Science.gov

Sample records for meet future energy

  1. An accelerator-driven reactor for meeting future energy demand

    SciTech Connect

    Takahashi, Hiroshi; Yang, Y.; Yu, A.

    1997-12-31

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides flexible nuclear energy options along with high neutron economy for producing the fuel, for transmuting high-level waste such as minor actinides, and for efficiently converting excess and military Pu into proliferation-resistant fuel.

  2. How to meet the increasing demands of water, food and energy in the future?

    NASA Astrophysics Data System (ADS)

    Shi, Haiyun; Chen, Ji; Sivakumar, Bellie; Peart, Mervyn

    2017-04-01

    Regarded as a driving force in water, food and energy demands, the world's population has been increasing rapidly since the beginning of the 20th century. According to the medium-growth projection scenario of the United Nations, the world's population will reach 9.5 billion by 2050. In response to the continuously growing population during this century, water, food and energy demands have also been increasing rapidly, and social problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if no proper management strategies are adopted. Then, how to meet the increasing demands of water, food and energy in the future? This study focuses on the sustainable developments of population, water, food, energy and dams, and the significances of this study can be concluded as follows: First, we reveal the close association between dams and social development through analysing the related data for the period 1960-2010, and argue that construction of additional large dams will have to be considered as one of the best available options to meet the increasing water, food and energy demands in the future. We conduct the projections of global water, food and energy consumptions and dam development for the period 2010-2050, and the results show that, compared to 2010, the total water, food and energy consumptions in 2050 will increase by 20%, 34% and 37%, respectively. Moreover, it is projected that additional 4,340 dams will be constructed by 2050 all over the world. Second, we analyse the current situation of global water scarcity based on the related data representing water resources availability (per capita available water resources), dam development (the number of dams), and the level of economic development (per capita gross domestic product). At the global scale, water scarcity exists in more than 70% of the countries around the world, including 43 countries suffering from economic water scarcity and 129 countries suffering from physical water

  3. Energy futures

    SciTech Connect

    Treat, J.E.

    1990-01-01

    This book provides fifteen of the futures industry's leading authorities with broader background in both theory and practice of energy futures trading in this updated text. The authors review the history of the futures market and the fundamentals of trading, hedging, and technical analysis; then they update you with the newest trends in energy futures trading - natural gas futures, options, regulations, and new information services. The appendices outline examples of possible contracts and their construction.

  4. U.S. Workforce and Educational Facilities' Readiness to Meet the Future Challenges of Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Mtingwa, Sekazi

    2008-04-01

    Using nuclear energy to generate electricity continues to be a topic of considerable debate. Currently, 20% of the electricity in the U.S. comes from its fleet of 104 commercial nuclear reactors, and they annually displace on the order of one hundred million metric tons of carbon emissions. These reactors currently account for 70% of the non-carbon emitting electricity production in the United States. Due to the recent interest by the Federal government and others in expanding the nuclear energy option, the American Physical Society's Panel on Public Affairs sponsored a study of the U.S. workforce and educational facilities' readiness for three scenarios out to the year 2050. They range from maintaining the current number of nuclear reactors, although some may be retired and replaced by new ones; significantly increasing the number of reactors, to perhaps as high as 200 or more; up to significantly increasing the number of reactors while closing the fuel cycle by reprocessing and recycling spent fuel. This talk reports on the results of that study.

  5. A role of accelerator-driven reactor to meet future energy demands

    SciTech Connect

    Takahashi, H.; An, Y.; Yang, Y.; Zhao, Y.; Tsoupas, N.

    1998-03-01

    Fissile fuel can be produced at a high rate using an accelerator driven Pu fueled fast reactor operated at deep subcriticality; this approach avoids encountering a shortage of Pu during a high rate of growth in the production of nuclear energy. Slightly reducing the acceleration field minimizes the tripping of the beam and the radiation dose from the accelerator; hence the accelerator can be operated as a highly reliable industrial machine. The usefulness of a windowless liquid jet target, which eliminates the spreading of the beam and problems of radiation damage is emphasized, in association with the small size of the target. The requirements for a proton beam accelerator for this system are discussed.

  6. Charging a renewable future: The impact of electric vehicle charging intelligence on energy storage requirements to meet renewable portfolio standards

    NASA Astrophysics Data System (ADS)

    Forrest, Kate E.; Tarroja, Brian; Zhang, Li; Shaffer, Brendan; Samuelsen, Scott

    2016-12-01

    Increased usage of renewable energy resources is key for energy system evolution to address environmental concerns. Capturing variable renewable power requires the use of energy storage to shift generation and load demand. The integration of plug-in electric vehicles, however, impacts the load demand profile and therefore the capacity of energy storage required to meet renewable utilization targets. This study examines how the intelligence of plug-in electric vehicle (PEV) integration impacts the required capacity of energy storage systems to meet renewable utilization targets for a large-scale energy system, using California as an example for meeting a 50% and 80% renewable portfolio standard (RPS) in 2030 and 2050. For an 80% RPS in 2050, immediate charging of PEVs requires the installation of an aggregate energy storage system with a power capacity of 60% of the installed renewable capacity and an energy capacity of 2.3% of annual renewable generation. With smart charging of PEVs, required power capacity drops to 16% and required energy capacity drops to 0.6%, and with vehicle-to-grid (V2G) charging, non-vehicle energy storage systems are no longer required. Overall, this study highlights the importance of intelligent PEV charging for minimizing the scale of infrastructure required to meet renewable utilization targets.

  7. Nuclear energy acceptance and potential role to meet future energy demand. Which technical/scientific achievements are needed?

    NASA Astrophysics Data System (ADS)

    Schenkel, Roland

    2012-06-01

    25 years after Chernobyl, the Fukushima disaster has changed the perspectives of nuclear power. The disaster has shed a negative light on the independence, reliability and rigor of the national nuclear regulator and plant operator and the usefulness of the international IAEA guidelines on nuclear safety. It has become clear that, in the light of the most severe earthquake in the history of Japan, the plants at Fukushima Daiichi were not adequately protected against tsunamis. Nuclear acceptance has suffered enormously and has changed the perspectives of nuclear energy dramatically in countries that have a very risk-sensitive population, Germany is an example. The paper analyses the reactions in major countries and the expected impact on future deployment of reactors and on R&D activities. On the positive side, the disaster has demonstrated a remarkable robustness of most of the 14 reactors closest to the epicentre of the Tohoku Seaquake although not designed to an event of level 9.0. Public acceptance can only be regained with a rigorous and worldwide approach towards inherent reactor safety and design objectives that limit the impact of severe accidents to the plant itself (like many of the new Gen III reactors). A widespread release of radioactivity and the evacuation (temporary or permanent) of the population up to 30 km around a facility are simply not acceptable. Several countries have announced to request more stringent international standards for reactor safety. The IAEA should take this move forward and intensify and strengthen the different peer review mission schemes. The safety guidelines and peer reviews should in fact become legally binding for IAEA members. The paper gives examples of the new safety features developed over the last 20 years and which yield much safer reactors with lesser burden to the environment under severe accident conditions. The compatibility of these safety systems with the current concepts for fusion-fission hybrids, which have

  8. Nuclear energy acceptance and potential role to meet future energy demand. Which technical/scientific achievements are needed?

    SciTech Connect

    Schenkel, Roland

    2012-06-19

    25 years after Chernobyl, the Fukushima disaster has changed the perspectives of nuclear power. The disaster has shed a negative light on the independence, reliability and rigor of the national nuclear regulator and plant operator and the usefulness of the international IAEA guidelines on nuclear safety. It has become clear that, in the light of the most severe earthquake in the history of Japan, the plants at Fukushima Daiichi were not adequately protected against tsunamis. Nuclear acceptance has suffered enormously and has changed the perspectives of nuclear energy dramatically in countries that have a very risk-sensitive population, Germany is an example. The paper analyses the reactions in major countries and the expected impact on future deployment of reactors and on R and D activities. On the positive side, the disaster has demonstrated a remarkable robustness of most of the 14 reactors closest to the epicentre of the Tohoku Seaquake although not designed to an event of level 9.0. Public acceptance can only be regained with a rigorous and worldwide approach towards inherent reactor safety and design objectives that limit the impact of severe accidents to the plant itself (like many of the new Gen III reactors). A widespread release of radioactivity and the evacuation (temporary or permanent) of the population up to 30 km around a facility are simply not acceptable. Several countries have announced to request more stringent international standards for reactor safety. The IAEA should take this move forward and intensify and strengthen the different peer review mission schemes. The safety guidelines and peer reviews should in fact become legally binding for IAEA members. The paper gives examples of the new safety features developed over the last 20 years and which yield much safer reactors with lesser burden to the environment under severe accident conditions. The compatibility of these safety systems with the current concepts for fusion-fission hybrids, which

  9. 2013 EFRC PI Meeting -- Science for Our Nation's Energy Future: Energy Frontier Research Centers Principal Investigators' Meeting, Washington, D.C., July 18-19, 2013

    SciTech Connect

    None, None

    2013-07-01

    2013 EFRC Principal Investigators’ Meeting, July 18-19, 2013 in Washington D.C. By invitation only--about 500 attendees from the EFRCs and DOE, 235 senior EFRC members and 165 EFRC early career scientists from more than 80 institutions in 31 states, 2 foreign countries and Washington D.C. Over 115 talks and 225 posters

  10. Energy Options for the Future

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Obenschain, Stephen; Conover, David; Bajura, Rita; Greene, David; Brown, Marilyn; Boes, Eldon; McCarthy, Kathyrn; Christian, David; Dean, Stephen; Kulcinski, Gerald; Denholm, P. L.

    2004-06-01

    This paper summarizes the presentations and discussion at the Energy Options for the Future meeting held at the Naval Research Laboratory in March of 2004. The presentations covered the present status and future potential for coal, oil, natural gas, nuclear, wind, solar, geothermal, and biomass energy sources and the effect of measures for energy conservation. The longevity of current major energy sources, means for resolving or mitigating environmental issues, and the role to be played by yet to be deployed sources, like fusion, were major topics of presentation and discussion.

  11. Projecting America's Energy Future.

    ERIC Educational Resources Information Center

    Dukert, Joseph M.

    1981-01-01

    Discusses elements to be considered in planning for the future of American energy policy: new ways of applying energy, availability, sources, population growth, effects on agriculture, synthetic fuel, possibility of new technology, government involvement, worldwide events (political and natural), and capital investment. (CT)

  12. Energy for the Future.

    ERIC Educational Resources Information Center

    McReynold, Mildred

    This collection of lessons is designed to be presented to sixth-grade students in a sequence of 10 class days. Using reading and language skills, the lessons are intended to help students become interested in the energy future and to develop personal values. Special attention is given to conservation and development of alternative energy sources.…

  13. Growing America's Energy Future

    SciTech Connect

    2016-06-01

    The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. Bioenergy can help ensure a secure, sustainable, and economically sound future by reducing U.S. dependence on foreign oil, developing domestic clean energy sources, and generating domestic green jobs. Bioenergy can also help address growing concerns about climate change by reducing greenhouse gas emissions to create a healthier environment for current and future generations.

  14. Bioenergy: America's Energy Future

    ScienceCinema

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2016-07-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  15. Bioenergy: America's Energy Future

    SciTech Connect

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  16. Global Energy Futures Model

    SciTech Connect

    Malczynski, Leonard; Baker, Arnold; Beyeler, Walt; Conrad, Stephen; Harris, David; Harris, Paul; Rexroth, Paul; Bixler, and Nathan

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data from 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.

  17. Space Technology To Meet Future Needs.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Aeronautics and Space Engineering Board.

    The thrust of this book is to indicate relative priorities of technology and the rationale for investment in United States space technology to meet future needs as assessed by the Committee on Advanced Space Technology. In part one, a discussion of potential mission sets is given, including: (1) "Mission Requirements for Space Transportation;…

  18. Space Technology To Meet Future Needs.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Aeronautics and Space Engineering Board.

    The thrust of this book is to indicate relative priorities of technology and the rationale for investment in United States space technology to meet future needs as assessed by the Committee on Advanced Space Technology. In part one, a discussion of potential mission sets is given, including: (1) "Mission Requirements for Space Transportation;…

  19. Images of the energy future

    NASA Astrophysics Data System (ADS)

    Mason, Arthur

    2006-10-01

    This letter draws attention to the aesthetic fascination for images of the energy future and the role of knowledge about the future in organizing energy policy and planning. Envisioning the energy future, once intertwined with notions of progress, has become synonymous with conceptions of risk while efforts to manage risk are an open-ended, future-oriented project. I argue that today's images of the energy future reflect a change in US energy prediction over the past 30 years that can be traced to the birth of a system of energy forecasting on the basis of a narrow organization of experience to the 1970s energy crisis.

  20. Forgings meet the challenges of the future

    SciTech Connect

    Mochnal, G.

    1996-04-01

    To meet and exceed the requirements of the customer of the future, the forging industry is entering a new era of increased productivity and technical advancements. The tools for this task have been developed as a result of a partnership among industry, government, and academia. As another consequence of this partnership, the Forging Industry Association and the Forging Industry Educational and Research Foundation are in the process of creating a Vision of the Future. This article will discuss advances in metal-forming simulation, billet heating systems, advanced die materials, and advanced forging presses.

  1. 76 FR 35869 - International Energy Agency meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Doc No: 2011-15282] DEPARTMENT OF ENERGY International Energy Agency meetings AGENCY: Department of Energy, DOE. ACTION: Notice of meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA) will meet on June 28, 2011, at the headquarters of the IEA in Paris, France,...

  2. 75 FR 12532 - International Energy Agency Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY International Energy Agency Meetings AGENCY: Department of Energy. ACTION: Notice of meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA) will meet on March 23, 2010, at...

  3. 76 FR 69714 - International Energy Agency Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY International Energy Agency Meetings AGENCY: Department of Energy. ACTION: Notice of Meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA) will meet on November 16-17,...

  4. 78 FR 16665 - International Energy Agency Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY International Energy Agency Meetings AGENCY: Department of Energy. ACTION: Notice of meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA) will meet on March 25 and 26,...

  5. 77 FR 36271 - International Energy Agency Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY International Energy Agency Meetings AGENCY: Department of Energy. ACTION: Notice of meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA) will meet on June 26, 2012, at...

  6. 75 FR 34724 - International Energy Agency Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY International Energy Agency Meetings AGENCY: Department of Energy. ACTION: Notice of Meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA) will meet on June 29, 2010, at...

  7. 77 FR 69613 - International Energy Agency Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY International Energy Agency Meeting AGENCY: Department of Energy. ACTION: Notice of meeting. SUMMARY: A meeting involving members of the Industry Advisory Board (IAB) to the International Energy Agency (IEA)...

  8. 77 FR 16826 - International Energy Agency Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY International Energy Agency Meetings AGENCY: Department of Energy, DoE. ACTION: Notice of meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA) will meet on March 28 and 29,...

  9. 75 FR 67711 - International Energy Agency Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY International Energy Agency Meetings AGENCY: Department of Energy. ACTION: Notice of meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA) will meet on November 16, 2010,...

  10. 76 FR 14003 - International Energy Agency Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY International Energy Agency Meetings AGENCY: Department of Energy. ACTION: Notice of meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA) will meet on March 22, 2011, at...

  11. 77 FR 61583 - International Energy Agency Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY International Energy Agency Meetings AGENCY: Department of Energy. ACTION: Notice of meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA) will meet on October 17 and 18,...

  12. 78 FR 36542 - International Energy Agency Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY International Energy Agency Meetings AGENCY: Department of Energy. ACTION: Notice of meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA) will meet on June 24, 2013, at...

  13. Future American energy policy

    SciTech Connect

    Crist, M.S.; Laffer, A.B.

    1982-01-01

    American energy policy is examined using a format of five primary presentations, each followed by a panel commentary and debate with audience questioning. The five parts are on: challenges (an overview of the global and domestic energy situation, and a discussion of the political process and energy); social implications of energy policies; economic consequences of energy policies; international attitudes toward US oil policies; and social/economic and environmental impacts of alternative energy sources. In the summary, changes in US economy and the impact of the market pricing system are considered.

  14. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  15. Safeguarding our energy future

    NASA Astrophysics Data System (ADS)

    1993-02-01

    Throughout the past several years, states have been receiving settlement monies distributed from escrow accounts maintained by the Department of Energy and various courts. These monies are paid by oil companies for alleged violations of the petroleum pricing regulations of the 1970's. These funds, commonly referred to as Petroleum Violation Escrow (PVE) or Oil Overcharge funds, have been an important tool in supporting energy efficiency programs and technologies at the state level. The aim of this publication is to highlight some of the many interesting, replicable projects funded with PVE monies and to serve as a resource for successful, energy efficiency programs in planning, technology application, and education. By capturing a number of these innovative state-level programs, this document will expand the information network on renewable energy and energy efficiency and serve as a point of departure for others pursuing similar goals. Projects referenced throughout this publication reflect some of the program areas in which the Department of Energy takes an active interest and fall into the following categories: (1) alternative fuels; (2) industrial efficiency and waste minimization; (3) electric power production from renewable resources; (4) building efficiency; (5) integrated resource planning; and (6) energy education.

  16. Futures for energy cooperatives

    SciTech Connect

    1981-01-01

    A listing of Federal agencies and programs with potential funding for community-scale cooperatives using conservation measures and solar technologies is presented in Section 1. Section 2 presents profiles of existing community energy cooperatives describing their location, history, membership, services, sources of finance and technical assistance. A condensed summary from a recent conference on Energy Cooperatives featuring notes on co-op members' experiences, problems, and opportunities is presented in Section 3. Section 4 lists contacts for additional information. A National Consumer Cooperative Bank Load Application is shown in the appendix.

  17. FUTURE OF ENERGY

    EPA Science Inventory

    A complete Scientific American issue of nine specialist articles was devoted to the concern of powering the global economy and addressing the effects of global warming. Control of atmospheric carbon, transportation fuel, efficient use of energy, the disposition of coal, opportuni...

  18. FUTURE OF ENERGY

    EPA Science Inventory

    A complete Scientific American issue of nine specialist articles was devoted to the concern of powering the global economy and addressing the effects of global warming. Control of atmospheric carbon, transportation fuel, efficient use of energy, the disposition of coal, opportuni...

  19. 76 FR 27143 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... ADMINISTRATION Future Systems Technology Advisory Panel Meeting AGENCY: Social Security Administration (SSA). ACTION: Notice of Eleventh Panel Meeting. DATES: May 24, 2011, 10 a.m.-5 p.m. Location: Hyatt Regency.... SUPPLEMENTARY INFORMATION: Type of meeting: The meeting is open to the public. Purpose: The Panel, under...

  20. 76 FR 4146 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... ADMINISTRATION Future Systems Technology Advisory Panel Meeting AGENCY: Social Security Administration (SSA). ACTION: Notice of Tenth Panel Meeting. DATES: February 8, 2011, 10 a.m.-5 p.m., Location: The Latham... INFORMATION: Type of meeting: The meeting is open to the public. Purpose: The Panel, under the...

  1. Energy, Technology, and Our Future

    ERIC Educational Resources Information Center

    Kenyon, Richard L.

    1974-01-01

    Describes the strength in research and development and the technological leadership as factors dominating "postindustrial" country economy. Indicates that the United States future welfare will depend heavily upon technology, rather than an energy glut. (CC)

  2. Energy structures and environmental futures

    SciTech Connect

    Haugland, T.; Bergesen, H.O.; Roland, K.

    1998-11-01

    Energy is not only a basis for modern society, but also a product of it. This book is a study of the close and ever-changing relationship between the energy sector and the society that surrounds it. At the end of the twentieth century this relationship faces two fundamental challenges: First, the national confinement of modern energy systems is undermined by technological progress, making long-distance trade increasingly attractive, and by the broad trend towards economic internationalization in general and political integration in Europe in particular. Second, the risk of climate change may lead governments and publics to demand a profound restructuring of the entire energy sector. The purpose is to analyze how these two fundamental challenges, and the connection between them, can affect future energy developments in Europe. The analysis must be rooted in a firm understanding of the past. The first part of the book is therefore devoted to a systematic description and analysis of the energy sector in Europe as it has developed over the past twenty-five years, by major subsectors and with examples from the most important countries. Part 1 discusses trends and policies related to energy demand, energy sector developments in oil, coal, natural gas, and electricity, achievements and challenges in the environment, and the role of international policy bodies. Part 2 forecasts future developments in 1995--2020, by discussing the following: Paths for future developments; National rebound scenario; Liberalization and trade; Liberalization versus national rebound; and Environmental futures.

  3. Alternative Energy Development and China's Energy Future

    SciTech Connect

    Zheng, Nina; Fridley, David

    2011-06-15

    used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO2 emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

  4. Essentials for the energy future

    NASA Astrophysics Data System (ADS)

    Grassl, H.

    2003-04-01

    Projections of today's energy use urge industrialized and industrializing countries alike to change their energy patterns. One third of mankind has no access to modern energy use and emissions from burning fossil fuels, mainly from another third of mankind, trigger global climate change. Classic climate and energy scenarios (i.e. TAR IPCC) elaborate mainly on the second part. We present a number of semiquantitive biospheric as well as socio-economic guard rails which - if overrun - bring intolerable consequences for mankind. Any sustainable energy future must develop within an area designated by these guard rails. One quantitative example building on the phase-out of nuclear energy, moderate increase in hydropower and biomass use, moderate use of carbon sequestration and massive investment into solar and wind power shows that a switch from fossil to renewable energy sources is possible within a century - but the window of opportunity for political measures is closing. Decisions have to be taken now.

  5. Toward an energy surety future.

    SciTech Connect

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  6. Space technology to meet future needs

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Key technologies were identified where contemporary investments might have large payoffs in technological options for the future. The future needs were considered for space transportation, space science, national security, and manned missions. Eight areas were selected as being vital for the national future in space. Findings regarding representative mission and the recommendations concerning high priority technologies are summarized.

  7. Future of high energy physics

    SciTech Connect

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e/sup -/ colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place.

  8. Options for Kentucky's Energy Future

    SciTech Connect

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  9. 75 FR 1446 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... ADMINISTRATION Future Systems Technology Advisory Panel Meeting AGENCY: Social Security Administration (SSA... independent advice and recommendations on the future of systems technology and electronic services at the... what future systems technologies may be developed to assist in carrying out its statutory...

  10. 75 FR 67804 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... ADMINISTRATION Future Systems Technology Advisory Panel Meeting AGENCY: Social Security Administration (SSA... Security independent advice and recommendations on the future of systems technology and electronic services... determining what future systems technologies may be developed to assist in carrying out its statutory...

  11. Coal: the cornerstone of America's energy future

    SciTech Connect

    Beck, R.A.

    2006-06-15

    In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

  12. Coal: Energy for the future

    SciTech Connect

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  13. Electromagnetic DM technology meets future AO demands

    NASA Astrophysics Data System (ADS)

    Hamelinck, Roger; Rosielle, Nick; Steinbuch, Maarten; Doelman, Niek

    New deformable mirror technology is developed by the Technische Universiteit Eindhoven, Delft University of Technology and TNO Science and Industry. Several prototype adaptive deformable mirrors are realized mirrors, up to 427 actuators and ∅150mm diameter, with characteristics suitable for future AO systems. The prototypes consist of a 100µm thick, continuous facesheet on which low voltage, electromagnetic, push-pull actuators impose out-of-plane displacements. The variable reluctance actuators with ±10µm stroke and nanometer resolution are located in a standard actuator module. Each module with 61 actuators connects to a single PCB with dedicated, 16 bit, PWM based, drivers. A LVDS multi-drop cable connects up to 32 actuator modules. With the actuator module, accompanying PCB and multi-drop system the deformable mirror technology is made modular in its mechanics and electronics. An Ethernet-LVDS bridge enables any commercial PC to control the mirror using the UDP standard. Latest results of the deformable mirror technology development are presented.

  14. Efficient use of land to meet sustainable energy needs

    NASA Astrophysics Data System (ADS)

    Hernandez, Rebecca R.; Hoffacker, Madison K.; Field, Christopher B.

    2015-04-01

    The deployment of renewable energy systems, such as solar energy, to achieve universal access to electricity, heat and transportation, and to mitigate climate change is arguably the most exigent challenge facing humans today. However, the goal of rapidly developing solar energy systems is complicated by land and environmental constraints, increasing uncertainty about the future of the global energy landscape. Here, we test the hypothesis that land, energy and environmental compatibility can be achieved with small- and utility-scale solar energy within existing developed areas in the state of California (USA), a global solar energy hotspot. We found that the quantity of accessible energy potentially produced from photovoltaic (PV) and concentrating solar power (CSP) within the built environment (`compatible’) exceeds current statewide demand. We identify additional sites beyond the built environment (`potentially compatible’) that further augment this potential. Areas for small- and utility-scale solar energy development within the built environment comprise 11,000-15,000 and 6,000 TWh yr-1 of PV and CSP generation-based potential, respectively, and could meet the state of California’s energy consumptive demand three to five times over. Solar energy within the built environment may be an overlooked opportunity for meeting sustainable energy needs in places with land and environmental constraints.

  15. Energy future Santa Cruz: A citizens' plan for energy self-reliance

    NASA Astrophysics Data System (ADS)

    Cohn, J.; Stayton, R.

    The results of a grassroots energy conservation project which involved more than 3,100 residents of Santa Cruz, California, is discussed. Citizens attended forums and town meetings to suggest ideas for solving the community's energy problems. These ideas were then evaluated by the Energy Future Advisory Board and compiled into the Energy Future Plan. The energy plan covers such topics as new residences, residential retrofit, automobile efficiency, farm efficiency, commercial greenhouses, local food production, commercial efficiency, land use planning, energy education and financing, and solar, wind, and ocean energy. An energy implementation guide and glossary are included.

  16. 76 FR 23798 - Nuclear Energy Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee; Meeting AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory...

  17. 77 FR 55201 - State Energy Advisory Board (STEAB); Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY State Energy Advisory Board (STEAB); Meeting AGENCY: Department of Energy, Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a live open meeting of the State...

  18. The future of energy gases

    SciTech Connect

    Howell, D.G.

    1995-04-01

    Natural gas, mainly methane, produces lower CO {sub 2}, CO, NO{sub x}, SO {sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce each 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions stemming from the need to drill an enormous number of wells, many in ecologically sensitive areas. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane is known to exist in the mantle and lower crust. Near the Earth`s surface, methane occurs in enormous oil and/or gas reservoirs in rock, and is absorbed in coal, dissolved in water, and trapped in a latticework of ice-like material called gas hydrate. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, methane accounts for roughly 25 percent of current U.S. consumption, but its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  19. 78 FR 20311 - State Energy Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy State Energy Advisory Board; Meeting AGENCY: Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a Board...

  20. 78 FR 11167 - Meetings: State Energy Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy Meetings: State Energy Advisory Board AGENCY: Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a live...

  1. 75 FR 18566 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... application, customer service, or any other arena that would improve SSA's ability to serve the American...). ACTION: Notice of Seventh Panel Meeting. DATES: May 4, 2010, 9 a.m.-5 p.m. Location: Hotel Palomar... electronic services at the agency five to ten years into the future. The Panel will recommend a road map...

  2. Materials for future energy systems

    SciTech Connect

    Not Available

    1984-01-01

    This book presents the papers given at a conference on materials testing. Topics considered at the conference included a national perspective on current and national energy outlook, new developments in oil and gas, nuclear fission energy, reactor technology, conventional and advanced systems for fossil fuel combustion, fast reactor technologies, coal gasification, coal liquefaction, trends in fusion energy, energy savings in transportation, advances in solid state materials, energy savings in the industrial sector, and trends in solar energy.

  3. Energy, helium, and the future: II

    SciTech Connect

    Krupka, M.C.; Hammel, E.F.

    1980-01-01

    The importance of helium as a critical resource material has been recognized specifically by the scientific community and more generally by the 1960 Congressional mandate to institute a long-range conservation program. A major study mandated by the Energy Reorganization Act of 1974 resulted in the publication in 1975 of the document, The Energy-Related Applications of Helium, ERDA-13. This document contained a comprehensive review and analysis relating to helium resources and present and future supply/demand relationships with particular emphasis upon those helium-dependent energy-related technologies projected to be implemented in the post-2000 year time period, e.g., fusion. An updated overview of the helium situation as it exists today is presented. Since publication of ERDA-13, important changes in the data base underlying that document have occurred. The data have since been reexamined, revised, and new information included. Potential supplies of helium from both conventional and unconventional natural gas resources, projected supply/demand relationships to the year 2030 based upon a given power-generation scenario, projected helium demand for specific energy-related technologies, and the supply options (national and international) available to meet that demand are discussed. An updated review will be given of the energy requirements for the extraction of helium from natural gas as they relate to the concentration of helium. A discussion is given concerning the technical and economic feasibility of several methods available both now and conceptually possible, to extract helium from helium-lean natural gas, the atmosphere, and outer space. Finally, a brief review is given of the 1980 Congressional activities with respect to the introduction and possible passage of new helium conservation legislation.

  4. 'Energy landscapes': Meeting energy demands and human aspirations.

    PubMed

    Blaschke, Thomas; Biberacher, Markus; Gadocha, Sabine; Schardinger, Ingrid

    2013-08-01

    Renewable energy will play a crucial role in the future society of the 21st century. The various renewable energy sources need to be balanced and their use carefully planned since they are characterized by high temporal and spatial variability that will pose challenges to maintaining a well balanced supply and to the stability of the grid. This article examines the ways that future 'energy landscapes' can be modelled in time and space. Biomass needs a great deal of space per unit of energy produced but it is an energy carrier that may be strategically useful in circumstances where other renewable energy carriers are likely to deliver less. A critical question considered in this article is whether a massive expansion in the use of biomass will allow us to construct future scenarios while repositioning the 'energy landscape' as an object of study. A second important issue is the utilization of heat from biomass energy plants. Biomass energy also has a larger spatial footprint than other carriers such as, for example, solar energy. This article seeks to provide a bridge between energy modelling and spatial planning while integrating research and techniques in energy modelling with Geographic Information Science. This encompasses GIS, remote sensing, spatial disaggregation techniques and geovisualization. Several case studies in Austria and Germany demonstrate a top-down methodology and some results while stepwise calculating potentials from theoretical to technically feasible potentials and setting the scene for the definition of economic potentials based on scenarios and assumptions.

  5. Solar Energy - An Option for Future Energy Production

    ERIC Educational Resources Information Center

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  6. Solar Energy - An Option for Future Energy Production

    ERIC Educational Resources Information Center

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  7. Energy consumption: Past, present, future

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The energy consumption history of the United States and the changes which could occur in consumption characteristics in the next 50 years are presented. The various sources of energy are analyzed to show the limitations involved in development and utilization as a function of time available. Several scenarios were prepared to show the consumption and supply of energy under varying conditions.

  8. 78 FR 78466 - Meeting of the Regional Energy Resource Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... Meeting of the Regional Energy Resource Council AGENCY: Tennessee Valley Authority (TVA). ACTION: Notice of Meeting. SUMMARY: The TVA Regional Energy Resource Council (RERC) will hold an orientation meeting... Tennessee Valley. The RERC was established to advise TVA on its energy resource activities and...

  9. 78 FR 53740 - State Energy Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... Energy Advisory Board; Meeting AGENCY: Energy Efficiency and Renewable Energy, Department of Energy... Designated Federal Officer, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, 1000... recommendations to the Assistant Secretary for the Office of Energy Efficiency and Renewable Energy...

  10. The Economics of America's Energy Future.

    ERIC Educational Resources Information Center

    Simmons, Henry

    This is an Energy Research and Development Administration (ERDA) pamphlet which reviews economic and technical considerations for the future development of energy sources. Included are sections on petroleum, synthetic fuels, oil shale, nuclear power, geothermal power, and solar energy. Also presented are data pertaining to U.S. energy production…

  11. Hydrogen: the future energy carrier.

    PubMed

    Züttel, Andreas; Remhof, Arndt; Borgschulte, Andreas; Friedrichs, Oliver

    2010-07-28

    Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand, the peaking mining rate of oil, the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however, these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat.

  12. The Future of Geothermal Energy

    SciTech Connect

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  13. Future of Inertial Fusion Energy

    SciTech Connect

    Nuckolls, J H; Wood, L L

    2002-09-04

    In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

  14. The Future of Energy from Nuclear Fission

    SciTech Connect

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel

  15. FIRST STEPS INTO AN ENERGY EFFECIENT FUTURE

    SciTech Connect

    BARRETT, JANE L.

    2009-04-02

    Red Lake Band of Chippewa Indians proposes to develop a more sustainable, affordable and autonomous energy future for Tribal Members. The Band will develop the capacity to conduct energy audits, to implement energy efficiency measures in tribal homes, and to build more energy efficient housing. This will be done by providing direct classroom and on the job training for Tribal members to conduct the energy audits and the installation of insulation.

  16. Public engagement: Building energy futures

    NASA Astrophysics Data System (ADS)

    Chatterton, Tim

    2017-03-01

    It is important to include the public in the processes by which decisions on societal trajectories are made. A study shows that interactive scenario-building tools can engage people in the holistic complexities of energy transitions, but these tools must be designed and used with care because elicited preferences can be influenced by contextual factors.

  17. Hydrogen: A Future Energy Mediator?

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Hydrogen may be the fuel to help the United States to a non fossil energy source. Although hydrogen may not be widely used as a fuel until after the turn of the century, special applications may become feasible in the short term. Costs, uses, safety, and production methods are discussed. (BT)

  18. Hydrogen and OUr Energy Future

    SciTech Connect

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  19. Green nanotechnology of trends in future energy.

    PubMed

    Guo, Kelvii Wei

    2011-06-01

    It is well known that current fossil fuel usage is unsustainable and associated with greenhouse gas production. The amount of the world's primary energy supply provided by renewable energy technologies is required urgently. Therefore, the relevant technologies such as hydrogen fuel, solar cell, biotechnology based on nanotechnology and the relevant patents for exploiting the future energy for the friendly environment are reviewed. At the same time, it is pointed out that the significantly feasible world's eco-energy for the foreseeable future should not only be realized, but also methods for using the current energy and their by-products more efficiently should be found correspondingly to ensure the minimal environmental impact.

  20. Energy Education: Teaching for the Future

    ERIC Educational Resources Information Center

    Gierke, C. David

    1978-01-01

    A major challenge to education for the future involves energy attitude modification, and industrial arts is best prepared to institute energy education, says the author. He outlines the energy technology curriculum at East Senior High School, West Seneca, New York, and includes photographs from the solar and wind power course. (MF)

  1. Energy Education: Teaching for the Future

    ERIC Educational Resources Information Center

    Gierke, C. David

    1978-01-01

    A major challenge to education for the future involves energy attitude modification, and industrial arts is best prepared to institute energy education, says the author. He outlines the energy technology curriculum at East Senior High School, West Seneca, New York, and includes photographs from the solar and wind power course. (MF)

  2. THE FUTURE OF GEOTHERMAL ENERGY

    SciTech Connect

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  3. 76 FR 25683 - State Energy Advisory Board (STEAB); Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... Efficiency and Renewable Energy State Energy Advisory Board (STEAB); Meeting AGENCY: Energy Efficiency and... Federal Officer, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, 1000... Efficiency and Renewable Energy regarding goals and objectives, programmatic and administrative policies,...

  4. Should Nuclear Energy Form Part of the UK's Energy Future?

    ERIC Educational Resources Information Center

    Campbell, Peter

    2003-01-01

    Energy policies are under review everywhere, as the world tries to meet targets for reducing climate change despite continuing population growth. A major change in energy patterns is needed, with the critical period for transition predictably happening when young people currently at school are in their middle years of their lives. This article…

  5. Should Nuclear Energy Form Part of the UK's Energy Future?

    ERIC Educational Resources Information Center

    Campbell, Peter

    2003-01-01

    Energy policies are under review everywhere, as the world tries to meet targets for reducing climate change despite continuing population growth. A major change in energy patterns is needed, with the critical period for transition predictably happening when young people currently at school are in their middle years of their lives. This article…

  6. Fusion as a future energy source

    NASA Astrophysics Data System (ADS)

    Ward, D. J.

    2016-11-01

    Fusion remains the main source of energy generation in the Universe and is indirectly the origin of nearly all terrestrial energy (including fossil fuels) but it is the only fundamental energy source not used directly on Earth. Here we look at the characteristics of Earth-based fusion power, how it might contribute to future energy supply and what that tells us about the future direction of the R&D programme. The focus here is Magnetic Confinement Fusion although many of the points apply equally to inertial confinement fusion.

  7. Energy Efficient School Designed for the Future

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    When completed, the planned Greeley Elementary School will be able to accommodate any future changes in enrollment and technological developments, while maintaining a constant energy efficient heating and cooling operation. (Author/MLF)

  8. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report

    SciTech Connect

    none,

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  9. 78 FR 60366 - Meeting of the Regional Energy Resource Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... RERC was established to advise TVA on its energy resource activities and the priorities among competing... Meeting of the Regional Energy Resource Council AGENCY: Tennessee Valley Authority (TVA). ACTION: Notice of meeting. SUMMARY: The TVA Regional Energy Resource Council (RERC) will hold an orientation...

  10. Modeling global and regional energy futures

    NASA Astrophysics Data System (ADS)

    Rethinaraj, T. S. Gopi

    A rigorous econometric calibration of a model of energy consumption is presented using a comprehensive time series database on energy consumption and other socioeconomic indicators. The future of nuclear power in the evolving distribution of various energy sources is also examined. An important consideration for the long-term future of nuclear power concerns the rate of decline of the fraction of energy that comes from coal, which has historically declined on a global basis about linearly as a function of the cumulative use of coal. The use of fluid fossil fuels is also expected to eventually decline as the more readily extractable deposits are depleted. The investigation here is restricted to examining a comparatively simple model of the dynamics of competition between nuclear and other competing energy sources. Using a defined tropical/temperate disaggregation of the world, region-specific modeling results are presented for population growth, GDP growth, energy use, and carbon use compatible with a gradual transition to energy sustainability. Results for the fractions of energy use from various sources by grouping nine commercial primary energy sources into pairs of competing fuel categories are presented in combination with the idea of experiential learning and resource depletion. Analysis based on this division provides estimates for future evolution of the fractional shares, annual use rates, cumulative use of individual energy sources, and the economic attractiveness of spent nuclear fuel reprocessing. This unified approach helps to conceptualize and understand the dynamics of evolution of importance of various energy resources over time.

  11. Dark matter and dark energy: summary and future directions.

    PubMed

    Ellis, John

    2003-11-15

    This paper reviews the progress reported at the Discussion Meeting and advertises some possible future directions in our drive to understand dark matter and dark energy. Additionally, a first attempt is made to place in context the exciting new results from the Wilkinson Microwave Anisotropy Probe satellite, which were published shortly after this meeting. In the first part of this paper, pieces of observational evidence shown here that bear on the amounts of dark matter and dark energy are reviewed. Subsequently, particle candidates for dark matter are mentioned, and detection strategies are discussed. Finally, ideas are presented for calculating the amounts of dark matter and dark energy, and possibly relating them to laboratory data.

  12. Exploring Future Energy Choices with Young People

    ERIC Educational Resources Information Center

    MacGarry, Ann

    2014-01-01

    The article outlines a couple of the most recent resources developed by the Centre for Alternative Technology for teaching about energy. The key elements are providing sound information on all the significant sources and inspiring pupils to make their own decisions about energy futures based on evidence. Our experience is that engaging pupils in…

  13. Trade-offs in Our Energy Future.

    ERIC Educational Resources Information Center

    Canipe, Stephen L.

    The purpose of this activity is to make students aware that there is no free energy source for the present or the future and that all technologies are potential threats to the environment. The activity consists of a short reading (discussing basic trade-offs, issues, and decisions related to petroleum, coal, and nuclear energy sources) and student…

  14. Trade-offs in Our Energy Future.

    ERIC Educational Resources Information Center

    Canipe, Stephen L.

    The purpose of this activity is to make students aware that there is no free energy source for the present or the future and that all technologies are potential threats to the environment. The activity consists of a short reading (discussing basic trade-offs, issues, and decisions related to petroleum, coal, and nuclear energy sources) and student…

  15. Exploring Future Energy Choices with Young People

    ERIC Educational Resources Information Center

    MacGarry, Ann

    2014-01-01

    The article outlines a couple of the most recent resources developed by the Centre for Alternative Technology for teaching about energy. The key elements are providing sound information on all the significant sources and inspiring pupils to make their own decisions about energy futures based on evidence. Our experience is that engaging pupils in…

  16. 75 FR 82002 - Secretary of Energy Advisory Board Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces an open meeting of the... conclude at 5 p.m. Public Participation: The meeting is open to the public. Individuals who would like to...; 8:45 am] BILLING CODE 6450-01-P ...

  17. Current and future industrial energy service characterizations

    SciTech Connect

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  18. Residential Energy Efficiency Research Planning Meeting Summary Report

    SciTech Connect

    none,

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  19. FLIP II - Concept Designs to Meet Future Scientific Mission Requirements

    NASA Astrophysics Data System (ADS)

    Laible, D. H.

    2002-12-01

    R/P FLIP has successfully operated for 40 years in support of important oceanographic research missions. The simple platform, which has the unique ability to provide a heave-stable operating location in open ocean environments, has over time been modified and upgraded. Its capability has been extended to the physical limits imposed by buoyancy and stability constraints. Nonetheless, there are oceanographic research operations that can use FLIP's unique characteristics, but which exceed its capabilities. Over the years researchers at the Marine Physical Laboratory of Scripps Institution of Oceanography have led investigations into second generation heave-stable ocean platforms with capabilities substantially exceeding those of R/P FLIP. This paper discusses several design concepts that have been developed. The designs are presented in terms of the ability to meet current and future scientific mission requirements.

  20. Basic Science for a Secure Energy Future

    NASA Astrophysics Data System (ADS)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  1. Expert Meeting Report. Energy Savings You Can Bank On

    SciTech Connect

    Berman, Mark; Springer, Jeremy; Smith, Pepper; Porse, Erik

    2013-02-01

    In October 2011, ARBI organized and conducted an Experts’ Meeting on the topic of performance guarantees and financing vehicles for Energy Efficiency Upgrades. The meeting brought together technical, policy, and financial experts, including researchers, experienced installation contractors, and innovative energy business leaders, in order to discuss the opportunities and challenges for the energy efficiency upgrade industry to increase market uptake of Home Energy Upgrades (HEUs) through innovative offerings, such as performance guarantees.

  2. Space facilities: Meeting future needs for research, development, and operations

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  3. Future high energy colliders symposium. Summary report

    SciTech Connect

    Parsa, Z. |

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  4. The future of energy and climate

    ScienceCinema

    None

    2016-07-12

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  5. The future of energy and climate

    SciTech Connect

    2009-08-04

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  6. How a future energy world could look?

    NASA Astrophysics Data System (ADS)

    Ewert, M.

    2012-10-01

    The future energy system will change significantly within the next years as a result of the following Mega Trends: de-carbonization, urbanization, fast technology development, individualization, glocalization (globalization and localization) and changing demographics. Increasing fluctuating renewable production will change the role of non-renewable generation. Distributed energy from renewables and micro generation will change the direction of the energy flow in the electricity grids. Production will not follow demand but demand has to follow production. This future system is enabled by the fast technical development of information and communication technologies which will be present in the entire system. In this paper the results of a comprehensive analysis with different scenarios is summarized. Tools were used like the analysis of policy trends in the European countries, modelling of the European power grid, modelling of the European power markets and the analysis of technology developments with cost reduction potentials. With these tools the interaction of the main actors in the energy markets like conventional generation and renewable generation, grid transport, electricity storage including new storage options from E-Mobility, Power to Gas, Compressed Air Energy storage and demand side management were considered. The potential application of technologies and investments in new energy technologies were analyzed within existing frameworks and markets as well as new business models in new markets with different frameworks. In the paper the over all trend of this analysis is presented by describing a potential future energy world. This world represents only one of numerous options with comparable characteristics.

  7. 75 FR 26321 - Public Meeting on Future Policy and Rulemaking for Normal, Utility, Acrobatic, and Commuter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... Federal Aviation Administration Public Meeting on Future Policy and Rulemaking for Normal, Utility...: Notice of public meeting. SUMMARY: The FAA Small Airplane Directorate is issuing this notice to advise the public of a meeting to discuss ideas for future policy and rulemaking for small airplanes. We are...

  8. U.S. energy outlook and future energy impacts

    NASA Astrophysics Data System (ADS)

    Hamburger, Randolph John

    2011-12-01

    Energy markets were not immune to the 2007 financial crisis. Growth in the Indian and Chinese economies is placing strains on global energy supplies that could force a repeat of the 2008 price spike of $145/bbl for crude oil. Emerging market growth coupled with inefficiencies, frictions, and speculation in the energy markets has the potential to create drastic economic shocks throughout the world. The 2007 economic crisis has pushed back investment in energy projects where a low-growth scenario in world GDP could create drastic price increases in world energy prices. Without a long-term energy supply plan, the U.S. is destined to see growth reduced and its trade imbalances continue to deteriorate with increasing energy costs. Analysis of the U.S. natural gas futures markets and the impact of financial speculation on natural gas market pricing determined that financial speculation adds to price movements in the energy markets, which could cause violent swings in energy prices.

  9. World energy: Building a sustainable future

    SciTech Connect

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  10. World energy: Building a sustainable future

    SciTech Connect

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  11. 75 FR 39678 - Meeting of Energy Services Companies and the Federal Energy Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... ESPC policies. Using the Best Commercially Available Energy-Efficient Technology. Using New and... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Meeting of Energy Services Companies and the Federal Energy Management Program AGENCY: Department...

  12. Thermal Energy Storage: Fourth Annual Review Meeting

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The development of low cost thermal energy storage technologies is discussed in terms of near term oil savings, solar energy applications, and dispersed energy systems for energy conservation policies. Program definition and assessment and research and technology development are considered along with industrial storage, solar thermal power storage, building heating and cooling, and seasonal thermal storage. A bibliography on seasonal thermal energy storage emphasizing aquifer thermal energy is included.

  13. On the Future High Energy Colliders

    SciTech Connect

    Shiltsev, Vladimir

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  14. 75 FR 38861 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... Technology Advisory Panel Meeting AGENCY: Social Security Administration (SSA). ACTION: Notice of Eighth Panel Meeting. DATES: August 3, 2010, 10 a.m.-5 p.m. Location: Park Hyatt Washington DC, Hyde Park Room. ADDRESSES: 24 & M Streets, NW., Washington, DC 20037. SUPPLEMENTARY INFORMATION: Type of meeting:...

  15. Coal and nuclear power: Illinois' energy future

    SciTech Connect

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  16. Expert Meeting Report: Energy Savings You Can Bank On

    SciTech Connect

    Beman, M.; Springer, J.; Smith, P.; Porse, E.

    2013-02-01

    In October 2011, ARBI organized and conducted an Experts' Meeting on the topic of performance guarantees and financing vehicles for Energy Efficiency Upgrades. The meeting brought together technical, policy, and financial experts, including researchers, experienced installation contractors, and innovative energy business leaders, in order to discuss the opportunities and challenges for the energy efficiency upgrade industry to increase market uptake of Home Energy Upgrades (HEUs) through innovative offerings, such as performance guarantees. The meeting had several primary goals. First, it sought to understand how other industries have developed successful models for financing renewable energy installations while providing performance guarantees. This has been most recently demonstrated by the solar leasing industry. Second, the meeting explored the applicability of such business models to the energy efficiency upgrade industry. Third, the meeting sought to identify technical impediments to performance guarantees for energy efficiency retrofits. Fourth, the meeting sought to provide a common framework for these goals within the context of current financing mechanisms for energy efficiency upgrades.

  17. Hydrogen Storage Technologies for Future Energy Systems.

    PubMed

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  18. Energy: Can We Meet the Increasing Demand?

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2006-01-01

    Energy is the lifeblood of the United States. It powers its industries and keeps its economy humming. The nation's progress has relied on making energy abundantly available to support the growth of new ideas and products, and the issue of renewable energy is an increasingly important one. In this article, the author discusses some of the basics of…

  19. Energy: Can We Meet the Increasing Demand?

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2006-01-01

    Energy is the lifeblood of the United States. It powers its industries and keeps its economy humming. The nation's progress has relied on making energy abundantly available to support the growth of new ideas and products, and the issue of renewable energy is an increasingly important one. In this article, the author discusses some of the basics of…

  20. Renewable Energy Education for Future Generations

    NASA Astrophysics Data System (ADS)

    Ng, R.

    2015-12-01

    Considering the constantly growing use of technology, modern society requires increasing amounts of electrical power. Acknowledging the global efforts to increase the use of renewable energy sources, the Independent Schools Foundation Academy, a school in Hong Kong, plans to provide the opportunity for students to explore the applications of various forms of renewable energy through a Renewable Energy Education Centre (REEC). Two students are involved in the designing and construction of the Renewable Energy Education Centre to understand the technologies, processes, and provide insight from the students' perspective. The REEC will incorporate various uses of renewable energy, including a solar photovoltaic system, hybrid photovoltaic/thermal system, vertical windmill, hot water heater, and heat pump. As a means to enrich students' learning experiences, the REEC will be open to access by science students for a wide range of investigations, such as science experiments related to renewable energy and energy efficiency, providing opportunities for student led research projects, Personal Projects and IB Extended Essays. In short, the Independent Schools Foundation Academy aims to allow students to familiarize themselves with various forms of renewable energy from a young age, and develop a deeper understanding of technologies that will become primary sources of electrical power in the near future.

  1. 76 FR 9339 - State Energy Advisory Board (STEAB); Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ...) commercialization and deployment efforts, find ways to encourage energy efficiency market transformation, meet with... new and emerging technologies as well as current projects, consider potential collaborative activities... due to programmatic issues, logistical circumstances, and members' availability. Public notice of the...

  2. Future Energy and United States Security.

    DTIC Science & Technology

    1983-04-13

    American Petroleum Institute , p. 35. 8. Ibid., p. 39. 9. Ibid., pp. 41-42. 10. Ibid., pp. 43-44. 11. Ibid., p. 45. 12. Ibid., p. 46. 13...p. 5. 18. American Petroleum Institute , pp. 66-67. 19. Ibid., p. 67. 20. Ibid., p. 85. 21. Ibid., p. 86. 22. Robert Stobaugh and Daniel Yergin...Energy Future, pp. 102-103. 23. Ibid., p. 103. 28 24. American Petroleum Institute , p. 101. "-’ൡ. Ibid., p. 92. 26. US Department of Energy, The

  3. Future Costs, Benefits, and Impacts of Renewables Used to Meet U.S. Renewable Portfolio Standards

    SciTech Connect

    2016-12-01

    This brochure provides a brief overview of the report titled 'A Prospective Analysis of the Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards.' The report evaluates the future costs, benefits, and other impacts of renewable energy used to meet current state renewable portfolio standards (RPSs). It also examines a future scenario where RPSs are expanded. The analysis examines changes in electric system costs and retail electricity prices, which include all fixed and operating costs, including capital costs for all renewable, non-renewable, and supporting (e.g., transmission and storage) electric sector infrastructure; fossil fuel, uranium, and biomass fuel costs; and plant operations and maintenance expenditures. The analysis evaluates three specific benefits: air pollution, greenhouse gas emissions, and water use. It also analyzes two other impacts, renewable energy workforce and economic development, and natural gas price suppression. The analysis finds that the benefits or renewable energy used to meet RPS polices exceed the costs, even when considering the highest cost and lowest benefit outcomes.

  4. 75 FR 61227 - Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Future Plant Designs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ..., General Electric--Hitachi Nuclear Energy (GEH), and their contractors, pursuant to 5 U.S.C. 552b(c)(4... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Future Plant...

  5. Perspectives on future high energy physics

    SciTech Connect

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  6. Energy: What About the Future? Easy Energy Reader, Book IV.

    ERIC Educational Resources Information Center

    Information Planning Associates, Inc., Rockville, MD.

    Four articles about future energy technologies and problems comprise this collection of readings intended for the junior high school language arts curriculum. Each entry has been scored for readability according to the Gunning Fog Index. By referring to these ratings, a teacher can provide students with increasingly more challenging reading…

  7. Insights from a Recent Meeting: Current Status and Future Directions in Magnesium Corrosion Research

    SciTech Connect

    Brady, Michael P.; Joost, William J.; David Warren, C.

    2016-11-17

    The United States Department of Energy Vehicle Technologies Office held a Technical Review Meeting entitled “Current Status and Future Directions in Magnesium Corrosion Research” at Oak Ridge National Laboratory in April 2016. Here current funded Mg corrosion projects presented their latest results, along with invited presentations from academic and industrial researchers in the area of Mg corrosion. This paper overviews select topics from the meeting, with an emphasis on relaying meeting discussion points regarding future needs in understanding and mitigating Mg corrosion, particularly for automotive applications. Topics highlighted include the need for pretreatments and coatings suitable for mass vehicle production of Mg components, particularly for dissimilar metal joints involving Mg, Al, or steel, and corrosion evaluation methods more relevant to automotive components and operating conditions. Finally, from a scientific perspective, the need for better fundamental understanding of Mg dissolution, hydrogen evolution, and film formation behavior was a recurring theme, as was phenomena related to microgalvanic coupling involving second phases and impurities in Mg.

  8. Insights from a Recent Meeting: Current Status and Future Directions in Magnesium Corrosion Research

    DOE PAGES

    Brady, Michael P.; Joost, William J.; David Warren, C.

    2016-11-17

    The United States Department of Energy Vehicle Technologies Office held a Technical Review Meeting entitled “Current Status and Future Directions in Magnesium Corrosion Research” at Oak Ridge National Laboratory in April 2016. Here current funded Mg corrosion projects presented their latest results, along with invited presentations from academic and industrial researchers in the area of Mg corrosion. This paper overviews select topics from the meeting, with an emphasis on relaying meeting discussion points regarding future needs in understanding and mitigating Mg corrosion, particularly for automotive applications. Topics highlighted include the need for pretreatments and coatings suitable for mass vehicle productionmore » of Mg components, particularly for dissimilar metal joints involving Mg, Al, or steel, and corrosion evaluation methods more relevant to automotive components and operating conditions. Finally, from a scientific perspective, the need for better fundamental understanding of Mg dissolution, hydrogen evolution, and film formation behavior was a recurring theme, as was phenomena related to microgalvanic coupling involving second phases and impurities in Mg.« less

  9. ARPA-E: Transforming Our Energy Future

    ScienceCinema

    Williams, Ellen; Raman, Aaswath

    2016-07-12

    ARPA-E helps to translate cutting-edge inventions into technological innovations that could change how we use, generate and store energy. In just seven years, ARPA-E technologies are demonstrating technical and commercial progress, surpassing $1.25 billion in private sector follow on funding. In this video, ARPA-E Director Dr. Ellen D. Williams highlights an exciting project from Stanford University that is developing a radiative cooling technology that could enable buildings, power plants, solar cells and even clothing to cool without using electric power or loss of water. This project is just one example among ARPA-E’s 400+ innovative technologies that are reimagining energy and helping to create a more secure, affordable and sustainable American energy future.

  10. Dark energy: recent observations and future prospects.

    PubMed

    Perlmutter, Saul

    2003-11-15

    Dark energy presents us with a challenging puzzle: understanding the new physics seen in the acceleration of the expansion of the Universe. Measurements using type-Ia supernovae (SNe) first detected this acceleration, and this approach remains the most direct route to studying the details of the Universe's expansion history that can teach us more about the nature of the dark energy. Such measurements are, however, extremely demanding in both precision and accuracy, since the different dark-energy models predict very small differences in the expansion history. While several cosmological probes may reach the required statistical uncertainties, the key measurement limit will be the systematic uncertainty. The supernova-measurement approach has the advantage of well-studied systematic uncertainties, allowing a next-generation experiment to be pursued. We briefly review the progress to date and examine the promise of future surveys with large numbers of SNe and well-bounded systematics.

  11. ARPA-E: Transforming Our Energy Future

    SciTech Connect

    Williams, Ellen; Raman, Aaswath

    2016-03-02

    ARPA-E helps to translate cutting-edge inventions into technological innovations that could change how we use, generate and store energy. In just seven years, ARPA-E technologies are demonstrating technical and commercial progress, surpassing $1.25 billion in private sector follow on funding. In this video, ARPA-E Director Dr. Ellen D. Williams highlights an exciting project from Stanford University that is developing a radiative cooling technology that could enable buildings, power plants, solar cells and even clothing to cool without using electric power or loss of water. This project is just one example among ARPA-E’s 400+ innovative technologies that are reimagining energy and helping to create a more secure, affordable and sustainable American energy future.

  12. 76 FR 54291 - Notice of Rail Energy Transportation Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... Surface Transportation Board Notice of Rail Energy Transportation Advisory Committee Meeting AGENCY: Surface Transportation Board. ACTION: Notice of Rail Energy Transportation Advisory Committee meeting. SUMMARY: Notice is hereby given of a meeting of the Rail Energy Transportation Advisory Committee...

  13. 77 FR 8947 - Notice of Rail Energy Transportation Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Surface Transportation Board Notice of Rail Energy Transportation Advisory Committee Meeting AGENCY: Surface Transportation Board, DOT. ACTION: Notice of Rail Energy Transportation Advisory Committee meeting. SUMMARY: Notice is hereby given of a meeting of the Rail Energy Transportation Advisory Committee...

  14. Futures and Education. Report of a Regional Meeting (Bangkok, Thailand, November 2-8, 1983).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.

    A meeting report on education within the context of futures studies is divided into four chapters. Chapter One discusses the background of the meeting. Chapter Two outlines the studies presented by each of the eight Asian and Pacific nations represented at the meeting: Australia, India, Japan, Malaysia, New Zealand, the Philippines, Korea, and…

  15. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  16. Renewable Energy: Ready to Meet Its Promise?

    SciTech Connect

    Bull, S. R.; Billman, L. L.

    1999-01-01

    This paper will briefly review the technical status, cost, and applications of major renewable energy technologies in 1998, and also discuss some of the socioeconomic impacts of wide-scale adoption of renewables.

  17. 75 FR 44998 - The Future of Aviation Advisory Committee (FAAC) Aviation Safety Subcommittee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ...-OST-2010-0074] The Future of Aviation Advisory Committee (FAAC) Aviation Safety Subcommittee; Notice.... ACTION: The Future of Aviation Advisory Committee (FAAC): Aviation Safety Subcommittee; Notice of meeting... meeting of the FAAC Aviation Safety Subcommittee, which will be held August 24, 2010, in Chicago,...

  18. Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building

    ScienceCinema

    Gerry Stokes; Jim Misewich

    2016-07-12

    Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

  19. Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building

    SciTech Connect

    Gerry Stokes; Jim Misewich

    2012-04-09

    Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

  20. Appalachian Governors Consider Future Regional Development at Tenth Annal Meeting

    ERIC Educational Resources Information Center

    Appalachia, 1969

    1969-01-01

    Governors recommend establishment of permanent programs and a national policy on regional development. Consists of excerpts from annual meeting of the Council of Appalachian Governors (September 17, 1969, Williamsburg, Virginia). (YP)

  1. Appalachian Governors Consider Future Regional Development at Tenth Annal Meeting

    ERIC Educational Resources Information Center

    Appalachia, 1969

    1969-01-01

    Governors recommend establishment of permanent programs and a national policy on regional development. Consists of excerpts from annual meeting of the Council of Appalachian Governors (September 17, 1969, Williamsburg, Virginia). (YP)

  2. The annual meeting: regulatory obligation or lifeline to the future?

    PubMed

    Lister, E D; Pirrotta, S

    2000-01-01

    Usually dreaded, annual meetings can provide a crucial, powerful, but often neglected context for reviewing the "vital signs" of a group practice: mission, membership, marketplace strategy and infrastructure. We propose that regular and thoughtful attention to essential issues of cohesion and effectiveness significantly increases the likelihood of group vitality and group member satisfaction. We suggest a methodology for embedding these essential conversations into the ritual of the annual meeting.

  3. The annual ASCI meeting: does nostalgia have a future?

    PubMed

    Lefkowitz, Robert J

    2008-04-01

    For many academic physician-scientists, the yearly Tri-Societies meeting of the ASCI, AAP, and AFCR during the 1960s, '70s, and '80s was an annual rite of spring and the focal point of the academic year. In this brief essay, I set down some miscellaneous recollections of these meetings and some thoughts about why they were of such central importance in the careers of those of my generation.

  4. The annual ASCI meeting: does nostalgia have a future?

    PubMed Central

    Lefkowitz, Robert J.

    2008-01-01

    For many academic physician-scientists, the yearly Tri-Societies meeting of the ASCI, AAP, and AFCR during the 1960s, ’70s, and ’80s was an annual rite of spring and the focal point of the academic year. In this brief essay, I set down some miscellaneous recollections of these meetings and some thoughts about why they were of such central importance in the careers of those of my generation. PMID:18382732

  5. Future Technologies to Enhance Geothermal Energy Recovery

    SciTech Connect

    Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

    2008-07-25

    Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

  6. Primary energy: Present status and future perspectives

    NASA Astrophysics Data System (ADS)

    Thielheim, K. O.

    A survey of the base-load energy sources available to humans is presented, starting from the point of view that all energy used is ultimately derived from nuclear processes within the sun. Specific note is made of European energy options, noting the large dependence on imported oil. Detailed exploration of available nuclear fuel resources is carried out, with attention given to fission, fusion, and breeder reactor plants and to the state-of-the-art and technology for each. The problems of nuclear waste disposal are discussed, and long term burial in salt domes is outlined as a satisfactory method of containing the materials for acceptable periods of time. The CO2-greenhouse effect hazards caused by increased usage of coal-derived fuels are considered and precautions to be taken on a global scale to ameliorate the warming effects are recommended. The limitations to hydropower are examined, as are those of tidal power. Solar cells are projected to be produced in GW quantities by the year 2000, while wind-derived electricity is predicted to provide a minimum of 5% of the world energy needs in the future.

  7. New Science for a Secure and Sustainable Energy Future

    SciTech Connect

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  8. Solar energy to meet the nation's energy needs

    NASA Technical Reports Server (NTRS)

    Rom, F. E.; Thomas, R. L.

    1973-01-01

    Discussion of the possibilities afforded by solar energy as one of the alternative energy sources capable to take the place of the dwindling oil and gas reserves. Solar energy, being a nondepleting clean source of energy, is shown to be capable of providing energy in all the forms in which it is used today. Steps taken toward providing innovative solutions that are economically competitive with other systems are briefly reviewed.

  9. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE

  10. Solar energy to meet the nation's energy needs

    NASA Technical Reports Server (NTRS)

    Rom, F. E.; Thomas, R. L.

    1973-01-01

    Solar energy, being a non-depleting clean source of energy, is shown to be capable of providing energy in all the forms in which it is used today. It can be used to generate electricity, for heating and cooling buildings, and for producing clean renewable gaseous, liquid and solid fuel. There is little question of the technical feasibility for utilizing solar energy. The chief problem is rapidly providing innovative solutions that are economically competititive with other systems.

  11. Multifactor valuation models of energy futures and options on futures

    NASA Astrophysics Data System (ADS)

    Bertus, Mark J.

    The intent of this dissertation is to investigate continuous time pricing models for commodity derivative contracts that consider mean reversion. The motivation for pricing commodity futures and option on futures contracts leads to improved practical risk management techniques in markets where uncertainty is increasing. In the dissertation closed-form solutions to mean reverting one-factor, two-factor, three-factor Brownian motions are developed for futures contracts. These solutions are obtained through risk neutral pricing methods that yield tractable expressions for futures prices, which are linear in the state variables, hence making them attractive for estimation. These functions, however, are expressed in terms of latent variables (i.e. spot prices, convenience yield) which complicate the estimation of the futures pricing equation. To address this complication a discussion on Dynamic factor analysis is given. This procedure documents latent variables using a Kalman filter and illustrations show how this technique may be used for the analysis. In addition, to the futures contracts closed form solutions for two option models are obtained. Solutions to the one- and two-factor models are tailored solutions of the Black-Scholes pricing model. Furthermore, since these contracts are written on the futures contracts, they too are influenced by the same underlying parameters of the state variables used to price the futures contracts. To conclude, the analysis finishes with an investigation of commodity futures options that incorporate random discrete jumps.

  12. Sixth coordination meeting of the Division of Nuclear Physics Program to meet high-priority nuclear data needs of the Office of Fusion Energy

    SciTech Connect

    Not Available

    1990-06-01

    The Sixth Coordination Meeting of the Program to Meet Nuclear Data Needs for Fusion Energy was held in Athens, September 19--21, 1989. The principal change from the previous meeting at Argonne was the larger international participation. One scientist from Japan represented the only non-US participation at Argonne. The present meeting included about 20% non-US participants. This change is a welcome one since the data needs are international and the limited availability of manpower and facilities will likely make international cooperation increasingly important in the future. The organization of the meeting involved collecting and distributing to all participants progress reports from the Department of Energy laboratories in advance of the meeting. Twenty-five oral presentations were made at the meeting, including many from non-DOE labs. The meeting then divided into experimental and theoretical task force groups, which carried out assigned agenda items. The reports of these groups, abstracts of the talks presented at the meeting, and the progress reports are included in this report. The topics discussed will be very familiar to participants in past meetings, but continued progress in most areas was reported. One discussion topic which reflects continuing and perhaps worsening problems was the aging of facilities and personnel, coupled with a lack of programs to renew.

  13. Future Problem Solving--One Program Meeting Many Needs.

    ERIC Educational Resources Information Center

    Hume, Katherine C.

    2002-01-01

    This article describes the Future Problem Solving Program, a year-long curriculum project with competitive and non-competitive options. The international program involves 250,000 students and is designed to help students enlarge, enrich, and make more accurate their images of the future. Team problem solving and individual problem solving…

  14. Plan to meet a new requirement: energy impact assessment

    SciTech Connect

    Breedlove, K.H.

    1980-08-01

    New and proposed regulations require Energy Impact Assessment (ENIA) statements and consideration of energy alternatives for federal aid in building major new facilities which impact greatly on local energy resources. The objectives will be to determine long-term energy costs, reduce adverse impacts through tradeoffs, set baselines for evaluating future changes in usage, and provide inputs to Environmental Impact Statements and to energy-feasibility analyses. ENIA and Energy Resource Impact Statements (ERIS) are defined, and the proposed content and applicability discussed. Methodological research, energy cost-factor data, and specialists will be needed. Army regulations and other laws are quoted. (DCK)

  15. Key Assets for a Sustainable Low Carbon Energy Future

    NASA Astrophysics Data System (ADS)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political

  16. A Carbon-Free Energy Future

    NASA Astrophysics Data System (ADS)

    Linden, H. R.; Singer, S. F.

    2001-12-01

    desirable for other economic uses. A hydrogen-based energy future is inevitable as low-cost sources of petroleum and natural gas become depleted with time. However, such fundamental changes in energy systems will take time to accomplish. Coal may survive for a longer time but may not be able to compete as the century draws to a close.

  17. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible

  18. Extending NASA's SPICE ancillary information system to meet future mission needs

    NASA Technical Reports Server (NTRS)

    Acton, C.; Bachman, N.; Elson, L.; Semenov, B.; Turner, F.; Wright, E.

    2002-01-01

    This paper summarizes the architecture, capabilities, characteristics and uses of the current SPICE ancillary information system, and then outlines plans and ideas for how this system can be extended to meet future space mission requirements.

  19. Extending NASA's SPICE ancillary information system to meet future mission needs

    NASA Technical Reports Server (NTRS)

    Acton, C.; Bachman, N.; Elson, L.; Semenov, B.; Turner, F.; Wright, E.

    2002-01-01

    This paper summarizes the architecture, capabilities, characteristics and uses of the current SPICE ancillary information system, and then outlines plans and ideas for how this system can be extended to meet future space mission requirements.

  20. Signature Peptide-Enabled Metagenomics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    McMahon, Ben [LANL

    2016-07-12

    Ben McMahon of Los Alamos National Laboratory (LANL) presents "Signature Peptide-Enabled Metagenomics" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  1. Using Genomics to Dissect Seed Development (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment Meeting)

    ScienceCinema

    Goldberg, Robert [UCLA

    2016-07-12

    Robert Goldberg of UCLA presents "Using Genomics to Dissect Seed Development" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  2. Using Genomics to Dissect Seed Development (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment Meeting)

    SciTech Connect

    Goldberg, Robert

    2012-03-21

    Robert Goldberg of UCLA presents "Using Genomics to Dissect Seed Development" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  3. 75 FR 57546 - The Future of Aviation Advisory Committee (FAAC) Environment Subcommittee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ...) Environment Subcommittee; Notice of Meeting AGENCY: U.S. Department of Transportation, Office of the Secretary of Transportation. ACTION: The Future of Aviation Advisory Committee (FAAC) Environment Subcommittee... the Secretary of Transportation, announces a meeting of the FAAC Environment Subcommittee, which will...

  4. Proceedings of the Specialists' Meeting on High Energy Nuclear Data

    NASA Astrophysics Data System (ADS)

    Fukahori, Tokio

    1992-03-01

    This report consists of the Proceedings of the Specialists' Meeting on High Energy Nuclear Data. The meeting was held on October 3-4, 1991, at the Tokai Research Establishment, Japan Atomic Energy Research Institute with the participation of forty-odd specialists, who were the evaluators, theorists, experimentalists, and users of high energy nuclear data including the members of Japanese Nuclear Data Committee. The need of the nuclear data in the high energy region up to a few GeV was stressed in the meeting for many applications, such as spallation neutron sources for radioactive waste treatment, accelerator shielding design, medical isotope production, radiation therapy, the effects of space radiation on astronauts and their equipment, and the cosmic history of meteorites and other galactic substances. Although the neutron nuclear data below 20 MeV have been well evaluated for fission and fusion reactor applications, the nuclear data in the high energy region have never been prepared in Japan. With the view of producing an evaluated high energy nuclear data file, theoretical models and codes, available and necessary measurements, needs of nuclear data, and various applications were reviewed and discussed. The consensus, that the wide collaboration was necessary to produce the evaluated file and should be established, has been obtained.

  5. Future petroleum energy resources of the world

    USGS Publications Warehouse

    Ahlbrandt, T.S.

    2002-01-01

    and gas endowment estimates. Whereas petroleum resources in the world appear to be significant, certain countries such as the United States may run into import deficits, particularly oil imports from Mexico and natural gas from both Canada and Mexico. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as those at Stanford University, Massachusetts Institute of Technology, and others have also used USGS estimates in global climate models. Many of these models using the USGS estimates converge on potential oil shortfalls in 2036-2040. However, recent articles using the USGS (2000) estimates suggest peaking of oil in 2020-2035 and peaking of non-OPEC (Organization of Petroleum-Exporting Countries) oil in 2015-2020. Such a short time framework places greater emphasis on a transition to increased use of natural gas; i.e., a methane economy. Natural gas in turn may experience similar supply concerns in the 2050-2060 time frame according to some authors. Coal resources are considerable and provide significant petroleum potential either by extracting natural gas from them, by directly converting them into petroleum products, or by utilizing them to generate electricity, thereby reducing natural gas and oil requirements by fuel substitution. Non-conventional oil and gas are quite common in petroleum provinces of the world and represent a significant resources yet to be fully studied and developed. Seventeen non-conventional AU including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits also are under way.

  6. Institutional Strain and Precarious Values in Meeting Future Nuclear Challenges

    SciTech Connect

    Bruce Matthews; Todd R. LaPorte

    1998-11-01

    This paper explores the implications of moderately expanding plutonium "pit" production capability within the strongly R&D culture of Los Alamos National Laboratory, especially in terms of the lab's current capacity or "fitness for the future" in which institutional stewardship of the nation's nuclear deterrent capability becomes a primary objective. The institutional properties needed to assure "future fitness" includes the organizational requisites highly reliable operations and sustained institutional constancy in a manner that evokes deep public trust and confidence. Estimates are made of the degree to which the key Division and most relevant Program office in this evolution already exhibits them.

  7. Renewable: A key component of our global energy future

    SciTech Connect

    Hartley, D.

    1995-12-31

    Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

  8. Developing Interdisciplinary Workforce to Meet Future Aerospace Challenges

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2017-01-01

    The presentation will focus on the importance of interdisciplinary research for addressing future aerospace challenges. Examples of current research activities at NASA's Glenn Research Center will be provided to illustrate the importance of interdisciplinary research. Challenges with conducting interdisciplinary research will be discussed.

  9. Current Renewable Energy Technologies and Future Projections

    SciTech Connect

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  10. 75 FR 44303 - The Future of Aviation Advisory Committee (FAAC) Environment Subcommittee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Office of the Secretary of Transportation The Future of Aviation Advisory Committee (FAAC) Environment... Transportation. ACTION: The Future of Aviation Advisory Committee (FAAC) Environment Subcommittee; Notice of... Secretary of Transportation, announces a meeting of the FAAC Environment Subcommittee, which will be held at...

  11. 75 FR 68017 - The Future of Aviation Advisory Committee (FAAC) Environment Subcommittee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... Docket No. DOT-OST-2010-0074] The Future of Aviation Advisory Committee (FAAC) Environment Subcommittee.... ACTION: The Future of Aviation Advisory Committee (FAAC) Environment Subcommittee; Notice of Federal... Transportation, announces a meeting of the FAAC Environment Subcommittee, which will be held by teleconference...

  12. 75 FR 60163 - The Future of Aviation Advisory Committee (FAAC) Aviation Safety Subcommittee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Office of the Secretary of Transportation The Future of Aviation Advisory Committee (FAAC) Aviation... of Transportation. ACTION: The Future of Aviation Advisory Committee (FAAC): Aviation Safety... Transportation, announces a meeting of the FAAC Aviation Safety Subcommittee, which will be held October 19,...

  13. Solar Energy in America's Future, A Preliminary Assessment.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report was prepared as an account of work sponsored by the United States Government. The report documents a Stanford Research Institute study of the potential roles that solar energy technologies could have for meeting U.S. energy needs over the next 45 years. Computer simulations of different energy supply projections were developed by…

  14. Weigh options for meeting future gasoline sulfur specifications

    SciTech Connect

    Johnson, T.E.

    1997-03-01

    The most frequently mentioned methods for reducing pool gasoline sulfur to the 50-ppm range are FCC feed hydrotreating and desulfurization of heavy cat naptha (HCN). Of these, cat feed hydrotreating (CFH) is preferred because of the compelling economics of improved FCC gasoline yield. Also, the additional C{sub 3}/C{sub 4} olefin yield opens up the possibility of additional production of sulfur-free alkylate and oxygenate. In addition to the obvious yield benefits, the ability to upgrade lower quality, higher sulfur stocks for inclusion in the FCC charge slate, while lowering flue gas SO{sub x} emissions, is also advantageous to the refiner. However, depending o the level of FCC feed sulfur and the severity of hydrotreating used, it may not be possible to meet 50-ppm sulfur in the gasoline pool. Two possible solutions to this problem are to use: (1) a very severe cat feed hydrotreating operation (i.e., 98%-plus desulfurization), (2) partial conversion hydrocracking.

  15. Extending helicopter operations to meet future integrated transportation needs.

    PubMed

    Stanton, Neville A; Plant, Katherine L; Roberts, Aaron P; Harvey, Catherine; Thomas, T Glyn

    2016-03-01

    Helicopters have the potential to be an integral part of the future transport system. They offer a means of rapid transit in an overly populated transport environment. However, one of the biggest limitations on rotary wing flight is their inability to fly in degraded visual conditions in the critical phases of approach and landing. This paper presents a study that developed and evaluated a Head up Display (HUD) to assist rotary wing pilots by extending landing to degraded visual conditions. The HUD was developed with the assistance of the Cognitive Work Analysis method as an approach for analysing the cognitive work of landing the helicopter. The HUD was tested in a fixed based flight simulator with qualified helicopter pilots. A qualitative analysis to assess situation awareness and workload found that the HUD enabled safe landing in degraded conditions whilst simultaneously enhancing situation awareness and reducing workload. Continued development in this area has the potential to extend the operational capability of helicopters in the future.

  16. Town Hall Meeting: Future Directions in Dynamic High Pressure Research

    NASA Astrophysics Data System (ADS)

    Nellis, W. J.; Dlott, D.

    2007-12-01

    Shock-compression research began in the 1940s for reasons of national defense. While military-related research will continue to be a major motivator of shock research, war between nations is not as probable today as it was in the last century. Today other issues are gaining national and international importance. This situation raises the possibility of redistribution of federal funding into fields other than those related directly to military research. It is timely to consider possible future directions that would put us in a position to obtain support to address emerging needs of society, while maintaining traditional expertise. Possibilities for future research at national and military laboratories and at universities are suggested in the context of ideas and questions posed in a recent report of the National Research Council of the National Academies. Dynamic-compression research is positioned to play a prominent role in general scientific research and such results are needed to enhance probabilities of achieving present and emerging technological goals of national importance.

  17. NASA super-pressure balloons - designing to meet the future

    NASA Astrophysics Data System (ADS)

    Cathey, Henry M., Jr.

    2001-08-01

    The NASA Ultra Long Duration Balloon project presents a new challenge in balloon design by extending flight duration for large heavy payloads. The pumpkin balloon design is innovative and presents many new challenges. This paper encapsulates the NASA Ultra Long Duration Balloon Vehicle developments, presents them to the Science Community, and shows points of interaction with the users. The capabilities and limitations are presented to allow potential users to make informed choices in the development of balloon class payloads. Brief summaries of test flights and the cause and effect relationship between suspended load and float altitude are presented. A focus on innovation and the future using the Ultra Long Duration Balloon super-pressure balloon technology is also presented.

  18. Water Power for a Clean Energy Future

    SciTech Connect

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  19. Recapitalizing EMSL: Meeting Future Science and Technology Challenges

    SciTech Connect

    Felmy, Andrew R.

    2008-07-01

    EMSL, located in Richland, Washington, is a national scientific user facility operated for the U.S. Department of Energy (DOE) by the Pacific Northwest National Laboratory. The vision that directed the development of EMSL as a problem-solving environment for environmental molecular science has led to significant scientific progress in many areas ranging from subsurface science to atmospheric sciences, and from biochemistry to catalysis. Our scientific staff and users are recognized nationally and internationally for their significant contributions to solving challenging scientific problems. We have explored new scientific frontiers and organized a vibrant and diverse user community in support of our mission as a national scientific user facility that provides integrated experimental and computational resources in the environmental molecular sciences. Users from around the world - from academia to industry and national laboratories to international research organizations - use the resources of EMSL because of the quality of science that we enable.

  20. Future scientific applications for high-energy lasers

    SciTech Connect

    Lee, R.W.

    1994-08-01

    This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

  1. Future Electric Ship and Power and Energy

    DTIC Science & Technology

    2010-09-01

    Navy Hybrid Electric Ship S&T Issues/Challenges Power Generation, Energy Storage , Power Distribution & Control, and Thermal Closing Thoughts...development of efficient power systems. 1. Power Generation: • Fuel Cells & Fuel Reforming • Advanced Generators 2. Energy Storage : • Batteries... Storage : •Advanced materials (high purity, high dielectric breakdown) •Increased energy density and high temperature operation Goal: Increased

  2. Nanoparticles meet electrospinning: recent advances and future prospects.

    PubMed

    Zhang, Chuan-Ling; Yu, Shu-Hong

    2014-07-07

    Nanofibres can be fabricated by various methods and perhaps electrospinning is the most facile route. In past years, electrospinning has been used as a synthesis technique and the fibres have been prepared from a variety of starting materials and show various properties. Recently, incorporating functional nanoparticles (NPs) with electrospun fibres has emerged as one of most exciting research topics in the field of electrospinning. When NPs are incorporated, on the one hand the NPs endow the electrospun fibres/mats novel or better performance, on the other hand the electrospun fibres/mats could preserve the NPs from corrosion and/or oxidation, especially for NPs with anisotropic structures. More importantly, electrospinning shows potential applications in self-assembly of nanoscale building blocks for generating new functions, and has some obvious advantages that are not available by other self-assembly methods, i.e., the obtained free-standing hybrid mats are usually flexible and with large area, which is favourable for their commercial applications. In this critical review, we will focus on the fabrication and applications of NPs-electrospun fibre composites and give an overview on this emerging field combining nanoparticles and electrospinning. Firstly, two main strategies for producing NPs-electrospun fibres will be discussed, i.e., one is preparing the NPs-electrospun fibres after electrospinning process that is usually combined with other post-processing methods, and the other is fabricating the composite nanofibres during the electrospinning process. In particular, the NPs in the latter method will be classified and introduced to show the assembling effect of electrospinning on NPs with different anisotropic structures. The subsequent section describes the applications of these NPs-electrospun fibre mats and nanocomposites, and finally a conclusion and perspectives of the future research in this emerging field is given.

  3. 78 FR 17945 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs; Notice of Meeting The ACRS Subcommittee on Future Plant Designs will hold a meeting on April 9... based licensing framework for the Next Generation Nuclear Plant (NGNP). The Subcommittee will...

  4. 76 FR 64123 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs; Notice of Meeting The ACRS Subcommittee on Future Plant Designs will hold a meeting on November...

  5. 77 FR 74698 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs; Notice of Meeting The ACRS Subcommittee on Future Plant Designs will hold a meeting on January 17... Generation Nuclear Plant (NGNP) fuel and source term research and development of risk-informed...

  6. Arizona's energy future: making the transition to a new mix

    SciTech Connect

    Not Available

    1981-10-01

    This report looks at Arizona's energy future in light of knowledge gained since 1976. It emphasizes conservation, cogeneration, solar, geothermal, and biomass energy promise. An interdisciplinary approach is used. (PSB)

  7. Is Solar Energy the Fuel of the Future?

    ERIC Educational Resources Information Center

    Cetincelik, Mauammer

    1974-01-01

    Describes the present distribution of solar energy, traces its use through history, explores its potential utilization in the future, and presents the effects of the use of solar energy on pollution. (GS)

  8. Is Solar Energy the Fuel of the Future?

    ERIC Educational Resources Information Center

    Cetincelik, Mauammer

    1974-01-01

    Describes the present distribution of solar energy, traces its use through history, explores its potential utilization in the future, and presents the effects of the use of solar energy on pollution. (GS)

  9. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  10. Mapping the Future of Renewable Energy

    SciTech Connect

    2016-06-01

    This EC-LEDS fact sheet describes the NREL Geospatial Toolkit (GsT), an open-source, map-based software application that provide an intuitive, user-friendly interface for visualizing data and renewable energy potential. The GsT is a country-specific tool that maps renewable energy resources (e.g., for solar, wind, and biomass) in relation to enabling infrastructure like roads and transmission lines, providing necessary information for deploying new clean energy generation.

  11. Ethanol for a sustainable energy future.

    PubMed

    Goldemberg, José

    2007-02-09

    Renewable energy is one of the most efficient ways to achieve sustainable development. Increasing its share in the world matrix will help prolong the existence of fossil fuel reserves, address the threats posed by climate change, and enable better security of the energy supply on a global scale. Most of the "new renewable energy sources" are still undergoing large-scale commercial development, but some technologies are already well established. These include Brazilian sugarcane ethanol, which, after 30 years of production, is a global energy commodity that is fully competitive with motor gasoline and appropriate for replication in many countries.

  12. Energy Transformation: Teaching Youth about Energy Efficiency while Meeting Science Essential Standards

    ERIC Educational Resources Information Center

    Kirby, Sarah D.; Chilcote, Amy G.

    2014-01-01

    This article describes the Energy Transformation 4-H school enrichment curriculum. The curriculum addresses energy efficiency and conservation while meeting sixth-grade science essential standards requirements. Through experiential learning, including building and testing a model home, youth learn the relationship between various technologies and…

  13. Energy Transformation: Teaching Youth about Energy Efficiency while Meeting Science Essential Standards

    ERIC Educational Resources Information Center

    Kirby, Sarah D.; Chilcote, Amy G.

    2014-01-01

    This article describes the Energy Transformation 4-H school enrichment curriculum. The curriculum addresses energy efficiency and conservation while meeting sixth-grade science essential standards requirements. Through experiential learning, including building and testing a model home, youth learn the relationship between various technologies and…

  14. Two Energy Futures: A National Choice for the 80s.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    Examined in this American Petroleum Institute (API) publication on energy technology and energy policy, is the future potential of oil, natural gas, coal, nuclear energy, synthetic fuels, and renewable energy resources. Among the related issues emphasized are environmental protection, access to federal lands, government policies, and the national…

  15. Two Energy Futures: A National Choice for the 80s.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    Examined in this American Petroleum Institute (API) publication on energy technology and energy policy, is the future potential of oil, natural gas, coal, nuclear energy, synthetic fuels, and renewable energy resources. Among the related issues emphasized are environmental protection, access to federal lands, government policies, and the national…

  16. Our Energy Future Is Up to Us.

    ERIC Educational Resources Information Center

    Tybinka, JoAnne

    1984-01-01

    ingency on oil supplies will recur later in the 1980s, confirming the need for careful energy planning. Among the factors to be taken into account are: changes in values that affect how people use energy; centralized solutions versus solutions geared to individual and regional needs; and effective use of conservation.

  17. Energy Options: Challenge for the Future

    ERIC Educational Resources Information Center

    Hammond, Allen L.

    1972-01-01

    Summarizes alternative technological possibilities for ensuring a supply of energy for the United States, including nuclear technology, solar energy, shale oil and coal gassification, low pollutant techniques for burning coal, and a fuel cell suitable for commercial use. Reports the extent of existing research and development efforts. (AL)

  18. Energy Options: Challenge for the Future

    ERIC Educational Resources Information Center

    Hammond, Allen L.

    1972-01-01

    Summarizes alternative technological possibilities for ensuring a supply of energy for the United States, including nuclear technology, solar energy, shale oil and coal gassification, low pollutant techniques for burning coal, and a fuel cell suitable for commercial use. Reports the extent of existing research and development efforts. (AL)

  19. Community Energy: A Social Architecture for an Alternative Energy Future

    ERIC Educational Resources Information Center

    Hoffman, Steven M.; High-Pippert, Angela

    2005-01-01

    Community energy based on a mix of distributed technologies offers a serious alternative to the current energy system. The nature of community energy and the role that such initiatives might play in the general fabric of civic life is not, however, well understood. Community energy initiatives might involve only those citizens who prefer to be…

  20. Community Energy: A Social Architecture for an Alternative Energy Future

    ERIC Educational Resources Information Center

    Hoffman, Steven M.; High-Pippert, Angela

    2005-01-01

    Community energy based on a mix of distributed technologies offers a serious alternative to the current energy system. The nature of community energy and the role that such initiatives might play in the general fabric of civic life is not, however, well understood. Community energy initiatives might involve only those citizens who prefer to be…

  1. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  2. Materials, Chemistry, and Simulation for Future Energy Technology.

    PubMed

    Aguey-Zinsou, Kondo-Francois; Wang, Da-Wei; Su, Dang-Sheng

    2015-09-07

    Special Issue: The Future of Energy. The science and engineering of clean energy now is becoming a multidisciplinary area, typically when new materials, chemistry, or mechanisms are met. "Trial and error" is the past. Exploration of new concepts for future clean energy can be accomplished through computer-aided materials design and reaction simulation, thanks to innovations in information technologies. This special issue, a fruit of the Energy Future Conference organized by UNSW Australia, has compiled some excellent examples of such approaches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  4. Depot Maintenance: Improved Strategic Planning Needed to Ensure That Army and Marine Corps Depots Can Meet Future Maintenance Requirements

    DTIC Science & Technology

    2009-09-01

    of Representatives DEPOT MAINTENANCE Improved Strategic Planning Needed to Ensure That Army and Marine Corps Depots Can Meet Future...Depot Maintenance. Improved Strategic Planning Needed to Ensure That Army and Marine Corps Depots Can Meet Future Maintenance Requirements 5a... Strategic Planning Needed to Ensure That Army and Marine Corps Depots Can Meet Future Maintenance Requirements Highlights of GAO-09-865, a report to

  5. The utilization of solar energy to help meet our nation's energy needs

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1973-01-01

    The nation's energy needs, domestic energy resources, and possible future energy resources are briefly discussed in this paper. Three potential solutions, coal, nuclear and solar are compared as to benefits and problems. The paper primarily discusses the options available in using solar energy as a natural energy resource. These options are discussed under the generation of electricity, heating and cooling of buildings, and the production of clean fuel.

  6. The Future of Energy and Environment

    NASA Astrophysics Data System (ADS)

    Frois, Bernard

    2011-05-01

    This brief review is a tribute to Professor Akito Arima on the occasion of his 80th birthday, celebrated at the Okinawa Institute of Science and Technology. Professor Akito Arima has played a major role in nuclear physics and the development of international collaborations. He has strongly encouraged the science community to bridge university research and industry, and to connect science to the needs of the world population. This paper describes the present challenges of producing enough energy for the world population in a context of diminishing fossil fuels and climate change. Coal, gas and nuclear energy dominate the scene at short and medium term, while new energy technologies are very promising in the long term. In contrast with the situation ten years ago, a significant expansion of nuclear power is planned all over the world.

  7. Innovation for a Sustainable Energy Future: Renewable Energy's Role

    SciTech Connect

    Arvizu, D. E.

    2008-01-01

    Promise of renewable energy is profound and can be realized if we: (1) aggressively see, a global sustainable energy economy; (2) accelerate investment in technology innovation; and (3) acknowledge and mitigate the carbon challenge with the necessary policies.

  8. Thermionic energy conversion technology - Present and future

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Morris, J. F.

    1977-01-01

    Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.

  9. Thermionic energy conversion technology - Present and future

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Morris, J. F.

    1977-01-01

    Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.

  10. Future Energy Technology. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 7-12 language arts, science, and social studies classes, this 5-7 day unit encourages students to investigate alternative energy sources through research. Focusing on geothermal energy, tide and ocean, fusion, wind, biomass, and solar energy as possible areas of consideration, the unit attempts to create an awareness of the…

  11. Biofuels, fossil energy ratio, and the future of energy production

    NASA Astrophysics Data System (ADS)

    Consiglio, David

    2017-05-01

    Two hundred years ago, much of humanity's energy came from burning wood. As energy needs outstripped supplies, we began to burn fossil fuels. This transition allowed our civilization to modernize rapidly, but it came with heavy costs including climate change. Today, scientists and engineers are taking another look at biofuels as a source of energy to fuel our ever-increasing consumption.

  12. Future Energy Technology. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 7-12 language arts, science, and social studies classes, this 5-7 day unit encourages students to investigate alternative energy sources through research. Focusing on geothermal energy, tide and ocean, fusion, wind, biomass, and solar energy as possible areas of consideration, the unit attempts to create an awareness of the…

  13. The Future of Teaching and Learning: Challenging Standards and High Expectations. Satellite Town Meeting #73. [Videotape].

    ERIC Educational Resources Information Center

    Chamber of Commerce of the United States, Washington, DC.

    This 60-minute VHS videotape of a U.S. Department of Education Satellite Town Meeting focuses on the future of learning in U.S. schools and what it will take to create challenging, exciting, high performing schools. It explains that there cannot be excellent learning without excellent teaching. The 1985 National Teacher of the Year co-hosts this…

  14. Agenda [to the Workshop Meeting on the Commission on Innovation's Report, "Choosing the Future."

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    This document provides the agenda for the California Community College Board of Governors (BOG) meeting for December 10, 1993, held to inform, explain, and gain a meaningful understanding of the recommendations of the Commission on Innovation (COI) report titled "Choosing the Future." The COI report was prepared in November 1993 and…

  15. Meeting the challenge: a survey of capabilities planned to meet future space biology research needs.

    PubMed

    Yost, B; Souza, K; Wade, C; Davies, P

    1999-07-01

    NASA/Ames Research Center Life Sciences has supported a large number of experiments and observations directed at understanding how biological systems perform or change in the microgravity space environment. These campaigns have been accomplished on a wide range of space-based platforms beginning with the Bion/Cosmos unmanned satellites and including the Space Shuttle middeck, Spacelab, SpaceHab, the Russian Space Station Mir and in the near future, the International Space Station (ISS). To further build upon this past experience, and to continue to make contributions towards the goals of the Human Exploration and Development of Space (HEDS) enterprise, a number of experiment systems and infrastructure are in development in an attempt to provide a comprehensive set of opportunities and capabilities to enable research into biological systems in space. Life support systems, or habitats are geared towards the maintenance of a wide range of biological specimens onboard ISS. Augmented with a set of ancillary equipment and sufficient expendable resources and crew time, researchers will have a robust set of tools to continue biological and physiological experiments in space.

  16. Advanced Materials for Sustainable, Clean Energy Future

    SciTech Connect

    Yang, Zhenguo

    2009-04-01

    The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon “trading,” giving benefits to low “carbon footprint” industries, while making higher emitting industries purchase carbon “allowances”. There have been an increasing number of countries and states adopting the trade and cap systems.

  17. Embracing a clean-energy future.

    PubMed

    Sebelius, Kathleen

    2009-01-01

    The former governor of Kansas describes how her state is greening. The Blue Green Alliance has estimated that in a renewable-energy economy, Kansas stands to gain more than 11,000 jobs and almost $2 billion in new economic investments.

  18. Operational Benefits of Meeting California's Energy Storage Targets

    SciTech Connect

    Eichman, Josh; Denholm, Paul; Jorgenson, Jennie; Helman, Udi

    2016-05-01

    In October 2013, the California Public Utilities Commission (CPUC) finalized procurement targets and other requirements to its jurisdictional utilities for a minimum of 1,325 MW of 'viable and cost-effective' energy storage systems by 2020. The goal of this study is to explore several aspects of grid operations in California and the Western Interconnection resulting from meeting the CPUC storage targets. We perform this analysis using a set of databases and grid simulation tools developed and implemented by the CPUC, the California Independent System Operator (CAISO), and the California Energy Commission (CEC) for the CPUC's Long-term Procurement Plan (LTPP). The 2014 version of this database contains information about generators, storage, transmission, and electrical demand, for California in the year 2024 for both 33 percent and 40 percent renewable energy portfolios. We examine the value of various services provided by energy storage in these scenarios. Sensitivities were performed relating to the services energy storage can provide, the capacity and duration of storage devices, export limitations, and negative price floor variations. Results show that a storage portfolio, as outlined by the CPUC, can reduce curtailment and system-wide production costs for 33 percent and 40 percent renewable scenarios.

  19. Transformative optimisation of agricultural land use to meet future food demands.

    PubMed

    Koh, Lian Pin; Koellner, Thomas; Ghazoul, Jaboury

    2013-01-01

    The human population is expected to reach ∼9 billion by 2050. The ensuing demands for water, food and energy would intensify land-use conflicts and exacerbate environmental impacts. Therefore we urgently need to reconcile our growing consumptive needs with environmental protection. Here, we explore the potential of a land-use optimisation strategy to increase global agricultural production on two major groups of crops: cereals and oilseeds. We implemented a spatially-explicit computer simulation model across 173 countries based on the following algorithm: on any cropland, always produce the most productive crop given all other crops currently being produced locally and the site-specific biophysical, economic and technological constraints to production. Globally, this strategy resulted in net increases in annual production of cereal and oilseed crops from 1.9 billion to 2.9 billion tons (46%), and from 427 million to 481 million tons (13%), respectively, without any change in total land area harvested for cereals or oilseeds. This thought experiment demonstrates that, in theory, more optimal use of existing farmlands could help meet future crop demands. In practice there might be cultural, social and institutional barriers that limit the full realisation of this theoretical potential. Nevertheless, these constraints have to be weighed against the consequences of not producing enough food, particularly in regions already facing food shortages.

  20. Energy and the Future: Research Priorities and National Policy

    ERIC Educational Resources Information Center

    Hammond, Allen L.

    1973-01-01

    Article provides an account of alternatives for solving energy shortage problems in future years. A national policy is needed. More concerted effort should be made to develop technologies for conversion of energy from conventional and non-conventional resources so that energy is cheaper, available for use and without environmental hazards. (PS)

  1. NRAO Salutes Past, Looks to Future In 50th-Anniversary Science Meeting

    NASA Astrophysics Data System (ADS)

    2007-06-01

    Radio telescopes now in operation or under construction will be indispensible to scientists wrestling with the big, unanswered questions of 21st-Century astrophysics. That was the conclusion of a wide-ranging scientific meeting held in Charlottesville, Virginia, June 18-21, to mark the 50th anniversary of the National Radio Astronomy Observatory (NRAO). 1957 Dedication Dedication of NRAO, 17 October 1957. Left to right: R.M. Emberson, L.V. Berkner, G.A. Nay, J.W. Findlay (seated in front of 140ft telescope model), N.L. Ashton, D.S. Heeschen, H. Hockenberry. CREDIT: NRAO/AUI/NSF Click on Image for Larger File ALMA Artist's conception of completed ALMA. CREDIT: NRAO/AUI/ESO Click on Image for Larger File (2.4 MB) Nearly 200 scientists from around the world heard presentations about the frontiers of astrophysics and how the challenges at those frontiers will be met. In specialties as disparate as seeking the nature of the mysterious Dark Energy that is speeding the Universe's expansion to unraveling the details of how stars and planets are formed, more than 70 presenters looked toward future research breakthroughs. "NRAO's telescopes have made landmark contributions to the vast explosion of astronomical knowledge of the past half- century, and we look eagerly to making even more important contributions in the coming decades," said Fred K.Y. Lo, NRAO's director. Over the four days of the meeting, discussions ranged from recollections of radio astronomy's pioneering days of vacuum-tube equipment and paper chart recorders to the design of telescopes that will produce amounts of data that will strain today's computers. Presenters pointed out that, in the coming decades, radio telescope observations will advance not only astronomy but also fields of basic physics such as gravitational radiation, particle physics, and the fundamental physical constants. "This meeting provided a great overview of where astrophysics stands today and where the challenges and opportunities of

  2. Cost of future freedom: energy economics

    SciTech Connect

    Dix, S.M.

    1982-01-01

    The public is becoming aware of the limits of physical energy supply and the possible consequences of the failing supply. The critical facts relating to US energy dependence are analyzed in conjunction with the uncontrolled expansion of international credits. The author's concern is with the validity of economic theory and its relationship to a viable social science that is compatible with the developing physical sciences. Part One discusses the ideological problems of the conflict between our political-economic ideologies and the physical resources they require. Economic theory today suggests only continued economic growth to the time of ultimate collapse. Part Two identifies the physical evidence of each energy resource that will be available to the US economy. No serious consideration can be given to alterations of our social-political economy until all doubts have been removed as to the quantity in each of the remaining resources. The last two parts discuss potential change and develop physical forecasts and theoretical arguments that the transition need not be socially painful. 34 references, 34 figures, 18 tables.

  3. Thermoelectricity for future sustainable energy technologies

    NASA Astrophysics Data System (ADS)

    Weidenkaff, Anke

    2017-07-01

    Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.

  4. Energy futures: Trading opportunities for the 1980's

    SciTech Connect

    Treat, J.E.; Cowie, S.; Davidson, F.E.; Duffy, M.; Miller, J.E.; Errera, S.; Gotthelf, P.; Murphy, T.D.; Rouquette, G.A.; Verlerger, P.K.

    1984-01-01

    This text gives a broad background in both theory and practice of energy futures trading. It details successful contract requirements. It analyzes fundamental and technical pricing and using both to manage risk and achieve trading objectives. Hedging strategy, financial aspects of trading, accounting procedures, internal control systems and tax implications are all expertly covered. The book concludes with the potential impact of futures trading on the structure of world markets. Contents: Energy futures: an overview; Exchanges and their contracts; Fundamental analysis and the theory of hedging; The principles of technical analysis; Putting it all together; Integrated trading strategies; Energy futures; Financing and exposure management in the oil industry; Accounting principles, taxation, and internal control; The potential impacts of trading in oil futures on the world oil market; Appendix; Glossary; Index.

  5. Could Building Energy Codes Mandate Rooftop Solar in the Future?

    SciTech Connect

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.; Williams, Jeremiah

    2012-08-01

    This paper explores existing requirements and compliance options for both commercial and residential code structures. Common alternative compliance options are discussed including Renewable Energy Credits (RECs), green-power purchasing programs, shared solar programs and other community-based renewable energy investments. Compliance options are analyzed to consider building lifespan, cost-effectiveness, energy trade-offs, enforcement concerns and future code development. Existing onsite renewable energy codes are highlighted as case studies for the code development process.

  6. Fossil fuels in a sustainable energy future

    SciTech Connect

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  7. Carbonless Transportation and Energy Storage in Future Energy Systems

    SciTech Connect

    Lamont, A.D.; Berry, G.D.

    2001-01-17

    By 2050 world population is projected to stabilize near 10 billion. Global economic development will outpace this growth, achieving present European per capita living standards by quintupling the size of the global economy--and increasing energy use, especially electricity, substantially. Even with aggressive efficiency improvements, global electricity use will at least triple to 30 trillion kWh/yr in 2050. Direct use of fuels, with greater potential for efficiency improvement, may be held to 80 trillion kWh (289 EJ) annually, 50% above present levels (IPCC, 1996). Sustaining energy use at these or higher rates, while simultaneously stabilizing atmospheric greenhouse gas levels, will require massive deployment of carbon-conscious energy systems for electricity generation and transportation by the mid 21st Century. These systems will either involve a shift to non-fossil primary energy sources (such as solar, wind, biomass, nuclear, and hydroelectric) or continue to rely on fossil primary energy sources and sequester carbon emissions (Halmann, 1999). Both approaches share the need to convert, transmit, store and deliver energy to end-users through carbonless energy carriers.

  8. Hydrogen - Energy carrier of the future

    NASA Astrophysics Data System (ADS)

    Nitsch, Joachim; Steeb, Hartmut

    1986-11-01

    The potential of hydrogen as an energy carrier - in conventional burners, in internal-combustion or turbine engines, in fuel cells, in catalytic burners, or in steam generators - is discussed, and the current status of the Hysolar program is reviewed. Hysolar is a cooperative project of the University of Stuttgart, DFVLR, and Saudi Arabia to develop industrial-scale hydrogen-production facilities employing solar-cell arrays and electrolysis. Hysolar calls for basic research in photoelectrochemistry, electrolysis, and fuel-cell technology; studies of hydrogen production systems and application technology; training of personnel; and construction of a 2-kW laboratory installation at Jiddah, a 10-kW experimental installation at Stuttgart, and a 100-kW demonstration installation at Riad (producing about 44,000 N cu m of hydrogen per year). Diagrams, drawings, and tables are provided.

  9. High energy physics, past, present and future

    NASA Astrophysics Data System (ADS)

    Sugawara, Hirotaka

    2017-03-01

    At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, ℏ (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.

  10. Energy landscapes’: Meeting energy demands and human aspirations

    PubMed Central

    Blaschke, Thomas; Biberacher, Markus; Gadocha, Sabine; Schardinger, Ingrid

    2013-01-01

    Renewable energy will play a crucial role in the future society of the 21st century. The various renewable energy sources need to be balanced and their use carefully planned since they are characterized by high temporal and spatial variability that will pose challenges to maintaining a well balanced supply and to the stability of the grid. This article examines the ways that futureenergy landscapes’ can be modelled in time and space. Biomass needs a great deal of space per unit of energy produced but it is an energy carrier that may be strategically useful in circumstances where other renewable energy carriers are likely to deliver less. A critical question considered in this article is whether a massive expansion in the use of biomass will allow us to construct future scenarios while repositioning the ‘energy landscape’ as an object of study. A second important issue is the utilization of heat from biomass energy plants. Biomass energy also has a larger spatial footprint than other carriers such as, for example, solar energy. This article seeks to provide a bridge between energy modelling and spatial planning while integrating research and techniques in energy modelling with Geographic Information Science. This encompasses GIS, remote sensing, spatial disaggregation techniques and geovisualization. Several case studies in Austria and Germany demonstrate a top-down methodology and some results while stepwise calculating potentials from theoretical to technically feasible potentials and setting the scene for the definition of economic potentials based on scenarios and assumptions. PMID:26109751

  11. 75 FR 34519 - The Future of Aviation Advisory Committee (FAAC) Subcommittee on Environment; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... taken by aviation-sector stakeholders and the Federal Government to reduce aviation's environmental footprint and foster sustainability gains in cost-effective ways. This includes consideration of potential... Committee on the subject of meeting the environmental and energy challenges needed to accommodate...

  12. Present and future evidence for evolving dark energy

    SciTech Connect

    Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David; Wang Yun

    2006-12-15

    We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, {lambda}CDM is currently favored as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.

  13. 75 FR 58448 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Future Plant Designs The ACRS Subcommittee on Future Plant Designs will hold a meeting on October 21, 2010, at 11545... Subcommittee will review current Design Acceptance Criteria associated with Digital Instrumentation and...

  14. 76 FR 16016 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs The ACRS Subcommittee on Future Plant Designs will hold a meeting on April 5, 2011, at...

  15. Operational Benefits of Meeting California's Energy Storage Targets

    SciTech Connect

    Eichman, Josh; Denholm, Paul; Jorgenson, Jennie; Helman, Udi

    2015-12-18

    In October 2013, the California Public Utilities Commission (CPUC) finalized procurement targets and other requirements to its jurisdictional utilities for a minimum of 1,325 MW of 'viable and cost-effective' energy storage systems by 2020. The goal of this study is to explore several aspects of grid operations in California and the Western Interconnection resulting from meeting the CPUC storage targets. We perform this analysis using a set of databases and grid simulation tools developed and implemented by the CPUC, the California Independent System Operator (CAISO), and the California Energy Commission (CEC) for the CPUC's Long-term Procurement Plan (LTPP). The 2014 version of this database contains information about generators, storage, transmission, and electrical demand, for California in the year 2024 for both 33% and 40% renewable energy portfolios. We examine the value of various services provided by energy storage in these scenarios. Sensitivities were performed relating to the services energy storage can provide, the capacity and duration of storage devices, export limitations, and negative price floor variations. Results show that a storage portfolio, as outlined by the CPUC, can reduce curtailment and system-wide production costs for 33% and 40% renewable scenarios. A storage device that can participate in energy and ancillary service markets provides the grid with the greatest benefit; the mandated storage requirement of 1,325 MW was estimated to reduce the total cost of production by about 78 million per year in the 33% scenario and 144 million per year in the 40% scenario. Much of this value is derived from the avoided start and stop costs of thermal generators and provision of ancillary services. A device on the 2024 California grid and participating in only ancillary service markets can provide the system with over 90% of the value as the energy and ancillary service device. The analysis points to the challenge of new storage providing regulation

  16. Geothermal Energy and the Eastern US: Fifth technical information interchange meeting, Minutes

    SciTech Connect

    1980-12-01

    The technical interchange meeting documented here is the fifth meeting where people interested in geothermal energy in the Eastern US have met to interchange technical information. These meetings are intended to assist all in the difficult task of balancing time and effort in doing their assigned jobs and keeping track of what others are doing in similar or related tasks. All of the aforementioned meetings have served their intended purpose and further regional and national meetings are sure to follow.

  17. The future state of clinical data capture and documentation: a report from AMIA's 2011 Policy Meeting.

    PubMed

    Cusack, Caitlin M; Hripcsak, George; Bloomrosen, Meryl; Rosenbloom, S Trent; Weaver, Charlotte A; Wright, Adam; Vawdrey, David K; Walker, Jim; Mamykina, Lena

    2013-01-01

    Much of what is currently documented in the electronic health record is in response toincreasingly complex and prescriptive medicolegal, reimbursement, and regulatory requirements. These requirements often result in redundant data capture and cumbersome documentation processes. AMIA's 2011 Health Policy Meeting examined key issues in this arena and envisioned changes to help move toward an ideal future state of clinical data capture and documentation. The consensus of the meeting was that, in the move to a technology-enabled healthcare environment, the main purpose of documentation should be to support patient care and improved outcomes for individuals and populations and that documentation for other purposes should be generated as a byproduct of care delivery. This paper summarizes meeting deliberations, and highlights policy recommendations and research priorities. The authors recommend development of a national strategy to review and amend public policies to better support technology-enabled data capture and documentation practices.

  18. Two Energy Futures: A National Choice for the 80s.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    In 1980, the American Petroleum Institute published the first edition of "Two Energy Futures." It described the U.S. energy experience of the 1970s and prospects for the 1980s, concluding that the nation could drastically reduce its dependence on uncertain sources of imported oil if the right choices were made by individuals and the…

  19. Two Energy Futures: A National Choice for the 80s.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    In 1980, the American Petroleum Institute published the first edition of "Two Energy Futures." It described the U.S. energy experience of the 1970s and prospects for the 1980s, concluding that the nation could drastically reduce its dependence on uncertain sources of imported oil if the right choices were made by individuals and the…

  20. Is one technology best? Control strategies to meet current and future regulations

    SciTech Connect

    Altin, C.A.; Bustard, C.J.; Gelfand, P.; Sloat, D.G.; Belba, V.H.

    1994-12-31

    A slide presentation is given that discusses control strategies to meet current and future regulations. Most new regulations will require incremental reductions in specific emissions creating a market for technologies that can be retrofitted to existing systems. Since most metals are associated with particulate matter, improving particle collection will lead to reduced metal emissions and the disposal of sorbents used for capturing vapor phase pollutants, e.g., SO{sub 2} and Hg, can dominate the economics of the process.

  1. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect

    Not Available

    2013-03-01

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  2. Energy for the future: a call for leadership

    SciTech Connect

    Not Available

    1983-01-01

    Proceedings from the 10th annual Wattec Conference (Wattec '83) reflect the conference theme ''Energy for the Future: a Call for Leadership'' in speeches by technical and industry speakers as well as by political leaders. This report contains papers from the Public Awareness Forum portion of the conference. Separate abstracts were prepared for the seven major talks included in this report and selected for the Energy Data Base (EDB) and Energy Abstract for Policy Analysis (EAPA).

  3. Low energy intake plus low energy expenditure (low energy flux), not energy surfeit, predicts future body fat gain12

    PubMed Central

    Yokum, Sonja; Stice, Eric

    2016-01-01

    Background: There is a paucity of studies that have prospectively tested the energy surfeit theory of obesity with the use of objectively estimated energy intake and energy expenditure in humans. An alternative theory is that homeostatic regulation of body weight is more effective when energy intake and expenditure are both high (high energy flux), implying that low energy flux should predict weight gain. Objective: We aimed to examine the predictive relations of energy balance and energy flux to future weight gain and tested whether results were replicable in 2 independent samples. Design: Adolescents (n = 154) and college-aged women (n = 75) underwent 2-wk objective doubly labeled water, resting metabolic rate, and percentage of body fat measures at baseline. Percentage of body fat was measured annually for 3 y of follow-up for the adolescent sample and for 2 y of follow-up for the young adult sample. Results: Low energy flux, but not energy surfeit, predicted future increases in body fat in both studies. Furthermore, high energy flux appeared to prevent fat gain in part because it was associated with a higher resting metabolic rate. Conclusion: Counter to the energy surfeit model of obesity, results suggest that increasing energy expenditure may be more effective for reducing body fat than caloric restriction, which is currently the treatment of choice for obesity. This trial was registered at clinicaltrials.gov as NCT02084836. PMID:27169833

  4. Low energy intake plus low energy expenditure (low energy flux), not energy surfeit, predicts future body fat gain.

    PubMed

    Hume, David John; Yokum, Sonja; Stice, Eric

    2016-06-01

    There is a paucity of studies that have prospectively tested the energy surfeit theory of obesity with the use of objectively estimated energy intake and energy expenditure in humans. An alternative theory is that homeostatic regulation of body weight is more effective when energy intake and expenditure are both high (high energy flux), implying that low energy flux should predict weight gain. We aimed to examine the predictive relations of energy balance and energy flux to future weight gain and tested whether results were replicable in 2 independent samples. Adolescents (n = 154) and college-aged women (n = 75) underwent 2-wk objective doubly labeled water, resting metabolic rate, and percentage of body fat measures at baseline. Percentage of body fat was measured annually for 3 y of follow-up for the adolescent sample and for 2 y of follow-up for the young adult sample. Low energy flux, but not energy surfeit, predicted future increases in body fat in both studies. Furthermore, high energy flux appeared to prevent fat gain in part because it was associated with a higher resting metabolic rate. Counter to the energy surfeit model of obesity, results suggest that increasing energy expenditure may be more effective for reducing body fat than caloric restriction, which is currently the treatment of choice for obesity. This trial was registered at clinicaltrials.gov as NCT02084836. © 2016 American Society for Nutrition.

  5. 75 FR 11166 - Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission; Notice of Joint Meeting of the Nuclear Regulatory Commission and the...

  6. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011

    SciTech Connect

    Not Available

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  7. Narcissistic Force Meets Systemic Resistance: The Energy Clash Model.

    PubMed

    Sedikides, Constantine; Campbell, W Keith

    2017-05-01

    This article focuses on the interplay between narcissistic leaders and organizations. It attempts to capture the gist of this interplay with a model outlining the narcissistic organizational trajectory. The Energy Clash Model borrows and adapts a phase/state physics metaphor to conceptualize narcissism as a force that enters or emerges in a stable system (i.e., organization) as a leader, destabilizes it, and stabilizes it at a different state or is expelled. The model consists of three time-contingent phases: perturbation, conflict, and resolution. Narcissists create instability through waves of excitement, proposed reforms, and an inspiring vision for organization's future ( perturbation). With the passage of time, though, systemic awareness and alertness intensify, as organizational costs-in terms of human resources and monetary losses-accrue. Narcissistic energy clashes directly with the organization ( conflict), a clash likely to restabilize the system eventually. The conflict may provoke the exit of the narcissistic leader or his or her accommodation, that is, steps or controls negotiated between the system and the leader ( resolution). Although narcissism is subject to organizational liability, narcissistic energy, when managed and directed properly, may contribute to organizational innovation and evolution. Thus, several interventions for working with narcissistic leaders are discussed.

  8. Future U.S. water consumption : The role of energy production.

    SciTech Connect

    Elcock, D.; Environmental Science Division

    2010-06-01

    This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.

  9. Multidimensional materials and device architectures for future hybrid energy storage

    DOE PAGES

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-07

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  10. Towards a sustainable energy future: realities and opportunities.

    PubMed

    Armstrong, Lynda

    2011-05-13

    My purpose in this paper is threefold. First, I would like to examine why the world needs us to produce more energy. Second, I will look at the range of energy sources available for a sustainable future. A number of myths have grown up around the various energy sources and their relative contribution to addressing the global energy challenge: I will seek to dispel some of those. Third, I want to highlight what I see as an urgent need: for more informed decision making and more action in this complex area.

  11. Multidimensional materials and device architectures for future hybrid energy storage

    NASA Astrophysics Data System (ADS)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  12. JPL future missions and energy storage technology implications

    NASA Technical Reports Server (NTRS)

    Pawlik, Eugene V.

    1987-01-01

    The mission model for JPL future programs is presented. This model identifies mission areas where JPL is expected to have a major role and/or participate in a significant manner. These missions are focused on space science and applications missions, but they also include some participation in space station activities. The mission model is described in detail followed by a discussion on the needs for energy storage technology required to support these future activities.

  13. Meeting China's electricity needs through clean energy sources: A 2030 low-carbon energy roadmap

    NASA Astrophysics Data System (ADS)

    Hu, Zheng

    China is undergoing rapid economic development that generates significant increase in energy demand, primarily for electricity. Energy supply in China is heavily relying on coal, which leads to high carbon emissions. This dissertation explores opportunities for meeting China's growing power demand through clean energy sources. The utilization of China's clean energy sources as well as demand-side management is still at the initial phase. Therefore, development of clean energy sources would require substantial government support in order to be competitive in the market. One of the widely used means to consider clean energy in power sector supplying is Integrated Resource Strategic Planning, which aims to minimize the long term electricity costs while screening various power supply options for the power supply and demand analysis. The IRSP tool tackles the energy problem from the perspective of power sector regulators, and provides different policy scenarios to quantify the impacts of combined incentives. Through three scenario studies, Business as Usual, High Renewable, and Renewable and Demand Side Management, this dissertation identifies the optimized scenario for China to achieve the clean energy target of 2030. The scenarios are assessed through energy, economics, environment, and equity dimensions.

  14. Energy supplies and future engines for land, sea, and air.

    PubMed

    Wilson, David Gordon

    2012-06-01

    The years 2012 and beyond seem likely to record major changes in energy use and power generation. The Japanese tsunami has resulted in large countries either scaling back or abolishing the future use of nuclear energy. The discovery of what seems like vast amounts of economically deliverable natural gas has many forecasting a rapid switch from coal- to gas-fired generating plants. On the other hand, environmentalists have strong objections to the production of natural gas and of petroleum by hydraulic fracturing from shale, or by extraction of heavy oil. They believe that global warming from the use of fossil fuels is now established beyond question. There has been rapid progress in the development of alternative energy supplies, particularly from on-shore and off-shore wind. Progress toward a viable future energy mix has been slowed by a U.S. energy policy that seems to many to be driven by politics. The author will review the history of power and energy to put all of the above in context and will look at possible future developments. He will propose what he believes to be an idealized energy policy that could result in an optimum system that would be arrived at democratically.

  15. Renewable Energy Requirements for Future Building Codes: Options for Compliance

    SciTech Connect

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

    2011-09-30

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy

  16. Status and future directions of the ENERGY STAR program

    SciTech Connect

    Brown, Richard E.; Webber, Carrie A.; Koomey, Jonathan G.

    2000-06-19

    In 1992 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products, in order to reduce carbon dioxide emissions. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has expanded the program to cover nearly the entire buildings sector, spanning new homes, commercial buildings, residential heating and cooling equipment, major appliances, office equipment, commercial and residential lighting, and home electronics. This paper provides a snapshot of the ENERGY STAR program in the year 2000, including a general overview of the program, its accomplishments, and the possibilities for future development. First, we describe the products that are currently eligible for the ENERGY STAR label and the program mechanisms that EPA and DOE are using to promote these products. Second, we illustrate selected milestones achieved in some markets, and ways that EPA and DOE are responding to challenges or changes in certain markets. Third, we discuss the evolving ENERGY STAR brand strategy. Next, we explore ways in which ENERGY STAR interacts with and enhances other policies, such as appliance standards and regional market transformation collaboratives. We then discuss evaluation studies that EPA and DOE are undertaking to quantify the impact of the ENERGY STAR program. Finally, we discuss future areas of expansion for the ENERGY STAR program, including labeling of new products and integrated programs for commercial and existing residential buildings.

  17. Modern Topics in Energy and Power Technical Meeting

    DTIC Science & Technology

    2016-09-01

    focused on energy conversion technologies, energy and power for directed energy, high-energy-density materials , plasma and nuclear physics, low-energy...technology, directed energy, high-energy-density materials , plasma and nuclear physics, low energy nuclear reactions, compact power sources, quantum...Density Materials 11 2.4 Plasma and Nuclear Physics 11 2.5 Low-Energy Nuclear Reactions 12 2.6 Novel Compact Power Sources 12 2.7 Quantum Vacuum Energy

  18. Energy efficiency in passenger transportation: What the future may hold

    SciTech Connect

    Plotkin, S.

    1996-12-31

    This presentation very briefly projects future impacts of energy efficiency in passenger transportation. Continuing expansion of the U.S. transportation sector, with a corresponding increased dependency on imported oil, is noted. Freight trucks and air fleets are targeted as having the greatest potential for increased energy efficiency. The light duty vehicle is identified as the only technology option for major efficiency increases. 4 figs., 11 tabs.

  19. The importance of the different kinds of energy sources for energy future of Turkey

    NASA Astrophysics Data System (ADS)

    Kaplan, Yusuf Alper; Aladağ, Canan

    2016-11-01

    Nowadays, the need of energy has been increasing day by day with the population growth and the advancements of technology. In this study, the current state of nuclear, wind and solar energy on the worldwide has been generally investigated. The general assessments have been made based on Turkey's energy potential and the evaluation situation of this potential. The current political structures of countries are generally assessed and under this policy, the last situation and the latest implemented innovations are given. Turkey's energy demand is constantly increasing and Turkey is a country that needs to energy imports. This is a need for new energy sources to meet the growing need for energy. Nuclear, wind and solar energy are the new sources of energy to the fore in our country recently. In this study is given general information on the usage of energy sources of making and some deficiencies were been emphasized by political considerations in this regard.

  20. 76 FR 34684 - Offshore Renewable Energy; Public Meeting on Information Needs for Resource Assessment and Design...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... of Energy Efficiency and Renewable Energy Offshore Renewable Energy; Public Meeting on Information Needs for Resource Assessment and Design Conditions AGENCY: Office of Energy Efficiency and Renewable... meteorological and oceanographic information to support cost-effective deployment of offshore renewable energy...

  1. 78 FR 13156 - Notice of Rail Energy Transportation Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board Notice of Rail Energy Transportation Advisory Committee Meeting AGENCY: Surface Transportation Board, Transportation. ACTION: Notice of Rail Energy Transportation...

  2. Innovating a Sustainable Energy Future (2011 EFRC Summit)

    ScienceCinema

    Little, Mark (GE Global Research)

    2016-07-12

    The second speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was Mark Little, Senior Vice President and Director of GE Global Research. He discussed the role that industry and in particular GE is playing as a partner in innovative energy research. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  3. Energy technologies at Sandia National Laboratories: Past, Present, Future

    SciTech Connect

    Not Available

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  4. 77 FR 43280 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage Hydroelectric Project. e. All... Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With the Bureau of Land Management a. Date and Time of Meeting: Wednesday, August...

  5. 78 FR 14024 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... Equipment: Public Meeting and Availability of the Framework Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Correction AGENCY: Office of Energy Efficiency and Renewable Energy... terminal air conditioners and heat pumps. This document corrects the date of the public meeting....

  6. 76 FR 4645 - Fusion Energy Sciences Advisory Committee; Notice of Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... Fusion Nuclear Sciences Pathways Assessment Activities Public Comments Public Participation: The meeting... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Fusion... Science. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The...

  7. The GLIMPSE project: Exploring strategies for meeting energy, environmental and climate objectives

    EPA Science Inventory

    Many of Chinas cities are struggling with high levels of air pollution. At the same time, Chinese planners are seeking to meet growing demands for energy in a manner that meets climate goals. In this presentation, Dr. Loughlin describes the linkages between energy, the environmen...

  8. The GLIMPSE project: Exploring strategies for meeting energy, environmental and climate objectives

    EPA Science Inventory

    Many of Chinas cities are struggling with high levels of air pollution. At the same time, Chinese planners are seeking to meet growing demands for energy in a manner that meets climate goals. In this presentation, Dr. Loughlin describes the linkages between energy, the environmen...

  9. From the past to future: from energy expenditure to energy intake to energy expenditure.

    PubMed

    Müller, M J; Geisler, C

    2017-03-01

    Although most recent research on energy balance focusses on energy intake (EI) there is still need to think about both sides of the energy balance. Current research on energy expenditure (EE) relates to metabolic adaptation to negative energy balance, mitochondrial metabolism associated with aging, obesity and type 2 diabetes mellitus, the role of EE in hunger and appetite control, non-shivering thermogenesis and brown adipose tissue activity, cellular bioenergetics as a target of obesity treatment and the evolutionary and ecological determinants of EE in humans and other primates. As far as regulation of energy balance is concerned there is recent evidence that EE rather than body weight is under tight control. Biologically, EE is maintained within a narrow physiological range. An EE-set point has been proposed as the width between the upper and lower boundaries of the individual EE range. Regulation of EE may fail in very obese patients with an EI above their upper boundary and after drastic weight loss when patients may go far below their lower EE boundary and thus are loosing control. In population studies, fat-free mass (FFM) and its composition (that is, the proportion of high to low metabolic rate organs) are major determinants of EE. It is tempting to speculate that tight biologic control of EE is related to brain energy need, which is preserved at the cost of peripheral metabolism. There is a moderate heritability of EE, which is independent of the heritability of FFM. In future, metabolic phenotyping should focus on the EE-FFM relationship rather than on EE-values alone.

  10. The PerkinElmer Omics Laboratory (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Smith, Todd [PerkinElmer Omics Laboratory

    2016-07-12

    Todd Smith of the PerkinElmer Omics Laboratory gives a talk about his lab and its work at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  11. Nearly Finished Genomes Produced Using Gel Microdroplet Culturing (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Fitzsimmons, Michael [LANL

    2016-07-12

    Michael Fitzsimmons from Los Alamos National Laboratory gives a talk titled "Nearly Finished Genomes Produced Using Gel Microdroplet Culturing" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  12. Mercury: Next-gen Data Analysis and Annotation Pipeline (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Sexton, David [Baylor

    2016-07-12

    David Sexton (Baylor) gives a talk titled "Mercury: Next-gen Data Analysis and Annotation Pipeline" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  13. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    SciTech Connect

    Crow, John

    2012-06-01

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  14. Mercury: Next-gen Data Analysis and Annotation Pipeline (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    SciTech Connect

    Sexton, David

    2012-06-01

    David Sexton (Baylor) gives a talk titled "Mercury: Next-gen Data Analysis and Annotation Pipeline" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  15. High Throughput Plasmid Sequencing with Illumina and CLC Bio (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    SciTech Connect

    Athavale, Ajay

    2012-06-01

    Ajay Athavale (Monsanto) presents "High Throughput Plasmid Sequencing with Illumina and CLC Bio" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  16. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Crow, John [National Center for Genome Resources

    2016-07-12

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  17. High Throughput Plasmid Sequencing with Illumina and CLC Bio (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Athavale, Ajay [Monsanto

    2016-07-12

    Ajay Athavale (Monsanto) presents "High Throughput Plasmid Sequencing with Illumina and CLC Bio" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  18. Alternative energy systems for Antarctic stations: Investing for the future

    NASA Astrophysics Data System (ADS)

    Guichard, Antoine; Steel, John

    A French-Australian cooperative research project focused on energy systems at Antarctic research stations has been initiated. Its aims are to investigate the current energy requirements of the Australian and French stations and to conduct a feasibility study on the use of alternative energy systems. This is designed to reduce the quantity of fuel used and the impact on the environment. This paper outlines the various issues addressed, presents the first options identified and provides a basis for identifying directions for future work.

  19. Proceedings of the Meeting on Future Directions in Developmental Education (2nd, Minneapolis, Minnesota, April 5-6, 2001).

    ERIC Educational Resources Information Center

    Lundell, Dana Britt, Ed.; Higbee, Jeanne L., Ed.

    In 2001, a group of 25 national and regional leaders in the field of developmental education met in Minneapolis, Minnesota, for the second Meeting on Future Directions in Developmental Education. The meeting was co-sponsored by General College (GC) and the Center for Research on Developmental Education and Urban Literacy (CRDEUL) at the University…

  20. 75 FR 67805 - The Future of Aviation Advisory Committee (FAAC) Subcommittee on Aviation Safety; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Office of the Secretary of Transportation The Future of Aviation Advisory Committee (FAAC) Subcommittee on Aviation Safety; Notice of Meeting AGENCY: U.S. Department of Transportation, Office of the... the Secretary of Transportation, announces a meeting of the FAAC Subcommittee on Aviation...

  1. Future for Offshore Wind Energy in the United States: Preprint

    SciTech Connect

    Musial, W.; Butterfield, S.

    2004-06-01

    Until recently, the offshore wind energy potential in the United States was ignored because vast onshore wind resources have the potential to fulfill the electrical energy needs for the entire country. However, the challenge of transmitting the electricity to the large load centers may limit wind grid penetration for land-based turbines. Offshore wind turbines can generate power much closer to higher value coastal load centers. Reduced transmission constraints, steadier and more energetic winds, and recent European success, have made offshore wind energy more attractive for the United States. However, U.S. waters are generally deeper than those on the European coast, and will require new technology. This paper presents an overview of U.S. coastal resources, explores promising deepwater wind technology, and predicts long-term cost-of-energy (COE) trends. COE estimates are based on generic 5-MW wind turbines in a hypothetical 500-MW wind power plant. Technology improvements and volume production are expected to lower costs to meet the U.S. Department of Energy target range of $0.06/kWh for deployment of deepwater offshore wind turbines by 2015, and $0.05/kWh by 2012 for shallow water. Offshore wind systems can diversify the U.S. electric energy supply and provide a new market for wind energy that is complementary to onshore development.

  2. America's Energy Future: Technology and Transformation-Summary Edition

    SciTech Connect

    Committee On America's Energy Future,

    2009-12-31

    The National Academy of Sciences' America's Energy Future study began in 2007. The security and sustainability of the nation's energy system have been perennial concerns since World War II. The concerns have focused on energy-supply, especially a growing dependence on imported petroleum, and the environmental impact of fossil fuel combustion--particularly direct effects of pollutant emissions on human health, greenhouse gasses and the carbon dioxide impact on climate change. The United States needs to lower its dependence on fragile supply chains for some energy sources, particularly petroleum at present and possibly natural gas in the future, to avoid the impacts of dependence on the nation's economy and national security. The nation must fundamentally transform the ways in which it produces, distributes, and consumes useful energy. The size and complexity of the U.S. energy system with its reach into all aspects of American life, necessitates a transformation of tremendous undertaking to protect the nation's energy transmission and distribution systems with fundamental changes both structural and behavioral among producers and consumers alike. The challenge is great and cannot be met overnight. A meaningful and timely transformation to a more sustainable and secure energy system will likely entail a generation or more of sustained efforts by both the public and private sectors. Additionally, it is clear that the country’s economic, security, and environmental goals as pertains to energy consumption and sustainability cannot be achieved without collective international action. U.S. prosperity and security is tied to global prosperity and security. U.S. environmental goals depend on environmental protection actions taken globally. The full realization of goals of the United States for transforming its energy sector requires effectively working with other nations, many facing similar challenges. The key to U.S. success in protecting, sustaining, and achieving

  3. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future.

    PubMed

    Huggins, Jane E; Guger, Christoph; Allison, Brendan; Anderson, Charles W; Batista, Aaron; Brouwer, Anne-Marie A-M; Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3-7(th), 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development.

  4. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future

    PubMed Central

    Huggins, Jane E.; Guger, Christoph; Allison, Brendan; Anderson, Charles W.; Batista, Aaron; Brouwer, Anne-Marie (A.-M.); Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E.; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3–7th, 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development. PMID:25485284

  5. Inventing the future: Energy and the CO2 "greenhouse" effect

    NASA Astrophysics Data System (ADS)

    Davis, E. E., Jr.

    Dennis Gabor, A winner of the Nobel Prize for Physics, once remarked that man cannot predict the future, but he can invent it. The point is that while we do not know with certainty how things will turn out, our own actions can play a powerful role in shaping the future. Naturally, Gabor had in mind the power of science and technology, and the model includes that of correction or feedback. It is an important: Man does not have the gift of prophecy. Any manager or government planner would err seriously by masterminding a plan based unalterably on some vision of the future, without provision for mid-course correction. It is also a comforting thought. With man's notorious inability to create reliable predictions about such matters as elections, stock markets, energy supply and demand, and, of course, the weather, it is a great consolation to feel that we can still retain some control of the future.

  6. Alternative futures for the Department of Energy National Laboratories

    SciTech Connect

    Not Available

    1995-02-01

    This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

  7. Community-based assessment and planning of energy futures

    NASA Astrophysics Data System (ADS)

    Carnes, S. A.

    1981-04-01

    The decentralized solar energy technology assessment program is discussed. Four communities were involved in an assessment of the compatibility of diverse conservation and renewable energy supply technologies and community values and goals and in community planning for the implementation of compatible energy demand and supply alternatives. The community approach has several basic components: (1) recruiting and organizing for the assessment planning process; (2) collection and analysis of data related to community energy use and indigenous renewable energy resources; (3) creation and maintenance of a community education and information program; (4) development of policies favorable to the development of preferred community futures; and (5) development of implementation or action strategies. The role of public participation, group decision making techniques, the role of technical information in citizen and group decision making, and linkage between assessment planning and the relevant policy process are emphasized.

  8. Opportunities and challenges for a sustainable energy future.

    PubMed

    Chu, Steven; Majumdar, Arun

    2012-08-16

    Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.

  9. A Perspective of Energy Codes and Regulations for the Buildings of the Future

    SciTech Connect

    Rosenberg, Michael; Jonlin, Duane; Nadel, Steven

    2016-10-13

    Today’s building energy codes focus on prescriptive requirements for features of buildings that are directly controlled by the design and construction teams and verifiable by municipal inspectors. Although these code requirements have had a significant impact, they fail to influence a large slice of the building energy use pie – including not only miscellaneous plug loads, cooking equipment and commercial/industrial processes, but the maintenance and optimization of the code-mandated systems as well. Currently, code compliance is verified only through the end of construction, and there are no limits or consequences for the actual energy use in an occupied building. In the future, our suite of energy regulations will likely expand to include building efficiency, energy use or carbon emission budgets over their full life cycle. Intelligent building systems, extensive renewable energy, and a transition from fossil fuel to electric heating systems will likely be required to meet ultra-low-energy targets. This paper lays out the authors’ perspectives on how buildings may evolve over the course of the 21st century and the roles that codes and regulations will play in shaping those buildings of the future.

  10. The leader's challenge: meetings, spiritual energy, and sneaker ratio.

    PubMed

    Kerfoot, Karlene

    2004-01-01

    Leaders who inspire are affirming to everyone in the meeting. They create the environment that meets the needs of the people first, not the leaders. People yearn to be heard, and to be engaged with their soul in genuine dialogue and engagement. If that doesn't happen in the meeting, then they search for meaning and support of their soul elsewhere and sneaker time increases. Leaders get from people what they give to them. If people in a meeting are given nothing, they in turn have nothing to give. If they truly feel they are served by the leader, they will give back much more than they receive. As Martin Luther King, Jr. so aptly said: "Everyone can be great because everyone can serve.

  11. Sustainability of least cost policies for meeting Mexico City's future water demand

    NASA Astrophysics Data System (ADS)

    Downs, Timothy J.; Mazari-Hiriart, Marisa; DomíNguez-Mora, Ramón; Suffet, I. H.

    2000-08-01

    Meeting future water demand without degrading ecosystems is one important indicator of sustainable development. Using simulations, we showed that compared to existing policy, more sustainable water supply options are similar or cheaper in cost. We probabilistically forecasted the Mexico City metropolitan zone population for the year 2015 to be 23.5 million and total required water supply to be 106 m3 s-1. We optimized existing and potential supply sources from aquifers, surface water, treatment/reuse, and efficiency/demand management by cost to meet future supply needs; the applied source supply limits determined the degree of sustainability. In two scenarios to supply 106 m3 s-1, the business-as-usual scenario (zero sustainability) had an average relative unit cost of 1.133; while for the most sustainable scenario (it includes reducing potential supply basins' exploitation limits by 50%), the value was 1.121. One extreme scenario to supply the forecast's 95% confidence value (124 m3 s-1) showed little unit cost change (1.106). The simulation shows sustainable policies can be cost-effective.

  12. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  13. Wind Plant Cost of Energy: Past and Future (Presentation)

    SciTech Connect

    Hand, M.

    2013-03-01

    This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

  14. Impact of future energy policy on water resources in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Rivotti, Pedro; Karatayev, Marat; Sobral Mourão, Zenaida; Shah, Nilay; Clarke, Michèle; Konadu, D. Dennis

    2017-04-01

    As part of its commitment to become one of the top-30 developed countries in the world, Kazakhstan set out an ambitious target of increasing the share of renewables and alternative sources of energy in its power generation mix to 50% by 2050. This vision greatly contrasts with the current situation, with coal and natural gas power plants producing around 90% of total electricity in 2016. While this transition provides a unique opportunity to improve the sustainability of the national energy system, major natural resources challenges currently faced in the country should be taken into account. Particularly in the case of water resources management, the current system is characterised by significant losses, heavy reliance on irrigation for the agricultural sector, unevenly distributed surface water, vulnerability to climate change and variations in transboundary inflows, amongst other issues. In this context, this study aims to investigate the future availability of water resources to support food production and the transition to a new energy system. Given the challenges mentioned above, tackling this question requires an integrated analysis of the water-energy-food systems in Kazakhstan. This is done in three stages: (1) characterising the water supply and demand in the country; (2) establishing the linkages between water resources and activities in the power production and agricultural sectors; and (3) identifying potential conflicts at the nexus between water, energy and food, taking into account future energy policy scenarios, trends for food production and water resource use.

  15. India`s energy future may see rise of nuclear

    SciTech Connect

    Chaudhuri, B.

    1996-07-01

    Plagued by technical and safety problems, India`s nuclear power industry has an uncertain future. {open_quotes}Nuclear power`s litany of problems makes it difficult to envision a vital future for India`s nuclear-power program.{close_quotes} says Basudeb Chaudhuri, an assistant professor of economics at the Technology Institute of the University of Caen in France. Though India possesses the natural resources, labor force, and industrial base to develop a viable nuclear power program, its nuclear industry produces only 2 percent of the nations`s electricity, Chanudhuri notes. Chaudhuri advocates that alternative sources of energy be added to the current mix of coal, hydroelectric, and nuclear power. He contends that nonconventional energy sources, including biomass, tidal, and wind energy, could become important ingredients in the energy mix. Because of increasing population and rapid economic development, demand for electricity in India will continue to rise, and there will be a need for nuclear in addition to other energy sources. {open_quotes}There are glimmers of hope that nuclear power can become an important part of the nation`s energy mix,{close_quotes} Chaudhuri says.

  16. Micro-CHP Technologies Roadmap: Meeting 21st Century Residential Energy Needs

    SciTech Connect

    none,

    2003-12-01

    On June 11-12, 2003, at Greenbelt, Maryland, key stakeholders from industry, government agencies, universities, and others involved in combined heat and power and the residential buildings industry explores solutions to technical, institutional, and market barriers facing micro-combined heat and power systems (mCHP). Participants outlined a desired future for mCHP systems, identified specific interim technology cost and performance targets, and developed actions to achieve the interim targets and vision. This document, The Micro-CHP Technologies Roadmap, is a result of their deliberations. It outlines a set of actions that can be pursued by both the government and industry to develop mCHP appliances for creating a new approach for households to meet their energy needs.

  17. ESCAP holds meet on implications of population future for families, aged.

    PubMed

    1996-01-01

    This news brief draws attention to the recent Expert Group Meeting in November 1996 in Bangkok of the ESCAP Population Division. The meeting focused on implications for future families and the elderly in Asia and was attended by 14 senior officials, resource persons, and study directors from 10 countries in the Asian and Pacific region. The ESCAP region is experiencing changes in population composition and distribution by age and sex and in family structure and functioning. There is a shift to an increasing number and proportion of elderly, elderly living in urban areas, and elderly living in nuclear families. China alone has 113 million elderly. The number of elderly is 13 million in Indonesia, about 6 million in Bangladesh, about 6 million in Pakistan, 4.5 million in Thailand, and 1.6 million in Sri Lanka. Elderly women generally outnumber elderly men and require economic support from others. Women face special problems in remaining active and healthy. This challenge will require assistance from families, communities, and government. Government will need to implement policies and programs to strengthen the role of the family and community in maintaining the elderly in independent and productive life styles that reduce dependency on government resources. The meeting provided detailed information about a regional study of support for the elderly that would include a household survey and analysis. The meeting resulted in the development of terms of reference for implementing operations research on the role and functions of nongovernmental groups that provide community-based services for the elderly. Participants adopted recommendations for incorporating elderly issues into national population and development plans and projects.

  18. 77 FR 49739 - Energy Conservation Standards for Residential Dehumidifiers: Public Meeting and Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ...; ] DEPARTMENT OF ENERGY 10 CFR Parts 429 and 430 RIN 1904-AC81 Energy Conservation Standards for Residential... the energy conservation standards for residential dehumidifiers. DOE also announces a public meeting... initiating data collection for considering amended energy conservation standards for residential...

  19. 78 FR 26544 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... Part 430 RIN 1904-AC55 Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework Document for Commercial and Industrial Fans and Blowers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Extension of...

  20. 76 FR 37805 - Progress Energy Carolinas; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Energy Carolinas (Progress Energy), licensee for the Yadkin-PeeDee Hydroelectric Project No. 2206... representatives of NMFS and Progress Energy, the Commission's non-Federal representative for the Yadkin-PeeDee...

  1. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    SciTech Connect

    Zhiwei Zhou

    2006-07-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  2. Energy Efficiency & Renewable Energy: Meeting US global climate change action plan commitments

    SciTech Connect

    Anderson, A.F.

    1994-12-31

    The subject describes how the US Department of Energy Office of Energy Efficiency and Renewable Energy will help meet the US goal of returning US greenhouse gas emissions to their 1990 levels by the year 2000. On October 19, 1993, President Clinton and Vice President Gore announced the publication of the Climate Change Action Plan. The DOE Office of Energy Efficiency and Renewable Energy has a major role in implementing many of the initiatives contained in the Plan. The paper will outline the initiatives current programs, and demonstrate how once implemented, the strategy will help to stem US greenhouse gas emissions. The paper will also discuss how DOE in implementing it`s Climate Change Action Plan strategy, will work with the EPA to achieve a cost-effective strategy that will stem greenhouse gas emissions through public/private partnerships. Although the focus of this paper will be the connection between current programs and Clinton Administration`s year 2000 goal, it will also discuss a longer-term vision for reducing atmospheric concentrations of greenhouse gases beyond the year 2000.

  3. Energy for a sustainable future. Summary report and recommendations

    SciTech Connect

    Not Available

    2010-04-15

    This year, in September, world leaders will meet at the United Nations to assess progress on the Millennium Development Goals and to chart a course of action for the period leading up to the agreed MDG deadline of 2015. Later in the year, government delegations will gather in Mexico to continue the process of working towards a comprehensive, robust and ambitious climate change agreement. Energy lies at the heart of both of these efforts. The decisions we take today on how we produce, consume and distribute energy will profoundly influence our ability to eradicate poverty and respond effectively to climate change. Addressing these challenges is beyond the reach of governments alone. It will take the active engagement of all sectors of society: the private sector; local communities and civil society; international organizations and the world of academia and research. To that end, in 2009 a high-level Advisory Group on Energy and Climate Change was established, chaired by Kandeh Yumkella, Director-General of the United Nations Industrial Development Organization (UNIDO). Comprising representatives from business, the United Nations system and research institutions, its mandate was to provide recommendations on energy issues in the context of climate change and sustainable development. The Group also examined the role the United Nations system could play in achieving internationally-agreed climate goals. The Advisory Group has identified two priorities - improving energy access and strengthening energy efficiency - as key areas for enhanced effort and international cooperation. Expanding access to affordable, clean energy is critical for realizing the MDGs and enabling sustainable development across much of the globe. Improving energy efficiency is paramount if we are to reduce greenhouse gas emissions. It can also support market competitiveness and green innovation. (LN)

  4. Search for a bridge to the energy future: Proceedings

    SciTech Connect

    Saluja, S.S.

    1986-01-01

    The alarming effects, concerns, and even the insights into long-range energy planning that grew out of the OPEC oil embargo of 1973 are fading from the view of a shortsighted public. The enthusiastic initiatives taken in many countries for the development of alternative energy sources have withered due to lack of economic and/or ideological incentive. The events since December 1985, when the members of OPEC decided to increase production in an effort to capture their share of market, have brought down the prices of a barrel of crude to less than US $11 and have made any rational analysis very complex. This has made even the proponents of the alternative energy sources pause and think. The US has, as usual, oscillated from panic to complacency. The Libyan crisis, however, has brought the dangers of complacency into sharp focus. The first commercial coal gasification plant, constructed with a capital investment of over US $2 billion, was abandoned by the owners and is being operated by the US Department of Energy temporarily. In their effort to find a private owner, the US Department of Energy has set the date of auction of this prestigious plant for May 28, 1986. And if an appropriate bid is not forthcoming, the plant faces a very uncertain future. Coal, considered by the World Coal Study (WOCOL) at MIT in 1980, to be a bridge to a global energy future, seems to have lost its luster due to the oil glut which we all know is temporary. This was evident when the bill to grant the Right of Eminent Domain for transportation of coal was defeated. This conference was organized to bring together experts in different areas from various countries to discuss the state of the art and the rate of progress in different alternative energy forms. The recent accident at the Chernobyl nuclear power plant in USSR has brought home the need of diversification of the alternative energy sources.

  5. Future World Energy Constraints and the Direction for Solutions

    SciTech Connect

    Lightfoot, H.D.

    2004-09-12

    This paper was originally written in response to the concern that rising levels of CO2 in the atmosphere caused by burning of fossil fuels will ultimately contribute to global warming. Now we are beginning to see evidence of coming problems in the supply of fuels for transportation. This paper describes the benefits of adequate energy supply and the problems of future energy supply. Partial solutions are suggested for immediate application as well as longer term solutions to address both of these concerns. To evaluate the situation and solutions we must understand: (1) how much primary energy is currently used world-wide and might be needed in 2100, (2) how important energy is to the welfare of people, (3) the forms of energy sources and end uses and (4) where new sources may come from. The major portion of world primary energy demand is provided by fossil fuels. This portion dropped from 93% in 1970 to 85% in 1995, mainly because of the increased use of nuclear energy. How ever, since the mid-1990s fossil fuels have maintained their 85% share of world energy supply. The importance of the relationship between per capita energy consumption and per capita income for the world is discussed. The limits of conservation, energy efficiency and renewable energies are examined. The contribution of renewable energies is compared to 41 different views of world energy demand in 2100. Without new technology for large scale storage of intermittent electricity from wind and solar the contribution of renewable energies is not likely to grow significantly beyond the current level of 7-8%. The paper offers conclusions and partial solutions that we can work on immediately. Examination of the forms of energy supplied by the sun, which is powered by nuclear fusion, and the way in which nuclear fission currently supplies energy to the world sets the research framework for longer term solutions. This framework points towards two possible longer term complementary res earch projects which

  6. Transportation Energy Futures: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect

    Brogan, J. J.; Aeppli, A. E.; Brown, D. F.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Freight transportation modes—truck, rail, water, air, and pipeline—each serve a distinct share of the freight transportation market. A variety of factors influence the modes chosen by shippers, carriers, and others involved in freight supply chains. Analytical methods can be used to project future modal shares, and federal policy actions could influence future freight mode choices. This report considers how these topics have been addressed in existing literature and offers insights on federal policy decisions with the potential to prompt mode choices that reduce energy use and greenhouse gas emissions.

  7. Landscape of Future Accelerators at the Energy and Intensity Frontier

    SciTech Connect

    Syphers, M. J.; Chattopadhyay, S.

    2016-11-21

    An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW level intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.

  8. Proceedings of the Intentional Meeting on Future Directions in Developmental Education (1st, Minneapolis, Minnesota, October 5-6, 1999).

    ERIC Educational Resources Information Center

    Lundell, Dana Britt, Ed.; Higbee, Jeanne L., Ed.

    This collection of essays is intended to spark thoughtful discussion about future directions for developmental education. The essays grew out of a conversation among 21 local, regional, and national leaders in the field of developmental education at the "First Intentional Meeting on Future Directions in Developmental Education," held in October,…

  9. Meeting the Energy Needs--Solar Technician Training Programs.

    ERIC Educational Resources Information Center

    Panitz, Theodore

    1980-01-01

    Differentiates between solar technicians and energy technicians; points out that, with the energy crisis, there has been much activity in the solar energy field, with the result that it could become saturated. Describes a program to train energy technicians that was developed at Cape Cod Community College. (JOW)

  10. Meeting the Energy Needs--Solar Technician Training Programs.

    ERIC Educational Resources Information Center

    Panitz, Theodore

    1980-01-01

    Differentiates between solar technicians and energy technicians; points out that, with the energy crisis, there has been much activity in the solar energy field, with the result that it could become saturated. Describes a program to train energy technicians that was developed at Cape Cod Community College. (JOW)

  11. Evaluating Programs That Promote Climate and Energy Education-Meeting Teacher Needs for Online Resources

    NASA Astrophysics Data System (ADS)

    Lynds, S. E.; Buhr, S. M.

    2011-12-01

    The Climate Literacy and Energy Awareness Network (CLEAN) Pathway, is a National Science Digital Library (NSDL) Pathways project that was begun in 2010. The main goal of CLEAN is to generate a reviewed collection of educational resources that are aligned with the Essential Principles of Climate Science (EPCS). Another goal of the project is to support a community that will assist students, teachers, and citizens in climate literacy. A complementary program begun in 2010 is the ICEE (Inspiring Climate Education Excellence) program, which is developing online modules and courses designed around the climate literacy principles for use by teachers and other interested citizens. In these projects, we learn about teacher needs through a variety of evaluation mechanisms. The programs use evaluation to assist in the process of providing easy access to high quality climate and energy learning resources that meet classroom requirements. The internal evaluation of the CLEAN program is multidimensional. At the CLEAN resource review camps, teachers and scientists work together in small groups to assess the value of online resources for use in the classroom. The review camps are evaluated using observation and feedback surveys; the resulting evaluation reports provide information to managers to fine-tune future camps. In this way, a model for effective climate resource development meetings has been refined. Evaluation methods used in ICEE and CLEAN include teacher needs assessment surveys, teacher feedback at professional development opportunities, scientist feedback at resource review workshops, and regular analysis of online usage of resources, forums, and education modules. This paper will review the most successful strategies for evaluating the effectiveness of online climate and energy education resources and their use by educators and the general public.

  12. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  13. US Department of Energy environmental management advisory board public meeting

    SciTech Connect

    Not Available

    1994-03-01

    Contents of this publication include: list of participants; March 14, 1994--opening of public meeting and subcommittee reports, and public comment session; March 15, 1994--presentation by Thomas P. Grumbly, assistant secretary for environmental management, presentations by senior environmental management officials, and committee business.

  14. Superconducting Magnet Technology for Future High Energy Proton Colliders

    NASA Astrophysics Data System (ADS)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  15. Crystal Ball: On the Future High Energy Colliders

    SciTech Connect

    Shiltsev, Vladimir

    2015-09-20

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of accelerator-based particle physics.

  16. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use. After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  17. Revolution Now: The Future Arrives for Four Clean Energy Technologies

    DOE R&D Accomplishments Database

    Tillemann, Levi; Beck, Fredric; Brodrick, James; Brown, Austin; Feldman, David; Nguyen, Tien; Ward, Jacob

    2013-09-17

    For decades, America has anticipated the transformational impact of clean energy technologies. But even as costs fell and technology matured, a clean energy revolution always seemed just out of reach. Critics often said a clean energy future would "always be five years away." This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market, they are growing rapidly. The four key technologies this report focuses on are: onshore wind power, polysilicon photovoltaic modules, LED lighting, and electric vehicles.

  18. 77 FR 32916 - Energy Conservation Standards for Distribution Transformers: Public Meeting and Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... Transformers: Public Meeting and Availability of Supplementary Analysis AGENCY: Office of Energy Efficiency and... additional information that it is making available about the liquid-immersed distribution transformer... transformers. In addition to this notice and the public meeting, DOE has several documents and analytical...

  19. 76 FR 22608 - Notice of a Public Meeting on the Rural Energy for America Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Rural Business-Cooperative Service 7 CFR Part 4280 Notice of a Public Meeting on the Rural Energy for America Program AGENCY: Rural Business-Cooperative Service, USDA. ACTION: Notice of public meeting. SUMMARY: The Rural Business-Cooperative Service (RBS) will hold two informational Webinars for the...

  20. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  1. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  2. Steel industry of the future: Meeting the material challenges of the 21. century

    SciTech Connect

    1999-02-01

    For over a century, the US steel industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, steel industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US steel industry and, at the same time, further important national goals. This industry-led partnership, the Steel Industry of the Future, promotes technologies that optimize the use of energy and materials in operation and reduce wastes and energy-related emissions. Led by the American Iron and Steel Institute (AISI) and the Steel Manufacturers Association (SMA), industry leaders began by developing a unified vision for the next 20 years: to provide high-quality, value-added products to a wide array of customers in an environmentally friendly, cost-effective manner, while leading the world in innovation and technology. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. The steel industry vision provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate collaborative R and D on advanced processes and technologies for the steel industry.

  3. Geothermal Energy Development Project at Naval Air Station Fallon, Nevada, Did Not Meet Recovery Act Requirements

    DTIC Science & Technology

    2011-09-19

    Report No. D-2011-108 September 19, 2011 Geothermal Energy Development Project at Naval Air Station Fallon, Nevada...COMMANDING OFFICER, NAVAL FACILITIES ENGINEERING COMMAND SOUTHWEST DIRECTOR, NAVY SHORE ENERGY PROGRAM OFFICE COMMANDING OFFICER, NAVAL AIR SYSTEMS ...COMMAND SUBJECT: Geothermal Energy Development Project at Naval Air Station Fallon, Nevada, Did Not Meet Recovery Act Requirements (Report No. D

  4. 78 FR 12252 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Meeting and Availability of the Framework Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... conservation standards for packaged terminal air conditioners (PTACs) and packaged terminal heat pumps...

  5. 78 FR 17890 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... Meeting and Availability of the Framework Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... standards for packaged terminal air conditioners (PTACs) and packaged terminal heat pumps (PTHPs). In...

  6. Keynote Presentation: Genome Beat (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Zimmer, Carl [New York Times

    2016-07-12

    Carl Zimmer, a reporter for the New York Times, speaks on "The Genome Beat," the opening keynote presentation at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif

  7. United States of America Department of Energy Environmental Management Advisory Committee Public Meeting

    SciTech Connect

    Not Available

    1993-12-01

    This reports contains documentation of presentations given at the United States of America Department of Energy Environmental Management Advisory Committee Public Meeting held December 14--15, 1993 in Alexandria, Virginia.

  8. Keynote Presentation: Genome Beat (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Zimmer, Carl

    2012-03-20

    Carl Zimmer, a reporter for the New York Times, speaks on "The Genome Beat," the opening keynote presentation at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif

  9. 75 FR 10551 - Notice of Rail Energy Transportation Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ..., Capacity Planning, Communication, and Performance Measures), a briefing by the Energy Information... this meeting is to continue discussions regarding issues such as rail performance, capacity constraints, infrastructure planning and development, and effective coordination among suppliers, carriers, and users...

  10. Expert elicitation survey on future wind energy costs

    SciTech Connect

    Wiser, Ryan; Jenni, Karen; Seel, Joachim; Baker, Erin; Hand, Maureen; Lantz, Eric; Smith, Aaron

    2016-09-12

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends -- in part -- on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions by 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.

  11. Expert elicitation survey on future wind energy costs

    NASA Astrophysics Data System (ADS)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim; Baker, Erin; Hand, Maureen; Lantz, Eric; Smith, Aaron

    2016-10-01

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends—in part—on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world’s foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions by 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.

  12. Keeping the Future Bright: Department of Defense (DOD) Sustainable Energy Strategy for Installations

    DTIC Science & Technology

    2016-04-04

    air pollution and global climate change.23 DODI 4170.11 also allowed DOD service components the leeway to manage their own energy programs to meet the...progress. DON’s investment in thermal energy from the waste heat of cogeneration systems help to meet reduction goals through source energy credits. In FY

  13. Expert Meeting Report: Key Innovations for Adding Energy Efficiency to Maintenance Projects

    SciTech Connect

    Wood, A.; Wiehagen, J.

    2012-09-01

    This report describes an expert meeting hosted by the Building America research team NAHB Research Center, which was held on February 8, 2012, in Orlando, Florida. The topic, Key Innovations for Adding Energy Efficiency to Maintenance Projects, was intended to provide direction to more focused efforts to increase the efficiency of existing homes; in this meeting, the focus was specifically for re-roofing and the opportunities for adding energy efficiency upgrades during this major home repair activity.

  14. A future very-high-energy view of our Galaxy

    SciTech Connect

    Funk, S.; Hinton, J. A.; Hermann, G.; Digel, S.

    2008-12-24

    The survey of the inner Galaxy with H.E.S.S. [1, 2] was remarkably successful in detecting a wide range of new very-high-energy gamma-ray sources. New TeV gamma-ray emitting source classes were established, although several of the sources remain unidentified, and progress has been made in understanding particle acceleration in astrophysical sources. In this work, we constructed a model of a population of such very-high-energy gamma-ray emitters and normalised the flux and size distribution of this population model to the H.E.S.S.-discovered sources. Extrapolating that population of objects to lower flux levels we investigate what a future array of imaging atmospheric telescopes (IACTs) such as AGIS or CTA might detect in a survey of the Inner Galaxy with an order of magnitude improvement in sensitivity. The sheer number of sources detected together with the improved resolving power will likely result in a huge improvement in our understanding of the populations of galactic gamma-ray sources. A deep survey of the inner Milky Way would also support studies of the interstellar diffuse gamma-ray emission in regions of high cosmic-ray density. In the final section of this paper we investigate the science potential for the Galactic Centre region for studying energy-dependent diffusion with such a future array.

  15. Probing dark energy dynamics from current and future cosmological observations

    SciTech Connect

    Zhao Gongbo; Zhang Xinmin

    2010-02-15

    We report the constraints on the dark energy equation-of-state w(z) using the latest 'Constitution' SNe sample combined with the WMAP5 and Sloan Digital Sky Survey data. Assuming a flat Universe, and utilizing the localized principal component analysis and the model selection criteria, we find that the {Lambda}CDM model is generally consistent with the current data, yet there exists a weak hint of the possible dynamics of dark energy. In particular, a model predicting w(z)<-1 at z is an element of [0.25,0.5) and w(z)>-1 at z is an element of [0.5,0.75), which means that w(z) crosses -1 in the range of z is an element of [0.25,0.75), is mildly favored at 95% confidence level. Given the best fit model for current data as a fiducial model, we make future forecast from the joint data sets of Joint Dark Energy Mission, Planck, and Large Synoptic Survey Telescope, and we find that the future surveys can reduce the error bars on the w bins by roughly a factor of 10 for a 5-w-bin model.

  16. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77

  17. Managing Water-Food-Energy Futures in the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.; Hassanzadeh, E.; Nazemi, A.; Elshorbagy, A. A.

    2016-12-01

    The water-food-energy nexus is a convenient phrase to highlight competing societal uses for water and the need for cross-sectoral policy integration, but this can lead to oversimplification of the multiple dimensions of water (and energy) management. In practice, water managers must balance (and prioritize) demands for water for many uses, including environmental flows, and reservoir operation often involves managing conflicting demands, for example to maximize retention for supply, reduce storage to facilitate flood control, and constrain water levels and releases for habitat protection. Agriculture and water quality are also inextricably linked: irrigated agriculture requires appropriate water quality for product quality and certification, but agriculture can be a major source of nutrient pollution, with impacts on human and ecosystem health, drinking water treatment and amenity. And energy-water interactions include energy production (hydropower and cooling water for thermal power generation) and energy consumption (e.g. for pumping and water and wastewater treatment). These dependencies are illustrated for the Canadian prairies, and a risk-based approach to the management of climate change is presented. Trade-offs between economic benefits of hydropower and irrigation are illustrated for alternative climate futures, including implications for freshwater habitats. The results illustrate that inter-sector interactions vary as a function of climate and its variability, and that there is a need for policy to manage inter-sector allocations as a function of economic risk.

  18. Future Physics Opportunities in Beam Energy Scan at RHIC

    NASA Astrophysics Data System (ADS)

    Xu, Nu

    2015-10-01

    In the first phase of the beam energy scan program (BES-I) at RHIC, we have collected data from Au +Au collisions at the center of mass energy range from 7.7 GeV to 39 GeV, corresponding to the baryonic chemical potential of 420 MeV to 120 MeV, respectively. We have observed the disappearance of the suppression of leading hadrons at large pT, break down of the quark scaling in the identified particle elliptic flow, the net-proton directed flow slope dv1/dy shows a minimum with negative sign, and a non-monotonical behavior of the net-proton correlation function (the fourth order) at the energy less than 20 GeV. All of these observations indicate that the property of the medium at high baryon density is dramatically different from that created at the RHIC top energy where the baryon density is small and partonic interactions are dominant. In this talk I will first review what we have learned in RHIC BES-I. Then I will discuss the opportunities in the future bean energy scan program in order to address key questions regarding the QCD phase structure including the illusive critical point. I will stress that adequate detector upgrades, focused at the large baryon density region, are essential for the physics program.

  19. Innovative thermal energy harvesting for future autonomous applications

    NASA Astrophysics Data System (ADS)

    Monfray, Stephane

    2013-12-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.

  20. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    NASA Astrophysics Data System (ADS)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  1. Our U.S. Energy Future, Student Guide. Computer Technology Program Environmental Education Units.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    This is the student guide in a set of five computer-oriented environmental/energy education units. Contents are organized into the following parts or lessons: (1) Introduction to the U.S. Energy Future; (2) Description of the "FUTURE" programs; (3) Effects of "FUTURE" decisions; and (4) Exercises on the U.S. energy future. This…

  2. MHD--Developing New Technology to Meet the Energy Crisis

    ERIC Educational Resources Information Center

    Fitch, Sandra S.

    1978-01-01

    Magnetohydrodynamics is a technology that could utilize the nation's most abundant fossil fuel and produce electrical energy more efficiently and cleanly than present-day turbines. A national research and development program is ongoing in Butte, Montana at the Montana Energy and MHD Research and Development Institute (MERDI). (Author/RK)

  3. MHD--Developing New Technology to Meet the Energy Crisis

    ERIC Educational Resources Information Center

    Fitch, Sandra S.

    1978-01-01

    Magnetohydrodynamics is a technology that could utilize the nation's most abundant fossil fuel and produce electrical energy more efficiently and cleanly than present-day turbines. A national research and development program is ongoing in Butte, Montana at the Montana Energy and MHD Research and Development Institute (MERDI). (Author/RK)

  4. Department of Defense and Energy Independence: Optimism Meets Reality

    DTIC Science & Technology

    2007-04-01

    green: The largest buyer of fossil fuel in the world, the Pentagon is racing to kick its habit, and the Canadian military is paying attention...alternative energy. It may be that since DOD does not plan on assuming a national level leadership role in energy, it feels no compulsion to

  5. Applications of Genome-based Science in Shaping Citrus Industries of the World (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    ScienceCinema

    Gmitter Jr, Fred [University of Florida

    2016-07-12

    Fred Gmitter from the University of Florida on "Applications of Genome-based Science in Shaping the Future of the World's Citrus Industries" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  6. Applications of Genome-based Science in Shaping Citrus Industries of the World (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    SciTech Connect

    Gmitter Jr, Fred

    2012-03-21

    Fred Gmitter from the University of Florida on "Applications of Genome-based Science in Shaping the Future of the World's Citrus Industries" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  7. The future of seawater desalination: energy, technology, and the environment.

    PubMed

    Elimelech, Menachem; Phillip, William A

    2011-08-05

    In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages.

  8. Hydrogen: Its Future Role in the Nation's Energy Economy.

    PubMed

    Winsche, W E; Hoffman, K C; Salzano, F J

    1973-06-29

    In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by

  9. Measure of the impact of future dark energy experiments based on discriminating power among quintessence models

    NASA Astrophysics Data System (ADS)

    Barnard, Michael; Abrahamse, Augusta; Albrecht, Andreas; Bozek, Brandon; Yashar, Mark

    2008-08-01

    We evaluate the ability of future data sets to discriminate among different quintessence dark energy models. This approach gives an alternative (and complementary) measure for assessing the impact of future experiments, as compared with the large body of literature that compares experiments in abstract parameter spaces (such as the well-known w0-wa parameters) and more recent work that evaluates the constraining power of experiments on individual parameter spaces of specific quintessence models. We use the Dark Energy Task Force (DETF) models of future data sets and compare the discriminative power of experiments designated by the DETF as stages 2, 3, and 4 (denoting increasing capabilities). Our work reveals a minimal increase in discriminating power when comparing stage 3 to stage 2, but a very striking increase in discriminating power when going to stage 4 (including the possibility of completely eliminating some quintessence models). We also see evidence that even modest improvements over DETF stage 4 (which many believe are realistic) could result in even more dramatic discriminating power among quintessence dark energy models. We develop and demonstrate the technique of using the independently measured modes of the equation of state (derived from principle component analysis) as a common parameter space in which to compare the different quintessence models, and we argue that this technique is a powerful one. We use the PNGB, Exponential, Albrecht-Skordis, and Inverse Tracker (or inverse power law) quintessence models for this work. One of our main results is that the goal of discriminating among these models sets a concrete measure on the capabilities of future dark energy experiments. Experiments have to be somewhat better than DETF stage 4 simulated experiments to fully meet this goal.

  10. PREFACE: PAGES 1st Young Scientists Meeting (YSM) - 'Retrospective views on our planet's future'

    NASA Astrophysics Data System (ADS)

    Cléroux, Caroline; Fehrenbacher, Jennifer; Phipps, Steven; Rupper, Summer; Williams, Branwen; Kiefer, Thorsten

    2010-03-01

    'Retrospective views on our planet's future' - This was the theme of a tandem of meetings held by Past Global Changes (PAGES; http://www.pages-igbp.org), a project of the International Geosphere-Biosphere Programme (IGBP). It reflects the philosophy of PAGES and its community of scientists that the past holds the key to better projections of the future. Climatic and environmental evidence from the past can be used to sharpen future projections of global change, thereby informing political and societal decisions on mitigation and adaptation. Young scientists are critical to the future of this endeavour, which we call 'paleoscience'. Their scientific knowledge, interdisciplinarity, international collaboration, and leadership skills will be required if this field is to continue to thrive. Meanwhile, it is also important to remember that science develops not only by applying new strategies and new tools to make new observations, but also by building upon existing knowledge. Modern research in paleoscience began around fifty years ago, and one could say that the third generation of researchers is now emerging. It is a wise investment to ensure that existing skills and knowledge are transferred to this generation. This will enable them to lead the science towards new accomplishments, and to make important contributions towards the wider field of global change science. Motivated by such considerations, PAGES organized its first Young Scientists Meeting (YSM), held in Corvallis (Oregon, USA) in July 2009 (http://www.pages-osm.org/ysm/index.html). The meeting took place immediately before the much larger 3rd PAGES Open Science Meeting (OSM; http://www.pages-osm.org/osm/index.html). The YSM brought together 91 early-career scientists from 21 different nations. During the two-day meeting, PhD students, postdoctoral researchers, and new faculty met to present their work and build networks across geographical and disciplinary borders. Several experienced and well

  11. Quantifying potential future impacts of energy resource development

    NASA Astrophysics Data System (ADS)

    Martinez, C.; Haines, S. S.; Semmens, D. J.; Diffendorfer, J.; Bagstad, K.; Garman, S.

    2016-12-01

    Modeling the potential development of subsurface energy resources and the interplay with surface resources is challenging for a number of reasons. There is a lack of knowledge about the exact location(s) where future development is likely to occur, the associated development footprint, and the type and condition of co-located surface resources. The level of information available for modeling any of these components can range from limited to highly detailed, or somewhere in between, requiring a consistent and robust approach that is insensitive to data abundance.A Monte Carlo simulation approach for assessing the potential impacts of future resource development will be demonstrated. The approach uses standardized, peer-reviewed U.S. Geological Survey (USGS) continuous oil and gas assessments and data on ecological resources. USGS probabilistic assessments provide insight into the regional or basinal occurrence, accumulation, and volume of oil gas resources as well as related geologic uncertainties, while environmental and ecological data provide insight into the levels and patterns of ecosystem services in a region.Linking these multidisciplinary data and models at various scales through quantifiable relationships provides a mechanism for the assessment of multiple natural resources regardless of the level of information available. The approach provides reproducible estimates of the potential impacts of resource extraction that are consistent with the probabilistic nature of USGS energy resource assessments. This presentation will focus on application of the method with an illustration for potential development of continuous oil and gas resources in the Piceance Basin of western Colorado.

  12. A Climate-friendly Energy Future: Prospects for Wind

    NASA Astrophysics Data System (ADS)

    Huang, Junling

    The objective of this thesis is to evaluate the potential for wind as an alternative energy source to replace fossil fuels and reduce global CO 2 emissions. From 1995 to 2007, fossil fuels as the major energy source accounted for an addition of 89.3 Gt of carbon to the atmosphere over this period, 29 % of which was transferred to the ocean, 15 % to the global biosphere, with the balance (57 %) retained in the atmosphere. Building a low-carbon and climate-friendly energy system is becoming increasingly urgent to combat the threat of global warming. Onshore wind resources in the contiguous US could readily accommodate present and anticipated future US demand for electricity. The problem with the output from a single wind farm located in any particular region is that it is variable on time scales ranging from minutes to days posing difficulties to incorporate relevant outputs into an integrated power system. The issue of interconnection of wind farms is studied with specific attention to the physical factors that determine the temporal variability of winds in the near surface region of the atmosphere. From a global perspective, generation of electricity from wind is determined ultimately by the balance between the production and dissipation of kinetic energy in the atmosphere. The origin of wind energy from 1979 to 2010 is investigated. The atmosphere acts as a thermal engine to produce wind energy, absorbing heat at higher temperatures (approximately 256 K), releasing heat at lower temperatures (approximately 253 K), as a consequence producing wind energy at a rate of 2.45 W/m2, with a thermodynamic efficiency of 1.03 %. The continuous blowing of wind is maintained by the thermodynamic instability of the atmospheric system. A framework is constructed to probe the relationship between the energy and entropy of the atmosphere, and to quantify two variables, the maximum work and the maximum increase in entropy which represent the thermodynamic instability. A large value

  13. Selecting for a sustainable workforce to meet the future healthcare needs of rural communities in Australia.

    PubMed

    Hay, M; Mercer, A M; Lichtwark, I; Tran, S; Hodgson, W C; Aretz, H T; Armstrong, E G; Gorman, D

    2017-05-01

    An undersupply of generalists doctors in rural communities globally led to widening participation (WP) initiatives to increase the proportion of rural origin medical students. In 2002 the Australian Government mandated that 25% of commencing Australian medical students be of rural origin. Meeting this target has largely been achieved through reduced standards of entry for rural relative to urban applicants. This initiative is based on the assumption that rural origin students will succeed during training, and return to practice in rural locations. One aim of this study was to determine the relationships between student geographical origin (rural or urban), selection scores, and future practice intentions of medical students at course entry and course exit. Two multicentre databases containing selection and future practice preferences (location and specialisation) were combined (5862), representing 54% of undergraduate medical students commencing from 2006 to 2013 across nine Australian medical schools. A second aim was to determine course performance of rural origin students selected on lower scores than their urban peers. Selection and course performance data for rural (461) and urban (1431) origin students commencing 2006-2014 from one medical school was used. For Aim 1, a third (33.7%) of rural origin students indicated a preference for future rural practice at course exit, and even fewer (6.7%) urban origin students made this preference. Results from logistic regression analyses showed significant independent predictors were rural origin (OR 4.0), lower Australian Tertiary Admissions Rank (ATAR) (OR 2.1), or lower Undergraduate Medical and Health Sciences Admissions Test Section 3 (non-verbal reasoning) (OR 1.3). Less than a fifth (17.6%) of rural origin students indicated a preference for future generalist practice at course exit. Significant predictors were female gender (OR 1.7) or lower ATAR (OR 1.2), but not rural origin. Fewer (10.5%) urban origin

  14. 75 FR 34520 - The Future of Aviation Advisory Committee (FAAC) Aviation Safety Subcommittee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ....d.t. ADDRESSES: The meeting will be held at 100 North Riverside Plaza, Chicago, Illinois 60606... Subcommittee meeting taking place on July 6, 2010, at 1 p.m. c.d.t., at 100 North Riverside Plaza, Chicago...

  15. Energy Frontier Research Centers: Science for Our Nation's Energy Future, September 2016

    SciTech Connect

    None, None

    2016-09-01

    As world demand for energy rapidly expands, transforming the way energy is collected, stored, and used has become a defining challenge of the 21st century. At its heart, this challenge is a scientific one, inspiring the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) to establish the Energy Frontier Research Center (EFRC) program in 2009. The EFRCs represent a unique approach, bringing together creative, multidisciplinary scientific teams to perform energy-relevant basic research with a complexity beyond the scope of single-investigator projects. These centers take full advantage of powerful new tools for characterizing, understanding, modeling, and manipulating matter from atomic to macroscopic length scales. They also train the next-generation scientific workforce by attracting talented students and postdoctoral researchers interested in energy science. The EFRCs have collectively demonstrated the potential to substantially advance the scientific understanding underpinning transformational energy technologies. Both a BES Committee of Visitors and a Secretary of Energy Advisory Board Task Force have found the EFRC program to be highly successful in meeting its goals. The scientific output from the EFRCs is impressive, and many centers have reported that their results are already impacting both technology research and industry. This report on the EFRC program includes selected highlights from the initial 46 EFRCs and the current 36 EFRCs.

  16. The Future of Sleep Technology: Report from an American Association of Sleep Technologists Summit Meeting

    PubMed Central

    Brooks, Rita; Trimble, Melinda

    2014-01-01

    integrated care will include an increased focus on patient education, monitoring, and follow-up. The most effective treatments will require an individualized, patient-centered approach. A workforce analysis shows that the number of trained physician specialists will be inadequate to provide this care. Well-trained sleep medicine practitioners at many levels will be needed to meet treatment goals, including some roles appropriate for sleep technologists. These factors provide challenges and opportunities for sleep technologists. In order to maintain viability as an allied health profession, the majority of sleep technologists will need to be better educated and demonstrate competency in more roles than overnight monitoring and record scoring. Models for this transition already exist, with several programs moving technologists from night work to days and from diagnosis to patient education, provision of treatment, and monitoring of adherence. The challenge for the professional association is to define new roles for sleep technologists and provide the education that the membership will require to flourish in those new roles. Citation: Brooks R, Trimble M. The future of sleep technology: report from an American Association of Sleep Technologists summit meeting. J Clin Sleep Med 2014;10(5):589-593. PMID:24812546

  17. Onshore wind energy potential over Iberia: present and future projections

    NASA Astrophysics Data System (ADS)

    Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.

    2014-05-01

    Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable energy sources in a climate change context. While advantages of wind energy are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the potential power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that potential wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest potential energy outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power potential are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  18. The Role of Solar Technology Programs In Meeting Our Energy Needs

    ERIC Educational Resources Information Center

    Valentine, Ivan E.; Larson, Milton E.

    1978-01-01

    Elements to be included in a solar energy technology training program offered in postsecondary institutions are listed. The article examines various present and future energy sources and describes the solar energy system, stressing the immediate need for training programs for solar energy technicians. (MF)

  19. The Role of Solar Technology Programs In Meeting Our Energy Needs

    ERIC Educational Resources Information Center

    Valentine, Ivan E.; Larson, Milton E.

    1978-01-01

    Elements to be included in a solar energy technology training program offered in postsecondary institutions are listed. The article examines various present and future energy sources and describes the solar energy system, stressing the immediate need for training programs for solar energy technicians. (MF)

  20. 76 FR 34071 - Secretary of Energy Advisory Board, Natural Gas Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... Secretary of Energy Advisory Board, Natural Gas Subcommittee; Meeting AGENCY: Department of Energy, DoE... Advisory Board (SEAB), Natural Gas Subcommittee. SEAB was reestablished pursuant to the Federal Advisory... issues, operational issues and other activities as directed by the Secretary. The Natural Gas...

  1. Algeria to use gas to meet energy demands

    SciTech Connect

    Not Available

    1986-12-01

    Sonelgaz, Algeria's natural gas distribution monopoly, plans to supply all major towns in the country with natural gas for domestic energy demands by 1989. The utility uses copper tubing in residences and plastic pipe for distribution mains and services to the houses for new construction and conversion to natural gas from LPG systems.

  2. Restructuring medical education to meet current and future health care needs.

    PubMed

    Pershing, Suzann; Fuchs, Victor R

    2013-12-01

    U.S. health care is changing, and it will continue to change across multiple dimensions: a different mix of patients; more ambulatory, chronic care and less acute, inpatient care; an older population; expanded insurance coverage; a team approach to care; rapid growth of subspecialty care; growing emphasis on cost-effective care; and rapid technological change. These changes demand a corresponding evolution in physician roles and training. However, despite innovation in content and teaching methods, there has been little alteration to the basic structure of medical education since the Flexner Report sparked widespread reform in 1910. Looking to the future, medical education might evolve to include preparation for a team approach to care via practical training for multispecialty collaborative practice and preparing physicians to be leaders of primary care teams that include nonphysician providers; shorter training for some physicians via flexible pathways and "fast tracks" at each phase of training; cost-effective care in clinical practice; increased training in geriatrics; and "on ramps" and "off ramps" along the physician career path for flexible training over a lifetime. Although the challenges facing the health care system are great, meeting changing health care needs must begin at the foundation, in medical education.

  3. 76 FR 5220 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... small modular reactor applications. The Subcommittee will hear presentations by and hold discussions... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant... rescheduling would result in a major inconvenience. Dated: January 24, 2011. Antonio Dias, Chief, Reactor...

  4. Mapping Future Research in Disabilities--Research Initiatives in Intellectual Disabilities in India: Report of a National Interdisciplinary Meeting

    ERIC Educational Resources Information Center

    Cohen, Libby; Brown, Roy I.

    2012-01-01

    A meeting organized under the auspices of the International Association for the Scientific Study of Intellectual Disabilities (IASSID) Academy on Education, Teaching and Research was held in March 2011 at the India International Centre in New Delhi, India, with the explicit purpose of helping establish a road map for future research in…

  5. Mapping Future Research in Disabilities--Research Initiatives in Intellectual Disabilities in India: Report of a National Interdisciplinary Meeting

    ERIC Educational Resources Information Center

    Cohen, Libby; Brown, Roy I.

    2012-01-01

    A meeting organized under the auspices of the International Association for the Scientific Study of Intellectual Disabilities (IASSID) Academy on Education, Teaching and Research was held in March 2011 at the India International Centre in New Delhi, India, with the explicit purpose of helping establish a road map for future research in…

  6. Operational Benefits of Meeting California’s Energy Storage Targets

    SciTech Connect

    Eichman, Josh; Denholm, Paul; Jorgenson, Jennie; Helman, Udi

    2015-12-01

    In October 2013, the California Public Utilities Commission (CPUC) issued rules for its jurisdictional utilities to procure a minimum of 1,325 megawatts (MW) of energy storage systems by 2020. The goal of this study is to examine the operational value of this storage portfolio in California and the rest of the Western Electricity Coordinating Council (WECC) region. Modeled results show that the storage portfolio, when providing energy and operating reserves, reduces the total WECC-wide production costs by $78 million per year in the 33% scenario. This value increases to $144 million per year in the 40% scenario, primarily because of the increase in off-peak and peak price differences that are due to additional solar generation. These values are equivalent to $59/kW-year for the storage portfolio for the 33% scenario and $109/kW-year for the 40% scenario.

  7. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    SciTech Connect

    2003-02-01

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the

  8. High energy density physics issues related to Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2017-07-01

    A design study for a post-Large Hadron Collider accelerator named, Future Circular Collider (FCC), is being carried out by the International Scientific Community. A complete design report is expected to be ready by spring 2018. The FCC will accelerate two counter rotating beams of 50 TeV protons in a tunnel having a length (circumference) of 100 km. Each beam will be comprised of 10 600 proton bunches, with each bunch having an intensity of 1011 protons. The bunch length is of 0.5 ns, and two neighboring bunches are separated by 25 ns. Although there is an option for 5 ns bunch separation as well, in the present studies, we consider the former case only. The total energy stored in each FCC beam is about 8.5 GJ, which is equivalent to the kinetic energy of Airbus 380 (560 t) flying at a speed of 850 km/h. Machine protection is a very important issue while operating with such powerful beams. It is important to have an estimate of the damage caused to the equipment and accelerator components due to the accidental release of a partial or total beam at a given point. For this purpose, we carried out numerical simulations of full impact of one FCC beam on an extended solid copper target. These simulations have been done employing an energy deposition code, FLUKA, and a two-dimensional hydrodynamic code, BIG2, iteratively. This study shows that although the static range of a single FCC proton and its shower is about 1.5 m in solid copper, the entire beam will penetrate around 350 m into the target. This substantial increase in the range is due to the hydrodynamic tunneling of the beam. Our calculations also show that a large part of the target will be converted into high energy density matter including warm dense matter and strongly coupled plasmas.

  9. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  10. Future energy system in environment, economy, and energy problems (2) various nuclear energy system evaluations

    SciTech Connect

    Matsui, Kazuaki; Ujita, Hiroshi; Tashimo, Masanori

    2006-07-01

    Role and potentials of nuclear energy system in the energy options are discussed from the viewpoint of sustainable development with protecting from global warming by using the energy module structure of GRAPE model. They change and are affected dramatically by different sets of energy characteristics, nuclear behavior and energy policy even under the moderate set of presumptions. Introduction of thousands of reactors in the end of the century seems inevitable for better life and cleaner earth, but it will not come without efforts and cost. The analysis suggests the need of long term planning and R and D efforts under the wisdom. (authors)

  11. Hydrogen and the materials of a sustainable energy future

    SciTech Connect

    Zalbowitz, M.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  12. Future electricity production methods. Part 1: Nuclear energy

    NASA Astrophysics Data System (ADS)

    Nifenecker, Hervé

    2011-02-01

    The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at a fast pace. This is the more so, that 'clean' electricity would be useful to displace 'dirty' techniques in other fields such as heat production and transportation. Here we examine the extent to which nuclear energy could be operational in providing 'clean' electricity. A nuclear intensive scenario is shown to give the possibility to divide CO2 emissions by a factor of 2 worldwide, within 50 years. However, the corresponding sharp increase in nuclear power will put a heavy burden on uranium reserves and will necessitate the development of breeding reactors as soon as possible. A review of present and future reactors is given with special attention to the safety issues. The delicate question of nuclear fuel cycle is discussed concerning uranium reserves and management of used fuels. It is shown that dealing with nuclear wastes is more a socio-political problem than a technical one. The third difficult question associated with the development of nuclear energy is the proliferation risk. It is advocated that, while this is, indeed, a very important question, it is only weakly related to nuclear power development. Finally, the possibilities of nuclear fusion are discussed and it is asserted that, under no circumstances, could nuclear fusion give a significant contribution to the solution of the energy problem before 50 years, too late for dealing with the global warming challenge.

  13. Forecasts for dark energy measurements with future HI surveys

    NASA Astrophysics Data System (ADS)

    Abdalla, Filipe B.; Blake, Chris; Rawlings, Steve

    2010-01-01

    We use two independent methods to forecast the dark energy measurements achievable by combining future galaxy redshift surveys based on the radio HI emission line with cosmic microwave background (CMB) data from the Planck satellite. In the first method, we focus on the `standard ruler' provided by the baryon acoustic oscillation (BAO) length-scale. In the second method, we utilize additional information encoded in the galaxy power spectrum including galaxy bias from velocity-space distortions and the growth of cosmic structure. We find that a radio synthesis array with about 10 per cent of the collecting area of the Square Kilometre Array (SKA), equipped with a wide (10-100 deg2) field of view, would have the capacity to perform a 20000 deg2 redshift survey to a maximum redshift zmax ~ 0.8 and thereby produce dark energy measurements that are competitive with surveys likely to be undertaken by optical telescopes around 2015. There would then be powerful arguments for adding collecting area to such a `Phase 1' SKA because of the square-law scaling of survey speed with telescope sensitivity for HI surveys, compared to the linear scaling for optical redshift surveys. The full SKA telescope should, by performing a 20000 deg2 HI redshift survey to zmax ~ 2 around 2020, yield an accurate measurement of cosmological parameters independent of CMB data sets. Combining CMB (Planck) and galaxy power spectrum (SKA) measurements will drive errors in the dark energy equation-of-state parameter w well below the 1 per cent level. The major systematic uncertainty in these forecasts is the lack of direct information about the mass function of high-redshift HI-emitting galaxies. `Stacking experiments' with SKA pathfinders will play an important role in resolving this uncertainty.

  14. When and What Meteorological Stresses Will Maize Crops Meet in the future in France?

    NASA Astrophysics Data System (ADS)

    Caubel, J.

    2015-12-01

    Climate change is expected to modify overall climatic conditions and therefore, suitability for cropping. Assessment of when and what meteorological stresses will crops meet in the future is highly useful for planners and land managers who can apply adaptation strategies to improve agricultural potentialities. We propose to evaluate the impacts of climate change on suitability for maize cropping in terms of ecophysiology (e.g., heat stress during grain filling), yield quality (e.g., thermal conditions on protein content) and cultural practices performance (e.g., days available for harvest according to risk of waterlogged soil compaction) in two French areas. The Midi-Pyrénées (southern) and Ile-de-France (northern) regions were chosen as representing the two distinct climates when dividing France into southern and northern parts. The Midi-Pyrénées region is a major irrigated maize producer but could become penalizing in the future because of heat and water stress. By contrast, northern France could become a more suitable area thanks to the expected increasing temperature. To confirm our assumptions, we used the method assessment for crop-climate suitability developed in Caubel et al. (2015) and based on the sub-annual analysis of agroclimatic indicators calculated over phenological periods. Indicators have been calculated using climatic data from 1950 to 2100 simulated by the global climate ARPEGE at the meso-scale SAFRAN (8 km resolution) for the two areas and forced by a greenhouse effect corresponding to the SRES A1B scenario (similar to RCP 6.0). The evaluation was done for two distinct varieties in terms of precocity. Agroclimatic indicators characterizing water deficit and water excess impacts on crop were calculated for three soils with contrasting soil water reserves and depths. Finally, the evaluation was performed with a unique sowing date (the current one), and with an optimized sowing date according to water and thermal requirements for emergence

  15. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect

    Meyers, S.

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  16. 75 FR 26317 - The Future of Aviation Advisory Committee (FAAC); Notice of Federal Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... needs, challenges, and opportunities of the global economy. DATES: The meeting will be held on May 25... or affiliation Address Phone number E-mail address in order for us to confirm your registration The... meeting area. Please inform us if you have protection detail that will accompany you to the event. Due to...

  17. 75 FR 31323 - Energy Efficiency Program: Energy Conservation Standards Furnace Fans: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC22 Energy Efficiency Program: Energy Conservation Standards... data collection process to consider establishing new energy conservation standards or energy use....gov . SUPPLEMENTARY INFORMATION: Part A of the Energy Policy and Conservation Act of 1975 (EPCA...

  18. The future of sleep technology: report from an American Association of Sleep Technologists summit meeting.

    PubMed

    Brooks, Rita; Trimble, Melinda

    2014-05-15

    The American Association of Sleep Technologists (AAST) Board of Directors hosted a Sleep Technology Summit on September 21, 2013 with the goals of identifying changes in the delivery of diagnostic and treatment services to sleep disorders patients, predicting the impact on sleep technologists, identifying new roles for sleep technologists, and determining appropriate education to prepare technologists for the future. A carefully chosen panel of speakers focused on the business skills necessary to provide care cost effectively and the clinical skills that will be essential for the technologist of the future to help care for patients with sleep disorders. A group of selected leaders, educators, and industry professionals reviewed the current state of affairs and examined opportunities to sustain the profession and define the role of the sleep technologist of the future. Facilitated group discussions of these critical topics followed each session. There was a clear consensus that regulatory and economic pressures are changing the way sleep disorders patients are diagnosed and treated. Private insurers are requiring pre-authorization for laboratory sleep studies and are incentivizing home sleep testing for most patients suspected of obstructive sleep apnea. Reimbursement for home testing will be lower than for laboratory testing, and further reductions in overall reimbursement are anticipated. These factors will almost certainly reduce the need for technologists to perform laboratory diagnostic studies and pressure sleep centers to reduce payrolls. Remaining laboratory patients will have more complicated sleep disorders, have more comorbidity, and require a higher level of care than most of the patients currently tested in sleep centers. Testing these patients will require technologists with a higher level of training, experience, and sophistication. A second area of consensus was that the focus in medicine is changing from diagnosis to outcomes. New models of

  19. Energy Flowchart Scenarios of Future U.S. Energy Use Incorporating Hydrogen Fueled Vehicles

    SciTech Connect

    Berry, G; Daily III, W

    2004-06-03

    This project has adapted LLNL energy flowcharts of historical U.S. energy use drawn from the DOE Energy Information Administration (EIA) data to include scenarios involving hydrogen use. A flexible automated process for preparing and drawing these flowcharts has also been developed. These charts show the flows of energy between primary sectors of the economy so that a user can quickly understand the major implications of a proposed scenario. The software can rapidly generate a spectrum of U.S. energy use scenarios in the 2005-2050 timeframe, both with and without a transition to hydrogen-fueled transportation. These scenarios indicate that fueling 100% of the light duty fleet in 2050 (318 million 80 mpg-equivalent compressed hydrogen fuel cell vehicles) will require approximately 100 million tonnes (10.7 quads) of H2/year, reducing petroleum use by at least 7.3 million barrels of oil/day (15.5 quads/yr). Linear extrapolation of EIA's 2025 reference projection to 2050 indicates approximate U.S. primary energy use of 180 quads/yr (in 2050) relative to current use of 97 quads/yr (comprising 39 quads/yr of petroleum). Full deployment of 50% efficient electricity generation technologies for coal and nuclear power and improvements in gasoline lightduty vehicle fleet fuel economy to 50 mpg would reduce projected U.S. primary energy consumption to 143 quads/yr in 2050, comprising 58 quads/yr (27 million bbl/day) of petroleum. Full deployment of H2 automobiles by 2050 could further reduce U.S. petroleum dependence to 43 quads/yr. These projections indicate that substantial steps beyond a transition to H2 light-duty vehicles will be necessary to reduce future U.S. petroleum dependence (and related greenhouse gases) below present levels. A flowchart projecting future U.S. energy flows depicting a complete transition by 2050 to compressed hydrogen light-duty vehicles is attached on the following page (corresponding to scenario 7 in the Appendix). It indicates that producing

  20. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    SciTech Connect

    Lian, Tianquan

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  1. Feedbacks from Focus Group Meeting on Training and Implementation of Building Energy Codes in China

    SciTech Connect

    Shui, Bin; Lin , Haiyan; Song, Bo; Halverson, Mark A.; Evans, Meredydd; Zhu, Xiaojiao

    2011-01-01

    A focus group meeting is a very effective quality research approach to collect information on a specific project. Through focus group meetings at both Changchun and Ningbo in August 2010, the project team gained a more complete understandings of key stakeholders (such as their education level), their training needs and expectations, key factors influencing their decision making, and incurred implementation difficulties. In addition, the meeting helped the project team (especially PNNL) improve its understanding of the implementation status of building energy codes in other regions (such as small cities and counties neighboring to urban areas, small townships and rural areas distant from urban areas). The collected feedbacks will serve as important input not only for better design of training materials and the development of an on-line training website, but also for development of follow-up projects to promote building energy codes in China.

  2. Public participation in energy facility siting. Part 2; Future directions

    SciTech Connect

    Whitlatch, E.E. . Dept. of Civil Engineering)

    1990-08-01

    The first planning era for energy facility siting was typified by technological decision making in a climate of eminent domain. The second planning era, from 1970 to present, involves regulatory/adjudicatory decision making in a climate of adversarial proceedings. However, outcomes are not much different than in the first: Decisions are still largely made on technological grounds, sites are secretly selected and anonymously secured, and public participation has little effect on decisions. The result has been endgame litigation that delays needed projects increases cost, and polarizes participants. Utilities are understandably reluctant to plan large base-load plants, yet almost all projections of electricity use indicate that such plants will be needed after 1996, if not before. The author discusses how it is in the self-interest of all three principal actors---industry, environmental groups, and state and local government---to move beyond confrontation to a third planning era based on negotiation. Unassisted negotiation (open siting or open planning) and assisted negotiation (facilitation and mediation) promise to produce mutual gain for all parties through cooperative and creative problem solving. Most importantly, they lay the groundwork for future productive interaction.

  3. Energy storage devices for future hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  4. Integral Fast Reactor: A future source of nuclear energy

    SciTech Connect

    Southon, R.

    1993-09-01

    Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality.

  5. US energy policies: Will they be responsive to future needs?

    SciTech Connect

    Hemphill, J.G.

    1995-12-31

    This paper reviews the history of early US energy policy as a prescription for failure, the evolution of national goals in energy, and the basic principles of energy policy (market based, clean energy alternatives should receive recognition; energy and environment planning coordinated; progress measured and adjustments made; technology transfer encouraged; government assistance should support economic and environmental objectives).

  6. Effects of China's Energy Policy on Future Air Quality in China and the U.S.

    NASA Astrophysics Data System (ADS)

    Li, M.; Selin, N. E.; Karplus, V. J.; Li, C. T.; Zhang, D.; Luo, X.; Zhang, X.

    2014-12-01

    We examine the effects of recently announced energy policies in mainland China on air quality in both China and the U.S. in 2030. China is the largest contributor to global anthropogenic emissions of air pollutants, especially the precursors to ozone and fine particulate matter (PM2.5) such as nitrogen oxides (NOx) and sulfur dioxide (SO2). Efforts to limit coal use in China under the country's National Air Pollution Action Plan will reduce these air pollutants. Control efforts are expected to not only decrease the concentration of ozone and PM2.5 locally in China, but also reduce the trans-Pacific transport of air pollutants to the U.S. We couple an energy-economic model with sub-national detail for China (the China Regional Energy Model, or C-REM) to a global atmospheric chemistry model (GEOS-Chem) to assess air pollution reductions under an energy policy scenario relative to a no policy baseline scenario. Future Chinese anthropogenic emissions are predicted by C-REM under a national energy policy scenario which achieves a 20% reduction in energy intensity from 2012 to 2017 by targeting fossil fuel use nationwide as specified in the National Air Pollution Action Plan and also meets the Plan's sub-national constraint that coal use must not increase above present levels in three largest urban regions (the Beijing-Tianjin-Hebei Area, Yangtze River Delta, and Pearl River Delta) through 2030. Using GEOS-Chem, we project changes in the surface concentration of ozone and PM2.5 over China and the U.S. in 2030. We find that air pollutants decrease substantially over both China and the U.S. under the national targets set by the Air Pollution Action Plan.

  7. 78 FR 12251 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Part 430 RIN 1904-AC55 Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework Document for Commercial and Industrial Fans and Blowers AGENCY... industrial fan and blower equipment published on February 1, 2013, is extended to May 2, 2013. DATES: The...

  8. Expert Meeting Report. Key Innovations for Adding Energy Efficiency to Maintenance Projects

    SciTech Connect

    Wood, A.; Wiehagen, J.

    2012-09-01

    This report describes an expert meeting hosted by the Building America research team NAHB Research Center, which was held on February 8, 2012, in Orlando, Florida. The topic focused on efforts to increase the efficiency of existing homes, specifically for re-roofing and the opportunities for adding energy efficiency upgrades during this major home repair activity.

  9. 76 FR 71312 - Renewable Energy and Energy Efficiency Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... administration of programs and policies to support the competitiveness of the U.S. renewable energy and energy... programs and policies to enhance the international competitiveness of the U.S. renewable energy and...

  10. The Energy-Water Nexus: Managing the Links between Energy and Water for a Sustainable Future

    NASA Astrophysics Data System (ADS)

    Hussey, Karen; Petit, Carine

    2010-05-01

    preliminary list of recommendations on how best to account for and integrate these impacts into policy and decision-making processes at various institutional levels was prepared and future research needs in the energy-water nexus were suggested as main outcomes. This presentation draws on the contributions to the COST water-energy-links exploratory workshops and the development of 12 case studies undertaken by researchers from Europe, the United States, Australia and China, which will be published in a Special Feature of Ecology and Society, mid-2010.

  11. The future of Evo-Devo: the inaugural meeting of the Pan American Society for evolutionary developmental biology.

    PubMed

    Lesoway, Maryna P

    2016-01-01

    What is the future of evolutionary developmental biology? This question and more were discussed at the inaugural meeting for the Pan American Society for Evolutionary Developmental Biology, held August 5-9, 2015, in Berkeley, California, USA. More than 300 participants attended the first meeting of the new society, representing the current diversity of Evo-Devo. Speakers came from throughout the Americas, presenting work using an impressive range of study systems, techniques, and approaches. Current research draws from themes including the role of gene regulatory networks, plasticity and the role of the environment, novelty, population genetics, and regeneration, using new and emerging techniques as well as traditional tools. Multiple workshops and a discussion session covered subjects both practical and theoretical, providing an opportunity for members to discuss the current challenges and future directions for Evo-Devo. The excitement and discussion generated over the course of the meeting demonstrates the current dynamism of the field, suggesting that the future of Evo-Devo is bright indeed.

  12. Blue Ribbon Commission on America's Nuclear Future: Report to the Secretary of Energy

    SciTech Connect

    2012-01-01

    Preamble The Blue Ribbon Commission on America’s Nuclear Future (BRC) was formed by the Secretary of Energy at the request of the President to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new strategy. It was co-chaired by Rep. Lee H. Hamilton and Gen. Brent Scowcroft. Other Commissioners are Mr. Mark H. Ayers, the Hon. Vicky A. Bailey, Dr. Albert Carnesale, Sen. Pete Domenici, Ms. Susan Eisenhower, Sen. Chuck Hagel, Mr. Jonathan Lash, Dr. Allison M. Macfarlane, Dr. Richard A. Meserve, Dr. Ernest J. Moniz, Dr. Per Peterson, Mr. John Rowe, and Rep. Phil Sharp. The Commission and its subcommittees met more than two dozen times between March 2010 and January 2012 to hear testimony from experts and stakeholders, to visit nuclear waste management facilities in the United States and abroad, and to discuss the issues identified in its Charter. Additionally, in September and October 2011, the Commission held five public meetings, in different regions of the country, to hear feedback on its draft report. A wide variety of organizations, interest groups, and individuals provided input to the Commission at these meetings and through the submission of written materials. Copies of all of these submissions, along with records and transcripts of past meetings, are available at the BRC website (www.brc.gov). This report highlights the Commission’s findings and conclusions and presents recommendations for consideration by the Administration and Congress, as well as interested state, tribal and local governments, other stakeholders, and the public.

  13. A hydrogen energy carrier. Volume 1: Summary. [for meeting energy requirements

    NASA Technical Reports Server (NTRS)

    Savage, R. L. (Editor); Blank, L. (Editor); Cady, T. (Editor); Cox, K. E. (Editor); Murray, R. (Editor); Williams, R. D. (Editor)

    1973-01-01

    The production, technology, transportation, and implementation of hydrogen into the energy system are discussed along with the fossil fuel cycle, hydrogen fuel cycle, and the demands for energy. The cost of hydrogen production by coal gasification; electrolysis by nuclear energy, and solar energy are presented. The legal aspects of a hydrogen economy are also discussed.

  14. World Energy Supplies: The Present Use and Future Prospects.

    ERIC Educational Resources Information Center

    Harris, John; Osborne, Jonathan

    1978-01-01

    Presents Unit Nine Change and Chance of the Nuffield Advanced Physics, dealing with energy conservation, and a novel statistical approach to diffusion, thermal equilibrium and thermodynamics. Information about energy resources, alternative sources of energy, and energy-cost of materials are also presented. (HM)

  15. World Energy Supplies: The Present Use and Future Prospects.

    ERIC Educational Resources Information Center

    Harris, John; Osborne, Jonathan

    1978-01-01

    Presents Unit Nine Change and Chance of the Nuffield Advanced Physics, dealing with energy conservation, and a novel statistical approach to diffusion, thermal equilibrium and thermodynamics. Information about energy resources, alternative sources of energy, and energy-cost of materials are also presented. (HM)

  16. Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.

    SciTech Connect

    Singh, M. K.; Moore, J. S.

    2002-03-04

    Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

  17. Considerations in projecting energy-related emissions multiple decades into the future

    EPA Science Inventory

    Use of fossil fuels for energy is the primary source of anthropogenic emissions of many air pollutants. Thus, the evolution of the energy system into the future can influence future emissions, driving those emissions up or down as a function of shifts in energy demand and fuel us...

  18. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    ERIC Educational Resources Information Center

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  19. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    ERIC Educational Resources Information Center

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  20. Improving biofuel feedstocks by modifying xylan biosynthesis (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Lau, Jane

    2013-03-01

    Jane Lau of the Joint BioEnergy Institute on "Improving biofuel feedstocks by modifying xylan biosynthesis" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  1. Residential Energy Efficiency Research Planning Meeting Summary Report: Washington, D.C. - October 27-28, 2011

    SciTech Connect

    Not Available

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  2. Summary of Needs and Opportunities from the 2011 Residential Energy Efficiency Stakeholders Meeting: Atlanta, Georgia -- March 16-18, 2011

    SciTech Connect

    Not Available

    2011-05-01

    This summary report outlines needs and issues for increasing energy efficiency of new and existing U.S homes, as identified at the U.S Department of Energy Building America program Spring 2011 stakeholder meeting in Atlanta, Georgia.

  3. Energy efficiency standards for eight consumer products: public meeting clarification, questions and answers

    SciTech Connect

    1980-08-01

    Eighteen corporations and manufacturers provided answers to many questions posed at a public meeting on energy efficiency standards for eight consumer products. Questions on the regulations concerning the manufacturing standards, performance standards, and testing standards are included. Questions were posed about air conditioners, refrigerators, refrigerator-freezers, stoves (ranges), ovens, clothes dryers, oil fired burners, water heaters, furnaces, etc. A presentation containing information pertaining to the values of average annual energy consumption per unit used by DOE in its analysis leading to proposed energy efficiency standards for nine types of consumer products is included. (MCW)

  4. Climate change, renewable energy and population impact on future energy demand for Burkina Faso build environment

    NASA Astrophysics Data System (ADS)

    Ouedraogo, B. I.

    This research addresses the dual challenge faced by Burkina Faso engineers to design sustainable low-energy cost public buildings and domestic dwellings while still providing the required thermal comfort under warmer temperature conditions caused by climate change. It was found base don climate change SRES scenario A2 that predicted mean temperature in Burkina Faso will increase by 2oC between 2010 and 2050. Therefore, in order to maintain a thermally comfortable 25oC inside public buildings, the projected annual energy consumption for cooling load will increase by 15%, 36% and 100% respectively for the period between 2020 to 2039, 2040 to 2059 and 2070 to 2089 when compared to the control case. It has also been found that a 1% increase in population growth will result in a 1.38% and 2.03% increase in carbon emission from primary energy consumption and future electricity consumption respectively. Furthermore, this research has investigated possible solutions for adaptation to the severe climate change and population growth impact on energy demand in Burkina Faso. Shading devices could potentially reduce the cooling load by up to 40%. Computer simulation programming of building energy consumption and a field study has shown that adobe houses have the potential of significantly reducing energy demand for cooling and offer a formidable method for climate change adaptation. Based on the Net Present Cost, hybrid photovoltaic (PV) and Diesel generator energy production configuration is the most cost effective local electricity supply system, for areas without electricity at present, with a payback time of 8 years when compared to diesel generator stand-alone configuration. It is therefore a viable solution to increase electricity access to the majority of the population.

  5. Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)

    SciTech Connect

    Not Available

    2013-12-01

    Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

  6. Environmental Stewardship: How Semiconductor Suppliers Help toMeet Energy-Efficiency Regulations and Voluntary Specifications inChina

    SciTech Connect

    Aizhen, Li; Fanara, Andrew; Fridley, David; Merriman, Louise; Ju,Jeff

    2007-01-15

    Recognizing the role that semiconductor suppliers can playin meeting energy-efficiency regulations and voluntary specifications,this paper provides an overview of Chinese policies and implementingbodies; a discussion of current programs, their goals, and effectiveness;and possible steps that can be taken tomeet these energy-efficiencyrequirements while also meeting products' high performance and costgoals.

  7. REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS

    SciTech Connect

    Wise, Mark B.; Kapustin, Anton N.; Schwarz, John Henry; Carroll, Sean; Ooguri, Hirosi; Gukov, Sergei; Preskill, John; Hitlin, David G.; Porter, Frank C.; Patterson, Ryan B.; Newman, Harvey B.; Spiropulu, Maria; Golwala, Sunil; Zhu, Ren-Yuan

    2014-08-26

    Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities: I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas

  8. Past and Future Cost of Wind Energy: Preprint

    SciTech Connect

    Lantz, E.; Hand, M.; Wiser, R.

    2012-08-01

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

  9. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  10. The Blueprint for a Secure Energy Future: Progress Report

    DTIC Science & Technology

    2012-03-01

    States has nearly doubled renewable energy generation since 2008. According to industry experts, America’s wind and solar industry currently account for...tens of thousands of jobs.  Since 2009, DOI has approved 29 onshore renewable energy projects: 16 solar projects, 5 wind farms, and 8 geothermal...Environmental Impact Statement (PEIS) that DOI is developing jointly with the Department of Energy . The Solar PEIS analyzes proposed solar energy

  11. The Benefits of Recycling for the Future of Nuclear Energy

    SciTech Connect

    Alan Hanson

    2006-07-01

    Robust increases in energy demand, improvements in the performance of existing nuclear power plants, renewed interest in assuring domestic energy supply and concern about climate change have recently provided powerful arguments for renewing and further expanding the use of nuclear energy in the United States. (author)

  12. Selecting for a Sustainable Workforce to Meet the Future Healthcare Needs of Rural Communities in Australia

    ERIC Educational Resources Information Center

    Hay, M.; Mercer, A. M.; Lichtwark, I.; Tran, S.; Hodgson, W. C.; Aretz, H. T.; Armstrong, E. G.; Gorman, D.

    2017-01-01

    An undersupply of generalists doctors in rural communities globally led to widening participation (WP) initiatives to increase the proportion of rural origin medical students. In 2002 the Australian Government mandated that 25% of commencing Australian medical students be of rural origin. Meeting this target has largely been achieved through…

  13. 75 FR 37752 - Measuring Progress on Food Safety: Current Status and Future Directions; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ..., Room 2-2127, George Washington Carver Center, 5601 Sunnyside Avenue, Mailstop 5474, Beltsville, MD..., in Washington, DC (75 FR 9232). The public meetings announced in this notice are extensions of that...., Washington, DC 20250-9410 or call 202-720-5964 (voice and TTY). USDA is an equal opportunity provider...

  14. Back to the Future: The Practicality of Using Microsoft NetMeeting for Effective Distance Tutoring

    ERIC Educational Resources Information Center

    Legutko, Robert S.

    2007-01-01

    Background: The idea for attempting a distance tutoring project between university tutors and elementary school students using Microsoft NetMeeting was conceived: (a) to provide a new experience mentoring children for university students pursuing a teaching certificate, (b) for university students to utilize technology in pedagogy, (c) as an…

  15. One Cold Fusion Speaker is One Too Many for a Future Energy Conference

    NASA Astrophysics Data System (ADS)

    Vallone, Thomas

    2001-04-01

    In 1998, a Conference on Future Energy (COFE) was scheduled to take place at the State Department Open Forum in April, 1999. Only one speaker, Ed Storms (formerly with Los Alamos Lab), was scheduled to talk about cold fusion as part of fourteen plenary lectures over a two-day period. However, the entire meeting was labeled a "cold fusion" conference by APS Spokesperson Bob Park who repeated the words four times in one 1999 What's New column. What transpired afterwards has become a part of the cold fusion suppression history, including several APS ``pseudoscience" presentations mocking COFE scientists. A review of the actual COFE contents reveals the rational side of emerging energy technologies normally associated with the scientific process. The Park-related events display an opposite pattern of behavior ultimately designed to discredit the COFE organizer and deprive him of his livelihood (see APS News, March, 2000). The compiled record shows how the communication of scientific information becomes distorted by undue prejudice and unethical lobbying.

  16. Analysis of Marine Corps Renewable Energy Planning to Meet Installation Energy Security Requirements

    DTIC Science & Technology

    2013-12-03

    installations, learning curve analysis, modern portfolio theory, solar, wind, biomass , waste-to- energy, energy planning, energy strategy, customer...energy was unaffordable while wind, biomass , and concentrating solar energies were not possible. The ideal renewable resource that was reliable and...pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - 9 - k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= fossil fuels and renewable resources such as wind, solar, hydro, biomass , and

  17. Role of non-fossil energy in meeting China's energy and climate target for 2020

    SciTech Connect

    Zhou, Sheng; Tong, Qing; Yu, Sha; Wang, Yu; Chai, Qimin; Zhang, Xiliang

    2012-12-01

    China is the largest energy consumer and CO2 emitter in the world. The Chinese government faces growing challenges of ensuring energy security and reducing greenhouse gas emissions. To address these two issues, the Chinese government has announced two ambitious domestic indicative autonomous mitigation targets for 2020: increasing the ratio of non-fossil energy to 15% and reducing carbon dioxide emissions per unit of GDP by 40-45% from 2005 levels. To explore the role of non-fossil energy in achieving these two targets, this paper first provides an overview of current status of non-fossil energy development in China; then gives a brief review of GDP and primary energy consumption; next assesses in detail the role of the non fossil energy in 2020, including the installed capacity and electricity generation of non-fossil energy sources, the share and role of non-fossil energy in the electricity structure, emissions reduction resulting from the shift to non-fossil energy, and challenges for accomplishing the mitigation targets in 2020 ; finally, conclusions and policy measures for non-fossil energy development are proposed.

  18. Energy Efficiency in China: Glorious History, Uncertain Future

    NASA Astrophysics Data System (ADS)

    Levine, Mark D.

    2008-09-01

    China's rapid economic growth of 10% per year has been accompanied by an annual energy growth rate of greater than 10% from 2001-2005. This in turn has led to the construction of 1 to 2 GWe of electrical generating capacity per week over the period, with the vast majority of the power plants using coal. Because of the energy growth, China has equaled the carbon consumption rate of United States at 6 billion tonnes/year in 2006, far sooner than was expected. This paper discusses the periods of energy growth and efficiency policy in China. This includes "Soviet Style" Energy Policy (1949-1980); Deng's Initial Reforms (1981-1992); Transition Period (1993 to 2001); Energy Crisis in China: 2001 to 2006, a repeat of much earlier "inglorious history; and the present efforts to return to an earlier period (Deng's Initial Reforms) in which energy growth may be more sustainable. Recommendations are given for policies to promote energy efficiency.

  19. Pollutant emissions and energy efficiency of Chinese gasifier cooking stoves and implications for future intervention studies.

    PubMed

    Carter, Ellison M; Shan, Ming; Yang, Xudong; Li, Jiarong; Baumgartner, Jill

    2014-06-03

    Household air pollution from solid fuel combustion is the leading environmental health risk factor globally. In China, almost half of all homes use solid fuel to meet their household energy demands. Gasifier cookstoves offer a potentially affordable, efficient, and low-polluting alternative to current solid fuel combustion technology, but pollutant emissions and energy efficiency performance of this class of stoves are poorly characterized. In this study, four Chinese gasifier cookstoves were evaluated for their pollutant emissions and efficiency using the internationally recognized water boiling test (WBT), version 4.1.2. WBT performance indicators included PM2.5, CO, and CO2 emissions and overall thermal efficiency. Laboratory investigation also included evaluation of pollutant emissions (PM2.5 and CO) under stove operating conditions designed to simulate common Chinese cooking practices. High power average overall thermal efficiencies ranged from 22 to 33%. High power average PM2.5 emissions ranged from 120 to 430 mg/MJ of useful energy, and CO emissions ranged from 1 to 30 g/MJ of useful energy. Compared with several widely disseminated "improved" cookstoves selected from the literature, on average, the four Chinese gasifier cookstoves had lower PM2.5 emissions and higher CO emissions. The recent International Organization for Standardization (ISO) International Workshop Agreement on tiered cookstove ranking was developed to help classify stove performance and identify the best-performing stoves. The results from this study highlight potential ways to further improve this approach. Medium power stove operation emitted nearly twice as much PM2.5 as was emitted during high power stove operation, and the lighting phase of a cooking event contributed 45% and 34% of total PM2.5 emissions (combined lighting and cooking). Future approaches to laboratory-based testing of advanced cookstoves could improve to include greater differentiation between different modes of

  20. Building a sustainable clinical academic workforce to meet the future healthcare needs of Australia and New Zealand: report from the first summit meeting.

    PubMed

    Windsor, J; Searle, J; Hanney, R; Chapman, A; Grigg, M; Choong, P; Mackay, A; Smithers, B M; Churchill, J A; Carney, S; Smith, J A; Wainer, Z; Talley, N J; Gladman, M A

    2015-09-01

    The delivery of healthcare that meets the requirements for quality, safety and cost-effectiveness relies on a well-trained medical workforce, including clinical academics whose career includes a specific commitment to research, education and/or leadership. In 2011, the Medical Deans of Australia and New Zealand published a review on the clinical academic workforce and recommended the development of an integrated training pathway for clinical academics. A bi-national Summit on Clinical Academic Training was recently convened to bring together all relevant stakeholders to determine how best to do this. An important part understood the lessons learnt from the UK experience after 10 years since the introduction of an integrated training pathway. The outcome of the summit was to endorse strongly the recommendations of the medical deans. A steering committee has been established to identify further stakeholders, solicit more information from stakeholder organisations, convene a follow-up summit meeting in late 2015, recruit pilot host institutions and engage the government and future funders.

  1. Characterization of energy-efficient and colorless ONUs for future TWDM-PONs.

    PubMed

    Wong, Elaine; Mueller, Michael; Amann, Markus C

    2013-09-09

    The Full Services Access Network group has recently selected the time and wavelength division multiplexed passive optical network (TWDM-PON) as the base technology solution for next-generation PON stage-2 (NG-PON2). Meeting the core requirements of NG-PON2 necessitates the following additional features in the transceivers of the optical network unit (ONU) that is located at subscriber premises: (a) legacy system compliant; (b) wavelength tunable; (c) cost-efficient; and (d) energy-efficient. To address these features, we investigate the properties of short-cavity vertical-cavity surface-emitting lasers (SC-VCSELs) for implementation as colorless ONU transmitters in future TWDM-PONs. Specifically, we investigate the tunability and transmission performance of the SC-VCSEL across the C-minus wavelength band for legacy system compliance. We report on error-free transmission across a 800 GHz tuning range with a potential aggregate upstream capacity of 80 Gbps over a system reach of 40 km and with a split ratio of 1:128 per wavelength channel. Results were achieved without dispersion compensation and electronic equalization. We also evaluate the energy efficiency of the SC-VCSEL in active, doze, and sleep mode. When in active mode, the SC-VCSEL transmitter block consumes 91.7% less power than a distributed feedback (DFB) laser transmitter block. When transitioning between doze and active modes, the transmitter block has a short settling time of only 205 ns, thus increasing the power-saving duration and consequently reducing the overall power consumption of the ONU. Through numerical analysis, evaluation of the energy-savings of the SC-VCSEL ONU over the DFB ONU under various modes of operation, demonstrates up to 84% of energy-savings. The capacity, tuning range, split ratio, system reach, and energy-savings arising from SC-VCSEL ONU implementation as reported in this work, exceed the minimum requirements of NG-PON2 for future TWDM-PON deployments.

  2. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    SciTech Connect

    Not Available

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  3. The Effectiveness of Taiwan Building Energy Regulation under the influence of Future Climate

    NASA Astrophysics Data System (ADS)

    Weng, Yu-Teng; Huang, Kuo-Tsang

    2017-04-01

    Building energy consumption comprises circa 40% of the national annual energy usage in Taiwan, and the majority proportion is attributed to the cooling apparatus usage. As cooling energy is closely related to the outdoor climate, it is expected that the future global climate change would amplify its demand. Considering the building energy regulation criteria are the minimum requirements that the building has to be complied with, this study tried to investigate whether the current building energy regulation in Taiwan, initiated in 2013, would still be capable of maintaining the energy use in the future as today's level. The research adopted EnergyPlus to simulate the annual cooling energy use of several virtual office building cases with the constructed hourly future weather data under future climate change scenarios of RCP45 and RCP85 defined by IPCC. The virtual building cases are generated by a structured orthogonal array with each case is constituted by 10 building design parameters. The results revealed that the building energy consumption based on the current regulation criteria failed to maintain at the same level in the future as oppose to nowadays. By comparing to the current cooling energy usage, it would rise by 13% and 22% in RCP45 and RCP85, respectively, at the end of this century. This research further parametrically studied the potential cooling energy mitigation strategies and proposed effective building envelope design schemes in order to neutralize the future building energy increase.

  4. Residential energy demand models: Current status and future improvements

    NASA Astrophysics Data System (ADS)

    Peabody, G.

    1980-12-01

    Two models currently used to analyze energy use by the residential sector are described. The ORNL model is used to forecast energy use by fuel type for various end uses on a yearly basis. The MATH/CHRDS model analyzes variations in energy expenditures by households of various socioeconomic and demographic characteristics. The essential features of the ORNL and MATH/CHRDS models are retained in a proposed model and integrated into a framework that is more flexible than either model. The important determinants of energy use by households are reviewed.

  5. 77 FR 34379 - Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission The Federal Energy Regulatory Commission (FERC) and the Nuclear Regulatory...

  6. Energy for the Future. The Draft 1991 Northwest Power Plan.

    ERIC Educational Resources Information Center

    Clearing, 1991

    1991-01-01

    The Northwest Power Plan, developed by the Northwest Power Planning Council to deal with the increasing demands for energy by the Pacific Northwest, is discussed. An idea of how sufficient energy could be produced as well as preserve the qualities of life that make the Pacific Northwest special is presented. (KR)

  7. Past, present and future low energy antiproton facilities at CERN

    NASA Astrophysics Data System (ADS)

    Bartmann, W.; Belochitskii, P.; Breuker, H.; Butin, F.; Carli, C.; Eriksson, T.; Maury, S.; Oelert, W.; Pasinelli, S.; Tranquille, G.

    2014-05-01

    Low energy antiprotons are available for physics experiments at CERN since the 1980s and have been used by a large variety of experiments. The Low Energy Antiproton Ring LEAR has been constructed as a complementary use of antiprotons available at that time for high energy physics and delivered beam to experiments mainly using slow extraction. After completion of LEAR exploitation, the Antiproton Decelerator (AD) was constructed (adaptation of the existing Antiproton Collector, AC) to allow for a simpler low energy antiproton scheme (only one accelerator operated with Antiprotons) with fast extraction well suited for trap experiments. The Extra Low ENergy Antiproton ring ELENA is a small synchrotron presently constructed to further decelerate antiprotons from the AD in a controlled manner, and to reduce emittances with the help of an electron cooler to improve the capture efficiencies of existing experiments and allow for additional ones.

  8. Finished Prokaryotic Genome Assemblies from a Low-cost Combination of Short and Long Reads (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    SciTech Connect

    Yin, Shuangye

    2012-06-01

    Shuangye Yin on "Finished prokaryotic genome assemblies from a low-cost combination of short and long reads" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  9. Presentation from 2016 STAR Tribal Research Meeting: Water, Our Voice to the Future: Climate Change Adaptation and Waterborne Disease Prevention on the Crow Reservation

    EPA Pesticide Factsheets

    This presentation, Water, Our Voice to the Future: Climate Change Adaptation and Waterborne Disease Prevention on the Crow Reservation, was given at the 2016 STAR Tribal Research Meeting held on Sept. 20-21, 2016.

  10. Finished Prokaryotic Genome Assemblies from a Low-cost Combination of Short and Long Reads (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Yin, Shuangye (Broad Institute)

    2016-07-12

    Shuangye Yin on "Finished prokaryotic genome assemblies from a low-cost combination of short and long reads" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  11. Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)

    SciTech Connect

    Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

    2012-09-28

    The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As

  12. Roadmap for the Future of Commercial Energy Codes

    SciTech Connect

    Rosenberg, Michael I.; Hart, Philip R.; Zhang, Jian; Athalye, Rahul A.

    2015-01-01

    Building energy codes have significantly increased building efficiency over the last 38 years, since the first national energy code was published in 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, the inability to handle optimization that is specific to building type and use, the inability to account for project-specific energy costs, and the lack of follow-through or accountability after a certificate of occupancy is granted. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. This report provides a high-level review of different formats for commercial building energy codes, including prescriptive, prescriptive packages, capacity constrained, outcome based, and predictive performance approaches. This report also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria.

  13. Star Power on Earth: Path to Clean Energy Future

    ScienceCinema

    Ed Moses

    2016-07-12

    Lawrence Livermore National Laboratory's "Science on Saturday" lecture series presents Ed Moses, Director of the National Ignition Facility, discussing the world's largest laser system and its potential impact on society's upcoming energy needs.

  14. Our national energy future - The role of remote sensing

    NASA Technical Reports Server (NTRS)

    Schmitt, H. H.

    1975-01-01

    An overview of problems and opportunities in remote sensing of resources. The need for independence from foreign and precarious energy sources, availability of fossil fuel materials for other purposes (petrochemicals, fertilizer), environmental conservation, and new energy sources are singled out as the main topics. Phases of response include: (1) crisis, with reduced use of petroleum and tapping of on-shore and off-shore resources combined; (2) a transition phase involving a shift from petroleum to coal and oil shale; and (3) exploitation of renewable (inexhaustible and clean) energy. Opportunities for remote sensing in fuel production and energy conservation are discussed along with problems in identifying the spectral signatures of productive and unproductive regions. Mapping of water resources, waste heat, byproducts, and wastes is considered in addition to opportunities for international collaboration.

  15. Capturing the Sun, Creating a Clean Energy Future (Brochure)

    SciTech Connect

    Not Available

    2011-07-01

    Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

  16. Capturing the Sun, Creating a Clean Energy Future (Brochure)

    SciTech Connect

    DOE Solar Energy Technologies Program

    2011-07-20

    Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

  17. Our national energy future - The role of remote sensing

    NASA Technical Reports Server (NTRS)

    Schmitt, H. H.

    1975-01-01

    An overview of problems and opportunities in remote sensing of resources. The need for independence from foreign and precarious energy sources, availability of fossil fuel materials for other purposes (petrochemicals, fertilizer), environmental conservation, and new energy sources are singled out as the main topics. Phases of response include: (1) crisis, with reduced use of petroleum and tapping of on-shore and off-shore resources combined; (2) a transition phase involving a shift from petroleum to coal and oil shale; and (3) exploitation of renewable (inexhaustible and clean) energy. Opportunities for remote sensing in fuel production and energy conservation are discussed along with problems in identifying the spectral signatures of productive and unproductive regions. Mapping of water resources, waste heat, byproducts, and wastes is considered in addition to opportunities for international collaboration.

  18. Star Power on Earth: Path to Clean Energy Future

    SciTech Connect

    Ed Moses

    2009-10-09

    Lawrence Livermore National Laboratory's "Science on Saturday" lecture series presents Ed Moses, Director of the National Ignition Facility, discussing the world's largest laser system and its potential impact on society's upcoming energy needs.

  19. Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Miller, M. Coleman; Murase, Kohta; Oikonomou, Foteini

    2016-12-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expected to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ~10-6 Mpc-3. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a gtrsim5σ detection of UHE neutrino sources with a uniform density, ns~10-7-10-5 Mpc-3, at least ~100-1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.

  20. Directing solar photons to sustainably meet food, energy, and water needs

    DOE PAGES

    Gencer, Emre; Miskin, Caleb; Sun, Xingshu; ...

    2017-06-09

    As we approach a “Full Earth” of over ten billion people within the next century, unprecedented demands will be placed on food, energy and water (FEW) supplies. The grand challenge before us is to sustainably meet humanity’s FEW needs using scarcer resources. To overcome this challenge, we propose the utilization of the entire solar spectrum by redirecting solar photons to maximize FEW production from a given land area. We present novel solar spectrum unbundling FEW systems (SUFEWS), which can meet FEW needs locally while reducing the overall environmental impact of meeting these needs. The ability to meet FEW needs locallymore » is critical, as significant population growth is expected in less-developed areas of the world. As a result, the proposed system presents a solution to harness the same amount of solar products (crops, electricity, and purified water) that could otherwise require ~60% more land if SUFEWS were not used—a major step for Full Earth preparedness.« less

  1. Summary of hearings on the future of the nation's energy utilities: Implications for Federal RD&D

    NASA Astrophysics Data System (ADS)

    Nelson, K.; Sissine, F. J.

    Hearings on the future of the nation's energy utilities are summarized. The future strategies of energy utilities in regard to new technologies are considered. Alternate energy technologies, conservation, diversification, deregulation, and various regulatory reforms are explored.

  2. Current status and future potential of energy derived from Chinese agricultural land: a review.

    PubMed

    Zhai, Ningning; Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction.

  3. Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review

    PubMed Central

    Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229

  4. Design of a modular digital computer system, DRL 4. [for meeting future requirements of spaceborne computers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design is reported of an advanced modular computer system designated the Automatically Reconfigurable Modular Multiprocessor System, which anticipates requirements for higher computing capacity and reliability for future spaceborne computers. Subjects discussed include: an overview of the architecture, mission analysis, synchronous and nonsynchronous scheduling control, reliability, and data transmission.

  5. 75 FR 55631 - The Future of Aviation Advisory Committee (FAAC) Subcommittee on Financing; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... Office of the Secretary of Transportation The Future of Aviation Advisory Committee (FAAC) Subcommittee... headquarters of United Airlines, 77 West Wacker Drive, Chicago, Illinois 60601. This notice announces the date... U.S. aviation industry and its capability to manage effectively the evolving transportation needs...

  6. A Challenge To Meet the Future: Nursing Education in Oregon, 2010.

    ERIC Educational Resources Information Center

    Gubrud-Howe, Paula; Shaver, Katherine S.; Tanner, Christine A.; Bennett-Stillmaker, Jerri; Davidson, Sue B.; Flaherty-Robb, Marna; Goudreau, Kelly; Hardham, Linda; Hayden, Charla; Hendy, Sandy; Omel, Sue; Potempa, Kathleen; Shores, Louise; Theis, Saundra; Wheeler, Pam

    2003-01-01

    Key components of the Oregon Nursing Leadership Council's educational reform plan include the following: (1) focus on competencies for future nurses; (2) creation of a statewide consortium for interinstitutional collaboration; and (3) development of more licensed practical nursing programs to address the projected shortages of registered nurses.…

  7. Meeting of Minds and Futures: The Nature of Knowledge in Diverse Global Settings

    ERIC Educational Resources Information Center

    Odora Hoppers, Catherine A.; Sandgren, Björn

    2014-01-01

    When we think of communities of the future, we have to think of new social contracts between universities and society with a different ecology, and an intense compatibility towards transdisciplinarity. We know that today there is a need for truly fundamental reflections and questions on knowledge as the building block of global societies…

  8. Meeting of Minds and Futures: The Nature of Knowledge in Diverse Global Settings

    ERIC Educational Resources Information Center

    Odora Hoppers, Catherine A.; Sandgren, Björn

    2014-01-01

    When we think of communities of the future, we have to think of new social contracts between universities and society with a different ecology, and an intense compatibility towards transdisciplinarity. We know that today there is a need for truly fundamental reflections and questions on knowledge as the building block of global societies…

  9. Meeting report: Ocean ‘omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013)

    PubMed Central

    Gilbert, Jack A; Dick, Gregory J.; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R. M.

    2014-01-01

    The National Science Foundation’s EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on ‘omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, “big-data capable” analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean ‘omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the ‘omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography. PMID:25197495

  10. Meeting report: Ocean 'omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013).

    PubMed

    Gilbert, Jack A; Dick, Gregory J; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R M; DeLong, Edward F

    2014-06-15

    The National Science Foundation's EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on 'omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, "big-data capable" analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean 'omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the 'omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography.

  11. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    SciTech Connect

    NREL,; Wiser, Ryan; Lantz, Eric; Hand, Maureen

    2012-03-26

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions. Our findings indicate that steady cost reductions were interrupted between 2004 and 2010, but falling turbine prices and improved turbine performance are expected to drive a historically low LCOE for current installations. In addition, the majority of studies indicate continued cost reductions on the order of 20%-30% through 2030. Moreover, useful cost projections are likely to benefit from stronger consideration of the interactions between capital cost and performance as well as trends in the quality of the wind resource where projects are located, transmission, grid integration, and other cost variables.

  12. Small and Shaping the Future Energy Eco-house System

    NASA Astrophysics Data System (ADS)

    Furukawa, Ryuzo; Takahashi, Hideyuki; Sato, Yoshinori; Sasaki, Hiroshi; Isu, Norifumi; Ohtsuka, Masuo; Tohji, Kazuyuki

    2010-11-01

    The objective of this research is to develop the elemental technology of the small and thin energy collection system from water, wind, and others in the house, and examine them at the eco-house which will be built at Tohoku University on March 2010. This small energy storage system will contribute to reduce 10% of greenhouse gas emission from household electricity. This project is done by three following groups. 1st group (NEC-Tokin Co. Ltd.) will develop the technologies on the accumulation of electric power pressured from low electric power in which electricity is generated and on the cooperation with AC power supply used for domestic use for this eco-house system. 2nd group (INAX Co. Ltd.) will develop the elemental technology of the slight energy collection system from tap water in the home using a small hydroelectric generator for this eco-house system. 3rd group (Shoei Co. Ltd.) will develop the technologies on existent magnetic gear device, health appliances (Exercise bike), wind power generator, for this eco-house system. Tokoku University compiles these groups. Furthermore, I develop a search of unused small energy and the use technology, and propose a new energy supply system using solar cell and Li ion secondary battery.

  13. Residential energy efficiency: Progress since 1973 and future potential

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  14. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    SciTech Connect

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.; Wagner, Anne W.; Thornton, John

    2015-05-01

    Full Paper Submission for: Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electric power and, heating and cooling capability to commercial and industrial facilities directly onsite, while increasing energy efficiency, security of energy supply, grid independence and enhancing the environmental and economic situation for the site. Food processing industries often have simultaneous requirements for heat, steam, chilling and electricity making them well suited for the use of such systems to supply base-load or as peak reducing generators enabling reduction of overall energy use intensity. This paper documents analysis from a project evaluating opportunities enabled by CCHPDG for emission and cost reductions and energy storage systems installed onsite at food processing facilities. In addition, this distributed generation coupled with energy storage demonstrates a non-wires solution to delay or eliminate the need for upgrades to electric distribution systems. It was found that a dairy processing plant in the Pacific Northwest currently purchasing 15,000 MWh/yr of electricity and 190,000 MMBtu/yr of gas could be provided with a 1.1 MW CCHP system reducing the amount of electric power purchased to 450 MWh/yr while increasing the gas demand to 255,000 MMBtu/yr. The high percentage of hydro-power in this region resulted in CO2 emissions from CCHP to be higher than that attributed to the electric utility/regional energy mix. The value of this work is in documenting a real-world example demonstrating the value of CCHP to facility owners and financial decision makers to encourage them to more seriously consider CCHP systems when building or upgrading facilities.

  15. Energy from renewable resources: A look to the future

    SciTech Connect

    Kosstrin, H.M.; Beck, R.W.

    1995-09-01

    Renewable Resources are commonly known by names such as; biomass, organic wastes, or processing residues. Historically, biomass utilization for energy production could be considered to fall under two broad categories: new resource applications such as dedicated trees or grasses specifically grown for energy production and residue resource applications such as bagasse (sugar cane waste) or municipal solid waste where the energy application is secondary after the primary function of the raw material has been accomplished. This overview will discuss the use of residues, the leftovers from some other primary use. We will attempt to answer three questions: (a) why use this resource, (b) what should you be concerned about when using this resource and (c) what incentives are available to encourage utilization of this resource.

  16. Future Directions, Challenges and Opportunities in Nuclear Energy

    SciTech Connect

    Klein, Andy; Lance, Jack

    2007-03-21

    The renaissance of nuclear energy for electricity and hydrogen production and process heat for other potential applications is moving ahead rapidly. Both near- and far-term roles are envisioned for this important energy technology, and each of these roles will have its own particular technical challenges and opportunities. Numerous power producers world-wide are actively considering the construction of new nuclear power plants for the production of electricity in the near-term. The U.S. Department of Energy has announced plans to develop both the next generation of nuclear power plants and the technology necessary to recycle used nuclear fuel. These exciting technologies will bring novel challenges to their developers and designers as they push the knowledge base in materials utilization, high temperatures and pressures, extended operating cycles, and extreme operating environments. Development of the techniques and methods to interrogate, understand, manage and control these devices will be crucial to enabling the full extension of these technologies.

  17. Future Directions, Challenges and Opportunities in Nuclear Energy

    SciTech Connect

    Andy Klein; Jack Lance

    2006-07-01

    The renaissance of nuclear energy for electricity and hydrogen production and process heat for other potential applications is moving ahead rapidly. Both near- and far-term roles are envisioned for this important energy technology, and each of these roles will have its own particular technical challenges and opportunities. Numerous power producers world-wide are actively considering the construction of new nuclear power plants for the production of electricity in the near-term. The U.S. Department of Energy has announced plans to develop both the next generation of nuclear power plants and the technology necessary to recycle used nuclear fuel. These exciting technologies will bring novel challenges to their developers and designers as they push the knowledge base in materials utilization, high temperatures and pressures, extended operating cycles, and extreme operating environments. Development of the techniques and methods to interrogate, understand, manage and control these devices will be crucial to enabling the full extension of these technologies.

  18. GOCE and Future Gravity Missions for Geothermal Energy Exploitation

    NASA Astrophysics Data System (ADS)

    Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia

    2016-08-01

    Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying

  19. Global energy shifts: Future possibilities in historical perspective

    NASA Astrophysics Data System (ADS)

    Podobnik, Bruce Michael

    2000-11-01

    This study adopts a macro-comparative, world-systems perspective in order to shed light on the dynamics that led to a global shift away from primary reliance on coal and towards over-reliance on petroleum. It is argued that the interaction of three global dynamics, those of geopolitical rivalry, commercial competition, and social unrest, undermined the nineteenth-century international coal system and paved the way for the consolidation of an international petroleum system in the twentieth century. Specifically, the historical analysis presented in this dissertation shows that: (1) intervention by state agents was absolutely crucial in the early development and later expansion of the international petroleum system; (2) private coal companies attempted to prevent the consolidation of an oil-based energy system, but these older companies were out-competed by newer, multinational petroleum corporations; and (3) waves of labor unrest in established coal industries played a key role in prompting a relatively rapid shift away from coal and towards petroleum. Indeed, a key conclusion of this study is that pressures exerted by such social movements as labor unions, nationalist movements, and environmental coalitions have played as important a role in influencing energy trajectories as the more commonly-recognized actions of governmental and corporate actors. By examining contemporary patterns of state and private investments in a cluster of new energy technologies, as well as the growing influence of environmental regulations it is argued that global dynamics are beginning to favor a shift towards new, more environmentally sustainable energy technologies. The fuel cell is highlighted as one new energy technology that is poised to enter into widespread diffusion in the coming decades, though potentials for expansions in wind, solar, small-scale hydro-electric, and modern biomass systems are also examined. Although significant hurdles must be overcome, this study concludes by

  20. Dark energy properties from large future galaxy surveys

    SciTech Connect

    Basse, Tobias; Bjælde, Ole Eggers; Hannestad, Steen; Hamann, Jan; Wong, Yvonne Y.Y. E-mail: oeb@phys.au.dk E-mail: sth@phys.au.dk

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(w{sub p})σ(w{sub a})){sup −1}, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming a ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w{sub 0} deviates from -1 by as much as is currently observationally allowed, models with c-circumflex {sub s}{sup 2} = 10{sup −6} and c-circumflex {sub s}{sup 2} = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species N{sub eff}{sup ml} is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of N{sub eff}{sup ml} due to non-instantaneous decoupling and

  1. Dark energy properties from large future galaxy surveys

    NASA Astrophysics Data System (ADS)

    Basse, Tobias; Eggers Bjælde, Ole; Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y. Y.

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(wp)σ(wa))-1, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming a ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w0 deviates from -1 by as much as is currently observationally allowed, models with hat cs2 = 10-6 and hat cs2 = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species Neffml is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of Neffml due to non-instantaneous decoupling and finite temperature effects can be probed with 1σ precision for the first time.

  2. Meeting notes of the High Flux Isotope Reactor (HFIR) futures group

    SciTech Connect

    Houser, M.M.

    1995-08-01

    This report is a compilation of the notes from the ten meetings. The group charter is: (1) to identify and characterize the range of possibilities and necessities for keeping the HFIR operating for at least the next 15 years; (2) to identify and characterize the range of possibilities for enhancing the scientific and technical utility of the HFIR; (3) to evaluate the benefits or impacts of these possibilities on the various scientific fields that use the HFIR or its products; (4) to evaluate the benefits or impacts on the operation and maintenance of the HFIR facility and the regulatory requirements; (5) to estimate the costs, including operating costs, and the schedules, including downtime, for these various possibilities; and one possible impact of proposed changes may be to stimulate increased pressure for a reduced enrichment fuel for HFIR.

  3. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    SciTech Connect

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.; Wagner, Anne W.; Thornton, John

    2015-04-02

    ABSTRACT Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electricity, heat, and cooling power to buildings and industrial processes directly onsite, while significantly increasing energy efficiency, security of energy supply, and grid independence. Fruit, vegetable, dairy and meat processing industries with simultaneous requirements for heat, steam, chilling and electricity, are well suited for the use of such systems to supply base-load electrical demand or as peak reducing generators with heat recovery in the forms of hot water, steam and/or chilled water. This paper documents results and analysis from a pilot project to evaluate opportunities for energy, emission, and cost for CCHP-DG and energy storage systems installed onsite at food processing facilities. It was found that a dairy processing plant purchasing 15,000 MWh of electricity will need to purchase 450 MWh with the integration of a 1.1 MW CCHP system. Here, the natural gas to be purchased increased from 190,000 MMBtu to 255,000 MMBtu given the fuel requirements of the CCHP system. CCHP systems lower emissions, however, in the Pacific Northwest the high percentage of hydro-power results in CO2 emissions from CCHP were higher than that attributed to the electric utility/regional energy mix. The value of this paper is in promoting and educating financial decision makers to seriously consider CCHP systems when building or upgrading facilities. The distributed generation aspect can reduce utility costs for industrial facilities and show non-wires solution benefits to delay or eliminate the need for upgrades to local electric transmission and distribution systems.

  4. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  5. Education for the Energy Industry: An Idea from the Future.

    ERIC Educational Resources Information Center

    Griffin, Ann D.; Griffin, Richard A.

    1997-01-01

    Education for the Energy Industry is an innovative, collaborative program for grades 4-12 planned for the Aldine (Texas) Independent School District's magnet schools in math, science, and the arts. Assisted by Rice University and major oil companies, the program allows students to use their knowledge to solve industry-related problems and apply…

  6. Emerging Energy Requirements for Future C4ISR

    DTIC Science & Technology

    2002-09-01

    fulfill the role once envisioned for the military energy depot. One proposed design is the pebble bed modular reactor ( PBMR ) under development by...designs. The PBMR and GT-MHR, coupled with a direct-cycle gas turbine generator, would have a thermal efficiency of about 42-45 percent and would produce

  7. Future Energy: The Use of Hydrogen May Be Inevitable

    ERIC Educational Resources Information Center

    Bockris, John O'M.

    2006-01-01

    The predictions by the Department of Energy indicate the maximum of the rate of supply of oil will be reached around 2021, but this neglects the effect of the rapid growth of China and India. It will be necessary to use coal, natural gas, nuclear power, or renewables to supplement, and, after 2021, to replace oil. If coal is used, it can be…

  8. Hydropower: Setting a Course for Our Energy Future

    SciTech Connect

    Not Available

    2004-07-01

    Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

  9. Hydrogen: Its Future Role in the Nation's Energy Economy

    ERIC Educational Resources Information Center

    Winsche, W. E.; And Others

    1973-01-01

    Advocates the development of a hydrogen fuel economy as an alternative to the predominately electric economy based upon nuclear plants and depleting fossil fuel supplies. Evaluates the economic and environmental benefits of hydrogen energy delivery systems in the residential and transportation sectors. (JR)

  10. Hydrogen: Its Future Role in the Nation's Energy Economy

    ERIC Educational Resources Information Center

    Winsche, W. E.; And Others

    1973-01-01

    Advocates the development of a hydrogen fuel economy as an alternative to the predominately electric economy based upon nuclear plants and depleting fossil fuel supplies. Evaluates the economic and environmental benefits of hydrogen energy delivery systems in the residential and transportation sectors. (JR)

  11. Energy crisis and SPS for third world future

    NASA Astrophysics Data System (ADS)

    Mayur, Rashmi

    The benefits that the third world may reap in various areas from the development of satellite technology, including Solar Power Satellites (SPS), are examined. The areas considered include disaster warning, environmental monitoring, agriculture, education, communications, resource surveying, medicine, new materials, and energy development.

  12. Employment from Solar Energy: A Bright but Partly Cloudy Future.

    ERIC Educational Resources Information Center

    Smeltzer, K. K.; Santini, D. J.

    A comparison of quantitative and qualitative employment effects of solar and conventional systems can prove the increased employment postulated as one of the significant secondary benefits of a shift from conventional to solar energy use. Current quantitative employment estimates show solar technology-induced employment to be generally greater…

  13. Education for the Energy Industry: An Idea from the Future.

    ERIC Educational Resources Information Center

    Griffin, Ann D.; Griffin, Richard A.

    1997-01-01

    Education for the Energy Industry is an innovative, collaborative program for grades 4-12 planned for the Aldine (Texas) Independent School District's magnet schools in math, science, and the arts. Assisted by Rice University and major oil companies, the program allows students to use their knowledge to solve industry-related problems and apply…

  14. Future of the beam energy scan program at RHIC

    NASA Astrophysics Data System (ADS)

    Odyniec, Grazyna

    2015-05-01

    The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of the QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.

  15. Future Energy: The Use of Hydrogen May Be Inevitable

    ERIC Educational Resources Information Center

    Bockris, John O'M.

    2006-01-01

    The predictions by the Department of Energy indicate the maximum of the rate of supply of oil will be reached around 2021, but this neglects the effect of the rapid growth of China and India. It will be necessary to use coal, natural gas, nuclear power, or renewables to supplement, and, after 2021, to replace oil. If coal is used, it can be…

  16. Future of the Beam Energy Scan program at RHIC

    DOE PAGES

    Odyniec, Grazyna; Bravina, L.; Foka, Y.; ...

    2015-05-29

    The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of themore » QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.« less

  17. Future of the Beam Energy Scan program at RHIC

    SciTech Connect

    Odyniec, Grazyna; Bravina, L.; Foka, Y.; Kabana, S.

    2015-05-29

    The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of the QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.

  18. Affordable comfort 95 - investing in our energy future

    SciTech Connect

    1995-12-31

    This report describes the topics from the conference on Affordable Comfort, held March 26-31, 1995. Topics are concerned with energy efficiency in homes, retrofitting, weatherization, and monitoring of appliances, heating, and air conditioning systems for performance, as well as topics on electric utilities.

  19. Tapping the Molecular Potential of Microalgae to Produce Biomass (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Sayre, Richard [LANL

    2016-07-12

    Richard Sayre, from Los Alamos National Laboratory, presents a talk titled "Tapping the Molecular Potential of Microalgae to Produce Biomass" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  20. Getting to the Root of Things: Spatiotemporal Regulatory Networks (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Brady, Siobhan [UC Davis

    2016-07-12

    Siobhan Brady from University of California, Davis, gives a talk titled "tGetting to the Root of things: Spatiotemporal Regulatory Networks" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  1. Tapping the Molecular Potential of Microalgae to Produce Biomass (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Sayre, Richard

    2012-03-22

    Richard Sayre, from Los Alamos National Laboratory, presents a talk titled "Tapping the Molecular Potential of Microalgae to Produce Biomass" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  2. Getting to the Root of Things: Spatiotemporal Regulatory Networks (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Brady, Siobhan

    2012-03-22

    Siobhan Brady from University of California, Davis, gives a talk titled "tGetting to the Root of things: Spatiotemporal Regulatory Networks" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  3. A Glimpse of the Future: The 62nd PTTI Systems & Applications Meeting November 2030

    DTIC Science & Technology

    2009-11-01

    FORECASTING Though seeing into the future is difficult, some people have been able to forecast tomorrow’s technology with amazing accuracy. Jules ... Verne wrote about manned flight to the moon from a launch base in Florida in 1865 [1], and Arthur C. Clarke described the use of communications...Precise Time – William Cashin and Qinghua Wang Relativity in Everyday Systems – Aaron Dahlen. REFERENCES [1] J. Verne , 1865, From the Earth

  4. 76 FR 60015 - FirstEnergy Generation Corporation; Seneca Nation of Indians; Notice of Tribal Consultation Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FirstEnergy Generation Corporation; Seneca Nation of Indians; Notice of Tribal Consultation Meeting The Commission will hold a Government to Government/Tribal...

  5. After Paris, the Smart Bet is on a Clean Energy Future

    SciTech Connect

    Arent, Doug

    2016-07-01

    In this article for GreenMoney Journal, Doug Arent, Executive Director of the Joint Institute for Strategic Energy Analysis, reviews recent energy systems investment patterns and discusses what they mean for the future of energy in the United States and around the world.

  6. The Decline of the Atom and the Rise of the Sun as Future Energy Sources

    ERIC Educational Resources Information Center

    Bockris, J. O'M.

    1973-01-01

    Examines the various energy sources likely to be developed in the near future, and suggests that the only satisfactory solution lies in the development of solar energy and an associated non-polluting "hydrogen economy." Concludes that Australia has ideal conditions and the technical expertise to lead in solar energy research. (JR)

  7. The Decline of the Atom and the Rise of the Sun as Future Energy Sources

    ERIC Educational Resources Information Center

    Bockris, J. O'M.

    1973-01-01

    Examines the various energy sources likely to be developed in the near future, and suggests that the only satisfactory solution lies in the development of solar energy and an associated non-polluting "hydrogen economy." Concludes that Australia has ideal conditions and the technical expertise to lead in solar energy research. (JR)

  8. Meeting today's challenges to supply tomorrow's energy. Clean fossil energy technical and policy seminar

    SciTech Connect

    2005-07-01

    Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.

  9. Future singularity avoidance in phantom dark energy models

    SciTech Connect

    Haro, Jaume de

    2012-07-01

    Different approaches to quantum cosmology are studied in order to deal with the future singularity avoidance problem. Our results show that these future singularities will persist but could take different forms. As an example we have studied the big rip which appear when one considers the state equation P = ωρ with ω < −1, showing that it does not disappear in modified gravity. On the other hand, it is well-known that quantum geometric effects (holonomy corrections) in loop quantum cosmology introduce a quadratic modification, namely proportional to ρ{sup 2}, in Friedmann's equation that replace the big rip by a non-singular bounce. However this modified Friedmann equation could have been obtained in an inconsistent way, what means that the obtained results from this equation, in particular singularity avoidance, would be incorrect. In fact, we will show that instead of a non-singular bounce, the big rip singularity would be replaced, in loop quantum cosmology, by other kind of singularity.

  10. Closing Keynote Presentation on the Genomics of Energy and the Environment (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Benner, Stephen [Foundation for Applied Molecular Evolution, Westheimer Institute of Science and Technology

    2016-07-12

    Steve Benner, a distinguished chemist at the Foundation for Applied Molecular Evolution, Westheimer Institute of Science and Technology, provides the closing keynote address for the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  11. Closing Keynote Presentation on the Genomics of Energy and the Environment (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Benner, Stephen

    2012-03-22

    Steve Benner, a distinguished chemist at the Foundation for Applied Molecular Evolution, Westheimer Institute of Science and Technology, provides the closing keynote address for the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  12. Regulation of Flowering in Brachypodium distachyon (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Amasino, Rick

    2013-03-01

    Rick Amasino of the University of Wisconsin on "Regulation of Flowering in Brachypodium distachyon" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  13. The Sunflower Genome and its Evolution (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Rieseberg, Loren [University of British Columbia

    2016-07-12

    Loren Rieseberg from the University of British Columbia on "The Sunflower Genome and its Evolution" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  14. PMI: Plant-Microbe Interfaces (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Schadt, Christopher

    2013-03-01

    Christopher Schadt of Oak Ridge National Laboratory on "Plant-Microbe Interactions" in the context of poplar trees at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 held in Walnut Creek, Calif.

  15. Genomics on the Half Shell: So, What do Oysters Have to do with Energy? (2010 JGI User Meeting)

    ScienceCinema

    Hedgecock, Dennis

    2016-07-12

    Dennis Hedgecock from the University of Southern California answers the question, "Genomics on the Half Shell: So, What Do Oysters Have to Do with Energy?" on March 24, 2010 at the 5th Annual DOE JGI User Meeting

  16. 75 FR 6070 - Notice of Public Meeting on the International Atomic Energy Agency Basic Safety Standards Version...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... 3.0, Draft Safety Requirements DS379 AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Public Meeting on the International Atomic Energy Agency Basic Safety Standards Version 3.0, Draft Safety...

  17. Genomics of Climate Resilience (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Bermingham, Eldredge

    2013-03-27

    Eldredge Bermingham of the Smithsonian Tropical Research Institute-Panama on "Genomics of climate resilience" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  18. Genomics on the Half Shell: So, What do Oysters Have to do with Energy? (2010 JGI User Meeting)

    SciTech Connect

    Hedgecock, Dennis

    2010-03-24

    Dennis Hedgecock from the University of Southern California answers the question, "Genomics on the Half Shell: So, What Do Oysters Have to Do with Energy?" on March 24, 2010 at the 5th Annual DOE JGI User Meeting

  19. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Gallivan, Justin [Emory University

    2016-07-12

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  20. The Sunflower Genome and its Evolution (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Rieseberg, Loren

    2012-03-21

    Loren Rieseberg from the University of British Columbia on "The Sunflower Genome and its Evolution" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.