justin; Butnar, Isabela; Milà i Canals, Llorenç; Eichelberger, Bradley A.; Ramler, Ivan; Mueller, Carina; McLachlan, Nikolaus; Yousefi, Anahita; King, Henry; Kareiva, Peter M.
2015-01-01
The agricultural expansion and intensification required to meet growing food and agri-based product demand present important challenges to future levels and management of biodiversity and ecosystem services. Influential actors such as corporations, governments, and multilateral organizations have made commitments to meeting future agricultural demand sustainably and preserving critical ecosystems. Current approaches to predicting the impacts of agricultural expansion involve calculation of total land conversion and assessment of the impacts on biodiversity or ecosystem services on a per-area basis, generally assuming a linear relationship between impact and land area. However, the impacts of continuing land development are often not linear and can vary considerably with spatial configuration. We demonstrate what could be gained by spatially explicit analysis of agricultural expansion at a large scale compared with the simple measure of total area converted, with a focus on the impacts on biodiversity and carbon storage. Using simple modeling approaches for two regions of Brazil, we find that for the same amount of land conversion, the declines in biodiversity and carbon storage can vary two- to fourfold depending on the spatial pattern of conversion. Impacts increase most rapidly in the earliest stages of agricultural expansion and are more pronounced in scenarios where conversion occurs in forest interiors compared with expansion into forests from their edges. This study reveals the importance of spatially explicit information in the assessment of land-use change impacts and for future land management and conservation. PMID:26082547
Flachsbarth, Insa; Willaarts, Bárbara; Xie, Hua; Pitois, Gauthier; Mueller, Nathaniel D; Ringler, Claudia; Garrido, Alberto
2015-01-01
One of humanity's major challenges of the 21st century will be meeting future food demands on an increasingly resource constrained-planet. Global food production will have to rise by 70 percent between 2000 and 2050 to meet effective demand which poses major challenges to food production systems. Doing so without compromising environmental integrity is an even greater challenge. This study looks at the interdependencies between land and water resources, agricultural production and environmental outcomes in Latin America and the Caribbean (LAC), an area of growing importance in international agricultural markets. Special emphasis is given to the role of LAC's agriculture for (a) global food security and (b) environmental sustainability. We use the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT)-a global dynamic partial equilibrium model of the agricultural sector-to run different future production scenarios, and agricultural trade regimes out to 2050, and assess changes in related environmental indicators. Results indicate that further trade liberalization is crucial for improving food security globally, but that it would also lead to more environmental pressures in some regions across Latin America. Contrasting land expansion versus more intensified agriculture shows that productivity improvements are generally superior to agricultural land expansion, from an economic and environmental point of view. Finally, our analysis shows that there are trade-offs between environmental and food security goals for all agricultural development paths.
Ability of regional hospitals to meet projected avian flu pandemic surge capacity requirements.
Ten Eyck, Raymond P
2008-01-01
Hospital surge capacity is a crucial part of community disaster preparedness planning, which focuses on the requirements for additional beds, equipment, personnel, and special capabilities. The scope and urgency of these requirements must be balanced with a practical approach addressing cost and space concerns. Renewed concerns for infectious disease threats, particularly from a potential avian flu pandemic perspective, have emphasized the need to be prepared for a prolonged surge that could last six to eight weeks. The surge capacity that realistically would be generated by the cumulative Greater Dayton Area Hospital Association (GDAHA) plan is sufficient to meet the demands of an avian influenza pandemic as predicted by the [US] Centers for Disease Control and Prevention (CDC) models. Using a standardized data form, surge response plans for each hospital in the GDAHA were assessed. The cumulative results were compared to the demand projected for an avian influenza pandemic using the CDC's FluAid and FluSurge models. The cumulative GDAHA capacity is sufficient to meet the projected demand for bed space, intensive care unit beds, ventilators, morgue space, and initial personal protective equipment (PPE) use. There is a shortage of negative pressure rooms, some basic equipment, and neuraminidase inhibitors. Many facilities lack a complete set of written surge policies, including screening plans to segregate contaminated patients and staff prior to entering the hospital. Few hospitals have agreements with nursing homes or home healthcare agencies to provide care for patients discharged in order to clear surge beds. If some of the assumptions in the CDC's models are changed to match the morbidity and mortality rates reported from the 1918 pandemic, the surge capacity of GDAHA facilities would not meet the projected demand. The GDAHA hospitals should test their regional distributors' ability to resupply PPE for multiple facilities simultaneously. Facilities should retrofit current air exchange systems to increase the number of potential negative pressure rooms and include such designs in all future construction. Neuraminidase inhibitor supplies should be increased to provide treatment for healthcare workers exposed in the course of their duties. Each hospital should have a complete set of policies to address the special considerations for a prolonged surge. Additional capacity is required to meet the predicted demands of a threat similar to the 1918 pandemic.
Nuclear energy: Where do we go from here?
NASA Astrophysics Data System (ADS)
Muslim, Dato'Noramly, Dr
2015-04-01
As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia's moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muslim, Dato’ Dr Noramly, E-mail: noramlymuslim@yahoo.com
As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower ismore » a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia’s moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands.« less
[Population changes and social welfare tasks].
Lee, H K
1985-07-01
Efforts to control population growth made during the last 20 years are expected to maintain a stable population in the future. We cannot limit our concern to the control of population growth but must consider the social welfare task in the aspect of population stability. It is not because population changes set limits to artificial control, but because the order of population changes presents a desirable sign for low fertility. Another important concern is to pay attention to how to make human beings already born and those to be born in the future enjoy their quality of life. Socioeconomic stability requires economic stabilization to meet basic essential needs. Changes in population structure, along with the quantitative growth of population, make changes in patterns of social welfare demands. When the pyramid type of population structure becomes changed to the bell or pot type of population structure, changes in education and employment as well as changes in problems of the aged and medical demands must be made. On the other hand, population changes accompany value changes in the process of modernization of society. These multiple social changes bring about a value of individualism and a nuclear family norm, and an enlargement of women's social participation which, in turn, can cause family problems. At the same time, social deviations and failures may be increased in the industrial society, and, thus, welfare countermeasures have to be taken. In this respect, the base of social welfare for meeting basic demands must be formed not in the past, narrow sense but in the long range and multisided aspects.
The clinical partnership as strategic alliance.
Novotny, Jeanne M; Donahue, Moreen; Bhalla, Bharat B
2004-01-01
The purpose of this article is to describe a renewed partnership between a collegiate school of nursing and a community hospital. Universities and hospitals are searching for creative solutions to increase the number of registered nurses available to meet the demand for nursing care. An affiliation agreement had been in existence for many years, but health care system imperatives made it necessary to redesign the partnership between nursing education and nursing service. The model used to develop this new partnership is based on the work done in the field of management and is in the form of a strategic alliance. The success of a strategic alliance depends on two key factors: the relationship between partners and partnership performance. Identified outcomes show that this partnership is helping to meet the increasing demand for nursing care by building student capacity, satisfying mutual needs of faculty and clinical staff, and removing economic barriers. This article describes the development of the strategic alliance, its current status, and strategies for the future.
Space-based solar power conversion and delivery systems study
NASA Technical Reports Server (NTRS)
1976-01-01
Even at reduced rates of growth, the demand for electric power is expected to more than triple between now and 1995, and to triple again over the period 1995-2020. Without the development of new power sources and advanced transmission technologies, it may not be possible to supply electric energy at prices that are conductive to generalized economic welfare. Solar power is renewable and its conversion and transmission from space may be advantageous. The goal of this study is to assess the economic merit of space-based photovoltaic systems for power generation and a power relay satellite for power transmission. In this study, satellite solar power generation and transmission systems, as represented by current configurations of the Satellite Solar Station (SSPS) and the Power Relay Satellite (PRS), are compared with current and future terrestrial power generation and transmission systems to determine their technical and economic suitability for meeting power demands in the period of 1990 and beyond while meeting ever-increasing environmental and social constraints.
Berkas, W.R.; Lodderhose, J.R.
1985-01-01
The quality of water in the 15 mile downstream reach of Dardenne Creek in St. Charles County, Missouri, was assessed to determine if it met the Missouri water quality standards. Concentrations of dissolved oxygen and total ammonia failed to meet water quality standards downstream from the Harvester-Dardenne and St. Peters Wastewater-Treatment Plants. The QUAL-II SEMCOG water quality model was calibrated and verified using two independent data sets from Dardenne Creek. Management alternatives using current, design capacity, and future expansion wastewater discharges from the St. Peters Wastewater-Treatment Plant were evaluated. Results of the computer simulation indicate that a nitrification-type advanced-treatment facility installed at the plant would produce a 5-day carbonaceous biochemical oxygen demand of 10 mg/L. An effluent limit of 5.0 mg/L of 5-day carbonaceous biochemical oxygen demand would further improve the water quality of Dardenne Creek; however, an additional treatment process, such as sand filtration, would be needed to meet this criterion. (USGS)
ISLE: Intelligent Selection of Loop Electronics. A CLIPS/C++/INGRES integrated application
NASA Technical Reports Server (NTRS)
Fischer, Lynn; Cary, Judson; Currie, Andrew
1990-01-01
The Intelligent Selection of Loop Electronics (ISLE) system is an integrated knowledge-based system that is used to configure, evaluate, and rank possible network carrier equipment known as Digital Loop Carrier (DLC), which will be used to meet the demands of forecasted telephone services. Determining the best carrier systems and carrier architectures, while minimizing the cost, meeting corporate policies and addressing area service demands, has become a formidable task. Network planners and engineers use the ISLE system to assist them in this task of selecting and configuring the appropriate loop electronics equipment for future telephone services. The ISLE application is an integrated system consisting of a knowledge base, implemented in CLIPS (a planner application), C++, and an object database created from existing INGRES database information. The embedibility, performance, and portability of CLIPS provided us with a tool with which to capture, clarify, and refine corporate knowledge and distribute this knowledge within a larger functional system to network planners and engineers throughout U S WEST.
Accuracy analysis of TDRSS demand forecasts
NASA Technical Reports Server (NTRS)
Stern, Daniel C.; Levine, Allen J.; Pitt, Karl J.
1994-01-01
This paper reviews Space Network (SN) demand forecasting experience over the past 16 years and describes methods used in the forecasts. The paper focuses on the Single Access (SA) service, the most sought-after resource in the Space Network. Of the ten years of actual demand data available, only the last five years (1989 to 1993) were considered predictive due to the extensive impact of the Challenger accident of 1986. NASA's Space Network provides tracking and communications services to user spacecraft such as the Shuttle and the Hubble Space Telescope. Forecasting the customer requirements is essential to planning network resources and to establishing service commitments to future customers. The lead time to procure Tracking and Data Relay Satellites (TDRS's) requires demand forecasts ten years in the future a planning horizon beyond the funding commitments for missions to be supported. The long range forecasts are shown to have had a bias toward underestimation in the 1991 -1992 period. The trend of underestimation can be expected to be replaced by overestimation for a number of years starting with 1998. At that time demand from new missions slated for launch will be larger than the demand from ongoing missions, making the potential for delay the dominant factor. If the new missions appear as scheduled, the forecasts are likely to be moderately underestimated. The SN commitment to meet the negotiated customer's requirements calls for conservatism in the forecasting. Modification of the forecasting procedure to account for a delay bias is, therefore, not advised. Fine tuning the mission model to more accurately reflect the current actual demand is recommended as it may marginally improve the first year forecasting.
Blank, Jos L T; van Hulst, Bart L
2017-02-17
Well-trained, well-distributed and productive health workers are crucial for access to high-quality, cost-effective healthcare. Because neither a shortage nor a surplus of health workers is wanted, policymakers use workforce planning models to get information on future labour markets and adjust policies accordingly. A neglected topic of workforce planning models is productivity growth, which has an effect on future demand for labour. However, calculating productivity growth for specific types of input is not as straightforward as it seems. This study shows how to calculate factor technical change (FTC) for specific types of input. The paper first theoretically derives FTCs from technical change in a consistent manner. FTC differs from a ratio of output and input, in that it deals with the multi-input, multi-output character of the production process in the health sector. Furthermore, it takes into account substitution effects between different inputs. An application of the calculation of FTCs is given for the Dutch hospital industry for the period 2003-2011. A translog cost function is estimated and used to calculate technical change and FTC for individual inputs, especially specific labour inputs. The results show that technical change increased by 2.8% per year in Dutch hospitals during 2003-2011. FTC differs amongst the various inputs. The FTC of nursing personnel increased by 3.2% per year, implying that fewer nurses were needed to let demand meet supply on the labour market. Sensitivity analyses show consistent results for the FTC of nurses. Productivity growth, especially of individual outputs, is a neglected topic in workforce planning models. FTC is a productivity measure that is consistent with technical change and accounts for substitution effects. An application to the Dutch hospital industry shows that the FTC of nursing personnel outpaced technical change during 2003-2011. The optimal input mix changed, resulting in fewer nurses being needed to let demand meet supply on the labour market. Policymakers should consider using more detailed and specific data on the nature of technical change when forecasting the future demand for health workers.
Demand driven decision support for efficient water resources allocation in irrigated agriculture
NASA Astrophysics Data System (ADS)
Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens
2014-05-01
Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.
Driving forces behind the Chinese public's demand for improved environmental safety.
Wen, Ting; Wang, Jigan; Ma, Zongwei; Bi, Jun
2017-12-15
Over the past decades, the public demand for improved environmental safety keeps increasing in China. This study aims to assess the driving forces behind the increasing public demand for improved environmental safety using a provincial and multi-year (1995, 2000, 2005, 2010, and 2014) panel data and the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model. The potential driving forces investigated included population size, income levels, degrees of urbanization, and educational levels. Results show that population size and educational level are positively (P<0.01) associated with public demand for improved environmental safety. No significant impact on demand was found due to the degree of urbanization. For the impact due to income level, an inverted U-shaped curve effect with the turning point of ~140,000 CNY GDP per capita is indicated. Since per capita GDP of 2015 in China was approximately 50,000 CNY and far from the turning point, the public demand for improved environmental safety will continue rising in the near future. To meet the increasing public demand for improved environmental safety, proactive and risk prevention based environmental management systems coupled with effective environmental risk communication should be established. Copyright © 2017 Elsevier B.V. All rights reserved.
Future trends in metal forming—equipment, materials and processes in automotive applications
NASA Astrophysics Data System (ADS)
Hitz, D.; Duggirala, R.
1995-10-01
Global competition in the automotive market has made a significant impact in the materials, processes, tools, and equipment used to make components. Steels are being replaced by other materials, such as aluminum, composites, and plastics, that meet the demand for a higher performance per weight ratio. From a processing viewpoint, the customers demand production of parts to near-net shape with little or no machining. Competition in business depends on understanding the needs of the customer in the coming years in the area of metal forming. A workshop was conducted using a novel approach to address the above issue. This presentation describes the approach and the results of the study.
Space Cooling in North America: Market Overview and Future Impacts
Baxter, Van D; Khowailed, Gannate; Sikes, Karen; ...
2015-01-01
The North American space cooling market, particularly in the United States, is experiencing shifts in regulatory regimes, population patterns, economic conditions, and consumer preferences-all catalyzed further by rapid technological innovation. Taken together these factors may result in a slight reduction in air conditioning shipments in the short term, however the longer term trends indicate a continuing increase in the number of air conditioning systems in the U.S. markets. These increases will be greatest in the warmer and more humid (e.g. higher load demand) regions. This will result in increasing pressure on the U.S. electricity supply system to meet the energymore » peak and consumption demands for building space cooling.« less
Crops in silico: A community wide multi-scale computational modeling framework of plant canopies
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Christensen, A.; Borkiewic, K.; Yiwen, X.; Ellis, A.; Panneerselvam, B.; Kannan, K.; Shrivastava, S.; Cox, D.; Hart, J.; Marshall-Colon, A.; Long, S.
2016-12-01
Current crop models predict a looming gap between supply and demand for primary foodstuffs over the next 100 years. While significant yield increases were achieved in major food crops during the early years of the green revolution, the current rates of yield increases are insufficient to meet future projected food demand. Furthermore, with projected reduction in arable land, decrease in water availability, and increasing impacts of climate change on future food production, innovative technologies are required to sustainably improve crop yield. To meet these challenges, we are developing Crops in silico (Cis), a biologically informed, multi-scale, computational modeling framework that can facilitate whole plant simulations of crop systems. The Cis framework is capable of linking models of gene networks, protein synthesis, metabolic pathways, physiology, growth, and development in order to investigate crop response to different climate scenarios and resource constraints. This modeling framework will provide the mechanistic details to generate testable hypotheses toward accelerating directed breeding and engineering efforts to increase future food security. A primary objective for building such a framework is to create synergy among an inter-connected community of biologists and modelers to create a realistic virtual plant. This framework advantageously casts the detailed mechanistic understanding of individual plant processes across various scales in a common scalable framework that makes use of current advances in high performance and parallel computing. We are currently designing a user friendly interface that will make this tool equally accessible to biologists and computer scientists. Critically, this framework will provide the community with much needed tools for guiding future crop breeding and engineering, understanding the emergent implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment.
Theater Security Cooperation in Oceania for the 21st Century
2012-05-04
nations of the Pacific struggle to meet the demands of their societies, they combat rampant overfishing and transnational crime. These countries are...Systems model” will be able to guide the implementation of future UAV technologies through the support of an established community . 13 While the P...space to operate UAVs because the air space is not governed by FAA regulations. This space offers the UAV community an superb opportunity to hone their
Baby Boomers: are we ready for their impact on health care?
Cangelosi, Pamela R
2011-09-01
As the first of the Baby Boomer generation turns 65 this year, there is rising fear that a crisis awaits related to many mental health resources. This article describes the characteristics of Baby Boomers, their future mental health needs, and the extent of the impending insufficiency of mental health resources to meet those needs. Recommendations to address the unprecedented mental health demands of this generation are presented. Copyright 2011, SLACK Incorporated.
The U.S. and Canadian Army Strategies: Failures in Understanding
2003-09-01
competency. Program Evaluation Groups (PEGs) perform the task of identifying competencies required to meet particular demands and applying resources to...180 This requires clear delineation and different roles; this does not mean the stable group is completely immune to change. New ideas are insulated...first-hand knowledge from the group with the greatest emotional stake in the future of the Army―those at the coal-face. This same group is most
Economics of health in South Africa: past, present and future.
Benatar, S R
1989-01-01
Some of the background to the present structure of medicine in South Africa, an outline of some economic aspects of our current (inadequate) health care service and tentative suggestions regarding the directions in which our health services should be moving to facilitate the legitimization (political) and accumulation (economic) processes required to meet the needs and demands of all the people of an internationally recognized, just and free South Africa are presented.
Challenges to Software/Computing for Experimentation at the LHC
NASA Astrophysics Data System (ADS)
Banerjee, Sunanda
The demands of future high energy physics experiments towards software and computing have led the experiments to plan the related activities as a full-fledged project and to investigate new methodologies and languages to meet the challenges. The paths taken by the four LHC experiments ALICE, ATLAS, CMS and LHCb are coherently put together in an LHC-wide framework based on Grid technology. The current status and understandings have been broadly outlined.
Should nuclear energy form part of the UK's energy future?
NASA Astrophysics Data System (ADS)
Campbell, Peter
2003-03-01
Energy policies are under review everywhere, as the world tries to meet targets for reducing climate change despite continuing population growth. A major change in energy patterns is needed, with the critical period for transition predictably happening when young people currently at school are in their middle years of their lives. This article describes one way of bringing the debate surrounding energy demand and supply to life in physics classrooms.
Baby Boy Jones Interactive Case-Based Learning Activity: A Web-Delivered Teaching Strategy.
Cleveland, Lisa M; Carmona, Elenice Valentim; Paper, Bruce; Solis, Linda; Taylor, Bonnie
2015-01-01
Faced with limited resources, nurse educators are challenged with transforming nursing education while preparing enough qualified nurses to meet future demand; therefore, innovative approaches to teaching are needed. In this article, we describe the development of an innovative teaching activity. Baby Boy Jones is a Web-delivered, case-based learning activity focused on neonatal infection. It was created using e-learning authoring software and delivered through a learning management system.
NASA's Earth Science Data Systems - Lessons Learned and Future Directions
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.
2010-01-01
In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.
Robert L. Ryan; Juliet Hansel
2002-01-01
This paper explores the premise that privately owned open space is vital for meeting future recreation demands in the urban Northeast. A case study in the Great Meadows of the Connecticut River in the Hartford, Connecticut metropolitan area is used to illustrate the challenges in promoting recreational access and open space preservation in a privately-owned held...
Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy Working Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-01-01
This Policy Paper recommends the actions deemed necessary to assure that future U.S. and non-Communist countries' nuclear fuels supply will be adequate, considering the following: estimates of modest growth in overall energy demand, electrical energy demand, and nuclear electrical energy demand in the U.S. and abroad, predicated upon the continuing trends involving conservation of energy, increased use of electricity, and moderate economic growth (Chap. I); possibilities for the development and use of all domestic resources providing energy alternatives to imported oil and gas, consonant with current environmental, health, and safety concerns (Chap. II); assessment of the traditional energy sources whichmore » provide current alternatives to nuclear energy (Chap. II); evaluation of realistic expectations for additional future energy supplies from prospective technologies: enhanced recovery from traditional sources and development and use of oil shales and synthetic fuels from coal, fusion and solar energy (Chap. II); an accounting of established nuclear technology in use today, in particular the light water reactor, used for generating electricity (Chap. III); an estimate of future nuclear technology, in particular the prospective fast breeder (Chap. IV); current and projected nuclear fuel demand and supply in the U.S. and abroad (Chaps. V and VI); the constraints encountered today in meeting nuclear fuels demand (Chap. VII); and the major unresolved issues and options in nuclear fuels supply and use (Chap. VIII). The principal conclusions and recommendations (Chap. IX) are that the U.S. and other industrialized countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends on the secure supply of energy resources and the ability to substitute one form of fuel for another.« less
NASA Astrophysics Data System (ADS)
Cominola, A.; Giuliani, M.; Castelletti, A.; Piga, D.; Rizzoli, A. E.
2015-12-01
Urban population growth, climate and land use change are expected to boost residential water demand in urban contexts in the next decades. In such a context, developing suitable demand-side management strategies is essential to meet future water demands, pursue water savings, and reduce the costs for water utilities. Yet, the effectiveness of water demand management strategies (WDMS) relies on our understanding of water consumers' behavior, their consumption habits, and the water use drivers. While low spatial and temporal resolution water consumption data, as traditionally gathered for billing purposes, hardly support this understanding, the advent of high-resolution, smart metering technologies allowed for quasi real-time monitoring water consumption at the single household level. This, in turn, is advancing our ability in characterizing consumers' behavior, modeling, and designing user-oriented residential water demand management strategies. Several water smart metering programs have been rolled-out in the last two decades worldwide, addressing one or more of the following water demand management phases: (i) data gathering, (ii) water end-uses characterization, (iii) user modeling, (iv) design and implementation of personalized WDMS. Moreover, the number of research studies in this domain is quickly increasing and big economic investments are currently being devoted worldwide to smart metering programs. With this work, we contribute the first comprehensive review of more than 100 experiences in the field of residential water demand modeling and management, and we propose a general framework for their classification. We revise consolidated practices, identify emerging trends and highlight the challenges and opportunities for future developments given by the use of smart meters advancing residential water demand management. Our analysis of the status quo of smart urban water demand management research and market constitutes a structured collection of information supporting the development of integrated procedures in the field of urban water management, as well as common actions aiding the collaboration with other sectors, as the nexus with energy demand management.
CAA Annual Report, Fiscal Year 1992.
1992-11-01
But, in t• -. y’s era of rapid change, there has been a burgeoning demand for quick reaction analyses. Today, CAA increasingly applies the results of...years. The graph on the right illustrates the reorientation of CAA analytical focus to meet increasing sponsor demands for QRA and the apparent...meeting the most important analysis needs of the Army while maintaining quality and preparing CAA capabilities to meet demands that will be presented
Phosphoric acid fuel cell platinum use study
NASA Technical Reports Server (NTRS)
Lundblad, H. L.
1983-01-01
The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.
The Oak Ridge Competitive Electricity Dispatch (ORCED) Model Version 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Stanton W.; Baek, Young Sun
The Oak Ridge Competitive Electricity Dispatch (ORCED) model dispatches power plants in a region to meet the electricity demands for any single given year up to 2030. It uses publicly available sources of data describing electric power units such as the National Energy Modeling System and hourly demands from utility submittals to the Federal Energy Regulatory Commission that are projected to a future year. The model simulates a single region of the country for a given year, matching generation to demands and predefined net exports from the region, assuming no transmission constraints within the region. ORCED can calculate a numbermore » of key financial and operating parameters for generating units and regional market outputs including average and marginal prices, air emissions, and generation adequacy. By running the model with and without changes such as generation plants, fuel prices, emission costs, plug-in hybrid electric vehicles, distributed generation, or demand response, the marginal impact of these changes can be found.« less
Phosphoric acid fuel cell platinum use study
NASA Astrophysics Data System (ADS)
Lundblad, H. L.
1983-05-01
The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.
NASA Aeropropulsion Research: Looking Forward
NASA Technical Reports Server (NTRS)
Seidel, Jonathan A.; Sehra, Arun K.; Colantonio, Renato O.
2001-01-01
NASA has been researching new technology and system concepts to meet the requirements of aeropropulsion for 21st Century aircraft. The air transportation for the new millennium will require revolutionary solutions to meet public demand for improving safety, reliability, environmental compatibility, and affordability. Whereas the turbine engine revolution will continue during the next two decades, several new revolutions are required to achieve the dream of an affordable, emissionless, and silent aircraft. This paper reviews the continuing turbine engine revolution and explores the propulsion system impact of future revolutions in propulsion configuration, fuel infrastructure, and alternate energy systems. A number of promising concepts, ranging from the ultrahigh to fuel cell-powered distributed propulsion are also reviewed.
Technology requirements for communication satellites in the 1980's
NASA Technical Reports Server (NTRS)
Burtt, J. E.; Moe, C. R.; Elms, R. V.; Delateur, L. A.; Sedlacek, W. C.; Younger, G. G.
1973-01-01
The key technology requirements are defined for meeting the forecasted demands for communication satellite services in the 1985 to 1995 time frame. Evaluation is made of needs for services and technical and functional requirements for providing services. The future growth capabilities of the terrestrial telephone network, cable television, and satellite networks are forecasted. The impact of spacecraft technology and booster performance and costs upon communication satellite costs are analyzed. Systems analysis techniques are used to determine functional requirements and the sensitivities of technology improvements for reducing the costs of meeting requirements. Recommended development plans and funding levels are presented, as well as the possible cost saving for communications satellites in the post 1985 era.
NASA Astrophysics Data System (ADS)
Ines, A.; Bhattacharjee, A.; Modi, V.; Robertson, A. W.; Lall, U.; Kocaman Ayse, S.; Chaudhary, S.; Kumar, A.; Ganapathy, A.; Kumar, A.; Mishra, V.
2015-12-01
Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as smart metering, incentive based schemes, payments for turning off loads or rescheduling loads. Usually, the goal of demand side management is to encourage the consumer to use less power during periods of peak demand, or to move the time of energy use to off-peak times. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need for investments in networks and/or power plants for meeting peak demands. Electricity use can vary dramatically on short and medium time frames, and the pricing system may not reflect the instantaneous cost as additional higher-cost that are brought on-line. In addition, the capacity or willingness of electricity consumers to adjust to prices by altering elasticity of demand may be low, particularly over short time frames. In the scenario of Indian grid setup, the retail customers do not follow real-time pricing and it is difficult to incentivize the utility companies for continuing the peak demand supply. A question for the future is how deeper penetration of renewable will be handled? This is a challenging problem since one has to deal with high variability, while managing loss of load probabilities. In the case of managing the peak demand using agriculture, in the future as smart metering matures with automatic turn on/off for a pump, it will become possible to provide an ensured amount of water or energy to the farmer while keeping the grid energized for 24 hours. Supply scenarios will include the possibility of much larger penetration of solar and wind into the grid. While, in absolute terms these sources are small contributors, their role will inevitably grow but DSM using agriculture could help reduce the capital cost. The other option is of advancing or delaying pump operating cycle even by several hours, will still ensure soil moisture requirements met while, balancing the overall system load with generation, reducing critical power mismatches. Through this presentation the author will describe different techniques and results from field experiments in India.
NASA Astrophysics Data System (ADS)
Ho, M. W.; Devineni, N.; Cook, E. R.; Lall, U.
2017-12-01
As populations and associated economic activity in the US evolve, regional demands for water likewise change. For regions dependent on surface water, dams and reservoirs are critical to storing and managing releases of water and regulating the temporal and spatial availability of water in order to meet these demands. Storage capacities typically range from seasonal storage in the east to multi-annual and decadal-scale storage in the drier west. However, most dams in the US were designed with limited knowledge regarding the range, frequency, and persistence of hydroclimatic extremes. Demands for water supplied by these dams have likewise changed. Furthermore, many dams in the US are now reaching or have already exceeded their economic design life. The converging issues of aging dams, improved knowledge of hydroclimatic variability, and evolving demands for dam services result in a pressing need to evaluate existing reservoir capacities with respect to contemporary water demands, long term hydroclimatic variability, and service reliability into the future. Such an effort is possible given the recent development of two datasets that respectively address hydroclimatic variability in the conterminous United States over the past 555 years and human water demand related water stress over the same region. The first data set is a paleoclimate reconstruction of streamflow variability across the CONUS region based on a tree-ring informed reconstruction of the Palmer Drought Severity Index. This streamflow reconstruction suggested that wet spells with shorter drier spells were a key feature of 20th century streamflow compared with the preceding 450 years. The second data set in an annual cumulative drought index that is a measure of water balance based on water supplied through precipitation and water demands based on evaporative demands, agricultural, urban, and industrial demands. This index identified urban and regional hotspots that were particularly dependent on water transfers and vulnerable to persistent drought risk. These data sets are used in conjunction with the national inventory of dams to assess the current capacity of dams to meet water demands considering variability in streamflow over the past 555 years. A case study in the North-East US is presented.
A Framework for Safe Integration of Small UAS Into the NAS
NASA Technical Reports Server (NTRS)
Logan, Michael J.; Bland, Geoffrey; Murray, Jennifer
2011-01-01
This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine classes of platforms and operations. Finally, a framework is proposed for both airworthiness and operations that attempts to balance safety with utility for these important systems.
Sakr, Tamer M; Nawar, Mohamed F; Fasih, T W; El-Bayoumy, S; Abd El-Rehim, H A
2017-11-01
Nanostructured materials attracted considerable attention because of its high surface area to volume ratio resulting from their nano-scale dimensions. This class of sorbents is expected to have a potential impact on enhancement the efficacy of radioisotope generators for diagnostic and therapeutic applications in nuclear medicine. This review provides a summary on the importance of nanostructured materials as effective sorbents for the development of clinical-scale radioisotope generators and outlining the assessment of recent developments, key challenges and promising access to the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Role of genetically engineered animals in future food production.
McColl, K A; Clarke, B; Doran, T J
2013-03-01
Genetically engineered (GE) animals are likely to have an important role in the future in meeting the food demand of a burgeoning global population. There have already been many notable achievements using this technology in livestock, poultry and aquatic species. In particular, the use of RNA interference (RNAi) to produce virus-resistant animals is a rapidly-developing area of research. However, despite the promise of this technology, very few GE animals have been commercialised. This review aims to provide information so that veterinarians and animal health scientists are better able to participate in the debate on GE animals. © 2013 The Authors. Australian Veterinary Journal © 2013 Australian Veterinary Association.
Meeting our need for electric energy: the role of nuclear power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-07-01
This report focuses on the projected long-term growth of electric demand and the resultant need for new electric generating capacity through the year 2010. It summarizes the results of several technical and economic analyses done over the past two years to present two alternative scenarios for the future growth of nuclear energy in the United States. The first of these scenarios is based on a reference assumption of continued economic recovery and growth, while the second assumes a more vigorous economic recovery. These alternative scenarios reflect both the role that electricity could play in assuring the future economic wellbeing ofmore » the United States and the role that nuclear power could play in meeting future electricity needs. The scenarios do not project an expected future; rather, they describe a future that can be achieved only if US industry is revitalized in several key areas and if current obstacles to construction and operation of nuclear power plants are removed. This report underscores the need for renewed domestic industrialization as well as the need for government and industry to take steps to allow nuclear energy to fulfill its original potential. Further, it suggests some specific actions that must be taken if these goals are to be met.« less
Tools and Techniques for Basin-Scale Climate Change Assessment
NASA Astrophysics Data System (ADS)
Zagona, E.; Rajagopalan, B.; Oakley, W.; Wilson, N.; Weinstein, P.; Verdin, A.; Jerla, C.; Prairie, J. R.
2012-12-01
The Department of Interior's WaterSMART Program seeks to secure and stretch water supplies to benefit future generations and identify adaptive measures to address climate change. Under WaterSMART, Basin Studies are comprehensive water studies to explore options for meeting projected imbalances in water supply and demand in specific basins. Such studies could be most beneficial with application of recent scientific advances in climate projections, stochastic simulation, operational modeling and robust decision-making, as well as computational techniques to organize and analyze many alternatives. A new integrated set of tools and techniques to facilitate these studies includes the following components: Future supply scenarios are produced by the Hydrology Simulator, which uses non-parametric K-nearest neighbor resampling techniques to generate ensembles of hydrologic traces based on historical data, optionally conditioned on long paleo reconstructed data using various Markov Chain techniuqes. Resampling can also be conditioned on climate change projections from e.g., downscaled GCM projections to capture increased variability; spatial and temporal disaggregation is also provided. The simulations produced are ensembles of hydrologic inputs to the RiverWare operations/infrastucture decision modeling software. Alternative demand scenarios can be produced with the Demand Input Tool (DIT), an Excel-based tool that allows modifying future demands by groups such as states; sectors, e.g., agriculture, municipal, energy; and hydrologic basins. The demands can be scaled at future dates or changes ramped over specified time periods. Resulting data is imported directly into the decision model. Different model files can represent infrastructure alternatives and different Policy Sets represent alternative operating policies, including options for noticing when conditions point to unacceptable vulnerabilities, which trigger dynamically executing changes in operations or other options. The over-arching Study Manager provides a graphical tool to create combinations of future supply scenarios, demand scenarios, infrastructure and operating policy alternatives; each scenario is executed as an ensemble of RiverWare runs, driven by the hydrologic supply. The Study Manager sets up and manages multiple executions on multi-core hardware. The sizeable are typically direct model outputs, or post-processed indicators of performance based on model outputs. Post processing statistical analysis of the outputs are possible using the Graphical Policy Analysis Tool or other statistical packages. Several Basin Studies undertaken have used RiverWare to evaluate future scenarios. The Colorado River Basin Study, the most complex and extensive to date, has taken advantage of these tools and techniques to generate supply scenarios, produce alternative demand scenarios and to set up and execute the many combinations of supplies, demands, policies, and infrastructure alternatives. The tools and techniques will be described with example applications.
Future changes driving dietetics workforce supply and demand: future scan 2012-2022.
Rhea, Marsha; Bettles, Craig
2012-03-01
The dietetics profession faces many workforce challenges and opportunities to ensure that registered dietitians (RDs) and dietetic technicians, registered (DTRs) are at the forefront of health and nutrition. The profession must prepare for new public priorities, changes in population, and the restructuring of how people learn and work, as well as new advances in science and technology. In September 2010, the Dietetics Workforce Demand Task Force, in consultation with a panel of thought leaders, identified 10 change drivers that affect dietetics workforce supply and demand. This future scan report provides an overview of eight of these drivers. Two change drivers-health care reform and population risk factors/nutrition initiatives-are addressed in separate technical articles. A change matrix has been included at the end of this executive summary. The matrix contains a summary of each change driver and its expected impact and is designed to present the drivers in the context of a larger, dynamic system of change in the dietetics profession. The impact of any of these change drivers individually and collectively in a dynamic system is uncertain. The outcome of any change driver is also uncertain. The dietetics profession faces many choices within each change driver to meet the workforce challenges and seize the opportunities for leadership and growth. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Advanced communications satellites
NASA Technical Reports Server (NTRS)
Sivo, J. N.
1980-01-01
The increase in demand for satellite communications services brought about shortages in available transponder capacity, especially at C-band. Interest shifted to the Ku-band frequency and currently carriers are rapidly moving to secure orbital slots for future satellite development. Projections of communications service demands over the next decade indiate growth in voice, data, and video services such that saturation of both C-band and Ku-band will occur by 1990. Emphasis must and will shift to Ka-band (20/30 GHz) frequency for fixed-satellite service. Advanced technologies such as multibeam antennas coupled with on-board satellite switching to allow implementation in this band of very high capacity satellite systems will be applied to meet the demand. Satellite system concepts that are likely in the 1990's and are likely to bring a new dimension to satellite delivered communication service are presented. The NASA 30/20 GHz communications satellite system demonstration program is discussed with emphasis on the related technology development.
NASA Astrophysics Data System (ADS)
Campos-Gaytan, J. R.; Herrera-Oliva, C. S.
2013-05-01
In this study was analyzed through a regional groundwater flow model the effects on groundwater levels caused by the application of different future groundwater management scenarios (2007-2025) at the Guadalupe Valley, in Baja California, Mexico. Among these studied alternatives are those scenarios designed in order to evaluate the possible effects generated for the groundwater artificial recharge in order to satisfy a future water demand with an extraction volume considered as sustainable. The State of Baja California has been subject to an increment of the agricultural, urban and industrials activities, implicating a growing water-demand. However, the State is characterized by its semiarid-climate with low surface water availability; therefore, has resulted in an extensive use of groundwater in local aquifer. Water level measurements indicate there has been a decline in water levels in the Guadalupe Valley for the past 30 years. The Guadalupe Valley aquifer represents one the major sources of water supply in Ensenada region. It supplies about 25% of the water distributed by the public water supplier at the city of Ensenada and in addition constitutes the main water resource for the local wine industries. Artificially recharging the groundwater system is one water resource option available to the study zone, in response to increasing water demand. The existing water supply system for the Guadalupe Valley and the city of Ensenada is limited since water use demand periods in 5 to 10 years or less will require the construction of additional facilities. To prepare for this short-term demand, one option available to water managers is to bring up to approximately 3.0 Mm3/year of treated water of the city of Ensenada into the valley during the low-demand winter months, artificially recharge the groundwater system, and withdraw the water to meet the summer demands. A 2- Dimensional groundwater flow was used to evaluate the effects of the groundwater artificial recharge. Artificial recharge is feasible and is one water resource technique available to meet an increasing water demand; therefore, the final objective was to estimate the response of the groundwater system to the possible development of a system for artificial recharge of the aquifer. Based on the analysis of the groundwater management alternatives it was determined a groundwater withdrawal which ensures a sustainable management of the aquifer, in order to maintain a sustainable extraction volume and to reduce the water table depletion.
Seattle's System for Evaluating Energy Options
NASA Technical Reports Server (NTRS)
Logie, P.; Macdonald, M. J.
1982-01-01
In 1975, the City Council developed a blueprint called "Energy 1990" for meeting Seattle's future electric energy needs. Priorities for addressing or offsetting expected growth in demand are in order: (1) conservation; (2) hydroelectricity; (3) other renewable sources such as wind, biomass, solar, and geothermal energy; (4) abundant nonrenewable resources such as coal, and (5) other renewables. An energy resources planning group was formed and a data base was established. Resource options were investigated and the recommendations were published.
How Does EIA Estimate Energy Consumption and End Uses in U.S. Homes?
2011-01-01
The Energy Information Administration (EIA) administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage patterns, and household demographics. This information is combined with data from energy suppliers to these homes to estimate energy costs and usage for heating, cooling, appliances and other end uses information critical to meeting future energy demand and improving efficiency and building design.
Applying Acquisition Lessons Learned to Operational Energy Initiatives
2013-03-01
current and future platforms to meet the demands of Energy-Informed Operations. Endnotes 1 Charles F. Wald , and Tom Captain, Energy Security America’s...2013); Wald and Captain, Energy Security America’s Best Defense, 1. 3 The Army’s agile process involves seven phases and three decision points to...https://acc.dau.mil/adl/en- US/329976/file/47235/EVM_Report_to_Congress.pdf (accessed January 14, 2013). 22 Lisa Pracchia, “The AV-8B Team Learns Synergy
ERIC Educational Resources Information Center
Seago, Jean Ann; Spetz, Joanne
Most analyses of California's nursing shortage find that too few nurses are being educated to meet future demand. Coffman and Spetz (1999) estimate that state nursing programs need to educate an additional 3,600 students per year between 2000 and 2010, and 5,000 more per year between 2010 and 2020 to maintain an adequate nursing force. Unless the…
NASA Technical Reports Server (NTRS)
1989-01-01
To define and solve the problems of transportation in the California Corrider in the year 2010, the 1989 California Polytechnic State University Aeronautical Engineering Senior Design class determined future corridor transportation needs and developed a system to meet the requirements. A market study, which included interpreting travel demand and gauging the future of regional and national air travel in and out of the corridor, allowed the goals of the project to be accurately refined. Comprehensive trade-off studies of several proposed transporation systems were conducted to determine which components would form the final proposed system. Preliminary design and further analysis were performed for each resulting component. The proposed system consists of three vehicles and a special hub or mode mixer, the Corridor Access Port (CAP). The vehicles are: (1) an electric powered aircraft to serve secondary airports and the CAP; (2) a high speed magnetic levitation train running through the CAP and the high population density areas of the corridor; and (3) a vertical takeoff and landing tilt rotor aircraft to serve both intercity and intrametropolitan travelers from the CAP and city vertiports. The CAP is a combination and an extension of the hub, mode mixer, and Wayport concepts. The CAP is an integrated part of the system which meets the travel demands in the corridor, and interfaces with interstate and international travel.
Energy technologies evaluated against climate targets using a cost and carbon trade-off curve.
Trancik, Jessika E; Cross-Call, Daniel
2013-06-18
Over the next few decades, severe cuts in emissions from energy will be required to meet global climate-change mitigation goals. These emission reductions imply a major shift toward low-carbon energy technologies, and the economic cost and technical feasibility of mitigation are therefore highly dependent upon the future performance of energy technologies. However, existing models do not readily translate into quantitative targets against which we can judge the dynamic performance of technologies. Here, we present a simple, new model for evaluating energy-supply technologies and their improvement trajectories against climate-change mitigation goals. We define a target for technology performance in terms of the carbon intensity of energy, consistent with emission reduction goals, and show how the target depends upon energy demand levels. Because the cost of energy determines the level of adoption, we then compare supply technologies to one another and to this target based on their position on a cost and carbon trade-off curve and how the position changes over time. Applying the model to U.S. electricity, we show that the target for carbon intensity will approach zero by midcentury for commonly cited emission reduction goals, even under a high demand-side efficiency scenario. For Chinese electricity, the carbon intensity target is relaxed and less certain because of lesser emission reductions and greater variability in energy demand projections. Examining a century-long database on changes in the cost-carbon space, we find that the magnitude of changes in cost and carbon intensity that are required to meet future performance targets is not unprecedented, providing some evidence that these targets are within engineering reach. The cost and carbon trade-off curve can be used to evaluate the dynamic performance of existing and new technologies against climate-change mitigation goals.
State of the art and future perspectives of thermophilic anaerobic digestion.
Ahring, B K; Mladenovska, Z; Iranpour, R; Westermann, P
2002-01-01
The state of the art of thermophilic digestion is discussed. Thermophilic digestion is a well established technology in Europe for treatment of mixtures of waste in common large scale biogas plants or for treatment of the organic fraction of municipal solid waste. Due to a large number of failures over time with thermophilic digestion of sewage sludge this process has lost its appeal in the USA. New demands on sanitation of biosolids before land use will, however, bring the attention back to the use of elevated temperatures during sludge stabilization. In the paper we show how the use of a start-up strategy based on the actual activity of key microbes can be used to ensure proper and fast transfer of mesophilic digesters into thermophilic operation. Extreme thermophilic temperatures of 65 degrees C or more may be necessary in the future to meet the demands for full sanitation of the waste material before final disposal. We show data of anaerobic digestion at extreme thermophilic temperatures.
Trends in meat science and technology: the future looks bright, but the journey will be long.
Kristensen, L; Støier, S; Würtz, J; Hinrichsen, L
2014-11-01
With an increasing world population, an increase in affluence and a substantial growth in the demand for high quality protein, the meat sector faces a fantastic but challenging century. New scientific knowledge, technology and creative minds are the main ingredients in order to reach out for this great opportunity. Efficiency all the way from breeding and farming to processing and dispatch is crucial for success. Technology has brought us far, and there is still a huge potential for increased efficiency by implementing best practices on a global scale. New challenges include: hyper flexible automation, more accurate and faster measurement systems and meeting special consumer demands already at the production line. Systems for optimal animal welfare will be even more important and sustainability is no longer a consumer trend but a license to operate. The scientific meat society must provide knowledge and technology so we together can reach out for a seemingly bright future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Efficient use of land to meet sustainable energy needs
NASA Astrophysics Data System (ADS)
Hernandez, Rebecca R.; Hoffacker, Madison K.; Field, Christopher B.
2015-04-01
The deployment of renewable energy systems, such as solar energy, to achieve universal access to electricity, heat and transportation, and to mitigate climate change is arguably the most exigent challenge facing humans today. However, the goal of rapidly developing solar energy systems is complicated by land and environmental constraints, increasing uncertainty about the future of the global energy landscape. Here, we test the hypothesis that land, energy and environmental compatibility can be achieved with small- and utility-scale solar energy within existing developed areas in the state of California (USA), a global solar energy hotspot. We found that the quantity of accessible energy potentially produced from photovoltaic (PV) and concentrating solar power (CSP) within the built environment (`compatible’) exceeds current statewide demand. We identify additional sites beyond the built environment (`potentially compatible’) that further augment this potential. Areas for small- and utility-scale solar energy development within the built environment comprise 11,000-15,000 and 6,000 TWh yr-1 of PV and CSP generation-based potential, respectively, and could meet the state of California’s energy consumptive demand three to five times over. Solar energy within the built environment may be an overlooked opportunity for meeting sustainable energy needs in places with land and environmental constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, P.S.
The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% frommore » the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed.« less
NASA Technical Reports Server (NTRS)
Mullin, J. P.
1978-01-01
The total energy demanded by space missions of the future is expected to exceed past needs by orders of magnitude. The unit costs of this energy must be reduced from present levels if these missions are to be carried out at projected budget levels. The broad employment of electric propulsion and the capability to utilize novel high power sensors hinge on the availability of systems lighter by factors of ten or more than have flown to date. The NASA program aimed at providing the technological basis to meet these demands is described in this paper. Research and technology efforts in areas of energy conversion, storage and management are covered. In addition, work aimed at evolving the understanding necessary to cope with space environment interactions and at advanced concepts is described.
The Future of the Internet in Science
NASA Technical Reports Server (NTRS)
Guice, Jon; Duffy, Robert
2000-01-01
How are scientists going to make use of the Internet several years from now? This is a case study of a leading-edge experiment in building a 'virtual institute'-- using electronic communication tools to foster collaboration among geographically dispersed scientists. Our experience suggests: Scientists will want to use web-based document management systems. There will be a demand for Internet-enabled meeting support tools. While internet videoconferencing will have limited value for scientists, webcams will be in great demand as a tool for transmitting pictures of objects and settings, rather than "talking heads." and a significant share of scientists who do fieldwork will embrace mobile voice, data and video communication tools. The setting for these findings is a research consortium called the NASA Astrobiology Institute.
Malthus is still wrong: we can feed a world of 9-10 billion, but only by reducing food demand.
Smith, Pete
2015-08-01
In 1798, Thomas Robert Malthus published 'An essay on the principle of population' in which he concluded that: 'The power of population is so superior to the power of the earth to produce subsistence for man, that premature death must in some shape or other visit the human race.' Over the following century he was criticised for underestimating the potential for scientific and technological innovation to provide positive change. Since then, he has been proved wrong, with a number of papers published during the past few decades pointing out why he has been proved wrong so many times. In the present paper, I briefly review the main changes in food production in the past that have allowed us to continue to meet ever growing demand for food, and I examine the possibility of these same innovations delivering food security in the future. On the basis of recent studies, I conclude that technological innovation can no longer be relied upon to prove Malthus wrong as we strive to feed 9-10 billion people by 2050. Unless we are prepared to accept a wide range of significant, undesirable environmental consequences, technology alone cannot provide food security in 2050. Food demand, particularly the demand for livestock products, will need to be managed if we are to continue to prove Malthus wrong into the future.
Opportunities and challenges of sustainable agricultural development in China.
Zhao, Jingzhu; Luo, Qishan; Deng, Hongbing; Yan, Yan
2008-02-27
This paper introduces the concepts and aims of sustainable agriculture in China. Sustainable agricultural development comprises sustainability of agricultural production, sustainability of the rural economy, ecological and environmental sustainability within agricultural systems and sustainability of rural society. China's prime aim is to ensure current and future food security. Based on projections of China's population, its economy, societal factors and agricultural resources and inputs between 2000 and 2050, total grain supply and demand has been predicted and the state of food security analysed. Total and per capita demand for grain will increase continuously. Total demand will reach 648 Mt in 2020 and 700 Mt in 2050, while total grain yield of cultivated land will reach 470 Mt in 2010, 585 Mt in 2030 and 656 Mt in 2050. The per capita grain production will be around 360kg in the period 2000-2030 and reach 470kg in 2050. When productivities of cultivated land and other agricultural resources are all taken into consideration, China's food self-sufficiency ratio will increase from 94.4% in 2000 to 101.3% in 2030, suggesting that China will meet its future demand for food and need for food security. Despite this positive assessment, the country's sustainable agricultural development has encountered many obstacles. These include: agricultural water-use shortage; cultivated land loss; inappropriate usage of fertilizers and pesticides, and environmental degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjostrom, S.; Durham, M.; Bustard, J.
2009-07-15
Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbonmore » facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.« less
Hemsley, Bronwyn; Rollo, Megan; Georgiou, Andrew; Balandin, Susan; Hill, Sophie
2018-01-01
To integrate the findings of research on electronic personal health records (e-PHRs) for an understanding of their health literacy demands on both patients and providers. We sought peer-reviewed primary research in English addressing the health literacy demands of e-PHRs that are online and allow patients any degree of control or input to the record. A synthesis of three theoretical models was used to frame the analysis of 24 studies. e-PHRs pose a wide range of health literacy demands on both patients and health service providers. Patient participation in e-PHRs relies not only on their level of education and computer literacy, and attitudes to sharing health information, but also upon their executive function, verbal expression, and understanding of spoken and written language. The multiple health literacy demands of e-PHRs must be considered when implementing population-wide initiatives for storing and sharing health information using these systems. The health literacy demands of e-PHRs are high and could potentially exclude many patients unless strategies are adopted to support their use of these systems. Developing strategies for all patients to meet or reduce the high health literacy demands of e-PHRs will be important in population-wide implementation. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Colleges Ontario, 2009
2009-01-01
The Ministry of Training, Colleges and Universities (MTCU) in consultation with the universities has estimated that 53,000 to 86,000 more university spaces will be needed by 2021 to meet student demand. There will be special pressures in the GTA. Universities' enrollment plans will not be sufficient to meet this demand. To help meet the growing…
Ideas for Future GPS Timing Improvements
NASA Technical Reports Server (NTRS)
Hutsell, Steven T.
1996-01-01
Having recently met stringent criteria for full operational capability (FOC) certification, the Global Positioning System (GPS) now has higher customer expectations than ever before. In order to maintain customer satisfaction, and the meet the even high customer demands of the future, the GPS Master Control Station (MCS) must play a critical role in the process of carefully refining the performance and integrity of the GPS constellation, particularly in the area of timing. This paper will present an operational perspective on several ideas for improving timing in GPS. These ideas include the desire for improving MCS - US Naval Observatory (USNO) data connectivity, an improved GPS-Coordinated Universal Time (UTC) prediction algorithm, a more robust Kalman Filter, and more features in the GPS reference time algorithm (the GPS composite clock), including frequency step resolution, a more explicit use of the basic time scale equation, and dynamic clock weighting. Current MCS software meets the exceptional challenge of managing an extremely complex constellation of 24 navigation satellites. The GPS community will, however, always seek to improve upon this performance and integrity.
NASA Technical Reports Server (NTRS)
Bruner, Sam; Baber, Scott; Harris,Chris; Caldwell, Nicholas; Keding, Peter; Rahrig, Kyle; Pho, Luck; Wlezian, Richard
2010-01-01
A conceptual commercial passenger transport study was performed to define a single vehicle for entry into service in the 2030 to 2035 timeframe, meeting customer demands as well as NASA goals for improved fuel economy, NOx emissions, noise, and operability into smaller airports. A study of future market and operational scenarios was used to guide the design of an advanced tube-and-wing configuration that utilized advanced material and structural concepts, an advanced three-shaft high-bypass turbofan engine, natural laminar flow technology, and a suite of other advanced technologies. This configuration was found to meet the goals for NOx emissions, noise, and field length. A 64 percent improvement in fuel economy compared to a current state-of-the-art airliner was achieved, which fell slightly short of the desired 70 percent goal. Technology maturation plans for the technologies used in the design were developed to help guide future research and development activities.
Does the Current 20th Century Navy Personnel Management System Meet 21st Century Sailors’ Needs
2003-04-01
symbols and our institutions. Technology moves non-human logic to center stage in our overall development. 10 Emile Durkheim in his seminal work, The...Management and Labor Economics Literature The Division of Labor in Society by Emile Durkheim explored the area of how complex societies demand a...the Future: The 1990’s and Beyond. New York: Penguin Books, 1992; Truman Talley Books/Plume, 1993. Durkheim , Emile . The Division of Labor in
Studies of the use of heat from high temperature nuclear sources for hydrogen production processes
NASA Technical Reports Server (NTRS)
Farbman, G. H.
1976-01-01
Future uses of hydrogen and hydrogen production processes that can meet the demand for hydrogen in the coming decades were considered. To do this, a projection was made of the market for hydrogen through the year 2000. Four hydrogen production processes were selected, from among water electrolysis, fossil based and thermochemical water decomposition systems, and evaluated, using a consistent set of ground rules, in terms of relative performance, economics, resource requirements, and technology status.
Specifying to meet multiple demands.
West, Martyn
2014-04-01
Choosing flooring for healthcare takes careful consideration. New legislation in healthcare places greater responsibility on those throughout the supply chain to ensure the safety of staff, visitors, and patients - now, and in the future. This undoubtedly impacts on flooring choices, but there is also the need for the most stringent hygiene, an aesthetically pleasing healing environment, maintenance and cleaning considerations, environmental impact, and some very specific requirements for dementia and elderly care to consider. Martyn West, Altro's specification manager, examines these key issues.
Advanced thermal control technology for commercial applications
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1991-01-01
A number of the technologies previously developed for the thermal control of spacecraft have found their way into commercial application. Specialized coatings and heat pipes are but two examples. The thermal control of current and future spacecraft is becoming increasingly more demanding, and a variety of new technologies are being developed to meet these needs. Closed two-phase loops are perceived to be the answer to many of the new requirements. All of these technologies are discussed, and their spacecraft and current terrestrial applications are summarized.
2002-06-01
consists of a torque meter assembly, a 14-stage axial compressor with variable guide vanes, an annular combustor, a two-stage gas generator turbine, a two...married to Laura Shapland née Howells of Salisbury, England. iii ACKNOWLEDGEMENTS I would like to acknowledge several people...up this project and submitted it to Air University for a thesis topic: Lt Col Neil Billings, Lt Col Tracey Goetz, Lt Col Scott Howell , and Maj Jon
Accelerating the domestication of forest trees in a changing world.
Harfouche, Antoine; Meilan, Richard; Kirst, Matias; Morgante, Michele; Boerjan, Wout; Sabatti, Maurizio; Scarascia Mugnozza, Giuseppe
2012-02-01
In light of impending water and arable land shortages, population growth and climate change, it is more important than ever to examine how forest tree domestication can be accelerated to sustainably meet future demands for wood, biomass, paper, fuel and biomaterials. Because of long breeding cycles, tree domestication cannot be rapidly achieved through traditional genetic improvement methods alone. Integrating modern genetic and genomic techniques with conventional breeding will expedite tree domestication. Breeders will only embrace these technologies if they are cost-effective and readily accessible, and forest landowners will only adopt end-products that meet with regulatory approval and public acceptance. All parties involved must work together to achieve these objectives for the benefit of society. Copyright © 2011 Elsevier Ltd. All rights reserved.
Psychosocial influences on safety climate: evidence from community pharmacies.
Phipps, Denham L; Ashcroft, Darren M
2011-12-01
To examine the relationship between psychosocial job characteristics and safety climate. Cross-sectional survey. Community pharmacies in Great Britain. Participants A random sample of community pharmacists registered in Great Britain (n = 860). Survey instruments Effort-reward imbalance (ERI) indicator and Job Content Questionnaire (JCQ). Main outcome measures Pharmacy Safety Climate Questionnaire (PSCQ). The profile of scores from the ERI indicated a relatively high risk of adverse psychological effects. The profile of scores from the JCQ indicated both high demand on pharmacists and a high level of psychological and social resources to meet these demands. Path analysis confirmed a model in which the ERI and JCQ measures, as well as the type of pharmacy and pharmacist role, predicted responses to the PSCQ (χ(2)(36) = 111.38, p < 0.001; Tucker-Lewis index = 0.96; comparative fit index = 0.98; root mean square error of approximation=0.05). Two general factors (effort vs reward and control vs demand) accounted for the effect of job characteristics on safety climate ratings; each had differential effects on the PSCQ scales. The safety climate in community pharmacies is influenced by perceptions of job characteristics, such as the level of job demands and the resources available to meet these demands. Hence, any efforts to improve safety should take into consideration the effect of the psychosocial work environment on safety climate. In addition, there is a need to address the presence of work-related stressors, which have the potential to cause direct or indirect harm to staff and service users. The findings of the current study provide a basis for future research to improve the safety climate and well-being, both in the pharmacy profession and in other healthcare settings.
Mackenzie, James
2011-07-01
There are many challenges facing the health system in the 21st century - the majority of which are related to managing demand for health services. To meet these challenges emerging GP commissioning consortia will need to take a new approach to commissioning health services - an approach that moves beyond the current acute-centred curative paradigm of care to a new sustainable paradigm of care that focuses on primary care, integrated services and upstream prevention to manage demand. A key part of this shift is the recognition that the health system does not operate in a vacuum and that strategic commissioning decisions must take account of wider determinants of health and well-being, and operate within the finite limits of the planet's natural resources. The sustainable development principle of balancing financial, social and environmental considerations is crucial in managing demand for health services and ensuring that the health system is resilient to risks of resource uncertainty and a changing climate. Building sustainability into the governance and contracting processes of GP commissioning consortia will help deliver efficiency savings, impact on system productivity, manage system risk and help manage demand through the health co-benefits of taking a whole systems approach to commissioning decisions. Commissioning services from providers committed to corporate social responsibility and sustainable business practices allows us to move beyond a health system that cures people reactively to one in which the health of individuals and populations is managed proactively through prevention and education. The opportunity to build sustainability principles into the culture of GP commissioning consortia upfront should be seized now to ensure the new model of commissioning endures and is fit for the future.
Ottosen, Ann; Rubin, Jennifer; Blanc, Diana Chang; Zipursky, Simona; Wootton, Emily
2017-01-01
Abstract A total of 105 countries have introduced IPV as of September 2016 of which 85 have procured the vaccine through UNICEF. The Global Eradication and Endgame Strategic Plan 2013-2018 called for the rapid introduction of at least one dose of IPV into routine immunization schedules in 126 all OPV-using countries by the end of 2015. At the time of initiating the procurement process, demand was estimated based on global modeling rather than individual country indications. In its capacity as procurement agency for the Global Polio Eradication Initiative and Gavi, the Vaccine Alliance, UNICEF set out to secure access to IPV supply for around 100 countries. Based on offers received, sufficient supply was awarded to two manufacturers to meet projected routine requirements. However, due to technical issues scaling up vaccine production and an unforecasted demand for IPV use in campaigns to interrupt wild polio virus and to control type 2 vaccine derived polio virus outbreaks, IPV supplies are severely constrained. Activities to stretch supplies and to suppress demand have been ongoing since 2014, including delaying IPV introduction in countries where risks of type 2 reintroduction are lower, implementing the multi-dose vial policy, and encouraging the use of fractional dose delivered intradermally. Despite these efforts, there is still insufficient IPV supply to meet demand. The impact of the supply situation on IPV introduction timelines in countries are the focus of this article, and based on lessons learned with the IPV introductions, it is recommended for future health programs with accelerated scale up of programs, to take a cautious approach on supply commitments, putting in place clear allocation criteria in case of shortages or delays and establishing a communication strategy vis a vis beneficiaries. PMID:28838159
2011-01-01
There are many challenges facing the health system in the 21st century – the majority of which are related to managing demand for health services. To meet these challenges emerging GP commissioning consortia will need to take a new approach to commissioning health services – an approach that moves beyond the current acute-centred curative paradigm of care to a new sustainable paradigm of care that focuses on primary care, integrated services and upstream prevention to manage demand. A key part of this shift is the recognition that the health system does not operate in a vacuum and that strategic commissioning decisions must take account of wider determinants of health and well-being, and operate within the finite limits of the planet's natural resources. The sustainable development principle of balancing financial, social and environmental considerations is crucial in managing demand for health services and ensuring that the health system is resilient to risks of resource uncertainty and a changing climate. Building sustainability into the governance and contracting processes of GP commissioning consortia will help deliver efficiency savings, impact on system productivity, manage system risk and help manage demand through the health co-benefits of taking a whole systems approach to commissioning decisions. Commissioning services from providers committed to corporate social responsibility and sustainable business practices allows us to move beyond a health system that cures people reactively to one in which the health of individuals and populations is managed proactively through prevention and education. The opportunity to build sustainability principles into the culture of GP commissioning consortia upfront should be seized now to ensure the new model of commissioning endures and is fit for the future. PMID:25949650
Gabriel, Lucinda E K; Webb, Steve A R
2013-10-01
Influenza pandemics occur intermittently and represent an existential global infectious diseases threat. The purpose of this review is to describe clinical and research preparedness for future pandemics. Pandemic influenza typically results in large numbers of individuals with life-threatening pneumonia requiring treatment in ICUs. Clinical preparedness of ICUs relates to planning to provide increased 'surge' capacity to meet increased demand and requires consideration of staffing, equipment and consumables, bed-space availability and management systems. Research preparedness is also necessary, as timely clinical research has the potential to change the trajectory of a pandemic. The clinical research response during the 2009 H1N1 influenza pandemic was suboptimal. Better planning is necessary to optimize both clinical and research responses to future pandemics.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
... when the Exchange deems it necessary to maintain an orderly market, to meet customer demand, or when... customer demand, or when certain price movements take place in the underlying market. The Exchange proposes..., to meet customer demand, or when certain price movements take place in the underlying market. The...
Historical aspects of somatic embryogenesis in woody plants
Subhash C. Minocha; Rakesh Minocha
1995-01-01
During the next few decades, the world demand for wood products is expected to rise sharply. To meet this growing demand, there will be an increasing need for mass production of improved-quality planting stock of many tree species. The conventional methods of tree improvement and selection offer only limited possibility of meeting the growing demands. Therefore, new...
ERIC Educational Resources Information Center
Green, Stephen
2013-01-01
Demand for professional development training in the early childhood field has grown substantially in recent years. To meet the demand, Texas A&M AgriLife Extension Service's Family Development and Resource Management unit developed the Early Childhood Educator Online Training Program, a professional development system that currently offers…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-24
... Intelligent Network Flow Optimization Operational Concepts; Notice of Public Meeting AGENCY: Research and... Demand Management (ADTM) and Intelligent Network Flow Optimization (INFLO) operational concepts. The ADTM... February 8, 2012, 8:30 to 4:30 p.m. The location for both meetings is the Hall of States, 444 North Capitol...
NASA Astrophysics Data System (ADS)
Wada, Y.; Luan, Y.; Fischer, G.; Sun, L.; Shi, P.
2015-12-01
Forcing with the population growth and consequently increasing food requirement, food security in sub-Saharan Africa is one of the most emergent and challenging issues. The purposes of this work are 1) what's the future food requirement and their food security status in each sub-Saharan African countries? What is the distance from current and future food security status, corresponding to the food requirement, to the targeted food security status? 2) To what extent Sub-Saharan countries could meet their present and future food requirement, and whether they have potential to improve their food insecurity status on currently cultivated land? 3) Whether or, if there have, how the pressures on land resources from meeting the food requirements? To figure those questions out, we firstly use socio-economic pathways datasets, and historical food diet pattern classification to forecast the 2010-2050 food commodity and feed calories demand per country. A new food security indicator, which considered the influences of both the food energy and quality intake, was used to evaluate the food insecurity status and the distances to different targeted statuses of the specific country. The latest Global Agro-Ecological Zones (GAEZ) databases were used to estimate the current and future crop yield gap and crop potential production. For current to future scenario analysis, we considered population growth, dietary change, climate change, agricultural input level, and target food security status. Then the balance of food requirement with the current and potential crop production was analyzed for different scenarios. Land requirements were calculated for meeting those food requirements, and the pressures on land resources are evaluated. Our works are hoping to provide scientific-based evidences for policy recommendations for local government to tackle food insecurity problems in Sub-Saharan Africa.
Fronthaul evolution: From CPRI to Ethernet
NASA Astrophysics Data System (ADS)
Gomes, Nathan J.; Chanclou, Philippe; Turnbull, Peter; Magee, Anthony; Jungnickel, Volker
2015-12-01
It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved.
Spatial resampling of IDR frames for low bitrate video coding with HEVC
NASA Astrophysics Data System (ADS)
Hosking, Brett; Agrafiotis, Dimitris; Bull, David; Easton, Nick
2015-03-01
As the demand for higher quality and higher resolution video increases, many applications fail to meet this demand due to low bandwidth restrictions. One factor contributing to this problem is the high bitrate requirement of the intra-coded Instantaneous Decoding Refresh (IDR) frames featuring in all video coding standards. Frequent coding of IDR frames is essential for error resilience in order to prevent the occurrence of error propagation. However, as each one consumes a huge portion of the available bitrate, the quality of future coded frames is hindered by high levels of compression. This work presents a new technique, known as Spatial Resampling of IDR Frames (SRIF), and shows how it can increase the rate distortion performance by providing a higher and more consistent level of video quality at low bitrates.
The ASAC Air Carrier Investment Model (Second Generation)
NASA Technical Reports Server (NTRS)
Wingrove, Earl R., III; Johnson, Jesse P.; Sickles, Robin C.; Good, David H.
1997-01-01
To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based mode with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models that are envisioned for ASAC. We describe a second-generation Air Carrier Investment Model that meets these requirements. The enhanced model incorporates econometric results from the supply and demand curves faced by U.S.-scheduled passenger air carriers. It uses detailed information about their fleets in 1995 to make predictions about future aircraft purchases. It enables analysts with the ability to project revenue passenger-miles flown, airline industry employment, airline operating profit margins, numbers and types of aircraft in the fleet, and changes in aircraft manufacturing employment under various user-defined scenarios.
NASA Astrophysics Data System (ADS)
Scott, C. A.; El-Naser, H.; Hagan, R. E.; Hijazi, A.
2001-05-01
Jordan is extremely water-scarce with just 170 cubic meters per capita per year to meet domestic, industrial, agricultural, tourism, and environmental demands for water. Given the natural climatological conditions, demographic pressure, and transboundary nature of water resources, all renewable water resources of suitable quality are being exploited and some non-renewable aquifers are being depleted. The heavy exploitation of water resources has contributed to declines in the level of the Dead Sea. Rapid growth in demand, particularly for higher quality water for domestic, industrial and tourism uses, is significantly increasing pressure on agricultural and environmental uses of water, both of which must continue to adapt to reduced volumes and lower quality water. The agricultural sector has begun to respond by improving irrigation efficiency and increasing the use of recycled water. Total demand for water still exceeds renewable supplies while inadequate treatment of sewage used for irrigation creates potential environmental and health risks and presents agricultural marketing challenges that undermine the competitiveness of exports. The adaptive capability of the natural environment may already be past sustainable limits with groundwater discharge oasis wetlands that have been seriously affected. Development of new water resources is extremely expensive in Jordan with an average investment cost of US\\$ 4-5 per cubic meter. Integrated water resources management (IWRM) that incorporates factors external to the 'water sector' as conventionally defined will help to assure sustainable future water supplies in Jordan. This paper examines four IWRM approaches of relevance to Jordan: water reuse, demand management, energy-water linkages, and transboundary water management. While progress in Jordan has been made, the Ministry of Water and Irrigation continues to be concerned about the acute water scarcity the country faces as well as the need to continue working with concerned stakeholders to assure future water supplies.
Transboundary impacts on regional ground water modeling in Texas
Rainwater, K.; Stovall, J.; Frailey, S.; Urban, L.
2005-01-01
Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to identify counties at risk of low final ground water storage volume or low levels of satisfied demand by 2050. Copyright ?? 2005 National Ground Water Association.
Protecting Future Biodiversity via Re-allocation of Future Land-use Change Patterns
NASA Astrophysics Data System (ADS)
Chini, L. P.; Hurtt, G. C.; Jantz, S.; Brooks, T.; Leon, C.; Waldhoff, S.; Edmonds, J.
2013-12-01
Future scenarios, such as the Representative Concentration Pathways (RCPs), are typically designed to meet a radiative forcing target while also producing enough food and energy for a growing population. In the assessment process, impacts of these scenarios for other important variables such as biodiversity loss are considered 'downstream', after the future climate has been simulated within Earth System Models. However, the direct land-use impacts associated with future scenarios often have as much impact on these issues as the changing climate; in addition, many different patterns of land-use can result in the same radiative forcing target. In the case of biodiversity loss, one of the greatest contributors to species extinction is the loss of habitat such as primary forest, which is a direct result of land-use change decisions. By considering issues such as the preservation of future biodiversity 'up-front' in the scenario process, we can design a scenario that not only meets a radiative forcing target and feeds a growing planet, but also preserves as much habitat as possible through careful spatial allocation of future land-use change. Our Global Land-use Model (GLM) is used to provide 'harmonized' land-use data for the RCP process. GLM preserves as much information as possible from the Integrated Assessment Models (IAMs) while spatially allocating regional IAM land-use change data, ensuring a continuous transition from historical to future land-use states, and producing annual, gridded (0.5°×0.5°), fractional land-use states and all associated transitions. In this presentation we will present results from new GLM simulations in which land-use change decisions are constrained to meet the mutual goals of protecting important eco-regions (e.g. biodiversity hotspots) from future land-use change, providing enough food and fiber for a growing planet, and remaining consistent with the radiative forcing targets of the future scenarios. Trade-offs between agricultural demand and biodiversity protection were needed in some scenarios, but by constraining the land-use decisions to protect future biodiversity, an estimated 10-25% of species could be saved from loss between 2005 and 2100 (Jantz et al. 2013, in prep).
U.S. Renewables Portfolio Standards: 2017 Annual Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen
Berkeley Lab’s annual status report on U.S. renewables portfolio standards (RPS) provides an overview of key trends associated with U.S. state RPS policies. The report, published in slide-deck form, describes recent legislative revisions, key policy design features, compliance with interim targets, past and projected impacts on renewables development, and compliance costs. The 2017 edition of the report presents historical data through year-end 2016 and projections through 2030. Key trends from this edition of the report include the following: -Evolution of state RPS programs: Significant RPS-related policy revisions since the start of 2016 include increased RPS targets in DC, MD, MI,more » NY, RI, and OR; requirements for new wind and solar projects and other major reforms to the RPS procurement process in IL; and a new offshore wind carve-out and solar procurement program in MA. -Historical impacts on renewables development: Roughly half of all growth in U.S. renewable electricity (RE) generation and capacity since 2000 is associated with state RPS requirements. Nationally, the role of RPS policies has diminished over time, representing 44% of all U.S. RE capacity additions in 2016. However, within particular regions, RPS policies continue to play a central role in supporting RE growth, constituting 70-90% of 2016 RE capacity additions in the West, Mid-Atlantic, and Northeast. -Future RPS demand and incremental needs: Meeting RPS demand growth will require roughly a 50% increase in U.S. RE generation by 2030, equating to 55 GW of new RE capacity. To meet future RPS demand, total U.S. RE generation will need to reach 13% of electricity sales by 2030 (compared to 10% today), though other drivers will also continue to influence RE growth. -RPS target achievement to-date: States have generally met their interim RPS targets in recent years, with only a few exceptions reflecting unique state-specific policy designs. -REC pricing trends: Prices for renewable energy certificates (RECs) used to meet general RPS obligations fell in most markets in 2016, as surplus RPS supplies emerged in many regions. Price trends for solar RECs were more varied, with a particularly pronounced drop in MD. -RPS compliance costs and cost caps: RPS compliance costs totaled $3.0 billion in 2015 (the most-recent year for which relatively complete data are available), which equates to 1.6% of average retail electricity bills in RPS states. Though total U.S. RPS compliance costs rose from 2014, future cost growth in most RPS states will be capped by cost containment mechanisms.« less
Global Grazing Systems: Their Continuing Importance in Meeting Global Demand
NASA Astrophysics Data System (ADS)
Davis, K. F.; D'Odorico, P.
2014-12-01
Animal production exerts significant demand on land, water and food resources and is an extensive means by which humans modify natural systems. Demand for animal source foods has more than tripled over the past 50 years due to population growth and dietary change. To meet this demand, livestock intensification (e.g. concentrated animal feeding operations) has increased and with it the water, nitrogen and carbon footprints of animal production. However, grass-fed systems continue to contribute significantly to overall animal production. To date, little is known about the contributions of grass- and grain-fed systems to animal calorie production, how this has changed through time and to what extent these two systems are sensitive to climate. Using a calorie-based approach we hypothesize that grain-fed systems are increasing in importance (with serious implications for water and nutrient demand) and that rangeland productivity is correlated with rainfall. Our findings show that grass-fed systems made up the majority of animal calorie production since 1960 years but that the relative contribution of grain-fed system has increased (from 27% to 49%). This rapid transition towards grain-fed animal production is largely a result of changing diets demand, as we found the growth of grass-fed production only kept pace with population growth. On a regional scale, we find that Asia has been the major contributor to the increase in grass-fed animal calorie production and that Africa has undergone the most drastic transition from grass-fed to grain-fed dependence. Finally, as expected we see a positive relationship between rangeland productivity and precipitation and a shift from dairy- to meat-dominated production going from drier to wetter climates. This study represents a new means of analyzing the food security of animal products and an important step in understanding the historic trends of animal production, their relation to climate, their prospects for the future and their implications for freshwater resources and nutrient cycling.
Evaluation of measures to meet future supply demand gap in Chennai city, India
NASA Astrophysics Data System (ADS)
Lakshmanan, E.; Paul, N.
2016-12-01
Availability of water forever has daunted all the major cities of the world and the cities of India are no exception. Even with high annual average rainfall of 1200 mm the Chennai city has an availability of just 108 lpcd of water, which is much lower than 150 lpcd prescribed by the World Health Organisation. The water requirement presently is met mainly from five reservoirs and partly from groundwater pumping which has given rise to seawater intrusion. The objective of this study is to find effective measures for overcoming the chronic demand supply gap and to predict the results of such measures quantitatively by modelling with the Water Evaluation and Planning System(WEAP). The modelling of city's water demand and supply system was carried out using WEAP and calibration was done using PEST. The data required for this study was obtained from various sources as well as by field investigations. There has been a continuous decrease in the actual water supply even with high availability as predicted by the model. About 60 percent of the city's supplied water ends in sewage and after treatment is presently supplied to industries, on its reuse it is found to meet completely the city's demand alone. The modelled heavy rainfall scenario demonstrates an increase in the water availability up to 20 percent during the years of heavy rainfall. The rejuvenation of existing water bodies in the outskirts of Chennai will increase the water availability for agriculture by 60 percent and hence more groundwater can be pumped for city's water supply. With addition of a new desalination plant over the existing two, the city's water supply-demand gap can be reduced by about 80%. If all the measures are implemented the water availability will exceed the demand. Thus, the WEAP model was successfully used to suggest means for sustainable water management plans for the Chennai city.
Hospital information management system: an evolutionary knowledge management perspective.
Wadhwa, S; Saxena, Avneet; Wadhwa, Bharat
2007-01-01
The evolving paradigm shift resulting from IT, social and technological changes has created a need for developing an innovative knowledge-based healthcare system, which can effectively meet global healthcare system demands and also cater to future trends. The Hospital Information Management System (HIMS) is developed with this sole aim in mind, which helps in processing and management of hospital information not only inside the boundary, but also beyond the hospital boundary, e.g., telemedicine or e-healthcare. The purpose of this paper is to present such kind of functional HIMS, which can efficiently satisfy the current and future system requirements by using Knowledge Management (KM) and data management systems. The HIMS is developed in a KM context, wherein users can share and use the knowledge more effectively. The proposed system is fully compatible with future technical, social, managerial and economical requirements.
Rozensky, Ronald H
2011-11-01
Implications for the future of professional psychology are discussed and related to the Patient Protection and Affordable Care Act, patient-centered health care homes and accountable care organizations, and the growing importance of interprofessional competencies in health care. The need for increased information about the psychology workforce is related to the history of the institutional practice of psychology and how that data must be used to plan for the supply of psychologists required to meet the service demands of the changing health care system. Several challenges to the field of psychology are offered, along with steps that must be taken by the profession to prepare for increased institutionally based health care services in the future. (PsycINFO Database Record (c) 2011 APA, all rights reserved). 2011 APA, all rights reserved
Food Security Under Shifting Economic, Demographic, and Climatic Conditions (Invited)
NASA Astrophysics Data System (ADS)
Naylor, R. L.
2013-12-01
Global demand for food, feed, and fuel will continue to rise in a more populous and affluent world. Meeting this demand in the future will become increasingly challenging with global climate change; when production shocks stemming from climate variability are added to the new mean climate state, food markets could become more volatile. This talk will focus on the interacting market effects of demand and supply for major food commodities, with an eye on climate-related supply trends and shocks. Lessons from historical patterns of climate variability (e.g., ENSO and its global teleconnections) will be used to infer potential food security outcomes in the event of abrupt changes in the mean climate state. Domestic food and trade policy responses to crop output and price volatility in key producing and consuming nations, such as export bans and import tariffs, will be discussed as a potentially major destabilizing force, underscoring the important influence of uncertainty in achieving--or failing to achieve--food security.
Industry trends point toward bright future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kliewer, G.
Examination of the trends for the past 5 yr shows increasing soundness in the international petroleum industry. U.S. figures alone have a mixed complexion, with imports, exports, crude prices, and demand rising steadily. U.S. crude oil production, however, increased through 1970, but leveled off last year. Decreases occurred during 1971 in the number of rigs working, gas producers, and wildcats drilled. Trends in Free World drilling and production (outside the U.S. and Canada) have been upward and are expected to continue expanding generally through the year 2000. World petroleum demand, the key to this activity, has risen steadily, and allmore » forecasts predict increases of around 3.5% a yr for the next 15 yr. Included in this outlook is a booming natural gas use, which comes as a result of worldwide emphasis on clean-burning, nonpolluting fuels. Competition among energy sources may not materialize. Instead, a mix of all available energy sources will be needed to meet the demand. Tabular data provide complete details.« less
Long, Keith R.; Van Gosen, Bradley S.; Foley, Nora K.; Cordier, Daniel
2012-01-01
Demand for the rare earth elements (REE, lanthanide elements) is estimated to be increasing at a rate of about 8% per year due to increasing applications in consumer products, computers, automobiles, aircraft, and other advanced technology products. Much of this demand growth is driven by new technologies that increase energy efficiency and substitute away from fossil fuels. Production of these elements is highly concentrated in China, which is reducing its exports of REE raw materials as part of its industrial policy. The ability of the rest of the world to replace supply from China depends on the quality of known REE resources and the degree to which those resources have been explored and evaluated. A review of United States resources in a global context finds that the United States could make significant contributions to future REE production. Aside from two advanced projects in the United States and Australia, however, there are no REE projects advanced enough to meet short-term demand.
Ghana refinery expansion and modernization project. Export trade information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-11-01
The U.S. Trade and Development Program (TDP) is considering the provision of funds to the Ghanaian Ministry of Fuel and Power (MFP) to conduct a study of the scope and feasibility of expanding and modernizing its Tema Refinery to meet future demands for gasoline and to minimize heavy fuel oil production. All of the needed licensed process technology and process know-how could be provided by U.S. sources and this, coupled with U.S. equipment and catalyst supply, meets the TDP criteria for funding the feasibility study. Europe aggressively offers alternate licensable technology for some of the processes. U.S. manufacturers of specialtymore » equipment are marginally competitive in the international market, where competition is fierce. The Definitional Mission recommends that full feasibility study be undertaken.« less
Large-scale water projects in the developing world: Revisiting the past and looking to the future
NASA Astrophysics Data System (ADS)
Sivakumar, Bellie; Chen, Ji
2014-05-01
During the past half a century or so, the developing world has been witnessing a significant increase in freshwater demands due to a combination of factors, including population growth, increased food demand, improved living standards, and water quality degradation. Since there exists significant variability in rainfall and river flow in both space and time, large-scale storage and distribution of water has become a key means to meet these increasing demands. In this regard, large dams and water transfer schemes (including river-linking schemes and virtual water trades) have been playing a key role. While the benefits of such large-scale projects in supplying water for domestic, irrigation, industrial, hydropower, recreational, and other uses both in the countries of their development and in other countries are undeniable, concerns on their negative impacts, such as high initial costs and damages to our ecosystems (e.g. river environment and species) and socio-economic fabric (e.g. relocation and socio-economic changes of affected people) have also been increasing in recent years. These have led to serious debates on the role of large-scale water projects in the developing world and on their future, but the often one-sided nature of such debates have inevitably failed to yield fruitful outcomes thus far. The present study aims to offer a far more balanced perspective on this issue. First, it recognizes and emphasizes the need for still additional large-scale water structures in the developing world in the future, due to the continuing increase in water demands, inefficiency in water use (especially in the agricultural sector), and absence of equivalent and reliable alternatives. Next, it reviews a few important success and failure stories of large-scale water projects in the developing world (and in the developed world), in an effort to arrive at a balanced view on the future role of such projects. Then, it discusses some major challenges in future water planning and management, with proper consideration to potential technological developments and new options. Finally, it highlights the urgent need for a broader framework that integrates the physical science-related aspects ("hard sciences") and the human science-related aspects ("soft sciences").
Kogan, Lori R; Stewart, Sherry M
2009-01-01
The projected shortage of veterinarians has created a need to explore alternatives designed to meet society's future demands. A veterinary professional health care provider, similar to the human medical profession's physician assistant (PA), is one such alternative. To explore this option, this paper provides background information on the development of PAs, including the motivations behind the initiative and the history of the role's development. Rather than aiming for a persuasive appeal, the authors have written this article with the intent of fostering discussion. It is suggested that perhaps veterinary professional associates, modeled after PAs, could be employed to handle routine veterinary care and thereby allow veterinarians additional time to focus on the more demanding and challenging aspects of veterinary medicine. Perhaps a team approach, similar to the physician/PA team, could help the field of veterinary medicine to better serve both clients and patients. As veterinary medicine directs its attention toward the new challenges on the horizon, creative solutions will be needed. Perhaps some variation of a veterinary professional associate is worthy of future discussion.
[Migration. Opportunities for recruitment of skilled employees in the care sector].
Braeseke, G; Merda, M; Bauer, T K; Otten, S; Stroka, M A; Talmann, A E
2013-08-01
A central objective of this study was to estimate the potential workforce for the elderly care sector in Germany and to compare it with the predicted demand for nurses in 2030. The authors describe the opportunities and obstacles in recruiting skilled professionals from EU member states and from countries outside the EU. Different scenarios of how to raise labor input are discussed so as to determine the domestic potential until 2030 in Germany. The results show that only by assuming unrealistic conditions, e. g., expectations of a high full-time working quota or far more working women, can the domestic potential meet the predicted future demands. Therefore, Germany's chances of attracting skilled foreign workers were assessed by analyzing wage differentials, unemployment probabilities, demographic developments, and professional and cultural aspects between the countries. A major finding study is that the German labor market cannot provide enough nursing care professionals for the elderly care sector by 2030. Secondly, most of the other EU member states are facing similar challenges, at least in the long run. Therefore, it is recommendable to intensify collaboration with populous Asian countries in the future.
The future nephrology workforce: will there be one?
Parker, Mark G; Ibrahim, Tod; Shaffer, Rachel; Rosner, Mitchell H; Molitoris, Bruce A
2011-06-01
Interest in nephrology as a career is declining and has been on the decline for nearly one decade. From 2002 to 2009, all internal medicine subspecialties except geriatric medicine increased the number of available fellowship positions. However, only two subspecialties attracted fewer United States medical graduates (USMGs) in 2009 than in 2002: geriatric medicine and nephrology. This drop occurred at a time when demand for nephrologists is increasing and when the specialty is having a harder time benefiting from the substantial contribution of international medical graduates (IMGs). Today's USMGs possess fundamentally different career and personal goals from their teachers and mentors. Medical students report receiving minimal exposure to nephrology in clinical rotations, and they perceive that the specialty is too complex, uninteresting, and lacks professional opportunity. Meanwhile, the demographics of kidney disease in the United States, as well as recent national health policy developments, indicate a growing need for nephrologists. Efforts to improve the educational continuum in nephrology and enhance mentorship are essential to restoring interest in nephrology for USMGs, maintaining its appeal among IMGs, and developing a workforce sufficient to meet future demand for renal care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.
Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and landmore » use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal-consumption trade-off in the context of current national policies and regulations that favor decreasing withdrawals (increasing consumptive use), and the role of water saving technologies. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S.« less
National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.
2012-06-01
To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancingmore » requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.« less
Tapping methane hydrates for unconventional natural gas
Ruppel, Carolyn
2007-01-01
Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-11-01
This study, conducted by Black & Veatch, was funded by the U.S. Trade and Development Agency. The report, produced for the Ministry of National Resources, Energy and Environment (MNRE) of Swaziland, determines the least cost capacity expansion option to meet the future power demand and system reliability criteria of Swaziland, with particular emphasis on the proposed Interconnector between Swaziland and Mozambique. Volume 3 contains EPC Specifications and is divided into the following divisions: (1) Commercial; (2) General Technical Requirements; (3) Transmission Line Technical Requirements; (4) Substation Technical Requirements; (5) Specifications.
Long Range Navigation for Mars Rovers Using Sensor-Based Path Planning and Visual Localisation
NASA Technical Reports Server (NTRS)
Laubach, Sharon L.; Olson, Clark F.; Burdick, Joel W.; Hayati, Samad
1999-01-01
The Mars Pathfinder mission illustrated the benefits of including a mobile robotic explorer on a planetary mission. However, for future Mars rover missions, significantly increased autonomy in navigation is required in order to meet demanding mission criteria. To address these requirements, we have developed new path planning and localisation capabilities that allow a rover to navigate robustly to a distant landmark. These algorithms have been implemented on the JPL Rocky 7 prototype microrover and have been tested extensively in the JPL MarsYard, as well as in natural terrain.
Baby Boomers and Beds: a Demographic Challenge for the Ages.
Song, Zirui; Ferris, Timothy G
2018-03-01
The United States is facing a significant demographic transition, with about 10,000 baby boomers turning age 65 each day. At the same time, the nation is experiencing a similarly striking transition in hospital capacity, as the supply of hospital beds has declined in recent decades. The juxtaposition of population aging and hospital capacity portends a potentially widening divergence between supply and demand for hospital care. We provide a closer look at current hospital capacity and a rethinking of the future role of hospital beds in meeting the needs of an aging population.
DSN radio science system design and testing for Voyager-Neptune encounter
NASA Technical Reports Server (NTRS)
Ham, N. C.; Rebold, T. A.; Weese, J. F.
1989-01-01
The Deep Space Network (DSN) Radio Science System presently implemented within the Deep Space Network was designed to meet stringent requirements imposed by the demands of the Voyager-Neptune encounter and future missions. One of the initial parameters related to frequency stability is discussed. The requirement, specification, design, and methodology for measuring this parameter are described. A description of special instrumentation that was developed for the test measurements and initial test data resulting from the system tests performed at Canberra, Australia and Usuda, Japan are given.
Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milbrandt, A.; Kinchin, C.; McCormick, R.
The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Spencer; Jeremey Busby; Richard Martineau
2012-10-01
Nuclear power currently provides a significant fraction of the United States’ non-carbon emitting power generation. In future years, nuclear power must continue to generate a significant portion of the nation’s electricity to meet the growing electricity demand, clean energy goals, and ensure energy independence. New reactors will be an essential part of the expansion of nuclear power. However, given limits on new builds imposed by economics and industrial capacity, the extended service of the existing fleet will also be required.
Examination of Frameworks for Safe Integration of Intelligent Small UAS into the NAS
NASA Technical Reports Server (NTRS)
Logan, Michael J.
2012-01-01
This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper briefly examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine "classes" of platforms and operations. A framework for categorization of the "intelligence" level of the UAS is postulated for purposes of NAS integration. Finally, constraints on the intelligent systems are postulated to ensure their ease of integration into the NAS.
Looking ahead: the manager in the year 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.S.
1977-01-01
A profile of the twenty-first century public utilities manager concludes that the managerial role will grow in importance. Projections of future managerial problems are based on past experience and observable trends. Organizations that are formed to meet human needs and demands will be dealing with shortages and depletions and will respond with more selective requirements. Future managers will need to assess resource capability before making decisions, a change that will require more innovation and negotiation than production. Organizational changes will bring more flexibility and interchangeability of personnel. Organizational charts will expand horizontally as staff positions replace line hierarchies. The conceptmore » of smallness will be incorporated in the structure of even large corporations. Other changes will reflect equal educational and employment opportunities.« less
The state of everyday quantitative EEG use in Canada: A national technologist survey.
Ng, Marcus C; Gillis, Kara
2017-07-01
This study sought to determine the state of quantitative EEG (QEEG) use in Canada, as QEEG may provide a partial solution to the issue of escalating EEG demand against insufficient health care resources. A 10-item survey questionnaire was administered to participants at the annual meeting of the Canadian Association of Electroneurophysiology Technologists, which was held in parallel with the annual meeting of the Canadian Neurological Sciences Federation. At least 70% of the Canadian population has QEEG access through academic medical institutions with applicability to adults and children. QEEG was clinically used 50% in real-time and 50% retrospectively in the critical care and epilepsy monitoring units for long-term monitoring and automated seizure detection. QEEG trend use, montage use, and duration were variable. To cope with insufficient health care resources, QEEG is in surprisingly frequent clinical use across Canada. There is no consensus on optimal QEEG trends and montages. The relative ubiquity of QEEG affords an excellent opportunity for research as increasing EEG demand outpaces dwindling health care resources into the foreseeable future. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Enhancing Participation in the U.S. Global Change Research Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington, Warren; Lee, Kai; Arent, Doug
2016-02-29
The US Global Change Research Program (USGCRP) is a collection of 13 Federal entities charged by law to assist the United States and the world to understand, assess, predict, and respond to human-induced and natural processes of global change. As the understanding of global change has evolved over the past decades and as demand for scientific information on global change has increased, the USGCRP has increasingly focused on research that can inform decisions to cope with current climate variability and change, to reduce the magnitude of future changes, and to prepare for changes projected over coming decades. Overall, the currentmore » breadth and depth of research in these agencies is insufficient to meet the country's needs, particularly to support decision makers. This report provides a rationale for evaluating current program membership and capabilities and identifying potential new agencies and departments in the hopes that these changes will enable the program to more effectively inform the public and prepare for the future. It also offers actionable recommendations for adjustments to the methods and procedures that will allow the program to better meet its stated goals.« less
Cole, Kenneth D; Waite, Martha S; Nichols, Linda O
2003-01-01
For a nationwide Geriatric Interdisciplinary Team Training (GITT) program evaluation of 8 sites and 26 teams, team evaluators developed a quantitative and qualitative team observation scale (TOS), examining structure, process, and outcome, with specific focus on the training function. Qualitative data provided an important expansion of quantitative data, highlighting positive effects that were not statistically significant, such as role modeling and training occurring within the clinical team. Qualitative data could also identify "too much" of a coded variable, such as time spent in individual team members' assessments and treatment plans. As healthcare organizations have increasing demands for productivity and changing reimbursement, traditional models of teamwork, with large teams and structured meetings, may no longer be as functional as they once were. To meet these constraints and to train students in teamwork, teams of the future will have to make choices, from developing and setting specific models to increasing the use of information technology to create virtual teams. Both quantitative and qualitative data will be needed to evaluate these new types of teams and the important outcomes they produce.
Multimodal corridor and capacity analysis manual. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-31
This report presents the results of research carried out under NCHRP Project 8-31, Long-Term Availability of Multimodal Corridor Capacity. The report is presented as a manual on multimodal corridor and capacity analysis. Because transportation-system and corridor capacity for freight and passengers is critical for meeting current and future transportation demand, this manual will provide much needed assistance to a wide range of practitioners, particularly those engaged in performance analysis, capacity management, needs studies, systems planning, and corridor development planning--including major investment studies. It provides information regarding capacity analysis approaches for highways, rail, pipelines, and waterways and presents available options formore » enhancing corridor capacity and performance through various strategies such as new capacity development, freeing up unused capacity, or control of travel demand. Evaluation methods for these options are included.« less
Eruptive event generator based on the Gibson-Low magnetic configuration
NASA Astrophysics Data System (ADS)
Borovikov, D.; Sokolov, I. V.; Manchester, W. B.; Jin, M.; Gombosi, T. I.
2017-08-01
Coronal mass ejections (CMEs), a kind of energetic solar eruptions, are an integral subject of space weather research. Numerical magnetohydrodynamic (MHD) modeling, which requires powerful computational resources, is one of the primary means of studying the phenomenon. With increasing accessibility of such resources, grows the demand for user-friendly tools that would facilitate the process of simulating CMEs for scientific and operational purposes. The Eruptive Event Generator based on Gibson-Low flux rope (EEGGL), a new publicly available computational model presented in this paper, is an effort to meet this demand. EEGGL allows one to compute the parameters of a model flux rope driving a CME via an intuitive graphical user interface. We provide a brief overview of the physical principles behind EEGGL and its functionality. Ways toward future improvements of the tool are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Alexander Wu; /SLAC
2012-03-01
As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this listmore » are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.« less
Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption.
Dobermann, Achim; Cassman, Kenneth G
2005-09-01
At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However, large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE) among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (-0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm-or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikely to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world's most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.
Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption.
Dobermann, Achim; Cassman, Kenneth G
2005-12-01
At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However, large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE) among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (-0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm- or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikey to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world's most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.
NASA Astrophysics Data System (ADS)
Vivoni, E. R.; Mayer, A. S.; Halvorsen, K. E.; Robles-Morua, A.; Kossak, D.
2016-12-01
A series of iterative participatory modeling workshops were held in Sonora, México with the goal of developing water resources management strategies in a water-stressed basin subject to hydro-climatic variability and change. A model of the water resources system, consisting of watershed hydrology, water resources infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants used the final version of the water resources systems model to select from supply-side and demand-side water resources management strategies. The performance of the strategies was based on the reliability of meeting current and future demands at a daily time scale over a year's period. Pre- and post-workshop surveys were developed and administered. The survey questions focused on evaluation of participants' modeling capacity and the utility and accuracy of the models. The selected water resources strategies and the associated, expected reliability varied widely among participants. Most participants could be clustered into three groups with roughly equal numbers of participants that varied in terms of reliance on expanding infrastructure vs. demand modification; expectations of reliability; and perceptions of social, environmental, and economic impacts. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region. The pre- and post-survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops
Vulnerability of supply basins to demand from multiple cities
NASA Astrophysics Data System (ADS)
Padowski, J. C.; Gorelick, S.
2013-12-01
Humans have appropriated more than half of the world's available water resources, and continued population growth and climate change threaten to put increasing pressure on remaining supplies. Many cities have constructed infrastructure to collect, transport from and store water at distant locations. Supply basins can become vulnerable if there are multiple users depending on the same supply system or network. Basin vulnerability assessments often only report the impacts of local demands on system health, but rarely account future stress from multi-urban demands. This study presents a global assessment of urban impacts on supply basins. Specifically, hydrologic and regulatory information are used to quantify the level of supply basin stress created by demand from multiple cities. The aim is to identify at-risk basins. This study focuses on large urban areas (generally over 1 million people) that use surface water (n=412). The stress on supply water basins by urban demand was based on three parameters: 1) the number of cities using a basin for water supply, 2) the number of alternative urban sources (e.g. lakes, reservoirs, rivers) within the supply basin, and 3) the percent of available surface water in each basin that is required to meet the total of urban and environmental demands. The degree of management within each basin is assessed using information on federal water policies and local basin management plans.
Renewable Electricity Futures for the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu; Hand, Maureen; Baldwin, Sam F.
2014-04-14
This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis ismore » that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurlbut, D. J.; McLaren, J.; Gelman, R.
2013-08-01
This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technologicalmore » breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.« less
NASA Astrophysics Data System (ADS)
Adams, L. E.; Lund, J. R.; Moyle, P. B.; Quiñones, R. M.; Herman, J. D.; O'Rear, T. A.
2017-09-01
Building reservoir release schedules to manage engineered river systems can involve costly trade-offs between storing and releasing water. As a result, the design of release schedules requires metrics that quantify the benefit and damages created by releases to the downstream ecosystem. Such metrics should support making operational decisions under uncertain hydrologic conditions, including drought and flood seasons. This study addresses this need and develops a reservoir operation rule structure and method to maximize downstream environmental benefit while meeting human water demands. The result is a general approach for hedging downstream environmental objectives. A multistage stochastic mixed-integer nonlinear program with Markov Chains, identifies optimal "environmental hedging," releases to maximize environmental benefits subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand, human water supply needs, infrastructure limitations, population dynamics, drought storage protection, and the river's carrying capacity. Environmental hedging "hedges bets" for drought by reducing releases for fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run Chinook salmon in the lower American River for a range of carryover and initial storage cases. Benefit is measured in terms of fish survival; maintaining self-sustaining native fish populations is a significant indicator of ecosystem function. Environmental hedging meets human demand and outperforms other operating rules, including the current Folsom operating strategy, based on metrics of fish extirpation and water supply reliability.
Enhancing Nursing Staffing Forecasting With Safety Stock Over Lead Time Modeling.
McNair, Douglas S
2015-01-01
In balancing competing priorities, it is essential that nursing staffing provide enough nurses to safely and effectively care for the patients. Mathematical models to predict optimal "safety stocks" have been routine in supply chain management for many years but have up to now not been applied in nursing workforce management. There are various aspects that exhibit similarities between the 2 disciplines, such as an evolving demand forecast according to acuity and the fact that provisioning "stock" to meet demand in a future period has nonzero variable lead time. Under assumptions about the forecasts (eg, the demand process is well fit as an autoregressive process) and about the labor supply process (≥1 shifts' lead time), we show that safety stock over lead time for such systems is effectively equivalent to the corresponding well-studied problem for systems with stationary demand bounds and base stock policies. Hence, we can apply existing models from supply chain analytics to find the optimal safety levels of nurse staffing. We use a case study with real data to demonstrate that there are significant benefits from the inclusion of the forecast process when determining the optimal safety stocks.
NASA Astrophysics Data System (ADS)
Tomkos, I.; Zakynthinos, P.; Klonidis, D.; Marom, D.; Sygletos, S.; Ellis, A.; Salvadori, E.; Siracusa, D.; Angelou, M.; Papastergiou, G.; Psaila, N.; Ferran, J. F.; Ben-Ezra, S.; Jimenez, F.; Fernández-Palacios, J. P.
2013-12-01
The traffic carried by core optical networks grows at a steady but remarkable pace of 30-40% year-over-year. Optical transmissions and networking advancements continue to satisfy the traffic requirements by delivering the content over the network infrastructure in a cost and energy efficient manner. Such core optical networks serve the information traffic demands in a dynamic way, in response to requirements for shifting of traffics demands, both temporally (day/night) and spatially (business district/residential). However as we are approaching fundamental spectral efficiency limits of singlemode fibers, the scientific community is pursuing recently the development of an innovative, all-optical network architecture introducing the spatial degree of freedom when designing/operating future transport networks. Spacedivision- multiplexing through the use of bundled single mode fibers, and/or multi-core fibers and/or few-mode fibers can offer up to 100-fold capacity increase in future optical networks. The EU INSPACE project is working on the development of a complete spatial-spectral flexible optical networking solution, offering the network ultra-high capacity, flexibility and energy efficiency required to meet the challenges of delivering exponentially growing traffic demands in the internet over the next twenty years. In this paper we will present the motivation and main research activities of the INSPACE consortium towards the realization of the overall project solution.
Food security: crops for people not for cars.
Kullander, Sven
2010-05-01
Humankind is currently faced with the huge challenge of securing a sustainable energy supply and biofuels constitute one of the major options. However, the commercially traded edible crops are barely sufficient to meet food demand of the present world population. Certain regions, for example EU-27, do not even have a sufficient indigenous crop production. Of this follows that motor biofuels based on edible crops should be avoided. To replace more than some percent of the fossil motor fuels, non-edible biomass-rest products and wastes-should instead be considered for conversion to biofuels. In this way, about 10% of the current fossil fuels can be replaced. Feeding a world population expected to grow by some 50% during the next 50 years will be a major challenge. For environmental reasons it seems that agricultural land cannot be expanded very much, maybe not at all. The solution to the increasing food demand seems therefore to be using the present crop production more efficiently and increasing output from present agricultural land, maintaining biodiversity and climate stability within reasonable limits. In the future, agriculture will need more energy and more water irrigation. Food production is, however, already very energy demanding, requiring several times more externally provided energy than the energy content of the food itself. A sufficient energy supply will be a key issue for the future farming!
20 CFR 220.135 - Exertional and nonexertional limitations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... limitations of function or restrictions which limit the claimant's ability to meet certain demands of jobs... as exertional if they affect the claimant's ability to meet the strength demands of jobs. The... Department of Labor, to determine the exertional requirements of work which exists in the national economy...
20 CFR 220.135 - Exertional and nonexertional limitations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... limitations of function or restrictions which limit the claimant's ability to meet certain demands of jobs... as exertional if they affect the claimant's ability to meet the strength demands of jobs. The... Department of Labor, to determine the exertional requirements of work which exists in the national economy...
20 CFR 220.135 - Exertional and nonexertional limitations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... limitations of function or restrictions which limit the claimant's ability to meet certain demands of jobs... as exertional if they affect the claimant's ability to meet the strength demands of jobs. The... Department of Labor, to determine the exertional requirements of work which exists in the national economy...
20 CFR 220.135 - Exertional and nonexertional limitations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... limitations of function or restrictions which limit the claimant's ability to meet certain demands of jobs... as exertional if they affect the claimant's ability to meet the strength demands of jobs. The... Department of Labor, to determine the exertional requirements of work which exists in the national economy...
The Potential for Snow to Supply Human Water Demand in the Present and Future
NASA Technical Reports Server (NTRS)
Mankin, Justin S.; Viviroli, Daniel; Singh, Deepti; Hoekstra, Arjen Y.; Diffenbaugh, Noah S.
2015-01-01
Runoff from snowmelt is regarded as a vital water source for people and ecosystems throughout the Northern Hemisphere (NH). Numerous studies point to the threat global warming poses to the timing and magnitude of snow accumulation and melt. But analyses focused on snow supply do not show where changes to snowmelt runoff are likely to present the most pressing adaptation challenges, given sub-annual patterns of human water consumption and water availability from rainfall. We identify the NH basins where present spring and summer snowmelt has the greatest potential to supply the human water demand that would otherwise be unmet by instantaneous rainfall runoff. Using a multi-model ensemble of climate change projections, we find that these basins - which together have a present population of approx. 2 billion people - are exposed to a 67% risk of decreased snow supply this coming century. Further, in the multi-model mean, 68 basins (with a present population of more than 300 million people) transition from having sufficient rainfall runoff to meet all present human water demand to having insufficient rainfall runoff. However, internal climate variability creates irreducible uncertainty in the projected future trends in snow resource potential, with about 90% of snow-sensitive basins showing potential for either increases or decreases over the near-term decades. Our results emphasize the importance of snow for fulfilling human water demand in many NH basins, and highlight the need to account for the full range of internal climate variability in developing robust climate risk management decisions.
Orenstein, Walter A; Schaffner, William
2008-07-01
The Advisory Committee on Immunization Practices of the Centers for Disease Control and Prevention (CDC) has been increasing the size of the population for whom influenza vaccine is recommended to reduce the substantial and persistent annual health burden of influenza. Realization of current and future public health influenza immunization goals requires assuring vaccine supply will be adequate to meet demand. This has posed distinct challenges for the many stakeholders in the influenza vaccine program--government agencies, federal, state, and local policymakers, vaccine manufacturers and distributors, and the medical community--each of whom must make critical decisions in a constantly shifting environment. Factors such as the yearly changes in influenza virus strains, the complicated vaccine production and distribution process, revisions in vaccination recommendations, and changing demographics can all affect the delicate balance between supply and demand. While vaccine shortages and delays have been well-publicized concerns in the recent past, there has been a marked increase in supply in the past several years, with substantial growth in supply expected in the future. The primary issue today is to strengthen the demand for the influenza vaccine, which would in turn help ensure the continued availability of the vaccine to reduce disease burden. A number of strategies are discussed, including increased efforts to publicize and fully implement current CDC recommendations and to offer influenza vaccine beyond the typical vaccination season of October and November, because in the great majority of years, vaccination into January and beyond will still provide health benefits.
Future CO2 emissions and electricity generation from proposed coal-fired power plants in India
NASA Astrophysics Data System (ADS)
Fofrich, R.; Shearer, C.; Davis, S. J.
2017-12-01
India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.
Lewis, Ian; Ottosen, Ann; Rubin, Jennifer; Blanc, Diana Chang; Zipursky, Simona; Wootton, Emily
2017-07-01
A total of 105 countries have introduced IPV as of September 2016 of which 85 have procured the vaccine through UNICEF. The Global Eradication and Endgame Strategic Plan 2013-2018 called for the rapid introduction of at least one dose of IPV into routine immunization schedules in 126 all OPV-using countries by the end of 2015. At the time of initiating the procurement process, demand was estimated based on global modeling rather than individual country indications. In its capacity as procurement agency for the Global Polio Eradication Initiative and Gavi, the Vaccine Alliance, UNICEF set out to secure access to IPV supply for around 100 countries. Based on offers received, sufficient supply was awarded to two manufacturers to meet projected routine requirements. However, due to technical issues scaling up vaccine production and an unforecasted demand for IPV use in campaigns to interrupt wild polio virus and to control type 2 vaccine derived polio virus outbreaks, IPV supplies are severely constrained. Activities to stretch supplies and to suppress demand have been ongoing since 2014, including delaying IPV introduction in countries where risks of type 2 reintroduction are lower, implementing the multi-dose vial policy, and encouraging the use of fractional dose delivered intradermally. Despite these efforts, there is still insufficient IPV supply to meet demand. The impact of the supply situation on IPV introduction timelines in countries are the focus of this article, and based on lessons learned with the IPV introductions, it is recommended for future health programs with accelerated scale up of programs, to take a cautious approach on supply commitments, putting in place clear allocation criteria in case of shortages or delays and establishing a communication strategy vis a vis beneficiaries. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Demand and capacity planning in the emergency department: how to do it.
Higginson, I; Whyatt, J; Silvester, K
2011-02-01
Unless emergency departments have adequate capacity to meet demand, they will fail to meet clinical and performance standards and will be operating in the 'coping zone'. This carries risks both for staff and patients. As part of a quality improvement programme, the authors undertook an in-depth analysis of demand and capacity for an emergency department in the UK. The paper describes this rigorous approach to capacity planning, which draws on techniques from other industries. Proper capacity planning is vital, but is often poorly done. Planning using aggregated data will lead to inadequate capacity. Understanding demand, and particularly the variation in that demand, is critical to success. Analysis of emergency department demand and capacity is the first step towards effective workforce planning and process redesign.
Food security in the 21st century: Global yield projections and agricultural expansion
NASA Astrophysics Data System (ADS)
Davis, K. F.; Rulli, M.; D'Odorico, P.
2013-12-01
Global demands on agricultural lands are ever increasing as a result of population growth, changes in diet and increasing biofuel use. By mid-century, the demands for food and fiber are expected to roughly double with the population reaching 9.5 billion. However, earth's finite resource base places a ceiling on the amount of agricultural production that is possible. Several strategies have been widely discussed to meet these rapid increases and to extend the ceiling yet higher, including reducing waste, modifying diets, improving yield and productivity and expanding agriculture and aquaculture. One of the most promising of these is closing the yield gap of currently under-performing agricultural land that has the potential to be much more productive. With high inputs (e.g. irrigation, fertilizers), this strategy has real potential to increase food security, particularly in the developing world where population is expected to sharply increase and where a high potential for yield gap closure exists. Thus it is important to consider whether improvements in global yield can adequately meet global dietary demand during the 21st century. Constructing yield projections to the end of the century, we examine whether global crop production for 154 countries and 16 major food crops under selected agricultural and dietary scenarios can keep pace with estimates of population growth to 2100. By calculating the global production of calories, we are then able to examine how many people can be supported under future scenarios and how closing yield gaps can increase this potential. Our findings agree with previous studies that closing the yield gap alone cannot provide sufficient production by mid-century and that a heavy global dependence on trade will persist throughout the century. Using high-resolution global land suitability maps under a suite of climate models, we find that scenarios incorporating a combination of yield gap closure and agricultural expansion provide the most promise in meeting global demand. However, this must be done with the goal of sustainable agriculture in mind and in a way that minimizes detrimental environmental impacts, particularly to forested areas and rangelands.
A survey of life support system automation and control
NASA Technical Reports Server (NTRS)
Finn, Cory K.
1993-01-01
The level of automation and control necessary to support advanced life support systems for use in the manned space program is steadily increasing. As the length and complexity of manned missions increase, life support systems must be able to meet new space challenges. Longer, more complex missions create new demands for increased automation, improved sensors, and improved control systems. It is imperative that research in these key areas keep pace with current and future developments in regenerative life support technology. This paper provides an overview of past and present research in the areas of sensor development, automation, and control of life support systems for the manned space program, and it discusses the impact continued research in several key areas will have on the feasibility, operation, and design of future life support systems.
Beyond Performativity: A Pragmatic Model of Teacher Professional Learning
ERIC Educational Resources Information Center
Lloyd, Margaret; Davis, James P.
2018-01-01
The intent and content of teacher professional learning has changed in recent times to meet the demands of performativity. In this article, we offer and demonstrate a pragmatic way to map teacher professional learning that both meets current demands and secures a place for teacher-led catalytic learning. To achieve this, we position identified…
NASA Astrophysics Data System (ADS)
Hunter, C. K.; Bolster, D.; Gironas, J. A.
2014-12-01
Water resources are essential to development, not only economically but also socially, politically and ecologically. With growing demand and potentially shrinking supply, water scarcity is one of the most pressing socio-ecological problems of the 21st century. Considering implications of global change and the complexity of interrelated systems, uncertain future conditions compound problems associated with water stress, requiring hydrologic models to re-examine traditional water resource planning and management. The Copiapó water basin, located in the Atacama Desert of northern Chile exhibits a complex resource management scenario. With annual average precipitation of only 28 mm, water intensive sectors such as export agriculture, extensive mining, and a growing population have depleted the aquifeŕs reserves to near critical levels. Being that global climate change models predict a decrease in already scarce precipitation, and that growing population and economies demand will likely increase, the real future situation might be even worse than that predicted. A viable option for alleviation of water stress, water reuse and recycling has evolved through technological innovation to feasibly meet hydraulic needs with reclaimed water. For the proper application of these methods for resource management, however, stakeholders must possess tools by which to quantify hydrologic risk, understand its factors of causation, and choose between competing management scenarios and technologies so as to optimize productivity. While previous investigations have addressed similar problems, they often overlook aspects of forecasting uncertainty, proposing solutions that while accurate under specific scenarios, lack robustness to withstand future variations. Using the WEAP (Water Evaluation and Planning) platform for hydrologic modeling, this study proposes a methodology, applicable to other stressed watersheds, to quantify inherent risk in water management positions, while considering uncertainties in supply (climate change), demand (market variations), and measurement (risk definition). Applied to the Copaipó case study, this methodology proposes the solution of a 30% demand decrease within the agricultural sector through urban wastewater recycling and increased irrigation efficiency.
Determinants of edible oil choice by households in Tamil Nadu, India.
Govindaraj, Gurrappa Naidu; Suryaprakash, Satrasala
2013-01-01
This study investigated the major determinants that influence the choice of edible oils by households across geographical zones in Tamil Nadu state, India. The primary data from 1,000 sample households were collected using a structured pre-tested questionnaire. Multinomial logit model was fitted for determining the factors. The results revealed that education, income, and households with a history of health problems were the important determinants that influenced the choice of low-saturated-fat oils, whereas the larger size households and weaker section households preferred low-priced palm oil. Income and education levels in Tamil Nadu state surged ahead in recent years. In consonance to these changes the nontraditional low-saturated fat containing sunflower oil demand will increase in many folds in coming years. Hence, besides traditional oils, sunflower oil production has to be stepped up on "mission mode" through appropriate production programs to meet the present and future edible oil demand domestically.
Williams, Charles D; Maloney, Eileen M; McElveny, Ceela
2004-11-01
Demand for radiologic technologists in the United States greatly outstripped supply throughout the late 1990s and peaked in 2000, when vacancy rates for radiologic technologists reached an average of 18% nationwide. To combat the shortage, the ACR and the American Society of Radiologic Technologists (ASRT) launched a series of aggressive recruitment and retention initiatives designed to boost the number of technologists. The campaigns have resulted in rising enrollments in educational programs, greater numbers of graduates and new technologists, and the expansion of the career ladder. As a result, the national vacancy rate for radiologic technologists had dropped to 12% by the end of 2003. This article reviews the radiologic technologists personnel shortage at the turn of the century, describes efforts taken by the ACR and the ASRT to ameliorate the shortage, and examines the future of the radiologic technology workforce.
State-of-the-art radiation detectors for medical imaging: Demands and trends
NASA Astrophysics Data System (ADS)
Darambara, Dimitra G.
2006-12-01
Over the last half-century a variety of significant technical advances in several scientific fields has been pointing to an exploding growth in the field of medical imaging leading to a better interpretation of more specific anatomical, biochemical and molecular pathways. In particular, the development of novel imaging detectors and readout electronics has been critical to the advancement of medical imaging allowing the invention of breakthrough platforms for simultaneous acquisition of multi-modality images at molecular level. The present paper presents a review of the challenges, demands and constraints on radiation imaging detectors imposed by the nature of the modality and the physics of the imaging source. This is followed by a concise review and perspective on various types of state-of-the-art detector technologies that have been developed to meet these requirements. Trends, prospects and new concepts for future imaging detectors are also highlighted.
A systemic approach to understanding mental health and services.
Cohen, Mark
2017-10-01
In the UK mental health and associated NHS services face considerable challenges. This paper aims to form an understanding both of the complexity of context in which services operate and the means by which services have sought to meet these challenges. Systemic principles as have been applied to public service organisations with reference to interpersonal relations, the wider social culture and its manifestation in service provision. The analysis suggests that the wider culture has shaped service demand and the approaches adopted by services resulting in a number of unintended consequences, reinforcing loops, increased workload demands and the limited value of services. The systemic modelling of this situation provides a necessary overview prior to future policy development. The paper concludes that mental health and attendant services requires a systemic understanding and a whole system approach to reform. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Aflatoxins: A Global Concern for Food Safety, Human Health and Their Management
Kumar, Pradeep; Mahato, Dipendra K.; Kamle, Madhu; Mohanta, Tapan K.; Kang, Sang G.
2017-01-01
The aflatoxin producing fungi, Aspergillus spp., are widely spread in nature and have severely contaminated food supplies of humans and animals, resulting in health hazards and even death. Therefore, there is great demand for aflatoxins research to develop suitable methods for their quantification, precise detection and control to ensure the safety of consumers’ health. Here, the chemistry and biosynthesis process of the mycotoxins is discussed in brief along with their occurrence, and the health hazards to humans and livestock. This review focuses on resources, production, detection and control measures of aflatoxins to ensure food and feed safety. The review is informative for health-conscious consumers and research experts in the fields. Furthermore, providing knowledge on aflatoxins toxicity will help in ensure food safety and meet the future demands of the increasing population by decreasing the incidence of outbreaks due to aflatoxins. PMID:28144235
Experiences of Australian Army theatre nurses.
Biedermann, Narelle
2002-02-01
As battles have raged throughout the centuries, nurses have cared for ill and wounded soldiers. One nursing role during war is theatre (i.e., OR) nursing. This article describes the role of Australian Army theatre nurses during the Vietnam War. It is based on information collected in a study of the experiences of Australian Army nurses who worked in operating theatres in Vietnam between 1967 and 1971. As nurses today focus on the future to find new ways to meet the demands of nursing ahead, it is important to reflect on the past, as they can learn from history and from other nurses' experiences.
1993-12-02
electronics. In other words, while the main driving force of the past has been the desire for greater performance by way of accuracy, the future will demand ...that can match him in terms of number of years in the program; but there are a lot of folks that are brand new to the program. What is precise time...International Telecommunications Union (ITU). The additional development of a digital-filter view of all of these two-sample variances113) has
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
The study was undertaken in order to serve the Ministry of Energy of Ghana under the terms of the contract with respect to deliverables, cost and schedule. The objectives of the study were: to evaluate the ability of the proposed refinery configuration to meet the demands for petroleum products through the year 2005; to demonstrate sound economics in order to attract financing from leading international agencies such as the World Bank, African Development Bank and Export-Import Bank; and to serve as a basis for meaningful future work by the Ministry.
Evolution of a standard microprocessor-based space computer
NASA Technical Reports Server (NTRS)
Fernandez, M.
1980-01-01
An existing in inventory computer hardware/software package (B-1 RFS/ECM) was repackaged and applied to multiple missile/space programs. Concurrent with the application efforts, low risk modifications were made to the computer from program to program to take advantage of newer, advanced technology and to meet increasingly more demanding requirements (computational and memory capabilities, longer life, and fault tolerant autonomy). It is concluded that microprocessors hold promise in a number of critical areas for future space computer applications. However, the benefits of the DoD VHSIC Program are required and the old proliferation problem must be revised.
Making adaptable systems work for mission operations: A case study
NASA Technical Reports Server (NTRS)
Holder, Barbara E.; Levesque, Michael E.
1993-01-01
The Advanced Multimission Operations System (AMMOS) at NASA's Jet Propulsion Laboratory is based on a highly adaptable multimission ground data system (MGDS) for mission operations. The goal for MGDS is to support current flight project science and engineering personnel and to meet the demands of future missions while reducing associated operations and software development costs. MGDS has become a powerful and flexible mission operations system by using a network of heterogeneous workstations, emerging open system standards, and selecting an adaptable tools-based architecture. Challenges in developing adaptable systems for mission operations and the benefits of this approach are described.
Computational Modeling in Plasma Processing for 300 mm Wafers
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
Migration toward 300 mm wafer size has been initiated recently due to process economics and to meet future demands for integrated circuits. A major issue facing the semiconductor community at this juncture is development of suitable processing equipment, for example, plasma processing reactors that can accomodate 300 mm wafers. In this Invited Talk, scaling of reactors will be discussed with the aid of computational fluid dynamics results. We have undertaken reactor simulations using CFD with reactor geometry, pressure, and precursor flow rates as parameters in a systematic investigation. These simulations provide guidelines for scaling up in reactor design.
Optimal investments in digital communication systems in primary exchange area
NASA Astrophysics Data System (ADS)
Garcia, R.; Hornung, R.
1980-11-01
Integer linear optimization theory, following Gomory's method, was applied to the model planning of telecommunication networks in which all future investments are made in digital systems only. The integer decision variables are the number of digital systems set up on cable or radiorelay links that can be installed. The objective function is the total cost of the extension of the existing line capacity to meet the demand between primary and local exchanges. Traffic volume constraints and flow conservation in transit nodes complete the model. Results indicating computing time and method efficiency are illustrated by an example.
NASA Astrophysics Data System (ADS)
Rumble, Greville; Borden, George A.
1983-12-01
In 1977 the government of Costa Rica established a new university, the Universidad Estatal a Distancia (UNED), and charged it with using distance teaching methods to meet the needs of new target groups as well as to alleviate some of the pressure of student demand on the existing three state-funded campus-based universities. This paper examines UNED's impact in relation to three categories of need: (1) student demand for university places; (2) demand from persons who had been previously disadvantaged in one way or another and hence unable to enter a university; and (3) demands generated by the needs of society for trained manpower. The paper evaluates UNED's success or failure in meeting these needs, in so far as it can be measured, and considers evidence based on the views of UNED's students regarding the success of the University in meeting their individual requirements. Throughout, the paper relates UNED's role within the higher education system in Costa Rica to those of the campus-based universities. In spite of the problems of teaching part-time students in a society in which leisure time is at a premium, the authors believe that UNED is to a large degree achieving its objectives by meeting previously unfulfilled needs at the higher education level in Costa Rica.
ISS Training Best Practices and Lessons Learned
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Dempsey, Donna L.
2017-01-01
Training our crew members for long duration exploration-class missions (LDEM) will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for LDEM, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.
ISS Training Best Practices and Lessons Learned
NASA Technical Reports Server (NTRS)
Dempsey, Donna L.; Barshi, Immanuel
2018-01-01
Training our crew members for long-duration Deep Space Transport (DST) missions will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for DST missions, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.
The hospital of the future: the vision, the journey, the reality.
Covert, Michael H
2014-01-01
Palomar Medical Center, like many California healthcare institutions in the 1990s, faced the challenge of needing to meet state building seismic requirements. As a result of the mandate and infrastructure demands that would need to be made to accommodate the new standards, the health system set out to assess the larger needs of the communities served, evaluate the medical and technological changes that would be part of future clinical care delivery systems, and assess our capability to meet the financial impact such changes would have on the organization. This article shares our journey to build a new hospital--one that could be studied by other health systems facing the same or similar challenges. It incorporates elements associated with the concept of "Fable Hospital"--a design promulgated by leading architects and designers from around the world and researched by the Center for Health Design--which considers the use of evidenced-based principles gathered over the past 20 years that, when incorporated, can lead to the creation of buildings that enhance the quality of care, provide safety for patients and staff, and meet the needs of patients and families in meaningful ways. Finally, Palomar Medical Center is an environment that allows for effective, flexible integration of technology and expansion of staff while improving the efficiency of operations that are critical to the management of the hospital in a changing healthcare delivery world.
Future Water-Supply Scenarios, Cape May County, New Jersey, 2003-2050
Lacombe, Pierre J.; Carleton, Glen B.; Pope, Daryll A.; Rice, Donald E.
2009-01-01
Stewards of the water supply in New Jersey are interested in developing a plan to supply potable and non-potable water to residents and businesses of Cape May County until at least 2050. The ideal plan would meet projected demands and minimize adverse effects on currently used sources of potable, non-potable, and ecological water supplies. This report documents past and projected potable, non-potable, and ecological water-supply demands. Past and ongoing adverse effects to production and domestic wells caused by withdrawals include saltwater intrusion and water-level declines in the freshwater aquifers. Adverse effects on the ecological water supplies caused by groundwater withdrawals include premature drying of seasonal wetlands, delayed recovery of water levels in the water-table aquifer, and reduced streamflow. To predict the effects of future actions on the water supplies, three baseline and six future scenarios were created and simulated. Baseline Scenarios 1, 2, and 3 represent withdrawals using existing wells projected until 2050. Baseline Scenario 1 represents average 1998-2003 withdrawals, and Scenario 2 represents New Jersey Department of Environmental Protection (NJDEP) full allocation withdrawals. These withdrawals do not meet projected future water demands. Baseline Scenario 3 represents the estimated full build-out water demands. Results of simulations of the three baseline scenarios indicate that saltwater would intrude into the Cohansey aquifer as much as 7,100 feet (ft) to adversely affect production wells used by Lower Township and the Wildwoods, as well as some other near-shore domestic wells; water-level altitudes in the Atlantic City 800-foot sand would decline to -156 ft; base flow in streams would be depleted by 0 to 26 percent; and water levels in the water-table aquifer would decline as much as 0.7ft. [Specific water-level altitudes, land-surface altitudes, and present sea level when used in this report are referenced to the North American Vertical Datum of 1988 (NAVD 88).] Future scenarios 4 to 9 represent withdrawals and the effects on the water supply while using estimated full build-out water demands. In most townships, existing wells would be used for withdrawals in the simulation. However, in Lower and Middle Townships, the Wildwoods, and the Cape Mays, withdrawals from some wells would be terminated, reduced, or increased. Depending on the scenario, proposed production wells would be installed in locations far from the saltwater fronts, in deep freshwater aquifers, in deeper saltwater aquifers, or proposed injection wells would be installed to inject reused water to create a freshwater barrier to saltwater intrusion. Simulations indicate that future Scenarios 4 to 9 would reduce many of the adverse effects of Scenarios 1, 2, and 3. No future scenario will minimize all adverse impacts. In Scenario 4, Lower Township would drill two production wells in the Cohansey aquifer farther from the Delaware shoreline than existing wells and reduce withdrawals from wells near the shoreline. Wildwood Water Utility (WWU) would reduce withdrawals from existing wells in the Cohansey aquifer and increase withdrawals from wells in the Rio Grande water-bearing zone. Results of the simulation indicate that saltwater intrusion and ecological-water supply problems would be reduced but not as much as in Scenarios 5, 7, 8, and 9. In Scenario 5, the Wildwoods and Lower Township each would install a desalination plant and drill two wells to withdraw saltwater from the Atlantic City 800-foot sand. Saltwater intrusion problems would be reduced to the greatest extent with this scenario. Ecological water supplies remain constant or decline from 2003 baseline values. Water-level altitudes would decline to -193 ft in the Atlantic City 800-foot sand, the deepest potentiometric level for all scenarios. In Scenario 6, Lower Township would build a tertiary treatment system and drill three wells open to the Cohanse
Chalcopyrite—bearer of a precious, non-precious metal
Kimball, Bryn E.
2013-01-01
The mineral chalcopyrite (CuFeS2) is the world's most abundant source of copper, a metal component in virtually every piece of electrical equipment. It is the main copper mineral in several different ore deposit types, the most important of which are porphyry deposits. Chalcopyrite is unstable at the Earth's surface, so it weathers from sulphide outcrops and mine waste piles, contributing acid and dissolved copper to what is known as acid rock drainage. If not prevented, dissolved copper from chalcopyrite weathering will be transported downstream, potentially harming ecosystems along the way. Pristine areas are becoming targets for future copper supply as we strive to meet ever-increasing demands for copper by developed and developing nations. Additionally, our uses for copper are expanding to include technology such as solar energy production. This has lead to the processing of increasingly lower grade ores, which is possible, in part, due to advances in bio-leaching (i.e. metal extraction catalysed by micro-organisms). Although copper is plentiful, it is still a nonrenewable resource. Future copper supply promises to fall short of demand and the volatility of the copper market may continue if we do not prioritize copper use and improve copper recycling and ore extraction efficiency.
Important skills for biomedical services: The perspectives of Malaysian employers and employees.
Buntat, Yahya; Saud, Muhammad Sukri; Mokhtar, Mahani; Kamin, Yusri; Feh, Lim Set
2016-10-17
Increase in the occurrence of existing diseases, continual emergence of new or exotic diseases and re-emergence of old diseases have placed increasing demands on biomedical services in Malaysia. Biomedical technicians play an important role in operating biomedical instruments. However, there are no clear specifications about characteristics and traits for these semi-professional employees. Employers in a few studies claimed that biomedical graduates are not ready to enter and face challenges in the job market. Therefore, the purpose of this study is to identify technical and generic skills for a biomedical technician from the perspectives of the biomedical technicians and their employers. A quantitative survey design was employed whereby data were obtained through the administration of an instrument developed by the researchers. The sample consisted of 20 hospital managers and 186 biomedical technicians who are currently working in Malaysian government hospitals. The findings show that there are no difference in the perceptions of hospital managers and biomedical technicians regarding technical and non-technical skills. These findings resulted in a checklist which can be used for institutions to produce future biomedical technician graduates in order to meet job demands. However, future research is needed to validate the findings and explore the variables in depth.
Challenges in Incorporating Climate Change Adaptation into Integrated Water Resources Management
NASA Astrophysics Data System (ADS)
Kirshen, P. H.; Cardwell, H.; Kartez, J.; Merrill, S.
2011-12-01
Over the last few decades, integrated water resources management (IWRM), under various names, has become the accepted philosophy for water management in the USA. While much is still to be learned about how to actually carry it out, implementation is slowly moving forward - spurred by both legislation and the demands of stakeholders. New challenges to IWRM have arisen because of climate change. Climate change has placed increased demands on the creativities of planners and engineers because they now must design systems that will function over decades of hydrologic uncertainties that dwarf any previous hydrologic or other uncertainties. Climate and socio-economic monitoring systems must also now be established to determine when the future climate has changed sufficiently to warrant undertaking adaptation. The requirements for taking some actions now and preserving options for future actions as well as the increased risk of social inequities in climate change impacts and adaptation are challenging experts in stakeholder participation. To meet these challenges, an integrated methodology is essential that builds upon scenario analysis, risk assessment, statistical decision theory, participatory planning, and consensus building. This integration will create cross-disciplinary boundaries for these disciplines to overcome.
An enhanced archive facilitating climate impacts analysis
Maurer, E.P.; Brekke, L.; Pruitt, T.; Thrasher, B.; Long, J.; Duffy, P.; Dettinger, M.; Cayan, D.; Arnold, J.
2014-01-01
We describe the expansion of a publicly available archive of downscaled climate and hydrology projections for the United States. Those studying or planning to adapt to future climate impacts demand downscaled climate model output for local or regional use. The archive we describe attempts to fulfill this need by providing data in several formats, selectable to meet user needs. Our archive has served as a resource for climate impacts modelers, water managers, educators, and others. Over 1,400 individuals have transferred more than 50 TB of data from the archive. In response to user demands, the archive has expanded from monthly downscaled data to include daily data to facilitate investigations of phenomena sensitive to daily to monthly temperature and precipitation, including extremes in these quantities. New developments include downscaled output from the new Coupled Model Intercomparison Project phase 5 (CMIP5) climate model simulations at both the monthly and daily time scales, as well as simulations of surface hydrologi- cal variables. The web interface allows the extraction of individual projections or ensemble statistics for user-defined regions, promoting the rapid assessment of model consensus and uncertainty for future projections of precipitation, temperature, and hydrology. The archive is accessible online (http://gdo-dcp.ucllnl.org/downscaled_ cmip_projections).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassidy, Helen; Rossiter, David
The Low Level Waste Repository (LLWR) is the primary facility for disposal of Low Level Waste (LLW) in the United Kingdom (UK), serving the UK nuclear industry and a diverse range of other sectors. Management of LLW in the UK historically was dominated by disposal to the LLWR. The value of the LLWR as a national asset was recognised by the 2007 UK Governmental Policy on management of solid LLW. At this time, analysis of the projected future demand for disposal at LLWR against facility capacity was undertaken identifying a credible risk that the capacity of LLWR would be insufficientmore » to meet future demand if existing waste management practices were perpetuated. To mitigate this risk a National Strategy for the management of LLW in the UK was developed by the Nuclear Decommissioning Authority (NDA), partnered with LLW Repository Ltd. (the organisation established in 2008 to manage the LLWR on behalf of NDA). This strategy was published in 2010 and identified three mechanisms for protection of the capacity of LLWR - application of the Waste Hierarchy by waste producers; optimised use of existing assets for LLW management; and opening of new waste treatment and disposal routes to enable diversion of waste away from the LLWR. (authors)« less
Mogasale, Vittal; Ramani, Enusa; Park, Il Yeon; Lee, Jung Seok
2017-09-02
A Typhoid Conjugate Vaccine (TCV) is expected to acquire WHO prequalification soon, which will pave the way for its use in many low- and middle-income countries where typhoid fever is endemic. Thus it is critical to forecast future vaccine demand to ensure supply meets demand, and to facilitate vaccine policy and introduction planning. We forecasted introduction dates for countries based on specific criteria and estimated vaccine demand by year for defined vaccination strategies in 2 scenarios: rapid vaccine introduction and slow vaccine introduction. In the rapid introduction scenario, we forecasted 17 countries and India introducing TCV in the first 5 y of the vaccine's availability while in the slow introduction scenario we forecasted 4 countries and India introducing TCV in the same time period. If the vaccine is targeting infants in high-risk populations as a routine single dose, the vaccine demand peaks around 40 million doses per year under the rapid introduction scenario. Similarly, if the vaccine is targeting infants in the general population as a routine single dose, the vaccine demand increases to 160 million doses per year under the rapid introduction scenario. The demand forecast projected here is an upper bound estimate of vaccine demand, where actual demand depends on various factors such as country priorities, actual vaccine introduction, vaccination strategies, Gavi financing, costs, and overall product profile. Considering the potential role of TCV in typhoid control globally; manufacturers, policymakers, donors and financing bodies should work together to ensure vaccine access through sufficient production capacity, early WHO prequalification of the vaccine, continued Gavi financing and supportive policy.
Ramani, Enusa; Park, Il Yeon; Lee, Jung Seok
2017-01-01
ABSTRACT A Typhoid Conjugate Vaccine (TCV) is expected to acquire WHO prequalification soon, which will pave the way for its use in many low- and middle-income countries where typhoid fever is endemic. Thus it is critical to forecast future vaccine demand to ensure supply meets demand, and to facilitate vaccine policy and introduction planning. We forecasted introduction dates for countries based on specific criteria and estimated vaccine demand by year for defined vaccination strategies in 2 scenarios: rapid vaccine introduction and slow vaccine introduction. In the rapid introduction scenario, we forecasted 17 countries and India introducing TCV in the first 5 y of the vaccine's availability while in the slow introduction scenario we forecasted 4 countries and India introducing TCV in the same time period. If the vaccine is targeting infants in high-risk populations as a routine single dose, the vaccine demand peaks around 40 million doses per year under the rapid introduction scenario. Similarly, if the vaccine is targeting infants in the general population as a routine single dose, the vaccine demand increases to 160 million doses per year under the rapid introduction scenario. The demand forecast projected here is an upper bound estimate of vaccine demand, where actual demand depends on various factors such as country priorities, actual vaccine introduction, vaccination strategies, Gavi financing, costs, and overall product profile. Considering the potential role of TCV in typhoid control globally; manufacturers, policymakers, donors and financing bodies should work together to ensure vaccine access through sufficient production capacity, early WHO prequalification of the vaccine, continued Gavi financing and supportive policy. PMID:28604164
de Jonge, Jan; Le Blanc, Pascale M; Peeters, Maria C W; Noordam, Hanneke
2008-10-01
Research on emotional labour in health care work has not yet revealed under what conditions emotional job demands have an impact on employee health and well-being. There is a need for more theory to unveil the black box of emotional labour processes. To test the moderating role of matching (i.e. emotional) and non-matching (i.e. cognitive) job resources in the relation between emotional job demands and employee health/well-being (i.e. emotional exhaustion, employee creativity, and work motivation). A cross-sectional survey with anonymous questionnaires was conducted. A large organization for residential elderly care with eight locations in an urban area in the Netherlands. Questionnaires were distributed to 1259 health care workers, of which 826 people returned the questionnaire (66% response rate). In addition to descriptive statistics, multivariate multiple regression analysis (LISREL 8.54) with cross-validation was conducted. Findings showed that emotional job resources moderated the relation between emotional job demands and health/well-being outcomes. Firstly, emotional job resources were able to moderate the relation between emotional job demands and emotional exhaustion. Secondly, both emotional job resources and, to a lesser extent, cognitive job resources were able to moderate the relation between emotional job demands and positive well-being outcomes (i.e. employee creativity and work motivation). Finally, cross-validation showed that parameter estimates did not vary across subsamples. Job resources could compensate for resources lost through meeting the requirements of emotional job demands, thereby reducing stress-reactions and increasing well-being. Providing health care workers with more, preferably matching, job resources could make emotional job demands less stressful, and even stimulating and challenging. Future longitudinal studies should investigate the interplay of emotional job demands and (matching) job resources more profoundly.
ERIC Educational Resources Information Center
Harvey, James
2006-01-01
What should Pennsylvania's educational leaders do to help students meet high standards while keeping costs under control? However this question is asked, the answer is always the same. Investment in preschool programs produces kindergarten students able to cope with school demands and better equipped to meet the demands of "No Child Left…
A Study of the Effects of Outsourcing Residence Life Programs on Student Satisfaction
ERIC Educational Resources Information Center
Manley, James H., Jr.
2011-01-01
Institutions of higher education are facing the difficult challenge of meeting increased demands for high quality education and services for students, while keeping costs low, and finding new sources of revenue to compensate for the decrease in funding from state and federal sources. In an attempt to meet these demands new strategies and…
ERIC Educational Resources Information Center
Jing,Lei; Cheng, Zixue; Wang, Junbo; Zhou, Yinghui
2011-01-01
Embedded system technologies are undergoing dramatic change. Competent embedded system engineers are becoming a scarce resource in the industry. Given this, universities should revise their specialist education to meet industry demands. In this paper, a spirally tight-coupled step-by-step educational method, based on an analysis of industry…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grenzeback, L. R.; Brown, A.; Fischer, M. J.
2013-03-01
Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analyticalmore » models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.« less
Can the World's Farmers Feed a World of 10 Billion People In Spite of Climate Change? (Invited)
NASA Astrophysics Data System (ADS)
Easterling, W. E.
2010-12-01
The rapid rise in agricultural productivity due to technological innovation and science-based methods was one of the great human achievements of the 20th century. We now face the prospect of needing to double agricultural output by the latter third of the current century to match the growth of demand for food and fiber—albeit the pace of growth in demand shows signs of slowing in the future. How farmers and the agricultural industry deal with climate change will, in large measure, determine success or failure. The Earth is committed to about the same amount of warming in the future as has been experienced over the past hundred years regardless of future greenhouse gas emissions trajectories; such will require adaptive responses by plants, animals, producers and consumers if society’s goals for global food security are to be met. In this paper, I summarize the state-of-the science of how climate change may affect our global agricultural production system. I review the latest thinking on the combined effects of rising atmospheric CO2 concentration and climate changes on crop productivity across the globe. Prospects for adaptation in agriculturally important regions are examined. While it appears that global food production will be adequate to meet global food demand in spite of advancing climate change, it is clear that many parts of the tropics and dry sub-tropics will see yield decreases and possible loss of comparative advantage. In those regions, continued large population growth and deleterious climate changes will contribute to declining per capita agricultural production. Increasing numbers of people at risk of hunger are probable there.
Agricultural production and water use scenarios in Cyprus under global change
NASA Astrophysics Data System (ADS)
Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia
2014-05-01
In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.
NASA Astrophysics Data System (ADS)
Critto, Andrea; Torresan, Silvia; Ronco, Paolo; Zennaro, Federica; Santini, Monia; Trabucco, Antonio; Marcomini, Antonio
2016-04-01
Climate change is already affecting the frequency of drought events which may threaten the current stocks of water resources and thus the availability of freshwater for the irrigation. The achievement of a sustainable equilibrium between the availability of water resources and the irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. In this sense, the improvement (of existing) and the development of (new) appropriate risk assessment methods and tools to evaluate the impact of drought events on irrigated crops is fundamental in order to assure that the agricultural yields are appropriate to meet the current and future food and market demand. This study evaluates the risk of hydrological drought on the irrigated agronomic compartment of Apulia, a semi-arid region in Southern Italy. We applied a stepwise Regional Risk Assessment (RRA) procedure, based on the consecutive analysis of hazards, exposure, vulnerability and risks, integrating the qualitative and quantitative available information. Future climate projections for the timeframes 2021-2050 and 2041-2070 were provided by COSMO-CLM under the radiative forcing RCP4.5 and RCP8.5. The run-off feeding the water stocks of the most important irrigation reservoirs in Apulia was then modeled with Arc-SWAT. Hence, the hazard analysis was carried out in order to estimate the degree of fulfillment of actual irrigation demand satisfied by water supply of different reservoirs in future scenarios. Vulnerability of exposed irrigated crops was evaluated depending on three factors accounting for crop yield variation vs water stress, water losses along the irrigation network, diversification of water supply. Resulting risk and vulnerability maps allowed: the identification of Reclamation Consortia at higher risk of not fulfilling their future irrigation demand (e.g. Capitanata Reclamation Consortia in RCP8.5 2041-2070 scenario); the ranking of most affected crops (e.g. fruit trees and vineyards); and finally, the characterization of vulnerability pattern of irrigation systems. Major achievements included the definition of a portfolio of science-driven adaptation strategies to reduce the risk pattern at both agronomic level (preferring crops with low vulnerability score, as olive groves) and at structural level (differentiating the water stocks and supplies and reducing losses and inefficiencies).
Physical Therapy Residency and Fellowship Education: Reflections on the Past, Present, and Future.
Furze, Jennifer A; Tichenor, Carol Jo; Fisher, Beth E; Jensen, Gail M; Rapport, Mary Jane
2016-07-01
The physical therapy profession continues to respond to the complex and changing landscape of health care to meet the needs of patients and the demands of patient care. Consistent with this evolution is the rapid development and expansion of residency and fellowship postprofessional programs. With the interested number of applicants exceeding the number of residency and fellowship slots available, a "critical period" in the educational process is emerging. The purposes of this perspective article are: (1) to analyze the state of residency and fellowship education within the profession, (2) to identify best practice elements from other health professions that are applicable to physical therapy residency and fellowship education, and (3) to propose a working framework grounded in common domains of competence to be used as a platform for dialogue, consistency, and quality across all residency and fellowship programs. Seven domains of competence are proposed to theoretically ground residency and fellowship programs and facilitate a more consistent approach to curricular development and assessment. Although the recent proliferation of residency and fellowship programs attempts to meet the demand of physical therapists seeking advanced educational opportunities, it is imperative that these programs are consistently delivering high-quality education with a common focus on delivering health care in the context of societal needs. © 2016 American Physical Therapy Association.
Agricultural Management Practices Explain Variation in Global Yield Gaps of Major Crops
NASA Astrophysics Data System (ADS)
Mueller, N. D.; Gerber, J. S.; Ray, D. K.; Ramankutty, N.; Foley, J. A.
2010-12-01
The continued expansion and intensification of agriculture are key drivers of global environmental change. Meeting a doubling of food demand in the next half-century will further induce environmental change, requiring either large cropland expansion into carbon- and biodiversity-rich tropical forests or increasing yields on existing croplands. Closing the “yield gaps” between the most and least productive farmers on current agricultural lands is a necessary and major step towards preserving natural ecosystems and meeting future food demand. Here we use global climate, soils, and cropland datasets to quantify yield gaps for major crops using equal-area climate analogs. Consistent with previous studies, we find large yield gaps for many crops in Eastern Europe, tropical Africa, and parts of Mexico. To analyze the drivers of yield gaps, we collected sub-national agricultural management data and built a global dataset of fertilizer application rates for over 160 crops. We constructed empirical crop yield models for each climate analog using the global management information for 17 major crops. We find that our climate-specific models explain a substantial amount of the global variation in yields. These models could be widely applied to identify management changes needed to close yield gaps, analyze the environmental impacts of agricultural intensification, and identify climate change adaptation techniques.
The U.S. Geological Survey Energy Resources Program
,
2006-01-01
The United States uses tremendous amounts of geologic energy resources. In 2004 alone, the United States consumed more than 7.4 billion barrels of oil, 21.9 trillion cubic feet of natural gas, and 1.1 billion short tons of coal. Forecasts indicate the Nation's need for energy resources will continue to grow, raising several questions: How much domestic and foreign petroleum resources are available to meet the growing energy demands of the Nation and world? Does the United States have coal deposits of sufficient quantity and quality to meet demand over the next century? What other geologic energy resources can be added to the U.S. energy mix? How do the occurrence and use of energy resources affect environmental quality and human health? Unbiased information from robust scientific studies is needed for sound energy policy and resource management decisions addressing these issues. The U.S. Geological Survey Energy Resources Program provides impartial, scientifically robust information to advance the understanding of geologically based energy resources including: petroleum (oil, natural gas, natural gas liquids), coal, gas hydrates, geothermal resources, oil shale, oil sands, uranium, and heavy oil and natural bitumen. This information can be used to contribute to plans for a secure energy future and to facilitate evaluation and responsible use of resources.
Closing Yield Gaps: How Sustainable Can We Be?
Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E; Kropp, Juergen P
2015-01-01
Global food production needs to be increased by 60-110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45-73%, P2O5-fertilizer by 22-46%, and K2O-fertilizer by 2-3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way management strategies for closing yield gaps are chosen and implemented.
Closing Yield Gaps: How Sustainable Can We Be?
Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E.; Kropp, Juergen P.
2015-01-01
Global food production needs to be increased by 60–110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45–73%, P2O5-fertilizer by 22–46%, and K2O-fertilizer by 2–3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way management strategies for closing yield gaps are chosen and implemented. PMID:26083456
Peak phosphorus - peak food? The need to close the phosphorus cycle.
Rhodes, Christopher J
2013-01-01
The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so.
First-order error budgeting for LUVOIR mission
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Knight, J. Scott; Feinberg, Lee D.; Bolcar, Matthew R.; Shaklan, Stuart B.
2017-09-01
Future large astronomical telescopes in space will have architectures that will have complex and demanding requirements to meet the science goals. The Large UV/Optical/IR Surveyor (LUVOIR) mission concept being assessed by the NASA/Goddard Space Flight Center is expected to be 9 to 15 meters in diameter, have a segmented primary mirror and be diffraction limited at a wavelength of 500 nanometers. The optical stability is expected to be in the picometer range for minutes to hours. Architecture studies to support the NASA Science and Technology Definition teams (STDTs) are underway to evaluate systems performance improvements to meet the science goals. To help define the technology needs and assess performance, a first order error budget has been developed. Like the JWST error budget, the error budget includes the active, adaptive and passive elements in spatial and temporal domains. JWST performance is scaled using first order approximations where appropriate and includes technical advances in telescope control.
Historical legacies, information and contemporary water science and management
Bain, Daniel J.; Arrigo, Jennifer A.S.; Green, Mark B.; Pellerin, Brian A.; Vörösmarty, Charles J.
2011-01-01
Hydrologic science has largely built its understanding of the hydrologic cycle using contemporary data sources (i.e., last 100 years). However, as we try to meet water demand over the next 100 years at scales from local to global, we need to expand our scope and embrace other data that address human activities and the alteration of hydrologic systems. For example, the accumulation of human impacts on water systems requires exploration of incompletely documented eras. When examining these historical periods, basic questions relevant to modern systems arise: (1) How is better information incorporated into water management strategies? (2) Does any point in the past (e.g., colonial/pre-European conditions in North America) provide a suitable restoration target? and (3) How can understanding legacies improve our ability to plan for future conditions? Beginning to answer these questions indicates the vital need to incorporate disparate data and less accepted methods to meet looming water management challenges.
Coskun, Aynur Aydin; Türker, Yavuz Özhan
2012-03-01
The global energy requirement for sustaining economic activities, meeting social needs and social development is increasing daily. Environmentally friendly, renewable energy resources are an alternative to the primary non-renewable energy resources, which devastate ecosystems in order to meet increasing demand. Among renewable energy sources such as hydropower, biopower, geothermal power and solar power, wind power offers distinct advantages to Turkey. There is an increasing tendency toward wind globally and the European Union adjusted its legal regulations in this regard. As a potential EU Member state, Turkey is going through a similar process. The number of institutional and legal regulations concerning wind power has increased in recent years; technical infrastructure studies were completed, and some important steps were taken in this regard. This study examines the way in which Turkey has developed support for wind power, presents a SWOT analysis of the wind power sector in Turkey and a projection was made for the concrete success expected to be accomplished in the future.
Complex metal borohydrides: multifunctional materials for energy storage and conversion
NASA Astrophysics Data System (ADS)
Mohtadi, Rana; Remhof, Arndt; Jena, Puru
2016-09-01
With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world’s energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.
Rational design of high-yield and superior-quality rice.
Zeng, Dali; Tian, Zhixi; Rao, Yuchun; Dong, Guojun; Yang, Yaolong; Huang, Lichao; Leng, Yujia; Xu, Jie; Sun, Chuan; Zhang, Guangheng; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Hu, Xingming; Guo, Longbiao; Xiong, Guosheng; Wang, Yonghong; Li, Jiayang; Qian, Qian
2017-03-20
Rice (Oryza sativa L.) is a staple food for more than half of the world's population. To meet the ever-increasing demand for food, because of population growth and improved living standards, world rice production needs to double by 2030 1 . The development of new elite rice varieties with high yield and superior quality is challenging for traditional breeding approaches, and new strategies need to be developed. Here, we report the successful development of new elite varieties by pyramiding major genes that significantly contribute to grain quality and yield from three parents over five years. The new varieties exhibit higher yield potential and better grain quality than their parental varieties and the China's leading super-hybrid rice, Liang-you-pai-jiu (LYP9 or Pei-ai 64S/93-11). Our results demonstrate that rational design is a powerful strategy for meeting the challenges of future crop breeding, particularly in pyramiding multiple complex traits.
Roadmap of optical communications
NASA Astrophysics Data System (ADS)
Agrell, Erik; Karlsson, Magnus; Chraplyvy, A. R.; Richardson, David J.; Krummrich, Peter M.; Winzer, Peter; Roberts, Kim; Fischer, Johannes Karl; Savory, Seb J.; Eggleton, Benjamin J.; Secondini, Marco; Kschischang, Frank R.; Lord, Andrew; Prat, Josep; Tomkos, Ioannis; Bowers, John E.; Srinivasan, Sudha; Brandt-Pearce, Maïté; Gisin, Nicolas
2016-06-01
Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications.
NASA Technical Reports Server (NTRS)
Stackpoole, Margaret M.; Ellerby, Donald T.; Gasch, Matt; Ventkatapathy, Ethiraj; Beerman, Adam; Boghozian, Tane; Gonzales, Gregory; Feldman, Jay; Peterson, Keith; Prabhu, Dinesh
2014-01-01
NASA's future robotic missions to Venus and other planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heatshield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS, however, its high density and thermal conductivity constrain mission planners to steep entries, high fluxes, pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose certification challenges in existing ground based test facilities. In 2012 the Game Changing Development Program in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System to meet the needs of NASA's most challenging entry missions. This presentation will summarize the maturation of the WTPS project.
Complex metal borohydrides: multifunctional materials for energy storage and conversion.
Mohtadi, Rana; Remhof, Arndt; Jena, Puru
2016-09-07
With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world's energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.
A Uniform Framework of Global Nuclear Materials Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupree, S.A.; Mangan, D.L.; Sanders, T.L
1999-04-20
Global Nuclear Materials Management (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective management of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must buildmore » on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures.« less
NASA Astrophysics Data System (ADS)
Kursun, Berrin
Energy use in developing countries is projected to equal and exceed the demand in developed countries in the next five years. Growing concern about environmental problems, depletion and price fluctuation of fossil fuels pushes the efforts for meeting energy demand in an environmentally friendly and sustainable way. Hence, it is essential to design energy systems consisting of centralized and localized options that generate the optimum energy mix to meet this increasing energy demand in a sustainable manner. In this study, we try to answer the question, "How can the energy demand in Rampura village be met sustainably?" via two centralized clean coal (CCC) technology and three localized energy technology options analyzed. We perform the analysis of these energy technologies through joint use of donor-side analysis technique emergy analysis (EA) and user-side analysis technique life cycle assessment (LCA). Sustainability of such an energy combination depends on its reliance on renewable inputs rather than nonrenewable or purchased inputs. CCC technologies are unsustainable energy systems dependent on purchased external inputs almost 100%. However, increased efficiency and significantly lower environmental impacts of CCC technologies can lead to more environmentally benign utilization of coal as an energy source. CCC technologies supply electricity at a lower price compared to the localized energy options investigated. Localized energy options analyzed include multi-crystalline solar PV, floating drum biogas digester and downdraft biomass gasifier. Solar PV has the lowest water and land use, however, solar electricity has the highest price with a high global warming potential (GWP). Contrary to general opinion, solar electricity is highly non-renewable. Although solar energy is a 100% renewable natural resource, materials utilized in the production of solar panels are mostly non-renewable purchased inputs causing the low renewability of solar electricity. Best sustainability results are obtained for full capacity operation in anaerobic digestion and for single fuel mode (SFM) operation in biomass gasification. For both of the processes, cost of electricity reduces 2-3 times if they are operated properly. However, there is not enough ipomea to run the biomass gasifier in SFM in Rampura, hence optimum operation scheme is ideal dual fuel mode (DFM) operation for the biomass gasifier analyzed. Emergy analysis of Rampura village and its subsystems reveal that sustainability is not achieved both at the village and in the subsystems levels since they are highly dependent on non-renewable material and energy inputs. To improve the overall sustainability in Rampura, dependency on purchased inputs fodder, fertilizer and diesel, non-renewable cooking fuel wood should be reduced. In satisfying energy demand in Rampura, biogas cooking and 70% biogas cooking scenarios perform better than electricity options in all of the objectives considered. Other than minimum land and water use objectives, electricity-RM and electricity-GM scenarios overlap and do not have a significant difference in terms of performance. Based on these results, the best option to meet the energy demand in Rampura would be to meet all the cooking energy with direct use of biogas. However, 70% biogas cooking scenario may be a more practical option since it both satisfies energy demand in an environmentally benign manner and satisfies the cultural needs of Rampura people. When 30% of cooking is performed by utilizing improved biomass cook stoves in the traditional way, the biogas potential becomes enough to meet all the remaining energy demand (70% of cooking, lighting and irrigation) in Rampura, hence energy security and reliability are ensured. Furthermore, utilizing biogas for cooking enables more agricultural residues to be available as fodder and eases the pressure on environment due to excessive woody biomass harvesting. Additionally, CH4 emissions from cow dung are avoided via production of biogas while the sanitation improves in the area. The GHG emissions related to cooking with inefficient cook stoves are also significantly mitigated through the use of biogas and improved biomass cook stoves. Energy demand in developing countries is subject to increase with increasing prosperity and consumerism. This increasing energy demand will necessitate the utilization of centralized energy options even in the rural areas of developing countries in the near future. Utilizing centralized clean coal technologies to meet this demand can ease energy related environmental problems, especially global warming significantly. And, adopting conscious and renewable energy oriented consumption patterns, avoiding consumption beyond the carrying capacity of these regions can contribute to achieve global level sustainability and ease the environmental burdens and problems in the developing countries.
Cassman, K G
1999-05-25
Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70-80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.
NASA Astrophysics Data System (ADS)
Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.
2017-07-01
Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.
Future trends in the supply and demand for radiation oncology physicists.
Mills, Michael D; Thornewill, Judah; Esterhay, Robert J
2010-04-12
Significant controversy surrounds the 2012 / 2014 decision announced by the Trustees of the American Board of Radiology (ABR) in October of 2007. According to the ABR, only medical physicists who are graduates of a Commission on Accreditation of Medical Physics Education Programs, Inc. (CAMPEP) accredited academic or residency program will be admitted for examination in the years 2012 and 2013. Only graduates of a CAMPEP accredited residency program will be admitted for examination beginning in the year 2014. An essential question facing the radiation oncology physics community is an estimation of supply and demand for medical physicists through the year 2020. To that end, a Demand & Supply dynamic model was created using STELLA software. Inputs into the model include: a) projected new cancer incidence and prevalence 1990-2020; b) AAPM member ages and retirement projections 1990-2020; c) number of ABR physics diplomates 1990-2009; d) number of patients per Qualified Medical Physicist from Abt Reports I (1995), II (2002) and III (2008); e) non-CAMPEP physicists trained 1990-2009 and projected through 2014; f) CAMPEP physicists trained 1993-2008 and projected through 2014; and g) working Qualified Medical Physicists in radiation oncology in the United States (1990-2007). The model indicates that the number of qualified medical physicists working in radiation oncology required to meet demand in 2020 will be 150-175 per year. Because there is some elasticity in the workforce, a portion of the work effort might be assumed by practicing medical physicists. However, the minimum number of new radiation oncology physicists (ROPs) required for the health of the profession is estimated to be 125 per year in 2020. The radiation oncology physics community should plan to build residency programs to support these numbers for the future of the profession.
Simaria, Ana S; Hassan, Sally; Varadaraju, Hemanthram; Rowley, Jon; Warren, Kim; Vanek, Philip; Farid, Suzanne S
2014-01-01
For allogeneic cell therapies to reach their therapeutic potential, challenges related to achieving scalable and robust manufacturing processes will need to be addressed. A particular challenge is producing lot-sizes capable of meeting commercial demands of up to 109 cells/dose for large patient numbers due to the current limitations of expansion technologies. This article describes the application of a decisional tool to identify the most cost-effective expansion technologies for different scales of production as well as current gaps in the technology capabilities for allogeneic cell therapy manufacture. The tool integrates bioprocess economics with optimization to assess the economic competitiveness of planar and microcarrier-based cell expansion technologies. Visualization methods were used to identify the production scales where planar technologies will cease to be cost-effective and where microcarrier-based bioreactors become the only option. The tool outputs also predict that for the industry to be sustainable for high demand scenarios, significant increases will likely be needed in the performance capabilities of microcarrier-based systems. These data are presented using a technology S-curve as well as windows of operation to identify the combination of cell productivities and scale of single-use bioreactors required to meet future lot sizes. The modeling insights can be used to identify where future R&D investment should be focused to improve the performance of the most promising technologies so that they become a robust and scalable option that enables the cell therapy industry reach commercially relevant lot sizes. The tool outputs can facilitate decision-making very early on in development and be used to predict, and better manage, the risk of process changes needed as products proceed through the development pathway. Biotechnol. Bioeng. 2014;111: 69–83. © 2013 Wiley Periodicals, Inc. PMID:23893544
Nishikawa, Tracy
2013-01-01
The Santa Rosa Plain is home to approximately half of the population of Sonoma County, California, and faces growth in population and demand for water. Water managers are confronted with the challenge of meeting the increasing water demand with a combination of water sources, including local groundwater, whose future availability could be uncertain. To meet this challenge, water managers are seeking to acquire the knowledge and tools needed to understand the likely effects of future groundwater development in the Santa Rosa Plain and to identify efficient strategies for surface- and groundwater management that will ensure the long-term viability of the water supply. The U.S. Geological Survey, in cooperation with the Sonoma County Water Agency and other stakeholders in the area (cities of Cotati, Rohnert Park, Santa Rosa, and Sebastopol, town of Windsor, Cal-American Water Company, and the County of Sonoma), undertook this study to characterize the hydrology of the Santa Rosa Plain and to develop tools to better understand and manage the groundwater system. The objectives of the study are: (1) to develop an updated assessment of the hydrogeology and geochemistry of the Santa Rosa Plain; (2) to develop a fully coupled surface-water and groundwater-flow model for the Santa Rosa Plain watershed; and (3) to evaluate the potential hydrologic effects of alternative groundwater-management strategies for the basin. The purpose of this report is to describe the surface-water and groundwater hydrology, hydrogeology, and water-quality characteristics of the Santa Rosa Plain watershed and to develop a conceptual model of the hydrologic system in support of the first objective. The results from completing the second and third objectives will be described in a separate report.
Simaria, Ana S; Hassan, Sally; Varadaraju, Hemanthram; Rowley, Jon; Warren, Kim; Vanek, Philip; Farid, Suzanne S
2014-01-01
For allogeneic cell therapies to reach their therapeutic potential, challenges related to achieving scalable and robust manufacturing processes will need to be addressed. A particular challenge is producing lot-sizes capable of meeting commercial demands of up to 10(9) cells/dose for large patient numbers due to the current limitations of expansion technologies. This article describes the application of a decisional tool to identify the most cost-effective expansion technologies for different scales of production as well as current gaps in the technology capabilities for allogeneic cell therapy manufacture. The tool integrates bioprocess economics with optimization to assess the economic competitiveness of planar and microcarrier-based cell expansion technologies. Visualization methods were used to identify the production scales where planar technologies will cease to be cost-effective and where microcarrier-based bioreactors become the only option. The tool outputs also predict that for the industry to be sustainable for high demand scenarios, significant increases will likely be needed in the performance capabilities of microcarrier-based systems. These data are presented using a technology S-curve as well as windows of operation to identify the combination of cell productivities and scale of single-use bioreactors required to meet future lot sizes. The modeling insights can be used to identify where future R&D investment should be focused to improve the performance of the most promising technologies so that they become a robust and scalable option that enables the cell therapy industry reach commercially relevant lot sizes. The tool outputs can facilitate decision-making very early on in development and be used to predict, and better manage, the risk of process changes needed as products proceed through the development pathway. © 2013 Wiley Periodicals, Inc.
Design and Development of the WVU Advanced Technology Satellite for Optical Navigation
NASA Astrophysics Data System (ADS)
Straub, Miranda
In order to meet the demands of future space missions, it is beneficial for spacecraft to have the capability to support autonomous navigation. This is true for both crewed and uncrewed vehicles. For crewed vehicles, autonomous navigation would allow the crew to safely navigate home in the event of a communication system failure. For uncrewed missions, autonomous navigation reduces the demand on ground-based infrastructure and could allow for more flexible operation. One promising technique for achieving these goals is through optical navigation. To this end, the present work considers how camera images of the Earth's surface could enable autonomous navigation of a satellite in low Earth orbit. Specifically, this study will investigate the use of coastlines and other natural land-water boundaries for navigation. Observed coastlines can be matched to a pre-existing coastline database in order to determine the location of the spacecraft. This paper examines how such measurements may be processed in an on-board extended Kalman filter (EKF) to provide completely autonomous estimates of the spacecraft state throughout the duration of the mission. In addition, future work includes implementing this work on a CubeSat mission within the WVU Applied Space Exploration Lab (ASEL). The mission titled WVU Advanced Technology Satellite for Optical Navigation (WATSON) will provide students with an opportunity to experience the life cycle of a spacecraft from design through operation while hopefully meeting the primary and secondary goals defined for mission success. The spacecraft design process, although simplified by CubeSat standards, will be discussed in this thesis as well as the current results of laboratory testing with the CubeSat model in the ASEL.
Space Station laboratory module power loading analysis
NASA Astrophysics Data System (ADS)
Fu, S. J.
1994-07-01
The electrical power system of Space Station Freedom is an isolated electrical power generation and distribution network designed to meet the demands of a large number of electrical loads. An algorithm is developed to determine the power bus loading status under normal operating conditions to ensure the supply meets demand. The probabilities of power availability for payload operations (experiments) are also derived.
USDA-ARS?s Scientific Manuscript database
Climate change will add a new stress to our ability to produce food and supply water and energy for the expanding population. There is an emerging gap between the current production trends in food commodities around the world and the projected needs to meet the demands for the world population. This...
Quantifying Impact of Biofeedstock Production on Hydrology/Water Quality in Midwest USA
NASA Astrophysics Data System (ADS)
Chaubey, Indrajeet; Engel, Bernard; Thomas, Mark; Raj, Cibin; Saraswat, Dharmendra
2010-05-01
The production of biofeedstocks for biofuels is likely to impact the hydrology and water quality of watersheds. Communities potentially impacted are increasingly concerned, and at present, little is known regarding the magnitude of impacts of biofeedstock production on hydrology and water quality. We have initiated a national facilitation project to answer the following questions: What are the unintended environmental consequences of increased corn production to meet biofuel demands? What are the environmental impacts of various second generation biofeedstock production systems to meet cellulosic ethanol demands? Would the management of cropping systems involving corn silage meet cellulosic ethanol demands with minimal environmental impact? What are the broad-scale water quality implications of energy crops, such as switchgrass, grown for bioenergy production on highly erodible soils? This presentation will discuss development of multi-regional agricultural land management practices that can be implemented to mitigate potential negative environmental impacts associated with biofeedstock production while meeting the biofuel production demand. Specifically, we will discuss how watershed scale modeling can be utilized to evaluate the environmental impacts of various biofeedstock production strategies. We will also discuss regional differences in alternative biofeedstock production and associated hydrologic/water quality impacts.
Managing critical materials with a technology-specific stocks and flows model.
Busch, Jonathan; Steinberger, Julia K; Dawson, David A; Purnell, Phil; Roelich, Katy
2014-01-21
The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model's potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%.
Managing Critical Materials with a Technology-Specific Stocks and Flows Model
2013-01-01
The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model’s potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%. PMID:24328245
Designing Classroom Meetings for the Middle School Child.
ERIC Educational Resources Information Center
Dougherty, A. Michael
1980-01-01
Classroom meetings are an important way to meet the demand of developmental guidance that guidance and counseling "is for all kids." Classroom meeting experiences help students cope and deal with their lives by providing opportunities for self-awareness and self-affirmation. (Author)
Integrated modeling approach for optimal management of water, energy and food security nexus
NASA Astrophysics Data System (ADS)
Zhang, Xiaodong; Vesselinov, Velimir V.
2017-03-01
Water, energy and food (WEF) are inextricably interrelated. Effective planning and management of limited WEF resources to meet current and future socioeconomic demands for sustainable development is challenging. WEF production/delivery may also produce environmental impacts; as a result, green-house-gas emission control will impact WEF nexus management as well. Nexus management for WEF security necessitates integrated tools for predictive analysis that are capable of identifying the tradeoffs among various sectors, generating cost-effective planning and management strategies and policies. To address these needs, we have developed an integrated model analysis framework and tool called WEFO. WEFO provides a multi-period socioeconomic model for predicting how to satisfy WEF demands based on model inputs representing productions costs, socioeconomic demands, and environmental controls. WEFO is applied to quantitatively analyze the interrelationships and trade-offs among system components including energy supply, electricity generation, water supply-demand, food production as well as mitigation of environmental impacts. WEFO is demonstrated to solve a hypothetical nexus management problem consistent with real-world management scenarios. Model parameters are analyzed using global sensitivity analysis and their effects on total system cost are quantified. The obtained results demonstrate how these types of analyses can be helpful for decision-makers and stakeholders to make cost-effective decisions for optimal WEF management.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1979-01-01
The Indiana State Board of Health is developing a water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Wildcat Creek was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand is the most significant factor affecting the dissolved-oxygen concentrations in Wildcat Creek during summer low flows. The Indiana stream dissolved-oxygen standard should not be violated if the Kokomo wastewater-treatment facility meets its current National Pollution Discharge Elimination System permit restrictions (average monthly 5-day biochemical-oxygen demand of 5 milligrams per liter and maximum weekly 5-day biochemical-oxygen demand of 7.5 milligrams per liter) and benthic-oxygen demand becomes negligible. Ammonia-nitrogen toxicity may also be a water-quality limitation in Wildcat Creek. Ammonia-nitrogen waste loads for the Kokomo wastewater-treatment facility, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State standard (2.5 milligrams per liter during summer months and 4.0 milligrams per liter during winter months). (Kosco-USGS)
Application of Demand Analysis in Marketing Continuing Education.
ERIC Educational Resources Information Center
Waters, Elzberry, Jr.
This study investigated the feasibility of applying economic demand analysis (especially elasticity of demand) in marketing George Washington University off-campus degree programs. In the case under study, a supplemental budget request had to be submitted to meet expenses incurred by an unforeseen increase in demand for graduate and undergraduate…
International Demand for American Higher Education: An Extension.
ERIC Educational Resources Information Center
Mixon, J. Wilson, Jr.; Wan, Weidong
1990-01-01
A study of the relationship of population and income in Asian countries and Organization of Petroleum Exporting Countries (OPEC) members to their demand for American higher education found that both population and income significantly affect demand, but not proportionally. Findings suggest countries meet most change in citizens' demand with…
Hutson, Susan S.
2008-01-01
Future municipal water demand was estimated for the Bedford, Coffee, Marshall, and Maury-southern Williamson water-service areas in the upper Duck River watershed in central Tennessee through 2030. The Duck River, a primary source of municipal water, provided a total of 24.3 million gallons per day (Mgal/d) or 92 percent of the total water use in the study area during 2000. Municipal water use increased 46 percent from 1981 to 2000 (from 18.0 to 26.3 Mgal/d). Water demand for municipal use is expected to continue to increase through 2030 because of the recent intensive and anticipated growth in the residential and commercial sectors. Constant-rate models were used to estimate future municipal water demand. Data on residential and nonresidential billing accounts and estimates of public use and losses were used to calibrate the models. Two watershed scenarios for each water-supply system that depends on the Duck River for supply were simulated. Scenario 1 considered monthly water demand during typical weather conditions as represented by monthly per account use during 2003 and a rate of growth in customer accounts from 1999 to 2003. Results showed that total municipal water use could increase about 104 percent to 51 Mgal/d by 2030, residential water use could increase about 140 percent to 24 Mgal/d, nonresidential water use could increase about 110 percent to 17 Mgal/d, and public use and losses could increase about 83 percent to 11 Mgal/d. Scenario 2 considered monthly water demand during drought conditions as represented by monthly per account use during 2000 and recent growth in customer accounts from 1999 to 2003 or, for selected water-supply systems, an increasing rate of growth. Results showed that total municipal water use could increase about 120 percent to 55 Mgal/d, residential water use could increase about 160 percent to 26 Mgal/d, nonresidential water use could increase about 122 percent to 18 Mgal/d, and public use and losses could double and increase to 12 Mgal/d. For both scenarios the model assumed that the Duck River would supply all future surface-water needs in the study area, that ground-water resources would be sufficient to meet growing demands of the water-supply systems that depend on ground water, and that the amount of surface water sold to water-supply systems primarily dependent on ground water would remain the same through 2030.
NASA Astrophysics Data System (ADS)
Nadal, Laia; Svaluto Moreolo, Michela; Fàbrega, Josep M.; Vílchez, F. Javier
2017-07-01
In this paper, we propose an advanced programmable sliceable-bandwidth variable transceiver (S-BVT) with polarization division multiplexing (PDM) capability as a key enabler to fulfill the requirements for future 5G networks. Thanks to its cost-effective optoelectronic front-end based on orthogonal frequency division multiplexing (OFDM) technology and direct-detection (DD), the proposed S-BVT becomes suitable for next generation highly flexible and scalable metro networks. Polarization beam splitters (PBSs) and controllers (PCs), available on-demand, are included at the transceivers and at the network nodes, further enhancing the system flexibility and promoting an efficient use of the spectrum. 40G-100G PDM transmission has been experimentally demonstrated, within a 4-node photonic mesh network (ADRENALINE testbed), implementing a simplified equalization process.
The business case for transitioning to safer chemicals.
McFadden, Roger D
2011-01-01
Emerging domestic and international chemical regulations and a heightened consumer awareness of chemicals of concern in products is challenging American businesses to reevaluate and reconsider their approaches to supply chain management and product design. Some of these companies recognize business opportunities and are responding proactively with innovative strategies and tactics. This article describes steps that Staples Inc., the world's largest office products provider, is taking to meet demand for products that are safer and more sustainable. In trying to meet the demand for safer products, Staples faces significant barriers, including the complexity of supply chains, data gaps, and confidential business information. New collaborations between companies, government, and advocates, and improved tools and criteria for defining safer products enhance the ability of businesses, like Staples, to meet new consumer demands.
Assessing the Institution of the Nuclear Nonproliferation Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toomey, Christopher
2010-05-14
The nuclear nonproliferation regime is facing a crisis of effectiveness. During the Cold War, the regime was relatively effective in stemming the proliferation of nuclear weapons and building an institutional structure that could, under certain conditions, ensure continued success. However, in the evolving global context, the traditional approaches are becoming less appropriate. Globalization has introduced new sets of stresses on the nonproliferation regime, such as the rise of non-state actors, broadening extensity and intensity of supply chains, and the multipolarization of power. This evolving global context demands an analytical and political flexibility in order to meet future threats. Current institutionalmore » capabilities established during the Cold War are now insufficient to meet the nonproliferation regime’s current and future needs. The research was based on information gathered through interviews and reviews of the relevant literature, and two dominant themes emerged. First, that human security should be integrated into the regime to account for the rise of non-state actors and networked violence. Second, confidence in the regime’s overall effectiveness has eroded at a time where verification-based confidence is becoming more essential. The research postulates that a critical analysis of the regime that fully utilizes institutional theory, with its focus on rules, normative structures, and procedures will be essential to adapting the regime to the current global context, building mechanisms for generating trust, creating better enforcement, and providing flexibility for the future.« less
Development of an inflow controlled environmental flow regime for a Norwegian river
NASA Astrophysics Data System (ADS)
Alfredsen, Knut; Harby, Atle; Linnansaari, Tommi; Ugedal, Ola
2010-05-01
For most regulated rivers in Norway the common environmental flow regime is static and shows very little variation over the year. Recent research indicate that flow regimes that follow the natural inflow variation can meet the ecological and social demands for water in a better way. The implementation of a variable environmental flow regime provides many challenges both related to defining flow for various species and user groups in the river, but also due to practical implementation, legislation and control. A inflow controlled flow regime is developed for a Norwegian river regulated for hydro power as a pilot study. The regime should meet ecological demands from Atlantic salmon and brown trout, recreational use of water and visual impression of the river. This should be achieved preferably without altering the energy production in the hydro power system. The flow regime is developed for wet, dry and normal discharge conditions based on unregulated inflow to the catchment. The development of the seasonal flow requirements for various targets identified is done using a modification of the Building Block Method. Several options are tested regarding the integration of the flow regime into the operational strategy of the hydropower plant, both using real time prognosis of inflow and combinations with historical data. An important topic in selecting the release strategy is how it meets current Norwegian legislation and how well future documentation and environmental control can be carried out. An evaluation protocol is also proposed for the flow regime to test if the ecological targets are met.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grenzeback, L. R.; Brown, A.; Fischer, M. J.
2013-03-01
Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use. After describing federal policy actions that could influencemore » freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.« less
Nelson, Erik; Sander, Heather; Hawthorne, Peter; Conte, Marc; Ennaanay, Driss; Wolny, Stacie; Manson, Steven; Polasky, Stephen
2010-12-15
As the global human population grows and its consumption patterns change, additional land will be needed for living space and agricultural production. A critical question facing global society is how to meet growing human demands for living space, food, fuel, and other materials while sustaining ecosystem services and biodiversity [1]. We spatially allocate two scenarios of 2000 to 2015 global areal change in urban land and cropland at the grid cell-level and measure the impact of this change on the provision of ecosystem services and biodiversity. The models and techniques used to spatially allocate land-use/land-cover (LULC) change and evaluate its impact on ecosystems are relatively simple and transparent [2]. The difference in the magnitude and pattern of cropland expansion across the two scenarios engenders different tradeoffs among crop production, provision of species habitat, and other important ecosystem services such as biomass carbon storage. For example, in one scenario, 5.2 grams of carbon stored in biomass is released for every additional calorie of crop produced across the globe; under the other scenario this tradeoff rate is 13.7. By comparing scenarios and their impacts we can begin to identify the global pattern of cropland and irrigation development that is significant enough to meet future food needs but has less of an impact on ecosystem service and habitat provision. Urban area and croplands will expand in the future to meet human needs for living space, livelihoods, and food. In order to jointly provide desired levels of urban land, food production, and ecosystem service and species habitat provision the global society will have to become much more strategic in its allocation of intensively managed land uses. Here we illustrate a method for quickly and transparently evaluating the performance of potential global futures.
The Future of Low-Carbon Transportation Fuels
NASA Astrophysics Data System (ADS)
Yang, Christopher; Yeh, Sonia
2011-11-01
Petroleum fuel uses make up essentially all of transportation fuel usage today and will continue to dominate transportation fuel usage well into future without any major policy changes. This chapter focuses on low-carbon transportation fuels, specifically, biofuels, electricity and hydrogen, that are emerging options to displace petroleum based fuels. The transition to cleaner, lower carbon fuel sources will need significant technology advancement, and sustained coordination efforts among the vehicle and fuel industry and policymakers/regulators over long period of time in order to overcome market barriers, consumer acceptance, and externalities of imported oil. We discuss the unique infrastructure challenges, and compare resource, technology, economics and transitional issues for each of these fuels. While each fuel type has important technical and implementation challenges to overcome (including vehicle technologies) in order to contribute a large fraction of our total fuel demand, it is important to note that a portfolio approach will give us the best chance of meeting stringent environmental and energy security goals for a sustainable transportation future.
In-service health monitoring of composite structures
NASA Technical Reports Server (NTRS)
Pinto, Gino A.; Ventres, C. S.; Ginty, Carol A.; Chamis, Christos C.
1990-01-01
The aerospace industry is witnessing a vast utilization of composites in critical structural applications and anticipates even more use of them in future aircraft. Therefore, a definite need exists for a composite health monitoring expert system to meet today's current needs and tomorrow's future demands. The primary goal for this conceptual health monitoring system is functional reliably for in-service operation in the environments of various composite structures. The underlying philosophy of this system is to utilize proven vibration techniques to assess the structural integrity of a fibrous composite. Statistical methods are used to determine if the variances in the measured data are acceptable for making a reliable decision on the health status of the composite. The flexible system allows for algorithms describing any composite fatigue or damage behavior characteristic to be provided as an input to the system. Alert thresholds and variances can also be provided as an input to this system and may be updated to allow for future changes/refinements in the composite's structural integrity behavior.
Canadian pediatric gastroenterology workforce: Current status, concerns and future projections
Morinville, Véronique; Drouin, Éric; Lévesque, Dominique; Espinosa, Victor M; Jacobson, Kevan
2007-01-01
BACKGROUND: There is concern that the Canadian pediatric gastroenterology workforce is inadequate to meet health care demands of the pediatric population. The Canadian Association of Gastroenterology Pediatric Committee performed a survey to determine characteristics and future plans of the Canadian pediatric gastroenterology workforce and trainees. METHODS: Estimates of total and pediatric populations were obtained from the 2001 Census of Population, Statistics Canada (with estimates to July 1, 2005). Data on Canadian pediatric gastroenterologists, including clinical full-time equivalents, sex, work interests, opinions on workforce adequacy, retirement plans, fellowship training programs and future employment plans of fellows, were gathered through e-mail surveys and telephone correspondence in 2005 and 2006. RESULTS: Canada had an estimated population of 32,270,507 in 2005 (6,967,853 people aged zero to 17 years). The pediatric gastroenterology workforce was estimated at 9.2 specialists per million children. Women accounted for 50% of the workforce. Physician to pediatric population ratios varied, with Alberta demonstrating the highest and Saskatchewan the lowest ratios (1:69,404 versus 1:240,950, respectively). Between 1998 and 2005, Canadian pediatric gastroenterology fellowship programs trained 65 fellows (65% international trainees). Twenty-two fellows (34%) entered the Canadian workforce. CONCLUSIONS: The survey highlights the variable and overall low numbers of pediatric gastroenterologists across Canada, an increasingly female workforce, a greater percentage of part-time physicians and a small cohort of Canadian trainees. In conjunction with high projected retirement rates, greater demands on the work-force and desires to partake in nonclinical activities, there is concern for an increasing shortage of pediatric gastroenterologists in Canada in future years. PMID:17948136
DOT National Transportation Integrated Search
2001-08-01
Travel demand management (TDM) is a set of procedures that have been shown to alleviate unlimited use of automobiles. Demand is managed by limiting highway capacity to meet demand to travel by car and providing incentives or disincentives to increase...
Leader development transformation in the Army Nurse Corps.
Funari, Tamara S; Ford, Kathleen; Schoneboom, Bruce A
2011-01-01
The Army Nurse (AN) Corps is undergoing a historic transformation. Under the leadership of its Chief, MG Patricia Horoho, the Corps developed and implemented the AN Campaign Plan to insure that the Corps has the right capability and capacity to meet the current and future needs of the US Army. This article describes the work conducted by the AN Corps Leadership Imperative Action Team (Leader IAT) to develop full-spectrum leaders for the future. The mission of the Leader IAT is derived from both the AN Campaign plan as well as the operational objectives defined in the AN balanced scorecard. As a result of the analysis conducted during preparation of the AN Campaign Plan, several key gaps were identified regarding the Army Nurse Corps' ability to match leadership talents with the diverse demands of current missions, as well as its adaptability and flexibility to be prepared for unknown future missions. This article also introduces the Leadership Capability Map and other initiatives implemented to ensure the development of full-spectrum leaders who will be effective in the future military healthcare environment.
NASA Astrophysics Data System (ADS)
Yang, Xiaoli; Zheng, Weifei; Ren, Liliang; Zhang, Mengru; Wang, Yuqian; Liu, Yi; Yuan, Fei; Jiang, Shanhu
2018-02-01
The Yellow River Basin (YRB) is the largest river basin in northern China, which has suffering water scarcity and drought hazard for many years. Therefore, assessments the potential impacts of climate change on the future streamflow in this basin is very important for local policy and planning on food security. In this study, based on the observations of 101 meteorological stations in YRB, equidistant CDF matching (EDCDFm) statistical downscaling approach was applied to eight climate models under two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5). Variable infiltration capacity (VIC) model with 0.25° × 0.25° spatial resolution was developed based on downscaled fields for simulating streamflow in the future period over YRB. The results show that with the global warming trend, the annual streamflow will reduced about 10 % during the period of 2021-2050, compared to the base period of 1961-1990 in YRB. There should be suitable water resources planning to meet the demands of growing populations and future climate changing in this region.
The next generation of command post computing
NASA Astrophysics Data System (ADS)
Arnold, Ross D.; Lieb, Aaron J.; Samuel, Jason M.; Burger, Mitchell A.
2015-05-01
The future of command post computing demands an innovative new solution to address a variety of challenging operational needs. The Command Post of the Future is the Army's primary command and control decision support system, providing situational awareness and collaborative tools for tactical decision making, planning, and execution management from Corps to Company level. However, as the U.S. Army moves towards a lightweight, fully networked battalion, disconnected operations, thin client architecture and mobile computing become increasingly essential. The Command Post of the Future is not designed to support these challenges in the coming decade. Therefore, research into a hybrid blend of technologies is in progress to address these issues. This research focuses on a new command and control system utilizing the rich collaboration framework afforded by Command Post of the Future coupled with a new user interface consisting of a variety of innovative workspace designs. This new system is called Tactical Applications. This paper details a brief history of command post computing, presents the challenges facing the modern Army, and explores the concepts under consideration for Tactical Applications that meet these challenges in a variety of innovative ways.
Current development of biorefinery in China.
Tan, Tianwei; Shang, Fei; Zhang, Xu
2010-01-01
To meet the demand of its fast growing economy, China has become already the second largest buyer of crude oil. China is facing critical problems of energy shortage and environment deterioration. Rational and efficient energy use and environment protection are both getting more attention in China. Biomass energy is renewable energy made from biological sources. China's biomass resources are abundant, which could provide energy for future social and economic development. However technologies for biomass resource conversion in China are still just beginning. In this paper, current biomass resource distribution and technologies of biomass energy, including power generation, biofuel production and biomass-based chemical production are reviewed. Copyright 2010 Elsevier Inc. All rights reserved.
Straus, Sharon E; Sales, Anne; Wensing, Michel; Michie, Susan; Kent, Bridie; Foy, Robbie
2015-09-28
Alongside the growth in interest in implementation science, there has been a marked increase in training programs, educational courses, degrees, and other offerings in implementation research and practice to meet the demand for this expertise. We believe that the science of capacity building has matured but that we can advance it further by shining light on excellent work in this area and by highlighting gaps for future research. At Implementation Science, we regularly receive manuscripts that describe or evaluate training materials, competencies, and competency development in implementation curricula. We are announcing a renewed interest in manuscripts in this area, with specifications described below.
Commercial Nuclear Power Industry: Assessing and Meeting the Radiation Protection Workforce Needs.
Hiatt, Jerry W
2017-02-01
This paper will provide an overview of the process used by the commercial nuclear power industry in assessing the status of existing industry staffing and projecting future supply demand needs. The most recent Nuclear Energy Institute-developed "Pipeline Survey Results" will be reviewed with specific emphasis on the radiation protection specialty. Both radiation protection technician and health physicist specialties will be discussed. The industry-initiated Nuclear Uniform Curriculum Program will be reviewed as an example of how the industry has addressed the need for developing additional resources. Furthermore, the reality of challenges encountered in maintaining the needed number of health physicists will also be discussed.
Ad hoc Laser networks component technology for modular spacecraft
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Shi, Dele; Ma, Zongfeng; Shen, Jingshi
2016-03-01
Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.
Ad hoc laser networks component technology for modular spacecraft
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Shi, Dele; Shen, Jingshi
2017-10-01
Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.
Coordinating Caregiving using Smartphone Technology: a Collaborative Software Prototype Approach.
Lin, Zheng-Shuai; McKinstry, Brian; Anderson, Stuart
2014-01-01
Though the proportion of older population is growing and the number of people with long-term conditions is increasing, there is unlikely to be enough caregivers for those older people or people with long-term conditions who wish to live at home. Thus how to ensure sufficient caregiving events to meet the growing demand in home healthcare sector becomes a challenge. A collaborative software prototype utilising smartphone technology has been proposed in this study to provide coordinated caregiving. The system in future may both spread the load among family caregivers and professional caregivers while ensuring that the patient's needs are always covered.
CANADARM: 20 Years of Mission Success Through Adaptation
NASA Technical Reports Server (NTRS)
Hiltz, Michael; Rice, Craig; Boyle, Keith; Allison, Ronald
2001-01-01
As part of the National Aeronautics and Space Administration's Space Shuttle Transportation System, the Shuttle Remote Manipulator System has played a vital role in the success of 60 space missions. This paper concludes that the robustness and success of the Canadarm over its 20 year life can be attributed to the adaptations that have been made to it to meet the increased demands that have been placed on the system. Enhancements that have been made to the arm to improve its operational capabilities, reduce risk and extend its life are examined in this paper. Potential future enhancements based on operational trends are also discussed.
Tree physiology research in a changing world.
Kaufmann, Merrill R.; Linder, Sune
1996-01-01
Changes in issues and advances in methodology have contributed to substantial progress in tree physiology research during the last several decades. Current research focuses on process interactions in complex systems and the integration of processes across multiple spatial and temporal scales. An increasingly important challenge for future research is assuring sustainability of production systems and forested ecosystems in the face of increased demands for natural resources and human disturbance of forests. Meeting this challenge requires significant shifts in research approach, including the study of limitations of productivity that may accompany achievement of system sustainability, and a focus on the biological capabilities of complex land bases altered by human activity.
Philippines' downstream sector poised for growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-11
This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.
Bexfield, Laura M.; McAda, Douglas P.
2003-01-01
Future conditions in the Santa Fe Group aquifer system through 2040 were simulated using the most recent revision of the U.S. Geological Survey groundwater- flow model for the Middle Rio Grande Basin. Three simulations were performed to investigate the likely effects of different scenarios of future groundwater pumping by the City of Albuquerque on the ground-water system. For simulation I, pumping was held constant at known year-2000 rates. For simulation II, pumping was increased to simulate the use of pumping to meet all projected city water demand through 2040. For simulation III, pumpingwas reduced in accordance with a plan by the City of Albuquerque to use surfacewater to meet most of the projectedwater demand. The simulations indicate that for each of the three pumping scenarios, substantial additional watertable declines would occur in some areas of the basin through 2040. However, the reduced pumping scenario of simulation III also results in water-table rise over a broad area of the city. All three scenarios indicate that the contributions of aquifer storage and river leakage to the ground-water system would change between 2000 and 2040. Comparisons among the results for simulations I, II, and III indicate that the various pumping scenarios have substantially different effects on water-level declines in the Albuquerque area and on the contribution of each water-budget component to the total budget for the ground-water system. Between 2000 and 2040, water-level declines for continued pumping at year-2000 rates are as much as 120 feet greater than for reduced pumping; water-level declines for increased pumping to meet all projected city demand are as much as 160 feet greater. Over the same time period, reduced pumping results in retention in aquifer storage of about 1,536,000 acre-feet of ground water as compared with continued pumping at year- 2000 rates and of about 2,257,000 acre-feet as compared with increased pumping. The quantity of water retained in the Rio Grande as a result of reduced pumping and the associated decrease in induced recharge from the river is about 731,000 acre-feet as compared with continued pumping at year-2000 rates and about 872,000 acre-feet as compared with increased pumping. Reduced pumping results in slight increases in the quantity of water lost from the groundwater system to evapotranspiration and agriculturaldrain flow compared with the other pumping scenarios.
Nutritional sustainability of pet foods.
Swanson, Kelly S; Carter, Rebecca A; Yount, Tracy P; Aretz, Jan; Buff, Preston R
2013-03-01
Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system.
NASA Astrophysics Data System (ADS)
Phipps, Marja; Capel, David; Srinivasan, James
2014-06-01
Motion imagery capabilities within the Department of Defense/Intelligence Community (DoD/IC) have advanced significantly over the last decade, attempting to meet continuously growing data collection, video processing and analytical demands in operationally challenging environments. The motion imagery tradecraft has evolved accordingly, enabling teams of analysts to effectively exploit data and generate intelligence reports across multiple phases in structured Full Motion Video (FMV) Processing Exploitation and Dissemination (PED) cells. Yet now the operational requirements are drastically changing. The exponential growth in motion imagery data continues, but to this the community adds multi-INT data, interoperability with existing and emerging systems, expanded data access, nontraditional users, collaboration, automation, and support for ad hoc configurations beyond the current FMV PED cells. To break from the legacy system lifecycle, we look towards a technology application and commercial adoption model course which will meet these future Intelligence, Surveillance and Reconnaissance (ISR) challenges. In this paper, we explore the application of cutting edge computer vision technology to meet existing FMV PED shortfalls and address future capability gaps. For example, real-time georegistration services developed from computer-vision-based feature tracking, multiple-view geometry, and statistical methods allow the fusion of motion imagery with other georeferenced information sources - providing unparalleled situational awareness. We then describe how these motion imagery capabilities may be readily deployed in a dynamically integrated analytical environment; employing an extensible framework, leveraging scalable enterprise-wide infrastructure and following commercial best practices.
Nutritional Sustainability of Pet Foods12
Swanson, Kelly S.; Carter, Rebecca A.; Yount, Tracy P.; Aretz, Jan; Buff, Preston R.
2013-01-01
Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system. PMID:23493530
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Narayanan, S. R.; Alamgir, Mohamed; Yu, Ji-Sang; Plichta, Edward P.
2004-01-01
Both NASA and the U.S. Army have interest in developing secondary energy storage devices that are capable of meeting the demanding performance requirements of aerospace and man-portable applications. In order to meet these demanding requirements, gel-polymer electrolyte-based lithium-ion cells are being actively considered, due to their promise of providing high specific energy and enhanced safety aspects.
NASA Astrophysics Data System (ADS)
Klise, Geoffrey T.; Roach, Jesse D.; Kobos, Peter H.; Heath, Jason E.; Gutierrez, Karen A.
2013-05-01
Deep (> ˜800 m) saline water-bearing formations in the United States have substantial pore volume that is targeted for storage of carbon dioxide (CO2) and the associated saline water can be extracted to increase CO2 storage efficiency, manage pressure build up, and create a new water source that, once treated, can be used for power-plant cooling or other purposes. Extraction, treatment and disposal costs of saline formation water to meet added water demands from CO2 capture and storage (CCS) are discussed. This underutilized water source may be important in meeting new water demand associated with CCS. For a representative natural gas combined-cycle (NGCC) power plant, simultaneous extraction of brine from the storage formation could provide enough water to meet all CCS-related cooling demands for 177 out of the 185 (96 %) saline formations analyzed in this study. Calculated total cost of water extraction, treatment and disposal is less than 4.00 US Dollars (USD) m-3 for 93 % of the 185 formations considered. In 90 % of 185 formations, treated water costs are less than 10.00 USD tonne-1 of CO2 injected. On average, this represents approximately 6 % of the total CO2 capture and injection costs for the NGCC scenario.
Sroczynski, Maureen; Gravlin, Gayle; Route, Paulette Seymour; Hoffart, Nancy; Creelman, Patricia
2011-01-01
Education and practice partnerships are key to effective academic program design and implementation in a time of decreasing supply and increasing demands on the nursing profession. An integrated education/practice competency model can positively impact patient safety, improve patient care, increase retention, and ensure a sufficient and competent nursing workforce, which is paramount to survival of the health care system. Through the contributions of nursing leaders from the broad spectrum of nursing and industry organizations within the state, the Massachusetts Nurse of the Future project developed a competency-based framework for the future design of nursing educational programs to meet current and future practice needs. The Massachusetts Nurse of the Future Nursing Core Competencies(©) expand on the Institute of Medicine's core competencies for all health care professionals and the Quality and Safety Education for Nurses competencies for quality and safety to define the expectations for all professional nurses of the future. The Massachusetts Nurse of the Future Nursing Core Competencies define the knowledge, attitude, and skills required as the minimal expectations for initial nursing practice following completion of a prelicensure professional nursing education program. These competencies are now being integrated into new models for seamless, coordinated nursing curriculum and transition into practice within the state and beyond. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werth, D.; Chen, K. F.
2013-08-22
The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ themore » GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.« less
Reservoir Performance Under Future Climate For Basins With Different Hydrologic Sensitivities
NASA Astrophysics Data System (ADS)
Mateus, M. C.; Tullos, D. D.
2013-12-01
In addition to long-standing uncertainties related to variable inflows and market price of power, reservoir operators face a number of new uncertainties related to hydrologic nonstationarity, changing environmental regulations, and rapidly growing water and energy demands. This study investigates the impact, sensitivity, and uncertainty of changing hydrology on hydrosystem performance across different hydrogeologic settings. We evaluate the performance of reservoirs in the Santiam River basin, including a case study in the North Santiam Basin, with high permeability and extensive groundwater storage, and the South Santiam Basin, with low permeability, little groundwater storage and rapid runoff response. The modeling objective is to address the following study questions: (1) for the two hydrologic regimes, how does the flood management, water supply, and environmental performance of current reservoir operations change under future 2.5, 50 and 97.5 percentile streamflow projections; and (2) how much change in inflow is required to initiate a failure to meet downstream minimum or maximum flows in the future. We couple global climate model results with a rainfall-runoff model and a formal Bayesian uncertainty analysis to simulate future inflow hydrographs as inputs to a reservoir operations model. To evaluate reservoir performance under a changing climate, we calculate reservoir refill reliability, changes in flood frequency, and reservoir time and volumetric reliability of meeting minimum spring and summer flow target. Reservoir performance under future hydrology appears to vary with hydrogeology. We find higher sensitivity to floods for the North Santiam Basin and higher sensitivity to minimum flow targets for the South Santiam Basin. Higher uncertainty is related with basins with a more complex hydrologeology. Results from model simulations contribute to understanding of the reliability and vulnerability of reservoirs to a changing climate.
Energy demand of the German and Dutch residential building stock under climate change
NASA Astrophysics Data System (ADS)
Olonscheck, Mady; Holsten, Anne; Walther, Carsten; Kropp, Jürgen P.
2014-05-01
In order to mitigate climate change, extraordinary measures are necessary in the future. The building sector, in particular, offers considerable potential for transformation to lower energy demand. On a national level, however, successful and far-reaching measures will likely be taken only if reliable estimates regarding future energy demand from different scenarios are available. The energy demand for space heating and cooling is determined by a combination of behavioral, climatic, constructional, and demographic factors. For two countries, namely Germany and the Netherlands, we analyze the combined effect of future climate and building stock changes as well as renovation measures on the future energy demand for room conditioning of residential buildings until 2060. We show how much the heating energy demand will decrease in the future and answer the question of whether the energy decrease will be exceeded by an increase in cooling energy demand. Based on a sensitivity analysis, we determine those influencing factors with the largest impact on the future energy demand from the building stock. Both countries have national targets regarding the reduction of the energy demand for the future. We provide relevant information concerning the annual renovation rates that are necessary to reach these targets. Retrofitting buildings is a win-win option as it not only helps to mitigate climate change and to lower the dependency on fossil fuels but also transforms the buildings stock into one that is better equipped for extreme temperatures that may occur more frequently with climate change. For the Netherlands, the study concentrates not only on the national, but also the provincial level, which should facilitate directed policy measures. Moreover, the analysis is done on a monthly basis in order to ascertain a deeper understanding of the future seasonal energy demand changes. Our approach constitutes an important first step towards deeper insights into the internal dynamics of the building sector and its climate sensitivity.
Changing Science Education to Meet the Demands of a Changing Society
ERIC Educational Resources Information Center
Fensham, Peter J.
2017-01-01
Changes in society can, on occasion, lead to new demands on schooling, and on science education in particular. A major such demand in the 1960s led to a conceptual form of science that has dominated school science education ever since. Subsequent major societal demands have usually not been nearly as successful in redefining school science…
Renaud-Théry, Françoise; Nguimfack, Boniface Dongmo; Vitoria, Marco; Lee, Evan; Graaff, Peter; Samb, Badara; Perriëns, Joseph
2007-07-01
To address the information gap on current use of antiretroviral drugs (ARTs) in developing countries. The AIDS Medicines and Diagnostics Service of the World Health Organization (WHO) carried out a multi-country survey in early 2006. Questionnaires covered the use of first- and second-line regimens in adults and children, and the rates of switching from first-line to second-line regimen. Weighted percentages of use of ARTs across the cohort of adults and children were calculated and correlated with 2006 WHO guidelines. A second analysis compared demand for ARTs with rates of production of active pharmaceutical ingredients. Twenty-three countries (96%) returned the questionnaires, representing 53% of relevant patients in developing countries as of June 2006, and comprising 92% adults and 8% children receiving ARTs. Response rates were highest for questions regarding first-line use and lowest for those regarding pediatric regimens. The distribution of first-line: second-line use was 96%: 4% among adults and 99%: 1% among children. For adults, 95% of those receiving first-line treatment, but only 25% of those receiving second-line treatment, were on regimens consistent with those preferred by the WHO. Among first-line users, the most common regimen (61%) was stavudine+lamivudine+nevirapine. Among second-line users, abacavir+didanosine+lopinavir/ritonavir was the most common regimen (24%). Among children, compliance with WHO guidelines was high among the respondents, with zidovudine+lamivudine+nevirapine reported as the main option. Estimates of first-year switching rate were highly variable, ranging from 1% to 15%, with only ten responses. Comparison of supply and demand showed that the stated production capacity for active pharmaceutical ingredients is sufficient to meet current demands for ARTs. This survey has provided valuable information on the uptake of ARTs in developing countries and will help forecast future demand. Reporting for second-line and pediatric antiretroviral therapy should improve as national programs gain more experience. The current availability of active pharmaceutical ingredients appears to be sufficient to meet current demand. Further work is needed for an understanding of switching rates.
NASA Astrophysics Data System (ADS)
Taneja, Jayant Kumar
Electricity is an indispensable commodity to modern society, yet it is delivered via a grid architecture that remains largely unchanged over the past century. A host of factors are conspiring to topple this dated yet venerated design: developments in renewable electricity generation technology, policies to reduce greenhouse gas emissions, and advances in information technology for managing energy systems. Modern electric grids are emerging as complex distributed systems in which a portfolio of power generation resources, often incorporating fluctuating renewable resources such as wind and solar, must be managed dynamically to meet uncontrolled, time-varying demand. Uncertainty in both supply and demand makes control of modern electric grids fundamentally more challenging, and growing portfolios of renewables exacerbate the challenge. We study three electricity grids: the state of California, the province of Ontario, and the country of Germany. To understand the effects of increasing renewables, we develop a methodology to scale renewables penetration. Analyzing these grids yields key insights about rigid limits to renewables penetration and their implications in meeting long-term emissions targets. We argue that to achieve deep penetration of renewables, the operational model of the grid must be inverted, changing the paradigm from load-following supplies to supply-following loads. To alleviate the challenge of supply-demand matching on deeply renewable grids, we first examine well-known techniques, including altering management of existing supply resources, employing utility-scale energy storage, targeting energy efficiency improvements, and exercising basic demand-side management. Then, we create several instantiations of supply-following loads -- including refrigerators, heating and cooling systems, and laptop computers -- by employing a combination of sensor networks, advanced control techniques, and enhanced energy storage. We examine the capacity of each load for supply-following and study the behaviors of populations of these loads, assessing their potential at various levels of deployment throughout the California electricity grid. Using combinations of supply-following strategies, we can reduce peak natural gas generation by 19% on a model of the California grid with 60% renewables. We then assess remaining variability on this deeply renewable grid incorporating supply-following loads, characterizing additional capabilities needed to ensure supply-demand matching in future sustainable electricity grids.
Sectoral contributions to surface water stress in the coterminous United States
NASA Astrophysics Data System (ADS)
Averyt, K.; Meldrum, J.; Caldwell, P.; Sun, G.; McNulty, S.; Huber-Lee, A.; Madden, N.
2013-09-01
Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model which considers regional trends in both water supply and demand. A snapshot of contemporary annual water demand is compared against different water supply regimes, including current average supplies, current extreme-year supplies, and projected future average surface water flows under a changing climate. In addition, we investigate the contributions of different water demand sectors to current water stress. On average, water supplies are stressed, meaning that demands for water outstrip natural supplies in over 9% of the 2103 watersheds examined. These watersheds rely on reservoir storage, conveyance systems, and groundwater to meet current water demands. Overall, agriculture is the major demand-side driver of water stress in the US, whereas municipal stress is isolated to southern California. Water stress introduced by cooling water demands for power plants is punctuated across the US, indicating that a single power plant has the potential to stress water supplies at the watershed scale. On the supply side, watersheds in the western US are particularly sensitive to low flow events and projected long-term shifts in flow driven by climate change. The WaSSI results imply that not only are water resources in the southwest in particular at risk, but that there are also potential vulnerabilities to specific sectors, even in the ‘water-rich’ southeast.
Characterising Wildlife Trade Market Supply-Demand Dynamics
Rowcliffe, M.; Cowlishaw, G.; Alexander, J. S.; Ntiamoa-Baidu, Y.; Brenya, A.; Milner-Gulland, E. J.
2016-01-01
The trade in wildlife products can represent an important source of income for poor people, but also threaten wildlife locally, regionally and internationally. Bushmeat provides livelihoods for hunters, traders and sellers, protein to rural and urban consumers, and has depleted the populations of many tropical forest species. Management interventions can be targeted towards the consumers or suppliers of wildlife products. There has been a general assumption in the bushmeat literature that the urban trade is driven by consumer demand with hunters simply fulfilling this demand. Using the urban bushmeat trade in the city of Kumasi, Ghana, as a case study, we use a range of datasets to explore the processes driving the urban bushmeat trade. We characterise the nature of supply and demand by explicitly considering three market attributes: resource condition, hunter behaviour, and consumer behaviour. Our results suggest that bushmeat resources around Kumasi are becoming increasingly depleted and are unable to meet demand, that hunters move in and out of the trade independently of price signals generated by the market, and that, for the Kumasi bushmeat system, consumption levels are driven not by consumer choice but by shortfalls in supply and consequent price responses. Together, these results indicate that supply-side processes dominate the urban bushmeat trade in Kumasi. This suggests that future management interventions should focus on changing hunter behaviour, although complementary interventions targeting consumer demand are also likely to be necessary in the long term. Our approach represents a structured and repeatable method to assessing market dynamics in information-poor systems. The findings serve as a caution against assuming that wildlife markets are demand driven, and highlight the value of characterising market dynamics to inform appropriate management. PMID:27632169
Characterising Wildlife Trade Market Supply-Demand Dynamics.
McNamara, J; Rowcliffe, M; Cowlishaw, G; Alexander, J S; Ntiamoa-Baidu, Y; Brenya, A; Milner-Gulland, E J
2016-01-01
The trade in wildlife products can represent an important source of income for poor people, but also threaten wildlife locally, regionally and internationally. Bushmeat provides livelihoods for hunters, traders and sellers, protein to rural and urban consumers, and has depleted the populations of many tropical forest species. Management interventions can be targeted towards the consumers or suppliers of wildlife products. There has been a general assumption in the bushmeat literature that the urban trade is driven by consumer demand with hunters simply fulfilling this demand. Using the urban bushmeat trade in the city of Kumasi, Ghana, as a case study, we use a range of datasets to explore the processes driving the urban bushmeat trade. We characterise the nature of supply and demand by explicitly considering three market attributes: resource condition, hunter behaviour, and consumer behaviour. Our results suggest that bushmeat resources around Kumasi are becoming increasingly depleted and are unable to meet demand, that hunters move in and out of the trade independently of price signals generated by the market, and that, for the Kumasi bushmeat system, consumption levels are driven not by consumer choice but by shortfalls in supply and consequent price responses. Together, these results indicate that supply-side processes dominate the urban bushmeat trade in Kumasi. This suggests that future management interventions should focus on changing hunter behaviour, although complementary interventions targeting consumer demand are also likely to be necessary in the long term. Our approach represents a structured and repeatable method to assessing market dynamics in information-poor systems. The findings serve as a caution against assuming that wildlife markets are demand driven, and highlight the value of characterising market dynamics to inform appropriate management.
Forecasting imbalances in the global health labor market and devising policy responses.
Scheffler, Richard M; Campbell, James; Cometto, Giorgio; Maeda, Akiko; Liu, Jenny; Bruckner, Tim A; Arnold, Daniel R; Evans, Tim
2018-01-11
The High-Level Commission on Health Employment and Economic Growth released its report to the United Nations Secretary-General in September 2016. It makes important recommendations that are based on estimates of over 40 million new health sector jobs by 2030 in mostly high- and middle-income countries and a needs-based shortage of 18 million, mostly in low- and middle-income countries. This paper shows how these key findings were developed, the global policy dilemmas they raise, and relevant policy solutions. Regression analysis is used to produce estimates of health worker need, demand, and supply. Projections of health worker need, demand, and supply in 2030 are made under the assumption that historical trends continue into the future. To deliver essential health services required for the universal health coverage target of the Sustainable Development Goal 3, there will be a need for almost 45 million health workers in 2013 which is projected to reach almost 53 million in 2030 (across 165 countries). This results in a needs-based shortage of almost 17 million in 2013. The demand-based results suggest a projected demand of 80 million health workers by 2030. Demand-based analysis shows that high- and middle-income countries will have the economic capacity to employ tens of millions additional health workers, but they could face shortages due to supply not keeping up with demand. By contrast, low-income countries will face both low demand for and supply of health workers. This means that even if countries are able to produce additional workers to meet the need threshold, they may not be able to employ and retain these workers without considerably higher economic growth, especially in the health sector.
Emission Projections for Long-Haul Freight Trucks and Rail in the United States through 2050.
Liu, Liang; Hwang, Taesung; Lee, Sungwon; Ouyang, Yanfeng; Lee, Bumsoo; Smith, Steven J; Yan, Fang; Daenzer, Kathryn; Bond, Tami C
2015-10-06
This work develops an integrated model approach for estimating emissions from long-haul freight truck and rail transport in the United States between 2010 and 2050. We connect models of macroeconomic activity, freight demand by commodity, transportation networks, and emission technology to represent different pathways of future freight emissions. Emissions of particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), and total hydrocarbon (THC) decrease by 60%-70% from 2010 to 2030, as older vehicles built to less-stringent emission standards retire. Climate policy, in the form of carbon tax that increases apparent fuel prices, causes a shift from truck to rail, resulting in a 30% reduction in fuel consumption and a 10%-28% reduction in pollutant emissions by 2050, if rail capacity is sufficient. Eliminating high-emitting conditions in the truck fleet affects air pollutants by 20% to 65%; although these estimates are highly uncertain, they indicate the importance of durability in vehicle engines and emission control systems. Future infrastructure investment will be required both to meet transport demand and to enable actions that reduce emissions of air and climate pollutants. By driving the integrated model framework with two macroeconomic scenarios, we show that the effect of carbon tax on air pollution is robust regardless of growth levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sopori, B.
The 11th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and non-photovoltaic fields. Discussions will include the various aspects of impurities and defects in silicon--their properties, the dynamics during device processing, and their application for developing low-cost processes for manufacturing high-efficiency silicon solar cells. Sessions and panel discussions will review impurities and defects in crystalline-silicon PV, advanced cell structures, new processes and process characterization techniques, and future manufacturing demands. The workshop will emphasize some of the promising new technologies in Si solar cell fabrication that can lower PVmore » energy costs and meet the throughput demands of the future. The three-day workshop will consist of presentations by invited speakers, followed by discussion sessions. Topics to be discussed are: Si Mechanical properties and Wafer Handling, Advanced Topics in PV Fundamentals, Gettering and Passivation, Impurities and Defects, Advanced Emitters, Crystalline Silicon Growth, and Solar Cell Processing. The workshop will also include presentations by NREL subcontractors who will review the highlights of their research during the current subcontract period. In addition, there will be two poster sessions presenting the latest research and development results. Some presentations will address recent technologies in the microelectronics field that may have a direct bearing on PV.« less
Challenges in the management of the blood supply.
Williamson, Lorna M; Devine, Dana V
2013-05-25
Although blood suppliers are seeing short-term reductions in blood demand as a result of initiatives in patient blood management, modelling suggests that during the next 5-10 years, blood availability in developed countries will need to increase again to meet the demands of ageing populations. Increasing of the blood supply raises many challenges; new approaches to recruitment and retainment of future generations of blood donors will be needed, and care will be necessary to avoid taking too much blood from these donors. Integrated approaches in blood stock management between transfusion services and hospitals will be important to minimise wastage--eg, by use of supply chain solutions from industry. Cross-disciplinary systems for patient blood management need to be developed to lessen the need for transfusion--eg, by early identification and reversal of anaemia with haematinics or by reversal of the underlying cause. Personalised medicine could be applied to match donors to patients, not only with extended blood typing, but also by using genetically determined storage characteristics of blood components. Growing of red cells or platelets in large quantities from stem cells is a possibility in the future, but challenges of cost, scaling up, and reproducibility remain to be solved. Copyright © 2013 Elsevier Ltd. All rights reserved.
Analysis of the holistic impact of the Hydrogen Economy on the coal industry
NASA Astrophysics Data System (ADS)
Lusk, Shannon Perry
As gas prices soar and energy demand continues to grow amidst increasingly stringent environmental regulations and an assortment of global pressures, implementing alternative energy sources while considering their linked economic, environmental and societal impacts becomes a more pressing matter. The Hydrogen Economy has been proposed as an answer to meeting the increasing energy demand for electric power generation and transportation in an environmentally benign way. Based on current hydrogen technology development, the most practical feedstock to fuel the Hydrogen Economy may prove to be coal via hydrogen production at FutureGen plants. The planned growth of the currently conceived Hydrogen Economy will cause dramatic impacts, some good and some bad, on the economy, the environment, and society, which are interlinked. The goal of this research is to provide tools to inform public policy makers in sorting out policy options related to coal and the Hydrogen Economy. This study examines the impact of a transition to a Hydrogen Economy on the coal industry by creating FutureGen penetration models, forecasting coal MFA's which clearly provide the impact on coal production and associated environmental impacts, and finally formulating a goal programming model that seeks the maximum benefit to society while analyzing the trade-offs between environmental, social, and economical concerns related to coal and the Hydrogen Economy.
78 FR 41384 - Agricultural Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
... COMMODITY FUTURES TRADING COMMISSION Agricultural Advisory Committee Meeting AGENCY: Commodity Futures Trading Commission. ACTION: Notice of Meeting. SUMMARY: The Commodity Futures Trading Commission's... Lachenmayr, Commodity Futures Trading Commission, Three Lafayette Centre, 1155 21st Street NW., Washington...
A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley
NASA Astrophysics Data System (ADS)
Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.
2017-12-01
The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.
NASA Astrophysics Data System (ADS)
Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.
2013-12-01
Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at reducing system vulnerabilities and the improving the resiliency of the Basin to vulnerable conditions. The Study is the most comprehensive long-term assessment to date of the Basin and it confirmed that without action, the Colorado River system will become increasingly challenged to sustain the communities and resources that rely on its water supply. The Study was conducted by the Bureau of Reclamation and its consultant team (CH2M Hill, Black & Veatch, and the RAND Corporation) and the seven Colorado River Basin States, in collaboration with a broad range of stakeholders throughout the Basin. The Study's strong technical foundation forms a basis from which important discussions can begin regarding possible actions to resolve future supply and demand imbalances in order to help ensure the sustainability of the Colorado River system. This talk will provide an overview of the Study's approach and findings, with a focus on the Study's assessment and characterization of vulnerability under uncertainty.
Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions.
Tao, Lu-Qi; Wang, Dan-Yang; Tian, He; Ju, Zhen-Yi; Liu, Ying; Pang, Yu; Chen, Yuan-Quan; Yang, Yi; Ren, Tian-Ling
2017-06-22
Conventional strain sensors rarely have both a high gauge factor and a large strain range simultaneously, so they can only be used in specific situations where only a high sensitivity or a large strain range is required. However, for detecting human motions that include both subtle and large motions, these strain sensors can't meet the diverse demands simultaneously. Here, we come up with laser patterned graphene strain sensors with self-adapted and tunable performance for the first time. A series of strain sensors with either an ultrahigh gauge factor or a preferable strain range can be fabricated simultaneously via one-step laser patterning, and are suitable for detecting all human motions. The strain sensors have a GF of up to 457 with a strain range of 35%, or have a strain range of up to 100% with a GF of 268. Most importantly, the performance of the strain sensors can be easily tuned by adjusting the patterns of the graphene, so that the sensors can meet diverse demands in both subtle and large motion situations. The graphene strain sensors show significant potential in applications such as wearable electronics, health monitoring and intelligent robots. Furthermore, the facile, fast and low-cost fabrication method will make them possible and practical to be used for commercial applications in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flowers, L.; Miner-Nordstrom, L.
2006-01-01
As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Especially in arid U.S. regions, communities may soon face hard choices with respect to water and electric power. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in costmore » to be competitive with thermoelectric generation. Wind energy can potentially offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The U.S. Department of Energy (DOE) Wind Energy Technologies Program has been exploring the potential for wind power to meet growing challenges for water supply and treatment. The DOE is currently characterizing the U.S. regions that are most likely to benefit from wind-water applications and is also exploring the associated technical and policy issues associated with bringing wind energy to bear on water resource challenges.« less
[An ideal of future medical technologist and a relation with clinical laboratory physician].
Murase, Mitsuharu
2005-05-01
As most important things one of medical care system reform of Japan, improvement of the medical treatment related of job was taken in. When it is accompanied to "An ideal of future medical technologist and a relation with clinical laboratory physician" from the meaning, it is necessary to just meet it and in needs at first to be clinical, does the basis with EBM early and time. In addition, it promotes the purchase of economic reagent/articles of consumption than it considered a medical care reward mark while taking that effective medical treatment of patient standard is demanded into consideration and introduces a system of ISO15189 of clinical laboratory. It is necessary for the charm that can support education more and research to aim at a certain medical technologist. Therefore it is for medical technologists to contribute to medical treatment while taking cooperation to be a clinical laboratory physician.
Elderly and disabled transportation plan for the Merrimack Valley
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-09-01
This report explores ways to meet the transportation needs of elderly and disabled people in a number of communities north of Boston, Massachusetts. The study uses a process which appears to have broad applicability in other jurisdictions. It examines the demographics in the communities involved first, projecting them into the future. It then conducts a detailed inventory of transportation services, including services for the general public and special users provided by the local transit authorities, private nonprofit services for special users, and privately provided services. Conducting a community-by-community review, the process notes overall levels of demand, concentrations of special usersmore » and their destinations, and the location of transportation routes relative to them. It then recommends new services or alterations to existing services to remedy present or future mismatches. The report should be of interest to transportation planners in communities of all sizes.« less
Implementation Targets for the Paris Climate Agreement
NASA Astrophysics Data System (ADS)
Bennett, B.; Hope, A. P.; Tribett, W. R.; Salawitch, R. J.; Canty, T. P.
2016-12-01
We provide an overview of reductions in the emission of greenhouse gases (GHGs) needed to achieve either the target (1.5 °C warming) or upper limit (2.0 °C warming) of the Paris Climate Agreement. We will show how much energy must be produced, either by renewables that do not emit significant levels of atmospheric GHGs or via carbon capture and sequestration (CCS) coupled to fossil fuel power plants, to meet forecast global energy demand out to 2060. These projections will be based on two modeling frameworks: our empirical model of global climate (EM-GC) and the CMIP 5 GCMs used throughout IPCC (2013). For each framework, we will show estimates of transient climate response to cumulative emission of carbon to place limits on future emission of CO2 via the combustion of fossil fuel. We will also quantify the impact of future atmospheric CH4 on achieving the goals of the Paris Climate Agreement.
Devers, Kelly J
2011-02-01
The 10-year systematic review of published health services and management research by Weiner et al. (2011) chronicles the contributions of qualitative methods, highlights areas of substantial progress, and identifies areas in need of more progress. This article (Devers, 2011) discusses possible reasons for lack of progress in some areas--related to the under-supply of well-trained qualitative researchers and more tangible demand for their research--and mechanisms for future improvement. To ensure a robust health services research toolbox, the field must take additional steps to provide stronger education and training in qualitative methods and more funding and publication opportunities. Given the rapidly changing health care system post the passage of national health reform and the chalresearch issues associated with it, the health services research and management field will not meet its future challenges with quantitative methods alone or with a half-empty toolbox.
Robinson, Gilpin R.; Menzie, W. David
2012-01-01
One implication of the economic filter results for undiscovered copper resources is that global copper supply will continue to be dominated by production from a small number of giant deposits. This domination of resource supply by a small number of producers may increase in the future, because an increasing proportion of new deposit discoveries are likely to occur in remote areas and be concealed deep beneath covering rock and sediments. Extensive mineral exploration activity will be required to meet future resource demand, because these deposits will be harder to find and more costly to mine than near-surface deposits located in more accessible areas. Relatively few of the new deposit discoveries in these high-cost settings will have sufficient tonnage and grade characteristics to assure positive economic returns on development and exploration costs.
Chaplin, E; Bailey, M; Crosby, R; Gorman, D; Holland, X; Hippe, C; Hoff, T; Nawrocki, D; Pichette, S; Thota, N
1999-06-01
Health care has a number of historical barriers to capturing the voice of the customer and to incorporating customer wants into health care services, whether the customer is a patient, an insurer, or a community. Quality function deployment (QFD) is a set of tools and practices that can help overcome these barriers to form a process for the planning and design or redesign of products and services. The goal of the project was to increase referral volume and to improve a rehabilitation hospital's capacity to provide comprehensive medical and/or legal evaluations for people with complex and catastrophic injuries or illnesses. HIGH-LEVEL VIEW OF QFD AS A PROCESS: The steps in QFD are as follows: capture of the voice of the customer, quality deployment, functions deployment, failure mode deployment, new process deployment, and task deployment. The output of each step becomes the input to a matrix tool or table of the next step of the process. In 3 1/2 months a nine-person project team at Continental Rehabilitation Hospital (San Diego) used QFD tools to capture the voice of the customer, use these data as the basis for a questionnaire on important qualities of service from the customer's perspective, obtain competitive data on how the organization was perceived to be meeting the demanded qualities, identify measurable dimensions and targets of these qualities, and incorporate the functions and tasks into the delivery of service which are necessary to meet the demanded qualities. The future of providing health care services will belong to organizations that can adapt to a rapidly changing environment and to demands for new products and services that are produced and delivered in new ways.
Wilber, William G.; Crawford, Charles G.; Peters, James G.
1979-01-01
A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)
Planning Staff and Space Capacity Requirements during Wartime.
Kepner, Elisa B; Spencer, Rachel
2016-01-01
Determining staff and space requirements for military medical centers can be challenging. Changing patient populations change the caseload requirements. Deployment and assignment rotations change the experience and education of clinicians and support staff, thereby changing the caseload capacity of a facility. During wartime, planning becomes increasingly more complex. What will the patient mix and caseload volume be by location? What type of clinicians will be available and when? How many beds are needed at each facility to meet caseload demand and match clinician supply? As soon as these factors are known, operations are likely to change and planning factors quickly become inaccurate. Soon, more beds or staff are needed in certain locations to meet caseload demand while other locations retain underutilized staff, waiting for additional caseload fluctuations. This type of complexity challenges the best commanders. As in so many other industries, supply and demand principles apply to military health, but very little is stable about military health capacity planning. Planning analysts build complex statistical forecasting models to predict caseload based on historical patterns. These capacity planning techniques work best in stable repeatable processes where caseload and staffing resources remain constant over a long period of time. Variability must be simplified to predict complex operations. This is counterintuitive to the majority of capacity planners who believe more data drives better answers. When the best predictor of future needs is not historical patterns, traditional capacity planning does not work. Rather, simplified estimation techniques coupled with frequent calibration adjustments to account for environmental changes will create the most accurate and most useful capacity planning and management system. The method presented in this article outlines the capacity planning approach used to actively manage hospital staff and space during Operations Iraqi Freedom and Enduring Freedom.
The case for local food in sustainable food-energy-water systems
NASA Astrophysics Data System (ADS)
Campbell, J. E.; Zumkehr, A. L.; Yang, Y.
2017-12-01
Local food systems, which are characterized by foodsheds with small distances between production and consumption ( 100 km), are currently experiencing explosive growth. Local food has largely been assessed within the context of transportation energy. While the effects of local food systems on transportation energy are well studied, broader implications of localization on the food-energy-water nexus are not. Furthermore, little is known about the potential for local food to scale beyond niche markets and meet a significant fraction of total food demand. Here we estimate the upper potential for all existing croplands to meet total U.S. food demand through local food networks. Our spatially explicit land-use model simulates the years 1850 through 2000 and accounts for a wide range of foodshed areas, diets, food waste, population distributions, cropland areas, and crop yields. While we find that the foodshed potential has declined in time, our results also demonstrate an unexpectedly large potential at present for supporting as much as 82% of national food demand within a 50 mile foodshed radius. The decline is associated with extreme pressures from demographic and agronomic trends that if continued could significantly undermine recent national policies focused on food localization. We then apply a life-cycle assessment approach to show that for some crops, irrigation could contribute up to 50% of the cradle-to-gate carbon emissions, thus they may benefit from food localization making use of water from wastewater treatment plants. Our results also show that local food could reduce the water footprint of lettuce by 50%. Our study suggests that exploring future scenarios, beyond assessing historical outcomes, is critical if food-energy-water research is to support sustainable decision making.
Workforce planning-going beyond the count.
Sandy, Lewis G
2017-10-11
Every country struggles with how best to meet the demand for health care services with the available resources. This commentary offers a perspective on the Israeli physician workforce and the analyses of Horowitz et al., which found age and gender differences in physician productivity and career longevity, differences across specialties, and a sizeable fraction of licensed Israeli physicians living abroad. Workforce planning can be subject to data collection and statistical uncertainties, but even more important are the assumptions and forecasts related to demand for services and organizational arrangements for care delivery. Readers should be cautious in analyzing productivity just by counting hours or years worked, and comparisons across countries may not account for differences in the nature of physician work. The question of whether Israel has enough physicians for the future has to go "beyond the count" to looking at the roles of other health professionals, the use of new technologies and new team configurations, and the overall efficiency and effectiveness of health care delivery systems such as hospitals, ambulatory care clinics, and community-based care.
NASA Astrophysics Data System (ADS)
Shamugam, Veeramani; Murray, I.; Leong, J. A.; Sidhu, Amandeep S.
2016-03-01
Cloud computing provides services on demand instantly, such as access to network infrastructure consisting of computing hardware, operating systems, network storage, database and applications. Network usage and demands are growing at a very fast rate and to meet the current requirements, there is a need for automatic infrastructure scaling. Traditional networks are difficult to automate because of the distributed nature of their decision making process for switching or routing which are collocated on the same device. Managing complex environments using traditional networks is time-consuming and expensive, especially in the case of generating virtual machines, migration and network configuration. To mitigate the challenges, network operations require efficient, flexible, agile and scalable software defined networks (SDN). This paper discuss various issues in SDN and suggests how to mitigate the network management related issues. A private cloud prototype test bed was setup to implement the SDN on the OpenStack platform to test and evaluate the various network performances provided by the various configurations.
The Effects of a Dynamic Spectrum Access Overlay in LTE-Advanced Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juan D. Deaton; Ryan E. Irwin; Luiz A. DaSilva
As early as 2014, mobile network operators’ spectral capacity will be overwhelmed by the demand brought on by new devices and applications. To augment capacity and meet this demand, operators may choose to deploy a Dynamic Spectrum Access (DSA) overlay. The signaling and functionality required by such an overlay have not yet been fully considered in the architecture of the planned Long Term Evolution Advanced (LTE+) networks. This paper presents a Spectrum Accountability framework to be integrated into LTE+ architectures, defining specific element functionality, protocol interfaces, and signaling flow diagrams required to enforce the rights and responsibilities of primary andmore » secondary users. We also quantify, through integer programs, the benefits of using DSA channels to augment capacity under a scenario in which LTE+ network can opportunistically use TV and GSM spectrum. The framework proposed here may serve as a guide in the development of future LTE+ network standards that account for DSA.« less
Mills, D Q
1979-01-01
As the decade of the 1970s closes, new trends in human resources will test the ingenuity of corporate planners to produce policies for the 1980s that will match changing corporate demands with changing employee expectations. The 1970s have produced much-publicized problems--for example, the introduction to the work force of larger numbers of minorities and women--that are not yet fully resolved and that can be expected to continue. But the 1980s will bring their own special challenges. Shifting populations (such as legal and illegal immigrants), the women's movement's demand for equal pay for work of comparable worth, and the push for civil liberties at the workplace are all factors that will dramatically change the business climate. With these factors in mind, the author examines the 1980s' business environment, takes a backward look at planning policies in the 1970s, and shows how the priorities of those policies will have to be reevaluated to meet the challenges of the future.
The nursing shortage continues as faculty shortage grows.
Allen, Linda
2008-01-01
To combat the nursing shortage, efforts to promote nursing as a career have been successful. However, academic nursing institutions are not adequately prepared for this new influx of applicants. The lack of faculty to educate the growing demand for baccalaureate-prepared RNs directly impacts the nursing shortage. The nursing shortage thus directly impacts safe patient care. The main reasons for the lack of faculty to meet the demand for more nurses include the increased age of the current faculty and the declining number of years left to teach, expected increases in faculty retirements, less compensation for academic teaching than positions in clinical areas for master's-prepared nurses, and finally, not enough master's and doctoral-prepared nurses to fill the needed nurse educator positions It is in the best interest of the nursing profession to do what it does best by incorporating the nursing process to solve the faculty shortage and secure its future in order to protect the lives of patients.
Hospital customer service in a changing healthcare world: does it matter?
Howard, J
1999-01-01
The healthcare industry is undergoing a rapid transformation to meet the ever-increasing needs and demands of the patient population. Employers and health plans such as HMOs are demanding better service and higher quality care, and hospitals are trying to tackle reimbursement cutbacks, streamline services, and serve a diverse population. Hospitals have begun to realize that to overcome these obstacles and meet the needs of the health care plans and consumers, they must focus on the demands of the customer. Customer service initiatives increase patient satisfaction and loyalty and overall hospital quality, and many hospitals have found that consumer demands can be met through initiating and maintaining a customer service program. This article describes how the administrator can create, implement, and manage customer service initiatives within the hospital.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France).
This report contains proceedings of a United Nations Education, Scientific, and Cultural Organization (UNESCO) international symposium and round table. The main objective of the meeting was to debate long-term goals of education and its role in preparing young people to face the demands of the 21st century. Papers presented include: (1) "Young…
Development of a Fan for Future Space Suit Applications
NASA Technical Reports Server (NTRS)
Paul. Heather L.; Converse, David; Dionne, Steven; Moser, Jeff
2010-01-01
NASA's next generation space suit system will place new demands on the fan used to circulate breathing gas through the ventilation loop of the portable life support system. Long duration missions with frequent extravehicular activities (EVAs), the requirement for significant increases in reliability and durability, and a mission profile that imposes strict limits on weight, volume and power create the basis for a set of requirements that demand more performance than is available from existing fan designs. This paper describes the development of a new fan to meet these needs. A centrifugal fan was designed with a normal operating speed of approximately 39,400 rpm to meet the ventilation flow requirements while also meeting the aggressive minimal packaging, weight and power requirements. The prototype fan also operates at 56,000 rpm to satisfy a second operating condition associated with a single fan providing ventilation flow to two spacesuits connected in series. This fan incorporates a novel nonmetallic "can" to keep the oxygen flow separate from the motor electronics, thus eliminating ignition potential. The nonmetallic can enables a small package size and low power consumption. To keep cost and schedule within project bounds a commercial motor controller was used. The fan design has been detailed and implemented using materials and approaches selected to address anticipated mission needs. Test data is presented to show how this fan performs relative to anticipated ventilation requirements for the EVA portable life support system. Additionally, data is presented to show tolerance to anticipated environmental factors such as acoustics, shock, and vibration. Recommendations for forward work to progress the technology readiness level and prepare the fan for the next EVA space suit system are also discussed.
Integrated Modeling Approach for Optimal Management of Water, Energy and Food Security Nexus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaodong; Vesselinov, Velimir Valentinov
We report that water, energy and food (WEF) are inextricably interrelated. Effective planning and management of limited WEF resources to meet current and future socioeconomic demands for sustainable development is challenging. WEF production/delivery may also produce environmental impacts; as a result, green-house-gas emission control will impact WEF nexus management as well. Nexus management for WEF security necessitates integrated tools for predictive analysis that are capable of identifying the tradeoffs among various sectors, generating cost-effective planning and management strategies and policies. To address these needs, we have developed an integrated model analysis framework and tool called WEFO. WEFO provides a multi-periodmore » socioeconomic model for predicting how to satisfy WEF demands based on model inputs representing productions costs, socioeconomic demands, and environmental controls. WEFO is applied to quantitatively analyze the interrelationships and trade-offs among system components including energy supply, electricity generation, water supply-demand, food production as well as mitigation of environmental impacts. WEFO is demonstrated to solve a hypothetical nexus management problem consistent with real-world management scenarios. Model parameters are analyzed using global sensitivity analysis and their effects on total system cost are quantified. Lastly, the obtained results demonstrate how these types of analyses can be helpful for decision-makers and stakeholders to make cost-effective decisions for optimal WEF management.« less
Integrated Modeling Approach for Optimal Management of Water, Energy and Food Security Nexus
Zhang, Xiaodong; Vesselinov, Velimir Valentinov
2016-12-28
We report that water, energy and food (WEF) are inextricably interrelated. Effective planning and management of limited WEF resources to meet current and future socioeconomic demands for sustainable development is challenging. WEF production/delivery may also produce environmental impacts; as a result, green-house-gas emission control will impact WEF nexus management as well. Nexus management for WEF security necessitates integrated tools for predictive analysis that are capable of identifying the tradeoffs among various sectors, generating cost-effective planning and management strategies and policies. To address these needs, we have developed an integrated model analysis framework and tool called WEFO. WEFO provides a multi-periodmore » socioeconomic model for predicting how to satisfy WEF demands based on model inputs representing productions costs, socioeconomic demands, and environmental controls. WEFO is applied to quantitatively analyze the interrelationships and trade-offs among system components including energy supply, electricity generation, water supply-demand, food production as well as mitigation of environmental impacts. WEFO is demonstrated to solve a hypothetical nexus management problem consistent with real-world management scenarios. Model parameters are analyzed using global sensitivity analysis and their effects on total system cost are quantified. Lastly, the obtained results demonstrate how these types of analyses can be helpful for decision-makers and stakeholders to make cost-effective decisions for optimal WEF management.« less
Multimodal network models for robust transportation systems.
DOT National Transportation Integrated Search
2009-10-01
Since transportation infrastructure projects have a lifetime of many decades, project developers must consider : not only the current demand for the project but also the future demand. Future demand is of course uncertain and should : be treated as s...
The Demand for Child Care Quality. An Hedonic Price Theory Approach.
ERIC Educational Resources Information Center
Hagy, Alison P.
1998-01-01
An implicit price for child care staff-to-child ratio was used to study demand for child care quality. Direct purchase-of-service contracts or vouchers, which subsidize only providers meeting state regulations, effectively lower implicit price and have little influence on the demand for quality. (Author/SK)
Student Housing: Trends, Preferences and Needs
ERIC Educational Resources Information Center
La Roche, Claire Reeves; Flanigan, Mary A.; Copeland, P. Kenneth, Jr.
2010-01-01
To attract and retain students, universities are confronted with increased demand to provide housing options that meet the new expectations of the millennial generation. Recent trends and housing preferences are examined. The results of surveys detailing some of these new demands and how universities are attempting to address these demands are…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs; Notice of Meeting The ACRS Subcommittee on Future Plant Designs will hold a meeting on November 2, 2011, Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The entire meeting will be open to public...
NASA Astrophysics Data System (ADS)
Pandey, Archana; Prasad, Abhishek; Khin Yap, Yoke
2010-03-01
Diabetes is a growing health issue in the nation. Thus in-situ glucose sensors that can monitor the glucose level in our body are in high demand. Furthermore, it will be exciting if the excessive blood sugar can be converted into usable energy, and be stored in miniature batteries for applications. This will be the basis for an integrated energy sensing, generation, and storage (SGS) system in the future. Here we report the use of functionalized carbon nanotubes arrays as the glucose sensors as well as fuel cells that can convert glucose into energy. In principle, these devices can be integrated to detect excessive blood glucose and then convert the glucose into energy. They are also inline with our efforts on miniature 3D microbatteries using CNTs [1]. All these devices will be the basis for future SGS systems. Details of these results will be discussed in the meeting. [1] Wang et al., in 206^th Meeting of the Electrochemical Society, October 3-8, Honolulu, Hawaii (2004), Symposium Q1, abstract 1492. Y. K. Yap acknowledges supports from DARPA (DAAD17-03-C-0115), USDA (2007-35603-17740), and the Multi-Scale Technologies Institute (MuSTI) at MTU.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.
2002-01-01
Continuing growth in regional and global air travel has resulted in increasing traffic congestion in the air and on the ground. In spite of occasional temporary downturns due to economic recessions and catastrophic events, average growth rates of air travel have remained high since the 1960s. The resulting congestion, which constrains expansion of the air transportation industry, inflicts schedule delays and decreases overall system efficiency, creating a pressing need to develop more efficient methods of air traffic management (ATM). New ATM techniques, procedures, air space automation methods, and decision support tools are being researched and developed for deployment in time frames stretching from the next few years to the year 2020 and beyond. As these methods become more advanced and increase in complexity, the requirements for information generation, sharing and transfer among the relevant entities in the ATM system increase dramatically. However, current aeronautical communications systems will be inadequate to meet the future information transfer demands created by these advanced ATM systems. Therefore, the NASA Glenn Research Center is undertaking research programs to develop communication, methods and key technologies that can meet these future requirements. As part of this process, studies, workshops, testing and experimentation, and research and analysis have established a number of research and technology development needs. The purpose of this paper is to outline the critical research and technology needs that have been identified in these activities, and explain how these needs have been determined.
Design and performance of an electromagnetic calorimeter for a FCC-hh experiment
NASA Astrophysics Data System (ADS)
Zaborowska, A.
2018-03-01
The physics reach and feasibility of the Future Circular Collider are currently under investigation. The goal is to collide protons with centre-of-mass energies up to 100 TeV, extending the research carried out at the current HEP facilities. The detectors designed for the FCC experiments need to tackle harsh conditions of the unprecedented collision energy and luminosity. The baseline technology for the calorimeter system of the FCC-hh detector is described. The electromagnetic calorimeter in the barrel, as well as the electromagnetic and hadronic calorimeters in the endcaps and the forward regions, are based on the liquid argon as active material. The detector layout in the barrel region combines the concept of a high granularity calorimeter with precise energy measurements. The calorimeters have to meet the requirements of high radiation hardness and must be able to deal with a very high number of collisions per bunch crossings (pile-up). A very good energy and angular resolution for a wide range of electrons' and photons' momentum is needed in order to meet the demands based on the physics benchmarks. First results of the performance studies with the new liquid argon calorimeter are presented, meeting the energy resolution goal.
Advanced Solar Cells for Satellite Power Systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.; Weinberg, Irving
1994-01-01
The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.
Advanced solar cells for satellite power systems
NASA Astrophysics Data System (ADS)
Flood, Dennis J.; Weinberg, Irving
1994-11-01
The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.
Overview of Energy Storage Technologies for Space Applications
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao
2006-01-01
This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.
Consideration of insects as a source of dietary protein for human consumption.
Churchward-Venne, Tyler A; Pinckaers, Philippe J M; van Loon, Joop J A; van Loon, Luc J C
2017-12-01
Consumption of sufficient dietary protein is fundamental to muscle mass maintenance and overall health. Conventional animal-based protein sources such as meat (ie, beef, pork, lamb), poultry, fish, eggs, and dairy are generally considered high-quality sources of dietary protein because they meet all of the indispensable amino-acid requirements for humans and are highly digestible. However, the production of sufficient amounts of conventional animal-based protein to meet future global food demands represents a challenge. Edible insects have recently been proposed as an alternative source of dietary protein that may be produced on a more viable and sustainable commercial scale and, as such, may contribute to ensuring global food security. This review evaluates the protein content, amino-acid composition, and digestibility of edible insects and considers their proposed quality and potential as an alternative protein source for human consumption. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Clean-ups at Aberdeen Proving Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenuto, R.A.
1994-12-31
The Department of Defense has utilized radiative material in numerous applications over several decades. Aberdeen Proving Ground has been an integral player in the Army`s Research, Development, and Testing of items incorporating radionuclides, as well as developing new and innovative applications. As new information becomes available and society progresses, we find that the best management practices used decades, or even sometimes years earlier are inadequate to meet the current demands. Aberdeen Proving Ground is committed to remediating historic disposal sites, and utilizing the best available technology in current operations to prevent future adverse impact. Two projects which are currently ongoingmore » at Aberdeen Proving Ground illustrates these points. The first, the remediation of contaminated metal storage areas, depicts how available technology has provided a means for recycling material whereby preventing the continued stock piling, and allowing for the decommissioning of the areas. The second, the 26Th Street Disposal Site Removal Action, shows how historic methods of disposition were inadequate to meet today`s needs.« less
Towards an integrated set of surface meterological observations for climate science and applications
NASA Astrophysics Data System (ADS)
Dunn, Robert; Thorne, Peter
2017-04-01
We cannot predict what is not observed, and we cannot analyse what is not archived. To meet current scientific and societal demands, as well as future requirements for climate services, it is vital that the management and curation of land-based meteorological data holdings is improved. A comprehensive global set of data holdings, of known provenance, integrated across both climate variable and timescale are required to meet the wide range of user needs. Presently, the land-based holdings are highly fractured into global, region and national holdings for different variables and timescales, from a variety of sources, and in a mixture of formats. We present a high level overview, based on broad community input, of the steps that are required to bring about this integration and progress towards such a database. Any long-term, international, program creating such an integrated database will transform the our collective ability to provide societally relevant research, analysis and predictions across the globe.
SP-100 - The national space reactor power system program in response to future needs
NASA Astrophysics Data System (ADS)
Armijo, J. S.; Josloff, A. T.; Bailey, H. S.; Matteo, D. N.
The SP-100 system has been designed to meet comprehensive and demanding NASA/DOD/DOE requirements. The key requirements include: nuclear safety for all mission phases, scalability from 10's to 100's of kWe, reliable performance at full power for seven years of partial power for ten years, survivability in civil or military threat environments, capability to operate autonomously for up to six months, capability to protect payloads from excessive radiation, and compatibility with shuttle and expendable launch vehicles. The authors address of major progress in terms of design, flexibility/scalability, survivability, and development. These areas, with the exception of survivability, are discussed in detail. There has been significant improvement in the generic flight system design with substantial mass savings and simplification that enhance performance and reliability. Design activity has confirmed the scalability and flexibility of the system and the ability to efficiently meet NASA, AF, and SDIO needs. SP-100 development continues to make significant progress in all key technology areas.
NASA Technical Reports Server (NTRS)
Stackpoole, Mairead
2014-01-01
NASA's future robotic missions to Venus and outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid-density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust Thermal Protection System (TPS) however its high density and thermal conductivity constrain mission planners to steep entries, high heat fluxes, pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose certification challenges in existing ground based test facilities. In 2012 the Game Changing Development Program in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This presentation will summarize maturation of the WTPS project.
Engineered microbial systems for enhanced conversion of lignocellulosic biomass.
Elkins, James G; Raman, Babu; Keller, Martin
2010-10-01
In order for plant biomass to become a viable feedstock for meeting the future demand for liquid fuels, efficient and cost-effective processes must exist to breakdown cellulosic materials into their primary components. A one-pot conversion strategy or, consolidated bioprocessing, of biomass into ethanol would provide the most cost-effective route to renewable fuels and the realization of this technology is being actively pursued by both multi-disciplinary research centers and industrialists working at the very cutting edge of the field. Although a diverse range of bacteria and fungi possess the enzymatic machinery capable of hydrolyzing plant-derived polymers, none discovered so far meet the requirements for an industrial strength biocatalyst for the direct conversion of biomass to combustible fuels. Synthetic biology combined with a better fundamental understanding of enzymatic cellulose hydrolysis at the molecular level is enabling the rational engineering of microorganisms for utilizing cellulosic materials with simultaneous conversion to fuel. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yedidia, Michael J; Chou, Jolene; Brownlee, Susan; Flynn, Linda; Tanner, Christine A
2014-10-01
The current and projected nurse faculty shortage threatens the capacity to educate sufficient numbers of nurses for meeting demand. As part of an initiative to foster strategies for expanding educational capacity, a survey of a nationally representative sample of 3,120 full-time nurse faculty members in 269 schools and programs that offered at least one prelicensure degree program was conducted. Nearly 4 of 10 participants reported high levels of emotional exhaustion, and one third expressed an intent to leave academic nursing within 5 years. Major contributors to burnout were dissatisfaction with workload and perceived inflexibility to balance work and family life. Intent to leave was explained not only by age but by several potentially modifiable aspects of work, including dissatisfaction with workload, salary, and availability of teaching support. Preparing sufficient numbers of nurses to meet future health needs will require addressing those aspects of work-life that undermine faculty teaching capacity. Copyright 2014, SLACK Incorporated.
1988-12-01
production or service activity over time. In these instances it is often convenient to formulate a network flow problem on a "space—time network" with several...planning model in production planning, the economic lot size problem, is an important example. In this problem context, we wish to meet prescribed...demands d^ for a product in each of the T time periods. In each period, we can produce at level Xj and /or we can meet the demand by drav^g upon inventory I